WO2010090364A1 - Triplexer - Google Patents

Triplexer Download PDF

Info

Publication number
WO2010090364A1
WO2010090364A1 PCT/KR2009/000678 KR2009000678W WO2010090364A1 WO 2010090364 A1 WO2010090364 A1 WO 2010090364A1 KR 2009000678 W KR2009000678 W KR 2009000678W WO 2010090364 A1 WO2010090364 A1 WO 2010090364A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
waveguides
coupler
wavelength
triplexer
Prior art date
Application number
PCT/KR2009/000678
Other languages
French (fr)
Korean (ko)
Inventor
최준석
이서영
Original Assignee
정경희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정경희 filed Critical 정경희
Publication of WO2010090364A1 publication Critical patent/WO2010090364A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler

Definitions

  • the present invention relates to a triplexer, and relates to two triplex couplers in which three waveguides are arranged side by side and a triplexer connected to a path difference control unit therebetween.
  • optical signals are generally transmitted in both directions, and optical signals are transmitted in both directions through the same path such as optical fibers using different wavelengths.
  • two-way optical communication uses two or more wavelength bands in each direction. Therefore, since the optical signals transmitted in each direction are mixed with optical signals of various wavelength bands, the transmitting side must combine the multiple wavelengths and transmit them in one optical path, and the receiving side must separate them into each wavelength band. Should be.
  • BiDi Bi-Directional
  • FTTH optical fiber to the home
  • the signal transmitted from the subscriber side to the base station is called an uplink signal and usually uses 1310 nm wavelength
  • the signal transmitted from the base station to the subscriber is called a downlink signal and usually 1550 nm wavelength is used.
  • a di of the term diplexer means using two wavelengths. Therefore, at the subscriber end of the optical fiber, a transmitter capable of transmitting a 1310 nm wavelength and a receiver capable of receiving a 1550 nm wavelength are positioned.
  • an additional wavelength band may be used to transmit the cable TV signal from the base station to the subscriber.
  • the device used in this case is called a BiDi-triplexer or simply Also called a triplexer.
  • the downlink signal transmitted from the base station to the subscriber uses a 1490 nm wavelength
  • the uplink signal transmitted from the subscriber to the base station uses a 1310 nm wavelength
  • an analog signal is transmitted using a 1550 nm wavelength in addition to the downlink signal.
  • an optical transmitting / receiving element that performs a function of separating or merging the wavelength bands must also be added.
  • a complicated alignment of these optical elements is required.
  • the diameter of an optical fiber core is about 10 microns, and in optical transceivers using laser diodes or photodiodes, the alignment error between the optical paths between these devices and the optical fiber must be aligned to less than 1 micron.
  • each laser diode or photodiode is manufactured by alignment technology, and there are about 50 degrees of freedom in alignment, and it takes more than 10 minutes to align and assemble each.
  • the assembly process causes bottlenecks in device production.
  • Such a device uses a PLC optical waveguide to form a trench in the middle of the waveguide and inserts a thin film filter into the trench to divide the wavelength.
  • a thin film filter with a thickness of several tens of microns into a trench with a width of several tens of microns requires a lot of labor, which can also be a bottleneck in production.
  • the function of the thin film filter is to split the wavelength.
  • An example of such a circuit structure is Arrayed Waveguide Grating (AWG).
  • the AWG enters the input optical signal through the input side slab waveguide into the plurality of array waveguides.
  • Each array waveguide has a constant path difference, so that the output side slab waveguide interferes and the optical signal of different wavelengths are transmitted to the output waveguides. It is a principle.
  • AWGs are usually suitable for subdividing wavelength intervals of several nanometers or less. This makes it unsuitable for triplexers using wavelengths in the 1310nm, 1490nm, and 1550nm bands in bidirectional optical communications.
  • the wavelength of 1310nm band used in bidirectional optical communication has a wide bandwidth of ⁇ 50nm, and it is very difficult to satisfy this wide bandwidth when using the AWG structure.
  • Another PLC circuit structure is a structure in which Mach-Zehnder elements are superimposed.
  • Mahzander element is a form in which a path difference control unit is attached to a coupler of two waveguides, followed by a coupler of two waveguides.
  • This mahgender element basically consists of two waveguides on the input side and the output side, so at least two Mahgender elements must be connected horizontally in order to divide the three wavelengths used in the triplexer. There was a problem that the production cost increases due to the larger size.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to separate the three wavelength bands at once by using a three-waveguide coupler and a path difference control unit to reduce the size of the entire device, and to provide low light loss and high crosstalk. To get that purpose.
  • Another object of the present invention is to obtain a flat frequency response characteristic in a wide wavelength band.
  • the first three-waveguide coupler and the second three-waveguide coupler A path difference adjusting unit including three waveguides connected between the first three waveguide coupler and the second three waveguide coupler is provided, and at least two of the three waveguides provide a triplexer having different path differences.
  • the first three waveguide coupler and the second three waveguide coupler are configured to have the same coupling spacing and coupling length, respectively.
  • three input waveguides and three output waveguides are respectively connected to the first three-waveguide coupler and the second three-waveguide coupler, and the optical signal input through one input waveguide is divided into three output waveguides according to wavelengths. , Or may be configured to transmit the combined optical signal in the opposite direction.
  • the coupling length of the first three-waveguide coupler or the second three-waveguide coupler may be determined by the following equation.
  • L cpl is the length of the three-waveguide coupler
  • m is a value in the range of ⁇ 0.2 for any natural number of 1, 2, 3, ...
  • ⁇ ( ⁇ 1 ) is the coupling at the ⁇ 1 wavelength. Constant, and this coupling length is the length under the assumption that all coupling takes place in a linear waveguide.
  • two optical waveguides respectively connected to two optical waveguides output may further connect two waveguide path difference adjusting units having a constant path difference.
  • the two waveguide path difference adjusting unit may be connected. It is also possible to connect two waveguide couplers to the two-waveguide path difference regulator.
  • the length of the coupler of two waveguides among the three waveguides of the first three-wavelength coupler or the second three-wavelength coupler may be longer.
  • the size of the entire device can be reduced, there is an advantage that can reduce the production cost, there is an effect that can obtain a low light loss and a high cross-talk rate.
  • FIG. 1 is a block diagram of a triplexer according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a traveling path of a ⁇ 1 wavelength optical signal when m is 2 in Equation (4) applied to the first embodiment of the present invention.
  • 3 is a graph showing the results of simulation of the frequency response characteristic of the triplexer according to the first embodiment of the present invention using the transfer matrix method.
  • FIG. 4 is a configuration diagram of a triplexer according to a second embodiment of the present invention.
  • FIG. 5 is a graph showing a result of simulating frequency response characteristics using the transfer matrix method applied to the second embodiment of the present invention.
  • FIG. 6 is a configuration diagram of a triplexer according to a third embodiment of the present invention.
  • FIG. 7 is a graph showing the frequency response characteristics of three waveguide interferers designed in the manner according to the third embodiment of the present invention.
  • FIG. 1 is a block diagram of a first preferred embodiment of the present invention.
  • the triplexer 1 of the first embodiment includes a first three waveguide coupler 2, a second three waveguide coupler 4, and a path difference adjusting unit 3.
  • the triplexer 1 connects two waveguide couplers 2 and 4 having three waveguides arranged side by side to a path difference control unit 3 including three waveguides having at least two lengths different from each other.
  • a path difference control unit 3 including three waveguides having at least two lengths different from each other.
  • the optical signal input to one input waveguide 1a can be divided into three output waveguides 5a, 5b, and 5c according to the wavelength and output.
  • optical signals having three wavelengths separated in opposite directions may be input through three waveguides 5a, 5b, and 5c, and may be transmitted to one output waveguide 1a.
  • the output side first An optical signal of ⁇ 1 wavelength band is output to the waveguide 5a, an optical signal of ⁇ 2 wavelength band is output to the second waveguide 5b of the output side, and an optical signal of ⁇ 3 wavelength band is output to the last third waveguide 5c. It is possible to make the optical signal output from the first output waveguide 5a particularly flat within the ⁇ 1 wavelength band having the widest bandwidth.
  • ⁇ 1 is a wavelength band with a wide bandwidth of ⁇ 50 nm.
  • ⁇ 1 is input to the waveguide 5a and output to the waveguide 1a
  • ⁇ 2 and ⁇ 3 are input to the waveguide 1a and output to the waveguide 5b and waveguide 5c, respectively.
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 are transferred in both directions.
  • an optical fiber is connected to the waveguide 1a
  • a laser diode is connected to the waveguide 5a
  • a photodiode is optically connected to the waveguide 5b and the waveguide 5c.
  • the ⁇ 1 signal is shown in different directions of input and output from the ⁇ 2 or ⁇ 3 signal.
  • the ⁇ 1 signal is input to the waveguide 1a. It is outputted as (5a). That is, the frequency response characteristic is the same when the ⁇ 1 signal is incident on the waveguide 5a and output to the waveguide 1a and travels along the opposite path. Therefore, in the following, it is assumed that the ⁇ 1 signal, the ⁇ 2 signal, and the ⁇ 3 signal are all input to the waveguide 1a.
  • the core of the optical waveguide can use an optical waveguide having a refractive index difference of 1.5% and a cross-sectional area of 3 ⁇ m in height and width, which is an operating wavelength range (1260 nm to 1560 nm). Is a condition that satisfies the single mode condition.
  • the optical signals incident on the waveguide 1a pass through the three waveguide coupler 2 composed of three waveguides 2a, 2b, and 2c.
  • the three waveguide couplers 2 are arranged in parallel with each other.
  • the spacing between the waveguides 2a and 2b and the spacing between the waveguides 2b and 2c can be configured to have the same value, and have a value of several micrometers, which is called a three-waveguide coupler spacing.
  • Each of the waveguides of the waveguides 2a, 2b, and 2c has the same length of the parallel straight portion, which is hereinafter referred to as the length of the three waveguide coupler.
  • the first three waveguide coupler including the waveguides 2a, 2b, and 2c and the second three waveguide coupler including the waveguides 4a, 4b and 4c may have the same structure. That is, the two couplers have the same coupler spacing and coupler length.
  • the portion connecting the two waveguides to the three waveguides is the waveguides 3a, 3b, and 3c, and each of the waveguides has at least two lengths different from each other. Call it a car.
  • two of the three waveguides may have different waveguide lengths, or all three may be different.
  • the optical signal incident on the waveguide 1a is incident on the first three waveguide couplers 2a, 2b, and 2c.
  • the incident optical signal is coupled not only to the waveguide 2a but also to the waveguide 2b and the waveguide 2c, and the three waveguide coupler can be expressed by the following transmission matrix (M). .
  • L cpl is the length of three waveguide couplers and ⁇ is a coupling constant between two neighboring waveguides in the three waveguide coupler.
  • the three-waveguide coupler serves to appropriately distribute each wavelength.
  • the optical signals of ⁇ 1 , ⁇ 2 , and ⁇ 3 incident on the input waveguide 1a are respectively incident on the path difference adjusting unit after power is properly distributed in the first three waveguide coupler 2. Since the waveguides 3a, 3b, and 3c of the path difference controller 3 can be set to have different lengths, the optical signals traveling along these waveguides undergo different phase shifts. This process can be represented by the following transfer matrix:
  • Equation (2) k 0 is 2 ⁇ / ⁇ as the number of waves in vacuum, N is the mode refractive index of the optical waveguide, and L 1 , L 2 , and L 3 are the lengths of the optical waveguides 3a, 3b, and 3c, respectively.
  • the path difference adjusting unit 3 serves to create an appropriate path difference with respect to the signals distributed in the second three waveguide couplers 4a, 4b, and 4c to interfere with each other. It is also possible to call the path difference adjuster 3 and the two three waveguide couplers 2 and 4 at the same time three waveguide interferers.
  • the intensity P5a, P5b, P5c of the optical signal output from the output waveguides 5a, 5b, 5c can be calculated using the transfer matrix of Equations (1) and (2), and the result is expressed in Equation (3). -1), (3-2), and (3-3).
  • Equation (1) to (3-3) L cpl and ⁇ , L 1 , L 2 , L 3, etc., obtained from Equations (1) to (3-3), and the wavelengths of ⁇ 1 , ⁇ 2 , and ⁇ 3 are respectively represented by waveguides 5a, 5b, To 5c).
  • This example presents a preferred way to obtain a wide bandwidth as in ⁇ 1 (1310 ⁇ 50 nm).
  • the coupling length of the three-waveguide coupler is determined as in Equation (4) below.
  • L cpl is the length of three waveguide couplers
  • ⁇ ( ⁇ 1 ) is the coupling constant at the wavelength of ⁇ 1 .
  • m is a value in the range of ⁇ 0.2 for each natural number of 1, 2, 3, ... for example any value between 0.8 and 1.2, any value between 1.8 and 2.2, between 2.8 and 3.2 Arbitrary value or the like.
  • m is most preferably 1, 2, 3, ... any natural number, but it is also possible to have an arbitrary region in each natural number.
  • Equation (4) the traveling path of the ⁇ 1 wavelength optical signal when m is 2 is shown in FIG. 2. If the full coupling of the natural wave multiple times occurs in the three-waveguide coupler for one wavelength ⁇ 1 , the optical power distribution does not occur in each of the waveguides 3a, 3b, and 3c of the three-waveguide path difference adjusting unit 3, but only one waveguide The optical signal passes by. In Equation (4), when m is odd, the waveguide 3c passes, and when m is even, the waveguide 3a passes as shown in FIG. 5.
  • the lengths of the waveguides 3a, 3b, and 3c of the path difference adjusting unit are respectively expressed by Equations (3-1) and (3) so that the ⁇ 2 wavelength is output to the waveguide 5b and the ⁇ 3 wavelength is output to the waveguide 5c. 3-2), (3-3) to determine.
  • Equations (3-1) and (3) so that the ⁇ 2 wavelength is output to the waveguide 5b and the ⁇ 3 wavelength is output to the waveguide 5c. 3-2), (3-3) to determine.
  • the coupling length does not become the length of the linear waveguides 2a, 2b, 2c or 4a, 4b, 4c. This results in a coupling effect as the waveguide gradually approaches, even in a curved waveguide connected to the straight portion of the coupler.
  • the coupling length in Equation (4) is the length when the coupling effect in this waveguide is excluded. That is, it means the length under the assumption that all coupling occurs in the linear waveguide. Therefore, since the coupling occurs in the curved waveguide in actual production, the length of the linear waveguide of the actual coupler is somewhat reduced, but since it depends on the spacing of the coupler and the radius of curvature of the curved waveguide, it is desirable to manufacture it in consideration of this.
  • Each condition of the triplexer of the first embodiment of the present invention is, for example, as follows.
  • the length of the three-waveguide coupler is 664 ⁇ m
  • the distance of the three-waveguide coupler is 1 ⁇ m
  • the path difference between the 3a and 3b waveguides of the path difference regulator is 26.69 ⁇ m
  • the path difference between 3b and 3c waveguides of the path difference regulator is 12.85 ⁇ m.
  • three waveguide interferometers successfully separate three wavelengths of ⁇ 1 (1310 ⁇ 50nm), ⁇ 2 (1490 ⁇ 10nm), and ⁇ 3 (1550 ⁇ 10nm) into waveguides 5a, 5b, and 5c, respectively. It can be confirmed.
  • the triplexer 1 of the second embodiment includes a first three waveguide coupler 2, a second three waveguide coupler 4, a path difference adjusting unit 3, and a coupler 6. do.
  • the triplexer 1 of the second embodiment is not a structure in which the rear end portion is directly connected to the output waveguide side after the second three-wavelength coupler 4a, 4b, 4c.
  • the main difference is that it has a structure having a.
  • the insertion loss is relatively small at the wavelengths ⁇ 1 and ⁇ 3 output to the waveguides 5a and 5c, respectively, whereas the insertion loss may be relatively large at 0.877 dB in the wavelength ⁇ 2 signal output to the waveguide 5b. have.
  • the ⁇ 3 signal is mainly output to the waveguide 5c, it can be confirmed from the frequency response characteristic curve of FIG. 3 that the ⁇ 2 wavelength is output with a loss of about 8 dB.
  • the two additional waveguide interferers 6 include waveguides 5b and 5c, which are two waveguide path difference adjusting units, and waveguides 6b and 6c, which are two waveguide couplers, and a transmission matrix is expressed by Equation (5).
  • Equation (5) ⁇ represents the coupling constant, L 6 represents the coupling length of the two waveguide coupler. Also, ⁇ L 5c-5b represents the difference in length between waveguide 5c and waveguide 5b.
  • the two waveguides interferer wavelength ⁇ 2 is the output to a waveguide 7b wavelength ⁇ 3 is the optical loss value by controlling the variable L 6 and ⁇ L 5c-5b in the equation (5) to be output to the waveguide 7c at a wavelength ⁇ 2 and ⁇ 3
  • the crosstalk rate can be improved.
  • the length L 6 of the two waveguide couplers is determined to be 347 ⁇ m
  • the distance of the three waveguide couplers is 1 ⁇ m
  • the path difference ⁇ L 5c-5b between the 5c and 5b waveguides of the path difference adjusting unit is 15.89 ⁇ m.
  • the three waveguide interferers and the two additional waveguide interferers presented in the present invention can effectively output the wavelengths ⁇ 1 , ⁇ 2 , and ⁇ 3 to the waveguides 7a, 7b, and 7c, respectively.
  • Performance with a wide bandwidth of ⁇ 50 nm or more can be obtained for the ⁇ 1 wavelength.
  • the triplexer 100 of the third embodiment includes a first three waveguide coupler 2, a second three waveguide coupler 40, and a path difference adjusting unit 3.
  • the three-waveguide coupler is mainly described as having a symmetrical structure. According to the third embodiment, the first three-waveguide coupler 2 and the second three-waveguide coupler 40 are different couplers. .
  • the coupling length is determined, but the length of the waveguides 40b and 40c is slightly longer, so that the loss of the wavelengths output to the waveguides 40b and 40c can be uniformly controlled. .
  • the length of the waveguide 40b and the waveguide 40c is designed to be 20 microns longer than the waveguide 40a, respectively outputted to the waveguides 40b and 40c It is possible to uniformly control the loss of wavelength optical signals in the wavelengths of 1490 nm and 1550 nm.
  • Fig. 7 shows the frequency response characteristics of the three waveguide interferers designed in the third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

The present invention relates to a triplexer, comprising a first three-waveguide coupler and a second three-waveguide coupler, and a path difference adjustment unit consisting of three-waveguides connected between said first three-waveguide coupler and said second three-waveguide coupler. The triplexer of the present invention splits three wavelength bands at once to thereby reduce the size of the whole device, and to achieve less optical loss, high crosstalk, and flat frequency response characteristics at a wide wavelength band.

