WO2018021841A1 - Organic electroluminescent compound and organic electroluminescent device comprising the same - Google Patents

Organic electroluminescent compound and organic electroluminescent device comprising the same Download PDF

Info

Publication number
WO2018021841A1
WO2018021841A1 PCT/KR2017/008083 KR2017008083W WO2018021841A1 WO 2018021841 A1 WO2018021841 A1 WO 2018021841A1 KR 2017008083 W KR2017008083 W KR 2017008083W WO 2018021841 A1 WO2018021841 A1 WO 2018021841A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
organic electroluminescent
alkyl
compound
Prior art date
Application number
PCT/KR2017/008083
Other languages
French (fr)
Inventor
Doo-Hyeon Moon
Ji-Song JUN
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170094723A external-priority patent/KR102435083B1/en
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to JP2018568913A priority Critical patent/JP6924784B2/en
Priority to US16/315,178 priority patent/US10636980B2/en
Priority to EP17834782.9A priority patent/EP3494117A4/en
Priority to CN201780041027.7A priority patent/CN109451739B/en
Publication of WO2018021841A1 publication Critical patent/WO2018021841A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same.
  • an electroluminescent device is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak in 1987, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
  • iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp) 2 ), tris(2-phenylpyridine)iridium (Ir(ppy) 3 ) and bis(4,6-difluorophenylpyridinato-N,C2)picolinate iridium (Firpic) as red, green, and blue materials, respectively.
  • CBP 4,4’-N,N’-dicarbazol-biphenyl
  • BCP bathocuproine
  • BAlq aluminum(III)bis(2-methyl-8-quinolinate)(4-phenylphenolate)
  • Korean Patent Appln. Laying-Open No. KR 2015-0077220 discloses a compound of a fused structure comprising a carbazole and an azepine as a compound for an organic electroluminescent device.
  • said reference does not specifically disclose a compound of a fused structure comprising an indolocarbazole and an azepine.
  • the objective of the present disclosure is to provide i) an organic electroluminescent compound which can produce an organic electroluminescent device having low driving voltage, high luminous efficiency, and/or excellent lifespan characteristic, and ii) an organic electroluminescent device comprising the compound.
  • X 1 to X 13 each independently represent N or CR 1 ;
  • L represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted 3- to 30-membered heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
  • Ar and R 1 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)aryls
  • the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P;
  • a and b each independently represent an integer of 1 to 2.
  • an organic electroluminescent device having low driving voltage, high luminous efficiency, and/or excellent lifespan characteristic can be produced.
  • Figure 1 shows that the compound according to the present disclosure has a reduced steric hindrance compared to a conventional compound.
  • the present disclosure relates to an organic electroluminescent compound represented by formula 1, an organic electroluminescent material comprising the compound, and an organic electroluminescent device comprising the material.
  • organic electroluminescent compound in the present disclosure means a compound that may be used in an organic electroluminescent device, and may be comprised in any layer constituting an organic electroluminescent device, as necessary.
  • organic electroluminescent material in the present disclosure means a material that may be used in an organic electroluminescent device, and may comprise at least one compound.
  • the organic electroluminescent material may be comprised in any layer constituting an organic electroluminescent device, as necessary.
  • the organic electroluminescent material may be a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, or an electron injection material.
  • the organic electroluminescent material of the present disclosure may comprise at least one compound represented by formula 1.
  • the compound represented by formula 1 may be comprised in at least one layer constituting an organic electroluminescent device, and may be comprised in a light-emitting layer, but is not limited thereto. When comprised in the light-emitting layer, it can be comprised as a phosphorescent host material.
  • the compound of formula 1 may be represented by any one of the following formulas 2 to 7:
  • X represents N or CR 1 ;
  • R represents a substituted or unsubstituted mono- or di- (C6-C30)arylamino
  • c represents an integer of 1 to 2;
  • L, Ar, R 1 , a, and b are as defined in formula 1.
  • (C1-C30)alkyl(ene) is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
  • (C3-C30)cycloalkyl(ene) is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • “3- to 7-membered heterocycloalkyl” is meant to be a cycloalkyl having at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, preferably O, S, and N, and 3 to 7 ring backbone atoms, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.
  • (C6-C30)aryl(ene) is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of ring backbone carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.
  • “3- to 30-membered heteroaryl(ene)” is meant to be an aryl group having at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P, and 3 to 30 ring backbone atoms; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or functional group, i.e., a substituent.
  • X 1 to X 13 each independently represent N or CR 1 .
  • L represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted 3- to 30-membered heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene, preferably represents a single bond, a substituted or unsubstituted (C6-C15)arylene, or a substituted or unsubstituted 5- to 15-membered heteroarylene, and more preferably represents a single bond, an unsubstituted (C6-C15)arylene, or an unsubstituted 5- to 15-membered heteroarylene.
  • Ar and R 1 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)aryls
  • Ar preferably represents hydrogen, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted 5- to 20-membered heteroaryl, or a substituted or unsubstituted di(C6-C15)arylamino; and more preferably represents hydrogen, an unsubstituted (C6-C20)aryl, a 5- to 20-membered heteroaryl unsubstituted or substituted with a (C1-C6)alkyl, a (C6-C25)aryl, a 5- to 20-membered heteroaryl, or a (C1-C6)alkyl(C6-C15)aryl, or an unsubstituted di(C6-C15)arylamino.
  • R 1 preferably represents hydrogen, or a substituted or unsubstituted di(C6-C15)arylamino; or is linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C15) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; and more preferably represents hydrogen, or a di(C6-C15)arylamino unsubstituted or substituted with a (C1-C6)alkyl; or is linked to an adjacent substituent to form an unsubstituted monocyclic (C3-C15) aromatic ring, for example, a benzene ring.
  • Ar may be a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl,
  • Ar may be a triazinyl, pyrimidinyl, quinazolinyl, benzoquinazolinyl, quinoxalinyl, benzoquinoxalinyl, quinolyl, benzoquinolyl, isoquinolyl, benzoisoquinolyl, triazolyl, pyrazolyl, dibenzothiophenyl, benzothiophenyl, dibenzofuranyl, or benzofuranyl, substituted with an aryl or a heteroaryl.
  • X 1 to X 13 each independently represent N or CR 1 ;
  • L represents a single bond, a substituted or unsubstituted (C6-C15)arylene, or a substituted or unsubstituted 5- to 15-membered heteroarylene;
  • Ar represents hydrogen, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted 5- to 20-membered heteroaryl, or a substituted or unsubstituted di(C6-C15)arylamino;
  • R 1 represents hydrogen, or a substituted or unsubstituted di(C6-C15)arylamino; or is linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C15) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur
  • X 1 to X 13 each independently represent N or CR 1 ;
  • L represents a single bond, an unsubstituted (C6-C15)arylene, or an unsubstituted 5- to 15-membered heteroarylene;
  • Ar represents hydrogen; an unsubstituted (C6-C20)aryl; a 5- to 20-membered heteroaryl unsubstituted or substituted with a (C1-C6)alkyl, a (C6-C25)aryl, a 5- to 20-membered heteroaryl, or a (C1-C6)alkyl(C6-C15)aryl; or an unsubstituted di(C6-C15)arylamino; and R 1 represents hydrogen, or a di(C6-C15)arylamino unsubstituted or substituted with a (C1-C6)alkyl; or is linked to an adjacent substituent to form an unsubstit
  • the organic electroluminescent compound represented by formula 1 includes the following compounds, but is not limited thereto:
  • the organic electroluminescent compound according to the present disclosure can be prepared by a synthetic method known to a person skilled in the art. For example, it can be prepared according to the following reaction scheme.
  • X 1 to X 13 , L, Ar, R 1 , a, and b are as defined in formula 1, and Hal represents a halogen.
  • the present disclosure provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material.
  • the above material can be comprised of the organic electroluminescent compound according to the present disclosure alone, or can further include conventional materials generally used in organic electroluminescent materials.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer may comprise at least one organic electroluminescent compound of formula 1.
  • the organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron buffer layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • the organic electroluminescent compound of formula 1 of the present disclosure may be comprised in the light-emitting layer.
  • the organic electroluminescent compound of formula 1 of the present disclosure can be comprised as a host material.
  • the light-emitting layer can further comprise one or more dopants.
  • the organic electroluminescent compound of the present disclosure can be used as a co-host material. That is, the light-emitting layer can additionally comprise a compound other than the organic electroluminescent compound of formula 1 of the present disclosure (first host material) as a second host material.
  • the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
  • the second host material can be any of the known hosts.
  • the host selected from the group consisting of the compounds of formulas 11 to 16 below may be preferable in terms of luminous efficiency.
  • A represents -O- or -S-
  • R 21 to R 24 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 5- to 30-membered heteroaryl, or -SiR 25 R 26 R 27 ; in which R 25 to R 27 , each independently, represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; L 4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 5- to 30-membered heteroarylene; M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl; Y
  • Y 3 to Y 5 each independently, represent CR 34 or N;
  • R 34 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
  • B 1 and B 2 each independently, represent hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
  • B 3 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
  • L 5 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 5- to 30-membered heteroarylene.
  • the examples of the second host material are as follows, but are not limited thereto.
  • TPS represents a triphenylsilyl group
