WO2020022553A1 - Wavelength multiplexing bidirectional optical transmitting/receiving device - Google Patents

Wavelength multiplexing bidirectional optical transmitting/receiving device Download PDF

Info

Publication number
WO2020022553A1
WO2020022553A1 PCT/KR2018/010570 KR2018010570W WO2020022553A1 WO 2020022553 A1 WO2020022553 A1 WO 2020022553A1 KR 2018010570 W KR2018010570 W KR 2018010570W WO 2020022553 A1 WO2020022553 A1 WO 2020022553A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
band pass
filtering unit
band
Prior art date
Application number
PCT/KR2018/010570
Other languages
French (fr)
Korean (ko)
Inventor
박기성
황월연
최진수
주관종
Original Assignee
(주)코셋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)코셋 filed Critical (주)코셋
Priority to CN201880095441.0A priority Critical patent/CN112368955A/en
Publication of WO2020022553A1 publication Critical patent/WO2020022553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • H04B10/43Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters

Definitions

  • the present invention relates to a wavelength multi-directional bidirectional optical transmission and reception device.
  • FIGS. 7 and 8 illustrate a general wavelength multiple optical transmission and reception device having n + 1 and m + 1 wavelengths, respectively.
  • a general optical transmission / reception apparatus includes a 45 degree filter.
  • the 45 degree filter transmits the light of wavelength ⁇ T emitted from the light emitting portion, and the light transmission signal is output to the outside through the optical fiber.
  • the light reception signal having the wavelength ⁇ R received from the external optical fiber is reflected by the 45 degree filter and incident to the light receiving unit.
  • the filtering function may not be smoothly performed when the distance between the wavelength ⁇ T of the optical transmission signal and the wavelength ⁇ R of the optical reception signal is small. This means that the light at each wavelength transmitted and reflected is lost and the interference entering along the path of the relative channel is increased.
  • the 45 degree filter transmits the multi-wavelength light transmission signal output from the wavelength multiplex light transmission module, and thus the multi-wavelength light transmission signal is output to the outside through the optical fiber.
  • the 45 degree filter reflects the multi-wavelength light reception signal input through the optical fiber from the outside to the wavelength multiplex light receiving module.
  • the distance between the wavelength band of the optical transmission signal and the wavelength band of the optical reception signal must be large. Otherwise, the filtering function may not be performed smoothly. Can be.
  • the interval between the wavelength band of the optical transmission signal and the wavelength band of the optical reception signal is relatively large due to the use of a 45 degree filter having a large incident angle. Can be.
  • a wavelength multiplexing optical transmission and reception apparatus capable of smooth operation even when the distance between the wavelength band of the optical transmission signal and the wavelength band of the optical reception signal is relatively small is used.
  • the wavelength multiplexed optical transmitter and receiver of FIG. 8 employs a green lens to reduce the angle of incidence of light to the filter.
  • each wavelength multiplexed optical transmitter and the optical fiber are provided. Since the receiving module and a separate wavelength multiple device must be connected by using an optical connector, the device becomes complicated and takes up more volume.
  • the wavelength multiplex bidirectional optical transmitter and receiver bidirectionally transmits a multichannel wavelength multiplex optical transmission signal and an optical reception signal through one strand of optical fiber, so that a gap between the transmission wavelength band and the reception wavelength band is narrow.
  • the present invention provides a compact integrated bidirectional optical transmission module having excellent characteristics, overcoming disadvantages such as increased loss of transmission / reception channels and increased interference between channels.
  • the light transmitting block A band pass filtering unit for light transmission provided at one side of the light transmitting block; And a light reception band pass filtering unit provided at one side or the other side of the light transmission block, and the light transmission signal incident to the light transmission block through the light transmission band pass filtering unit is reflected to the light reception band pass filtering unit.
  • the light reception signal is emitted to the outside of the light transmission block, and is incident from the outside and passes through the light transmission block.
  • the light reception signal passes through the light reception band pass filtering unit and is reflected to the light transmission band pass filtering unit.
  • the optical transmission signal includes light of a first wavelength band to an Mth wavelength band (M is a natural number of 2 or more), and the optical reception signal is of a (M + 1) th wavelength band to an Nth wavelength band (N is M +).
  • the light transmission band pass filtering unit transmits the light of the first wavelength band to the Mth wavelength band, respectively, and the (M + 1) th wavelength band to the Nth wavelength.
  • a first band pass filter to a M band pass filter for reflecting light in a band, wherein the light reception band pass filtering unit reflects light in the first wavelength band to the Mth wavelength band, +1) may include a (M + 1) th bandpass filter to an Nth bandpass filter for transmitting light of the wavelength band to the Nth wavelength band, respectively.
  • the light transmitting band pass filtering unit and the light receiving band pass filtering unit are provided on one side of the light transmitting block, and a reflective film capable of reflecting the light transmitting signal and the light receiving signal on a predetermined portion of the other side of the light transmitting block.
  • the anti-reflective film may be formed in another predetermined portion of the other side of the light transmitting block so that the transmitted and received light can be easily inputted and outputted without reflection loss.
  • the light transmitting band pass filtering part may be provided at one side of the light transmitting block, and the light receiving band pass filtering part may be provided at the other side of the light transmitting block.
  • band pass filters of the light transmitting band pass filtering part are provided at one side of the light transmitting block, and the other part is provided at the other side of the light transmitting block, and some of the band pass filters of the light receiving band pass filtering part are provided. It may be provided on one side of the light transmitting block, the rest may be provided on the other side of the light transmitting block.
  • a portion of the transmission / reception light input and output may be formed with an anti-reflection film in order to reduce the reflection loss of the light.
  • the wavelength increases from the first wavelength band to the Mth wavelength band, and the order in which the first bandpass filter to the Mth bandpass filter is disposed in the light transmitting block is the Mth in the first wavelength band.
  • the order of the wavelength bands may be different.
  • the wavelength increases from the (M + 1) th wavelength band to the Nth wavelength band, and the order in which the (M + 1) th bandpass filter or the Nth bandpass filter is disposed in the light transmitting block is the first order.
  • the order of the Nth wavelength band may be different.
  • Each bandpass filter of the optical transmission channel passing through the first bandpass filter through the Mth bandpass filter and the optical reception channel passing through the (M + 1) th bandpass filter through the Nth bandpass filter are respectively
  • the order in which the light transmitting blocks are arranged may be arbitrarily arranged without distinguishing the optical transmitting and receiving channels.
  • the light transmitting portion including a plurality of light transmitting blocks spaced apart from each other; An optical transmission band pass filtering unit and an optical reception band pass filtering unit provided in the light transmitting unit; And an edge filtering unit through which light in a wavelength band other than the plurality of wavelength bands passes when a plurality of wavelength band light passes through one light transmitting block of the plurality of light transmitting blocks.
  • the unit performs a band pass filtering function for light transmission signals of different wavelength bands emitted from the plurality of light emitting units, and the light receiving band pass filtering unit includes light receiving signals of different wavelength bands incident to the plurality of photoelectric conversion units.
  • the bandpass filtering function may be performed.
  • the light transmitting band pass filtering part may be provided in the one light transmitting block, and the light receiving band pass filtering part may be provided in the other light transmitting block.
  • the optical transmission band pass filtering unit and the optical reception band pass filtering unit each include a plurality of optical transmission band pass filters and a plurality of optical reception band pass filters, and a part of the plurality of optical transmission band pass filters and the plurality of light reception units. Some of the credit bandpass filters may be provided in the one light transmitting block.
  • the edge filtering unit may be provided in one of the plurality of light transmitting blocks.
  • the edge filtering unit may be spaced apart from the light transmitting unit.
  • the wavelength multi-directional bidirectional optical transmission and reception apparatus uses a light transmission block having a small light incident angle and a band pass filter to reduce light loss and reduce interference between channels as well as to reduce the interference between the wavelength bands.
  • the optical transmission signal and the optical reception signal can be efficiently processed through one optical fiber.
  • 1 to 3 show a wavelength multi-directional bidirectional optical transmission and reception device according to an embodiment of the present invention.
  • FIG. 6 shows a general optical transmission and reception apparatus.
  • the wavelength multi-directional bidirectional optical transmission apparatus is a light transmission block 100, a band-pass filtering unit 200 for optical transmission, and the optical water
  • the credit band pass filtering unit 300 is included.
  • the light transmitting block 100 may be made of a material capable of transmitting light.
  • the material of the light transmitting block 100 may be glass, but is not limited thereto.
  • the light transmission band pass filtering unit 200 is provided at one side of the light transmission block 100, and the light reception band pass filtering unit 300 is provided at one side or the other side of the light transmission block 100.
  • the light transmission and light reception band pass filtering unit 300 is provided at one side of the light transmission block 100, and in FIG. 2, the light transmission and light reception band pass filtering unit 300 is optical. It is provided on the other side of the transmission block 100.
  • the light emitting unit 400 may output light transmission signals having different wavelengths, and may include light sources (T1 and T2 of FIG. 1 and T1 to T4 of FIG. 2) that emit light having different wavelengths.
  • the light source may be a light emitting diode (LED) or a laser diode (LD), but is not limited thereto.
  • the light transmission signal output from the light emitting unit 400 is converted into parallel light through the collimating lens and is incident on the light transmitting block 100.
  • the light transmission signal passes through the light transmission band pass filtering unit 200 and is incident to the light transmission block 100, and is reflected by the light reception band pass filtering unit and emitted to the outside of the light transmission block 100.
  • the band pass filters BF1 and BF2 of the optical band pass filter 200 pass a wavelength band having a center wavelength of ⁇ 1 and ⁇ 2 and reflect the remaining wavelength bands. Since the light transmission signals output from the light sources T1 and T2 have wavelength bands with the center wavelengths ⁇ 1 and ⁇ 2, they can pass through the bandpass filters BF1 and BF2.
  • the optical transmission signal is reflected by the light receiving band pass filtering unit 300 and is emitted from the light transmitting block 100 to collimate the lens. After focusing through the optical fiber (OF) can be output to the outside.
  • the optical transmission signal outputted from the optical fiber (OF) is mixed with light in a band having ⁇ 1 as the center wavelength and a band having ⁇ 2 as the center wavelength. It may be in the form.