Description

트리플렉서Triplexer
본 발명은 트리플렉서에 관한 것으로, 3개의 도파로를 나란히 배열한 3도파로 커플러 2개와 이들 사이에 경로차조절부를 연결한 트리플렉서에 관한 것이다.The present invention relates to a triplexer, and relates to two triplex couplers in which three waveguides are arranged side by side and a triplexer connected to a path difference control unit therebetween.
광섬유를 이용한 현대의 광통신에서는 보통 양방향으로 광신호를 전송하는데, 각각 다른 파장을 이용하여 광섬유 등의 동일한 경로를 통해 양방향으로 광신호를 전송하게 된다. 일반적으로 양방향 광통신에서는 각각의 방향으로 두 개 이상의 파장 대역을 사용한다. 따라서 각각의 방향으로 전송되는 광 신호들은 여러 파장 대역의 광신호가 섞여 있게 되므로, 송신하는 측에서는 여러 파장을 합쳐서 하나의 광경로로 전송해야만 하고, 이 신호들을 수신하는 측에서는 각각의 파장 대역으로 분리해 내야만 한다.In modern optical communication using optical fibers, optical signals are generally transmitted in both directions, and optical signals are transmitted in both directions through the same path such as optical fibers using different wavelengths. In general, two-way optical communication uses two or more wavelength bands in each direction. Therefore, since the optical signals transmitted in each direction are mixed with optical signals of various wavelength bands, the transmitting side must combine the multiple wavelengths and transmit them in one optical path, and the receiving side must separate them into each wavelength band. Should be.
양방향 전송의 한 예는 일반적으로 BiDi (Bi-Directional) 다이플렉서(diplexer) 라고 불리우는 소자인데, 이는 광통신의 FTTH(Fiber to the Home) 네트워크에서 사용된다. 가입자측에서 기지국으로 전송하는 신호를 상향 신호라고 하며 보통 1310 nm 파장을 이용하고, 기지국에서 가입자에게 전송하는 신호를 하향 신호라고 하며 보통 1550 nm 파장을 이용한다. 여기서 다이플렉서(diplexer)라는 용어의 다이(di)는 두 파장을 이용함을 의미한다. 따라서, 광섬유의 가입자측 끝단은 1310 nm 파장을 송신할 수 있는 송신기와 1550nm 파장을 수신할 수 는 수신기가 위치하게 된다.One example of bidirectional transmission is a device commonly referred to as BiDi (Bi-Directional) diplexer, which is used in optical fiber to the home (FTTH) networks. The signal transmitted from the subscriber side to the base station is called an uplink signal and usually uses 1310 nm wavelength, and the signal transmitted from the base station to the subscriber is called a downlink signal and usually 1550 nm wavelength is used. Here, a di of the term diplexer means using two wavelengths. Therefore, at the subscriber end of the optical fiber, a transmitter capable of transmitting a 1310 nm wavelength and a receiver capable of receiving a 1550 nm wavelength are positioned.
반면에, 상기 다이플렉서에서 이용하는 두 파장 대역 이외에 추가적인 파장 대역이 기지국에서 가입자에게로 케이블 TV 신호의 전송에 사용되는 경우가 있는데 이 때 사용되는 소자를 BiDi-트리플렉서(triplexer)라고 하며 혹은 간단히 트리플렉서라고 부르기도 한다. 이 경우 기지국에서 가입자에게로 보내는 하향 신호는 1490nm 파장을 이용하며 가입자에게서 기지국으로 보내는 상향 신호는 1310nm 파장을 이용하고, 하향 신호에 추가로 1550nm 파장을 이용하여 아날로그 신호를 전송한다. 몇몇 서비스 공급자들은 여기에 1610nm 파장까지 추가하는 것을 고려하고 있다.On the other hand, in addition to the two wavelength bands used by the diplexer, an additional wavelength band may be used to transmit the cable TV signal from the base station to the subscriber. The device used in this case is called a BiDi-triplexer or simply Also called a triplexer. In this case, the downlink signal transmitted from the base station to the subscriber uses a 1490 nm wavelength, and the uplink signal transmitted from the subscriber to the base station uses a 1310 nm wavelength, and an analog signal is transmitted using a 1550 nm wavelength in addition to the downlink signal. Some service providers are considering adding up to the 1610nm wavelength here.
이런 식으로 파장 대역이 추가됨에 따라 파장 대역을 분리하거나 병합하는 기능을 수행하는 광 송수신 소자 역시 추가되어야 하는데, 기존 방식의 소자를 제작함에 있어서는 이러한 광소자들의 복잡한 정렬이 필요하게 된다. 예를 들어, 광섬유 코어의 직경은 약 10 미크론 정도인데, 레이저 다이오드나 포토 다이오드를 이용하는 광 송수신기에서 이들 소자와 광섬유와의 광 경로간 정렬 오차가 1 미크론 이하로 정렬되어야만 한다.In this way, as the wavelength band is added, an optical transmitting / receiving element that performs a function of separating or merging the wavelength bands must also be added. In order to manufacture a conventional type of device, a complicated alignment of these optical elements is required. For example, the diameter of an optical fiber core is about 10 microns, and in optical transceivers using laser diodes or photodiodes, the alignment error between the optical paths between these devices and the optical fiber must be aligned to less than 1 micron.
예를 들어 BiDi 트리플렉서의 경우, 각각의 레이저 다이오드나 포토 다이오드를 정렬하는 기술로 제작할 경우 정렬에 도합 약 50여개의 자유도가 있어서 각각을 정렬하여 조립하는데만 10분 이상이 소요되게 되는데, 이 정렬 조립 공정때문에 소자 생산에 있어서 병목현상이 발생하게 된다.For example, in the case of BiDi triplexer, each laser diode or photodiode is manufactured by alignment technology, and there are about 50 degrees of freedom in alignment, and it takes more than 10 minutes to align and assemble each. The assembly process causes bottlenecks in device production.
이러한 복잡한 과정을 피하기 위해 간단하고 표준화된 PLC 공정을 이용하는 방식이 등장하였다. 이러한 소자는 PLC 광도파로를 이용하되 도파로 중간에 트렌치를 형성한 후 트렌치에 박막 필터를 삽입하여 파장을 분할하는 기능을 수행한다. 하지만 수십 미크론 정도의 두께를 가진 박막 필터를 수십 미크론의 폭을 가진 트렌치에 삽입하는 과정에서 많은 노동력이 필요하게 되고, 역시 이 과정이 생산에 있어서 병목현상의 원인이 될 수 있다.To avoid this complicated process, a simple and standardized PLC process has emerged. Such a device uses a PLC optical waveguide to form a trench in the middle of the waveguide and inserts a thin film filter into the trench to divide the wavelength. However, inserting a thin film filter with a thickness of several tens of microns into a trench with a width of several tens of microns requires a lot of labor, which can also be a bottleneck in production.
위 박막 필터의 기능은 파장을 분할하는 데에 있는바, 이 기능을 광도파로 회로 구조를 이용하여 구현하는 설계 기술이 몇 가지 존재한다. 이러한 회로 구조의 예로써 Arrayed Waveguide Grating (AWG)을 들 수 있다. AWG는 입력된 광신호를 입력측 슬랩 도파로를 통해서 다수의 배열 도파로로 입사시키는데, 각각의 배열 도파로는 일정한 경로차를 갖고 있어서 출력측 슬랩 도파로에서는 간섭이 일어나서 출력측 도파로들로 각각 다른 파장의 광신호가 전송되는 원리이다.The function of the thin film filter is to split the wavelength. There are several design techniques for implementing this function using an optical waveguide circuit structure. An example of such a circuit structure is Arrayed Waveguide Grating (AWG). The AWG enters the input optical signal through the input side slab waveguide into the plurality of array waveguides. Each array waveguide has a constant path difference, so that the output side slab waveguide interferes and the optical signal of different wavelengths are transmitted to the output waveguides. It is a principle.
그러나 AWG는 보통 수 나노미터 이하의 파장 간격을 분할하는 경우에 적당하다. 따라서 양방향 광통신에서 1310nm, 1490nm, 그리고 1550nm 대역의 파장을 사용하는 트리플렉서에는 적합하지 않다. 또한 양방향 광통신에서 사용하는 1310nm 대역의 파장은 ±50nm 의 넓은 대역폭을 갖고 있는데, AWG 구조를 이용할 경우 이러한 넓은 대역폭을 만족하기가 매우 어렵다.However, AWGs are usually suitable for subdividing wavelength intervals of several nanometers or less. This makes it unsuitable for triplexers using wavelengths in the 1310nm, 1490nm, and 1550nm bands in bidirectional optical communications. In addition, the wavelength of 1310nm band used in bidirectional optical communication has a wide bandwidth of ± 50nm, and it is very difficult to satisfy this wide bandwidth when using the AWG structure.
또 다른 PLC 회로 구조로는 마흐젠더(Mach-Zehnder) 소자를 중첩시킨 구조가 있다. 마흐젠더 소자는 두 도파로의 커플러에 경로차 조절부가 부착되고 그 뒤에 또 다시 두 도파로의 커플러가 부착된 형태이다.Another PLC circuit structure is a structure in which Mach-Zehnder elements are superimposed. The Mahzander element is a form in which a path difference control unit is attached to a coupler of two waveguides, followed by a coupler of two waveguides.
