WO2020022331A1 - Hydraulic damper - Google Patents

Hydraulic damper Download PDF

Info

Publication number
WO2020022331A1
WO2020022331A1 PCT/JP2019/028846 JP2019028846W WO2020022331A1 WO 2020022331 A1 WO2020022331 A1 WO 2020022331A1 JP 2019028846 W JP2019028846 W JP 2019028846W WO 2020022331 A1 WO2020022331 A1 WO 2020022331A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
outer peripheral
bladder
core
hydraulic damper
Prior art date
Application number
PCT/JP2019/028846
Other languages
French (fr)
Japanese (ja)
Inventor
輝行 吉岡
拓郎 西島
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018183619A external-priority patent/JP2020050265A/en
Priority claimed from JP2018184521A external-priority patent/JP2020020467A/en
Priority claimed from JP2018183618A external-priority patent/JP7259245B2/en
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2020022331A1 publication Critical patent/WO2020022331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/04Arrangements of piping, valves in the piping, e.g. cut-off valves, couplings or air hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids
    • F16L55/045Devices damping pulsations or vibrations in fluids specially adapted to prevent or minimise the effects of water hammer
    • F16L55/05Buffers therefor

Definitions

  • the embodiment of the present invention relates to a hydraulic damper.
  • one of the objects of the present invention is to obtain a hydraulic damper capable of suppressing a decrease in durability.
  • the hydraulic damper includes a core having a base, a first outer peripheral surface protruding from the base in a first direction and extending smoothly from the side to the tip, and an elastic member.
  • a bladder having an inner peripheral surface that covers the first outer peripheral surface in a state in which gas is sealed between the first outer peripheral surface and a second outer peripheral surface on which a hydraulic pressure acts, wherein the hydraulic pressure is applied to the second outer peripheral surface.
  • a concave portion is provided on the first outer peripheral surface so as to be in contact with a part of the inner peripheral surface in an actuated state and not to contact the whole of the inner peripheral surface, and the first outer peripheral surface includes a curved surface. , Except for the tip, does not include a plane orthogonal to the first direction.
  • the first outer peripheral surface includes a curved surface, and does not include a plane orthogonal to the first direction except for the tip, so that the bladder is configured to have the core formed by hydraulic pressure acting on the second outer peripheral surface. Even when the bladder is elastically contracted to approach the projection and elastically deformed in contact with the core, stress concentration in the bladder can be suppressed. Therefore, according to the above configuration, it is easy to reduce the stress generated in the bladder. Therefore, a decrease in the durability of the hydraulic damper can be suppressed.
  • FIG. 1 is an exemplary and schematic configuration diagram of a brake device according to an embodiment.
  • FIG. 2 is an exemplary and schematic cross-sectional view of the hydraulic damper of the first embodiment, and is a cross-sectional view when the bladder is in a free state.
  • FIG. 3 is a diagram illustrating an outline in a cross section including a first axis of an outer peripheral surface of the protrusion according to the first embodiment.
  • FIG. 4 is an exemplary and schematic cross-sectional view of the hydraulic damper of the first embodiment, and is a cross-sectional view when the bladder is in a contracted state.
  • FIG. 5 is an exemplary and schematic cross-sectional view of the hydraulic damper according to the second embodiment, and is a cross-sectional view when the bladder is in a free state.
  • FIG. 1 is an exemplary and schematic configuration diagram of a brake device according to an embodiment.
  • FIG. 2 is an exemplary and schematic cross-sectional view of the hydraulic damper of the first embodiment, and is a cross-section
  • FIG. 6 is a diagram illustrating an outline in a cross section including the first axis of the outer peripheral surface of the protrusion according to the second and third embodiments.
  • FIG. 7 is an exemplary and schematic cross-sectional view of the hydraulic damper of the second embodiment, and is a cross-sectional view when the bladder is in a contracted state.
  • FIG. 8 is an exemplary and schematic cross-sectional view of the hydraulic damper according to the third embodiment, and is a cross-sectional view when the bladder is in a free state.
  • FIG. 9 is an exemplary and schematic cross-sectional view of the hydraulic damper of the third embodiment, and is a cross-sectional view when the bladder is in a contracted state.
  • FIG. 7 is an exemplary and schematic cross-sectional view of the hydraulic damper of the second embodiment, and is a cross-sectional view when the bladder is in a contracted state.
  • FIG. 8 is an exemplary and schematic cross-sectional view of the hydraulic damper according to the third embodiment, and is a cross
  • FIG. 10 is an exemplary and schematic cross-sectional view of the hydraulic damper of the comparative example, and is a cross-sectional view when the bladder is in a free state.
  • FIG. 11 is a diagram illustrating the relationship between the hydraulic pressure and the consumed liquid amount in the embodiment and the comparative example.
  • FIG. 12 is an exemplary and schematic cross-sectional view of a housing of the brake device according to the embodiment.
  • FIG. 1 is an exemplary and schematic configuration diagram of the brake device 1.
  • the brake device 1 is provided in, for example, a four-wheeled vehicle.
  • the technology of the embodiment can be applied to vehicles other than four-wheel vehicles.
  • the brake device 1 includes a hydraulic circuit 10.
  • the brake device 1 applies a braking force (friction braking torque) to each of the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR by the pressure (fluid pressure) of the brake fluid in the hydraulic circuit 10. It is configured so that it can be provided.
  • Brake fluid may also be referred to as a fluid.
  • the hydraulic circuit 10 includes the pressure generating unit 32, the wheel cylinders 38FL, 38FR, 38RL, 38RR, the pressure adjusting units 34FL, 34FR, 34RL, 34RR, and the recirculation mechanism 37.
  • the wheels 2FL, 2FR, 2RL, 2RR are collectively referred to as wheels 2, and the wheel cylinders 38FL, 38FR, 38RL, 38RR are collectively referred to as wheel cylinders 38, and pressure adjustment is performed.
  • the units 34FL, 34FR, 34RL, 34RR may be collectively referred to as a pressure adjusting unit 34.
  • the pressure generating unit 32 is a mechanism that generates a pressure (fluid pressure) according to the operation of the brake pedal 31 by the driver of the vehicle.
  • the wheel cylinders 38FL, 38FR, 38RL, 38RR are mechanisms for applying a braking force to the wheels 2FL, 2FR, 2RL, 2RR by pressing the friction braking members, respectively.
  • the pressure adjusters 34FL, 34FR, 34RL, 34RR are mechanisms for adjusting the hydraulic pressure applied to the wheel cylinders 38FL, 38FR, 38RL, 38RR, respectively.
  • the recirculation mechanism 37 is a mechanism for recirculating brake fluid as a medium for generating hydraulic pressure to the upstream side, that is, from the wheel cylinder 38 side to the pressure generation unit 32 side.
  • the pressure generating section 32 has a master cylinder 32a and a reservoir tank 32b.
  • the master cylinder 32a discharges the brake fluid to be replenished from the reservoir tank 32b to two discharge ports based on a pressure generated in response to an operation (depressing operation) of the brake pedal 31 by the driver.
  • the two discharge ports of the master cylinder 32a are respectively connected to a front-side pressure regulator 34 (34FR and 34FL) and a rear-side pressure regulator via a solenoid valve 33 that is electrically switched between an open state and a closed state. 34 (34RR and 34RL).
  • the solenoid valve 33 opens and closes based on an electric signal given from a control unit (not shown) or the like.
  • the pressure adjusting section 34 has electromagnetic valves 35 and 36 that are electrically switched between an open state and a closed state.
  • the solenoid valves 35 and 36 are provided between the solenoid valve 33 and the reservoir 41 of the recirculation mechanism 37.
  • the solenoid valve 35 is provided on the solenoid valve 33 side, and the solenoid valve 36 is provided on the reservoir 41 side.
  • a wheel cylinder 38 is connected between the solenoid valve 35 and the solenoid valve 36.
  • the solenoid valves 35 and 36 can be opened and closed based on an electric signal provided from a control unit or the like, so that the hydraulic pressure of the wheel cylinder 38 can be increased, held, or reduced. .
  • the solenoid valve 35 is a so-called NO (normally open) valve which is set to an open state in a normal state. Therefore, the solenoid valve 35 in the off state (at a normal time) in which the electric signal is not received functions as a pressure increasing valve capable of flowing the brake fluid into the wheel cylinder 38 to increase the hydraulic pressure of the wheel cylinder 38, and The electromagnetic valve 35 in the ON state (at the time of operation) that has received the signal functions as a holding valve capable of preventing the brake fluid from flowing into the wheel cylinder 38 and holding the hydraulic pressure of the wheel cylinder 38.
  • the solenoid valve 36 is a so-called NC (normally closed) valve which is normally set to a closed state. Therefore, the solenoid valve 36 in the off state (normal state) in which the electric signal is not received functions as a holding valve capable of preventing the outflow of the brake fluid from the wheel cylinder 38 and holding the hydraulic pressure of the wheel cylinder 38. Then, the electromagnetic valve 36 in the ON state (at the time of operation) that has received the electric signal functions as a pressure reducing valve that allows the brake fluid to flow out of the wheel cylinder 38 and reduce the hydraulic pressure of the wheel cylinder 38.
  • NC normally closed
  • the recirculation mechanism 37 includes a reservoir 41, a pump 39, a motor 40, and a hydraulic damper 100.
  • the reservoir 41, the pump 39, and the hydraulic damper 100 are connected to the front-side pressure adjusters 34 (34FR and 34FL) and the rear-side pressure adjusters 34 (34RR and 34RL). One is provided for each.
  • the reservoir 41 temporarily stores the brake fluid flowing out of the wheel cylinder 38.
  • the pump 39 is driven by the motor 40 to pump the brake fluid from the wheel cylinder 38 to the master cylinder 32a.
  • the pump 39 is a positive displacement pump such as a piston pump.
  • the pump 39 may be a pump other than a piston pump.
  • the pump may be a gear pump or the like.
  • the pump 39 generates a discharge pulsation.
  • the pump 39 is an example of a pressurizing source.
  • the pressurizing source may be other than the pump 39.
  • the two pumps 39 are driven by one motor 40.
  • one motor 40 is shared for driving two pumps 39.
  • the motor 40 drives the pump 39 under the control of the control unit.
  • a check valve 29 and a throttle 30 for preventing backflow to the pump 39 are provided in parallel.
  • the diaphragm 30 is, for example, an orifice.
  • the discharge oil passage 42 connects the pump 39 with a portion between the solenoid valve 33 and the solenoid valve 35.
  • the discharge oil passage 42 is an example of an oil passage of the hydraulic circuit 10.
  • the hydraulic damper 100 is provided between the pump 39, the check valve 29 and the throttle 30 in the discharge oil passage 42. Therefore, the hydraulic pressure of the brake fluid discharged from the pump 39 acts on the hydraulic damper 100.
  • the hydraulic damper 100 is configured to reduce the discharge pulsation of the pump 39. Details of the hydraulic damper 100 will be described later.
  • the control unit is configured by, for example, an electronic control unit (ECU) having computer resources such as a processor and a memory.
  • the control unit controls the hydraulic circuit 10 based on a detection result of a sensor (not shown) that detects various state quantities of the vehicle.
  • Sensors for detecting various state quantities of the vehicle include, for example, a sensor for detecting the stroke amount of the brake pedal 31, a sensor for detecting the pressure in the master cylinder 32a, a sensor for detecting the rotation speed (rotation speed) of the wheels 2, and a vehicle. Sensor for detecting the acceleration (deceleration) of the vehicle.
  • the control unit performs various types of brake control such as antilock brake control.
  • the anti-lock control is to suppress the lock of the wheel 2 (difference between the wheel speed and the actual vehicle speed, slip) which may occur, for example, when braking suddenly or when braking on a road surface having relatively low road resistance.
  • the motors 40 are operated to control the solenoid valves 35 and 36 so as to intermittently recirculate the brake fluid from the wheel cylinder 38 side to the master cylinder 32a side.
  • the difference between the wheel speed and the actual vehicle speed is reduced by switching the pressure reduction, the holding, and the pressure increase as appropriate.
  • FIG. 2 is an exemplary schematic cross-sectional view of the hydraulic damper 100 according to the first embodiment, and is a cross-sectional view when the bladder 103 is in a free state.
  • the hydraulic damper 100 is attached to a housing 101.
  • the housing 101 can also be called a mounting member or a support member.
  • the housing 101 is made of, for example, a metal material such as aluminum.
  • the housing 101 is provided with a bottomed hole 101 a that forms the discharge oil passage 42.
  • the hole 101a extends in a first direction D1 from the outer surface 101b of the housing 101 toward the inside of the housing 101.
  • the hole 101 a has a step formed on the outer peripheral surface thereof, is formed in a column shape around the first axis Ax, and is opened on the outer surface 101 b of the housing 101.
  • the first axis Ax is along the first direction D1.
  • the axial direction and the circumferential direction of the first axis Ax may be simply referred to as the axial direction and the circumferential direction, unless otherwise specified.
  • the first axis Ax may be referred to as a central axis.
  • the direction opposite to the first direction D1 is referred to as a second direction D2.
  • a direction orthogonal to the first axis Ax and toward the first axis Ax is referred to as a first orthogonal direction D3, and a direction orthogonal to the first axis Ax and away from the first axis Ax is referred to as a second orthogonal direction D4.
  • a second passage (upstream hole) 101c that forms the discharge oil passage 42 on the upstream side of the hole 101a and two first passages (the discharge passage 42) that forms the discharge oil passage 42 on the downstream side of the hole 101a.
  • Downstream hole) 101d The second passage 101c is open on the outer peripheral surface of the hole 101a and is connected to the hole 101a.
  • the second passage 101c extends in a direction crossing the axial direction.
  • the second passage 101c is connected to the pump 39.
  • the two first passages 101d open at the bottom of the hole 101a and are connected to the hole 101a.
  • the first passage 101d extends in the axial direction.
  • One of the two first passages 101 d is connected to the check valve 29, and the other of the two first passages 101 d is connected to the throttle 30.
  • the second passage 101c and the first passage 101d may also be referred to as oil passages.
  • the housing 101 is provided with a concave surface 101e that forms the hole 101a. That is, the concave surface 101e faces the hole 101a while surrounding the hole 101a.
  • the concave surface 101e has an inner peripheral surface 101e1 and a bottom surface 101e2.
  • the inner peripheral surface 101e1 is formed in a stepped cylindrical shape around the first axis Ax.
  • the bottom surface 101e2 is connected to an end of the inner peripheral surface 101e1 in the first direction D1, and extends in a direction orthogonal to the first axis Ax.
  • the hole 101a is an example of a hydraulic chamber.
  • the housing 101 is configured by a combination of a plurality of constituent members, specifically, a first constituent member 105A and a second constituent member 105B.
  • the first component 105A is provided with a hole 101a, an upstream hole 101c, an inner peripheral surface 101e1, and a part of the bottom surface 101e2.
  • the second component 105B is provided with two downstream holes 101d and another portion of the bottom surface 101e2.
  • the housing 101 may further include other components other than the first component 105A and the second component 105B, or may be configured by one component.
  • the hydraulic damper 100 includes a core 102 attached to the housing 101, and a bladder 103 attached to the core 102 and acting on the outer peripheral surface 103a with hydraulic pressure.
  • the core 102 has a base 102a and a projection 102b protruding from the base 102a.
  • the core 102 is a member made of a hard material.
  • the hard material is a substance having sufficiently high rigidity with respect to the elastic body, such as a metal material such as aluminum or a plastic.
  • the base 102a closes the opening end of the hole 101a in the first direction D1.
  • the base 102a has a plug 102c and a support 102d.
  • the plug 102c is fitted in the hole 101a to close the hole 101a.
  • the support portion 102d is provided on an end surface 102e of the plug portion 102c in the first direction D1.
  • the support portion 102d is formed in a disk shape centered on the first axis Ax, and protrudes from the end surface 102e in the first direction D1.
  • the outer diameter of the support part 102d is smaller than the outer diameter of the end face 102e.
  • the protrusion 102b protrudes from the support portion 102d of the base 102a in the first direction D1.
  • the protrusion 102b is a rotating body around the first axis Ax.
  • the protrusion 102b has a proximal end 102f connected to the support 102d, a distal end 102g in the axial direction opposite to the proximal end 102f, and an outer peripheral surface 102h extending from the proximal end 102f toward the distal end 102g. .
  • the base end 102f is integrated with the base 102a.
  • First to third concave portions 102i1, 102i2, 102i3 are provided on the outer peripheral surface 102h.
  • the first to third recesses 102i1, 102i2, 102i3 are recessed in the first orthogonal direction D3.
  • the first to third concave portions 102i1, 102i2, 102i3 are formed in an annular shape around the first axis Ax.
  • the first recess 102i1 is adjacent to the base end 102f
  • the second recess 102i2 is located in the first direction D1 of the first recess 102i1
  • the third recess 102i3 is located in the first direction D1 of the second recess 102i2. ing.
  • the portions of the outer peripheral surface 102h that form the bottoms of the first to third concave portions 102i1, 102i2, and 102i3 may be respectively referred to as small diameter portions.
  • the outer peripheral surface 102h has first to third tops 102j1, 102j2, 102j3.
  • the first to third tops 102j1, 102j2, 102j3 are formed in a ring around the first axis Ax.
  • the first top 102j1 is located between the first recess 102i1 and the second recess 102i2, the second top 102j2 is located between the second recess 102i2 and the third recess 102i3, and the third top 102j3 is It is located between the second top 102j2 and the tip 102g.
  • the first top portion 102j1 has the largest outer diameter among the first to third top portions 102j1, 102j2, 102j3.
  • the outer diameter of the second top 102j2 and the third top 102j3 is smaller than that of the first top 102j1. Further, the third top portion 102j3 has a smaller outer diameter than the second top portion 102j2.
  • the first to third top portions 102j1, 102j2, 102j3 can also be referred to as large diameter portions.
  • the projection 102b has a supporting portion 102k and an extending portion 102m.
  • the support portion 102k supports the bladder 103.
  • the support portion 102k is configured by a portion of the protrusion 102b that is in contact with the bladder 103 in a state where no hydraulic pressure acts on the bladder 103.
  • the support portion 102k includes a base end 102f and a first top portion 102j1, and the support portion 102k is provided with a first concave portion 102i1.
  • the extension 102m extends in the first direction D1 from the support 102k.
  • the extending portion 102m is constituted by a portion of the protrusion 102b that is separated from the bladder 103 in a state where no hydraulic pressure acts on the bladder 103.
  • the extension 102m includes a second top 102j2, a third top 102j3, and a tip 102g, and the extension 102m is provided with a second recess 102i2 and a third rece
  • the extending part 102m and the supporting part 102k have outer peripheral surfaces 102h1 and 102h2 around the first axis Ax along the first direction D1, respectively.
  • the outer peripheral surfaces 102h1 and 102h2 are rotating surfaces around the first axis Ax along the first direction D1, respectively.
  • the two outer peripheral surfaces 102h1 and 102h2 are continuous.
  • the two outer peripheral surfaces 102h1 and 102h2 are respectively included in the outer peripheral surface 102h of the protrusion 102b.
  • the outer peripheral surface 102h1 is an example of a first outer peripheral surface.
  • the outer peripheral surface 102h1 of the extending portion 102m includes a side portion 102n1 and a tip 102g.
  • the side part 102n1 includes a second top part 102j2 and a third top part 102j3, and the side part 102n1 is provided with a second concave part 102i2 and a third concave part 102i3.
  • FIG. 3 is a diagram showing outlines L1 and L3 in a cross section including the first axis Ax of the outer peripheral surfaces 102h1 and 102h2 of the protrusion 102b.
  • the outer peripheral surface 102h1 of the projection 102b is formed by a curved surface.
  • the outer peripheral surface 102h1a includes a curved surface.
  • the outer peripheral surface 102h1 does not include a plane orthogonal to the first direction D1 except for the tip 102g.
  • the outer peripheral surface 102h1 is smooth from the side portion 102n1 to the tip 102g, and the outer diameter changes smoothly from the side portion 102n1 to the tip 102g.
  • the outer diameter of the outer peripheral surface 102h1 changes smoothly in the first direction D1.
  • the entire outline L1 is configured by a curve. That is, the outer diameter of the outer peripheral surface 102h1 continuously changes in the first direction D1.
  • the outline L1 may be partially provided with a straight line.
  • Such a shape of the outer peripheral surface 102h1 can be described differently as follows. That is, the outer shape line L1 in an arbitrary cross section along the first direction D1 of the outer peripheral surface 102h1 is a curve in which the tangent line L2 obliquely intersects the first direction D1 or is parallel to the first direction D1 except for the tip 102g. And does not include a line segment orthogonal to the first direction D1.
  • the angle ⁇ 1 at the inflection point P1 in the outline L1 of the protrusion 102b is set, for example, in the range of 25 degrees to 70 degrees. Note that the angle ⁇ 1 at the inflection point P1 may be out of the range of 25 degrees to 70 degrees.
  • the outer shape of the extension 102m is smaller in the order of the end 102m1, the second top 102j2, and the third top 102j3 of the extension 102m in the second direction D2.
  • a region 102r located in the first direction D1 with respect to the third concave portion 102i3 closest to the tip 102g is formed to have a smaller diameter as approaching the tip 102g.
  • the region 102r is an example of a first region.
  • the outer peripheral surface 102h2 of the support portion 102k includes a side portion 102n2 and a base end 102f.
  • the side part 102n2 includes a first top part 102j1, and the side part 102n2 is provided with a first concave part 102i1.
  • the outer diameter of the outer peripheral surface 102h2 of the support portion 102k changes smoothly in the first direction D1.
  • the angle ⁇ 2 between the tangent line L4 and the first axis Ax at each position of the outline L3 in the cross section including the first axis Ax of the outer peripheral surface 102h2 is different from 90 degrees.
  • the entire area of the outline L3 is formed by a curve.
  • the outer diameter of the outer peripheral surface 102h2 continuously changes in the first direction D1.
  • the outer diameter of the outer peripheral surface 102h2 may not be smoothly changed.
  • the angle ⁇ 2 between the tangent line L4 and the first axis Ax at a certain position of the outline L3 may be 90 degrees.
  • the outline L3 may be partially provided with a straight line.
  • the bladder 103 is attached to the core 102 so as to cover the outer peripheral surface 102h1 in a state in which gas is sealed between the bladder 103 and the outer peripheral surface 102h1 of the extending portion 102m of the core 102.
  • the gas is, for example, nitrogen gas.
  • the bladder 103 is made of an elastic member and is elastically deformable.
  • the elastic member is an elastomer such as ethylene propylene rubber.