  • a light reception signal in which light in a band having ⁇ 3 as a center wavelength and light in a band having ⁇ 4 as a center wavelength is mixed is input to an optical fiber (OF) from the outside and is parallel light through a collimating lens. After the conversion to the light transmission block 100 is incident.
  • OF optical fiber
  • the light reception signal in the wavelength band having ⁇ 4 as the center wavelength passes through the bandpass filter BF4 of the light receiving bandpass filtering unit 300 to reach the photoelectric conversion element R4 of the light receiving unit 500, and the wavelength having ⁇ 3 as the center wavelength.
  • the light receiving signal of the band is reflected by the band pass filter BF4 and then passes through the band pass filter BF3 of the light receiving band pass filtering unit 300 to reach the photoelectric conversion element R3 of the light receiving unit 500.
  • demultiplexing of the optical reception signal may be performed.
  • the light receiver 500 may include a photo diode, but is not limited thereto.
  • the light reception signal incident from the outside and passing through the light transmitting block 100 passes through the light reception band pass filtering unit 300 and is reflected by the light transmission band pass filtering unit.
  • the light emitting unit 400 emits light of four wavelength bands having different center wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, and the bandpass filters BF1, BF2, BF3 and BF4 respectively pass a wavelength band having a center wavelength ⁇ 1, a wavelength band having a center wavelength ⁇ 2, a wavelength band having a center wavelength ⁇ 3, and a wavelength band having a center wavelength ⁇ 4.
  • the optical transmission signal output from the optical fiber OF may be in a state where four wavelength bands, each of ⁇ 1 to ⁇ 4, are used as the center wavelength.
  • the light-receiving band pass filter unit reflects light of four wavelength bands having ⁇ 1 to ⁇ 4 as center wavelengths.
  • the bandpass filters BF5, BF6, BF7 and BF8 of the optical reception bandpass filter unit are respectively A wavelength band having a center wavelength ⁇ 5, a wavelength band having a center wavelength ⁇ 6, a wavelength band having a center wavelength ⁇ 7, and a wavelength band having a central wavelength ⁇ 8 are passed through.
  • the light reception signal may be demultiplexed into four wavelength bands of light having ⁇ 5 to ⁇ 8 as the center wavelengths.
  • the light transmission band pass filter unit reflects light in four wavelength bands, each of ⁇ 5 to ⁇ 8 as the center wavelength.
  • the wavelength multi-directional bidirectional optical transmission / reception apparatus may process an optical transmission signal and an optical reception signal through one optical fiber OF without a conventional 45 degree filter. Since the bandpass filter passes the set wavelength band and reflects the remaining wavelength band, the bandpass filter can smoothly process the optical transmission signal and the optical reception signal even if the distance between two adjacent wavelength bands is not large.
  • the number of center wavelengths and the number of band pass filters are not limited to those in FIGS. 1 and 2.
  • the optical transmission signal is composed of light of the first wavelength band to the M-th wavelength band (M is a natural number of two or more), and the optical reception signal is the (M + 1) to N-th wavelength band (N is M + Natural light greater than 1).
  • the optical band pass filter 200 transmits light of a first wavelength band to a Mth wavelength band, and reflects light of a (M + 1) th wavelength band to an Nth wavelength band, respectively. To M-th band pass filter.
  • the light receiving band pass filtering unit 300 reflects light in the first wavelength band to the Mth wavelength band and transmits light in the (M + 1) th to Nth wavelength bands, respectively (M +). 1) a band pass filter to an N-th band pass filter.
  • M may be 4 and N may be 8. Since it has been described in detail above, a description thereof will be omitted.
  • the light transmission band pass filtering unit 200 and the light reception band pass filtering unit 300 may be provided at one side of the light transmission block 100.
  • a reflective film RL capable of reflecting the light transmission signal and the light reception signal may be formed on the other predetermined portion of the light transmitting block 100, and the reflection loss of the optical signal may be formed on the other predetermined portion where the optical signal is input / output.
  • An anti-reflective film may be formed to reduce the number of layers.
  • the band pass filter passes the set wavelength band and reflects the light of the remaining wavelength band to the reflecting film RL provided on the other side of the light transmitting block 100.
  • the reflecting film RL reflects light on one side of the light transmitting block 100. Can be reflected. That is, the reflective film RL may contribute to wavelength multiplexing or wavelength demultiplexing by reflecting the light reflected by one bandpass filter toward the other bandpass filter.
  • the one bandpass filter may be included in the optical bandpass filter 200 or the optical bandpass filter 300.
  • the other band pass filter may also be included in the optical transmission band pass filtering unit 200 or the optical reception band pass filtering unit 300.
  • the light transmission band pass filtering unit 200 is provided at one side of the light transmission block 100, and the light reception band pass filtering unit 300 is the other side of the light transmission block 100. It may be provided in. Since light of a wavelength band other than the wavelength band transmitted by the bandpass filter is reflected, the bandpass filter itself may perform the function of the reflective film RL of FIG. 1.
  • the band pass filter transmits only the light of the set wavelength band irrespective of the light transmission signal and the light reception signal, so that the light transmission band pass filtering unit 200 and the light reception band pass filtering on one side of the light transmission block.
  • the band pass filter of the unit 300 may be mixed.
  • the band pass filter of the light transmission band pass filtering unit 200 and the light reception band pass filtering unit 300 may be mixed on the other side of the light transmitting block 100.
  • some of the band pass filters of the light transmission band pass filtering unit 200 are provided at one side of the light transmission block 100, and the rest are provided at the other side of the light transmission block 100, and the band pass filtering for light reception.
  • Some of the band pass filters of the unit 300 may be provided at one side of the light transmitting block 100, and the other may be provided at the other side of the light transmitting block 100.
  • the wavelength increases from the first wavelength band to the Mth wavelength band
  • the order in which the first bandpass filter to the Mth bandpass filter is disposed in the light transmitting block 100 is the first wavelength band in the Mth wavelength band. May differ from the order of
  • M + 1) may be different from the order of the N-th wavelength band in the wavelength band.
  • the filters may be arranged in the order of BF1, BF4 and BF4.
  • the order in which the bandpass filters are arranged may be different depending on the order of the wavelength bands that may pass through the bandpass filters because the bandpass filters transmit only light of a specific wavelength band. That is, regardless of the order in which the band pass filters are arranged, light having a specific wavelength band may travel through the light transmitting block 100 and reach the corresponding band pass filter to be transmitted.
  • the wavelength multiplex bidirectional optical transmission / reception apparatus uses a bandpass filter to process a wavelength multiplexed optical transmission signal or an optical reception signal according to wavelength demultiplexing, thereby irrespective of the order of center wavelengths.
  • the arrangement of is possible.
  • each of the bandpass filters of the optical transmission channel passing through the first bandpass filter through the Mth bandpass filter and the optical reception channel passing through the (M + 1) th through Nth bandpass filters is a light transmission block.
  • the order arranged in may be arbitrarily arranged without distinction between the optical transmission and reception channels.
  • a wavelength multi-directional bidirectional optical transmission apparatus includes a light transmission unit 550, a light transmission band pass filtering unit 200, a light reception band pass filtering unit 300, and an edge filtering unit 600. ).
  • the light transmitting part 550 includes a plurality of light transmitting blocks 700 and 800 spaced apart from each other. Since the material of the light transmitting blocks 700 and 800 has been described above, a description thereof will be omitted.
  • the light transmission band pass filtering unit 200 and the light reception band pass filtering unit 300 are provided in the light transmission unit 550.
  • the optical bandpass filtering unit 200 and the optical bandpass filtering unit 300 may be variously disposed.
  • band pass filters of the light transmission band pass filtering unit 200 are provided at one side of one light transmitting block 700, and another light transmitting block ( Band pass filters of the light reception band pass filtering unit 300 may be provided at one side of the 800.
  • the reflective film RL may be formed on the other side of the one light transmitting block 700 and the other side of the other light transmitting block 800. Since the reflective film RL has been described in detail above, the description thereof will be omitted.
  • some of the band pass filters of the light transmission and light reception band pass filtering units 200 and 300 may be provided at one side of one light transmission block 700, and the light transmission and light reception band pass filtering units 300 may be formed.
  • the other of the band pass filters may be provided at one side of the other light transmitting block 800.
  • the reflective film RL may be formed on the other side of the one light transmitting block 700 and the other side of the other light transmitting block 800.
  • Some of the band pass filters of the light transmission band pass filtering unit 200 are provided at one side of one light transmitting block 700, and some of the band pass filters of the light reception band pass filtering unit 300 are one It may be provided on the other side of the light transmitting block 700.
  • the remaining of the band pass filters of the optical band pass filter 200 is provided on one side of the other light transmission block 800, the remaining of the band pass filters of the optical band pass filter 300
  • the other light transmitting block 800 may be provided on the other side.
  • band pass filters disposed in one light transmitting block 700 and the other light transmitting block 800 function as the reflective film RL, a normal operation may be performed without the reflective film RL.
  • the edge filter unit is provided in one of the plurality of light transmitting blocks 700 and 800, and light in a wavelength band having each of ⁇ 0 to ⁇ 3 as a center wavelength is transmitted through the one light.
  • the edge filter unit may reflect light in a wavelength band having each of the wavelengths ⁇ 0 to ⁇ 3 as a center wavelength, and may pass light in a wavelength band other than the center wavelengths (center wavelengths ⁇ 4 to ⁇ 7).
  • the edge filtering unit 600 may be spaced apart from the light transmitting unit.
  • various optical elements eg, the mirror M
  • the edge filter portion of FIG. 5 passes through the light transmitting block 700 with light having a wavelength of about ⁇ 0 to ⁇ 3 as the center wavelength, the edge filter portion has light having a wavelength of ⁇ 0 to ⁇ 3 as a center wavelength. Can be passed through, and light in other wavelength bands (center wavelengths? 4 to? 7) can be reflected.
  • wavelength transmission multiplexing of the light transmission signal may be performed in one light transmission block 700, and wavelength demultiplexing of the light reception signal may be performed in another light transmission block 800.
  • the optical bandpass filter 200 may perform a bandpass filtering function for optical transmission signals having different wavelength bands emitted from the plurality of light emitting units 400.
  • the light receiving band pass filtering unit 300 may perform a band pass filtering function for light reception signals having different wavelength bands incident on the plurality of light receiving units 500.
  • the optical transmission signal and the optical reception signal in which light of various wavelength bands are mixed may be transmitted through one optical fiber OF.
  • the wavelength-multiplexed light transmission signal emitted from the light emitting unit 400 is output to the outside through the collimating lens and the optical fiber OF, and is externally lighted.
  • the light reception signal input through the fiber OF may be demultiplexed and input to the light receiver 500.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