이 마흐젠더 소자는 기본적으로 입력측과 출력측이 각각 두 개의 도파로로 이루어져 있어서 트리플렉서에서 사용되는 세 파장을 분할하기 위해서는 최소한 두 개 이상의 마흐젠더 소자를 수평적으로 연결해야만 하는데, 이 경우 광회로소자의 크기가 커져서 생산 단가가 증가하게 되는 문제점이 있었다.This mahgender element basically consists of two waveguides on the input side and the output side, so at least two Mahgender elements must be connected horizontally in order to divide the three wavelengths used in the triplexer. There was a problem that the production cost increases due to the larger size.
또한, 채널간 누화율을 향상시키기 위해서는 추가적인 광커플러를 연결할 요성이 대두되는데 이 경우 소자의 크기는 더욱 증가하게 되는 문제점이 있었다.In addition, in order to improve crosstalk between channels, there is a need to connect an additional optocoupler. In this case, the size of the device is further increased.
본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 삼도파로 커플러와 경로차 조절부를 이용해서 세 파장 대역을 한꺼번에 분리해 냄으로써 전체 소자의 크기를 줄이고 낮은 광손실과 높은 누화율을 얻는 데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to separate the three wavelength bands at once by using a three-waveguide coupler and a path difference control unit to reduce the size of the entire device, and to provide low light loss and high crosstalk. To get that purpose.
본 발명의 다른 목적은 넓은 파장 대역에서의 평탄한 주파수 응답 특성을 얻고자 하는데 그 목적이 있다.Another object of the present invention is to obtain a flat frequency response characteristic in a wide wavelength band.
전술한 목적을 달성하기 위하여 본 발명의 제1 측면은, 제1 삼도파로 커플러 및 제2 삼도파로 커플러; 상기 제1 삼도파로 커플러 및 제2 삼도파로 커플러 사이에 연결된 3개의 도파로로 구성된 경로차 조절부를 구비하되, 3개의 도파로 중 적어도 2개는 서로 다른 경로차를 구비하는 트리플렉서를 제공한다.In order to achieve the above object, the first aspect of the present invention, the first three-waveguide coupler and the second three-waveguide coupler; A path difference adjusting unit including three waveguides connected between the first three waveguide coupler and the second three waveguide coupler is provided, and at least two of the three waveguides provide a triplexer having different path differences.
바람직하게는, 제1 삼도파로 커플러와 제2 삼도파로 커플러는 각각 커플링 간격과 커플링 길이가 서로 동일하게 구성된다.Preferably, the first three waveguide coupler and the second three waveguide coupler are configured to have the same coupling spacing and coupling length, respectively.
또한, 제1 삼도파로 커플러와 제2 삼도파로 커플러에는 각각 3개의 입력도파로와 3개의 출력도파로가 연결되고, 하나의 입력 도파로로 입력된 광신호를 3개의 각각의 출력 도파로로 파장에 따라 나누거나, 혹은 반대 방향으로 광신호를 합쳐서 전송할 수 있도록 구성될 수 있다.Also, three input waveguides and three output waveguides are respectively connected to the first three-waveguide coupler and the second three-waveguide coupler, and the optical signal input through one input waveguide is divided into three output waveguides according to wavelengths. , Or may be configured to transmit the combined optical signal in the opposite direction.
또한, 제1 삼도파로 커플러 또는 상기 제2 삼도파로 커플러의 커플링 길이는 하기 수학식과 같이 결정될 수 있다.In addition, the coupling length of the first three-waveguide coupler or the second three-waveguide coupler may be determined by the following equation.
Figure PCTKR2009000678-appb-I000001
Figure PCTKR2009000678-appb-I000001
(여기서, L cpl 은 삼도파로 커플러의 길이, m 은 1, 2, 3, ... 임의의 각 자연수에서 ±0.2 의 범위를 갖는 값이고, κ(λ1)은 λ1 파장에서의 커플링 상수이고, 본 커플링 길이는 직선도파로에서 커플링이 모두 일어난다는 가정 하에서의 길이를 의미한다.)Where L cpl is the length of the three-waveguide coupler, m is a value in the range of ± 0.2 for any natural number of 1, 2, 3, ..., and κ (λ 1 ) is the coupling at the λ 1 wavelength. Constant, and this coupling length is the length under the assumption that all coupling takes place in a linear waveguide.)
또한, 본 발명의 트리플렉서에는 출력되는 2개의 광도파로와 각각 연결되는 2개의 광도파로가 일정한 경로차를 갖는 2 도파로 경로차 조절부를 더 연결할 수 있고, 이 경우,상기 2도파로 경로차 조절부에 2도파로 경로차 조절부에 2도파로 커플러를 더 연결하는 것도 가능하다.In addition, in the triplexer of the present invention, two optical waveguides respectively connected to two optical waveguides output may further connect two waveguide path difference adjusting units having a constant path difference. In this case, the two waveguide path difference adjusting unit may be connected. It is also possible to connect two waveguide couplers to the two-waveguide path difference regulator.
한편, 제1 삼파장 커플러 또는 제2 삼파장 커플러의 세 도파로 중 두 도파로의 커플러 길이를 더 길게 구성하는 것도 가능하다.Meanwhile, the length of the coupler of two waveguides among the three waveguides of the first three-wavelength coupler or the second three-wavelength coupler may be longer.
본 발명은 기존의 마흐젠더 간섭계를 두 번 이상 중첩시킨 기존의 구조와는 달리, 3개의 광도파로를 이용한 커플러와 경로차 발생부를 연결시킴으로써 기존의 AWG와 같은 구조를 이용하는 경우 넓은 대역폭을 만족하기 어려운 문제점을 극복할 수 있는 효과가 있다.Unlike the conventional structure in which the existing Mach-Zehnder interferometer is overlapped two or more times, it is difficult to satisfy a wide bandwidth when using a structure such as an existing AWG by connecting a coupler and a path difference generator using three optical waveguides. There is an effect that can overcome the problem.
또한, 본 발명에 의하면, 세 파장 대역을 한꺼번에 분리해 냄으로써 전체 소자의 크기를 줄일 수 있어 생산 단가를 감소시킬 수 있는 장점이 있고 낮은 광손실과 높은 누화율을 얻을 수 있는 효과가 있다.In addition, according to the present invention, by separating the three wavelength bands at once, the size of the entire device can be reduced, there is an advantage that can reduce the production cost, there is an effect that can obtain a low light loss and a high cross-talk rate.
도 1은 본 발명의 제1 실시예에 따른 트리플렉서의 구성도이다.1 is a block diagram of a triplexer according to a first embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 적용된 수학식(4)에서 m이 2일 때 λ1 파장 광신호의 진행 경로를 나타내는 도면이다.FIG. 2 is a diagram illustrating a traveling path of a λ 1 wavelength optical signal when m is 2 in Equation (4) applied to the first embodiment of the present invention.
도 3은 본 발명의 제1 실시예에 따른 트리플렉서의 주파수 응답 특성을 전달행렬 방법을 이용하여 시뮬레이션 한 결과를 나타내는 그래프이다.3 is a graph showing the results of simulation of the frequency response characteristic of the triplexer according to the first embodiment of the present invention using the transfer matrix method.
도 4는 본 발명의 제2 실시예에 따른 트리플렉서의 구성도이다.4 is a configuration diagram of a triplexer according to a second embodiment of the present invention.
도 5는 본 발명의 제2 실시예에 적용된 전달행렬 방법을 이용하여 주파수 응답 특성을 시뮬레이션 한 결과를 나타내는 그래프이다.5 is a graph showing a result of simulating frequency response characteristics using the transfer matrix method applied to the second embodiment of the present invention.
도 6은 본 발명의 제3 실시예에 따른 트리플렉서의 구성도이다.6 is a configuration diagram of a triplexer according to a third embodiment of the present invention.
도 7은 본 발명의 제3 실시예에 의한 방식으로 설계한 세 도파로 간섭기의 주파수 응답 특성을 나타내는 그래프이다.7 is a graph showing the frequency response characteristics of three waveguide interferers designed in the manner according to the third embodiment of the present invention.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention illustrated below may be modified in many different forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
(제1 실시예)(First embodiment)
도 1은 본 발명의 바람직한 제1 실시예의 구성도이다.1 is a block diagram of a first preferred embodiment of the present invention.
제1 실시예의 트리플렉서(1)는 제1 삼도파로 커플러(2), 제2 삼도파로 커플러(4), 및 경로차 조절부(3)를 포함하여 구성된다.The triplexer 1 of the first embodiment includes a first three waveguide coupler 2, a second three waveguide coupler 4, and a path difference adjusting unit 3.