  • the bladder 103 is formed in a cylindrical shape with a bottom, and has an outer peripheral surface 103a and an inner peripheral surface 103b.
  • the outer peripheral surface 103a faces the concave surface 101e of the housing 101, and forms an oil passage 101a1 with the concave surface 101e. That is, the outer peripheral surface 103a faces the oil passage 101a1, and the hydraulic pressure of the brake fluid in the oil passage 101a1 acts on the outer peripheral surface 103a.
  • the oil passage 101a1 is formed by a part of the hole 101a, and is connected to the second passage 101c and the first passage 101d. That is, the oil passage 101a1 forms the discharge oil passage 42.
  • the inner peripheral surface 103b covers the outer peripheral surface 102h1 in a state in which gas is sealed between the inner peripheral surface 103b and the outer peripheral surface 102h1 of the extending portion 102m of the core 102.
  • the inner peripheral surface 103b faces the protrusion 102b.
  • the inner peripheral surface 103b forms a gas chamber 111 between the inner peripheral surface 103b and the outer peripheral surface 102h1 of the extending portion 102m of the core 102. The gas is accommodated in the gas chamber 111.
  • the outer peripheral surface 103a is an example of a second outer peripheral surface.
  • FIG. 4 is an exemplary and schematic cross-sectional view of the hydraulic damper 100, in which the bladder 103 is in a contracted state.
  • the hydraulic pressure acts on the outer peripheral surface 103a of the bladder 103.
  • the inner peripheral surface 103b of the bladder 103 partially contacts the outer peripheral surface 102h1 of the core 102.
  • the outer peripheral surface 102h1 of the core 102 contacts a part of the inner peripheral surface 103b of the bladder 103 but does not contact the entire inner peripheral surface 103b.
  • the second concave portion 102i2 and the third concave portion 102i3 are provided on the outer peripheral surface 102h1.
  • the bladder 103 has a cylindrical portion 103c and a wall portion 103d.
  • the cylindrical portion 103c has a cylindrical shape around the first axis Ax. Therefore, the inner peripheral surface 103b of the cylindrical portion 103c has a cylindrical shape centered on the first axis Ax.
  • the cylindrical portion 103c includes an end 103e of the bladder 103 in the second direction D2.
  • the wall 103d closes the opening of the cylindrical portion 103c in the second direction D2.
  • the bladder 103 is provided with a concave portion 103f that is concave from the end 103e of the bladder 103 in the second direction D2.
  • the recess 103f is surrounded by the inner peripheral surface 103b. That is, the inner peripheral surface 103b forms the concave portion 103f.
  • a gas chamber 111 is formed by a part of the concave portion 103f.
  • the inner peripheral surface 103b of the cylindrical portion 103c is formed in a shape having a draft. That is, the diameter of the inner peripheral surface 103b of the bladder 103 decreases as it advances in the first direction D1.
  • It also has an attachment portion 103g attached to the bladder 103 and the core 102, and an extension 103h extending from the attachment portion 103g in the first direction D1.
  • the mounting portion 103g is provided at the end 103e of the bladder 103.
  • the mounting portion 103g is formed in an annular shape around the first axis Ax.
  • the mounting portion 103g has a first portion 103i and an inward flange 103j.
  • the first portion 103i is press-fitted between the projection 102b and the inner peripheral surface 101e1 of the housing 101, and is in a state of being compressed in a direction orthogonal to the first axis Ax.
  • the first portion 103i is press-fitted between a portion including at least the first top portion 102j1 of the protrusion 102b and the inner peripheral surface 101e1 of the housing 101.
  • the inward flange 103j is provided at the end 103e of the bladder 103.
  • the inward flange 103j is located in the second direction D2 of the first portion 103i.
  • the inward flange 103j protrudes from the first portion 103i in the first orthogonal direction D3.
  • the inward flange 103j protrudes inward from the edge 103e1 included in the end 103e of the bladder 103, crossing the first direction D1. That is, the inward flange 103j projects from the edge 103e1 of the bladder 103 in the first orthogonal direction D3.
  • the edge 103e1 is an annular edge on the inner peripheral side of the end face of the bladder 103 in the second direction D2.
  • the inward flange 103j is formed in an annular shape around the first axis Ax.
  • the inward flange 103j is inserted into the first recess 102i1 of the protrusion 102b of the core 102 and is hooked on the core 102.
  • the first concave portion 102i1 is an example of an accommodating portion that accommodates an inward flange 103j that is a part of the prada 103.
  • the convex portion 102p of the core 102 is located in the first direction D1 of the inward flange 103j.
  • the protrusion 102p is a portion of the core 102 that protrudes in the second orthogonal direction D4 from the end 103j1 of the inward flange 103j in the first orthogonal direction D3, and includes the first apex 102j1.
  • the outer peripheral surface of the convex portion 102p is constituted by a convex curved surface 102p1.
  • the convex curved surface 102p1 is adjacent to the inward flange 103j on the side near the distal end 102g, and is in contact with the inner peripheral surface 103b of the bladder 103 in a state where no hydraulic pressure is applied to the outer peripheral surface 103a of the bladder 103.
  • the outer peripheral surface 102h1 of the core 102 is located in the first direction D1 from the convex curved surface 102p1, and extends in the first direction D1 from the convex curved surface 102p1.
  • the maximum diameter of the outer peripheral surface 102h1 is smaller than the inner diameter of the inward flange 103j.
  • the extension 103h is separated from the housing 101 and the core 102.
  • An oil passage 101a1 is formed between the outer peripheral surface 103a of the extension 103h and the concave surface 101e of the housing 101.
  • a gas chamber 111 is formed between the inner peripheral surface 103b of the extension 103h and the outer peripheral surface 102h1 of the extension 102m in the protrusion 102b.
  • the gas chamber 111 includes a second recess 102i2 and a third recess 102i3. That is, the extending portion 103h forms the gas chamber 111 including at least the second concave portion 102i2 and the third concave portion 102i3.
  • the gap between the bladder 103 and the inner peripheral surface 103b becomes narrower as approaching the tip 102g. That is, the gap between the region 102r of the outer peripheral surface 102h1 of the core 102 and the inner peripheral surface 103b of the bladder 103 is the narrowest between the tip 102g and the inner peripheral surface 103b.
  • a gap between the second top 102j2 of the core 102 and the inner peripheral surface 103b of the bladder 103 in a direction orthogonal to the first axis Ax is formed between the third top 102j3 of the core 102 and the inner peripheral surface 103b of the bladder 103. It is smaller than the gap in the direction orthogonal to the first axis Ax between the two.
  • the brake fluid discharged from the pump 39 in FIG. 2 flows through the second passage 101c, the oil passage 101a1, and the first passage 101d in this order.
  • hydraulic pressure acts on the outer peripheral surface 103a of the bladder 103 in the hydraulic damper 100.
  • the bladder 103 elastically contracts to approach the protrusion 102 b of the core 102 due to the acting hydraulic pressure, and the bladder 103 moves to the tip 102 g, the second top 102 j 2, and the third top 102 j 3 of the protrusion 102 b.
  • the bladder 103 contacts the tip 102g and the second top 102j2, and then contacts the third top 102j3.
  • the contact between the bladder 103 and the tip 102g and the second top 102j2 may be either one of the tip 102g and the second top 102j2, or substantially simultaneously with both of them.
  • the bladder 103 closes the second concave portion 102i2 and the third concave portion 102i3. That is, the gas chambers 111 are formed at two places: the second recess 102i2 and the third recess 102i3.
  • the total volume of the gas chamber 111 is smaller than the volume of the gas chamber 111 when the bladder 103 is in the free state (FIG. 2). That is, the gas in the gas chamber 111 is compressed.
  • the volume of the gas chamber 111 when the bladder 103 is in a free state is also referred to as an initial volume.
  • FIG. 5 is an exemplary and schematic cross-sectional view of the hydraulic damper 200 of the comparative example, in which the bladder 203 is in a free state.
  • the hydraulic damper 200 of the comparative example is different from the hydraulic damper 100 of the first embodiment and the second and third embodiments described later in that the core 202 has a second concave portion 102i2 and a second concave portion 102i2.
  • the three concave portions 102i3 are not provided. That is, the outline of the cross section including the first axis Ax of the first outer peripheral surface 202n1 of the core 202 is a straight line.
  • FIG. 11 is a diagram showing the relationship between the hydraulic pressure and the consumed liquid amount in the first embodiment, second and third embodiments described later, and a comparative example.
  • the horizontal axis of FIG. 11 indicates the hydraulic pressure acting on the bladders 103 and 203
  • the vertical axis of FIG. 11 indicates the consumed liquid amount.
  • the consumed liquid amount is a volume between the outer peripheral surfaces 103a, 203a of the bladders 103, 203 before the pressurization and the outer peripheral surfaces 103a, 203a of the bladders 103, 203 under the pressurized state.
  • the solid line in FIG. 11 indicates the bladder 103 of the present embodiment
  • the broken line in FIG. 11 indicates the bladder 203 of the comparative example. As can be seen from FIG.
  • the hydraulic pressure N1 is a hydraulic pressure when the bladder 103 contacts the second top portion 102j2 and the second concave portion 102i2 is closed by the bladder 103.
  • a plurality of gas chambers 111 a, having different volumes are provided between the inner peripheral surface 103 b and the outer peripheral surface 102 h 1.
  • 111b (111) is formed.
  • the volume of the gas chamber 111a formed in the second recess 102i2 is larger than the volume of the gas chamber 111b formed in the third recess 101j3, but may be reversed.
  • three or more gas chambers 111 having different volumes may be formed between the inner peripheral surface 103b and the outer peripheral surface 102h1.
  • the tangent line La is both the top Lp1 of the outline L1 of the first top 102j1 adjacent to the second recess 102i2 and the top Lp2 of the outline L1 of the second top 102j2 adjacent to the second recess 102i2. It is a tangent line (external tangent line), and is a tangent line that straddles the concave portion Lc2 of the outline L1.
  • the tangent line Lb is a tangent to both the top Lp2 of the outline L1 of the second top 102j2 adjacent to the third recess 102i3 and the top Lp3 of the outline L1 of the third top 102j3 adjacent to the third recess 102i3.
  • Example tangent line which is a tangent line that straddles the concave portion Lc3 of the outline L1. Even when three or more gas chambers 111 are formed, similarly, the volumes of the gas chambers 111 can be different based on the difference between the regions.
  • the thickness tm of the cylindrical wall 103m around the first axis Ax of the bladder 103 is set to be smaller than the thickness tn of the end wall 103n of the bladder 103 in the first direction D1.
  • the thickness tm of the cylindrical wall 103m is, for example, the thickness of the cylindrical wall 103m in a direction orthogonal to the cylindrical outer surface 103a1 or the inner peripheral surface 103b of the bladder 103, and the thickness tn of the end wall 103n is , The thickness of the end wall 103n in the direction orthogonal to the end face 103a2.
  • the thickness tm is an example of a first thickness
  • the thickness tn is an example of a second thickness.
  • the cylindrical outer surface 103a1 is also referred to as an outer peripheral surface
  • the outer peripheral surface 103a is also referred to as an outer surface.
  • the end face 103a2 has a plane orthogonal to the first axis Ax (first direction D1).
  • the end face 103 a 2 is entirely flat, but the present invention is not limited to this.
  • the bladder 103 has at least an inward flange 103 j of the projection 102 b in the assembled state. It is sufficient that the annular region Ar overlapping the portion from the one concave portion 102i1 to the first top portion 102j1 in the first direction D1 has a planar end face 103a2.
  • the annular region Ar is a region that overlaps in the direction D1 with the first top portion 102j1 that rides in the first direction D2 when the bladder 103 is assembled to the protrusion 102b of the core 102. Further, in this case, a concave portion that is concave in the second direction D2 may be provided in a region other than the annular region Ar.
  • the outer peripheral surface 102h1 of the projection 102b includes a curved surface and does not include a plane orthogonal to the first direction D1 except for the tip 102g. Therefore, according to the present embodiment, for example, the bladder 103 is elastically contracted by the liquid pressure acting on the outer peripheral surface 103 a of the bladder 103 so as to approach the protrusion 102 b of the core 102, Even when the bladder 103 is deformed, the stress concentration in the bladder 103 can be suppressed. Therefore, according to the present embodiment, the stress generated in the bladder 103 can be easily reduced. Therefore, a decrease in the durability of the hydraulic damper 100 can be suppressed.
  • the second concave portion 102i2 and the third concave portion 102i3 are provided on the projection 102b, the second concave portion 102j2 and the third concave portion 102j3 of the protrusion 102b are kept even after the bladder 103 comes into contact with the second concave portion 102j2. It is deformable toward the inside 102i2 and the third recess 102i3. Therefore, the discharge pulsation of the pump 39 can be reduced at a higher hydraulic pressure than in the comparative example.
  • the inner peripheral surface 103b of the bladder 103 and the outer peripheral surface 102h1 (first outer peripheral surface) of the protrusion 102b are connected. Between them, a plurality of gas chambers 111a and 111b (111) having different volumes are formed. According to the size of the volume of the gas chamber 111, the spring constant of the air spring at the portion where the gas chamber 111 is formed changes, and the frequency of the suppressed pulsation changes.
  • the first deformation amount of the cylindrical wall 103m is larger than the second deformation amount of the end wall 102n in a state where the hydraulic pressure acts on the outer peripheral surface 103a (second outer peripheral surface).
  • the thickness tm (first thickness) of the cylindrical wall 103m of the bladder 103 is changed to the thickness TN (the thickness of the end wall 103n of the bladder 103). (Second thickness).
  • the cylindrical wall 103m is more easily elastically deformed than when the thickness tm of the cylindrical wall 103m is larger than the thickness tn of the end wall 102n.
  • a pulsation reduction effect corresponding to a volume change of the gas chamber 111 accompanying the elastic deformation of the cylindrical wall 103m can be more reliably obtained.
  • the end wall 102n is thinner than the cylindrical wall 103m, for example, when the hydraulic pressure acts on the outer peripheral surface 103a of the bladder 103, the end wall 102n is elastically deformed earlier than the cylindrical wall 103m.
  • the desired elastically deformed state of the bladder 103 may be difficult to obtain, such as the center of the end wall 102n and thus the center of the cylindrical wall 103m being offset from the first axis Ax.
  • the thickness tn of the end wall 102n is greater than the thickness tm of the cylindrical wall 103m, and the end wall 102n is less likely to be elastically deformed than the cylindrical wall 103m.
  • the hydraulic pressure acts on the surface 103a
  • the shape of the bladder 103 is more easily maintained. Therefore, for example, the desired elastic deformation state of the bladder 103 is easily obtained, so that the desired pulsation reduction effect is easily obtained.
  • the difference in the amount of elastic deformation between the cylindrical wall 103m and the end wall 102n can be obtained by means other than the difference in the thicknesses.
  • a material harder than the material forming the cylindrical wall 103m may be used, or the end wall 102n may have a reinforcing structure such as a ridge or a rib.
  • the bladder 103 has an end face 103a2 in the first direction D1 including a plane orthogonal to the first direction D1. According to such a configuration, for example, the worker or the robot can more easily or surely turn the plane provided on the end face 103a2 in the second direction D2 opposite to the first direction D1. Since the pressing can be performed, the work of assembling the bladder 103 to the core 102 can be performed more easily, more quickly, or more reliably.
  • the outer peripheral surface 102h1 includes the tip 102g in a state where the hydraulic pressure is not acting on the outer peripheral surface 103a of the bladder 103. It includes a region 102r (first region) where the gap between the peripheral surface 103b and the peripheral surface 103b is narrow. Therefore, according to the present embodiment, for example, when the bladder 103 elastically contracts to approach the protrusion 102b of the core 102 by the hydraulic pressure acting on the outer peripheral surface 103a, the bladder 103 At 102r, it comes into contact with the tip 102g first. Therefore, according to the present embodiment, buckling of the bladder 103 in the first direction D1 can be suppressed.
  • the bladder 103 has an annular edge 103e1 opposite to the tip 102g in the first direction, and inwardly intersects the edge 103e1 in the first direction D1. And an inward flange 103j that protrudes from Therefore, according to the present embodiment, for example, the size of the bladder 103 can be reduced compared to a configuration in which a flange for hooking the bladder 103 on the core 102 projects outward from the edge 103e1 in a direction intersecting the first direction. Can be.
  • the core 102 is adjacent to the inward flange 103j on the side near the tip 102g, and the hydraulic pressure is not acting on the outer peripheral surface 103a of the bladder 103.
  • the bladder 103 has a convex curved surface 102p1 in contact with the inner peripheral surface 103b.
  • the outer peripheral surface 102h1 of the core 102 is located in the first direction D1 with respect to the convex curved surface 102p1.
  • the maximum diameter of the outer peripheral surface 102h1 is smaller than the inner diameter of the inward flange 103j.
  • the outer peripheral surface 102h1 of the bladder 103 is positioned inside the inward flange 103j. Contact with the peripheral portion can be suppressed. Therefore, according to the present embodiment, attachment of the bladder 103 to the core 102 is easy.
  • the angle ⁇ 1 at the inflection point P1 in the outline L1 of the protrusion 102b is set, for example, in the range of 25 degrees to 70 degrees.
  • the angle ⁇ 1 at the inflection point P1 is smaller, that is, as the change of the outer shape line L1 is more gradual, it is necessary to increase the axial length of the projection 102b. is there.
  • the angle ⁇ 1 at the inflection point P1 is larger, that is, as the change in the outline L1 is steeper, the radius of curvature of the bent portion of the bladder 103 caused by the deformation of the bladder 103 is reduced, and the stress of the bladder 103 is reduced. Easy to get high. Therefore, in the present embodiment, for example, by setting the range of the angle ⁇ 1 at the inflection point P1 as described above, both the miniaturization and the durability of the hydraulic damper 100 are achieved.
  • the entire outlines L1 and L3 of the protrusion 102b are configured by curves. Therefore, the length of the protrusion 102b in the axial direction can be easily reduced as compared with the case where a straight line is partially provided on the outlines L1 and L3.
  • the liquid damper is mounted so as to face the oil passage, but the present invention is not limited to this.
  • the liquid damper may be provided so as to face the interior of the container.
  • the number of recesses of the extension of the projection may be one, or three. It may be the above.
  • the bladder is separated from the first top and the second top in a state where no hydraulic pressure acts on the bladder, but the present invention is not limited to this.
  • the bladder may be in contact with the first and second tops with no hydraulic pressure acting on the bladder.
  • the first outer peripheral surface of the projection is constituted by the rotating surface
  • the present invention is not limited to this.
  • the first outer peripheral surface may have a shape including a spiral shape and an elliptical shape.
  • the first outer peripheral surface may include a conical surface.
  • FIGS. 5 to 7 show a hydraulic damper according to a second embodiment. 5 to 7, the same components as those of the above-described hydraulic damper of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • a conventional hydraulic damper for example, when the bladder is not properly attached to the core during the assembling process, or when the bladder is detached from the core for some reason, the hydraulic bladder of the hydraulic damper is removed by the detached bladder. It is not preferred that the flow of the liquid or the propagation of the pressure at the outlet be impeded.
  • a hydraulic damper that can easily secure the flow of the liquid in the hydraulic chamber can be obtained as described below.
  • a groove 103k is provided in a bottom surface 103n1 which is an outer surface of a bottom wall 103n of the bladder 103.
  • the groove 103k is, for example, recessed from the bottom surface 103n1 at a substantially constant depth in the second direction D2, and extends along the bottom surface 103n1 in a direction intersecting the first direction D1 and the second direction D2.
  • the plurality of grooves 103k are provided, for example, in a cross shape when viewed in the second direction D2.
  • the plurality of grooves 103k are connected to each other.
  • the shape of the groove 103k when viewed in the second direction D2 is not limited to a cross shape, but may be a mesh shape, a ladder shape, or the like, or a concentric groove and a radially extending groove may be used.
  • the shape may be such that they intersect, may be a bent groove connected in a one-stroke shape, or may be other shapes.
  • the plurality of grooves 103k may be connected to each other.
  • the first opening 101d1 is open in the bottom surface 101e2, but since the groove 103k is provided, the bottom surface 103n1 of the bladder 103 does not block the first opening 101d1, and
  • the gap between the groove 103k and the bottom surface 101e2 is formed in the hole 101a without completely closing the space between the bottom surface 103n1 and the bottom surface 101e2, and the liquid passage between the first opening 101d1 and the second opening 101c1 in the hole 101a.
  • the bottom surface 103n1 is a part of the outer peripheral surface 103a, is an example of a first end, and may be referred to as an end surface of the bladder 103 in the first direction D1.
  • the bottom surface 101e2 of the hole 101a facing the bottom surface 103n1 is an example of the facing surface.
  • the groove 103k is an example of a recess. Further, the bottom surface 103n1 is an example of a convex portion that is relative to the bottom of the groove 103k.
  • a hole 101a as a hydraulic chamber of the hydraulic damper 200 and a hole 101f as a hydraulic chamber of the pump 39 are adjacent to each other in the housing 101.
  • the pump 39 is, for example, a single cylinder piston pump.
  • the first axis Ax, which is the center of the hole 101a, and the second axis Ax2, which is the center of the hole 101f, are parallel to each other. Further, since the holes 101a and 101f are opened on the same outer surface 101b, the labor and cost for processing the holes 101a and 101f can be reduced as compared with the case where the holes 101a and 101f are opened on different surfaces.
  • the second passage 101c connecting the hole 101a and the hole 101f is formed from the opening end 101f1 of the hole 101f.
  • a hole 101g (a third axis Ax3 thereof) serving as a hydraulic chamber accommodating a motor 40 that rotationally drives the pump 39 intersects and is orthogonal to a direction parallel to the first axis Ax and the second axis Ax2.
  • the hole 101f is a through hole extending from the outer surface 101b to the hole 101g. According to such a configuration, the pump 39, the motor 40, and the hydraulic damper 200 can be more efficiently arranged in the housing 101.
  • the bladder 103 falls off the core 102 on the bottom surface 103n1 (first end) and the bottom surface 103n1 and the bottom surface 101e2 of the hole 101a (hydraulic chamber).
  • a groove 103k (recess) that forms at least a part of a liquid passage between the first opening 101d1 and the second opening 101c1 is provided between the bottom surface 103n1 and the bottom surface 101e2 when the bottom surface 103n1 and the bottom surface 101e2 are in contact with each other. Have been.