A wavelength multiplexing bidirectional optical transmitting/receiving device according to one embodiment of the present invention comprises: a light transmitting block; an optical transmission band-pass filtering unit provided on one side of the light transmitting block; and an optical reception band-pass filtering unit provided on one side or the other side of the light transmitting block, wherein an optical transmission signal, passing through the optical transmission band-pass filtering unit so as to be incident on the light transmitting block, is reflected by the optical reception band-pass filtering unit and is discharged to the outside of the light transmitting block, and an optical reception signal, being incident from the outside so as to pass through the light transmitting block, passes through the optical reception band-pass filtering unit and is reflected by the optical transmission band-pass filtering unit.

Description

파장다중 양방향 광송수신 장치Wavelength Multi-Directional Optical Transceiver
본 발명은 파장다중 양방향 광송수신 장치에 관한 것이다.The present invention relates to a wavelength multi-directional bidirectional optical transmission and reception device.
도 6은 송신 및 수신 파장이 각각 한 개씩인 일반적인 광송수신 장치를 나타내고, 도 7 및 도 8은 송신 및 수신부의 파장이 각각 n+1개 및 m+1개인 일반적인 파장다중 광송수신 장치를 나타낸다.6 shows a general optical transmission and reception device having one transmission and one reception wavelength, respectively, and FIGS. 7 and 8 illustrate a general wavelength multiple optical transmission and reception device having n + 1 and m + 1 wavelengths, respectively.
도 6에 도시된 바와 같이, 일반적인 광송수신 장치는 45도 필터(45° filter)를 포함한다. 45도 필터는 발광부에서 방출된 파장 λ T의 빛을 투과시키고, 광 송신신호는 광 파이버를 통하여 외부로 출력된다. 또한 외부에서 광 파이버로 수신된 파장 λ R의 광 수신신호는 45도 필터에 의하여 반사되어 수광부로 입사된다. As shown in FIG. 6, a general optical transmission / reception apparatus includes a 45 degree filter. The 45 degree filter transmits the light of wavelength λ T emitted from the light emitting portion, and the light transmission signal is output to the outside through the optical fiber. In addition, the light reception signal having the wavelength λ R received from the external optical fiber is reflected by the 45 degree filter and incident to the light receiving unit.
45도 필터는 입사각이 45 도로 큰 편이기 때문에 광 송신신호의 파장 λ T과 광 수신신호의 파장 λ R 사이의 간격이 작을 경우 필터링 기능이 원활하게 이루어지지 않을 수 있다. 이는 투과 및 반사되는 각각의 파장의 빛이 손실이 커지며 또한 상대 채널의 경로를 따라 들어가는 간섭이 증가하게 됨을 의미한다.Since the 45-degree filter has a large incident angle of 45 degrees, the filtering function may not be smoothly performed when the distance between the wavelength λ T of the optical transmission signal and the wavelength λ R of the optical reception signal is small. This means that the light at each wavelength transmitted and reflected is lost and the interference entering along the path of the relative channel is increased.
도 7에 도시된 바와 같이, 45도 필터가 파장 다중 광 송신 모듈에서 출력된 다파장 광 송신신호를 투과시키고, 이에 따라 다파장의 광 송신신호는 광 파이버를 통하여 외부로 출력된다. 또한 45도 필터는 외부에서 광 파이버를 통하여 입력된 다파장 광 수신신호를 파장 다중 광 수신 모듈로 반사시킨다. 45도 필터가 다파장의 광 송신신호와 광 수신신호의 필터링 기능을 수행하려면 광 송신신호의 파장 대역과 광 수신신호의 파장 대역 사이의 간격이 커야 하는데 그렇지 못할 경우 필터링 기능이 원활하게 이루어지지 않을 수 있다. As shown in FIG. 7, the 45 degree filter transmits the multi-wavelength light transmission signal output from the wavelength multiplex light transmission module, and thus the multi-wavelength light transmission signal is output to the outside through the optical fiber. In addition, the 45 degree filter reflects the multi-wavelength light reception signal input through the optical fiber from the outside to the wavelength multiplex light receiving module. For the 45-degree filter to filter the multi-wavelength optical transmission signal and the optical reception signal, the distance between the wavelength band of the optical transmission signal and the wavelength band of the optical reception signal must be large. Otherwise, the filtering function may not be performed smoothly. Can be.
도 6 및 도 7의 일반적인 광송수신 장치와 파장다중 광송수신 장치는 입사각이 큰 45도 필터의 사용으로 인하여 광 송신신호의 파장 대역과 광 수신신호의 파장 대역 사이의 간격이 비교적 커야 원활한 동작이 이루어질 수 있다. In the general optical transmitter and receiver of FIG. 6 and FIG. 7, the interval between the wavelength band of the optical transmission signal and the wavelength band of the optical reception signal is relatively large due to the use of a 45 degree filter having a large incident angle. Can be.
이에 따라 도 8과 같이 광 송신신호의 파장 대역과 광 수신신호의 파장 대역 사이의 간격이 비교적 작아도 원활한 동작이 가능한 파장다중 광송수신 장치가 사용되고 있다.Accordingly, as shown in FIG. 8, a wavelength multiplexing optical transmission and reception apparatus capable of smooth operation even when the distance between the wavelength band of the optical transmission signal and the wavelength band of the optical reception signal is relatively small is used.
그러나 도 8의 파장다중 광송수신 장치는 그린 렌즈(grin lens)를 채용하여 필터에 대한 광의 입사각을 줄일 수 있으나 도 6 및 도 7의 광 송수신 장치에 비하여 광섬유가 달린 각각의 파장다중 광송신 및 광수신 모듈과 별도의 파장 다중소자를 광커넥터를 사용하여 연결하여 구성해야 하므로 장치가 복잡해지고 더 많은 부피를 차지하게 되는 등의 단점이 있다.However, the wavelength multiplexed optical transmitter and receiver of FIG. 8 employs a green lens to reduce the angle of incidence of light to the filter. However, compared to the optical transceivers of FIGS. 6 and 7, each wavelength multiplexed optical transmitter and the optical fiber are provided. Since the receiving module and a separate wavelength multiple device must be connected by using an optical connector, the device becomes complicated and takes up more volume.
본 발명의 실시예에 따른 파장다중 양방향 광송수신 장치는 다채널의 파장다중 광송신 신호와 광수신 신호를 한가닥의 광섬유를 통하여 양방향 전송하는 데 있어, 송신 파장대역과 수신 파장대역 사이의 간격이 좁을 경우 발생하는 송수신 채널의 손실 증가 및 채널 사이의 간섭 증가 등의 단점을 극복하고 우수한 특성을 갖는 소형의 일체화된 양방향 광송신모듈을 제공하기 위한 것이다. The wavelength multiplex bidirectional optical transmitter and receiver according to an embodiment of the present invention bidirectionally transmits a multichannel wavelength multiplex optical transmission signal and an optical reception signal through one strand of optical fiber, so that a gap between the transmission wavelength band and the reception wavelength band is narrow. The present invention provides a compact integrated bidirectional optical transmission module having excellent characteristics, overcoming disadvantages such as increased loss of transmission / reception channels and increased interference between channels.
본 출원의 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않는 또 다른 과제는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problem of the present application is not limited to the above-mentioned problem, and another problem that is not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일측면에 따르면, 광 투과 블럭; 상기 광 투과 블럭의 일측에 구비된 광송신용 밴드패스필터링부; 및 상기 광 투과 블럭의 일측 또는 타측에 구비된 광수신용 밴드패스필터링부를 포함하며, 상기 광송신용 밴드패스필터링부를 통과하여 상기 광 투과 블럭으로 입사된 광 송신신호는 상기 광수신용 밴드패스 필터링부에 반사되어 상기 광 투과 블럭의 외부로 방출되고, 외부에서 입사되어 상기 광 투과 블럭을 통과하는 광 수신신호는 상기 광수신용 밴드패스필터링부를 통과하고 상기 광송신용 밴드패스 필터링부에 반사된다. According to one aspect of the invention, the light transmitting block; A band pass filtering unit for light transmission provided at one side of the light transmitting block; And a light reception band pass filtering unit provided at one side or the other side of the light transmission block, and the light transmission signal incident to the light transmission block through the light transmission band pass filtering unit is reflected to the light reception band pass filtering unit. The light reception signal is emitted to the outside of the light transmission block, and is incident from the outside and passes through the light transmission block. The light reception signal passes through the light reception band pass filtering unit and is reflected to the light transmission band pass filtering unit.
상기 광 송신신호는 제1 파장 대역 내지 제M 파장 대역(M은 2 이상의 자연수)의 빛으로 이루어지고, 상기 광 수신신호는 제(M+1) 파장 대역 내지 제N 파장 대역(N은 M+1 보다 큰 자연수)의 빛으로 이루어지며, 상기 광송신용 밴드패스필터링부는, 상기 제1 파장 대역 내지 상기 제M 파장 대역의 빛을 각각 투과시키고, 상기 제(M+1) 파장 대역 내지 제N 파장 대역의 빛을 반사하는 제1 밴드패스필터 내지 제M 밴드패스필터를 포함하고, 상기 광수신용 밴드패스필터링부는, 상기 제1 파장 대역 내지 상기 제M 파장 대역의 빛을 반사시키고, 상기 제(M+1) 파장 대역 내지 제N 파장 대역의 빛을 각각 투과시키는 제(M+1) 밴드패스필터 내지 제N 밴드패스필터를 포함할 수 있다. The optical transmission signal includes light of a first wavelength band to an Mth wavelength band (M is a natural number of 2 or more), and the optical reception signal is of a (M + 1) th wavelength band to an Nth wavelength band (N is M +). The light transmission band pass filtering unit transmits the light of the first wavelength band to the Mth wavelength band, respectively, and the (M + 1) th wavelength band to the Nth wavelength. And a first band pass filter to a M band pass filter for reflecting light in a band, wherein the light reception band pass filtering unit reflects light in the first wavelength band to the Mth wavelength band, +1) may include a (M + 1) th bandpass filter to an Nth bandpass filter for transmitting light of the wavelength band to the Nth wavelength band, respectively.
상기 광송신용 밴드패스필터링부 및 상기 광수신용 밴드패스필터링부는 상기 광 투과 블럭의 일측에 구비되고, 상기 광 투과 블럭의 타측의 일정 부분에는 상기 광 송신신호 및 상기 광 수신신호를 반사할 수 있는 반사막이 형성될 수 있고 상기 광 투과 블록의 타측의 또 다른 일정 부분에는 송수신 빛이 반사 손실없이 입출력되기 용이하도록 무반사막이 형성될 수 있다. The light transmitting band pass filtering unit and the light receiving band pass filtering unit are provided on one side of the light transmitting block, and a reflective film capable of reflecting the light transmitting signal and the light receiving signal on a predetermined portion of the other side of the light transmitting block. The anti-reflective film may be formed in another predetermined portion of the other side of the light transmitting block so that the transmitted and received light can be easily inputted and outputted without reflection loss.
상기 광송신용 밴드패스필터링부는 상기 광 투과 블럭의 일측에 구비되고, 상기 광수신용 밴드패스필터링부는 상기 광 투과 블럭의 타측에 구비될 수 있다. The light transmitting band pass filtering part may be provided at one side of the light transmitting block, and the light receiving band pass filtering part may be provided at the other side of the light transmitting block.
상기 광송신용 밴드패스필터링부의 밴드패스필터들 중 일부는 상기 광 투과 블럭의 일측에 구비되고, 나머지는 상기 광 투과 블럭의 타측에 구비되고, 상기 광수신용 밴드패스필터링부의 밴드패스필터들 중 일부는 상기 광 투과 블럭의 일측에 구비되고, 나머지는 상기 광 투과 블럭의 타측에 구비될 수 있다. 상기 광투과 블록에서 송수신 빛이 입출력되는 일정 부분은 빛의 반사 손실을 줄이기 위해 무반사막이 형성될 수 있다.Some of the band pass filters of the light transmitting band pass filtering part are provided at one side of the light transmitting block, and the other part is provided at the other side of the light transmitting block, and some of the band pass filters of the light receiving band pass filtering part are provided. It may be provided on one side of the light transmitting block, the rest may be provided on the other side of the light transmitting block. In the light transmission block, a portion of the transmission / reception light input and output may be formed with an anti-reflection film in order to reduce the reflection loss of the light.