보다 구체적으로는, 트리플렉서(1)는 3개의 도파로를 나란히 배열한 3도파로 커플러 2개(2, 4)를 적어도 2개의 길이가 서로 다른 3개의 도파로로 구성된 경로차조절부(3)로 연결한 구조를 갖는다. 이와 같은 구조에 의하면, 하나의 입력 도파로(1a)로 입력된 광신호를 3개의 각각의 출력 도파로(5a,5b,5c)로 파장에 따라 나누어 출력할 수 있다. 또한, 반대방향으로 분리된 3개의 파장을 가지는 광신호를 3개의 도파로(5a,5b,5c)를 통해서 입력받아 합쳐서 하나의 출력도파로(1a)로 전송할 수도 있음은 당연하다.More specifically, the triplexer 1 connects two waveguide couplers 2 and 4 having three waveguides arranged side by side to a path difference control unit 3 including three waveguides having at least two lengths different from each other. Has a structure. According to such a structure, the optical signal input to one input waveguide 1a can be divided into three output waveguides 5a, 5b, and 5c according to the wavelength and output. In addition, it is natural that optical signals having three wavelengths separated in opposite directions may be input through three waveguides 5a, 5b, and 5c, and may be transmitted to one output waveguide 1a.
예를 들어, λ1(=1310±50nm), λ2(=1490±10nm), 그리고 λ3(=1550±10nm)와 같은 3 파장 대역이 입력도파로(1a)로 주어졌을 때, 출력측 첫 번째 도파로(5a)에는 λ1 파장 대역의 광신호가 출력되고, 출력측 두 번째 도파로(5b)에는 λ2 파장 대역의 광신호가, 그리고 마지막 세 번째 도파로(5c)에는 λ3 파장 대역의 광신호가 출력되는 동시에 첫 번째 출력 도파로(5a)에서 출력되는 광신호가 가장 넓은 대역폭을 갖는 λ1 파장 대역 내에서 특히 평탄한 특성을 갖도록 할 수 있다.For example, when three wavelength bands such as λ 1 (= 1310 ± 50nm), λ 2 (= 1490 ± 10nm), and λ 3 (= 1550 ± 10nm) are given as input waveguide 1a, the output side first An optical signal of λ 1 wavelength band is output to the waveguide 5a, an optical signal of λ 2 wavelength band is output to the second waveguide 5b of the output side, and an optical signal of λ 3 wavelength band is output to the last third waveguide 5c. It is possible to make the optical signal output from the first output waveguide 5a particularly flat within the λ 1 wavelength band having the widest bandwidth.
트리플렉서의 동작 파장인 λ1(=1310±50nm), λ2(=1490±10nm), 그리고 λ3(=1550±10nm)의 세 파장을 분리해 내는 경우를 예로 들기로 한다. 이 세 파장 중 λ1은 ±50nm의 넓은 대역폭을 가진 파장 대역이다.For example, three wavelengths of the triplexer's operating wavelengths, λ 1 (= 1310 ± 50nm), λ 2 (= 1490 ± 10nm), and λ 3 (= 1550 ± 10nm), are separated. Of these three wavelengths, λ 1 is a wavelength band with a wide bandwidth of ± 50 nm.
도 1을 참조하면, λ1은 도파로(5a) 로 입력되어 도파로(1a)로 출력되며, λ2와 λ3는 도파로(1a)로 입력되어 각각 도파로(5b)와 도파로(5c)로 출력되게 되어 λ1과 λ2, λ3가 각각 양방향으로 전달되게 된다. 이 경우, 바람직하게는, 도파로(1a)에는 광섬유가 연결되며, 도파로(5a)에는 레이저 다이오드가, 그리고 도파로(5b)와 도파로(5c)에는 포토 다이오드가 광학적으로 연결될 수 있다.Referring to FIG. 1, λ 1 is input to the waveguide 5a and output to the waveguide 1a, and λ 2 and λ 3 are input to the waveguide 1a and output to the waveguide 5b and waveguide 5c, respectively. Λ 1 , λ 2 , and λ 3 are transferred in both directions. In this case, preferably, an optical fiber is connected to the waveguide 1a, a laser diode is connected to the waveguide 5a, and a photodiode is optically connected to the waveguide 5b and the waveguide 5c.
도 1에서는 λ1 신호가 λ2 나 λ3 신호와는 입, 출력의 서로 다른 방향으로 도시되어 있지만, 광신호의 특성상 그 경로는 가역적이므로 λ1 신호를 도파로(1a)에 입력시키는 경우에는 도파로(5a)로 출력되게 된다. 즉, λ1 신호를 도파로(5a)로 입사시켜 도파로(1a)로 출력될 때와 그 반대의 경로를 따라 진행할 때의 주파수 응답 특성은 같다. 따라서, 이하에서는 λ1, λ2 신호 그리고 λ3 신호를 모두 도파로(1a)에 입력시키는 것으로 가정하도록 한다.In FIG. 1, the λ 1 signal is shown in different directions of input and output from the λ 2 or λ 3 signal. However, since the path is reversible due to the characteristics of the optical signal, the λ 1 signal is input to the waveguide 1a. It is outputted as (5a). That is, the frequency response characteristic is the same when the λ 1 signal is incident on the waveguide 5a and output to the waveguide 1a and travels along the opposite path. Therefore, in the following, it is assumed that the λ 1 signal, the λ 2 signal, and the λ 3 signal are all input to the waveguide 1a.
제1 실시예의 트리플렉서를 실제 제작하는 경우, 광 도파로의 코어는 클래딩과 1.5%의 굴절률차를 갖고 단면적의 높이와 폭이 모두 3μm인 광도파로를 사용할 수 있는데, 이는 동작 파장 범위(1260nm - 1560nm)에서 단일 모드 조건을 충족하는 조건이다.In the actual fabrication of the triplexer of the first embodiment, the core of the optical waveguide can use an optical waveguide having a refractive index difference of 1.5% and a cross-sectional area of 3 μm in height and width, which is an operating wavelength range (1260 nm to 1560 nm). Is a condition that satisfies the single mode condition.
도파로(1a)로 입사된 광신호들은 3개의 도파로(2a,2b,2c)로 구성된 삼도파로 커플러(2)를 지나게 된다. 삼도파로 커플러(2)는 서로 평행으로 배열되어 있다. 도파로(2a,2b) 사이의 간격과 도파로(2b,2c) 사이의 간격은 서로 같은 값을 갖도록 구성할 수 있고, 수 ㎛ 정도의 값을 갖는데, 이 간격은 삼도파로 커플러 간격이라고 한다. 도파로(2a,2b,2c)의 각 도파로는 평행한 직선 부분의 길이가 모두 같으며 이 길이를 이하에서 삼도파로 커플러 길이라고 한다.The optical signals incident on the waveguide 1a pass through the three waveguide coupler 2 composed of three waveguides 2a, 2b, and 2c. The three waveguide couplers 2 are arranged in parallel with each other. The spacing between the waveguides 2a and 2b and the spacing between the waveguides 2b and 2c can be configured to have the same value, and have a value of several micrometers, which is called a three-waveguide coupler spacing. Each of the waveguides of the waveguides 2a, 2b, and 2c has the same length of the parallel straight portion, which is hereinafter referred to as the length of the three waveguide coupler.
한편, 도파로(2a,2b,2c)로 구성된 제1 삼도파로 커플러와 도파로(4a,4b,4c)로 구성된 제2 삼도파로 커플러는 동일한 구조를 가질 수 있다. 즉, 두 커플러는 커플러 간격과 커플러 길이가 동일하다는 의미이다.Meanwhile, the first three waveguide coupler including the waveguides 2a, 2b, and 2c and the second three waveguide coupler including the waveguides 4a, 4b and 4c may have the same structure. That is, the two couplers have the same coupler spacing and coupler length.
한편, 2개의 커플러 사이를 3개 도파로로 연결하는 부분이 도파로(3a,3b,3c)로 경로차 조절부인데, 이들 각 도파로들은 적어도 2개의 길이가 서로 다르며, 여기서 각 도파로간의 길이 차이를 경로차라고 부른다. 이 경우, 3개의 도파로 중에서 2개가 서로 도파로 길이가 다를 수도 있고, 3개 모두 다를 수도 있음은 물론이다.Meanwhile, the portion connecting the two waveguides to the three waveguides is the waveguides 3a, 3b, and 3c, and each of the waveguides has at least two lengths different from each other. Call it a car. In this case, two of the three waveguides may have different waveguide lengths, or all three may be different.
다음으로 제1 실시예에 따른 트리플렉서의 동작을 설명한다.Next, the operation of the triplexer according to the first embodiment will be described.
도파로(1a)로 입사한 광신호는 제1 삼도파로 커플러(2a,2b,2c)로 입사한다. 입사한 광신호는 도파로(2a) 뿐 만 아니라 도파로(2b)와 도파로(2c) 로도 커플링되어 진행하게 되는데, 이를 수식으로 표현하면 세 도파로 커플러는 다음과 같은 전달 행렬 (M) 로 나타낼 수 있다.The optical signal incident on the waveguide 1a is incident on the first three waveguide couplers 2a, 2b, and 2c. The incident optical signal is coupled not only to the waveguide 2a but also to the waveguide 2b and the waveguide 2c, and the three waveguide coupler can be expressed by the following transmission matrix (M). .
Figure PCTKR2009000678-appb-I000002
(1)
Figure PCTKR2009000678-appb-I000002
(One)
위 수학식(1)에서 L cpl 은 세 도파로 커플러의 길이이고, κ는 3 도파로 커플러에서 각각 이웃한 두 도파로간의 커플링 상수이다. 상기 삼도파로 커플러는 각각의 파장을 적절하게 분배하는 역할을 한다.In Equation (1), L cpl is the length of three waveguide couplers and κ is a coupling constant between two neighboring waveguides in the three waveguide coupler. The three-waveguide coupler serves to appropriately distribute each wavelength.
입력 도파로(1a)로 입사한 λ1, λ2, λ3의 광신호들은 제1 삼도파로 커플러(2)에서 적절히 파워가 분배된 후 경로차 조절부로 각각 입사하게 된다. 경로차 조절부(3)의 3a, 3b, 그리고 3c 도파로들은 길이가 다르게 설정 가능하므로 이 도파로들을 따라 진행하는 광신호들은 각각 다른 위상 변화를 겪게 된다. 이 과정은 다음의 전달 행렬로 나타낼 수 있다.The optical signals of λ 1 , λ 2 , and λ 3 incident on the input waveguide 1a are respectively incident on the path difference adjusting unit after power is properly distributed in the first three waveguide coupler 2. Since the waveguides 3a, 3b, and 3c of the path difference controller 3 can be set to have different lengths, the optical signals traveling along these waveguides undergo different phase shifts. This process can be represented by the following transfer matrix:
Figure PCTKR2009000678-appb-I000003
(2)
Figure PCTKR2009000678-appb-I000003
(2)
수학식(2)에서 k0는 진공에서의 각 파수로써 2π/λ 이며, N은 광도파로의 모드 굴절률을 나타내고, L1,L2,L3는 각각 광도파로 3a, 3b, 3c의 길이를 나타낸다. 상기 경로차 조절부(3)에서는 제2 삼도파로 커플러(4a,4b,4c)에서 광신호가 간섭을 하도록 분배된 신호들에 대해 적절한 경로차를 만들어 주는 역할을 한다. 경로차 조절부(3)와 두 개의 세 도파로 커플러(2,4)를 한꺼번에 세 도파로 간섭기라고 부르는 것도 가능하다.In Equation (2), k 0 is 2π / λ as the number of waves in vacuum, N is the mode refractive index of the optical waveguide, and L 1 , L 2 , and L 3 are the lengths of the optical waveguides 3a, 3b, and 3c, respectively. Indicates. The path difference adjusting unit 3 serves to create an appropriate path difference with respect to the signals distributed in the second three waveguide couplers 4a, 4b, and 4c to interfere with each other. It is also possible to call the path difference adjuster 3 and the two three waveguide couplers 2 and 4 at the same time three waveguide interferers.
출력 도파로인 5a, 5b, 5c에서 출력되는 광신호의 세기 P5a, P5b, P5c는 위 수학식 (1)과 수학식(2)의 전달행렬을 이용하여 계산할 수 있고, 그 결과는 수학식(3-1), (3-2), (3-3)와 같다.The intensity P5a, P5b, P5c of the optical signal output from the output waveguides 5a, 5b, 5c can be calculated using the transfer matrix of Equations (1) and (2), and the result is expressed in Equation (3). -1), (3-2), and (3-3).
Figure PCTKR2009000678-appb-I000004
(3-1)-(3-3)
Figure PCTKR2009000678-appb-I000004
(3-1)-(3-3)
상기 수학식(1) 내지 수학식(3-3)에서 적절한 Lcpl과 κ, L1, L2, L3 등을 구해서 λ1, λ2, 그리고 λ3 파장이 각각 도파로(5a, 5b, 5c)로 출력되도록 한다.L cpl and κ, L 1 , L 2 , L 3, etc., obtained from Equations (1) to (3-3), and the wavelengths of λ 1 , λ 2 , and λ 3 are respectively represented by waveguides 5a, 5b, To 5c).
한편, 위에서 구한 적절한 변수들이 도파로들의 간섭에 의한 효과에 의해 파장들을 분배할 수는 있지만, 넓은 파장 대역폭을 확보하기 위해 추가적인 수단이 필요할 수 있다. 특히 λ1 에서는 ±50nm 정도 되는 넓은 파장 폭을 가지는 것이 바람직할 수 있는데 이러한 조건은 도파로들의 간섭 효과만으로 충족시키기 부족한 부분이 있다.On the other hand, although the appropriate parameters obtained above can distribute the wavelengths by the effect of the interference of the waveguides, additional means may be necessary to secure a wide wavelength bandwidth. In particular, at λ 1 , it may be desirable to have a wide wavelength width of about 50 nm. Such a condition is insufficient to satisfy only the interference effect of the waveguides.
본 실시예에서는 λ1(1310±50nm)에서처럼 넓은 대역폭을 얻기 위해 바람직한 방식을 제시한다. 본 실시예에서는 삼도파로 커플러의 커플링 길이를 다음 수학식(4) 처럼 결정한다.This example presents a preferred way to obtain a wide bandwidth as in λ 1 (1310 ± 50 nm). In this embodiment, the coupling length of the three-waveguide coupler is determined as in Equation (4) below.
Figure PCTKR2009000678-appb-I000005
(4)
Figure PCTKR2009000678-appb-I000005
(4)
위 수학식 (4)에서 L cpl 은 세 도파로 커플러의 길이, κ(λ1)은 λ1 파장에서의 커플링 상수이다. m 은 1, 2, 3, ... 임의의 각 자연수에서 ±0.2 의 범위를 갖는 값이고 예를 들어 0.8~1.2 사이의 임의의 값, 1.8 ~2.2 사이의 임의의 값, 2.8 ~ 3.2 사이의 임의의 값 등을 의미한다. 이 경우 m은 1, 2, 3, ... 임의의 각 자연수인 경우가 가장 바람직하지만 각 자연수에서 임의의 영역을 가지는 경우도 가능하다.In Equation (4), L cpl is the length of three waveguide couplers, and κ (λ 1 ) is the coupling constant at the wavelength of λ 1 . m is a value in the range of ± 0.2 for each natural number of 1, 2, 3, ... for example any value between 0.8 and 1.2, any value between 1.8 and 2.2, between 2.8 and 3.2 Arbitrary value or the like. In this case, m is most preferably 1, 2, 3, ... any natural number, but it is also possible to have an arbitrary region in each natural number.
수학식 (4)에서 m이 2일 때 λ1 파장 광신호의 진행 경로를 도 2에 나타내었다. 한 파장 λ1에 대하여 삼도파로 커플러에서 자연수 배의 완전한 커플링이 일어나게 되면 삼 도파로 경로차 조절부(3)의 각 도파로 (3a,3b,3c)로 광 파워 분배가 일어나지 않고 오직 하나의 도파로로 광신호가 지나가게 된다. 수학식 (4)에서 m이 홀수인 경우에는 도파로 3c로, 그리고 m이 짝수인 경우에는 도 5와 같이 도파로 3a로 지나가게 된다.In Equation (4), the traveling path of the λ 1 wavelength optical signal when m is 2 is shown in FIG. 2. If the full coupling of the natural wave multiple times occurs in the three-waveguide coupler for one wavelength λ 1 , the optical power distribution does not occur in each of the waveguides 3a, 3b, and 3c of the three-waveguide path difference adjusting unit 3, but only one waveguide The optical signal passes by. In Equation (4), when m is odd, the waveguide 3c passes, and when m is even, the waveguide 3a passes as shown in FIG. 5.
또한, 경로차 조절부의 각 도파로 (3a,3b,3c)의 길이는 λ2 파장은 도파로(5b)로, 그리고 λ3 파장은 도파로(5c)로 각각 출력되도록 수학식 (3-1), (3-2), (3-3)을 이용하여 결정한다. 이 때 해석적인 해를 구할 수도 있고, 경로차 조절부(3)의 각 도파로의 길이를 조금씩 바꿔가며 도파로 5b와 5c에서 λ2와 λ3 파장이 최대값이 되도록 결정하는 것도 가능하다.In addition, the lengths of the waveguides 3a, 3b, and 3c of the path difference adjusting unit are respectively expressed by Equations (3-1) and (3) so that the λ 2 wavelength is output to the waveguide 5b and the λ 3 wavelength is output to the waveguide 5c. 3-2), (3-3) to determine. At this time, it is possible to obtain an analytical solution, and it is also possible to determine the wavelengths of the waveguides 5b and 5c so that the wavelengths λ 2 and λ 3 become the maximum values by slightly changing the length of each waveguide of the path difference adjusting unit 3.
한편, 커플링 길이가 그대로 직선도파로 (2a, 2b, 2c) 혹은 (4a, 4b, 4c) 의 길이가 되는 것은 아닌 것이 일반적이다. 이는 커플러의 직선부분에 앞뒤로 연결된 곡선 도파로에서도 도파로가 점차 근접해 감에 따라 커플링 효과가 일어나게 되는데, 수학식 (4)에서의 커플링 길이는 이 곡선도파로에서의 커플링 효과를 배재했을 때의 길이, 즉, 직선도파로에서 커플링이 모두 일어난다는 가정 하에서의 길이를 의미한다. 따라서, 실제로 제작할 때에는 곡선도파로에서도 커플링이 발생하므로 실제 커플러의 직선 도파로의 길이는 다소 줄어들게 되는데 커플러 간격과 곡선도파로의 곡률반경에 따라 달라지므로 일괄적으로 정해지지 않으므로 이를 감안하여야 제작하는 것이 바람직하다.On the other hand, it is common that the coupling length does not become the length of the linear waveguides 2a, 2b, 2c or 4a, 4b, 4c. This results in a coupling effect as the waveguide gradually approaches, even in a curved waveguide connected to the straight portion of the coupler. The coupling length in Equation (4) is the length when the coupling effect in this waveguide is excluded. That is, it means the length under the assumption that all coupling occurs in the linear waveguide. Therefore, since the coupling occurs in the curved waveguide in actual production, the length of the linear waveguide of the actual coupler is somewhat reduced, but since it depends on the spacing of the coupler and the radius of curvature of the curved waveguide, it is desirable to manufacture it in consideration of this.
본 발명의 제1 실시예의 트리플렉서의 각 조건들은 예를 들어 다음과 같다. 삼 도파로 커플러의 길이는 664 μm, 삼도파로 커플러의 간격은 1 μm, 경로차 조절부의 3a와 3b 도파로간의 경로차는 26.69 μm, 경로차 조절부의 3b와 3c 도파로 간의 경로차는 12.85 μm 이다. 또한, 이러한 트리플렉서의 주파수 응답 특성을 전달행렬 방법을 이용하여 시뮬레이션 한 결과를 도 3에 나타내었다.Each condition of the triplexer of the first embodiment of the present invention is, for example, as follows. The length of the three-waveguide coupler is 664 μm, the distance of the three-waveguide coupler is 1 μm, the path difference between the 3a and 3b waveguides of the path difference regulator is 26.69 μm, and the path difference between 3b and 3c waveguides of the path difference regulator is 12.85 μm. In addition, the results of simulation of the frequency response characteristics of the triplexer using the transfer matrix method are shown in FIG. 3.