  • the dopant comprised in the organic electroluminescent device according to the present disclosure may be preferably at least one phosphorescent dopant.
  • the phosphorescent dopant materials applied to the organic electroluminescent device according to the present disclosure are not particularly limited, but may be preferably selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), may be more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and may be even more preferably an ortho-metallated iridium complex compound.
  • the dopant comprised in the organic electroluminescent device of the present disclosure may be selected from the group consisting of the compounds represented by formulas 101 to 104 below, but is not limited thereto.
  • L is selected from the following structures:
  • R 100 , R 134 , and R 135 each independently, represent hydrogen, deuterium, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
  • R 101 to R 109 and R 111 to R 123 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; an adjacent substituent of R 106 to R 109 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., a fluorene unsubstituted or substituted with an alkyl, a dibenzothiophene unsubstituted or substituted with an alkyl, or a dibenzofuran unsubstituted or substituted with an alkyl; and adjacent substituents of R
  • R 124 to R 133 and R 136 to R 139 each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R 124 to R 127 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., a fluorene unsubstituted or substituted with an alkyl, a dibenzothiophene unsubstituted or substituted with an alkyl, or a dibenzofuran unsubstituted or substituted with an alkyl;
  • X represents CR 21 R 22 , O, or S
  • R 21 and R 22 each independently, represent a substituted or unsubstituted (C1-C10)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
  • R 201 to R 211 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, or a (C6-C30)aryl unsubstituted or substituted with an alkyl or deuterium; and adjacent substituents of R 208 to R 211 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., a fluorene unsubstituted or substituted with an alkyl, a dibenzothiophene unsubstituted or substituted with an alkyl, or a dibenzofuran unsubstituted or substituted with an alkyl;
  • f and g each independently, represent an integer of 1 to 3; where f or g is an integer of 2 or more, each R 100 may be the same or different; and
  • s represents an integer of 1 to 3.
  • compositions for preparing an organic electroluminescent device comprises the compound according to the present disclosure as a host material, a hole transport layer material, a hole auxiliary layer material, a light-emitting auxiliary layer material, an electron buffer layer material, or an electron transport layer material.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer comprises a light-emitting layer, and the light-emitting layer may comprise the composition for preparing the organic electroluminescent device according to the present disclosure.
  • the organic electroluminescent device may further comprise, in addition to the organic electroluminescent compound of formula 1, at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
  • the organic layer may further comprise, in addition to the organic electroluminescent compound of formula 1, at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • the organic layer may further comprise a light-emitting layer and a charge generating layer.
  • the organic electroluminescent device according to the present disclosure may emit white light by further comprising at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound according to the present disclosure.
  • a yellow or orange light-emitting layer can be further comprised in the device.
  • a surface layer is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer.
  • a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • said chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and said metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a hole injection layer, a hole transport layer, an electron blocking layer, or a combination thereof can be used between the anode and the light-emitting layer.
  • the hole injection layer may be multi-layers in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer, wherein each of the multi-layers may use two compounds simultaneously.
  • the hole transport layer or the electron blocking layer may also be multi-layers.
  • An electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof can be used between the light-emitting layer and the cathode.
  • the electron buffer layer may be multi-layers in order to control the injection of the electron and improve the interfacial properties between the light-emitting layer and the electron injection layer, wherein each of the multi-layers may use two compounds simultaneously.
  • the hole blocking layer or the electron transport layer may also be multi-layers, wherein each of the multi-layers may use a plurality of compounds.
  • the light-emitting auxiliary layer may be placed between the anode and the light-emitting layer, or between the cathode and the light-emitting layer.
  • the light-emitting auxiliary layer When the light-emitting auxiliary layer is placed between the anode and the light-emitting layer, it can be used for promoting the hole injection and/or hole transport, or for preventing the overflow of electrons.
  • the light-emitting auxiliary layer is placed between the cathode and the light-emitting layer, it can be used for promoting the electron injection and/or electron transport, or for preventing the overflow of holes.
  • the hole auxiliary layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may be effective to promote or block the hole transport rate (or hole injection rate), thereby enabling the charge balance to be controlled.
  • the electron blocking layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and can confine the excitons within the light-emitting layer by blocking the overflow of electrons from the light-emitting layer to prevent a light-emitting leakage.
  • the hole transport layer which is further included, may be used as a hole auxiliary layer or an electron blocking layer.
  • the hole auxiliary layer and the electron blocking layer may have an effect of improving the efficiency and/or the lifespan of the organic electroluminescent device.
  • a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to the light-emitting medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the light-emitting medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • the reductive dopant layer may be employed as a charge-generating layer to prepare an organic EL device having two or more light-emitting layers which emits white light.
  • each layer constituting the organic electroluminescent device of the present disclosure dry film-forming methods such as vacuum deposition, sputtering, plasma, ion plating methods, etc., or wet film-forming methods such as spin coating, dip coating, flow coating methods, etc., can be used.
  • dry film-forming methods such as vacuum deposition, sputtering, plasma, ion plating methods, etc.
  • wet film-forming methods such as spin coating, dip coating, flow coating methods, etc.
  • a co-evaporation or a mixed evaporation method is used.
  • a thin film is formed by dissolving or dispersing the material constituting each layer in suitable solvents, such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • suitable solvents such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvents are not specifically limited as long as the material constituting each layer is soluble or dispersible in the solvents, which do not cause any problems in forming a film.
  • a display device for example, for smartphones, tablets, notebooks, PCs, TVs, or vehicles, or a lighting device, for example, an indoor or outdoor lighting device, can be produced.
  • An OLED device was produced using the organic electroluminescent compound of the present disclosure.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec, Japan) was subjected to an ultrasonic washing with acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol.
  • the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • Compound HI-1 was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10 -6 torr.
  • Compound HT-3 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer.
  • a light-emitting layer was then deposited as follows.
  • Compound C-50 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-71 was introduced into another cell as a dopant.
  • the two materials were evaporated and were deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • Compound ET-1 and compound EI-1 were then introduced into other two cells, evaporated at the rate of 1:1, and deposited to form an electron transport layer having a thickness of 30 nm on the light-emitting layer.
  • an Al cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus on the electron injection layer.
  • an OLED device was produced.
  • Comparative Example 1 Production of an OLED device using a
  • An OLED device was produced in the same manner as in Device Example 1, except that compound B was used instead of compound C-50.
  • Comparative Example 2 Production of an OLED device using a
  • An OLED device was produced in the same manner as in Device Example 1, except that compound Y was used instead of compound C-50.
  • An OLED device was produced in the same manner as in Device Example 1, except that 4,4’-N,N’-dicarbazol-biphenyl (CBP) was used as a host material instead of compound C-50, compound HT-4 was used as a second hole transport layer material instead of compound HT-3, and the thickness of the electron transport layer was changed to 35 nm.
  • CBP 4,4’-N,N’-dicarbazol-biphenyl
  • OLED devices were produced in the same manner as in Comparative Example 3, except that the host was changed to the compounds shown in Table 1 below.
  • the driving voltage, luminous efficiency, and CIE color coordinates at 1,000 nits, and the lifespan (T95) measured as the time taken to be reduced from 100% to 95% of the luminance at 5,000 nits of the OLED devices produced in Comparative Example 3 and Device Examples 2 to 11 are provided in Table 1 below.
  • the organic electroluminescent compounds according to the present disclosure provide lower driving voltage, higher luminous efficiency such as current efficiency, and longer operational lifespan of the devices compared to the conventional organic electroluminescent compounds.
  • the compound of formula 1 of the present disclosure has an azepine ring formed by a link of a benzene ring, which is substituted on N in an indolocarbazole backbone, and a benzene ring of a carbazole.
  • Such effects of the compound of the present disclosure may be interpreted by the following theory.
  • Figure 1 shows that the compound of the present disclosure has a reduced steric hindrance compared to the conventional compound.
  • the steric hindrance increases the intermolecular distance, and thus the electron mobility is lowered in electron hopping. Therefore, a hopping distance should be reduced by increasing the current enabling electron hopping.
  • the driving voltage of the organic electroluminescent device increases.
  • compound B of the present disclosure was invented to have a planar structure compared to compound A. Accordingly, the compound of the present disclosure can reduce driving voltage upon applying it to a device.