상기 제1 파장 대역에서 상기 제M 파장 대역으로 갈수록 파장이 증가하고, 상기 제1 밴드패스필터 내지 상기 제M 밴드패스필터가 상기 광 투과 블럭에 배치되는 순서는 상기 제1 파장 대역에서 상기 제M 파장 대역의 순서와 다를 수 있다. The wavelength increases from the first wavelength band to the Mth wavelength band, and the order in which the first bandpass filter to the Mth bandpass filter is disposed in the light transmitting block is the Mth in the first wavelength band. The order of the wavelength bands may be different.
상기 제(M+1) 파장 대역에서 제N 파장 대역으로 갈수록 파장이 증가하며, 상기 제(M+1) 밴드패스필터 내지 상기 제N 밴드패스필터가 상기 광 투과 블럭에 배치되는 순서는 상기 제(M+1) 파장 대역에서 상기 제N 파장 대역의 순서와 다를 수 있다. The wavelength increases from the (M + 1) th wavelength band to the Nth wavelength band, and the order in which the (M + 1) th bandpass filter or the Nth bandpass filter is disposed in the light transmitting block is the first order. In the (M + 1) wavelength band, the order of the Nth wavelength band may be different.
상기 제1 밴드패스필터 내지 제M 밴드패스필터를 통과하는 광송신 채널과 상기 제(M+1) 밴드패스필터 내지 상기 제N 밴드패스필터를 투과하는 광수신 채널의 각각의 밴드패스필터가 상기 광투과 블록에 배치되는 순서는 광송신 및 수신 채널의 구분없이 임의로 배치될 수 있다.Each bandpass filter of the optical transmission channel passing through the first bandpass filter through the Mth bandpass filter and the optical reception channel passing through the (M + 1) th bandpass filter through the Nth bandpass filter are respectively The order in which the light transmitting blocks are arranged may be arbitrarily arranged without distinguishing the optical transmitting and receiving channels.
본 발명의 다른 측면에 따르면, 서로 이격된 복수의 광 투과 블럭을 포함하는 광 투과부; 상기 광 투과부에 구비되는 광송신용 밴드패스필터링부 및 광수신용 밴드패스필터링부; 및 복수의 파장 대역 빛이 상기 복수의 광 투과 블럭 중 하나의 광 투과 블럭을 통과할 때, 상기 복수의 파장 대역 이외의 파장 대역의 빛이 통과하는 엣지 필터링부를 포함하며, 상기 광송신용 밴드패스필터링부는, 복수의 발광부로부터 방출된 서로 다른 파장 대역의 광 송신신호에 대한 밴드패스필터링 기능을 수행하고, 상기 광수신용 밴드패스필터링부는, 복수의 광전변화부로 입사되는 서로 다른 파장 대역의 광 수신신호에 대한 밴드패스필터링 기능을 수행할 수 있다. According to another aspect of the invention, the light transmitting portion including a plurality of light transmitting blocks spaced apart from each other; An optical transmission band pass filtering unit and an optical reception band pass filtering unit provided in the light transmitting unit; And an edge filtering unit through which light in a wavelength band other than the plurality of wavelength bands passes when a plurality of wavelength band light passes through one light transmitting block of the plurality of light transmitting blocks. The unit performs a band pass filtering function for light transmission signals of different wavelength bands emitted from the plurality of light emitting units, and the light receiving band pass filtering unit includes light receiving signals of different wavelength bands incident to the plurality of photoelectric conversion units. The bandpass filtering function may be performed.
상기 광송신용 밴드패스필터링부는 상기 하나의 광 투과 블럭에 구비되고, 상기 광수신용 밴드패스필터링부는 상기 다른 하나의 광 투과 블럭에 구비될 수 있다. The light transmitting band pass filtering part may be provided in the one light transmitting block, and the light receiving band pass filtering part may be provided in the other light transmitting block.
상기 광송신용 밴드패스필터링부와 상기 광수신용 밴드패스필터링부는 각각 다수의 광송신용 밴드패스필터와 다수의 광수신용 밴드패스필터를 포함하며, 상기 다수의 광송신용 밴드패스필터 중 일부와 상기 다수의 광수신용 밴드패스필터 중 일부는 상기 하나의 광 투과 블럭에 구비될 수 있다. The optical transmission band pass filtering unit and the optical reception band pass filtering unit each include a plurality of optical transmission band pass filters and a plurality of optical reception band pass filters, and a part of the plurality of optical transmission band pass filters and the plurality of light reception units. Some of the credit bandpass filters may be provided in the one light transmitting block.
상기 엣지 필터링부는 상기 복수의 광 투과 블럭 중 하나에 구비될 수 있다. The edge filtering unit may be provided in one of the plurality of light transmitting blocks.
상기 엣지 필터링부는 상기 광투과부와 이격되어 설치될 수 있다. The edge filtering unit may be spaced apart from the light transmitting unit.
본 발명의 실시예에 따른 파장다중 양방향 광송수신 장치는 작은 광입사각을 갖는 광투과 블럭과 밴드패스필터를 사용함으로써 파장 대역 사이의 간격을 줄이더라도 광손실을 줄이고 채널 간의 간섭을 감소시킬 뿐 아니라 소형의 일체화된 장치를 제공하므로 광 송신신호와 광 수신신호를 하나의 광 파이버를 통하여 효과적으로 처리할 수 있다. The wavelength multi-directional bidirectional optical transmission and reception apparatus according to the embodiment of the present invention uses a light transmission block having a small light incident angle and a band pass filter to reduce light loss and reduce interference between channels as well as to reduce the interference between the wavelength bands. By providing an integrated device, the optical transmission signal and the optical reception signal can be efficiently processed through one optical fiber.
본 출원의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않는 또 다른 효과는 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present application are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1 내지 도 3은 본 발명의 실시예에 따른 파장다중 양방향 광송수신 장치를 나타낸다. 1 to 3 show a wavelength multi-directional bidirectional optical transmission and reception device according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 다른 실시예에 따른 파장다중 양방향 광송수신 장치를 나타낸다. 4 and 5 show a wavelength multi-directional bidirectional optical transmission and reception device according to another embodiment of the present invention.
도 6은 일반적인 광송수신 장치를 나타낸다.6 shows a general optical transmission and reception apparatus.
도 7 및 도 8은 일반적인 파장다중 광송수신 장치를 나타낸다. 7 and 8 show a general wavelength multiplex optical transceiver.
이하 본 발명의 실시예에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 이 기술분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the accompanying drawings are only described in order to more easily disclose the contents of the present invention, and the scope of the present invention is not limited to the scope of the accompanying drawings that can be easily understood by those of ordinary skill in the art. You will know.
또한, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Also, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
도 1 및 도 2는 본 발명의 실시예에 따른 파장다중 양방향 광송수신 장치를 나타낸다. 도 1 및 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 파장다중 양방향 광송수신 장치는 광 투과 블럭(100), 광송신용 밴드패스필터링(band- pass filtering)부(200), 및 광수신용 밴드패스필터링부(300)를 포함한다. 1 and 2 show a wavelength multi-directional bidirectional optical transmission and reception device according to an embodiment of the present invention. As shown in Figure 1 and 2, the wavelength multi-directional bidirectional optical transmission apparatus according to an embodiment of the present invention is a light transmission block 100, a band-pass filtering unit 200 for optical transmission, and the optical water The credit band pass filtering unit 300 is included.
광 투과 블럭(100)은 빛의 투과가 가능한 재질로 이루어질 수 있다. 예를 들어, 광 투과 블럭(100)의 재질은 유리일 수 있으나 이에 한정되는 것은 아니다. The light transmitting block 100 may be made of a material capable of transmitting light. For example, the material of the light transmitting block 100 may be glass, but is not limited thereto.
광송신용 밴드패스필터링부(200)는 광 투과 블럭(100)의 일측에 구비되고, 광수신용 밴드패스필터링부(300)는 광 투과 블럭(100)의 일측 또는 타측에 구비된다. 예를 들어, 도 1에서는 광송신용 및 광수신용 밴드패스필터링부(300)가 광 투과 블럭(100)의 일측에 구비되어 있고, 도 2에서는 광송신용 및 광수신용 밴드패스필터링부(300)가 광 투과 블럭(100)의 타측에 구비되어 있다. The light transmission band pass filtering unit 200 is provided at one side of the light transmission block 100, and the light reception band pass filtering unit 300 is provided at one side or the other side of the light transmission block 100. For example, in FIG. 1, the light transmission and light reception band pass filtering unit 300 is provided at one side of the light transmission block 100, and in FIG. 2, the light transmission and light reception band pass filtering unit 300 is optical. It is provided on the other side of the transmission block 100.
발광부(400)는 서로 다른 파장을 지닌 광 송신신호를 출력하며, 이를 위하여 서로 다른 파장의 빛을 방출하는 광원(도 1의 T1 및 T2, 도 2의 T1~T4)을 포함할 수 있다. 광원은 LED(Light Emitting Diode)나 LD(Laser Diode)일 수 있으나 이에 한정되는 것은 아니다. 발광부(400)에서 출력된 광 송신신호는 콜리메이팅 렌즈를 거쳐 평행광으로 변환되어 광 투과 블럭(100)에 입사된다. The light emitting unit 400 may output light transmission signals having different wavelengths, and may include light sources (T1 and T2 of FIG. 1 and T1 to T4 of FIG. 2) that emit light having different wavelengths. The light source may be a light emitting diode (LED) or a laser diode (LD), but is not limited thereto. The light transmission signal output from the light emitting unit 400 is converted into parallel light through the collimating lens and is incident on the light transmitting block 100.
이 때, 광 송신신호는 광송신용 밴드패스필터링부(200)를 통과하여 광 투과 블럭(100)으로 입사되고, 광수신용 밴드패스 필터링부에 반사되어 광 투과 블럭(100)의 외부로 방출된다. At this time, the light transmission signal passes through the light transmission band pass filtering unit 200 and is incident to the light transmission block 100, and is reflected by the light reception band pass filtering unit and emitted to the outside of the light transmission block 100.
예를 들어, 도 1에 도시된 바와 같이, 광송신용 밴드패스필터링부(200)의 밴드패스필터 BF1 및 BF2는 중심 파장을 λ1 및 λ2로 하는 파장 대역을 통과시키고, 나머지 파장 대역은 반사시킨다. 광원 T1 및 T2로부터 출력된 광 송신신호는 중심 파장을 λ1 및 λ2로 하는 파장 대역을 지니므로 밴드패스필터 BF1 및 BF2를 통과할 수 있다. For example, as shown in FIG. 1, the band pass filters BF1 and BF2 of the optical band pass filter 200 pass a wavelength band having a center wavelength of λ 1 and λ 2 and reflect the remaining wavelength bands. Since the light transmission signals output from the light sources T1 and T2 have wavelength bands with the center wavelengths λ1 and λ2, they can pass through the bandpass filters BF1 and BF2.
광수신용 밴드패스필터링부(300)가 통과시키는 빛의 중심 파장은 λ3 및 λ4이므로 광 송신신호는 광수신용 밴드패스필터링부(300)에 의하여 반사되어 광 투과 블럭(100)으로부터 방출되어 콜리메이팅 렌즈를 거쳐 포커싱된 후 광 파이버(OF)를 통하여 외부로 출력될 수 있다. Since the center wavelengths of light passing through the light receiving band pass filtering unit 300 are λ 3 and λ 4, the optical transmission signal is reflected by the light receiving band pass filtering unit 300 and is emitted from the light transmitting block 100 to collimate the lens. After focusing through the optical fiber (OF) can be output to the outside.
이와 같은 과정을 거치는 과정에서 광 송신신호에 대한 파장 다중화가 이루어지므로 광 파이버(OF)로부터 출력되는 광 송신신호는 λ1을 중심 파장으로 하는 대역의 빛과 λ2를 중심 파장으로 하는 대역이 빛이 혼합된 형태일 수 있다.In this process, since the wavelength multiplexing is performed on the optical transmission signal, the optical transmission signal outputted from the optical fiber (OF) is mixed with light in a band having λ1 as the center wavelength and a band having λ2 as the center wavelength. It may be in the form.
한편, 도 1에서와 같이 λ3을 중심 파장으로 하는 대역의 빛과 λ4를 중심 파장으로 하는 대역이 빛이 혼합된 광 수신신호는 외부에서 광 파이버(OF)로 입력되어 콜리메이팅 렌즈를 통하여 평행광으로 변환된 후 광 투과 블럭(100)에 입사된다.Meanwhile, as shown in FIG. 1, a light reception signal in which light in a band having λ 3 as a center wavelength and light in a band having λ 4 as a center wavelength is mixed is input to an optical fiber (OF) from the outside and is parallel light through a collimating lens. After the conversion to the light transmission block 100 is incident.