도 3을 참조하면, 세 도파로 간섭기는 성공적으로 λ1(1310±50nm), λ2(1490±10nm), λ3(1550±10nm)의 세 파장을 각각 도파로 5a, 5b, 5c로 분리해 내고 있음을 확인할 수 있다.Referring to FIG. 3, three waveguide interferometers successfully separate three wavelengths of λ 1 (1310 ± 50nm), λ 2 (1490 ± 10nm), and λ 3 (1550 ± 10nm) into waveguides 5a, 5b, and 5c, respectively. It can be confirmed.
(제2 실시예)(Second embodiment)
도 4를 참조하면, 제2 실시예의 트리플렉서(1)는 제1 삼도파로 커플러(2), 제2 삼도파로 커플러(4), 경로차 조절부(3), 커플러(6)를 포함하여 구성된다.Referring to FIG. 4, the triplexer 1 of the second embodiment includes a first three waveguide coupler 2, a second three waveguide coupler 4, a path difference adjusting unit 3, and a coupler 6. do.
제1 실시예와의 차이점을 설명하면, 제2 실시예의 트리플렉서(1)는 제2 삼파장 커플러(4a,4b,4c) 이후 후단부가 출력 도파로측과 바로 연결된 구조가 아니라 별도의 커플러(6)를 구비하는 구조를 가진다는 점이 주된 차이점이다.Referring to the difference from the first embodiment, the triplexer 1 of the second embodiment is not a structure in which the rear end portion is directly connected to the output waveguide side after the second three- wavelength coupler 4a, 4b, 4c. The main difference is that it has a structure having a.
도 4를 참조하면, 도파로(5a, 5c)로 각각 출력되는 파장 λ1과 λ3에서는 삽입 손실이 비교적 작은데 반해 도파로(5b)로 출력되는 파장 λ2 신호에서는 삽입 손실이 0.877 dB로 비교적 클 수 있다. 또한, 도파로(5c)로는 λ3 신호가 주로 출력되어야 함에도 불구하고 λ2 파장이 약 8 dB정도의 손실로 출력되고 있음을 도 3의 주파수 응답 특성 곡선을 통해 확인할 수 있다.Referring to FIG. 4, the insertion loss is relatively small at the wavelengths λ 1 and λ 3 output to the waveguides 5a and 5c, respectively, whereas the insertion loss may be relatively large at 0.877 dB in the wavelength λ 2 signal output to the waveguide 5b. have. In addition, although the λ 3 signal is mainly output to the waveguide 5c, it can be confirmed from the frequency response characteristic curve of FIG. 3 that the λ 2 wavelength is output with a loss of about 8 dB.
이러한 점을 더욱 향상시키기 위해, 본 실시예에서는 상술한 도파로 5b와 5c에 두 도파로 커플러(6)를 추가로 부착하여 상기 문제를 해결할 수 있음을 설명한다. 즉, 제2 실시예에서는 제2 삼도파로 커플러의 출력 측에서 넓은 대역폭을 갖는 파장 대역의 광신호(6a에서 출력되는 신호)를 제외한 나머지 두 파장 대역의 광신호들의 손실값을 균일하게 조절하는 방법에 관한 것이다.In order to further improve this point, it is explained in the present embodiment that the above problems can be solved by additionally attaching two waveguide couplers 6 to the waveguides 5b and 5c described above. That is, in the second embodiment, a method of uniformly adjusting the loss values of the optical signals of the two remaining wavelength bands except for the optical signal having the wide bandwidth (signal output from 6a) at the output side of the second three-waveguide coupler It is about.
추가적인 두 도파로 간섭기(6)는 두 도파로 경로차 조절부인 도파로(5b,5c), 그리고 두 도파로 커플러인 도파로(6b,6c)로 이루어져 있으며, 전달 행렬은 수학식 (5)와 같다.The two additional waveguide interferers 6 include waveguides 5b and 5c, which are two waveguide path difference adjusting units, and waveguides 6b and 6c, which are two waveguide couplers, and a transmission matrix is expressed by Equation (5).
Figure PCTKR2009000678-appb-I000006
(5)
Figure PCTKR2009000678-appb-I000006
(5)
수학식 (5)에서 κ 는 커플링 상수를 나타내고, L6는 두 도파로 커플러의 커플링 길이를 나타낸다. 또한, ΔL5c-5b는 도파로 5c와 도파로 5b의 길이 차이를 나타낸다.In Equation (5) κ represents the coupling constant, L 6 represents the coupling length of the two waveguide coupler. Also, ΔL 5c-5b represents the difference in length between waveguide 5c and waveguide 5b.
두 도파로 간섭기에서 파장 λ2 는 도파로 7b로 출력되도록 하고 파장 λ3은 도파로 7c로 출력되도록 수학식(5)에서 변수 L6과 ΔL5c-5b를 조절하여 파장 λ2와 λ3에서 광손실 값과 누화율을 향상시킬 수 있다.The two waveguides interferer wavelength λ 2 is the output to a waveguide 7b wavelength λ 3 is the optical loss value by controlling the variable L 6 and ΔL 5c-5b in the equation (5) to be output to the waveguide 7c at a wavelength λ 2 and λ 3 And the crosstalk rate can be improved.
한편, 실제 적용가능한 조건에 있어서, 두 도파로 커플러의 길이 L6는 347μm, 세 도파로 커플러의 간격은 1μm, 경로차 조절부의 5c와 5b 도파로간의 경로차 ΔL5c-5b는 15.89μm로 결정하고, 전달행렬 방법을 이용하여 주파수 응답 특성을 시뮬레이션 한 결과를 도 5에 나타내었다.Meanwhile, under practically applicable conditions, the length L 6 of the two waveguide couplers is determined to be 347 μm, the distance of the three waveguide couplers is 1 μm, and the path difference ΔL 5c-5b between the 5c and 5b waveguides of the path difference adjusting unit is 15.89 μm. The results of simulating the frequency response characteristics using the matrix method are shown in FIG. 5.
도 4에 도시된 바와 같이 본 발명에서 제시한 세 도파로 간섭기와 추가적인 두 도파로 간섭기를 이용하면 λ1, λ2, 그리고 λ3 파장을 각각 효과적으로 도파로 7a, 7b, 그리고 7c로 출력시킬 수 있고, 특히 λ1 파장에 대해서 ±50nm 이상의 넓은 대역폭을 갖는 성능을 얻을 수 있다.As shown in FIG. 4, the three waveguide interferers and the two additional waveguide interferers presented in the present invention can effectively output the wavelengths λ 1 , λ 2 , and λ 3 to the waveguides 7a, 7b, and 7c, respectively. Performance with a wide bandwidth of ± 50 nm or more can be obtained for the λ 1 wavelength.
(제3 실시예)(Third embodiment)
도 6을 참조하면, 제3 실시예의 트리플렉서(100)는 제1 삼도파로 커플러(2), 제2 삼도파로 커플러(40), 경로차 조절부(3)를 포함하여 구성된다.Referring to FIG. 6, the triplexer 100 of the third embodiment includes a first three waveguide coupler 2, a second three waveguide coupler 40, and a path difference adjusting unit 3.
제1 및 제2 실시예에서는 삼도파로 커플러가 대칭 구조인 경우를 주로 설명하였는데 제3 실시예에 의하면 제1 삼도파로 커플러(2)와 제2 삼도파로 커플러(40)가 서로 다른 커플러인 경우이다.In the first and second embodiments, the three-waveguide coupler is mainly described as having a symmetrical structure. According to the third embodiment, the first three-waveguide coupler 2 and the second three-waveguide coupler 40 are different couplers. .
제2 삼도파로 커플러인 도파로 (40a,40b,40c)에서, 커플링 길이를 결정하되 도파로 40b와 40c의 길이를 약간 더 길게 설계함으로써 도파로 40b와 40c로 출력되는 파장들의 손실을 균일하게 조절할 수 있다.In the waveguides 40a, 40b and 40c, which are the second three waveguide couplers, the coupling length is determined, but the length of the waveguides 40b and 40c is slightly longer, so that the loss of the wavelengths output to the waveguides 40b and 40c can be uniformly controlled. .
본 발명의 또 다른 실시예에서는 삼도파로 커플러 중 2개의 도파로의 길이를 더 길게 설계하는 것으로써, 도파로 40b와 도파로 40c의 길이를 도파로 40a 보다 20 미크론 길게 설계하여, 도파로 40b와 40c로 각각 출력되는 파장인 1490nm와 1550nm 대역의 파장 광신호의 손실을 균일하게 조절할 수 있다.In another embodiment of the present invention by designing the length of the two waveguides of the three waveguide coupler longer, the length of the waveguide 40b and the waveguide 40c is designed to be 20 microns longer than the waveguide 40a, respectively outputted to the waveguides 40b and 40c It is possible to uniformly control the loss of wavelength optical signals in the wavelengths of 1490 nm and 1550 nm.
또 다른 방식에 의하면, 도파로 2a, 2b, 2c 중에서 두 도파로의 길이를 더 길게 설계함으로써도 비슷한 결과를 얻을 수 있다. 도 7에는 제3 실시예에 의한 방식으로 설계한 세 도파로 간섭기의 주파수 응답 특성을 나타내었다.According to another method, similar results can be obtained by designing a longer length of the two waveguides among the waveguides 2a, 2b, and 2c. Fig. 7 shows the frequency response characteristics of the three waveguide interferers designed in the third embodiment.
전술한 본 발명에 따른 트리플렉서에 대한 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명에 속한다.While a preferred embodiment of the triplexer according to the present invention has been described above, the present invention is not limited thereto, and various modifications can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. This also belongs to the present invention.