Abstract

The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. By using the organic electroluminescent compound of the present disclosure, an organic electroluminescent device having low driving voltage, high luminous efficiency, and/or excellent lifespan characteristic can be produced.

Description

ORGANIC ELECTROLUMINESCENT COMPOUND AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING THE SAME
The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same.
Among display devices, an electroluminescent device (EL device) is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time. The first organic EL device was developed by Eastman Kodak in 1987, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
The most important factor determining luminous efficiency in an organic electroluminescent device is light-emitting materials. Until now, fluorescent materials have been widely used as a light-emitting material. However, in view of electroluminescent mechanisms, since phosphorescent light-emitting materials theoretically enhance luminous efficiency by four (4) times compared to fluorescent light-emitting materials, development of phosphorescent light-emitting materials are widely being researched. To date, iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp)2), tris(2-phenylpyridine)iridium (Ir(ppy)3) and bis(4,6-difluorophenylpyridinato-N,C2)picolinate iridium (Firpic) as red, green, and blue materials, respectively.
At present, 4,4’-N,N’-dicarbazol-biphenyl (CBP) is the most widely known phosphorescent host material. Recently, Pioneer (Japan) et al. developed a high performance organic electroluminescent device using bathocuproine (BCP) and aluminum(III)bis(2-methyl-8-quinolinate)(4-phenylphenolate) (BAlq) etc., which were used as hole blocking layer materials, as host materials.
Although these materials provide good light-emitting characteristics, they have the following disadvantages: (1) Due to their low glass transition temperature and poor thermal stability, their degradation may occur during a high-temperature deposition process in a vacuum, and the lifespan of the device decreases. (2) The power efficiency of an organic electroluminescent device is given by [(π/voltage) × current efficiency], and the power efficiency is inversely proportional to the voltage. Although an organic electroluminescent device comprising phosphorescent host materials provides higher current efficiency (cd/A) than one comprising fluorescent materials, a significantly high driving voltage is necessary. Thus, there is no merit in terms of power efficiency (lm/W). (3) Further, when these materials are used in an organic electroluminescent device, the operational lifespan of an organic electroluminescent device is short and luminous efficiency is still required to be improved.
In order to enhance luminous efficiency, driving voltage and/or lifespan, various materials or concepts for an organic layer of an organic electroluminescent device have been proposed. However, they were not satisfactory to use practically.
Korean Patent Appln. Laying-Open No. KR 2015-0077220 discloses a compound of a fused structure comprising a carbazole and an azepine as a compound for an organic electroluminescent device. However, said reference does not specifically disclose a compound of a fused structure comprising an indolocarbazole and an azepine.
The objective of the present disclosure is to provide i) an organic electroluminescent compound which can produce an organic electroluminescent device having low driving voltage, high luminous efficiency, and/or excellent lifespan characteristic, and ii) an organic electroluminescent device comprising the compound.
As a result of intensive studies to solve the technical problem above, the present inventors found that the above objective can be achieved by an organic electroluminescent compound represented by the following formula 1:
Figure PCTKR2017008083-appb-I000001
wherein
X1 to X13 each independently represent N or CR1;
L represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted 3- to 30-membered heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
Ar and R1 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or are linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur;
the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P; and
a and b each independently represent an integer of 1 to 2.
By using the organic electroluminescent compound according to the present disclosure, an organic electroluminescent device having low driving voltage, high luminous efficiency, and/or excellent lifespan characteristic can be produced.
Figure 1 shows that the compound according to the present disclosure has a reduced steric hindrance compared to a conventional compound.
Hereinafter, the present disclosure will be described in detail. However, the following description is intended to explain the disclosure, and is not meant in any way to restrict the scope of the disclosure.
The present disclosure relates to an organic electroluminescent compound represented by formula 1, an organic electroluminescent material comprising the compound, and an organic electroluminescent device comprising the material.
The term “organic electroluminescent compound” in the present disclosure means a compound that may be used in an organic electroluminescent device, and may be comprised in any layer constituting an organic electroluminescent device, as necessary.
The term “organic electroluminescent material” in the present disclosure means a material that may be used in an organic electroluminescent device, and may comprise at least one compound. The organic electroluminescent material may be comprised in any layer constituting an organic electroluminescent device, as necessary. For example, the organic electroluminescent material may be a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, or an electron injection material.
The organic electroluminescent material of the present disclosure may comprise at least one compound represented by formula 1. The compound represented by formula 1 may be comprised in at least one layer constituting an organic electroluminescent device, and may be comprised in a light-emitting layer, but is not limited thereto. When comprised in the light-emitting layer, it can be comprised as a phosphorescent host material.
Hereinafter, the organic electroluminescent compound represented by formula 1 will be described in detail.
The compound of formula 1 may be represented by any one of the following formulas 2 to 7:
Figure PCTKR2017008083-appb-I000002
Figure PCTKR2017008083-appb-I000003
Figure PCTKR2017008083-appb-I000004
wherein
X represents N or CR1;
R represents a substituted or unsubstituted mono- or di- (C6-C30)arylamino;
c represents an integer of 1 to 2; and
L, Ar, R1, a, and b are as defined in formula 1.
Herein, “(C1-C30)alkyl(ene)” is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc. “(C2-C30)alkenyl” is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc. “(C2-C30)alkynyl” is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc. “(C3-C30)cycloalkyl(ene)” is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. “3- to 7-membered heterocycloalkyl” is meant to be a cycloalkyl having at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, preferably O, S, and N, and 3 to 7 ring backbone atoms, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc. “(C6-C30)aryl(ene)” is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of ring backbone carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc. “3- to 30-membered heteroaryl(ene)” is meant to be an aryl group having at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P, and 3 to 30 ring backbone atoms; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, benzoquinazolinyl, quinoxalinyl, benzoquinoxalinyl, carbazolyl, benzocarbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, etc. “Halogen” includes F, Cl, Br, and I.
Herein, “substituted” in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or functional group, i.e., a substituent. The substituents of the substituted (C1-C30)alkyl(ene), the substituted (C6-C30)aryl(ene), the substituted 3- to 30-membered heteroaryl(ene), the substituted (C3-C30)cycloalkyl(ene), the substituted (C1-C30)alkoxy, the substituted tri(C1-C30)alkylsilyl, the substituted di(C1-C30)alkyl(C6-C30)arylsilyl, the substituted (C1-C30)alkyldi(C6-C30)arylsilyl, the substituted tri(C6-C30)arylsilyl, the substituted mono- or di- (C1-C30)alkylamino, the substituted mono- or di- (C6-C30)arylamino, the substituted (C1-C30)alkyl(C6-C30)arylamino, and the substituted mono- or polycyclic, (C3-C30) alicyclic or aromatic ring in Ar, L, and R1 each independently are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a 3- to 7-membered heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a 5- to 30-membered heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a 5- to 30-membered heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di- (C1-C30)alkylamino, a mono- or di- (C6-C30)arylamino unsubstituted or substituted with a (C1-C30)alkyl, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl; and preferably each independently are at least one selected from the group consisting of a (C1-C6)alkyl; a (C6-C25)aryl unsubstituted or substituted with a (C1-C6)alkyl or a (C6-C12)aryl; a 5- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl; and a (C1-C6)alkyl (C6-C12)aryl.
In formula 1 above, X1 to X13 each independently represent N or CR1.
L represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted 3- to 30-membered heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene, preferably represents a single bond, a substituted or unsubstituted (C6-C15)arylene, or a substituted or unsubstituted 5- to 15-membered heteroarylene, and more preferably represents a single bond, an unsubstituted (C6-C15)arylene, or an unsubstituted 5- to 15-membered heteroarylene.