λ4을 중심 파장으로 하는 파장 대역의 광 수신신호는 광수신용 밴드패스필터링부(300)의 밴드패스필터 BF4를 통과하여 수광부(500)의 광전변환소자 R4에 도달하고, λ3을 중심 파장으로 하는 파장 대역의 광 수신신호는 밴드패스필터 BF4에 의하여 반사된 후 광수신용 밴드패스필터링부(300)의 밴드패스필터 BF3를 통과하여 수광부(500)의 광전변환소자 R3에 도달한다. 이와 같은 과정을 통하여 광 수신신호에 대한 역다중화가 이루어질 수 있다. 이 때 수광부(500)는 포토 다이오드(photo diode)를 포함할 수 있으나 이에 한정되는 것은 아니다. The light reception signal in the wavelength band having λ4 as the center wavelength passes through the bandpass filter BF4 of the light receiving bandpass filtering unit 300 to reach the photoelectric conversion element R4 of the light receiving unit 500, and the wavelength having λ3 as the center wavelength. The light receiving signal of the band is reflected by the band pass filter BF4 and then passes through the band pass filter BF3 of the light receiving band pass filtering unit 300 to reach the photoelectric conversion element R3 of the light receiving unit 500. Through this process, demultiplexing of the optical reception signal may be performed. In this case, the light receiver 500 may include a photo diode, but is not limited thereto.
즉, 외부에서 입사되어 광 투과 블럭(100)을 통과하는 광 수신신호는 광수신용 밴드패스필터링부(300)를 통과하고 광송신용 밴드패스 필터링부에 반사된다. That is, the light reception signal incident from the outside and passing through the light transmitting block 100 passes through the light reception band pass filtering unit 300 and is reflected by the light transmission band pass filtering unit.
도 2의 경우, 발광부(400)가 서로 다른 중심 파장(λ1, λ2, λ3, λ4)을 지닌 4개의 파장 대역의 빛을 방출하는 것으로, 광송신용 밴드패스필터부의 밴드패스필터 BF1, BF2, BF3 및 BF4는 각각 중심 파장 λ1을 지닌 파장 대역, 중심 파장 λ2를 지닌 파장 대역, 중심 파장 λ3을 지닌 파장 대역, 및 중심 파장 λ4을 지닌 파장 대역을 통과시킨다. 2, the light emitting unit 400 emits light of four wavelength bands having different center wavelengths λ1, λ2, λ3, and λ4, and the bandpass filters BF1, BF2, BF3 and BF4 respectively pass a wavelength band having a center wavelength λ1, a wavelength band having a center wavelength λ2, a wavelength band having a center wavelength λ3, and a wavelength band having a center wavelength λ4.
이에 따라 광 파이버(OF)로부터 출력된 광 송신신호는 λ1 내지 λ4 각각을 중심 파장으로 하는 4개의 파장 대역이 다중화된 상태일 수 있다. 이 과정에서 광수신용 밴드패스필터부는 λ1 내지 λ4 각각을 중심 파장으로 하는 4개의 파장 대역의 빛을 반사시킨다. Accordingly, the optical transmission signal output from the optical fiber OF may be in a state where four wavelength bands, each of λ1 to λ4, are used as the center wavelength. In this process, the light-receiving band pass filter unit reflects light of four wavelength bands having λ1 to λ4 as center wavelengths.
또한 λ5 내지 λ8 각각을 중심 파장으로 하는 4개의 파장 대역이 다중화된 광 수신신호가 외부로부터 광 파이버(OF)로 입력되면, 광수신용 밴드패스필터부의 밴드패스필터 BF5, BF6, BF7 및 BF8은 각각 중심 파장 λ5를 지닌 파장 대역, 중심 파장 λ6을 지닌 파장 대역, 중심 파장 λ7를 지닌 파장 대역, 및 중심 파장 λ8을 지닌 파장 대역을 통과시킨다. Further, when an optical reception signal multiplexed with four wavelength bands each of λ5 to λ8 is input to the optical fiber OF from the outside, the bandpass filters BF5, BF6, BF7 and BF8 of the optical reception bandpass filter unit are respectively A wavelength band having a center wavelength λ5, a wavelength band having a center wavelength λ6, a wavelength band having a center wavelength λ7, and a wavelength band having a central wavelength λ8 are passed through.
이에 따라 광 수신신호는 λ5 내지 λ8 각각을 중심 파장으로 하는 4개의 파장 대역의 빛으로 역다중화될 수 있다. 이 과정에서 광송신용 밴드패스필터부는 λ5 내지 λ8 각각을 중심 파장으로 하는 4개의 파장 대역의 빛을 반사시킨다.Accordingly, the light reception signal may be demultiplexed into four wavelength bands of light having λ5 to λ8 as the center wavelengths. In this process, the light transmission band pass filter unit reflects light in four wavelength bands, each of λ5 to λ8 as the center wavelength.
이상에서 설명된 바와 같이 본 발명의 실시예에 따른 파장다중 양방향 광송수신 장치는 기존의 45도 필터없이 하나의 광 파이버(OF)를 통하여 광 송신신호 및 광 수신신호의 처리가 가능하다. 밴드패스필터는 설정된 파장 대역을 통과시키고 나머지 파장 대역은 반사시키므로 서로 인접한 두 파장 대역 사이의 간격이 크지 않더라도 원활하게 광 송신신호와 광 수신신호를 처리할 수 있다.As described above, the wavelength multi-directional bidirectional optical transmission / reception apparatus according to an exemplary embodiment of the present invention may process an optical transmission signal and an optical reception signal through one optical fiber OF without a conventional 45 degree filter. Since the bandpass filter passes the set wavelength band and reflects the remaining wavelength band, the bandpass filter can smoothly process the optical transmission signal and the optical reception signal even if the distance between two adjacent wavelength bands is not large.
중심 파장의 개수와 밴드패스필터의 개수는 도 1 및 도 2에서의 경우에 한정되는 것은 아니다.The number of center wavelengths and the number of band pass filters are not limited to those in FIGS. 1 and 2.
한편, 광 송신신호는 제1 파장 대역 내지 제M 파장 대역(M은 2 이상의 자연수)의 빛으로 이루어지고, 광 수신신호는 제(M+1) 파장 대역 내지 제N 파장 대역(N은 M+1 보다 큰 자연수)의 빛으로 이루어질 수 있다. On the other hand, the optical transmission signal is composed of light of the first wavelength band to the M-th wavelength band (M is a natural number of two or more), and the optical reception signal is the (M + 1) to N-th wavelength band (N is M + Natural light greater than 1).
광송신용 밴드패스필터링부(200)는, 제1 파장 대역 내지 제M 파장 대역의 빛을 각각 투과시키고, 제(M+1) 파장 대역 내지 제N 파장 대역의 빛을 반사하는 제1 밴드패스필터 내지 제M 밴드패스필터를 포함할 수 있다. The optical band pass filter 200 transmits light of a first wavelength band to a Mth wavelength band, and reflects light of a (M + 1) th wavelength band to an Nth wavelength band, respectively. To M-th band pass filter.
또한 광수신용 밴드패스필터링부(300)는, 제1 파장 대역 내지 제M 파장 대역의 빛을 반사시키고, 제(M+1) 파장 대역 내지 제N 파장 대역의 빛을 각각 투과시키는 제(M+1) 밴드패스필터 내지 제N 밴드패스필터를 포함할 수 있다. The light receiving band pass filtering unit 300 reflects light in the first wavelength band to the Mth wavelength band and transmits light in the (M + 1) th to Nth wavelength bands, respectively (M +). 1) a band pass filter to an N-th band pass filter.
예를 들어, 도 2의 파장다중 양방향 광송수신 장치의 경우, M은 4이고 N은 8일 수 있다. 이에 대해서는 앞서 상세히 설명하였으므로 이에 대한 설명은 생략된다.For example, in the case of the wavelength multi-directional bidirectional optical transceiver of FIG. 2, M may be 4 and N may be 8. Since it has been described in detail above, a description thereof will be omitted.
한편, 도 1 및 도 3에 도시된 바와 같이, 광송신용 밴드패스필터링부(200) 및 광수신용 밴드패스필터링부(300)는 광 투과 블럭(100)의 일측에 구비될 수 있다. 또한 광 투과 블럭(100)의 타측 일정 부분에는 광 송신신호 및 광 수신신호를 반사할 수 있는 반사막(RL)이 형성될 수 있으며, 광신호의 입출력이 이루어지는 또 다른 일정 부분에는 광신호의 반사 손실을 줄이기 위해 무반사막이 형성될 수 있다. 1 and 3, the light transmission band pass filtering unit 200 and the light reception band pass filtering unit 300 may be provided at one side of the light transmission block 100. In addition, a reflective film RL capable of reflecting the light transmission signal and the light reception signal may be formed on the other predetermined portion of the light transmitting block 100, and the reflection loss of the optical signal may be formed on the other predetermined portion where the optical signal is input / output. An anti-reflective film may be formed to reduce the number of layers.
밴드패스필터는 설정된 파장 대역을 통과시키고 나머지 파장 대역의 빛을 광 투과 블럭(100)의 타측에 구비된 반사막(RL)으로 반사하는데, 반사막(RL)은 빛을 광 투과 블럭(100)의 일측으로 반사시킬 수 있다. 즉, 반사막(RL)은 하나의 밴드패스필터에 의하여 반사된 빛을 다른 하나의 밴드패스필터를 향하여 반사시킴으로써 파장 다중화 또는 파장 역다중화에 기여할 수 있다. The band pass filter passes the set wavelength band and reflects the light of the remaining wavelength band to the reflecting film RL provided on the other side of the light transmitting block 100. The reflecting film RL reflects light on one side of the light transmitting block 100. Can be reflected. That is, the reflective film RL may contribute to wavelength multiplexing or wavelength demultiplexing by reflecting the light reflected by one bandpass filter toward the other bandpass filter.
이 때 상기 하나의 밴드패스필터는 광송신용 밴드패스필터링부(200) 또는 광수신용 밴드패스필터링부(300)에 포함될 수 있다. 또한 상기 다른 하나의 밴드패스필터 역시 광송신용 밴드패스필터링부(200) 또는 광수신용 밴드패스필터링부(300)에 포함될 수 있다.In this case, the one bandpass filter may be included in the optical bandpass filter 200 or the optical bandpass filter 300. In addition, the other band pass filter may also be included in the optical transmission band pass filtering unit 200 or the optical reception band pass filtering unit 300.
이와는 다르게 도 2에 도시된 바와 같이, 광송신용 밴드패스필터링부(200)는 광 투과 블럭(100)의 일측에 구비되고, 광수신용 밴드패스필터링부(300)는 광 투과 블럭(100)의 타측에 구비될 수 있다. 밴드패스필터가 투과시키는 파장 대역 이외의 파장 대역 빛은 반사하므로 밴드패스필터 자체가 도 1의 반사막(RL)의 기능을 수행할 수 있다. Unlike this, as shown in FIG. 2, the light transmission band pass filtering unit 200 is provided at one side of the light transmission block 100, and the light reception band pass filtering unit 300 is the other side of the light transmission block 100. It may be provided in. Since light of a wavelength band other than the wavelength band transmitted by the bandpass filter is reflected, the bandpass filter itself may perform the function of the reflective film RL of FIG. 1.
또한 도면에는 도시되어 있지 않으나 밴드패스필터는 광 송신신호 및 광 수신신호와 상관없이 설정된 파장 대역의 빛만을 투과시키므로 광 투과블럭의 일측에 광송신용 밴드패스필터링부(200) 및 광수신용 밴드패스필터링부(300)의 밴드패스필터가 혼재될 수 있다. 마찬가지로 광 투과 블럭(100)의 타측에 광송신용 밴드패스필터링부(200) 및 광수신용 밴드패스필터링부(300)의 밴드패스필터가 혼재될 수 있다.In addition, although not shown in the drawing, the band pass filter transmits only the light of the set wavelength band irrespective of the light transmission signal and the light reception signal, so that the light transmission band pass filtering unit 200 and the light reception band pass filtering on one side of the light transmission block. The band pass filter of the unit 300 may be mixed. Similarly, the band pass filter of the light transmission band pass filtering unit 200 and the light reception band pass filtering unit 300 may be mixed on the other side of the light transmitting block 100.
즉, 광송신용 밴드패스필터링부(200)의 밴드패스필터들 중 일부는 광 투과 블럭(100)의 일측에 구비되고, 나머지는 광 투과 블럭(100)의 타측에 구비되고, 광수신용 밴드패스필터링부(300)의 밴드패스필터들 중 일부는 광 투과 블럭(100)의 일측에 구비되고, 나머지는 광 투과 블럭(100)의 타측에 구비될 수 있다. That is, some of the band pass filters of the light transmission band pass filtering unit 200 are provided at one side of the light transmission block 100, and the rest are provided at the other side of the light transmission block 100, and the band pass filtering for light reception. Some of the band pass filters of the unit 300 may be provided at one side of the light transmitting block 100, and the other may be provided at the other side of the light transmitting block 100.
한편, 제1 파장 대역에서 제M 파장 대역으로 갈수록 파장이 증가하고, 제1 밴드패스필터 내지 제M 밴드패스필터가 광 투과 블럭(100)에 배치되는 순서는 제1 파장 대역에서 제M 파장 대역의 순서와 다를 수 있다. Meanwhile, the wavelength increases from the first wavelength band to the Mth wavelength band, and the order in which the first bandpass filter to the Mth bandpass filter is disposed in the light transmitting block 100 is the first wavelength band in the Mth wavelength band. May differ from the order of
또한 제(M+1) 파장 대역에서 제N 파장 대역으로 갈수록 파장이 증가하며, 제(M+1) 밴드패스필터 내지 제N 밴드패스필터가 광 투과 블럭(100)에 배치되는 순서는 제(M+1) 파장 대역에서 제N 파장 대역의 순서와 다를 수 있다. In addition, the wavelength increases from the (M + 1) th wavelength band to the Nth wavelength band, and the order in which the (M + 1) th bandpass filter to the Nth bandpass filter is disposed in the light transmitting block 100 is (1). M + 1) may be different from the order of the N-th wavelength band in the wavelength band.