Claims (8)

  1. 제1 삼도파로 커플러 및 제2 삼도파로 커플러; 및A first three waveguide coupler and a second three waveguide coupler; And
    상기 제1 삼도파로 커플러 및 제2 삼도파로 커플러 사이에 연결된 3개의 도파로로 구성된 경로차 조절부를 구비하되,A path difference adjusting unit including three waveguides connected between the first three waveguide coupler and the second three waveguide coupler,
    상기 3개의 도파로 중 적어도 2개는 서로 다른 경로차를 구비하는 트리플렉서.At least two of the three waveguides have different path differences.
  2. 제1 항에 있어서,According to claim 1,
    상기 제1 삼도파로 커플러와 상기 제2 삼도파로 커플러는 각각 커플링 간격과 커플링 길이가 서로 동일한 것을 특징으로 하는 트리플렉서.The first three-waveguide coupler and the second three-waveguide coupler, the coupling distance and the coupling length, respectively, the triplexer.
  3. 제1 항에 있어서,According to claim 1,
    상기 경로차 조절부를 구성하는 3개의 도파로는 서로 다른 3개의 도파로 길이를 가지는 것을 특징으로 하는 트리플렉서.The three waveguides constituting the path difference adjusting unit have three different waveguide lengths different from each other.
  4. 제1 항에 있어서,According to claim 1,
    상기 제1 삼도파로 커플러와 상기 제2 삼도파로 커플러에는 각각 3개의 입력도파로와 3개의 출력도파로가 연결되고, Three input waveguides and three output waveguides are respectively connected to the first three waveguide coupler and the second three waveguide coupler.
    하나의 입력 도파로로 입력된 광신호를 3개의 각각의 출력 도파로로 파장에 따라 나누어지거나, 혹은 반대 방향으로 광신호를 합쳐서 전송되는 트리플렉서.Triplexer which transmits the optical signal input to one input waveguide into three separate output waveguides according to the wavelength or combines the optical signals in opposite directions.
  5. 제1 항에 있어서,According to claim 1,
    상기 제1 삼도파로 커플러 또는 상기 제2 삼도파로 커플러의 커플링 길이는 하기 수학식 1과 같이 결정되는 트리플렉서.The coupling length of the first three-waveguide coupler or the second three-waveguide coupler is determined by the following equation (1).
    (수학식 1)(Equation 1)
    Figure PCTKR2009000678-appb-I000007
    Figure PCTKR2009000678-appb-I000007
    여기서, L cpl 은 세 도파로 커플러의 길이, κ(λ1)은 λ1 파장에서의 커플링 상수, m 은 1, 2, 3, ... 임의의 각 자연수에서 ±0.2 의 범위를 갖는 값임.Where L cpl is the length of the three waveguide couplers, κ (λ 1 ) is the coupling constant at the λ 1 wavelength, and m is the value in the range of ± 0.2 at any natural number.
  6. 제1 항에 있어서, According to claim 1,
    출력되는 2개의 광도파로와 각각 연결되는 2개의 광도파로가 일정한 경로차를 갖는 2도파로 경로차 조절부를 더 연결하는 것을 특징으로 하는 트리플렉서.And two optical waveguides respectively connected to two optical waveguides to be output, further connecting a two-waveguide path difference adjusting unit having a constant path difference.
  7. 제6 항에 있어서, The method of claim 6,
    상기 2도파로 경로차 조절부에 2도파로 커플러를 더 연결하는 것을 특징으로 하는 트리플렉서.Triplexer, characterized in that for further connecting the second waveguide coupler to the second waveguide path difference control unit.
  8. 제1 항 에 있어서, According to claim 1,
    상기 제1 삼파장 커플러 또는 제2 삼파장 커플러의 세 도파로 중 두 도파로의 커플러 길이를 더 길게 구성한 것을 특징으로 하는 특성을 갖도록 설계된 트리플렉서.The triplexer designed to have a characteristic characterized in that the length of the coupler of two of the three waveguides of the first three-wavelength coupler or the second three-wavelength coupler is configured to be longer.
PCT/KR2009/000678 2009-02-06 2009-02-12 Triplexer WO2010090364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090009934A KR101032453B1 (en) 2009-02-06 2009-02-06 triplexer
KR10-2009-0009934 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010090364A1 true WO2010090364A1 (en) 2010-08-12