Ar and R1 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or are linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur. Ar preferably represents hydrogen, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted 5- to 20-membered heteroaryl, or a substituted or unsubstituted di(C6-C15)arylamino; and more preferably represents hydrogen, an unsubstituted (C6-C20)aryl, a 5- to 20-membered heteroaryl unsubstituted or substituted with a (C1-C6)alkyl, a (C6-C25)aryl, a 5- to 20-membered heteroaryl, or a (C1-C6)alkyl(C6-C15)aryl, or an unsubstituted di(C6-C15)arylamino. R1 preferably represents hydrogen, or a substituted or unsubstituted di(C6-C15)arylamino; or is linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C15) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur; and more preferably represents hydrogen, or a di(C6-C15)arylamino unsubstituted or substituted with a (C1-C6)alkyl; or is linked to an adjacent substituent to form an unsubstituted monocyclic (C3-C15) aromatic ring, for example, a benzene ring.
Specifically, Ar may be a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted dibenzofuranyl, or a substituted or unsubstituted benzofuranyl. More specifically, Ar may be a triazinyl, pyrimidinyl, quinazolinyl, benzoquinazolinyl, quinoxalinyl, benzoquinoxalinyl, quinolyl, benzoquinolyl, isoquinolyl, benzoisoquinolyl, triazolyl, pyrazolyl, dibenzothiophenyl, benzothiophenyl, dibenzofuranyl, or benzofuranyl, substituted with an aryl or a heteroaryl.
According to one embodiment of the present disclosure, in formula 1 above, X1 to X13 each independently represent N or CR1; L represents a single bond, a substituted or unsubstituted (C6-C15)arylene, or a substituted or unsubstituted 5- to 15-membered heteroarylene; Ar represents hydrogen, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted 5- to 20-membered heteroaryl, or a substituted or unsubstituted di(C6-C15)arylamino; and R1 represents hydrogen, or a substituted or unsubstituted di(C6-C15)arylamino; or is linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C15) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur.
According to another embodiment of the present disclosure, in formula 1 above, X1 to X13 each independently represent N or CR1; L represents a single bond, an unsubstituted (C6-C15)arylene, or an unsubstituted 5- to 15-membered heteroarylene; Ar represents hydrogen; an unsubstituted (C6-C20)aryl; a 5- to 20-membered heteroaryl unsubstituted or substituted with a (C1-C6)alkyl, a (C6-C25)aryl, a 5- to 20-membered heteroaryl, or a (C1-C6)alkyl(C6-C15)aryl; or an unsubstituted di(C6-C15)arylamino; and R1 represents hydrogen, or a di(C6-C15)arylamino unsubstituted or substituted with a (C1-C6)alkyl; or is linked to an adjacent substituent to form an unsubstituted monocyclic (C3-C15) aromatic ring.
The organic electroluminescent compound represented by formula 1 includes the following compounds, but is not limited thereto:
Figure PCTKR2017008083-appb-I000005
Figure PCTKR2017008083-appb-I000006
Figure PCTKR2017008083-appb-I000007
Figure PCTKR2017008083-appb-I000008
Figure PCTKR2017008083-appb-I000009
Figure PCTKR2017008083-appb-I000010
Figure PCTKR2017008083-appb-I000011
Figure PCTKR2017008083-appb-I000012
Figure PCTKR2017008083-appb-I000013
Figure PCTKR2017008083-appb-I000014
Figure PCTKR2017008083-appb-I000015
Figure PCTKR2017008083-appb-I000016
Figure PCTKR2017008083-appb-I000017
Figure PCTKR2017008083-appb-I000018
Figure PCTKR2017008083-appb-I000019
Figure PCTKR2017008083-appb-I000020
Figure PCTKR2017008083-appb-I000021
Figure PCTKR2017008083-appb-I000022
Figure PCTKR2017008083-appb-I000023
Figure PCTKR2017008083-appb-I000024
Figure PCTKR2017008083-appb-I000025
The organic electroluminescent compound according to the present disclosure can be prepared by a synthetic method known to a person skilled in the art. For example, it can be prepared according to the following reaction scheme.
[Reaction Scheme 1]
Figure PCTKR2017008083-appb-I000026
Figure PCTKR2017008083-appb-I000027
Figure PCTKR2017008083-appb-I000028
wherein X1 to X13, L, Ar, R1, a, and b are as defined in formula 1, and Hal represents a halogen.
The present disclosure provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1, and an organic electroluminescent device comprising the material.
The above material can be comprised of the organic electroluminescent compound according to the present disclosure alone, or can further include conventional materials generally used in organic electroluminescent materials.
The organic electroluminescent device according to the present disclosure comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes. The organic layer may comprise at least one organic electroluminescent compound of formula 1.
One of the first and second electrodes may be an anode, and the other may be a cathode. The organic layer may comprise a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron buffer layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
The organic electroluminescent compound of formula 1 of the present disclosure may be comprised in the light-emitting layer. Where used in the light-emitting layer, the organic electroluminescent compound of formula 1 of the present disclosure can be comprised as a host material. Preferably, the light-emitting layer can further comprise one or more dopants. If necessary, the organic electroluminescent compound of the present disclosure can be used as a co-host material. That is, the light-emitting layer can additionally comprise a compound other than the organic electroluminescent compound of formula 1 of the present disclosure (first host material) as a second host material. Herein, the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
The second host material can be any of the known hosts. The host selected from the group consisting of the compounds of formulas 11 to 16 below may be preferable in terms of luminous efficiency.
Figure PCTKR2017008083-appb-I000029
Figure PCTKR2017008083-appb-I000030
Figure PCTKR2017008083-appb-I000031
Figure PCTKR2017008083-appb-I000032
Figure PCTKR2017008083-appb-I000033
wherein
Cz represents the following structure:
Figure PCTKR2017008083-appb-I000034
A represents -O- or -S-; and
R21 to R24, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 5- to 30-membered heteroaryl, or -SiR25R26R27; in which R25 to R27, each independently, represent a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; L4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 5- to 30-membered heteroarylene; M represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl; Y1 and Y2, each independently, represent -O-, -S-, -N(R31)- or -C(R32)(R33)-, with the proviso that Y1 and Y2 are not present simultaneously; R31 to R33, each independently, represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl; R32 and R33 may be the same or different; h and i, each independently, represent an integer of 1 to 3; j, k, l, and m, each independently, represent an integer of 0 to 4; q represents an integer of 0 to 3; if h, i, j, k, l, m, or q represents an integer of 2 or more, each (Cz-L4), each (Cz), each R21, each R22, each R23, or each R24 may be the same or different;
Figure PCTKR2017008083-appb-I000035
wherein
Y3 to Y5, each independently, represent CR34 or N;
R34 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
B1 and B2, each independently, represent hydrogen, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl;
B3 represents a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted 5- to 30-membered heteroaryl; and
L5 represents a single bond, a substituted or unsubstituted (C6-C30)arylene, or a substituted or unsubstituted 5- to 30-membered heteroarylene.
Specifically, the examples of the second host material are as follows, but are not limited thereto.
Figure PCTKR2017008083-appb-I000036
Figure PCTKR2017008083-appb-I000037
Figure PCTKR2017008083-appb-I000038
Figure PCTKR2017008083-appb-I000039
Figure PCTKR2017008083-appb-I000040
Figure PCTKR2017008083-appb-I000041
Figure PCTKR2017008083-appb-I000042
Figure PCTKR2017008083-appb-I000043
Figure PCTKR2017008083-appb-I000044
Figure PCTKR2017008083-appb-I000045
Figure PCTKR2017008083-appb-I000046
Figure PCTKR2017008083-appb-I000047
Figure PCTKR2017008083-appb-I000048
Figure PCTKR2017008083-appb-I000049
Figure PCTKR2017008083-appb-I000050
Figure PCTKR2017008083-appb-I000051
Figure PCTKR2017008083-appb-I000052
Figure PCTKR2017008083-appb-I000053
Figure PCTKR2017008083-appb-I000054
Figure PCTKR2017008083-appb-I000055
Figure PCTKR2017008083-appb-I000056
Figure PCTKR2017008083-appb-I000057
Figure PCTKR2017008083-appb-I000058
Figure PCTKR2017008083-appb-I000059
Figure PCTKR2017008083-appb-I000060
Figure PCTKR2017008083-appb-I000061
Figure PCTKR2017008083-appb-I000062
Figure PCTKR2017008083-appb-I000063
Figure PCTKR2017008083-appb-I000064
[wherein TPS represents a triphenylsilyl group]
The dopant comprised in the organic electroluminescent device according to the present disclosure may be preferably at least one phosphorescent dopant. The phosphorescent dopant materials applied to the organic electroluminescent device according to the present disclosure are not particularly limited, but may be preferably selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), may be more preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and may be even more preferably an ortho-metallated iridium complex compound.
The dopant comprised in the organic electroluminescent device of the present disclosure may be selected from the group consisting of the compounds represented by formulas 101 to 104 below, but is not limited thereto.
Figure PCTKR2017008083-appb-I000065
Figure PCTKR2017008083-appb-I000066
Figure PCTKR2017008083-appb-I000067
Figure PCTKR2017008083-appb-I000068
wherein L is selected from the following structures:
Figure PCTKR2017008083-appb-I000069
R100, R134, and R135, each independently, represent hydrogen, deuterium, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
R101 to R109 and R111 to R123, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; an adjacent substituent of R106 to R109 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., a fluorene unsubstituted or substituted with an alkyl, a dibenzothiophene unsubstituted or substituted with an alkyl, or a dibenzofuran unsubstituted or substituted with an alkyl; and adjacent substituents of R120 to R123 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., a quinoline unsubstituted or substituted with at least one of an alkyl, an aryl, an aralkyl, and an alkylaryl;
R124 to R133 and R136 to R139, each independently, represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R124 to R127 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., a fluorene unsubstituted or substituted with an alkyl, a dibenzothiophene unsubstituted or substituted with an alkyl, or a dibenzofuran unsubstituted or substituted with an alkyl;