예를 들어, 도 3에 도시된 바와 같이, λ1, λ3, 및 λ4 순으로 중심 파장의 크기가 크지만 광 투과 블럭(100)의 일측에 구비된 광수신용 밴드패스필터링부(300)의 밴드패스필터는 BF1, BF4 및 BF4 순으로 배치될 수 있다.For example, as shown in FIG. 3, the band pass of the light receiving band pass filtering unit 300 provided on one side of the light transmitting block 100 although the magnitude of the center wavelength is large in order of λ 1, λ 3, and λ 4. The filters may be arranged in the order of BF1, BF4 and BF4.
이와 같이 각 밴드패스필터를 투과할 수 있는 파장 대역의 순서에 따라 밴드패스필터의 배치 순서가 다를 수 있는 것은 밴드패스필터가 특정 파장대역의 빛만을 투과시키기 때문이다. 즉, 밴드패스필터의 배치 순서와 무관하게 특정 파장 대역의 빛은 광 투과 블럭(100)을 진행하다 해당 밴드패스필터에 도달하여 투과될 수 있다. As described above, the order in which the bandpass filters are arranged may be different depending on the order of the wavelength bands that may pass through the bandpass filters because the bandpass filters transmit only light of a specific wavelength band. That is, regardless of the order in which the band pass filters are arranged, light having a specific wavelength band may travel through the light transmitting block 100 and reach the corresponding band pass filter to be transmitted.
이와 같이 본 발명의 실시예에 따른 파장다중 양방향 광송수신 장치는 밴드패스필터를 사용하여 파장 다중화된 광 송신신호나 파장 역다중화에 따른 광 수신신호를 처리함으로써 중심 파장의 순서와 무관하게 밴드패스필터의 배치가 가능하다. As described above, the wavelength multiplex bidirectional optical transmission / reception apparatus according to an exemplary embodiment of the present invention uses a bandpass filter to process a wavelength multiplexed optical transmission signal or an optical reception signal according to wavelength demultiplexing, thereby irrespective of the order of center wavelengths. The arrangement of is possible.
또한 제1 밴드패스필터 내지 제M 밴드패스필터를 통과하는 광송신 채널과 제(M+1) 밴드패스필터 내지 제N 밴드패스필터를 투과하는 광수신 채널의 각각의 밴드패스필터가 광투과 블록에 배치되는 순서는 광송신 및 수신 채널의 구분없이 임의로 배치될 수 있다.In addition, each of the bandpass filters of the optical transmission channel passing through the first bandpass filter through the Mth bandpass filter and the optical reception channel passing through the (M + 1) th through Nth bandpass filters is a light transmission block. The order arranged in may be arbitrarily arranged without distinction between the optical transmission and reception channels.
다음으로 도 4 및 도 5를 참조하여 본 발명의 다른 실시예에 따른 파장다중 양방향 광송수신 장치를 설명한다.Next, referring to FIGS. 4 and 5, a wavelength multi-directional bidirectional optical transmission / reception apparatus according to another embodiment of the present invention will be described.
본 발명의 다른 실시예에 따른 파장다중 양방향 광송수신 장치는 광 투과부(550), 광송신용 밴드패스필터링부(200), 광수신용 밴드패스필터링부(300) 및 엣지 필터링(edge filtering)부(600)를 포함한다. In accordance with another embodiment of the present invention, a wavelength multi-directional bidirectional optical transmission apparatus includes a light transmission unit 550, a light transmission band pass filtering unit 200, a light reception band pass filtering unit 300, and an edge filtering unit 600. ).
광 투과부(550)는 서로 이격된 복수의 광 투과 블럭(700, 800)을 포함한다. 광 투과 블럭(700, 800)의 재질에 대해서는 앞서 설명하였으므로 이에 대한 설명은 생략된다. The light transmitting part 550 includes a plurality of light transmitting blocks 700 and 800 spaced apart from each other. Since the material of the light transmitting blocks 700 and 800 has been described above, a description thereof will be omitted.
광송신용 밴드패스필터링부(200)와 광수신용 밴드패스필터링부(300)는 광 투과부(550)에 구비된다. 본 발명의 다른 실시예에서 광송신용 밴드패스필터링부(200) 및 광수신용 밴드패스필터링부(300)는 다양하게 배치될 수 있다.The light transmission band pass filtering unit 200 and the light reception band pass filtering unit 300 are provided in the light transmission unit 550. In another embodiment of the present invention, the optical bandpass filtering unit 200 and the optical bandpass filtering unit 300 may be variously disposed.
예를 들어, 도 4 및 도 5에 도시된 바와 같이, 하나의 광 투과 블럭(700)의 일측에 광송신용 밴드패스필터링부(200)의 밴드패스필터들이 구비되고, 다른 하나의 광 투과 블럭(800)의 일측에 광수신용 밴드패스필터링부(300)의 밴드패스필터들이 구비될 수 있다. 이 경우 하나의 광 투과 블럭(700)의 타측과 다른 하나의 광 투과 블럭(800)의 타측에는 반사막(RL)이 형성될 수 있다. 반사막(RL)에 대해서는 앞서 상세히 설명하였으므로 이에 대한 설명은 생략된다.For example, as illustrated in FIGS. 4 and 5, band pass filters of the light transmission band pass filtering unit 200 are provided at one side of one light transmitting block 700, and another light transmitting block ( Band pass filters of the light reception band pass filtering unit 300 may be provided at one side of the 800. In this case, the reflective film RL may be formed on the other side of the one light transmitting block 700 and the other side of the other light transmitting block 800. Since the reflective film RL has been described in detail above, the description thereof will be omitted.
또는 광송신용 및 광수신용 밴드패스필터링부(200, 300)의 밴드패스필터들 중 일부가 하나의 광 투과 블럭(700)의 일측에 구비되고, 광송신용 및 광수신용 밴드패스필터링부(300)의 밴드패스필터들 중 나머지가 다른 하나의 광 투과 블럭(800)의 일측에 구비될 수 있다. 이 경우 역시 하나의 광 투과 블럭(700)의 타측과 다른 하나의 광 투과 블럭(800)의 타측에는 반사막(RL)이 형성될 수 있다. Alternatively, some of the band pass filters of the light transmission and light reception band pass filtering units 200 and 300 may be provided at one side of one light transmission block 700, and the light transmission and light reception band pass filtering units 300 may be formed. The other of the band pass filters may be provided at one side of the other light transmitting block 800. In this case, the reflective film RL may be formed on the other side of the one light transmitting block 700 and the other side of the other light transmitting block 800.
광송신용 밴드패스필터링부(200)의 밴드패스필터들 중 일부가 하나의 광 투과 블럭(700)의 일측에 구비되고, 광수신용 밴드패스필터링부(300)의 밴드패스필터들 중 일부가 하나의 광 투과 블럭(700)의 타측에 구비될 수 있다. Some of the band pass filters of the light transmission band pass filtering unit 200 are provided at one side of one light transmitting block 700, and some of the band pass filters of the light reception band pass filtering unit 300 are one It may be provided on the other side of the light transmitting block 700.
또한 광송신용 밴드패스필터링부(200)의 밴드패스필터들 중 나머지가 다른 하나의 광 투과 블럭(800)의 일측에 구비되고, 광수신용 밴드패스필터링부(300)의 밴드패스필터들 중 나머지가 다른 하나의 광 투과 블럭(800)에 타측에 구비될 수 있다. In addition, the remaining of the band pass filters of the optical band pass filter 200 is provided on one side of the other light transmission block 800, the remaining of the band pass filters of the optical band pass filter 300 The other light transmitting block 800 may be provided on the other side.
이 경우 하나의 광 투과 블럭(700)과 다른 하나의 광 투과 블럭(800)에 배치된 밴드패스필터들이 반사막(RL)의 기능을 하므로 반사막(RL) 없이 정상적인 동작이 이루어질 수 있다. In this case, since the band pass filters disposed in one light transmitting block 700 and the other light transmitting block 800 function as the reflective film RL, a normal operation may be performed without the reflective film RL.
이와 같은 배치 관계는 일례일 뿐 설계 조건에 따라 이외의 다양한 배치가 이루어질 수 있다. Such an arrangement relationship is only one example, and various arrangements other than the above may be made according to design conditions.
복수의 파장 대역 빛이 복수의 광 투과 블럭(700, 800) 중 하나의 광 투과 블럭(700)을 통과할 때, 엣지 필터링부(600)를 통하여 복수의 파장 대역 이외의 파장 대역의 빛이 통과한다. When light of a plurality of wavelength bands passes through the light transmitting block 700 of one of the plurality of light transmitting blocks 700 and 800, light of a wavelength band other than the plurality of wavelength bands passes through the edge filtering unit 600. do.
예를 들어, 도 4에 도시된 바와 같이, 엣지 필터부가 복수의 광 투과 블럭(700, 800) 중 하나에 구비되고, λ0 내지 λ3 각각을 중심 파장으로 하는 파장 대역의 빛이 상기 하나의 광 투과 블럭(700)을 통과할 때, 엣지 필터부는 λ0 내지 λ3 각각을 중심 파장으로 하는 파장 대역의 빛을 반사하고, 이외의 파장 대역(중심 파장 λ4 내지 λ7)의 빛을 통과시킬 수 있다. For example, as shown in FIG. 4, the edge filter unit is provided in one of the plurality of light transmitting blocks 700 and 800, and light in a wavelength band having each of λ 0 to λ 3 as a center wavelength is transmitted through the one light. When passing through the block 700, the edge filter unit may reflect light in a wavelength band having each of the wavelengths λ0 to λ3 as a center wavelength, and may pass light in a wavelength band other than the center wavelengths (center wavelengths λ4 to λ7).
이와 다르게 도 5와 같이 엣지 필터링부(600)는 광투과부와 이격되어 설치될 수도 있다. 이 경우 빛의 경로 형성을 위하여 여러 광학 소자(예를 들어, 미러(M) 등)가 구비될 수 있다. 도 5의 엣지 필터부는 λ0 내지 λ3 각각을 중심 파장으로 하는 파장 대역의 빛이 상기 하나의 광 투과 블럭(700)을 통과할 때, 엣지 필터부는 λ0 내지 λ3 각각을 중심 파장으로 하는 파장 대역의 빛을 통과시키고, 이외의 파장 대역(중심 파장 λ4 내지 λ7)의 빛을 반사시킬 수 있다.Alternatively, as shown in FIG. 5, the edge filtering unit 600 may be spaced apart from the light transmitting unit. In this case, various optical elements (eg, the mirror M) may be provided to form the light path. When the edge filter portion of FIG. 5 passes through the light transmitting block 700 with light having a wavelength of about λ0 to λ3 as the center wavelength, the edge filter portion has light having a wavelength of λ0 to λ3 as a center wavelength. Can be passed through, and light in other wavelength bands (center wavelengths? 4 to? 7) can be reflected.
이에 따라 하나의 광 투과 블럭(700)에서는 광 송신신호에 대한 파장 다중화가 이루어지고, 다른 하나의 광 투과 블럭(800)에서는 광 수신신호에 대한 파장 역다중화가 이루어질 수 있다. Accordingly, wavelength transmission multiplexing of the light transmission signal may be performed in one light transmission block 700, and wavelength demultiplexing of the light reception signal may be performed in another light transmission block 800.
이 때 광송신용 밴드패스필터링부(200)는, 복수의 발광부(400)로부터 방출된 서로 다른 파장 대역의 광 송신신호에 대한 밴드패스필터링 기능을 수행할 수 있다. 또한 광수신용 밴드패스필터링부(300)는, 복수의 수광부(500)로 입사되는 서로 다른 파장 대역의 광 수신신호에 대한 밴드패스필터링 기능을 수행할 수 있다.In this case, the optical bandpass filter 200 may perform a bandpass filtering function for optical transmission signals having different wavelength bands emitted from the plurality of light emitting units 400. In addition, the light receiving band pass filtering unit 300 may perform a band pass filtering function for light reception signals having different wavelength bands incident on the plurality of light receiving units 500.
이에 따라 하나의 광 파이버(OF)를 통하여 여러 파장 대역의 빛이 혼합된 광 송신신호와 광 수신신호의 전송이 이루어질 수 있다. Accordingly, the optical transmission signal and the optical reception signal in which light of various wavelength bands are mixed may be transmitted through one optical fiber OF.
도 4 및 도 5의 엣지 필터링부(600)의 기능에 따라 발광부(400)로부터 방출된 파장 다중화된 광 송신신호는 콜리메이팅 렌즈와 광 파이버(OF)를 통하여 외부로 출력되고, 외부에서 광 파이버(OF)를 통하여 입력된 광 수신신호는 역 다중화되어 수광부(500)로 입력될 수 있다. According to the functions of the edge filtering unit 600 of FIGS. 4 and 5, the wavelength-multiplexed light transmission signal emitted from the light emitting unit 400 is output to the outside through the collimating lens and the optical fiber OF, and is externally lighted. The light reception signal input through the fiber OF may be demultiplexed and input to the light receiver 500.
이상과 같이 본 발명에 따른 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, the embodiments of the present invention have been described, and the fact that the present invention can be embodied in other specific forms without departing from the spirit or scope of the present invention can be embodied by those skilled in the art. It is self-evident to. Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive, and thus, the present invention is not limited to the above description and may be modified within the scope of the appended claims and their equivalents.