Family

ID=42542243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000678 WO2010090364A1 (en) 2009-02-06 2009-02-12 Triplexer

Country Status (2)

Country Link
KR (1) KR101032453B1 (en)
WO (1) WO2010090364A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426604A (en) * 2013-09-10 2015-03-18 中国电信股份有限公司 Single-fiber three-way multiplexer for optical network unit and monolithic integrated reflector
US11770189B2 (en) 2021-09-17 2023-09-26 Honeywell Limited Honeywell Limitée Optical communication system using a photonic lantern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100677453B1 (en) * 2005-04-25 2007-02-02 엘지전자 주식회사 Triple band antenna for mobile communication terminal
KR100875521B1 (en) * 2005-08-22 2008-12-23 주식회사 케이엠더블유 Variable distribution unit for multiband

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Jul. 2007, Optical Society of Korea Summer Meeting 2007", article PARK ET AL.: "Design of Triplexer based on Photonic Crystal Structure with Point defects", pages: 295 - 296 *
J.H. SONG ET AL.: "Triple Wavelength Demultiplexers for low-Cost Optical Triplexer Transceivers", J. OFLIGNTWAVE TECHNOLOGY, vol. 25, no. 1, January 2007 (2007-01-01), pages 350 - 358 *
T.H. LEE ET AL.: "Design and Analysis of Mach-Zender-Interferometer-Based Silica Planar Lightwave Circuit Triplexer", JOURNAL OF THE OPTICAL SOCIETY OF KOREA, vol. 18, no. 6, December 2007 (2007-12-01), pages 447 - 451 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426604A (en) * 2013-09-10 2015-03-18 中国电信股份有限公司 Single-fiber three-way multiplexer for optical network unit and monolithic integrated reflector
US11770189B2 (en) 2021-09-17 2023-09-26 Honeywell Limited Honeywell Limitée Optical communication system using a photonic lantern

Also Published As

Publication number Publication date
KR101032453B1 (en) 2011-05-03
KR20100090582A (en) 2010-08-16

Similar Documents

Publication Publication Date Title
CA2255386C (en) Temperature compensated insensitive optical multiplexor/demultiplexor
US5170451A (en) Optical wdm (wavelength division multiplex) coupler
WO2013172541A1 (en) Bidirectional optical transmitting and receiving module
CN112399283B (en) Wavelength division multiplexing system, local side device and far-end device
Laude et al. Wavelength division multiplexing/demultiplexing (WDM) using diffraction gratings
CN106125201B (en) A kind of design method of mixed mode multiplexing device
CN114650095B (en) Multi-core optical fiber, transmission system and multi-core optical fiber capacity expansion method
WO2014137183A1 (en) Signal processing method and bidirectional cwdm ring network system for same
WO2010090364A1 (en) Triplexer
US20040161240A1 (en) Module having two bi-directional optical transceivers
CN108833016A (en) A kind of single chip integrated wavelength-division multiplex single fiber bi-directional data transmission module
CN107204802B (en) A kind of mode switching node and its on-line monitoring method based on photon lantern
CN212543784U (en) Signal transmission system
KR20230045515A (en) Pluggable optical WDM adapter for the multi-channel optical transceiver, and multi-channel optical communication apparatus using same
WO2020122635A2 (en) Lightwave circuit for 5g communication, and single-channel full-duplex optical communication system using same
CN114089472A (en) Polymer mode multiplexer, space division multiplexing device and space division multiplexing method
Iannone et al. A 40Gb/s CWDM-TDM PON with a cyclic CWDM multiplexer/demultiplexer
KR100749492B1 (en) A triplexer module filter for fiber-to-the-home user
CN114002772B (en) Light receiving integrated chip
KR100672010B1 (en) Optical fiber, optical access network and local area network and optical parts for communication using the optical fiber
CN208314253U (en) Array waveguide type wavelength division multiplexer
CN114384653B (en) Silicon optical module based on heterogeneous multi-core optical fiber
CN113726470B (en) Mobile forward-transmission method and system based on LWDM technology
CN210093231U (en) Single-fiber five-wave ten-way transmission converter and single-fiber five-wave ten-way transmission system
CN102045111A (en) Wavelength division multiplexing and demultiplexing optical element for confocal fabry-perot (CFP)-LR4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839732

Country of ref document: EP

Kind code of ref document: A1