  • the bottom surface 103n1 and the bottom surface 101e2 are
  • the gap between the groove 103k and the bottom surface 101e2 forms a part of the liquid passage between the first opening 101d1 and the second opening 101c1 in the hole 101a without completely closing the gap. Therefore, in the hydraulic damper 100, the interruption of the discharge oil passage 42 extending from the discharge side of the pump 39 can be suppressed.
  • the present invention is not limited to the example of the above-described embodiment, and a configuration in which a projection (a convex portion, a ridge, not shown) is provided on the bottom surface 103n1 or a groove (a concave portion, a concave groove, not shown) is provided on the bottom surface 101e2. Even if there is a configuration in which projections (projections, projections, not shown) are provided on the bottom surface 101e2, the bottom surface 103n1 (first end) and the bottom surface 101e2 are formed by at least one of the recesses and projections. A gap that forms a part of a liquid passage between the first opening 101d1 and the second opening 101c1 can be provided between the first opening 101d1 and the second opening 101c1.
  • the second opening 101c1 of the second passage 101c is opened to the inner peripheral surface 101e1 of the inner surface 101e.
  • the second opening 101c1 is also opened to the bottom surface 103n1. May be done.
  • the inward flange 103j that is a part of the bladder 103 is attached to the core 102 by being pressed into the first recess 102i1 (accommodating portion).
  • the effect of ensuring the passage by the convex portion or the concave portion provided on at least one of the bottom surface 103n1 and the bottom surface 101e2 is that the bladder 103 is attached to the core 102 by partially pressing the bladder 103 into the core 102 as in the present embodiment. It is beneficial in the configuration described.
  • the first concave portion 102i1 (housing portion) is provided continuously in the circumferential direction of the first axis Ax, in other words, in the circumferential direction of the outer peripheral surface 102h1 (first outer peripheral surface).
  • the coupling strength between the core 102 and the bladder 103 is likely to be higher than when the bladder 103 is supported at a plurality of locations separated from each other.
  • the outer peripheral surface 102h1 of the projection 102b includes a curved surface and does not include a plane orthogonal to the first direction D1 except for the tip 102g. Therefore, according to the present embodiment, for example, the bladder 103 is elastically contracted by the liquid pressure acting on the outer peripheral surface 103 a of the bladder 103 so as to approach the protrusion 102 b of the core 102, Even when the bladder 103 is deformed, the stress concentration in the bladder 103 can be suppressed. Therefore, according to the present embodiment, the stress generated in the bladder 103 can be easily reduced. Therefore, a decrease in the durability of the hydraulic damper 200 can be suppressed.
  • the second concave portion 102i2 and the third concave portion 102i3 are provided on the projection 102b, the second concave portion 102j2 and the third concave portion 102j3 of the protrusion 102b are kept even after the bladder 103 comes into contact with the second concave portion 102j2. It is deformable toward the inside 102i2 and the third recess 102i3. Therefore, the discharge pulsation of the pump 39 can be reduced at a higher hydraulic pressure than in the comparative example.
  • FIGS. 8 and 9 show a hydraulic damper according to a third embodiment.
  • the same components as those of the above-described hydraulic damper of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the hydraulic damper includes a core having a base, a first outer peripheral surface protruding from the base in the first direction and extending smoothly from the side to the tip, and an elastic member.
  • a bladder having an inner peripheral surface that covers the first outer peripheral surface in a state in which gas is sealed between the outer peripheral surface, a second outer peripheral surface on which hydraulic pressure acts, and a first end in a first direction; A configuration in which the bladder is prevented from falling off the core by a member different from the core in a state in which the bladder is housed in the hydraulic chamber, so that the bladder can be prevented from coming off the core as described below.
  • the width w in the first direction D1 of the first concave portion 102i1 in which the inward flange 103j of the bladder 103 is accommodated is the bottom surface 103n1 of the bladder 103. Is larger than the distance g between the hole 101a and the bottom surface 101d2 (w> g).
  • the bladder 103 can be prevented from deviating from the core 102 in the first direction D1.
  • the width w may be referred to as a length.
  • the housing 101 having the bottom surface 101e2 is an example of a member different from the core 102 that prevents the bladder 103 from falling off the core 102.
  • a groove 103k is provided on a bottom surface 103n1 which is an outer surface of the bottom wall 103n of the bladder 103.
  • the groove 103k is, for example, recessed from the bottom surface 103n1 at a substantially constant depth in the second direction D2, and extends along the bottom surface 103n1 in a direction intersecting the first direction D1 and the second direction D2.
  • the plurality of grooves 103k are provided, for example, in a cross shape when viewed in the second direction D2.
  • the plurality of grooves 103k are connected to each other.
  • the shape of the groove 103k when viewed in the second direction D2 is not limited to a cross shape, but may be a mesh shape, a ladder shape, or the like, or a concentric groove and a radially extending groove may be used.
  • the shape may be such that they intersect, may be a bent groove connected in a one-stroke shape, or may be other shapes.
  • the plurality of grooves 103k may be connected to each other.
  • a gap (space) corresponding to at least the volume of the groove 103k is formed between the bottom surface 103n1 of the bladder 103 and the bottom surface 101e2 of the hole 101a.
  • the first opening 101d1 is opened in the bottom surface 101e2, but when the gap g is set to be relatively small due to the provision of the groove 103k, for example, the gap g Is set to approximately 0 (zero) (when the interval g is 0 (zero), that is, also when the bottom surface 103n1 and the bottom surface 101e2 are in contact with each other in advance), 103n1 does not cover the first opening 101d1 and does not completely close the space between the bottom surface 103n1 and the bottom surface 101e2, so that the gap between the groove 103k and the bottom surface 101e2 is formed in the hole 101a.
  • the bottom surface 103n1 is an example of a first end, and may be referred to as an end surface of the bladder 103 in the first direction D1.
  • the bottom surface 101e2 of the hole 101a facing the bottom surface 103n1 is an example of the facing surface.
  • the groove 103k is an example of a recess. Further, the bottom surface 103n1 is an example of a convex portion that is relative to the bottom of the groove 103k.
  • the bottom surface 103n1 (first end) of the bladder 103 is in contact with the bottom surface 101e2 (opposing surface) of the hole 101a, or the bottom surface 103n1 and the bottom surface 101e2 are in contact in advance. Therefore, according to such a configuration, the bladder 103 is prevented from coming off the core 102 by the bottom surface 101e2 of the housing 101 (a member different from the core 102).
  • the other member is not limited to the housing 101 itself, and may be a member different from the housing 101 fixed to the housing 101, a member different from the housing 101 housed in the hole 101a, or the like.
  • a member interposed between the bottom surface 103n1 and the bottom surface 101e2 may be used.
  • the liquid passage between the first opening 101d1 and the second opening 101c1 between the bottom surface 103n1 and the bottom surface 101e2 is provided on the bottom surface 103n1 (first end).
  • a groove 103k (recess) that forms a part is provided.
  • the gap between the bottom surface 103n1 and the bottom surface 101e2 is not completely closed, and the groove 103k is formed in the hole 101a.
  • the gap between the bottom surface 101e2 and the first opening 101d1 can form a part of the liquid passage between the second opening 101c1. Therefore, for example, the size of the hydraulic damper 100 in the first direction can be further reduced.
  • the present invention is not limited to the example of the above-described embodiment, and a configuration in which a projection (a convex portion, a ridge, not shown) is provided on the bottom surface 103n1 or a groove (a concave portion, a concave groove, not shown) is provided on the bottom surface 101e2. Even if there is a configuration in which projections (projections, projections, not shown) are provided on the bottom surface 101e2, the bottom surface 103n1 (first end) and the bottom surface 101e2 are formed by at least one of the recesses and projections. A gap that forms a part of a liquid passage between the first opening 101d1 and the second opening 101c1 can be provided between the first opening 101d1 and the second opening 101c1.
  • the second opening 101c1 of the second passage 101c is opened to the inner peripheral surface 101e1 of the inner surface 101e.
  • the second opening 101c1 is also opened to the bottom surface 103n1. May be done.
  • the inward flange 103j that is a part of the bladder 103 is attached to the core 102 by being pressed into the first recess 102i1 (accommodating portion).
  • the effect of ensuring the passage by the convex portion or the concave portion provided on at least one of the bottom surface 103n1 and the bottom surface 101e2 is that the bladder 103 is attached to the core 102 by partially pressing the bladder 103 into the core 102 as in the present embodiment. It is beneficial in the configuration described. In other words, it is not necessary to assume that the bladder 103 comes off the core 102, and the liquid passage can be more reliably secured in the hole 101a (hydraulic chamber). Press-fitting with relatively low labor and cost is likely to be adopted. Therefore, according to such a configuration, for example, the labor and cost of manufacturing the hydraulic damper 300 are more likely to be reduced.
  • the outer peripheral surface 102h1 of the projection 102b includes a curved surface and does not include a plane orthogonal to the first direction D1 except for the tip 102g. Therefore, according to the present embodiment, for example, the bladder 103 is elastically contracted by the liquid pressure acting on the outer peripheral surface 103 a of the bladder 103 so as to approach the protrusion 102 b of the core 102, Even when the bladder 103 is deformed, the stress concentration in the bladder 103 can be suppressed. Therefore, according to the present embodiment, the stress generated in the bladder 103 can be easily reduced. Therefore, a decrease in the durability of the hydraulic damper 300 can be suppressed.
  • the second concave portion 102i2 and the third concave portion 102i3 are provided on the projection 102b, the second concave portion 102j2 and the third concave portion 102j3 of the protrusion 102b are kept even after the bladder 103 comes into contact with the second concave portion 102j2. It is deformable toward the inside 102i2 and the third recess 102i3. Therefore, the discharge pulsation of the pump 39 can be reduced at a higher hydraulic pressure than in the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

This hydraulic damper comprises a core and a bladder. The core has a base and a first outer peripheral surface that protrudes in a first direction from the base and that is smooth from a side part to a tip end. The bladder is configured from an elastic material, and the bladder has an inner peripheral surface that covers the first outer peripheral surface such that a gas is sealed in between the first outer peripheral surface and the inner peripheral surface, and a second outer peripheral surface on which hydraulic pressure is exerted. A recessed part is provided in the first outer peripheral surface so that when hydraulic pressure is exerted on the second outer peripheral surface, the first outer peripheral surface comes into contact with part of the inner peripheral surface but does not come into contact with all of the inner peripheral surface. The first outer peripheral surface includes a curved surface and does not include a flat surface orthogonal to the first direction except for the tip end.

Description

液圧ダンパHydraulic damper
 本発明の実施形態は、液圧ダンパに関する。 The embodiment of the present invention relates to a hydraulic damper.
 従来、凹部が設けられたコアと、コアの外周面との間に気体を封入した状態で当該外周面を覆うようコアに取り付けられたブラダと、を有した液圧ダンパが知られている。この液圧ダンパでは、ブラダの外周面に液圧が作用することにより、ブラダが収縮する。 Conventionally, there has been known a hydraulic damper having a core provided with a concave portion, and a bladder attached to the core so as to cover the outer peripheral surface in a state where gas is sealed between the core and the outer peripheral surface. In this hydraulic damper, the bladder contracts when hydraulic pressure acts on the outer peripheral surface of the bladder.
特開平9-151830号公報JP-A-9-151830
 この種の液圧ダンパでは、例えば、ブラダの収縮に伴い当該ブラダに応力が発生する。当該応力が大きくなると、ブラダひいては液圧ダンパの耐久性が低下する虞がある。 で は In this type of hydraulic damper, for example, stress is generated in the bladder as the bladder contracts. When the stress increases, the durability of the bladder and thus the hydraulic damper may be reduced.
 そこで、本発明の課題の一つは、耐久性の低下を抑制することができる液圧ダンパを得ることである。 Therefore, one of the objects of the present invention is to obtain a hydraulic damper capable of suppressing a decrease in durability.
 実施形態の液圧ダンパは、ベースと、当該ベースから第1方向に突出し側部から先端にかけて滑らかな第1外周面と、を有したコアと、弾性部材によって構成され、前記第1外周面との間に気体を封入した状態で前記第1外周面を覆う内周面と、液圧が作用する第2外周面と、を有したブラダと、を備え、前記第2外周面に液圧が作用した状態で前記内周面の一部とは接触し、前記内周面の全部とは接触しないように前記第1外周面に凹部が設けられ、前記第1外周面は、曲面を含むとともに、前記先端を除き前記第1方向と直交する平面を含まない。 The hydraulic damper according to the embodiment includes a core having a base, a first outer peripheral surface protruding from the base in a first direction and extending smoothly from the side to the tip, and an elastic member. A bladder having an inner peripheral surface that covers the first outer peripheral surface in a state in which gas is sealed between the first outer peripheral surface and a second outer peripheral surface on which a hydraulic pressure acts, wherein the hydraulic pressure is applied to the second outer peripheral surface. A concave portion is provided on the first outer peripheral surface so as to be in contact with a part of the inner peripheral surface in an actuated state and not to contact the whole of the inner peripheral surface, and the first outer peripheral surface includes a curved surface. , Except for the tip, does not include a plane orthogonal to the first direction.
 上記の構成によれば、例えば、第1外周面は、曲面を含むとともに、先端を除き第1方向と直交する平面を含まないので、ブラダが、第2外周面に作用する液圧によってコアの突起に近づくように弾性的に収縮し、コアに接触して弾性的に変形した場合でも、ブラダにおける応力集中を抑制することができる。よって、上記の構成によれば、ブラダに発生する応力を小さくしやすい。したがって、液圧ダンパの耐久性の低下を抑制することができる。 According to the above configuration, for example, the first outer peripheral surface includes a curved surface, and does not include a plane orthogonal to the first direction except for the tip, so that the bladder is configured to have the core formed by hydraulic pressure acting on the second outer peripheral surface. Even when the bladder is elastically contracted to approach the projection and elastically deformed in contact with the core, stress concentration in the bladder can be suppressed. Therefore, according to the above configuration, it is easy to reduce the stress generated in the bladder. Therefore, a decrease in the durability of the hydraulic damper can be suppressed.
図1は、実施形態のブレーキ装置の例示的かつ模式的な構成図である。FIG. 1 is an exemplary and schematic configuration diagram of a brake device according to an embodiment. 図2は、第1実施形態の液圧ダンパの例示的かつ模式的な断面図であって、ブラダが自由状態の場合の断面図である。FIG. 2 is an exemplary and schematic cross-sectional view of the hydraulic damper of the first embodiment, and is a cross-sectional view when the bladder is in a free state. 図3は、第1実施形態の突起の外周面の第1軸を含む断面における外形線を示す図である。FIG. 3 is a diagram illustrating an outline in a cross section including a first axis of an outer peripheral surface of the protrusion according to the first embodiment. 図4は、第1実施形態の液圧ダンパの例示的かつ模式的な断面図であって、ブラダが収縮状態の場合の断面図である。FIG. 4 is an exemplary and schematic cross-sectional view of the hydraulic damper of the first embodiment, and is a cross-sectional view when the bladder is in a contracted state. 図5は、第2実施形態の液圧ダンパの例示的かつ模式的な断面図であって、ブラダが自由状態の場合の断面図である。FIG. 5 is an exemplary and schematic cross-sectional view of the hydraulic damper according to the second embodiment, and is a cross-sectional view when the bladder is in a free state. 図6は、第2及び第3実施形態の突起の外周面の第1軸を含む断面における外形線を示す図である。FIG. 6 is a diagram illustrating an outline in a cross section including the first axis of the outer peripheral surface of the protrusion according to the second and third embodiments. 図7は、第2実施形態の液圧ダンパの例示的かつ模式的な断面図であって、ブラダが収縮状態の場合の断面図である。FIG. 7 is an exemplary and schematic cross-sectional view of the hydraulic damper of the second embodiment, and is a cross-sectional view when the bladder is in a contracted state. 図8は、第3実施形態の液圧ダンパの例示的かつ模式的な断面図であって、ブラダが自由状態の場合の断面図である。FIG. 8 is an exemplary and schematic cross-sectional view of the hydraulic damper according to the third embodiment, and is a cross-sectional view when the bladder is in a free state. 図9は、第3実施形態の液圧ダンパの例示的かつ模式的な断面図であって、ブラダが収縮状態の場合の断面図である。FIG. 9 is an exemplary and schematic cross-sectional view of the hydraulic damper of the third embodiment, and is a cross-sectional view when the bladder is in a contracted state. 図10は、比較例の液圧ダンパの例示的かつ模式的な断面図であって、ブラダが自由状態の場合の断面図である。FIG. 10 is an exemplary and schematic cross-sectional view of the hydraulic damper of the comparative example, and is a cross-sectional view when the bladder is in a free state. 図11は、実施形態および比較例の液圧と消費液量との関係を示す図である。FIG. 11 is a diagram illustrating the relationship between the hydraulic pressure and the consumed liquid amount in the embodiment and the comparative example. 図12は、実施形態のブレーキ装置のハウジングの例示的かつ模式的な断面図である。FIG. 12 is an exemplary and schematic cross-sectional view of a housing of the brake device according to the embodiment.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用、結果、および効果は、あくまで一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果のうち少なくとも一つを得ることが可能である。なお、本明細書において、序数は、部品や部位等を区別するために用いられており、順番や優先度を示すものではない。 Hereinafter, exemplary embodiments of the present invention will be disclosed. The configuration of the embodiment described below, and the operation, result, and effect provided by the configuration are merely examples. The present invention can be implemented by configurations other than those disclosed in the following embodiments. Further, according to the present invention, it is possible to obtain at least one of various effects obtained by the configuration. In this specification, ordinal numbers are used for distinguishing parts, parts, and the like, and do not indicate an order or a priority.
 図1は、ブレーキ装置1の例示的かつ模式的な構成図である。ブレーキ装置1は、例えば四輪の車両に設けられる。なお、実施形態の技術は、四輪の車両以外の車両にも適用可能である。 FIG. 1 is an exemplary and schematic configuration diagram of the brake device 1. The brake device 1 is provided in, for example, a four-wheeled vehicle. The technology of the embodiment can be applied to vehicles other than four-wheel vehicles.
 図1に示されるように、ブレーキ装置1は、油圧回路10を備えている。ブレーキ装置1は、油圧回路10内のブレーキ液の圧力(液圧)によって、前輪である車輪2FL,2FRと、後輪である車輪2RL,2RRと、の各々に制動力(摩擦制動トルク)を付与することが可能に構成されている。ブレーキ液は、流体とも称されうる。 ブ レ ー キ As shown in FIG. 1, the brake device 1 includes a hydraulic circuit 10. The brake device 1 applies a braking force (friction braking torque) to each of the front wheels 2FL and 2FR and the rear wheels 2RL and 2RR by the pressure (fluid pressure) of the brake fluid in the hydraulic circuit 10. It is configured so that it can be provided. Brake fluid may also be referred to as a fluid.
 油圧回路10は、圧力発生部32と、ホイールシリンダ38FL,38FR,38RL,38RRと、圧力調整部34FL,34FR,34RL,34RRと、還流機構37と、を備えている。 The hydraulic circuit 10 includes the pressure generating unit 32, the wheel cylinders 38FL, 38FR, 38RL, 38RR, the pressure adjusting units 34FL, 34FR, 34RL, 34RR, and the recirculation mechanism 37.
 なお、以下では、簡単化のため、車輪2FL,2FR,2RL,2RRを総称して車輪2と記載し、ホイールシリンダ38FL,38FR,38RL,38RRを総称してホイールシリンダ38と記載し、圧力調整部34FL,34FR,34RL,34RRを総称して圧力調整部34と記載する場合がある。 In the following, for simplicity, the wheels 2FL, 2FR, 2RL, 2RR are collectively referred to as wheels 2, and the wheel cylinders 38FL, 38FR, 38RL, 38RR are collectively referred to as wheel cylinders 38, and pressure adjustment is performed. The units 34FL, 34FR, 34RL, 34RR may be collectively referred to as a pressure adjusting unit 34.
 圧力発生部32は、車両の運転者によるブレーキペダル31の操作に応じた圧力(液圧)を発生させる機構である。ホイールシリンダ38FL,38FR,38RL,38RRは、それぞれ、摩擦制動部材を加圧することで車輪2FL,2FR,2RL,2RRに制動力を付与する機構である。 The pressure generating unit 32 is a mechanism that generates a pressure (fluid pressure) according to the operation of the brake pedal 31 by the driver of the vehicle. The wheel cylinders 38FL, 38FR, 38RL, 38RR are mechanisms for applying a braking force to the wheels 2FL, 2FR, 2RL, 2RR by pressing the friction braking members, respectively.
 また、圧力調整部34FL,34FR,34RL,34RRは、それぞれ、ホイールシリンダ38FL,38FR,38RL,38RRに与えられる液圧を調整する機構である。還流機構37は、液圧を発生させる媒体としてのブレーキ液を上流側に、すなわちホイールシリンダ38側から圧力発生部32側に還流させる機構である。 The pressure adjusters 34FL, 34FR, 34RL, 34RR are mechanisms for adjusting the hydraulic pressure applied to the wheel cylinders 38FL, 38FR, 38RL, 38RR, respectively. The recirculation mechanism 37 is a mechanism for recirculating brake fluid as a medium for generating hydraulic pressure to the upstream side, that is, from the wheel cylinder 38 side to the pressure generation unit 32 side.
 圧力発生部32は、マスタシリンダ32aと、リザーバタンク32bと、を有している。マスタシリンダ32aは、運転者によるブレーキペダル31の操作(踏み込み操作)に応じて発生する圧力に基づいて、リザーバタンク32bから補充されるブレーキ液を2つの吐出ポートに吐出する。 The pressure generating section 32 has a master cylinder 32a and a reservoir tank 32b. The master cylinder 32a discharges the brake fluid to be replenished from the reservoir tank 32b to two discharge ports based on a pressure generated in response to an operation (depressing operation) of the brake pedal 31 by the driver.
 マスタシリンダ32aの2つの吐出ポートは、それぞれ、開状態と閉状態とが電気的に切り替わる電磁弁33を介して、フロント側の圧力調整部34(34FRおよび34FL)と、リヤ側の圧力調整部34(34RRおよび34RL)と、に接続される。電磁弁33は、制御部(不図示)などから与えられる電気信号に基づいて開閉する。 The two discharge ports of the master cylinder 32a are respectively connected to a front-side pressure regulator 34 (34FR and 34FL) and a rear-side pressure regulator via a solenoid valve 33 that is electrically switched between an open state and a closed state. 34 (34RR and 34RL). The solenoid valve 33 opens and closes based on an electric signal given from a control unit (not shown) or the like.