X represents CR21R22, O, or S;
R21 and R22, each independently, represent a substituted or unsubstituted (C1-C10)alkyl, or a substituted or unsubstituted (C6-C30)aryl;
R201 to R211, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen, a substituted or unsubstituted (C3-C30)cycloalkyl, or a (C6-C30)aryl unsubstituted or substituted with an alkyl or deuterium; and adjacent substituents of R208 to R211 may be linked to each other to form a substituted or unsubstituted fused ring, e.g., a fluorene unsubstituted or substituted with an alkyl, a dibenzothiophene unsubstituted or substituted with an alkyl, or a dibenzofuran unsubstituted or substituted with an alkyl;
f and g, each independently, represent an integer of 1 to 3; where f or g is an integer of 2 or more, each R100 may be the same or different; and
s represents an integer of 1 to 3.
The specific examples of the dopant compound are as follows:
Figure PCTKR2017008083-appb-I000070
Figure PCTKR2017008083-appb-I000071
Figure PCTKR2017008083-appb-I000072
Figure PCTKR2017008083-appb-I000073
Figure PCTKR2017008083-appb-I000074
Figure PCTKR2017008083-appb-I000075
Figure PCTKR2017008083-appb-I000076
Figure PCTKR2017008083-appb-I000077
Figure PCTKR2017008083-appb-I000078
Figure PCTKR2017008083-appb-I000079
Figure PCTKR2017008083-appb-I000080
Figure PCTKR2017008083-appb-I000081
Figure PCTKR2017008083-appb-I000082
Figure PCTKR2017008083-appb-I000083
Figure PCTKR2017008083-appb-I000084
Figure PCTKR2017008083-appb-I000085
Figure PCTKR2017008083-appb-I000086
Figure PCTKR2017008083-appb-I000087
Figure PCTKR2017008083-appb-I000088
Figure PCTKR2017008083-appb-I000089
Figure PCTKR2017008083-appb-I000090
Figure PCTKR2017008083-appb-I000091
Figure PCTKR2017008083-appb-I000092
Figure PCTKR2017008083-appb-I000093
Figure PCTKR2017008083-appb-I000094
Figure PCTKR2017008083-appb-I000095
Figure PCTKR2017008083-appb-I000096
In another embodiment of the present disclosure, a composition for preparing an organic electroluminescent device is provided. The composition comprises the compound according to the present disclosure as a host material, a hole transport layer material, a hole auxiliary layer material, a light-emitting auxiliary layer material, an electron buffer layer material, or an electron transport layer material.
In addition, the organic electroluminescent device according to the present disclosure comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes. The organic layer comprises a light-emitting layer, and the light-emitting layer may comprise the composition for preparing the organic electroluminescent device according to the present disclosure.
The organic electroluminescent device according to the present disclosure may further comprise, in addition to the organic electroluminescent compound of formula 1, at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds.
In the organic electroluminescent device according to the present disclosure, the organic layer may further comprise, in addition to the organic electroluminescent compound of formula 1, at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal. The organic layer may further comprise a light-emitting layer and a charge generating layer.
In addition, the organic electroluminescent device according to the present disclosure may emit white light by further comprising at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound or a green electroluminescent compound known in the field, besides the compound according to the present disclosure. Also, if necessary, a yellow or orange light-emitting layer can be further comprised in the device.
In the organic electroluminescent device according to the present disclosure, at least one layer (hereinafter, "a surface layer") is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer. Specifically, a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer, and a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer. Such a surface layer provides operation stability for the organic electroluminescent device. Preferably, said chalcogenide includes SiOX(1≤X≤2), AlOX(1≤X≤1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and said metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
A hole injection layer, a hole transport layer, an electron blocking layer, or a combination thereof can be used between the anode and the light-emitting layer. The hole injection layer may be multi-layers in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer, wherein each of the multi-layers may use two compounds simultaneously. The hole transport layer or the electron blocking layer may also be multi-layers.
An electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof can be used between the light-emitting layer and the cathode. The electron buffer layer may be multi-layers in order to control the injection of the electron and improve the interfacial properties between the light-emitting layer and the electron injection layer, wherein each of the multi-layers may use two compounds simultaneously. The hole blocking layer or the electron transport layer may also be multi-layers, wherein each of the multi-layers may use a plurality of compounds.
The light-emitting auxiliary layer may be placed between the anode and the light-emitting layer, or between the cathode and the light-emitting layer. When the light-emitting auxiliary layer is placed between the anode and the light-emitting layer, it can be used for promoting the hole injection and/or hole transport, or for preventing the overflow of electrons. When the light-emitting auxiliary layer is placed between the cathode and the light-emitting layer, it can be used for promoting the electron injection and/or electron transport, or for preventing the overflow of holes. Also, the hole auxiliary layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and may be effective to promote or block the hole transport rate (or hole injection rate), thereby enabling the charge balance to be controlled. Further, the electron blocking layer may be placed between the hole transport layer (or hole injection layer) and the light-emitting layer, and can confine the excitons within the light-emitting layer by blocking the overflow of electrons from the light-emitting layer to prevent a light-emitting leakage. When an organic electroluminescent device includes two or more hole transport layers, the hole transport layer, which is further included, may be used as a hole auxiliary layer or an electron blocking layer. The hole auxiliary layer and the electron blocking layer may have an effect of improving the efficiency and/or the lifespan of the organic electroluminescent device.
Preferably, in the organic electroluminescent device of the present disclosure, a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to the light-emitting medium. Furthermore, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the light-emitting medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. The reductive dopant layer may be employed as a charge-generating layer to prepare an organic EL device having two or more light-emitting layers which emits white light.
In order to form each layer constituting the organic electroluminescent device of the present disclosure, dry film-forming methods such as vacuum deposition, sputtering, plasma, ion plating methods, etc., or wet film-forming methods such as spin coating, dip coating, flow coating methods, etc., can be used. When forming the film of the first and second host compounds of the present disclosure, a co-evaporation or a mixed evaporation method is used.
When using a wet film-forming method, a thin film is formed by dissolving or dispersing the material constituting each layer in suitable solvents, such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvents are not specifically limited as long as the material constituting each layer is soluble or dispersible in the solvents, which do not cause any problems in forming a film.
By using the organic electroluminescent device of the present disclosure, a display device, for example, for smartphones, tablets, notebooks, PCs, TVs, or vehicles, or a lighting device, for example, an indoor or outdoor lighting device, can be produced.
Hereinafter, the preparation method of the organic electroluminescent compounds of the present disclosure, the physical properties of the compounds, and the luminous properties of the organic electroluminescent device comprising the compounds will be explained in detail with reference to the representative compounds of the present disclosure.
Example 1: Preparation of compound C-50
Figure PCTKR2017008083-appb-I000097
Figure PCTKR2017008083-appb-I000098
Preparation of compound 1-1
36 g of compound A (125.38 mmol), 27 g of 3-bromo-2-chloro-nitrobenzene (113.98 mmol), 4 g of tetrakis(triphenylphosphine)palladium (3.42 mmol), 30 g of sodium carbonate (284.95 mmol), 570 mL of toluene, 140 mL of ethanol, and 140 mL of distilled water were introduced into a reaction vessel, and the mixture was stirred at 120℃ for 3 hours. After completion of the reaction, the mixture was cooled to room temperature and extracted with ethyl acetate. The extracted organic layer was then dried with magnesium sulfate, and the solvent was removed with a rotary evaporator. Thereafter, the resulting product was purified by column chromatography to obtain 30 g of compound 1-1 (yield: 66%).
Preparation of compound 1-2
27 g of compound 1-1 (68.20 mmol), 1.5 g of palladium (II) acetate (6.82 mmol), 5.0 g of tricyclohexylphosphoniumtetrafluoroborate (13.64 mmol), 66 g of cesium carbonate (204.60 mmol), and 340 mL of o-xylene were introduced into a reaction vessel, and the mixture was stirred under reflux for 2 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 26 g of compound 1-2.
Preparation of compound 1-3
Compound 1-2 (68.20 mmol) and 176 mL of triethylphosphite (0.4 M) were introduced into a reaction vessel, and the mixture was stirred at 150℃ for 4 hours. After completion of the reaction, triethylphosphite was removed by distillation under reduced pressure. The mixture was then washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 16.4 g of compound 1-3 (yield: 70%).
Preparation of compound C-50