Claims (12)

  1. 광 투과 블럭;Light transmitting blocks;
    상기 광 투과 블럭의 일측에 구비된 광송신용 밴드패스필터링부; 및A band pass filtering unit for light transmission provided at one side of the light transmitting block; And
    상기 광 투과 블럭의 일측 또는 타측에 구비된 광수신용 밴드패스필터링부를 포함하며,It includes a light receiving band pass filtering unit provided on one side or the other side of the light transmitting block,
    상기 광송신용 밴드패스필터링부를 통과하여 상기 광 투과 블럭으로 입사된 광 송신신호는 상기 광수신용 밴드패스 필터링부에 반사되어 상기 광 투과 블럭의 외부로 방출되고,The light transmission signal incident to the light transmission block through the light transmission band pass filtering unit is reflected to the light reception band pass filtering unit and emitted to the outside of the light transmission block,
    외부에서 입사되어 상기 광 투과 블럭을 통과하는 광 수신신호는 상기 광수신용 밴드패스필터링부를 통과하고 상기 광송신용 밴드패스 필터링부에 반사되는 것을 특징으로 하는 파장다중 양방향 광송수신 장치.And a light receiving signal incident from the outside and passing through the light transmitting block passes through the light receiving band pass filtering unit and is reflected by the light transmitting band pass filtering unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 광 송신신호는 제1 파장 대역 내지 제M 파장 대역(M은 2 이상의 자연수)의 빛으로 이루어지고,The optical transmission signal is made of light of the first wavelength band to the M-th wavelength band (M is a natural number of 2 or more),
    상기 광 수신신호는 제(M+1) 파장 대역 내지 제N 파장 대역(N은 M+1 보다 큰 자연수)의 빛으로 이루어지며,The light reception signal includes light of a (M + 1) th wavelength band to an Nth wavelength band (N is a natural number larger than M + 1),
    상기 광송신용 밴드패스필터링부는, The optical band pass band filtering unit,
    상기 제1 파장 대역 내지 상기 제M 파장 대역의 빛을 각각 투과시키고, 상기 제(M+1) 파장 대역 내지 제N 파장 대역의 빛을 반사하는 제1 밴드패스필터 내지 제M 밴드패스필터를 포함하고,A first bandpass filter to an Mth bandpass filter that transmits light of the first wavelength band to the Mth wavelength band, and reflects light of the (M + 1) th wavelength band to the Nth wavelength band. and,
    상기 광수신용 밴드패스필터링부는,The light receiving band pass filtering unit,
    상기 제1 파장 대역 내지 상기 제M 파장 대역의 빛을 반사시키고, 상기 제(M+1) 파장 대역 내지 제N 파장 대역의 빛을 각각 투과시키는 제(M+1) 밴드패스필터 내지 제N 밴드패스필터를 포함하는 것을 특징으로 하는 파장다중 양방향 광송수신 장치. (M + 1) bandpass filters to N-th bands for reflecting light in the first to Mth wavelength bands and transmitting light in the (M + 1) th to Nth wavelength bands, respectively. A wavelength multi-directional bidirectional optical transmission and reception device comprising a pass filter.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 광송신용 밴드패스필터링부 및 상기 광수신용 밴드패스필터링부는 상기 광 투과 블럭의 일측에 구비되고,The light transmission band pass filtering unit and the light reception band pass filtering unit are provided at one side of the light transmission block,
    상기 광 투과 블럭의 타측에는 상기 광 송신신호 및 상기 광 수신신호를 반사할 수 있는 반사막이 형성된 것을 특징으로 하는 파장다중 양방향 광송수신 장치.Wavelength multi-directional optical transmission and reception device, characterized in that the other side of the light transmitting block is formed with a reflective film for reflecting the light transmission signal and the light reception signal.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 광송신용 밴드패스필터링부는 상기 광 투과 블럭의 일측에 구비되고, 상기 광수신용 밴드패스필터링부는 상기 광 투과 블럭의 타측에 구비되는 것을 특징으로 하는 파장다중 양방향 광송수신 장치. The light transmission band pass filtering unit is provided on one side of the light transmission block, and the light reception band pass filtering unit is provided on the other side of the light transmission block.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 광송신용 밴드패스필터링부의 밴드패스필터들 중 일부는 상기 광 투과 블럭의 일측에 구비되고, 나머지는 상기 광 투과 블럭의 타측에 구비되고,Some of the band pass filters of the light transmission band pass filtering part are provided at one side of the light transmitting block, and the other part is provided at the other side of the light transmitting block.
    상기 광수신용 밴드패스필터링부의 밴드패스필터들 중 일부는 상기 광 투과 블럭의 일측에 구비되고, 나머지는 상기 광 투과 블럭의 타측에 구비되는 것을 특징으로 하는 파장다중 양방향 광송수신 장치.And some of the band pass filters of the light receiving band pass filtering part are provided at one side of the light transmitting block, and the other part is provided at the other side of the light transmitting block.
  6. 제2항에 있어서,The method of claim 2,
    상기 제1 파장 대역에서 상기 제M 파장 대역으로 갈수록 파장이 증가하고, The wavelength increases from the first wavelength band to the Mth wavelength band,
    상기 제1 밴드패스필터 내지 상기 제M 밴드패스필터가 상기 광 투과 블럭에 배치되는 순서는 상기 제1 파장 대역에서 상기 제M 파장 대역의 순서와 다른 것을 특징으로 하는 파장다중 양방향 광송수신 장치.The order of the first band pass filter to the M-th band pass filter disposed in the light transmitting block is a wavelength multi-directional two-way optical transmission and reception device, characterized in that different from the order of the M wavelength band in the first wavelength band.
  7. 제2항에 있어서,The method of claim 2,
    상기 제(M+1) 파장 대역에서 제N 파장 대역으로 갈수록 파장이 증가하며,The wavelength increases from the (M + 1) th wavelength band to the Nth wavelength band,
    상기 제(M+1) 밴드패스필터 내지 상기 제N 밴드패스필터가 상기 광 투과 블럭에 배치되는 순서는 상기 제(M+1) 파장 대역에서 상기 제N 파장 대역의 순서와 다른 것을 특징으로 하는 파장다중 양방향 광송수신 장치.The order in which the (M + 1) th bandpass filter and the Nth bandpass filter are arranged in the light transmitting block is different from the order of the Nth wavelength band in the (M + 1) th wavelength band. Wavelength multiple bidirectional optical transmission and reception device.
  8. 서로 이격된 복수의 광 투과 블럭을 포함하는 광 투과부; A light transmitting part including a plurality of light transmitting blocks spaced apart from each other;
    상기 광 투과부에 구비되는 광송신용 밴드패스필터링부 및 광수신용 밴드패스필터링부; 및An optical transmission band pass filtering unit and an optical reception band pass filtering unit provided in the light transmitting unit; And
    복수의 파장 대역 빛이 상기 복수의 광 투과 블럭 중 하나의 광 투과 블럭을 통과할 때, 상기 복수의 파장 대역 이외의 파장 대역의 빛이 통과하는 엣지 필터링부를 포함하며,When the plurality of wavelength bands of light passes through one of the plurality of light transmitting blocks, the edge filtering unit for passing light of a wavelength band other than the plurality of wavelength bands,
    상기 광송신용 밴드패스필터링부는, 복수의 발광부로부터 방출된 서로 다른 파장 대역의 광 송신신호에 대한 밴드패스필터링 기능을 수행하고,The bandpass filtering unit for optical transmission performs a bandpass filtering function for optical transmission signals of different wavelength bands emitted from a plurality of light emitting units,
    상기 광수신용 밴드패스필터링부는, 복수의 광전변화부로 입사되는 서로 다른 파장 대역의 광 수신신호에 대한 밴드패스필터링 기능을 수행하는 것을 특징으로 하는 파장다중 양방향 광송수신 장치.The optical reception bandpass filtering unit, the wavelength multi-directional bidirectional optical transmission and reception device, characterized in that for performing the bandpass filtering function for the light reception signal of the different wavelength band incident to the plurality of photoelectric conversion unit.
  9. 제8항에 있어서,The method of claim 8,
    상기 광송신용 밴드패스필터링부는 상기 하나의 광 투과 블럭에 구비되고,The light transmission band pass filtering unit is provided in the one light transmitting block,
    상기 광수신용 밴드패스필터링부는 상기 다른 하나의 광 투과 블럭에 구비되는 것을 특징으로 하는 파장다중 양방향 광송수신 장치. The optical reception bandpass filtering unit is a wavelength multi-directional optical transmission and reception device, characterized in that provided in the other light transmitting block.
  10. 제8항에 있어서,The method of claim 8,
    상기 광송신용 밴드패스필터링부와 상기 광수신용 밴드패스필터링부는 각각 다수의 광송신용 밴드패스필터와 다수의 광수신용 밴드패스필터를 포함하며,The optical transmission band pass filtering unit and the optical reception band pass filtering unit each include a plurality of optical transmission band pass filters and a plurality of optical reception band pass filters,
    상기 다수의 광송신용 밴드패스필터 중 일부와 상기 다수의 광수신용 밴드패스필터 중 일부는 상기 하나의 광 투과 블럭에 구비되는 것을 특징으로 하는 파장다중 양방향 광송수신 장치. And a portion of the plurality of light transmission band pass filters and a portion of the plurality of light reception band pass filters are provided in the one light transmitting block.
  11. 제8항에 있어서,The method of claim 8,
    상기 엣지 필터링부는 상기 복수의 광 투과 블럭 중 하나에 구비되는 것을 특징으로 하는 파장다중 양방향 광송수신 장치.The edge filtering unit is a wavelength multi-directional bidirectional optical transmission and reception device, characterized in that provided in one of the plurality of light transmitting blocks.
  12. 제8항에 있어서,The method of claim 8,
    상기 엣지 필터링부는 상기 광투과부와 이격되어 설치되는 것을 특징으로 하는 파장다중 양방향 광송수신 장치. The edge filtering unit is a wavelength multi-directional bi-directional optical transmission and reception device, characterized in that the installation is spaced apart from the light transmission.
PCT/KR2018/010570 2018-07-26 2018-09-10 Wavelength multiplexing bidirectional optical transmitting/receiving device WO2020022553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880095441.0A CN112368955A (en) 2018-07-26 2018-09-10 Wavelength multiplexing bidirectional optical transceiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0087136 2018-07-26
KR1020180087136A KR102041589B1 (en) 2018-07-26 2018-07-26 Apparatus for transmitting and receiving wavelength multiplexing optical signal bidirectionally