 圧力調整部34は、開状態と閉状態とが電気的に切り替わる電磁弁35,36を有している。電磁弁35,36は、電磁弁33と、還流機構37のリザーバ41と、の間に設けられている。電磁弁35は、電磁弁33側に設けられ、電磁弁36は、リザーバ41側に設けられている。 The pressure adjusting section 34 has electromagnetic valves 35 and 36 that are electrically switched between an open state and a closed state. The solenoid valves 35 and 36 are provided between the solenoid valve 33 and the reservoir 41 of the recirculation mechanism 37. The solenoid valve 35 is provided on the solenoid valve 33 side, and the solenoid valve 36 is provided on the reservoir 41 side.
 電磁弁35と電磁弁36との間には、ホイールシリンダ38が接続されている。これにより、電磁弁35,36は、制御部などから与えられる電気信号に基づいて開閉することで、ホイールシリンダ38の液圧を増圧したり、保持したり、減圧したりすることが可能である。 ホ イ ー ル A wheel cylinder 38 is connected between the solenoid valve 35 and the solenoid valve 36. Thus, the solenoid valves 35 and 36 can be opened and closed based on an electric signal provided from a control unit or the like, so that the hydraulic pressure of the wheel cylinder 38 can be increased, held, or reduced. .
 より具体的に、電磁弁35は、通常時において開状態に設定されたいわゆるNO(ノーマルオープン)弁である。したがって、電気信号を受け付けていないオフ状態(通常時)の電磁弁35は、ホイールシリンダ38にブレーキ液を流入させてホイールシリンダ38の液圧を増加させることが可能な増圧弁として機能し、電気信号を受け付けたオン状態(作動時)の電磁弁35は、ホイールシリンダ38へのブレーキ液の流入を阻止してホイールシリンダ38の液圧を保持することが可能な保持弁として機能する。 More specifically, the solenoid valve 35 is a so-called NO (normally open) valve which is set to an open state in a normal state. Therefore, the solenoid valve 35 in the off state (at a normal time) in which the electric signal is not received functions as a pressure increasing valve capable of flowing the brake fluid into the wheel cylinder 38 to increase the hydraulic pressure of the wheel cylinder 38, and The electromagnetic valve 35 in the ON state (at the time of operation) that has received the signal functions as a holding valve capable of preventing the brake fluid from flowing into the wheel cylinder 38 and holding the hydraulic pressure of the wheel cylinder 38.
 一方、電磁弁36は、通常時において閉状態に設定されたいわゆるNC(ノーマルクローズ)弁である。したがって、電気信号を受け付けていないオフ状態(通常時)の電磁弁36は、ホイールシリンダ38からのブレーキ液の流出を阻止してホイールシリンダ38の液圧を保持することが可能な保持弁として機能し、電気信号を受け付けたオン状態(作動時)の電磁弁36は、ホイールシリンダ38からブレーキ液を流出させてホイールシリンダ38の液圧を減圧することが可能な減圧弁として機能する。 On the other hand, the solenoid valve 36 is a so-called NC (normally closed) valve which is normally set to a closed state. Therefore, the solenoid valve 36 in the off state (normal state) in which the electric signal is not received functions as a holding valve capable of preventing the outflow of the brake fluid from the wheel cylinder 38 and holding the hydraulic pressure of the wheel cylinder 38. Then, the electromagnetic valve 36 in the ON state (at the time of operation) that has received the electric signal functions as a pressure reducing valve that allows the brake fluid to flow out of the wheel cylinder 38 and reduce the hydraulic pressure of the wheel cylinder 38.
 還流機構37は、リザーバ41と、ポンプ39と、モータ40と、液圧ダンパ100と、を有している。なお、図1の例では、リザーバ41、ポンプ39、および液圧ダンパ100は、フロント側の圧力調整部34(34FRおよび34FL)と、リヤ側の圧力調整部34(34RRおよび34RL)と、に対してそれぞれ1つずつ設けられている。 The recirculation mechanism 37 includes a reservoir 41, a pump 39, a motor 40, and a hydraulic damper 100. In the example shown in FIG. 1, the reservoir 41, the pump 39, and the hydraulic damper 100 are connected to the front-side pressure adjusters 34 (34FR and 34FL) and the rear-side pressure adjusters 34 (34RR and 34RL). One is provided for each.
 リザーバ41は、ホイールシリンダ38から流出するブレーキ液を一時的に貯蔵する。 The reservoir 41 temporarily stores the brake fluid flowing out of the wheel cylinder 38.
 ポンプ39は、モータ40に駆動されることで、ブレーキ液をホイールシリンダ38側からマスタシリンダ32a側に汲み上げる。ポンプ39は、例えばピストンポンプ等の容積型ポンプである。ポンプ39は、ピストンポンプ以外の形式のポンプであってもよい。例えば、ポンプは、ギヤポンプ等であってもよい。また、ポンプ39は、吐出脈動を生じる。ポンプ39は、加圧源の一例である。なお、加圧源は、ポンプ39以外であってもよい。 The pump 39 is driven by the motor 40 to pump the brake fluid from the wheel cylinder 38 to the master cylinder 32a. The pump 39 is a positive displacement pump such as a piston pump. The pump 39 may be a pump other than a piston pump. For example, the pump may be a gear pump or the like. Further, the pump 39 generates a discharge pulsation. The pump 39 is an example of a pressurizing source. The pressurizing source may be other than the pump 39.
 二つのポンプ39は、一つのモータ40によって駆動される。言い換えると、一つのモータ40が、二つのポンプ39の駆動について共用されている。モータ40は、制御部の制御によってポンプ39を駆動する。 The two pumps 39 are driven by one motor 40. In other words, one motor 40 is shared for driving two pumps 39. The motor 40 drives the pump 39 under the control of the control unit.
 また、各ポンプ39の吐出側から延びる吐出油路42には、ポンプ39への逆流を防止する逆止弁29と絞り30とが並列に設けられている。絞り30は、例えばオリフィスである。吐出油路42は、ポンプ39と、電磁弁33および電磁弁35の間と、を接続している。吐出油路42は、油圧回路10の油路の一例である。 In the discharge oil passage 42 extending from the discharge side of each pump 39, a check valve 29 and a throttle 30 for preventing backflow to the pump 39 are provided in parallel. The diaphragm 30 is, for example, an orifice. The discharge oil passage 42 connects the pump 39 with a portion between the solenoid valve 33 and the solenoid valve 35. The discharge oil passage 42 is an example of an oil passage of the hydraulic circuit 10.
 液圧ダンパ100は、吐出油路42において、ポンプ39と、逆止弁29および絞り30と、の間に設けられている。よって、液圧ダンパ100には、ポンプ39から吐出されたブレーキ液の液圧が作用する。液圧ダンパ100は、ポンプ39の吐出脈動を低減するように構成されている。液圧ダンパ100の詳細は、後述する。 The hydraulic damper 100 is provided between the pump 39, the check valve 29 and the throttle 30 in the discharge oil passage 42. Therefore, the hydraulic pressure of the brake fluid discharged from the pump 39 acts on the hydraulic damper 100. The hydraulic damper 100 is configured to reduce the discharge pulsation of the pump 39. Details of the hydraulic damper 100 will be described later.
 制御部は、例えば、プロセッサやメモリなどといったコンピュータ資源を備えたECU(electronic control unit)等によって構成されている。制御部は、車両の各種状態量を検出するセンサ(不図示)の検出結果等に基づいて、油圧回路10を制御する。車両の各種状態量を検出するセンサは、例えば、ブレーキペダル31のストローク量を検出するセンサ、マスタシリンダ32a内の圧力を検出するセンサ、車輪2の回転速度(回転数)を検出するセンサ、車両の加速度(減速度)を検出するセンサ等である。 The control unit is configured by, for example, an electronic control unit (ECU) having computer resources such as a processor and a memory. The control unit controls the hydraulic circuit 10 based on a detection result of a sensor (not shown) that detects various state quantities of the vehicle. Sensors for detecting various state quantities of the vehicle include, for example, a sensor for detecting the stroke amount of the brake pedal 31, a sensor for detecting the pressure in the master cylinder 32a, a sensor for detecting the rotation speed (rotation speed) of the wheels 2, and a vehicle. Sensor for detecting the acceleration (deceleration) of the vehicle.
 制御部は、アンチロックブレーキ制御等の各種のブレーキ制御を行う。アンチロック制御は、例えば急な制動時や、路面抵抗が比較的低い路面上での制動時などにおいて発生しうる車輪2のロック(車輪速と実際の車速との乖離、スリップ)を抑制するための制御である。アンチロック制御は、例えば、モータ40を作動させ、ホイールシリンダ38側からマスタシリンダ32a側へのブレーキ液の還流を断続的に行うように電磁弁35,36を制御し、ホイールシリンダ38の圧力の減圧、保持、および増圧を適宜切り替えながら実施することで、車輪速と実際の車速との乖離を小さくする。 The control unit performs various types of brake control such as antilock brake control. The anti-lock control is to suppress the lock of the wheel 2 (difference between the wheel speed and the actual vehicle speed, slip) which may occur, for example, when braking suddenly or when braking on a road surface having relatively low road resistance. Control. In the anti-lock control, for example, the motors 40 are operated to control the solenoid valves 35 and 36 so as to intermittently recirculate the brake fluid from the wheel cylinder 38 side to the master cylinder 32a side. The difference between the wheel speed and the actual vehicle speed is reduced by switching the pressure reduction, the holding, and the pressure increase as appropriate.
 図2は、第1実施形態の液圧ダンパ100の例示的かつ模式的な断面図であって、ブラダ103が自由状態の場合の断面図である。図2に示されるように、液圧ダンパ100は、ハウジング101に取り付けられている。ハウジング101は、取付部材や支持部材とも称されうる。 FIG. 2 is an exemplary schematic cross-sectional view of the hydraulic damper 100 according to the first embodiment, and is a cross-sectional view when the bladder 103 is in a free state. As shown in FIG. 2, the hydraulic damper 100 is attached to a housing 101. The housing 101 can also be called a mounting member or a support member.
 ハウジング101は、例えば、アルミニウム等の金属材料によって構成されている。ハウジング101には、吐出油路42を構成する有底の孔101aが設けられている。孔101aは、ハウジング101の外面101bからハウジング101の内方に向かう第1方向D1に延びている。孔101aは、外周面に段差が設けられ第1軸Axを中心とした円柱状に形成され、ハウジング101の外面101bに開口している。第1軸Axは、第1方向D1に沿う。また、以下では、特に断らない限り、第1軸Axの軸方向および周方向を、単に軸方向および周方向と称する場合がある。第1軸Axは、中心軸とも称されうる。また、第1方向D1の反対方向を第2方向D2と称する。また、第1軸Axと直交し第1軸Axに向かう方向を第1直交方向D3と称し、第1軸Axと直交し第1軸Axから離れる方向を第2直交方向D4と称する。 The housing 101 is made of, for example, a metal material such as aluminum. The housing 101 is provided with a bottomed hole 101 a that forms the discharge oil passage 42. The hole 101a extends in a first direction D1 from the outer surface 101b of the housing 101 toward the inside of the housing 101. The hole 101 a has a step formed on the outer peripheral surface thereof, is formed in a column shape around the first axis Ax, and is opened on the outer surface 101 b of the housing 101. The first axis Ax is along the first direction D1. Hereinafter, the axial direction and the circumferential direction of the first axis Ax may be simply referred to as the axial direction and the circumferential direction, unless otherwise specified. The first axis Ax may be referred to as a central axis. The direction opposite to the first direction D1 is referred to as a second direction D2. A direction orthogonal to the first axis Ax and toward the first axis Ax is referred to as a first orthogonal direction D3, and a direction orthogonal to the first axis Ax and away from the first axis Ax is referred to as a second orthogonal direction D4.
 また、ハウジング101には、孔101aの上流側の吐出油路42を構成する第2通路(上流側孔)101cと、孔101aの下流側の吐出油路42を構成する二つの第1通路(下流側孔)101dとが設けられている。第2通路101cは、孔101aの外周面に開口し孔101aと繋がっている。第2通路101cは、軸方向と交差する方向に延びている。第2通路101cは、ポンプ39と繋がっている。二つの第1通路101dは、孔101aの底面に開口し孔101aと繋がっている。第1通路101dは、軸方向に沿って延びている。二つの第1通路101dの一方は、逆止弁29と繋がり、二つの第1通路101dの他方は、絞り30と繋がっている。第2通路101cおよび第1通路101dは、油路とも称され得る。 In the housing 101, a second passage (upstream hole) 101c that forms the discharge oil passage 42 on the upstream side of the hole 101a and two first passages (the discharge passage 42) that forms the discharge oil passage 42 on the downstream side of the hole 101a. Downstream hole) 101d. The second passage 101c is open on the outer peripheral surface of the hole 101a and is connected to the hole 101a. The second passage 101c extends in a direction crossing the axial direction. The second passage 101c is connected to the pump 39. The two first passages 101d open at the bottom of the hole 101a and are connected to the hole 101a. The first passage 101d extends in the axial direction. One of the two first passages 101 d is connected to the check valve 29, and the other of the two first passages 101 d is connected to the throttle 30. The second passage 101c and the first passage 101d may also be referred to as oil passages.
 また、ハウジング101には、孔101aを形成する凹状面101eが設けられている。すなわち、凹状面101eは、孔101aを囲んだ状態で孔101aと面している。凹状面101eは、内周面101e1と、底面101e2と、を有している。内周面101e1は、第1軸Axを中心とした段付きの円筒状に形成されている。底面101e2は、内周面101e1の第1方向D1の端部と接続され、第1軸Axと直交する方向に広がっている。孔101aは、液圧室の一例である。 ハ ウ ジ ン グ Further, the housing 101 is provided with a concave surface 101e that forms the hole 101a. That is, the concave surface 101e faces the hole 101a while surrounding the hole 101a. The concave surface 101e has an inner peripheral surface 101e1 and a bottom surface 101e2. The inner peripheral surface 101e1 is formed in a stepped cylindrical shape around the first axis Ax. The bottom surface 101e2 is connected to an end of the inner peripheral surface 101e1 in the first direction D1, and extends in a direction orthogonal to the first axis Ax. The hole 101a is an example of a hydraulic chamber.
 また、ハウジング101は、複数の構成部材、具体的には第1構成部材105Aおよび第2構成部材105B、の組み合わせによって構成されている。第1構成部材105Aには、孔101aと、上流側孔101cと、内周面101e1と、底面101e2の一部とが設けられている。第2構成部材105Bには、二つの下流側孔101dと、底面101e2の他部と、が設けられている。なお、ハウジング101は、第1構成部材105Aおよび第2構成部材105B以外の他の構成部材を更に有していてもよいし、一つの構成部材によって構成されていてもよい。 The housing 101 is configured by a combination of a plurality of constituent members, specifically, a first constituent member 105A and a second constituent member 105B. The first component 105A is provided with a hole 101a, an upstream hole 101c, an inner peripheral surface 101e1, and a part of the bottom surface 101e2. The second component 105B is provided with two downstream holes 101d and another portion of the bottom surface 101e2. Note that the housing 101 may further include other components other than the first component 105A and the second component 105B, or may be configured by one component.
 液圧ダンパ100は、ハウジング101に取り付けられたコア102と、コア102に取り付けられ外周面103aに液圧が作用するブラダ103と、を備えている。 The hydraulic damper 100 includes a core 102 attached to the housing 101, and a bladder 103 attached to the core 102 and acting on the outer peripheral surface 103a with hydraulic pressure.
 コア102は、ベース102aと、ベース102aから突出した突起102bと、を有している。コア102は、硬質材料で構成される部材である。硬質材料は、弾性体に対して十分に剛性が高い物質であり、例えばアルミニウム等の金属材料やプラスチック等である。 The core 102 has a base 102a and a projection 102b protruding from the base 102a. The core 102 is a member made of a hard material. The hard material is a substance having sufficiently high rigidity with respect to the elastic body, such as a metal material such as aluminum or a plastic.
 ベース102aは、孔101aの第1方向D1の開口端部を閉塞している。ベース102aは、プラグ部102cと、支持部102dと、を有している。プラグ部102cは、孔101aに嵌められて当該孔101aを閉塞している。支持部102dは、プラグ部102cの第1方向D1の端面102eに設けられている。支持部102dは、第1軸Axと中心とした円板状に形成され、端面102eから第1方向D1に突出している。支持部102dの外径は、端面102eの外径よりも小さい。 The base 102a closes the opening end of the hole 101a in the first direction D1. The base 102a has a plug 102c and a support 102d. The plug 102c is fitted in the hole 101a to close the hole 101a. The support portion 102d is provided on an end surface 102e of the plug portion 102c in the first direction D1. The support portion 102d is formed in a disk shape centered on the first axis Ax, and protrudes from the end surface 102e in the first direction D1. The outer diameter of the support part 102d is smaller than the outer diameter of the end face 102e.
 突起102bは、ベース102aの支持部102dから第1方向D1に突出している。突起102bは、第1軸Ax回りの回転体である。突起102bは、支持部102dに接続された基端102fと、基端102fの軸方向の反対側の先端102gと、基端102fから先端102gに向かって延びた外周面102hと、有している。基端102fは、ベース102aに一体化されている。 The protrusion 102b protrudes from the support portion 102d of the base 102a in the first direction D1. The protrusion 102b is a rotating body around the first axis Ax. The protrusion 102b has a proximal end 102f connected to the support 102d, a distal end 102g in the axial direction opposite to the proximal end 102f, and an outer peripheral surface 102h extending from the proximal end 102f toward the distal end 102g. . The base end 102f is integrated with the base 102a.
 外周面102hには、第1~第3凹部102i1,102i2,102i3が設けられている。第1~第3凹部102i1,102i2,102i3は、第1直交方向D3に凹んでいる。第1~第3凹部102i1,102i2,102i3は、第1軸Ax回りに環状に形成されている。第1凹部102i1は、基端102fに隣接され、第2凹部102i2は、第1凹部102i1の第1方向D1に位置され、第3凹部102i3は、第2凹部102i2の第1方向D1に位置されている。外周面102hのうち第1~第3凹部102i1,102i2,102i3の底部を形成する部分は、それぞれ、小径部とも称されうる。 First to third concave portions 102i1, 102i2, 102i3 are provided on the outer peripheral surface 102h. The first to third recesses 102i1, 102i2, 102i3 are recessed in the first orthogonal direction D3. The first to third concave portions 102i1, 102i2, 102i3 are formed in an annular shape around the first axis Ax. The first recess 102i1 is adjacent to the base end 102f, the second recess 102i2 is located in the first direction D1 of the first recess 102i1, and the third recess 102i3 is located in the first direction D1 of the second recess 102i2. ing. The portions of the outer peripheral surface 102h that form the bottoms of the first to third concave portions 102i1, 102i2, and 102i3 may be respectively referred to as small diameter portions.
 また、外周面102hは、第1~第3頂部102j1,102j2,102j3を有している。第1~第3頂部102j1,102j2,102j3は、第1軸Ax回りに環状に形成されている。第1頂部102j1は、第1凹部102i1と第2凹部102i2との間に位置され、第2頂部102j2は、第2凹部102i2と第3凹部102i3との間に位置され、第3頂部102j3は、第2頂部102j2と先端102gとの間に位置されている。第1頂部102j1は、第1~第3頂部102j1,102j2,102j3のうちで最も外径が大きい。すなわち、第2頂部102j2および第3頂部102j3は、第1頂部102j1よりも外径が小さい。また、第3頂部102j3は、第2頂部102j2よりも外径が小さい。第1~第3頂部102j1,102j2,102j3は、大径部とも称されうる。 外 周 The outer peripheral surface 102h has first to third tops 102j1, 102j2, 102j3. The first to third tops 102j1, 102j2, 102j3 are formed in a ring around the first axis Ax. The first top 102j1 is located between the first recess 102i1 and the second recess 102i2, the second top 102j2 is located between the second recess 102i2 and the third recess 102i3, and the third top 102j3 is It is located between the second top 102j2 and the tip 102g. The first top portion 102j1 has the largest outer diameter among the first to third top portions 102j1, 102j2, 102j3. That is, the outer diameter of the second top 102j2 and the third top 102j3 is smaller than that of the first top 102j1. Further, the third top portion 102j3 has a smaller outer diameter than the second top portion 102j2. The first to third top portions 102j1, 102j2, 102j3 can also be referred to as large diameter portions.
 また、突起102bは、支持部102kと、延部102mと、を有している。支持部102kは、ブラダ103を支持している。支持部102kは、ブラダ103に液圧が作用していない状態で、突起102bにおけるブラダ103と接触している部分によって構成されている。支持部102kは、基端102fおよび第1頂部102j1を含み、支持部102kには、第1凹部102i1が設けられている。延部102mは、支持部102kから第1方向D1に延びている。延部102mは、ブラダ103に液圧が作用していない状態で、突起102bにおけるブラダ103と離間している部分によって構成されている。延部102mは、第2頂部102j2、第3頂部102j3、および先端102gを含み、延部102mには、第2凹部102i2および第3凹部102i3が設けられている。 突起 The projection 102b has a supporting portion 102k and an extending portion 102m. The support portion 102k supports the bladder 103. The support portion 102k is configured by a portion of the protrusion 102b that is in contact with the bladder 103 in a state where no hydraulic pressure acts on the bladder 103. The support portion 102k includes a base end 102f and a first top portion 102j1, and the support portion 102k is provided with a first concave portion 102i1. The extension 102m extends in the first direction D1 from the support 102k. The extending portion 102m is constituted by a portion of the protrusion 102b that is separated from the bladder 103 in a state where no hydraulic pressure acts on the bladder 103. The extension 102m includes a second top 102j2, a third top 102j3, and a tip 102g, and the extension 102m is provided with a second recess 102i2 and a third recess 102i3.
 延部102mおよび支持部102kは、それぞれ、第1方向D1に沿った第1軸Ax回りの外周面102h1,102h2を有している。外周面102h1,102h2は、それぞれ、第1方向D1に沿った第1軸Ax回りの回転面である。二つの外周面102h1,102h2は、連続している。当該二つの外周面102h1,102h2は、それぞれ、突起102bの外周面102hに含まれる。外周面102h1は、第1外周面の一例である。 The extending part 102m and the supporting part 102k have outer peripheral surfaces 102h1 and 102h2 around the first axis Ax along the first direction D1, respectively. The outer peripheral surfaces 102h1 and 102h2 are rotating surfaces around the first axis Ax along the first direction D1, respectively. The two outer peripheral surfaces 102h1 and 102h2 are continuous. The two outer peripheral surfaces 102h1 and 102h2 are respectively included in the outer peripheral surface 102h of the protrusion 102b. The outer peripheral surface 102h1 is an example of a first outer peripheral surface.