7 g of compound 1-3 (21.19 mmol), 9.9 g of 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (25.43 mmol), 0.5 g of palladium (II) acetate (2.12 mmol), 1.8 g of 2-dicyclohexylphosphino-2’,6’-dimethoxybiphenyl (s-phos) (4.24 mmol), 3.1 g of sodium tert-butoxide (31.79 mmol), and 110 mL of o-xylene were introduced into a reaction vessel, and the mixture was stirred under reflux for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 5 g of compound C-50 (yield: 37%).
Figure PCTKR2017008083-appb-I000099
Example 2: Preparation of compound C-51
Figure PCTKR2017008083-appb-I000100
5 g of compound 1-3 (15 mmol), 8.6 g of 2-(4-bromonaphthylen-1-yl)-4,6-diphenyl-1,3,5-triazine (20 mmol), 0.4 g of palladium (II) acetate (2 mmol), 1.2 g of s-phos (3 mmol), 2.2 g of sodium tert-butoxide (23 mmol), and 76 mL of o-xylene were introduced into a reaction vessel, and the mixture was stirred under reflux for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 3.3 g of compound C-51 (yield: 32%).
Figure PCTKR2017008083-appb-I000101
Example 3: Preparation of compound C-49
Figure PCTKR2017008083-appb-I000102
6 g of compound 1-3 (18 mmol), 8.5 g of 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (22 mmol), 0.4 g of palladium (II) acetate (2 mmol), 1.5 g of s-phos (4 mmol), 2.6 g of sodium tert-butoxide (27 mmol), and 91 mL of o-xylene were introduced into a reaction vessel, and the mixture was stirred under reflux for 2 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 10 g of compound C-49 (yield: 86%).
Figure PCTKR2017008083-appb-I000103
Example 4: Preparation of compound C-17
Figure PCTKR2017008083-appb-I000104
6 g of compound 1-3 (18 mmol), 7.5 g of 2-([1,1’-biphenyl]-4-yl)-4-chloro-6-phenyl-1,3,5-triazine (21 mmol), 5.9 g of cesium carbonate (18 mmol), 1.1 g of 4-dimethylaminopyridine (DMAP) (9 mmol), and 90 mL of dimethylsulfoxide (DMSO) were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 10.5 g of compound C-17 (yield: 91%).
Figure PCTKR2017008083-appb-I000105
Example 5: Preparation of compound C-21
Figure PCTKR2017008083-appb-I000106
6 g of compound 1-3 (18 mmol), 6.9 g of 2-chloro-4-(naphthylen-2-yl)-6-phenyl-1,3,5-triazine (21 mmol), 5.9 g of cesium carbonate (18 mmol), 1.1 g of DMAP (9 mmol), and 90 mL of DMSO were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 10 g of compound C-21 (yield: 90%).
Figure PCTKR2017008083-appb-I000107
Example 6: Preparation of compound C-11
Figure PCTKR2017008083-appb-I000108
5 g of compound 1-3 (15 mmol), 4.4 g of 2-chloro-3-phenylquinoxaline (18 mmol), 4.9 g of cesium carbonate (15 mmol), 0.9 g of DMAP (8 mmol), and 76 mL of DMSO were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 1.8 g of compound C-11 (yield: 22%).
Figure PCTKR2017008083-appb-I000109
Example 7: Preparation of compound C-12
Figure PCTKR2017008083-appb-I000110
5 g of compound 1-3 (15 mmol), 5.2 g of 2-chloro-3-naphthylquinoxaline (18 mmol), 4.9 g of cesium carbonate (15 mmol), 0.9 g of DMAP (8 mmol), and 76 mL of DMSO were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 4.2 g of compound C-12 (yield: 48%).
Figure PCTKR2017008083-appb-I000111
Example 8: Preparation of compound C-67
Figure PCTKR2017008083-appb-I000112
2.7 g of compound 1-3 (7 mmol), 1.0 g of 2-chloro-3-phenylquinoxaline (4 mmol), 2.3 g of cesium carbonate (7 mmol), 0.5 g of DMAP (4 mmol), and 36 mL of DMSO were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 5 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 1 g of compound C-67 (yield: 40%).
Figure PCTKR2017008083-appb-I000113
Example 9: Preparation of compound C-1
Figure PCTKR2017008083-appb-I000114
4 g of compound 1-3 (12 mmol), 3.8 g of 2-chloro-4-phenylquinazoline (16 mmol), 3.9 g of cesium carbonate (12 mmol), 0.7 g of DMAP (6 mmol), and 60 mL of DMSO were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 5.4 g of compound C-1 (yield: 83%).
Figure PCTKR2017008083-appb-I000115
Example 10: Preparation of compound C-101
Figure PCTKR2017008083-appb-I000116
5 g of compound 1-3 (15 mmol), 5.7 g of 2-([1,1’-biphenyl]-4-yl)-3-chloroquinoxaline (18 mmol), 4.9 g of cesium carbonate (15 mmol), 0.9 g of DMAP (8 mmol), and 76 mL of DMSO were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 3 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 5.0 g of compound C-101 (yield: 55%).
Figure PCTKR2017008083-appb-I000117
Example 11: Preparation of compound C-102
Figure PCTKR2017008083-appb-I000118
3 g of compound 1-3 (9 mmol), 4.0 g of 2-chloro-3-(4-(naphthalen-2-yl)phenyl)quinoxaline (11 mmol), 2.9 g of cesium carbonate (9 mmol), 0.4 g of DMAP (4 mmol), and 45 mL of DMSO were introduced into a reaction vessel, and the mixture was stirred at 100℃ for 5 hours. After completion of the reaction, the mixture was washed with distilled water, extracted with ethyl acetate, and the extracted organic layer was dried with magnesium sulfate. The solvent was removed with a rotary evaporator, and the resulting product was purified by column chromatography to obtain 1.8 g of compound C-102 (yield: 31%).
Figure PCTKR2017008083-appb-I000119
Device Example 1: Production of an OLED device using the organic
electroluminescent compound according to the present disclosure
An OLED device was produced using the organic electroluminescent compound of the present disclosure. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec, Japan) was subjected to an ultrasonic washing with acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol. Next, the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus. Compound HI-1 was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above-introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Compound HI-2 was then introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. Compound HT-1 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. Compound HT-3 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. After forming the hole injection layers and the hole transport layers, a light-emitting layer was then deposited as follows. Compound C-50 was introduced into one cell of the vacuum vapor depositing apparatus as a host, and compound D-71 was introduced into another cell as a dopant. The two materials were evaporated and were deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer. Compound ET-1 and compound EI-1 were then introduced into other two cells, evaporated at the rate of 1:1, and deposited to form an electron transport layer having a thickness of 30 nm on the light-emitting layer. Next, after depositing compound EI-1 as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus on the electron injection layer. Thus, an OLED device was produced.
Figure PCTKR2017008083-appb-I000120
As a result, an efficiency of 28.6 cd/A at 3.5 V was shown, red light of 1000 cd/m2 was emitted, and the least time taken to be reduced from 100% to 95% of the luminance at 5,000 nits was 95 hours.
Comparative Example 1: Production of an OLED device using a
conventional organic electroluminescent compound
An OLED device was produced in the same manner as in Device Example 1, except that compound B was used instead of compound C-50.
As a result, an efficiency of 14.3 cd/A at 10 V was shown, red light of 1000 cd/m2 was emitted, and the least time taken to be reduced from 100% to 95% of the luminance at 5,000 nits was 0.1 hour.
Figure PCTKR2017008083-appb-I000121
Comparative Example 2: Production of an OLED device using a
conventional organic electroluminescent compound
An OLED device was produced in the same manner as in Device Example 1, except that compound Y was used instead of compound C-50.
As a result, an efficiency of 26.2 cd/A at 4.0 V was shown, red light of 1000 cd/m2 was emitted, and the least time taken to be reduced from 100% to 95% of the luminance at 5,000 nits was 34 hours.
Figure PCTKR2017008083-appb-I000122
Comparative Example 3: Production of an OLED device not according to
the present disclosure and emitting red light
An OLED device was produced in the same manner as in Device Example 1, except that 4,4’-N,N’-dicarbazol-biphenyl (CBP) was used as a host material instead of compound C-50, compound HT-4 was used as a second hole transport layer material instead of compound HT-3, and the thickness of the electron transport layer was changed to 35 nm.
Figure PCTKR2017008083-appb-I000123
Device Examples 2 to 11: Production of OLED devices according to the
present disclosure and emitting red light
OLED devices were produced in the same manner as in Comparative Example 3, except that the host was changed to the compounds shown in Table 1 below.
The driving voltage, luminous efficiency, and CIE color coordinates at 1,000 nits, and the lifespan (T95) measured as the time taken to be reduced from 100% to 95% of the luminance at 5,000 nits of the OLED devices produced in Comparative Example 3 and Device Examples 2 to 11 are provided in Table 1 below.
Figure PCTKR2017008083-appb-I000124
Figure PCTKR2017008083-appb-I000125
Figure PCTKR2017008083-appb-I000126
When producing organic electroluminescent devices, the organic electroluminescent compounds according to the present disclosure provide lower driving voltage, higher luminous efficiency such as current efficiency, and longer operational lifespan of the devices compared to the conventional organic electroluminescent compounds.
The compound of formula 1 of the present disclosure has an azepine ring formed by a link of a benzene ring, which is substituted on N in an indolocarbazole backbone, and a benzene ring of a carbazole. Such effects of the compound of the present disclosure may be interpreted by the following theory.
Figure 1 shows that the compound of the present disclosure has a reduced steric hindrance compared to the conventional compound. The steric hindrance increases the intermolecular distance, and thus the electron mobility is lowered in electron hopping. Therefore, a hopping distance should be reduced by increasing the current enabling electron hopping. As a result, the driving voltage of the organic electroluminescent device increases. In Figure 1, since an H-H distance in compound A is too short, N-phenyls are not located on the same plane and are vertically located. Thus, the aforementioned steric hindrance is expected. In order to prevent such phenomenon, compound B of the present disclosure was invented to have a planar structure compared to compound A. Accordingly, the compound of the present disclosure can reduce driving voltage upon applying it to a device.