Publications (1)

Publication Number Publication Date
WO2020022553A1 true WO2020022553A1 (en) 2020-01-30

Family

ID=68729681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010570 WO2020022553A1 (en) 2018-07-26 2018-09-10 Wavelength multiplexing bidirectional optical transmitting/receiving device

Country Status (3)

Country Link
KR (1) KR102041589B1 (en)
CN (1) CN112368955A (en)
WO (1) WO2020022553A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100037741A (en) * 2008-10-02 2010-04-12 한국전자통신연구원 Bidirectional optical transceiving and receiving apparatus
KR20120009785A (en) * 2010-07-21 2012-02-02 주식회사 럭스퍼트 Bidirectional optical transceiver module
KR101285766B1 (en) * 2012-05-18 2013-07-19 에스케이텔레콤 주식회사 Bidirectional optical transmitting/receiving module
KR20160139891A (en) * 2015-05-29 2016-12-07 (주) 빛과 전자 Bidirectional optical transmitting/receiving module
KR20170008360A (en) * 2015-07-13 2017-01-24 주식회사 오이솔루션 Bi-directional optical module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184730A (en) * 1995-01-05 1996-07-16 Fujikura Ltd Optical demultiplexing and multiplexing device
KR20000009962A (en) 1998-07-29 2000-02-15 이계철 Wavelength division multiplexing optical transmitter/receiver
KR100332501B1 (en) * 1999-08-23 2002-04-17 김춘호 A Dropping and Adding Device of Optical Wavelength
KR100993182B1 (en) * 2001-03-16 2010-11-10 포튜리스, 인코포레이티드 Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch
EP2226661A1 (en) * 2007-12-26 2010-09-08 Hitachi, Ltd. Optical transmission and reception module
JP2010191341A (en) * 2009-02-20 2010-09-02 Alps Electric Co Ltd Optical transmission and reception module
JP5652163B2 (en) * 2010-11-29 2015-01-14 三菱電機株式会社 Optical demultiplexer
CN203301489U (en) * 2013-07-05 2013-11-20 青岛海信宽带多媒体技术有限公司 Light emitting device possessing multipath wavelength channels, light receiving element possessing multipath wavelength channels and optical module
JP2016130813A (en) * 2015-01-15 2016-07-21 三菱電機株式会社 Optical receiver module, optical transmitter module, multiplexer, and demultiplexer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100037741A (en) * 2008-10-02 2010-04-12 한국전자통신연구원 Bidirectional optical transceiving and receiving apparatus
KR20120009785A (en) * 2010-07-21 2012-02-02 주식회사 럭스퍼트 Bidirectional optical transceiver module
KR101285766B1 (en) * 2012-05-18 2013-07-19 에스케이텔레콤 주식회사 Bidirectional optical transmitting/receiving module
KR20160139891A (en) * 2015-05-29 2016-12-07 (주) 빛과 전자 Bidirectional optical transmitting/receiving module
KR20170008360A (en) * 2015-07-13 2017-01-24 주식회사 오이솔루션 Bi-directional optical module

Also Published As

Publication number Publication date
CN112368955A (en) 2021-02-12
KR102041589B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2020105779A1 (en) Multi-channel, bi-directional optical communication module
WO2013172541A1 (en) Bidirectional optical transmitting and receiving module
KR100312224B1 (en) Optical signal-to-noise ratio measuring device in wavelength division multiplexing optical transmitter
US20110026123A1 (en) Wavelength-division apparatus and wavelength combining apparatus
WO2014137183A1 (en) Signal processing method and bidirectional cwdm ring network system for same
US7171081B1 (en) Plug-in coupler to convert the transceiver (transmitter/receiver, tx/rx) transmission into a bi-directional fiber
WO2016182193A1 (en) Apparatus for optical-signal monitoring in wavelength division multiplexed passive optical network
JP2001358697A (en) Optical access network, optical network terminating device, and optical subscriber line terminating device
WO2020022553A1 (en) Wavelength multiplexing bidirectional optical transmitting/receiving device
JPS60184216A (en) Hybrid optical multiplexer/demultiplexer
JPH0846596A (en) Photocoupler
WO2019245105A1 (en) Wavelength multiplexing/demultiplexing device
WO2018117278A1 (en) Optical demux block and optical mux block
WO2023061024A1 (en) Optical receiving assembly and optical module
KR100611818B1 (en) Transmission system and optical module for bi-directional communication in wavelength division multiplexing
JPS62258527A (en) Wavelength multiplex optical communication system
JP3243326U (en) Optical fiber network signal receiving module capable of receiving same and different wavelengths
KR20070034654A (en) Optical transmission / reception module and optical signal transmission method for filter coarse wavelength division multiplexing for bidirectional single optical fiber transmission
WO2010090364A1 (en) Triplexer
WO2023182593A1 (en) Pon power meter using multi-input type awg
EP1009119A2 (en) Integration of Optical Add Drop Multiplexing filters
KR101433808B1 (en) ONU having function of fiber line monitoring and switching
JP2001053722A (en) Wavelength multiplex/demultiplex transmission system and wavelength multiplex transmission device
NL1039787C2 (en) DEVICE AND METHOD FOR OPTICAL TELECOMMUNICATIONS
JP2005012278A (en) Wavelength multiplex pon system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927640

Country of ref document: EP

Kind code of ref document: A1