 延部102mの外周面102h1は、側部102n1と先端102gとを含む。側部102n1には、第2頂部102j2および第3頂部102j3を含み、側部102n1には、第2凹部102i2、第3凹部102i3が設けられている。 外 周 The outer peripheral surface 102h1 of the extending portion 102m includes a side portion 102n1 and a tip 102g. The side part 102n1 includes a second top part 102j2 and a third top part 102j3, and the side part 102n1 is provided with a second concave part 102i2 and a third concave part 102i3.
 図3は、突起102bの外周面102h1,102h2の第1軸Axを含む断面における外形線L1,L3を示す図である。図3に示されるように、突起102bの外周面102h1は、曲面によって構成されている。換言すると、外周面102h1aは、曲面を含む。また、外周面102h1は、先端102gを除き第1方向D1と直交する平面を含まない。具体的には、外周面102h1は、側部102n1から先端102gにかけて滑らかであり、側部102n1から先端102gにかけて外径が滑らかに変化する。すなわち、外周面102h1は、第1方向D1において外径が滑らかに変化する。ここで、「滑らか」とは、外周面102h1の第1軸Axを含む任意の断面における外形線L1を関数y=f(x)(x:第1軸Axの軸方向、y:第1軸Axと直交する方向)で表したときに、外形線L1の所定区間内の任意の位置、すなわち各位置で、当該関数を微分可能であることを言う。また、外形線L1のうち先端102gを除いた部分の各位置での接線L2と前記第1軸Axとのなす角度α1は、90度と異なる。また、外形線L1は、全域が曲線で構成されていている。すなわち、外周面102h1は、第1方向D1において外径が連続的に変化する。なお、外形線L1には、部分的に直線が設けられていてもよい。このような外周面102h1の形状は、以下のように別の言い方をすることができる。すなわち、外周面102h1の第1方向D1と沿う任意の断面における外形線L1が、先端102gを除き、接線L2が第1方向D1と斜めに交差するか若しくは第1方向D1と平行である曲線を含むとともに第1方向D1と直交する線分を含まない。 FIG. 3 is a diagram showing outlines L1 and L3 in a cross section including the first axis Ax of the outer peripheral surfaces 102h1 and 102h2 of the protrusion 102b. As shown in FIG. 3, the outer peripheral surface 102h1 of the projection 102b is formed by a curved surface. In other words, the outer peripheral surface 102h1a includes a curved surface. The outer peripheral surface 102h1 does not include a plane orthogonal to the first direction D1 except for the tip 102g. Specifically, the outer peripheral surface 102h1 is smooth from the side portion 102n1 to the tip 102g, and the outer diameter changes smoothly from the side portion 102n1 to the tip 102g. That is, the outer diameter of the outer peripheral surface 102h1 changes smoothly in the first direction D1. Here, “smooth” refers to a function y = f (x) (x: the axial direction of the first axis Ax, y: the first axis) in an arbitrary cross section of the outer peripheral surface 102h1 including the first axis Ax. (In the direction orthogonal to Ax), it means that the function can be differentiated at an arbitrary position within a predetermined section of the outline L1, that is, at each position. Further, the angle α1 between the tangent line L2 and the first axis Ax at each position of the portion of the outline L1 except for the tip 102g is different from 90 degrees. Further, the entire outline L1 is configured by a curve. That is, the outer diameter of the outer peripheral surface 102h1 continuously changes in the first direction D1. Note that the outline L1 may be partially provided with a straight line. Such a shape of the outer peripheral surface 102h1 can be described differently as follows. That is, the outer shape line L1 in an arbitrary cross section along the first direction D1 of the outer peripheral surface 102h1 is a curve in which the tangent line L2 obliquely intersects the first direction D1 or is parallel to the first direction D1 except for the tip 102g. And does not include a line segment orthogonal to the first direction D1.
 また、本実施形態では、突起102bの外形線L1における変曲点P1での角度α1は、例えば、25度~70度の範囲内に設定されている。なお、変曲点P1での角度α1は、25度~70度の範囲外であってもよい。 In the present embodiment, the angle α1 at the inflection point P1 in the outline L1 of the protrusion 102b is set, for example, in the range of 25 degrees to 70 degrees. Note that the angle α1 at the inflection point P1 may be out of the range of 25 degrees to 70 degrees.
 また、図2に示されるように、延部102mでは、当該延部102mの第2方向D2の端102m1、第2頂部102j2、第3頂部102j3の順で、外形が小さい。また、外周面102h1のうち、先端102gに最も近い第3凹部102i3よりも第1方向D1に位置された領域102rは、先端102gに近づくにつれて径が小さくなるように形成されている。領域102rは、第1領域の一例である。 As shown in FIG. 2, the outer shape of the extension 102m is smaller in the order of the end 102m1, the second top 102j2, and the third top 102j3 of the extension 102m in the second direction D2. In the outer peripheral surface 102h1, a region 102r located in the first direction D1 with respect to the third concave portion 102i3 closest to the tip 102g is formed to have a smaller diameter as approaching the tip 102g. The region 102r is an example of a first region.
 図2に示されるように、支持部102kの外周面102h2は、側部102n2と、基端102fと、を含む。側部102n2は、第1頂部102j1を含み、側部102n2には、第1凹部102i1が設けられている。図3に示されるように、支持部102kの外周面102h2は、第1方向D1において外径が滑らかに変化する。また、外周面102h2の第1軸Axを含む断面における外形線L3の各位置での接線L4と第1軸Axとのなす角度α2は、90度と異なる。また、外形線L3は、全域が曲線で構成されている。すなわち、外周面102h2は、第1方向D1において外径が連続的に変化する。なお、外周面102h2は、外径が滑らかに変化していなくてもよい。また、外形線L3のある位置での接線L4と第1軸Axとのなす角度α2が、90度であってもよい。また、外形線L3には、部分的に直線が設けられていてもよい。 外 周 As shown in FIG. 2, the outer peripheral surface 102h2 of the support portion 102k includes a side portion 102n2 and a base end 102f. The side part 102n2 includes a first top part 102j1, and the side part 102n2 is provided with a first concave part 102i1. As shown in FIG. 3, the outer diameter of the outer peripheral surface 102h2 of the support portion 102k changes smoothly in the first direction D1. In addition, the angle α2 between the tangent line L4 and the first axis Ax at each position of the outline L3 in the cross section including the first axis Ax of the outer peripheral surface 102h2 is different from 90 degrees. The entire area of the outline L3 is formed by a curve. That is, the outer diameter of the outer peripheral surface 102h2 continuously changes in the first direction D1. In addition, the outer diameter of the outer peripheral surface 102h2 may not be smoothly changed. Further, the angle α2 between the tangent line L4 and the first axis Ax at a certain position of the outline L3 may be 90 degrees. The outline L3 may be partially provided with a straight line.
 図2に示されるように、ブラダ103は、コア102における延部102mの外周面102h1との間に気体を封入した状態で外周面102h1を覆うようコア102に取り付けられている。気体は、例えば、窒素ガス等である。ブラダ103は、弾性部材によって構成されており、弾性変形可能である。弾性部材とは、エチレンプロピレンゴム等のエラストマである。 ブ ラ As shown in FIG. 2, the bladder 103 is attached to the core 102 so as to cover the outer peripheral surface 102h1 in a state in which gas is sealed between the bladder 103 and the outer peripheral surface 102h1 of the extending portion 102m of the core 102. The gas is, for example, nitrogen gas. The bladder 103 is made of an elastic member and is elastically deformable. The elastic member is an elastomer such as ethylene propylene rubber.
 詳細には、ブラダ103は、有底の円筒状に形成されて、外周面103aと、内周面103bと、を有している。外周面103aは、ハウジング101の凹状面101eに面し、凹状面101eとの間に油路101a1を形成する。すなわち、外周面103aは油路101a1に面しており、当該外周面103aには、油路101a1中のブレーキ液の液圧が作用する。油路101a1は、孔101aの一部によって構成され、第2通路101cおよび第1通路101dと繋がっている。すなわち、油路101a1は、吐出油路42を構成する。内周面103bは、コア102における延部102mの外周面102h1との間に気体を封入した状態で外周面102h1を覆っている。内周面103bは、突起102bに面している。内周面103bは、コア102における延部102mの外周面102h1との間に気体室111を形成している。気体室111には、気体が収容されている。外周面103aは、第2外周面の一例である。 Specifically, the bladder 103 is formed in a cylindrical shape with a bottom, and has an outer peripheral surface 103a and an inner peripheral surface 103b. The outer peripheral surface 103a faces the concave surface 101e of the housing 101, and forms an oil passage 101a1 with the concave surface 101e. That is, the outer peripheral surface 103a faces the oil passage 101a1, and the hydraulic pressure of the brake fluid in the oil passage 101a1 acts on the outer peripheral surface 103a. The oil passage 101a1 is formed by a part of the hole 101a, and is connected to the second passage 101c and the first passage 101d. That is, the oil passage 101a1 forms the discharge oil passage 42. The inner peripheral surface 103b covers the outer peripheral surface 102h1 in a state in which gas is sealed between the inner peripheral surface 103b and the outer peripheral surface 102h1 of the extending portion 102m of the core 102. The inner peripheral surface 103b faces the protrusion 102b. The inner peripheral surface 103b forms a gas chamber 111 between the inner peripheral surface 103b and the outer peripheral surface 102h1 of the extending portion 102m of the core 102. The gas is accommodated in the gas chamber 111. The outer peripheral surface 103a is an example of a second outer peripheral surface.
 図4は、液圧ダンパ100の例示的かつ模式的な断面図であって、ブラダ103が収縮状態の場合の断面図である。図4に示されるように、コア102の突起102bにおける延部102mの外周面102h1に第2凹部102i2および第3凹部102i3が設けられているため、ブラダ103の外周面103aに液圧が作用した状態では、ブラダ103の内周面103bは、部分的にコア102の外周面102h1と当接する。すなわち、ブラダ103の外周面103aに液圧が作用した状態で、コア102の外周面102h1が、ブラダ103の内周面103bの一部とは接触し内周面103bの全部とは接触しないように、当該外周面102h1に第2凹部102i2および第3凹部102i3が設けられている。 FIG. 4 is an exemplary and schematic cross-sectional view of the hydraulic damper 100, in which the bladder 103 is in a contracted state. As shown in FIG. 4, since the second concave portion 102i2 and the third concave portion 102i3 are provided on the outer peripheral surface 102h1 of the extending portion 102m of the protrusion 102b of the core 102, the hydraulic pressure acts on the outer peripheral surface 103a of the bladder 103. In the state, the inner peripheral surface 103b of the bladder 103 partially contacts the outer peripheral surface 102h1 of the core 102. In other words, in a state where the hydraulic pressure acts on the outer peripheral surface 103a of the bladder 103, the outer peripheral surface 102h1 of the core 102 contacts a part of the inner peripheral surface 103b of the bladder 103 but does not contact the entire inner peripheral surface 103b. The second concave portion 102i2 and the third concave portion 102i3 are provided on the outer peripheral surface 102h1.
 また、図2に示されるように、ブラダ103は、円筒部103cと、壁部103dと、を有している。円筒部103cは、第1軸Axを中心とした円筒状である。よって、円筒部103cの内周面103bは、第1軸Axと中心とした円筒状である。円筒部103cは、ブラダ103の第2方向D2の端部103eを含む。壁部103dは、円筒部103cの第2方向D2の開口部を閉塞している。 ブ ラ Further, as shown in FIG. 2, the bladder 103 has a cylindrical portion 103c and a wall portion 103d. The cylindrical portion 103c has a cylindrical shape around the first axis Ax. Therefore, the inner peripheral surface 103b of the cylindrical portion 103c has a cylindrical shape centered on the first axis Ax. The cylindrical portion 103c includes an end 103e of the bladder 103 in the second direction D2. The wall 103d closes the opening of the cylindrical portion 103c in the second direction D2.
 また、ブラダ103には、ブラダ103の端部103eから第2方向D2に凹んだ凹部103fが設けられている。凹部103fは、内周面103bに囲まれている。すなわち、内周面103bは、凹部103fを形成している。凹部103fの一部によって、気体室111が構成されている。 ブ ラ Further, the bladder 103 is provided with a concave portion 103f that is concave from the end 103e of the bladder 103 in the second direction D2. The recess 103f is surrounded by the inner peripheral surface 103b. That is, the inner peripheral surface 103b forms the concave portion 103f. A gas chamber 111 is formed by a part of the concave portion 103f.
 また、円筒部103cの内周面103bは、抜き勾配を有した形状に形成されている。すなわち、ブラダ103の内周面103bは、第1方向D1に進むにつれて径が小さくなる。 内 The inner peripheral surface 103b of the cylindrical portion 103c is formed in a shape having a draft. That is, the diameter of the inner peripheral surface 103b of the bladder 103 decreases as it advances in the first direction D1.
 また、ブラダ103、コア102に取り付けられた取付部103gと、取付部103gから第1方向D1に延びた延部103hと、を有している。 It also has an attachment portion 103g attached to the bladder 103 and the core 102, and an extension 103h extending from the attachment portion 103g in the first direction D1.
 取付部103gは、ブラダ103の端部103eに設けられている。取付部103gは、第1軸Axを中心とした環状に形成されている。取付部103gは、第1部分103iと、内向きフランジ103jと、を有している。第1部分103iは、突起102bとハウジング101の内周面101e1との間に圧入されて、第1軸Axと直交する方向に圧縮した状態となっている。詳細には、第1部分103iは、突起102bの少なくとも第1頂部102j1を含む部分とハウジング101の内周面101e1との間に圧入されている。 The mounting portion 103g is provided at the end 103e of the bladder 103. The mounting portion 103g is formed in an annular shape around the first axis Ax. The mounting portion 103g has a first portion 103i and an inward flange 103j. The first portion 103i is press-fitted between the projection 102b and the inner peripheral surface 101e1 of the housing 101, and is in a state of being compressed in a direction orthogonal to the first axis Ax. Specifically, the first portion 103i is press-fitted between a portion including at least the first top portion 102j1 of the protrusion 102b and the inner peripheral surface 101e1 of the housing 101.
 内向きフランジ103jは、ブラダ103の端部103eに設けられている。内向きフランジ103jは、第1部分103iの第2方向D2に位置されている。内向きフランジ103jは、第1部分103iから第1直交方向D3に突出している。別の言い方をすると、内向きフランジ103jは、ブラダ103の端部103eに含まれた端縁103e1から第1方向D1と交差して内向きに張り出している。すなわち、内向きフランジ103jは、ブラダ103の端縁103e1から第1直交方向D3に張り出している。端縁103e1は、ブラダ103の第2方向D2の端面における内周側の環状の端縁である。内向きフランジ103jは、第1軸Axを中心とした円環状に形成されている。内向きフランジ103jは、コア102の突起102bの第1凹部102i1内に入れられてコア102に引っ掛けられている。第1凹部102i1は、プラダ103の一部である内向きフランジ103jを収容した収容部の一例である。       The inward flange 103j is provided at the end 103e of the bladder 103. The inward flange 103j is located in the second direction D2 of the first portion 103i. The inward flange 103j protrudes from the first portion 103i in the first orthogonal direction D3. In other words, the inward flange 103j protrudes inward from the edge 103e1 included in the end 103e of the bladder 103, crossing the first direction D1. That is, the inward flange 103j projects from the edge 103e1 of the bladder 103 in the first orthogonal direction D3. The edge 103e1 is an annular edge on the inner peripheral side of the end face of the bladder 103 in the second direction D2. The inward flange 103j is formed in an annular shape around the first axis Ax. The inward flange 103j is inserted into the first recess 102i1 of the protrusion 102b of the core 102 and is hooked on the core 102. The first concave portion 102i1 is an example of an accommodating portion that accommodates an inward flange 103j that is a part of the prada 103.
 ここで、内向きフランジ103jの第1方向D1には、コア102の凸部102pが位置されている。凸部102pは、コア102において、内向きフランジ103jの第1直交方向D3の端部103j1よりも第2直交方向D4に突出した部分であり、第1頂部102j1を含む。この凸部102pの外周面は、凸曲面102p1によって構成されている。凸曲面102p1は、内向きフランジ103jに対して先端102gに近い側に隣接し、ブラダ103の外周面103aに液圧が作用していない状態でブラダ103の内周面103bと当接している。ここで、本実施形態では、コア102の外周面102h1は、凸曲面102p1よりも第1方向D1に位置され、凸曲面102p1から第1方向D1に延びている。当該外周面102h1の最大径は、内向きフランジ103jの内径よりも小さい。 Here, the convex portion 102p of the core 102 is located in the first direction D1 of the inward flange 103j. The protrusion 102p is a portion of the core 102 that protrudes in the second orthogonal direction D4 from the end 103j1 of the inward flange 103j in the first orthogonal direction D3, and includes the first apex 102j1. The outer peripheral surface of the convex portion 102p is constituted by a convex curved surface 102p1. The convex curved surface 102p1 is adjacent to the inward flange 103j on the side near the distal end 102g, and is in contact with the inner peripheral surface 103b of the bladder 103 in a state where no hydraulic pressure is applied to the outer peripheral surface 103a of the bladder 103. Here, in the present embodiment, the outer peripheral surface 102h1 of the core 102 is located in the first direction D1 from the convex curved surface 102p1, and extends in the first direction D1 from the convex curved surface 102p1. The maximum diameter of the outer peripheral surface 102h1 is smaller than the inner diameter of the inward flange 103j.
 また、延部103hは、ハウジング101およびコア102と離間している。延部103hの外周面103aは、ハウジング101の凹状面101eとの間に、油路101a1を形成している。 延 The extension 103h is separated from the housing 101 and the core 102. An oil passage 101a1 is formed between the outer peripheral surface 103a of the extension 103h and the concave surface 101e of the housing 101.
 延部103hの内周面103bは、突起102bにおける延部102mの外周面102h1との間に気体室111を形成している。気体室111は、第2凹部102i2および第3凹部102i3を含む。すなわち、延部103hは、少なくとも第2凹部102i2および第3凹部102i3を含む気体室111を形成する。 気 体 A gas chamber 111 is formed between the inner peripheral surface 103b of the extension 103h and the outer peripheral surface 102h1 of the extension 102m in the protrusion 102b. The gas chamber 111 includes a second recess 102i2 and a third recess 102i3. That is, the extending portion 103h forms the gas chamber 111 including at least the second concave portion 102i2 and the third concave portion 102i3.
 また、上記の構成においては、コア102における外周面102h1の領域102rにおいては、ブラダ103の内周面103bとの間の隙間が、先端102gに近づくにつれて狭くなる。すなわち、コア102における外周面102h1の領域102rと、ブラダ103の内周面103bとの間の隙間は、先端102gと内周面103bとの間が最も狭い。また、コア102の第2頂部102j2とブラダ103の内周面103bとの間の第1軸Axと直交する方向の隙間は、コア102の第3頂部102j3とブラダ103の内周面103bとの間の第1軸Axと直交する方向の隙間よりも小さい。 In the above configuration, in the region 102r of the outer peripheral surface 102h1 of the core 102, the gap between the bladder 103 and the inner peripheral surface 103b becomes narrower as approaching the tip 102g. That is, the gap between the region 102r of the outer peripheral surface 102h1 of the core 102 and the inner peripheral surface 103b of the bladder 103 is the narrowest between the tip 102g and the inner peripheral surface 103b. A gap between the second top 102j2 of the core 102 and the inner peripheral surface 103b of the bladder 103 in a direction orthogonal to the first axis Ax is formed between the third top 102j3 of the core 102 and the inner peripheral surface 103b of the bladder 103. It is smaller than the gap in the direction orthogonal to the first axis Ax between the two.
 上記の構成では、図2においてポンプ39から吐出されたブレーキ液は、第2通路101c、油路101a1、および第1通路101dを、この順に流れる。ブレーキ液が油路101a1を流れる際に、液圧ダンパ100におけるブラダ103の外周面103aに液圧が作用する。図4に示されるように、ブラダ103は、作用する液圧によって、コア102の突起102bに近づくように弾性的に収縮し、突起102bの先端102g、第2頂部102j2、および第3頂部102j3に接触する。このとき、例えば、ブラダ103は、先端102gおよび第2頂部102j2に接触した後に、第3頂部102j3に接触する。ブラダ103と、先端102gおよび第2頂部102j2との接触は、先端102gおよび第2頂部102j2のうちいずれか一方が先であってもいし、それらの両方と略同時であってもよい。この状態では、ブラダ103によって、第2凹部102i2および第3凹部102i3が閉じられる。すなわち、気体室111が、第2凹部102i2と第3凹部102i3との2箇所に形成される。このときの気体室111の合計の容積は、ブラダ103が自由状態(図2)の場合の気体室111の容積に比べて小さい。すなわち、気体室111内の気体が圧縮されている。以後、ブラダ103が自由状態の場合の気体室111の容積を初期容積とも称する。 In the above configuration, the brake fluid discharged from the pump 39 in FIG. 2 flows through the second passage 101c, the oil passage 101a1, and the first passage 101d in this order. When the brake fluid flows through the oil passage 101a1, hydraulic pressure acts on the outer peripheral surface 103a of the bladder 103 in the hydraulic damper 100. As shown in FIG. 4, the bladder 103 elastically contracts to approach the protrusion 102 b of the core 102 due to the acting hydraulic pressure, and the bladder 103 moves to the tip 102 g, the second top 102 j 2, and the third top 102 j 3 of the protrusion 102 b. Contact. At this time, for example, the bladder 103 contacts the tip 102g and the second top 102j2, and then contacts the third top 102j3. The contact between the bladder 103 and the tip 102g and the second top 102j2 may be either one of the tip 102g and the second top 102j2, or substantially simultaneously with both of them. In this state, the bladder 103 closes the second concave portion 102i2 and the third concave portion 102i3. That is, the gas chambers 111 are formed at two places: the second recess 102i2 and the third recess 102i3. At this time, the total volume of the gas chamber 111 is smaller than the volume of the gas chamber 111 when the bladder 103 is in the free state (FIG. 2). That is, the gas in the gas chamber 111 is compressed. Hereinafter, the volume of the gas chamber 111 when the bladder 103 is in a free state is also referred to as an initial volume.