Claims (10)

  1. An organic electroluminescent compound represented by the following formula 1:
    Figure PCTKR2017008083-appb-I000127
    wherein
    X1 to X13 each independently represent N or CR1;
    L represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted 3- to 30-membered heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
    Ar and R1 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or are linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur;
    the heteroaryl(ene) contains at least one heteroatom selected from B, N, O, S, Si, and P; and
    a and b each independently represent an integer of 1 to 2.
  2. The organic electroluminescent compound according to claim 1, wherein the substituents of the substituted (C1-C30)alkyl(ene), the substituted (C6-C30)aryl(ene), the substituted 3- to 30-membered heteroaryl(ene), the substituted (C3-C30)cycloalkyl(ene), the substituted (C1-C30)alkoxy, the substituted tri(C1-C30)alkylsilyl, the substituted di(C1-C30)alkyl(C6-C30)arylsilyl, the substituted (C1-C30)alkyldi(C6-C30)arylsilyl, the substituted tri(C6-C30)arylsilyl, the substituted mono- or di- (C1-C30)alkylamino, the substituted mono- or di- (C6-C30)arylamino, the substituted (C1-C30)alkyl(C6-C30)arylamino, and the substituted mono- or polycyclic, (C3-C30) alicyclic or aromatic ring in Ar, L, and R1 each independently are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a 3- to 7-membered heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a 5- to 30-membered heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a 5- to 30-membered heteroaryl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di- (C1-C30)alkylamino, a mono- or di- (C6-C30)arylamino unsubstituted or substituted with a (C1-C30)alkyl, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl.
  3. The organic electroluminescent compound according to claim 1, wherein formula 1 is represented by any one of the following formulas 2 to 7:
    Figure PCTKR2017008083-appb-I000128
    Figure PCTKR2017008083-appb-I000129
    Figure PCTKR2017008083-appb-I000130
    wherein
    X represents N or CR1;
    R represents a substituted or unsubstituted mono- or di- (C6-C30)arylamino;
    c represents an integer of 1 to 2; and
    L, Ar, R1, a, and b are as defined in claim 1.
  4. The organic electroluminescent compound according to claim 1, wherein
    X1 to X13 each independently represent N or CR1;
    L represents a single bond, a substituted or unsubstituted (C6-C15)arylene, or a substituted or unsubstituted 5- to 15-membered heteroarylene;
    Ar represents hydrogen, a substituted or unsubstituted (C6-C20)aryl, a substituted or unsubstituted 5- to 20-membered heteroaryl, or a substituted or unsubstituted di(C6-C15)arylamino; and
    R1 represents hydrogen, or a substituted or unsubstituted di(C6-C15)arylamino; or is linked to an adjacent substituent to form a substituted or unsubstituted, mono- or polycyclic, (C3-C15) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one heteroatom selected from nitrogen, oxygen, and sulfur.
  5. The organic electroluminescent compound according to claim 1, wherein
    X1 to X13 each independently represent N or CR1;
    L represents a single bond, an unsubstituted (C6-C15)arylene, or an unsubstituted 5- to 15-membered heteroarylene;
    Ar represents hydrogen; an unsubstituted (C6-C20)aryl; a 5- to 20-membered heteroaryl unsubstituted or substituted with a (C1-C6)alkyl, a (C6-C25)aryl, a 5- to 20-membered heteroaryl, or a (C1-C6)alkyl(C6-C15)aryl; or an unsubstituted di(C6-C15)arylamino; and
    R1 represents hydrogen, or a di(C6-C15)arylamino unsubstituted or substituted with a (C1-C6)alkyl; or is linked to an adjacent substituent to form an unsubstituted monocyclic (C3-C15) aromatic ring.
  6. The organic electroluminescent compound according to claim 1, wherein Ar is a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted dibenzofuranyl, or a substituted or unsubstituted benzofuranyl.
  7. The organic electroluminescent compound according to claim 1, wherein the compound represented by formula 1 is selected from the group consisting of:
    Figure PCTKR2017008083-appb-I000131
    Figure PCTKR2017008083-appb-I000132
    Figure PCTKR2017008083-appb-I000133
    Figure PCTKR2017008083-appb-I000134
    Figure PCTKR2017008083-appb-I000135
    Figure PCTKR2017008083-appb-I000136
    Figure PCTKR2017008083-appb-I000137
    Figure PCTKR2017008083-appb-I000138
    Figure PCTKR2017008083-appb-I000139
    Figure PCTKR2017008083-appb-I000140
    Figure PCTKR2017008083-appb-I000141
    Figure PCTKR2017008083-appb-I000142
    Figure PCTKR2017008083-appb-I000143
    Figure PCTKR2017008083-appb-I000144
    Figure PCTKR2017008083-appb-I000145
    Figure PCTKR2017008083-appb-I000146
    Figure PCTKR2017008083-appb-I000147
    Figure PCTKR2017008083-appb-I000148
    Figure PCTKR2017008083-appb-I000149
    Figure PCTKR2017008083-appb-I000150
    Figure PCTKR2017008083-appb-I000151
  8. An organic electroluminescent material comprising the organic electroluminescent compound according to claim 1.
  9. An organic electroluminescent device comprising the organic electroluminescent compound according to claim 1.
  10. A display device comprising the organic electroluminescent compound according to claim 1.
PCT/KR2017/008083 2016-07-27 2017-07-27 Organic electroluminescent compound and organic electroluminescent device comprising the same WO2018021841A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018568913A JP6924784B2 (en) 2016-07-27 2017-07-27 Organic electroluminescent compounds and organic electroluminescent devices containing them
US16/315,178 US10636980B2 (en) 2016-07-27 2017-07-27 Organic electroluminescent compound and organic electroluminescent device comprising the same
EP17834782.9A EP3494117A4 (en) 2016-07-27 2017-07-27 Organic electroluminescent compound and organic electroluminescent device comprising the same
CN201780041027.7A CN109451739B (en) 2016-07-27 2017-07-27 Organic electroluminescent compounds and organic electroluminescent device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160095622 2016-07-27
KR10-2016-0095622 2016-07-27
KR10-2017-0094723 2017-07-26
KR1020170094723A KR102435083B1 (en) 2016-07-27 2017-07-26 Organic Electroluminescent Compound and Organic Electroluminescent Device Comprising the Same