 次に、ポンプ39の吐出脈動により、ポンプ39からブレーキ液が吐出されなくなった場合には、液圧ダンパ100におけるブラダ103の外周面103aに作用する液圧が小さくなるかゼロになる。これにより、ブラダ103が自由状態に近づくまたは自由状態となる。この場合、気体室111の容積が、初期容積に近づくか初期容積に戻る。このようなブラダ103の気体室111の容積を変化させる動作によって、ポンプ39の吐出脈動(圧力変動)が低減される。 Next, when the brake fluid is not discharged from the pump 39 due to the discharge pulsation of the pump 39, the hydraulic pressure acting on the outer peripheral surface 103a of the bladder 103 in the hydraulic damper 100 decreases or becomes zero. As a result, the bladder 103 approaches or enters a free state. In this case, the volume of the gas chamber 111 approaches or returns to the initial volume. By such an operation of changing the volume of the gas chamber 111 of the bladder 103, discharge pulsation (pressure fluctuation) of the pump 39 is reduced.
 本実施形態の液圧ダンパ100の性能を、比較例と比較によって説明する。図5は、比較例の液圧ダンパ200の例示的かつ模式的な断面図であって、ブラダ203が自由状態の場合の断面図である。 性能 The performance of the hydraulic damper 100 of the present embodiment will be described by comparison with a comparative example. FIG. 5 is an exemplary and schematic cross-sectional view of the hydraulic damper 200 of the comparative example, in which the bladder 203 is in a free state.
 図10に示されるように、比較例の液圧ダンパ200は、本第1実施形態及び後述する第2、第3実施形態の液圧ダンパ100に対して、コア202に第2凹部102i2および第3凹部102i3が設けられていない。すなわち、コア202の第1外周面202n1の第1軸Axを含む断面における外形線が直線である。 As shown in FIG. 10, the hydraulic damper 200 of the comparative example is different from the hydraulic damper 100 of the first embodiment and the second and third embodiments described later in that the core 202 has a second concave portion 102i2 and a second concave portion 102i2. The three concave portions 102i3 are not provided. That is, the outline of the cross section including the first axis Ax of the first outer peripheral surface 202n1 of the core 202 is a straight line.
 図11は、本第1実施形態及び後述する第2、第3実施形態および比較例の液圧と消費液量との関係を示す図である。図11の横軸は、ブラダ103,203に作用する液圧を示し、図11の縦軸は、消費液量を示す。消費液量とは、加圧前の状態でのブラダ103,203の外周面103a,203aと加圧された状態でのブラダ103,203の外周面103a,203aとの間の容積である。また、図11中の実線が本実施形態のブラダ103を示し、図11中の破線が比較例のブラダ203を示している。図11から分かるように、液圧が所定の液圧N1以上になると、本実施形態のブラダ103の方が、比較例のブラダ203に比べて、消費液量の増大が緩やかになる。この液圧N1は、ブラダ103が第2頂部102j2に接触し、ブラダ103によって第2凹部102i2が閉じられたときの液圧である。 FIG. 11 is a diagram showing the relationship between the hydraulic pressure and the consumed liquid amount in the first embodiment, second and third embodiments described later, and a comparative example. The horizontal axis of FIG. 11 indicates the hydraulic pressure acting on the bladders 103 and 203, and the vertical axis of FIG. 11 indicates the consumed liquid amount. The consumed liquid amount is a volume between the outer peripheral surfaces 103a, 203a of the bladders 103, 203 before the pressurization and the outer peripheral surfaces 103a, 203a of the bladders 103, 203 under the pressurized state. Also, the solid line in FIG. 11 indicates the bladder 103 of the present embodiment, and the broken line in FIG. 11 indicates the bladder 203 of the comparative example. As can be seen from FIG. 11, when the hydraulic pressure becomes equal to or higher than the predetermined hydraulic pressure N1, the bladder 103 of the present embodiment gradually increases the amount of consumed liquid compared to the bladder 203 of the comparative example. The hydraulic pressure N1 is a hydraulic pressure when the bladder 103 contacts the second top portion 102j2 and the second concave portion 102i2 is closed by the bladder 103.
 また、図4に示されるように、液圧ダンパ100では、外周面103aに液圧が作用した状態において、内周面103bと外周面102h1との間に、容積が異なる複数の気体室111a,111b(111)が形成される。図4の例では、第2凹部102i2に形成される気体室111aの容積が、第3凹部101j3に形成される気体室111bの容積よりも大きいが、逆でもよい。また、内周面103bと外周面102h1との間に、容積が異なる三つ以上の気体室111が形成されてもよい。 As shown in FIG. 4, in the hydraulic damper 100, in a state where the hydraulic pressure acts on the outer peripheral surface 103 a, a plurality of gas chambers 111 a, having different volumes are provided between the inner peripheral surface 103 b and the outer peripheral surface 102 h 1. 111b (111) is formed. In the example of FIG. 4, the volume of the gas chamber 111a formed in the second recess 102i2 is larger than the volume of the gas chamber 111b formed in the third recess 101j3, but may be reversed. Further, three or more gas chambers 111 having different volumes may be formed between the inner peripheral surface 103b and the outer peripheral surface 102h1.
 このような容積の差は、例えば、図3に示される突起102bの断面において、第2凹部102i2の外形線L1における凹部Lc2と接線Laとによって囲まれた図中ドットパターンが付与された領域の面積Aaと、第3凹部102i3の外形線L1における凹部Lc3と接線Lbとによって囲まれた図中ドットパターンが付与された領域の面積Abと、が異なる場合に、得られる。ここに、接線Laは、第2凹部102i2と隣接する第1頂部102j1の外形線L1における頂部Lp1と、第2凹部102i2と隣接する第2頂部102j2の外形線L1における頂部Lp2と、の双方の接線(外接線)であって、外形線L1の凹部Lc2を跨ぐような接線である。また、接線Lbは、第3凹部102i3と隣接する第2頂部102j2の外形線L1における頂部Lp2と、第3凹部102i3と隣接する第3頂部102j3の外形線L1における頂部Lp3と、の双方の接線(外接線)であって、外形線L1の凹部Lc3を跨ぐような接線である。気体室111が三つ以上形成される場合にあっても、同様に、上記領域の差に基づいて、気体室111の容積をそれぞれ異ならせることができる。 For example, in the cross section of the protrusion 102b shown in FIG. 3, such a difference in volume is caused by a region surrounded by the concave portion Lc2 and the tangent line La in the outline L1 of the second concave portion 102i2 and provided with the dot pattern in the drawing. This is obtained when the area Aa is different from the area Ab of the region provided with the dot pattern in the figure surrounded by the concave portion Lc3 and the tangent line Lb in the outline L1 of the third concave portion 102i3. Here, the tangent line La is both the top Lp1 of the outline L1 of the first top 102j1 adjacent to the second recess 102i2 and the top Lp2 of the outline L1 of the second top 102j2 adjacent to the second recess 102i2. It is a tangent line (external tangent line), and is a tangent line that straddles the concave portion Lc2 of the outline L1. The tangent line Lb is a tangent to both the top Lp2 of the outline L1 of the second top 102j2 adjacent to the third recess 102i3 and the top Lp3 of the outline L1 of the third top 102j3 adjacent to the third recess 102i3. (External tangent line), which is a tangent line that straddles the concave portion Lc3 of the outline L1. Even when three or more gas chambers 111 are formed, similarly, the volumes of the gas chambers 111 can be different based on the difference between the regions.
 また、図2に示されるように、ブラダ103の第1軸Ax回りの筒状壁103mの厚さtmは、ブラダ103の第1方向D1の端壁103nの厚さtnよりも薄く設定されている。ここに、筒状壁103mの厚さtmは、例えば、筒状壁103mの、ブラダ103の円筒外面103a1または内周面103bと直交する方向の厚さであり、端壁103nの厚さtnは、端壁103nの、端面103a2と直交する方向の厚さである。厚さtmは、第1厚さの一例であり、厚さtnは、第2厚さの一例である。なお、円筒外面103a1は、外周面とも称され、外周面103aは、外面とも称されうる。 As shown in FIG. 2, the thickness tm of the cylindrical wall 103m around the first axis Ax of the bladder 103 is set to be smaller than the thickness tn of the end wall 103n of the bladder 103 in the first direction D1. I have. Here, the thickness tm of the cylindrical wall 103m is, for example, the thickness of the cylindrical wall 103m in a direction orthogonal to the cylindrical outer surface 103a1 or the inner peripheral surface 103b of the bladder 103, and the thickness tn of the end wall 103n is , The thickness of the end wall 103n in the direction orthogonal to the end face 103a2. The thickness tm is an example of a first thickness, and the thickness tn is an example of a second thickness. Note that the cylindrical outer surface 103a1 is also referred to as an outer peripheral surface, and the outer peripheral surface 103a is also referred to as an outer surface.
 また、図2に示されるように、端面103a2は、第1軸Ax(第1方向D1)と直交する平面を有している。なお、図2の例では、端面103a2は全体的に平面であるが、これには限定されず、ブラダ103は、少なくとも、組付状態において、突起102bのうち内向きフランジ103jが挿入される第1凹部102i1から第1頂部102j1までの部位と第1方向D1に重なる環状領域Arにおいて、平面状の端面103a2を有していればよい。これにより、作業者またはロボットに端面103a2が第2方向D2に押圧されてブラダ103が突起102bに組み付けられる際に、ブラダ103の内向きフランジ103jは、弾性変形しながら、第1頂部102j1をより容易にあるいはより確実に乗り越えることができる。環状領域Arは、ブラダ103が、コア102の突起102bに組み付けられる際に、第1方向D2に乗り越える第1頂部102j1と方向D1に重なる領域である。また、この場合、当該環状領域Arを除く領域には、第2方向D2に凹む凹部が設けられてもよい。 As shown in FIG. 2, the end face 103a2 has a plane orthogonal to the first axis Ax (first direction D1). In the example of FIG. 2, the end face 103 a 2 is entirely flat, but the present invention is not limited to this. The bladder 103 has at least an inward flange 103 j of the projection 102 b in the assembled state. It is sufficient that the annular region Ar overlapping the portion from the one concave portion 102i1 to the first top portion 102j1 in the first direction D1 has a planar end face 103a2. Accordingly, when the end face 103a2 is pressed by the worker or the robot in the second direction D2 and the bladder 103 is assembled to the projection 102b, the inward flange 103j of the bladder 103 is elastically deformed to push the first top 102j1 further. You can get over easily or more reliably. The annular region Ar is a region that overlaps in the direction D1 with the first top portion 102j1 that rides in the first direction D2 when the bladder 103 is assembled to the protrusion 102b of the core 102. Further, in this case, a concave portion that is concave in the second direction D2 may be provided in a region other than the annular region Ar.
 以上のように、本実施形態の液圧ダンパ100では、突起102bの外周面102h1は、曲面を含むとともに、先端102gを除き第1方向D1と直交する平面を含まない。よって、本実施形態によれば、例えば、ブラダ103が、当該ブラダ103の外周面103aに作用する液圧によってコア102の突起102bに近づくように弾性的に収縮し、コア102に接触して弾性的に変形した場合でも、ブラダ103における応力集中を抑制することができる。よって、本実施形態によれば、ブラダ103に発生する応力を小さくしやすい。したがって、液圧ダンパ100の耐久性の低下を抑制することができる。 As described above, in the hydraulic damper 100 of the present embodiment, the outer peripheral surface 102h1 of the projection 102b includes a curved surface and does not include a plane orthogonal to the first direction D1 except for the tip 102g. Therefore, according to the present embodiment, for example, the bladder 103 is elastically contracted by the liquid pressure acting on the outer peripheral surface 103 a of the bladder 103 so as to approach the protrusion 102 b of the core 102, Even when the bladder 103 is deformed, the stress concentration in the bladder 103 can be suppressed. Therefore, according to the present embodiment, the stress generated in the bladder 103 can be easily reduced. Therefore, a decrease in the durability of the hydraulic damper 100 can be suppressed.
 また、本実施形態では、突起102bに第2凹部102i2および第3凹部102i3が設けられているので、ブラダ103が突起102bの第2頂部102j2および第3頂部102j3に接触した後も、第2凹部102i2および第3凹部102i3内に向かって変形可能である。よって、ポンプ39の吐出脈動の低減を、比較例に比べて、高い液圧で発揮することができる。 Further, in the present embodiment, since the second concave portion 102i2 and the third concave portion 102i3 are provided on the projection 102b, the second concave portion 102j2 and the third concave portion 102j3 of the protrusion 102b are kept even after the bladder 103 comes into contact with the second concave portion 102j2. It is deformable toward the inside 102i2 and the third recess 102i3. Therefore, the discharge pulsation of the pump 39 can be reduced at a higher hydraulic pressure than in the comparative example.
 また、本実施形態では、ブラダ103の外周面103a(第2外周面)に液圧が作用した状態で、ブラダ103の内周面103bと突起102bの外周面102h1(第1外周面)との間に、容積が異なる複数の気体室111a,111b(111)が形成される。気体室111の容積の大きさに応じて、気体室111を形成する部位における空気ばねのばね定数が変化し、ひいては抑制される脈動の周波数が変化する。したがって、液圧ダンパ100に容積が異なる複数の気体室111が設けられることにより、例えば、周波数の異なる脈動について当該脈動を低減することができたり、脈動を低減可能な周波数帯域をより拡大することができたり、といったメリットが得られる。 Further, in the present embodiment, in a state where the hydraulic pressure acts on the outer peripheral surface 103a (second outer peripheral surface) of the bladder 103, the inner peripheral surface 103b of the bladder 103 and the outer peripheral surface 102h1 (first outer peripheral surface) of the protrusion 102b are connected. Between them, a plurality of gas chambers 111a and 111b (111) having different volumes are formed. According to the size of the volume of the gas chamber 111, the spring constant of the air spring at the portion where the gas chamber 111 is formed changes, and the frequency of the suppressed pulsation changes. Therefore, by providing a plurality of gas chambers 111 having different volumes in the hydraulic damper 100, for example, it is possible to reduce the pulsation with respect to pulsations having different frequencies, or to further expand a frequency band in which pulsations can be reduced. Can be achieved.
 また、本実施形態では、外周面103a(第2外周面)に液圧が作用した状態で、筒状壁103mの第1変形量が、端壁102nの第2変形量よりも大きい。このような変形量の差を実現するため、本実施形態では、一例として、ブラダ103の筒状壁103mの厚さtm(第1厚さ)は、ブラダ103の端壁103nの厚さtn(第2厚さ)よりも薄い。このような構成によれば、例えば、筒状壁103mの厚さtmが端壁102nの厚さtnよりも厚い場合に比べて、筒状壁103mがより弾性変形しやすい。したがって、例えば、筒状壁103mの弾性変形を伴う気体室111の体積変化に応じた脈動低減効果が、より確実に得られる。また、仮に、端壁102nが筒状壁103mよりも薄いと、例えば、ブラダ103の外周面103aに液圧が作用した際に筒状壁103mよりも端壁102nが先に弾性変形し、当該端壁102nの中心ひいては筒状壁103mの中心が第1軸Axからオフセットするなど、ブラダ103の所期の弾性変形状態が得られ難くなる虞がある。この点、本実施形態によれば、端壁102nの厚さtnが筒状壁103mの厚さtmよりも厚く、端壁102nが筒状壁103mよりも弾性変形し難いため、ブラダ103の外周面103aに液圧が作用した際において、ブラダ103の形状がより維持されやすい。よって、例えば、ブラダ103の所期の弾性変形状態が得られやすくなるため、所期の脈動低減効果が得られやすい。なお、筒状壁103mと端壁102nとの弾性変形量の差は、それらの厚さの差以外によっても得られる。例えば、端壁102nを構成する材料として、筒状壁103mを構成する材料よりも硬い材料を用いたり、端壁102nが凸条やリブのような補強構造を有したりしてもよい。 In the present embodiment, the first deformation amount of the cylindrical wall 103m is larger than the second deformation amount of the end wall 102n in a state where the hydraulic pressure acts on the outer peripheral surface 103a (second outer peripheral surface). In order to realize such a difference in the amount of deformation, in the present embodiment, as an example, the thickness tm (first thickness) of the cylindrical wall 103m of the bladder 103 is changed to the thickness TN (the thickness of the end wall 103n of the bladder 103). (Second thickness). According to such a configuration, for example, the cylindrical wall 103m is more easily elastically deformed than when the thickness tm of the cylindrical wall 103m is larger than the thickness tn of the end wall 102n. Therefore, for example, a pulsation reduction effect corresponding to a volume change of the gas chamber 111 accompanying the elastic deformation of the cylindrical wall 103m can be more reliably obtained. Also, if the end wall 102n is thinner than the cylindrical wall 103m, for example, when the hydraulic pressure acts on the outer peripheral surface 103a of the bladder 103, the end wall 102n is elastically deformed earlier than the cylindrical wall 103m. There is a possibility that the desired elastically deformed state of the bladder 103 may be difficult to obtain, such as the center of the end wall 102n and thus the center of the cylindrical wall 103m being offset from the first axis Ax. In this regard, according to the present embodiment, the thickness tn of the end wall 102n is greater than the thickness tm of the cylindrical wall 103m, and the end wall 102n is less likely to be elastically deformed than the cylindrical wall 103m. When the hydraulic pressure acts on the surface 103a, the shape of the bladder 103 is more easily maintained. Therefore, for example, the desired elastic deformation state of the bladder 103 is easily obtained, so that the desired pulsation reduction effect is easily obtained. The difference in the amount of elastic deformation between the cylindrical wall 103m and the end wall 102n can be obtained by means other than the difference in the thicknesses. For example, as the material forming the end wall 102n, a material harder than the material forming the cylindrical wall 103m may be used, or the end wall 102n may have a reinforcing structure such as a ridge or a rib.
 また、本実施形態では、ブラダは103、第1方向D1と直交する平面を含む第1方向D1の端面103a2を有する。このような構成によれば、例えば、作業者あるいはロボットは、端面103a2に設けられた当該平面を、第1方向D1の反対方向である第2方向D2に向けて、より容易にあるいはより確実に押圧することができるため、ブラダ103のコア102への組み付け作業を、より容易に、より迅速に、あるいはより確実に実行しうる。 In the present embodiment, the bladder 103 has an end face 103a2 in the first direction D1 including a plane orthogonal to the first direction D1. According to such a configuration, for example, the worker or the robot can more easily or surely turn the plane provided on the end face 103a2 in the second direction D2 opposite to the first direction D1. Since the pressing can be performed, the work of assembling the bladder 103 to the core 102 can be performed more easily, more quickly, or more reliably.
 また、本実施形態の液圧ダンパ100では、例えば、外周面102h1は、ブラダ103の外周面103aに液圧が作用していない状態で、先端102gを含み当該先端102gに近付くにつれてブラダ103の内周面103bとの間の隙間が狭くなる領域102r(第1領域)を含む。よって、本実施形態によれば、例えば、ブラダ103が、外周面103aに作用する液圧によってコア102の突起102bに近づくように弾性的に収縮した場合に、当該ブラダ103は、コア102の領域102rにおいては先端102gと最初に接触する。よって、本実施形態によれば、ブラダ103の第1方向D1の座屈を抑制することができる。 Further, in the hydraulic damper 100 of the present embodiment, for example, the outer peripheral surface 102h1 includes the tip 102g in a state where the hydraulic pressure is not acting on the outer peripheral surface 103a of the bladder 103. It includes a region 102r (first region) where the gap between the peripheral surface 103b and the peripheral surface 103b is narrow. Therefore, according to the present embodiment, for example, when the bladder 103 elastically contracts to approach the protrusion 102b of the core 102 by the hydraulic pressure acting on the outer peripheral surface 103a, the bladder 103 At 102r, it comes into contact with the tip 102g first. Therefore, according to the present embodiment, buckling of the bladder 103 in the first direction D1 can be suppressed.
 また、本実施形態の液圧ダンパ100では、例えば、ブラダ103は、先端102gとは第1方向の反対側の環状の端縁103e1と、端縁103e1から第1方向D1と交差して内向きに張り出した内向きフランジ103jと、を有している。よって、本実施形態によれば、例えば、ブラダ103をコア102に引っ掛けるためのフランジが端縁103e1から第1方向と交差して外向きに張り出した構成に比べ、ブラダ103の小型化をすることができる。 Further, in the hydraulic damper 100 of the present embodiment, for example, the bladder 103 has an annular edge 103e1 opposite to the tip 102g in the first direction, and inwardly intersects the edge 103e1 in the first direction D1. And an inward flange 103j that protrudes from Therefore, according to the present embodiment, for example, the size of the bladder 103 can be reduced compared to a configuration in which a flange for hooking the bladder 103 on the core 102 projects outward from the edge 103e1 in a direction intersecting the first direction. Can be.
 また、本実施形態の液圧ダンパ100では、例えば、コア102は、内向きフランジ103jに対して先端102gに近い側に隣接し、ブラダ103の外周面103aに液圧が作用していない状態でブラダ103の内周面103bと当接した凸曲面102p1を有している。コア102の外周面102h1は、凸曲面102p1よりも第1方向D1に位置されている。外周面102h1の最大径は、内向きフランジ103jの内径よりも小さい。よって、本実施形態によれば、例えば、ブラダ103をコア102の突起102bに対して第2方向D2に移動させてコア102に取り付ける場合に、ブラダ103の外周面102h1が内向きフランジ103jの内周部に接触するのを抑制することができる。よって、本実施形態によれば、コア102に対するブラダ103の取り付けがしやすい。 In the hydraulic damper 100 of the present embodiment, for example, the core 102 is adjacent to the inward flange 103j on the side near the tip 102g, and the hydraulic pressure is not acting on the outer peripheral surface 103a of the bladder 103. The bladder 103 has a convex curved surface 102p1 in contact with the inner peripheral surface 103b. The outer peripheral surface 102h1 of the core 102 is located in the first direction D1 with respect to the convex curved surface 102p1. The maximum diameter of the outer peripheral surface 102h1 is smaller than the inner diameter of the inward flange 103j. Therefore, according to the present embodiment, for example, when the bladder 103 is moved in the second direction D2 with respect to the protrusion 102b of the core 102 and is attached to the core 102, the outer peripheral surface 102h1 of the bladder 103 is positioned inside the inward flange 103j. Contact with the peripheral portion can be suppressed. Therefore, according to the present embodiment, attachment of the bladder 103 to the core 102 is easy.
 また、本実施形態では、突起102bの外形線L1における変曲点P1での角度α1は、例えば、25度~70度の範囲内に設定されている。ここで、変曲点P1での角度α1が小さい程すなわち外形線L1の変化が緩やかな程、気体室111の体積を確保するためには、突起102bの軸方向の長さを長くする必要がある。一方、変曲点P1での角度α1が大きい程、すなわち外形線L1の変化が急な程、ブラダ103の変形に伴って生じるブラダ103の屈曲部の曲率半径が小さくなり、ブラダ103の応力が高くなりやすい。そこで、本実施形態では、例えば、変曲点P1での角度α1の範囲を上記のとおりにすることにより、液圧ダンパ100の小型化と耐久性との両立を図っている。 In the present embodiment, the angle α1 at the inflection point P1 in the outline L1 of the protrusion 102b is set, for example, in the range of 25 degrees to 70 degrees. Here, in order to secure the volume of the gas chamber 111 as the angle α1 at the inflection point P1 is smaller, that is, as the change of the outer shape line L1 is more gradual, it is necessary to increase the axial length of the projection 102b. is there. On the other hand, as the angle α1 at the inflection point P1 is larger, that is, as the change in the outline L1 is steeper, the radius of curvature of the bent portion of the bladder 103 caused by the deformation of the bladder 103 is reduced, and the stress of the bladder 103 is reduced. Easy to get high. Therefore, in the present embodiment, for example, by setting the range of the angle α1 at the inflection point P1 as described above, both the miniaturization and the durability of the hydraulic damper 100 are achieved.
 また、本実施形態では、突起102bの外形線L1,L3は、全域が曲線で構成されていている。よって、外形線L1,L3に部分的に直線が設けられた場合に比べて、突起102bの軸方向の長さを短くしやすい。 In addition, in the present embodiment, the entire outlines L1 and L3 of the protrusion 102b are configured by curves. Therefore, the length of the protrusion 102b in the axial direction can be easily reduced as compared with the case where a straight line is partially provided on the outlines L1 and L3.
 なお、上記実施形態では、液体ダンパが油路内に臨む状態で取り付けられた例が示されたが、これに限定されない。例えば、液体ダンパは、容器の室内に臨む状態で設けられていてもよい。 In the above embodiment, an example is shown in which the liquid damper is mounted so as to face the oil passage, but the present invention is not limited to this. For example, the liquid damper may be provided so as to face the interior of the container.
 また、上記実施形態では、突起の延部の第1外周面に二つの凹部が設けられた例が示されたが、突起の延部の凹部は、一つであってもよいし、三つ以上であってもよい。 Further, in the above-described embodiment, an example is described in which two recesses are provided on the first outer peripheral surface of the extension of the projection. However, the number of recesses of the extension of the projection may be one, or three. It may be the above.
 また、上記実施形態では、ブラダに液圧が作用していない状態では、ブラダが第1頂部および第2頂部と離間した例が示されたが、これに限られない。例えば、ブラダに液圧が作用していない状態で、ブラダが第1頂部および第2頂部と接触していていもよい。 Also, in the above-described embodiment, an example is shown in which the bladder is separated from the first top and the second top in a state where no hydraulic pressure acts on the bladder, but the present invention is not limited to this. For example, the bladder may be in contact with the first and second tops with no hydraulic pressure acting on the bladder.
 また、上記実施形態では、液圧ダンパがブレーキ装置の油圧回路に設けられた例が示されたが、液圧ダンパは、ブレーキ装置以外の各種の油圧回路に設けられてよい。 In the above-described embodiment, the example in which the hydraulic damper is provided in the hydraulic circuit of the brake device has been described, but the hydraulic damper may be provided in various hydraulic circuits other than the brake device.
 また、上記実施形態では、突起の第1外周面が回転面によって構成された例が示されたが、これに限られない。例えば、第1外周面は、螺旋形状や楕円形状を含んだ形状であってもよい。また、第1外周面は、円錐面を含んでいてもよい。 In the above embodiment, the example in which the first outer peripheral surface of the projection is constituted by the rotating surface is shown, but the present invention is not limited to this. For example, the first outer peripheral surface may have a shape including a spiral shape and an elliptical shape. Further, the first outer peripheral surface may include a conical surface.
 図5乃至図7に第2実施形態の液圧ダンパを示す。図5乃至図7において、上述した第1実施形態の液圧ダンパと同じ構成には同じ番号符号を付し、その説明は省略する。従来の液圧ダンパでは、例えば、組立工程においてブラダがコアに正しく装着されていなかった場合や、何らかの原因によってブラダがコアから外れた場合などに、当該外れたブラダによって液圧ダンパの液圧室内での液体の流れあるいは圧力の伝播が阻害されるのは、好ましくない。本第2実施形態では、例えば、仮にコアからブラダが外れた場合にあっても、以下に説明するように、液圧室内における液体の流れを確保しやすい液圧ダンパが得られる。 FIGS. 5 to 7 show a hydraulic damper according to a second embodiment. 5 to 7, the same components as those of the above-described hydraulic damper of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In a conventional hydraulic damper, for example, when the bladder is not properly attached to the core during the assembling process, or when the bladder is detached from the core for some reason, the hydraulic bladder of the hydraulic damper is removed by the detached bladder. It is not preferred that the flow of the liquid or the propagation of the pressure at the outlet be impeded. In the second embodiment, for example, even if the bladder comes off from the core, a hydraulic damper that can easily secure the flow of the liquid in the hydraulic chamber can be obtained as described below.
 本第2実施形態においては、図5,7に示されるように、ブラダ103の底壁103nの外面である底面103n1には、溝103kが設けられている。溝103kは、例えば、底面103n1から第2方向D2に略一定の深さで凹むとともに、底面103n1に沿って第1方向D1および第2方向D2と交差する方向に延びている。これら複数の溝103kは、第2方向D2に見た場合に、例えば十字状に設けられる。複数の溝103kは、互いに繋がっている。なお、第2方向D2に見た場合の溝103kの形状は、十字状には限定されず、メッシュ状や、梯子状等であってもよいし、同心円状の溝と放射状に延びる溝とが交差するような形状であってもよいし、一筆書き状に繋がった屈曲した溝であってもよいし、これら以外の形状であってもよい。また、いずれの形状においても複数の溝103kが設けられる場合、それら複数の溝103kは、互いに繋がっていてもよい。 In the second embodiment, as shown in FIGS. 5 and 7, a groove 103k is provided in a bottom surface 103n1 which is an outer surface of a bottom wall 103n of the bladder 103. The groove 103k is, for example, recessed from the bottom surface 103n1 at a substantially constant depth in the second direction D2, and extends along the bottom surface 103n1 in a direction intersecting the first direction D1 and the second direction D2. The plurality of grooves 103k are provided, for example, in a cross shape when viewed in the second direction D2. The plurality of grooves 103k are connected to each other. The shape of the groove 103k when viewed in the second direction D2 is not limited to a cross shape, but may be a mesh shape, a ladder shape, or the like, or a concentric groove and a radially extending groove may be used. The shape may be such that they intersect, may be a bent groove connected in a one-stroke shape, or may be other shapes. When a plurality of grooves 103k are provided in any shape, the plurality of grooves 103k may be connected to each other.
 このような構成により、例えば、ブラダ103がコア102の突起102bに正しく装着されていなかったような場合や、その他の原因によって、ブラダ103が突起102bから外れ、ブラダ103の底面103n1と孔101aの底面101e2とが接した場合、当該底面103n1と底面101e2との間には、少なくとも溝103kの容積に相当する隙間ができる。図5に示されるように、第1開口101d1は、底面101e2に開口しているが、溝103kが設けられていることにより、ブラダ103の底面103n1は、第1開口101d1を塞ぐことなく、また、底面103n1と底面101e2との間が完全に塞がれることなく、孔101a内において、溝103kと底面101e2との間の隙間が第1開口101d1と第2開口101c1との間の液体の通路の一部を構成することができる。したがって、本実施形態によれば、何らかの原因でブラダ103がコア102から外れ、ブラダ103の底面103n1と孔101aの底面101e2とが接したような場合にあっても、液圧ダンパ100において、ポンプ39の吐出側から延びる吐出油路42が遮断されるのが、抑制されうる。底面103n1は、外周面103aの一部であって、第1端部の一例であり、ブラダ103の第1方向D1の端面とも称されうる。底面103n1と面した孔101aの底面101e2は、対向面の一例である。また、溝103kは、凹部の一例である。また、底面103n1は、溝103kの底部に対する相対的な凸部の一例である。 With such a configuration, for example, when the bladder 103 is not properly mounted on the protrusion 102b of the core 102 or due to other causes, the bladder 103 comes off the protrusion 102b, and the bottom surface 103n1 of the bladder 103 and the hole 101a are closed. When the bottom surface 101e2 touches, a gap corresponding to at least the volume of the groove 103k is formed between the bottom surface 103n1 and the bottom surface 101e2. As shown in FIG. 5, the first opening 101d1 is open in the bottom surface 101e2, but since the groove 103k is provided, the bottom surface 103n1 of the bladder 103 does not block the first opening 101d1, and The gap between the groove 103k and the bottom surface 101e2 is formed in the hole 101a without completely closing the space between the bottom surface 103n1 and the bottom surface 101e2, and the liquid passage between the first opening 101d1 and the second opening 101c1 in the hole 101a. Can be configured. Therefore, according to the present embodiment, even when the bladder 103 comes off the core 102 for some reason and the bottom surface 103n1 of the bladder 103 and the bottom surface 101e2 of the hole 101a are in contact with each other, the pump The interruption of the discharge oil passage 42 extending from the discharge side of the nozzle 39 can be suppressed. The bottom surface 103n1 is a part of the outer peripheral surface 103a, is an example of a first end, and may be referred to as an end surface of the bladder 103 in the first direction D1. The bottom surface 101e2 of the hole 101a facing the bottom surface 103n1 is an example of the facing surface. The groove 103k is an example of a recess. Further, the bottom surface 103n1 is an example of a convex portion that is relative to the bottom of the groove 103k.
 また、図7に示されるように、ハウジング101には、液圧ダンパ200の液圧室としての孔101aと、ポンプ39(図1参照)の液圧室としての孔101fとが、互いに隣接して平行に設けられている。ポンプ39は、例えば、単筒のピストンポンプである。孔101aの中心である第1軸Axと、孔101fの中心である第2軸Ax2とは、互いに平行である。また、これら孔101a,101fは、同一の外面101bに開口されているため、それぞれ別の面に開口されている場合に比べて、孔101a,101fの加工の手間およびコストが低減されうる。また、図7に示される第2通路101cの孔の延長線としての二点鎖線から明らかとなるように、孔101aと孔101fとを繋ぐ第2通路101cは、孔101fの開口端101f1から、加工することができる。ポンプ39を回転駆動するモータ40が収容される液圧室としての孔101g(の第3軸Ax3)は、第1軸Axおよび第2軸Ax2と平行な方向に対して交差し、かつ直交している。孔101fは、外面101bから孔101gに至る貫通孔である。このような構成によれば、ハウジング101に、ポンプ39、モータ40、および液圧ダンパ200を、より効率良く配置することができる。 As shown in FIG. 7, a hole 101a as a hydraulic chamber of the hydraulic damper 200 and a hole 101f as a hydraulic chamber of the pump 39 (see FIG. 1) are adjacent to each other in the housing 101. Are provided in parallel. The pump 39 is, for example, a single cylinder piston pump. The first axis Ax, which is the center of the hole 101a, and the second axis Ax2, which is the center of the hole 101f, are parallel to each other. Further, since the holes 101a and 101f are opened on the same outer surface 101b, the labor and cost for processing the holes 101a and 101f can be reduced as compared with the case where the holes 101a and 101f are opened on different surfaces. Further, as is apparent from a two-dot chain line as an extension of the hole of the second passage 101c shown in FIG. 7, the second passage 101c connecting the hole 101a and the hole 101f is formed from the opening end 101f1 of the hole 101f. Can be processed. A hole 101g (a third axis Ax3 thereof) serving as a hydraulic chamber accommodating a motor 40 that rotationally drives the pump 39 intersects and is orthogonal to a direction parallel to the first axis Ax and the second axis Ax2. ing. The hole 101f is a through hole extending from the outer surface 101b to the hole 101g. According to such a configuration, the pump 39, the motor 40, and the hydraulic damper 200 can be more efficiently arranged in the housing 101.
 以上、説明したように、本実施形態の液圧ダンパ200では、底面103n1(第1端部)には、ブラダ103がコア102から脱落して底面103n1と孔101a(液圧室)の底面101e2(対向面)とが接した場合に当該底面103n1と当該底面101e2との間で第1開口101d1と第2開口101c1との間の液体通路の少なくとも一部を形成する溝103k(凹部)が設けられている。このような構成によれば、何らかの原因でブラダ103がコア102から外れ、ブラダ103の底面103n1と孔101aの底面101e2とが接したような場合にあっても、例えば、底面103n1と底面101e2との間が完全に塞がれることなく、孔101a内において、溝103kと底面101e2との間の隙間が第1開口101d1と第2開口101c1との間の液体の通路の一部を構成する。したがって、液圧ダンパ100において、ポンプ39の吐出側から延びる吐出油路42が遮断されるのが、抑制されうる。 As described above, in the hydraulic damper 200 of the present embodiment, the bladder 103 falls off the core 102 on the bottom surface 103n1 (first end) and the bottom surface 103n1 and the bottom surface 101e2 of the hole 101a (hydraulic chamber). A groove 103k (recess) that forms at least a part of a liquid passage between the first opening 101d1 and the second opening 101c1 is provided between the bottom surface 103n1 and the bottom surface 101e2 when the bottom surface 103n1 and the bottom surface 101e2 are in contact with each other. Have been. According to such a configuration, even when the bladder 103 comes off the core 102 for some reason and the bottom surface 103n1 of the bladder 103 contacts the bottom surface 101e2 of the hole 101a, for example, the bottom surface 103n1 and the bottom surface 101e2 are The gap between the groove 103k and the bottom surface 101e2 forms a part of the liquid passage between the first opening 101d1 and the second opening 101c1 in the hole 101a without completely closing the gap. Therefore, in the hydraulic damper 100, the interruption of the discharge oil passage 42 extending from the discharge side of the pump 39 can be suppressed.
 なお、上記実施形態の例には限定されず、底面103n1に突起(凸部、凸条、不図示)が設けられた構成や、底面101e2に溝(凹部、凹溝、不図示)が設けられた構成、底面101e2に突起(凸部、凸条、不図示)が設けられた構成等にあっても、それら凹部および凸部のうち少なくとも一方によって、底面103n1(第1端部)と底面101e2(対向面)との間に、第1開口101d1と第2開口101c1との間の液体の通路の一部を形成する隙間を設けることができる。また、上記実施形態では、第2通路101cの第2開口101c1は、内面101eのうち内周面101e1に開口されていたが、これには限定されず、第2開口101c1も、底面103n1に開口されてもよい。 Note that the present invention is not limited to the example of the above-described embodiment, and a configuration in which a projection (a convex portion, a ridge, not shown) is provided on the bottom surface 103n1 or a groove (a concave portion, a concave groove, not shown) is provided on the bottom surface 101e2. Even if there is a configuration in which projections (projections, projections, not shown) are provided on the bottom surface 101e2, the bottom surface 103n1 (first end) and the bottom surface 101e2 are formed by at least one of the recesses and projections. A gap that forms a part of a liquid passage between the first opening 101d1 and the second opening 101c1 can be provided between the first opening 101d1 and the second opening 101c1. Further, in the above-described embodiment, the second opening 101c1 of the second passage 101c is opened to the inner peripheral surface 101e1 of the inner surface 101e. However, the present invention is not limited to this. The second opening 101c1 is also opened to the bottom surface 103n1. May be done.
 また、本実施形態では、上述したように、ブラダ103の一部である内向きフランジ103jが第1凹部102i1(収容部)内に圧入されることにより、コア102に取り付けられている。上述した底面103n1および底面101e2のうち少なくとも一方に設けられた凸部または凹部による通路確保の効果は、本実施形態のようにブラダ103がコア102に部分的に圧入されることによりコア102に取り付けられている構成において有益である。言い換えると、ブラダ103がコア102から外れた場合にあっても、孔101a(液圧室)内において液体の通路を確保できるため、コア102へのブラダ103の取付方法として、比較的手間およびコストの低い圧入が採用されやすい。よって、このような構成によれば、例えば、液圧ダンパ100の製造の手間およびコストがより低減されやすい。 In addition, in the present embodiment, as described above, the inward flange 103j that is a part of the bladder 103 is attached to the core 102 by being pressed into the first recess 102i1 (accommodating portion). The effect of ensuring the passage by the convex portion or the concave portion provided on at least one of the bottom surface 103n1 and the bottom surface 101e2 is that the bladder 103 is attached to the core 102 by partially pressing the bladder 103 into the core 102 as in the present embodiment. It is beneficial in the configuration described. In other words, even when the bladder 103 comes off the core 102, a liquid passage can be secured in the hole 101a (hydraulic chamber), so that the method of attaching the bladder 103 to the core 102 is relatively troublesome and costly. Low press fit is easily adopted. Therefore, according to such a configuration, for example, the labor and cost of manufacturing the hydraulic damper 100 are more likely to be reduced.
 また、本実施形態では、第1凹部102i1(収容部)は、第1軸Axの周方向、言い換えると外周面102h1(第1外周面)の周方向に連続して設けられている。このような構成によれば、例えば、ブラダ103が互いに離れた複数箇所で支持された場合に比べて、コア102とブラダ103との結合強度が高まりやすい。 In the present embodiment, the first concave portion 102i1 (housing portion) is provided continuously in the circumferential direction of the first axis Ax, in other words, in the circumferential direction of the outer peripheral surface 102h1 (first outer peripheral surface). According to such a configuration, for example, the coupling strength between the core 102 and the bladder 103 is likely to be higher than when the bladder 103 is supported at a plurality of locations separated from each other.
 また、本実施形態の液圧ダンパ200では、突起102bの外周面102h1は、曲面を含むとともに、先端102gを除き第1方向D1と直交する平面を含まない。よって、本実施形態によれば、例えば、ブラダ103が、当該ブラダ103の外周面103aに作用する液圧によってコア102の突起102bに近づくように弾性的に収縮し、コア102に接触して弾性的に変形した場合でも、ブラダ103における応力集中を抑制することができる。よって、本実施形態によれば、ブラダ103に発生する応力を小さくしやすい。したがって、液圧ダンパ200の耐久性の低下を抑制することができる。 In addition, in the hydraulic damper 200 of the present embodiment, the outer peripheral surface 102h1 of the projection 102b includes a curved surface and does not include a plane orthogonal to the first direction D1 except for the tip 102g. Therefore, according to the present embodiment, for example, the bladder 103 is elastically contracted by the liquid pressure acting on the outer peripheral surface 103 a of the bladder 103 so as to approach the protrusion 102 b of the core 102, Even when the bladder 103 is deformed, the stress concentration in the bladder 103 can be suppressed. Therefore, according to the present embodiment, the stress generated in the bladder 103 can be easily reduced. Therefore, a decrease in the durability of the hydraulic damper 200 can be suppressed.
 また、本実施形態では、突起102bに第2凹部102i2および第3凹部102i3が設けられているので、ブラダ103が突起102bの第2頂部102j2および第3頂部102j3に接触した後も、第2凹部102i2および第3凹部102i3内に向かって変形可能である。よって、ポンプ39の吐出脈動の低減を、比較例に比べて、高い液圧で発揮することができる。 Further, in the present embodiment, since the second concave portion 102i2 and the third concave portion 102i3 are provided on the projection 102b, the second concave portion 102j2 and the third concave portion 102j3 of the protrusion 102b are kept even after the bladder 103 comes into contact with the second concave portion 102j2. It is deformable toward the inside 102i2 and the third recess 102i3. Therefore, the discharge pulsation of the pump 39 can be reduced at a higher hydraulic pressure than in the comparative example.
 図8及び図9に第3実施形態の液圧ダンパを示す。図8及び図9において、上述した第1実施形態の液圧ダンパと同じ構成には同じ番号符号を付し、その説明は省略する。従来の液圧ダンパでは、例えば、組立工程においてブラダがコアに正しく装着されていなかった場合や、何らかの原因によってブラダがコアから外れた場合などに、当該外れたブラダによって液圧ダンパの液圧室内での液体の流れあるいは圧力の伝播が阻害されるのは、好ましくない。本第3実施形態では、液圧ダンパは、ベースと、当該ベースから第1方向に突出し側部から先端にかけて滑らかな第1外周面と、を有したコアと、弾性部材によって構成され、第1外周面との間に気体を封入した状態で第1外周面を覆う内周面と、液圧が作用する第2外周面と、第1方向の第1端部と、を有したブラダと、ブラダが液圧室に収容された状態でコアとは別の部材によってコアからのブラダの脱落を防止する構成とを備え、以下に説明するように、ブラダがコアから外れるのを抑制できる。 FIGS. 8 and 9 show a hydraulic damper according to a third embodiment. 8 and 9, the same components as those of the above-described hydraulic damper of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In a conventional hydraulic damper, for example, when the bladder is not properly attached to the core during the assembly process, or when the bladder is detached from the core for some reason, the hydraulic chamber of the hydraulic damper is disengaged by the bladder. It is not preferred that the flow of the liquid or the propagation of the pressure is obstructed. In the third embodiment, the hydraulic damper includes a core having a base, a first outer peripheral surface protruding from the base in the first direction and extending smoothly from the side to the tip, and an elastic member. A bladder having an inner peripheral surface that covers the first outer peripheral surface in a state in which gas is sealed between the outer peripheral surface, a second outer peripheral surface on which hydraulic pressure acts, and a first end in a first direction; A configuration in which the bladder is prevented from falling off the core by a member different from the core in a state in which the bladder is housed in the hydraulic chamber, so that the bladder can be prevented from coming off the core as described below.