Publications (1)

Publication Number Publication Date
WO2018021841A1 true WO2018021841A1 (en) 2018-02-01

Family

ID=61017608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008083 WO2018021841A1 (en) 2016-07-27 2017-07-27 Organic electroluminescent compound and organic electroluminescent device comprising the same

Country Status (1)

Country Link
WO (1) WO2018021841A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160022A1 (en) * 2017-02-28 2018-09-07 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2019235748A1 (en) * 2018-06-08 2019-12-12 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
WO2020022769A1 (en) * 2018-07-25 2020-01-30 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
WO2020054989A1 (en) * 2018-09-14 2020-03-19 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20200031510A (en) * 2018-09-14 2020-03-24 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020091446A1 (en) * 2018-10-31 2020-05-07 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020197240A1 (en) * 2019-03-25 2020-10-01 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
US20210028373A1 (en) * 2019-07-18 2021-01-28 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
CN112400010A (en) * 2018-07-25 2021-02-23 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and organic electroluminescent device comprising the same
US20210151693A1 (en) * 2018-07-25 2021-05-20 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
CN113861206A (en) * 2021-09-24 2021-12-31 湘潭大学 Blue electroluminescent material and synthesis method and application thereof
US20220102645A1 (en) * 2018-07-31 2022-03-31 Rohm And Haas Electronic Materials Korea Ltd. Plurality of host materials and organic electroluminescent device comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150077220A (en) 2013-12-27 2015-07-07 주식회사 두산 Organic compounds and organic electro luminescence device comprising the same
WO2016080791A1 (en) 2014-11-20 2016-05-26 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and an organic electroluminescent device comprising the same
US20160163998A1 (en) 2013-01-24 2016-06-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence
WO2017043770A1 (en) 2015-09-10 2017-03-16 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2017095156A1 (en) 2015-12-04 2017-06-08 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163998A1 (en) 2013-01-24 2016-06-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence
KR20150077220A (en) 2013-12-27 2015-07-07 주식회사 두산 Organic compounds and organic electro luminescence device comprising the same
WO2016080791A1 (en) 2014-11-20 2016-05-26 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and an organic electroluminescent device comprising the same
WO2017043770A1 (en) 2015-09-10 2017-03-16 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2017095156A1 (en) 2015-12-04 2017-06-08 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 51, 1987, pages 913
See also references of EP3494117A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160022A1 (en) * 2017-02-28 2018-09-07 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2019235748A1 (en) * 2018-06-08 2019-12-12 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
CN112400010A (en) * 2018-07-25 2021-02-23 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2020022769A1 (en) * 2018-07-25 2020-01-30 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
JP2021532586A (en) * 2018-07-25 2021-11-25 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Multiple host materials and organic electroluminescent devices containing them
US20210151693A1 (en) * 2018-07-25 2021-05-20 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
US20220102645A1 (en) * 2018-07-31 2022-03-31 Rohm And Haas Electronic Materials Korea Ltd. Plurality of host materials and organic electroluminescent device comprising the same
KR20200031510A (en) * 2018-09-14 2020-03-24 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
CN112714766A (en) * 2018-09-14 2021-04-27 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2020054989A1 (en) * 2018-09-14 2020-03-19 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
KR102534322B1 (en) 2018-09-14 2023-05-22 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
CN112714766B (en) * 2018-09-14 2024-03-12 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020091446A1 (en) * 2018-10-31 2020-05-07 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020197240A1 (en) * 2019-03-25 2020-10-01 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
US20210028373A1 (en) * 2019-07-18 2021-01-28 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
CN113861206A (en) * 2021-09-24 2021-12-31 湘潭大学 Blue electroluminescent material and synthesis method and application thereof
CN113861206B (en) * 2021-09-24 2023-09-29 湘潭大学 Blue electroluminescent material and synthesis method and application thereof

Similar Documents

Publication Publication Date Title
EP3494117A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2018021841A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3551623A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3446345A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2015167259A1 (en) Multi-component host material and organic electroluminescent device comprising the same
WO2015037965A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015099507A1 (en) Novel organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2014129846A1 (en) Organic electroluminescent compounds and an organic electroluminescent device comprising the same
WO2015046916A1 (en) A combination of a host compound and a dopant compound
WO2015084021A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2013109045A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2817387A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
EP2875094A1 (en) A novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same
EP3386987A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3201200A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2014185751A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015093878A1 (en) Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2014104704A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2017183859A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
EP3458457A1 (en) Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
WO2017200210A1 (en) Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
WO2016052962A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2017095156A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2017099516A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2014081206A1 (en) Novel organic electroluminescence compounds and organic electroluminescence device containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834782

Country of ref document: EP

Effective date: 20190227