 本第3実施形態においては、図8,9に示されるように、ブラダ103の内向きフランジ103jが収容されている第1凹部102i1の、第1方向D1における幅wが、ブラダ103の底面103n1と孔101aの底面101d2との間の間隔gよりも大きい(w>g)。このような設定によれば、仮に、ブラダ103に、内向きフランジ103jが第1凹部102i1から抜け出すことが可能な大きさの第1方向D1の外力が作用した場合にあっても、内向きフランジ103jが第1凹部102iを抜け出す、つまり、ブラダ103がコア102から第1方向D1に外れるのに必要なストローク(=w)を動く前に、第1方向D1に間隔gが詰まり、ブラダ103の底面103n1と孔101aの底面101e2とが当接し、それ以上ブラダ103が動くことができなくなる。したがって、幅wと間隔gとの大小(w>g)の設定によれば、ブラダ103がコア102から第1方向D1に外れるのを抑制することができる。なお、幅wは、長さとも称されうる。底面101e2を有したハウジング101は、ブラダ103がコア102から脱落するのを防止するコア102とは別の部材の一例である。 In the third embodiment, as shown in FIGS. 8 and 9, the width w in the first direction D1 of the first concave portion 102i1 in which the inward flange 103j of the bladder 103 is accommodated is the bottom surface 103n1 of the bladder 103. Is larger than the distance g between the hole 101a and the bottom surface 101d2 (w> g). According to such a setting, even if an external force in the first direction D1 of a size that allows the inward flange 103j to escape from the first recess 102i1 acts on the bladder 103, the inward flange 103j is Before the bladder 103j moves out of the first concave portion 102i, that is, before the bladder 103 moves a stroke (= w) required to separate from the core 102 in the first direction D1, the gap g is narrowed in the first direction D1, and the bladder 103 The bottom surface 103n1 contacts the bottom surface 101e2 of the hole 101a, and the bladder 103 cannot move any further. Therefore, according to the setting of the width w and the interval g (w> g), the bladder 103 can be prevented from deviating from the core 102 in the first direction D1. Note that the width w may be referred to as a length. The housing 101 having the bottom surface 101e2 is an example of a member different from the core 102 that prevents the bladder 103 from falling off the core 102.
 さらに、図8,9に示されるように、ブラダ103の底壁103nの外面である底面103n1には、溝103kが設けられている。溝103kは、例えば、底面103n1から第2方向D2に略一定の深さで凹むとともに、底面103n1に沿って第1方向D1および第2方向D2と交差する方向に延びている。これら複数の溝103kは、第2方向D2に見た場合に、例えば十字状に設けられる。複数の溝103kは、互いに繋がっている。なお、第2方向D2に見た場合の溝103kの形状は、十字状には限定されず、メッシュ状や、梯子状等であってもよいし、同心円状の溝と放射状に延びる溝とが交差するような形状であってもよいし、一筆書き状に繋がった屈曲した溝であってもよいし、これら以外の形状であってもよい。また、いずれの形状においても複数の溝103kが設けられる場合、それら複数の溝103kは、互いに繋がっていてもよい。 Furthermore, as shown in FIGS. 8 and 9, a groove 103k is provided on a bottom surface 103n1 which is an outer surface of the bottom wall 103n of the bladder 103. The groove 103k is, for example, recessed from the bottom surface 103n1 at a substantially constant depth in the second direction D2, and extends along the bottom surface 103n1 in a direction intersecting the first direction D1 and the second direction D2. The plurality of grooves 103k are provided, for example, in a cross shape when viewed in the second direction D2. The plurality of grooves 103k are connected to each other. The shape of the groove 103k when viewed in the second direction D2 is not limited to a cross shape, but may be a mesh shape, a ladder shape, or the like, or a concentric groove and a radially extending groove may be used. The shape may be such that they intersect, may be a bent groove connected in a one-stroke shape, or may be other shapes. When a plurality of grooves 103k are provided in any shape, the plurality of grooves 103k may be connected to each other.
 このような構成により、例えば、ブラダ103の底面103n1と孔101aの底面101e2との間には、少なくとも溝103kの容積に相当する隙間(空間)ができる。図8,9に示されるように、第1開口101d1は、底面101e2に開口しているが、溝103kが設けられていることにより、間隔gが比較的小さく設定されていた場合、例えば間隔gが略0(ゼロ)に設定されていた場合(間隔gが0(ゼロ)の場合、すなわち、底面103n1と底面101e2とが予め接触している場合も含む)にあっても、ブラダ103の底面103n1は、第1開口101d1を塞ぐことなく、また、底面103n1と底面101e2との間が完全に塞がれることなく、孔101a内において、溝103kと底面101e2との間の隙間が第1開口101d1と第2開口101c1との間の液体の通路の一部を構成することができる。よって、このような構成によれば、吐出油路42の、液圧ダンパ100の孔101a(液圧室)内における油路(区間)を、より確実に確保できる。底面103n1は、第1端部の一例であり、ブラダ103の第1方向D1の端面とも称されうる。底面103n1と面した孔101aの底面101e2は、対向面の一例である。また、溝103kは、凹部の一例である。また、底面103n1は、溝103kの底部に対する相対的な凸部の一例である。 With such a configuration, for example, a gap (space) corresponding to at least the volume of the groove 103k is formed between the bottom surface 103n1 of the bladder 103 and the bottom surface 101e2 of the hole 101a. As shown in FIGS. 8 and 9, the first opening 101d1 is opened in the bottom surface 101e2, but when the gap g is set to be relatively small due to the provision of the groove 103k, for example, the gap g Is set to approximately 0 (zero) (when the interval g is 0 (zero), that is, also when the bottom surface 103n1 and the bottom surface 101e2 are in contact with each other in advance), 103n1 does not cover the first opening 101d1 and does not completely close the space between the bottom surface 103n1 and the bottom surface 101e2, so that the gap between the groove 103k and the bottom surface 101e2 is formed in the hole 101a. A part of the liquid passage between the first opening 101d1 and the second opening 101c1 can be formed. Therefore, according to such a configuration, the oil passage (section) of the discharge oil passage 42 in the hole 101a (hydraulic chamber) of the hydraulic damper 100 can be more reliably secured. The bottom surface 103n1 is an example of a first end, and may be referred to as an end surface of the bladder 103 in the first direction D1. The bottom surface 101e2 of the hole 101a facing the bottom surface 103n1 is an example of the facing surface. The groove 103k is an example of a recess. Further, the bottom surface 103n1 is an example of a convex portion that is relative to the bottom of the groove 103k.
 以上、説明したように、本実施形態の液圧ダンパ300では、ブラダ103のうち第1凹部102i1(収容部)に収容されている部位、すなわち内向きフランジ103jが、当該第1凹部102i1から抜け出す前に、ブラダ103の底面103n1(第1端部)と孔101aの底面101e2(対向面)とが接するか、あるいは、予め底面103n1と底面101e2とが接触している。よって、このような構成によれば、ハウジング101(コア102とは別の部材)の底面101e2により、ブラダ103がコア102から外れるのが抑制される。なお、別の部材は、ハウジング101そのものには限定されず、ハウジング101に固定されたハウジング101とは別の部材や、孔101a内に収容されたハウジング101とは別の部材等であってもよく、例えば、底面103n1と底面101e2との間に介在する部材であってもよい。 As described above, in the hydraulic damper 300 of the present embodiment, the portion of the bladder 103 that is accommodated in the first recess 102i1 (accommodating portion), that is, the inward flange 103j comes out of the first recess 102i1. Previously, the bottom surface 103n1 (first end) of the bladder 103 is in contact with the bottom surface 101e2 (opposing surface) of the hole 101a, or the bottom surface 103n1 and the bottom surface 101e2 are in contact in advance. Therefore, according to such a configuration, the bladder 103 is prevented from coming off the core 102 by the bottom surface 101e2 of the housing 101 (a member different from the core 102). The other member is not limited to the housing 101 itself, and may be a member different from the housing 101 fixed to the housing 101, a member different from the housing 101 housed in the hole 101a, or the like. For example, a member interposed between the bottom surface 103n1 and the bottom surface 101e2 may be used.
 また、本実施形態の液圧ダンパ300では、底面103n1(第1端部)には、当該底面103n1と底面101e2との間で第1開口101d1と第2開口101c1との間の液体通路の少なくとも一部を形成する溝103k(凹部)が設けられている。このような構成によれば、例えば、間隔gが比較的小さく設定された場合にあっても、底面103n1と底面101e2との間が完全に塞がれることなく、孔101a内において、溝103kと底面101e2との間の隙間が第1開口101d1と第2開口101c1との間の液体の通路の一部を構成することができる。したがって、例えば、液圧ダンパ100の第1方向のサイズをより小さくすることができる。 In the hydraulic damper 300 of the present embodiment, at least the liquid passage between the first opening 101d1 and the second opening 101c1 between the bottom surface 103n1 and the bottom surface 101e2 is provided on the bottom surface 103n1 (first end). A groove 103k (recess) that forms a part is provided. According to such a configuration, for example, even when the gap g is set relatively small, the gap between the bottom surface 103n1 and the bottom surface 101e2 is not completely closed, and the groove 103k is formed in the hole 101a. The gap between the bottom surface 101e2 and the first opening 101d1 can form a part of the liquid passage between the second opening 101c1. Therefore, for example, the size of the hydraulic damper 100 in the first direction can be further reduced.
 なお、上記実施形態の例には限定されず、底面103n1に突起(凸部、凸条、不図示)が設けられた構成や、底面101e2に溝(凹部、凹溝、不図示)が設けられた構成、底面101e2に突起(凸部、凸条、不図示)が設けられた構成等にあっても、それら凹部および凸部のうち少なくとも一方によって、底面103n1(第1端部)と底面101e2(対向面)との間に、第1開口101d1と第2開口101c1との間の液体の通路の一部を形成する隙間を設けることができる。また、上記実施形態では、第2通路101cの第2開口101c1は、内面101eのうち内周面101e1に開口されていたが、これには限定されず、第2開口101c1も、底面103n1に開口されてもよい。 Note that the present invention is not limited to the example of the above-described embodiment, and a configuration in which a projection (a convex portion, a ridge, not shown) is provided on the bottom surface 103n1 or a groove (a concave portion, a concave groove, not shown) is provided on the bottom surface 101e2. Even if there is a configuration in which projections (projections, projections, not shown) are provided on the bottom surface 101e2, the bottom surface 103n1 (first end) and the bottom surface 101e2 are formed by at least one of the recesses and projections. A gap that forms a part of a liquid passage between the first opening 101d1 and the second opening 101c1 can be provided between the first opening 101d1 and the second opening 101c1. Further, in the above-described embodiment, the second opening 101c1 of the second passage 101c is opened to the inner peripheral surface 101e1 of the inner surface 101e. However, the present invention is not limited to this. The second opening 101c1 is also opened to the bottom surface 103n1. May be done.
 また、本実施形態では、上述したように、ブラダ103の一部である内向きフランジ103jが第1凹部102i1(収容部)内に圧入されることにより、コア102に取り付けられている。上述した底面103n1および底面101e2のうち少なくとも一方に設けられた凸部または凹部による通路確保の効果は、本実施形態のようにブラダ103がコア102に部分的に圧入されることによりコア102に取り付けられている構成において有益である。言い換えると、ブラダ103がコア102から外れることを想定せずに済むとともに、孔101a(液圧室)内において液体の通路をより確実に確保できるため、コア102へのブラダ103の取付方法として、比較的手間およびコストの低い圧入が採用されやすい。よって、このような構成によれば、例えば、液圧ダンパ300の製造の手間およびコストがより低減されやすい。 In addition, in the present embodiment, as described above, the inward flange 103j that is a part of the bladder 103 is attached to the core 102 by being pressed into the first recess 102i1 (accommodating portion). The effect of ensuring the passage by the convex portion or the concave portion provided on at least one of the bottom surface 103n1 and the bottom surface 101e2 is that the bladder 103 is attached to the core 102 by partially pressing the bladder 103 into the core 102 as in the present embodiment. It is beneficial in the configuration described. In other words, it is not necessary to assume that the bladder 103 comes off the core 102, and the liquid passage can be more reliably secured in the hole 101a (hydraulic chamber). Press-fitting with relatively low labor and cost is likely to be adopted. Therefore, according to such a configuration, for example, the labor and cost of manufacturing the hydraulic damper 300 are more likely to be reduced.
 また、本実施形態の液圧ダンパ300では、突起102bの外周面102h1は、曲面を含むとともに、先端102gを除き第1方向D1と直交する平面を含まない。よって、本実施形態によれば、例えば、ブラダ103が、当該ブラダ103の外周面103aに作用する液圧によってコア102の突起102bに近づくように弾性的に収縮し、コア102に接触して弾性的に変形した場合でも、ブラダ103における応力集中を抑制することができる。よって、本実施形態によれば、ブラダ103に発生する応力を小さくしやすい。したがって、液圧ダンパ300の耐久性の低下を抑制することができる。 In the hydraulic damper 300 of the present embodiment, the outer peripheral surface 102h1 of the projection 102b includes a curved surface and does not include a plane orthogonal to the first direction D1 except for the tip 102g. Therefore, according to the present embodiment, for example, the bladder 103 is elastically contracted by the liquid pressure acting on the outer peripheral surface 103 a of the bladder 103 so as to approach the protrusion 102 b of the core 102, Even when the bladder 103 is deformed, the stress concentration in the bladder 103 can be suppressed. Therefore, according to the present embodiment, the stress generated in the bladder 103 can be easily reduced. Therefore, a decrease in the durability of the hydraulic damper 300 can be suppressed.
 また、本実施形態では、突起102bに第2凹部102i2および第3凹部102i3が設けられているので、ブラダ103が突起102bの第2頂部102j2および第3頂部102j3に接触した後も、第2凹部102i2および第3凹部102i3内に向かって変形可能である。よって、ポンプ39の吐出脈動の低減を、比較例に比べて、高い液圧で発揮することができる。 Further, in the present embodiment, since the second concave portion 102i2 and the third concave portion 102i3 are provided on the projection 102b, the second concave portion 102j2 and the third concave portion 102j3 of the protrusion 102b are kept even after the bladder 103 comes into contact with the second concave portion 102j2. It is deformable toward the inside 102i2 and the third recess 102i3. Therefore, the discharge pulsation of the pump 39 can be reduced at a higher hydraulic pressure than in the comparative example.
 以上、本発明の実施形態を説明したが、上述した実施形態はあくまで一例であって、発明の範囲を限定することは意図していない。上述した新規な実施形態は、様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、または変更を行うことができる。また、上述した実施形態およびその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiment of the present invention has been described above, the above-described embodiment is merely an example, and is not intended to limit the scope of the invention. The new embodiment described above can be implemented in various forms, and various omissions, replacements, or changes can be made without departing from the spirit of the invention. In addition, the above-described embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (10)

  1.  ベースと、当該ベースから第1方向に突出し側部から先端にかけて滑らかな第1外周面と、を有したコアと、
     弾性部材によって構成され、前記第1外周面との間に気体を封入した状態で前記第1外周面を覆う内周面と、液圧が作用する第2外周面と、を有したブラダと、
     を備え、
     前記第2外周面に液圧が作用した状態で前記内周面の一部とは接触し、前記内周面の全部とは接触しないように前記第1外周面に凹部が設けられ、
     前記第1外周面は、曲面を含むとともに、前記先端を除き前記第1方向と直交する平面を含まない、液圧ダンパ。
    A core having a base and a first outer peripheral surface that protrudes from the base in the first direction and extends smoothly from the side to the tip;
    A bladder constituted by an elastic member, having an inner peripheral surface that covers the first outer peripheral surface in a state in which gas is sealed between the first outer peripheral surface, and a second outer peripheral surface on which hydraulic pressure acts;
    With
    A concave portion is provided on the first outer peripheral surface so as to be in contact with a part of the inner peripheral surface in a state where the second outer peripheral surface is acted on by hydraulic pressure, and not to contact the whole of the inner peripheral surface,
    The hydraulic damper, wherein the first outer peripheral surface includes a curved surface and does not include a plane orthogonal to the first direction except for the tip.
  2.  前記第2外周面に液圧が作用した状態で、前記内周面と前記第1外周面との間に、容積が異なる複数の気体室が形成される、請求項1に記載の液圧ダンパ。 The hydraulic damper according to claim 1, wherein a plurality of gas chambers having different volumes are formed between the inner peripheral surface and the first outer peripheral surface in a state where the hydraulic pressure acts on the second outer peripheral surface. .
  3.  前記ブラダは、前記内周面と前記第1外周面との間に気体室を形成する筒状壁と、前記第1方向の端壁と、を有し、
     前記第2外周面に液圧が作用した状態で、前記筒状壁の第1変形量が、前記端壁の第2変形量よりも大きい、請求項1または2に記載の液圧ダンパ。
    The bladder has a cylindrical wall that forms a gas chamber between the inner peripheral surface and the first outer peripheral surface, and an end wall in the first direction.
    3. The hydraulic damper according to claim 1, wherein the first deformation amount of the cylindrical wall is larger than the second deformation amount of the end wall in a state where the second outer peripheral surface is subjected to the hydraulic pressure. 4.
  4.  前記ブラダは、前記第1方向と直交する平面を含む前記第1方向の端面を有した、請求項1~3のうちいずれか一つに記載の液圧ダンパ。 The hydraulic damper according to any one of claims 1 to 3, wherein the bladder has an end surface in the first direction including a plane orthogonal to the first direction.
  5.  前記第1外周面は、前記第2外周面に液圧が作用していない状態で、前記先端を含み当該先端に近付くにつれて前記内周面との間の隙間が狭くなる第1領域を含む、請求項1~4のうちいずれか一つに記載の液圧ダンパ。 The first outer peripheral surface includes a first region in which a liquid pressure is not acting on the second outer peripheral surface, the first peripheral region including the distal end, and a gap between the inner peripheral surface and the inner peripheral surface being narrower as approaching the distal end. The hydraulic damper according to any one of claims 1 to 4.
  6.  前記ブラダは、前記先端とは前記第1方向の反対側の環状の端縁と、当該端縁から前記第1方向と交差して内向きに張り出し前記コアと引っ掛けられた内向きフランジと、を有した、請求項1~5のうちいずれか一つに記載の液圧ダンパ。 The bladder includes: an annular edge opposite to the tip in the first direction; and an inward flange protruding inward from the edge in a direction intersecting the first direction and hooked to the core. The hydraulic damper according to any one of claims 1 to 5, which has a hydraulic damper.
  7.  前記コアは、前記内向きフランジに対して前記先端に近い側に隣接し、前記第2外周面に液圧が作用していない状態で前記内周面と当接した凸曲面を有し、
     前記第1外周面は、前記凸曲面よりも前記第1方向に位置され、当該第1外周面の最大径は、前記内向きフランジの内径よりも小さい、請求項6に記載の液圧ダンパ。
    The core has a convex curved surface adjacent to the inward flange on a side close to the front end and in contact with the inner peripheral surface in a state where no hydraulic pressure is applied to the second outer peripheral surface,
    The hydraulic damper according to claim 6, wherein the first outer peripheral surface is located in the first direction from the convex curved surface, and a maximum diameter of the first outer peripheral surface is smaller than an inner diameter of the inward flange.
  8.  ベースと、当該ベースから第1方向に突出し側部から先端にかけて滑らかな第1外周面と、を有したコアと、
     弾性部材によって構成され、前記第1外周面との間に気体を封入した状態で前記第1外周面を覆う内周面と、液圧が作用する第2外周面と、当該第2外周面の一部であって前記第1方向の端部である第1端部と、を有したブラダと、
     を備え、
     前記ブラダを収容する液圧室を構成する内面のうち前記第1端部と面した対向面には前記液圧室と繋がる第1通路の第1開口が設けられ、前記内面には前記液圧室と繋がる前記第1通路とは別の第2通路の第2開口が設けられ、
     前記第1端部および前記対向面のうち少なくとも一方には、前記ブラダが前記コアから脱落して前記第1端部と前記対向面とが接した場合に当該第1端部と当該対向面との間で前記第1開口と前記第2開口との間の液体通路の少なくとも一部を形成する凸部または凹部が設けられた、液圧ダンパ。
    A core having a base and a first outer peripheral surface that protrudes from the base in the first direction and extends smoothly from the side to the tip;
    An inner peripheral surface formed of an elastic member and covering the first outer peripheral surface in a state where gas is sealed between the first outer peripheral surface, a second outer peripheral surface on which hydraulic pressure acts, and a second outer peripheral surface. A bladder having a first end that is a part and is an end in the first direction;
    With
    A first opening of a first passage connected to the hydraulic pressure chamber is provided on an inner surface of the hydraulic pressure chamber that houses the bladder, on a surface facing the first end, and the hydraulic pressure chamber is provided on the inner surface. A second opening of a second passage different from the first passage connected to the chamber is provided;
    The at least one of the first end and the opposing surface includes the first end and the opposing surface when the bladder falls off the core and the first end and the opposing surface are in contact with each other. A hydraulic damper provided with a convex portion or a concave portion which forms at least a part of a liquid passage between the first opening and the second opening.
  9.  前記コアには、前記ブラダを部分的に収容する収容部が設けられ、
     前記ブラダは、前記収容部に圧入されることにより前記コアに取り付けられた、請求項8に記載の液圧ダンパ。
    The core is provided with an accommodation portion that partially accommodates the bladder,
    The hydraulic damper according to claim 8, wherein the bladder is attached to the core by being press-fitted into the housing.
  10.  前記収容部は、前記第1外周面の周方向に連続して設けられた、請求項9に記載の液圧ダンパ。 The hydraulic damper according to claim 9, wherein the housing portion is provided continuously in a circumferential direction of the first outer peripheral surface.
PCT/JP2019/028846 2018-07-23 2019-07-23 Hydraulic damper WO2020022331A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018137967 2018-07-23
JP2018-137967 2018-07-23
JP2018183619A JP2020050265A (en) 2018-09-28 2018-09-28 Liquid pressure damper
JP2018-184521 2018-09-28
JP2018184521A JP2020020467A (en) 2018-07-23 2018-09-28 Liquid pressure damper
JP2018-183618 2018-09-28
JP2018183618A JP7259245B2 (en) 2018-09-28 2018-09-28 hydraulic damper
JP2018-183619 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020022331A1 true WO2020022331A1 (en) 2020-01-30

Family

ID=69181580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028846 WO2020022331A1 (en) 2018-07-23 2019-07-23 Hydraulic damper

Country Status (1)

Country Link
WO (1) WO2020022331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073492A1 (en) * 2021-10-26 2023-05-04 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング Damping device, liquid-pressure control unit, and brake system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175601U (en) * 1985-04-19 1986-11-01
JPH08216853A (en) * 1995-02-14 1996-08-27 Unisia Jecs Corp Reservoir structure
JPH09132126A (en) * 1995-10-26 1997-05-20 Robert Bosch Gmbh Vibration damper to attenuate liquid vibration in slip control type hydraulic braking system of automobile
JPH11508854A (en) * 1995-07-08 1999-08-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Vibration damping device for damping liquid vibration in a vehicle's slip-controlled hydraulic brake system
JP2015222109A (en) * 2014-05-23 2015-12-10 株式会社アドヴィックス Hydraulic damper
DE102014224828A1 (en) * 2014-12-04 2016-06-09 Robert Bosch Gmbh Pressure change damper for a brake force-controlled hydraulic vehicle brake system and brake force-controlled hydraulic vehicle brake system with such a pressure change damper
WO2018097235A1 (en) * 2016-11-24 2018-05-31 株式会社アドヴィックス Pulsation reduction device and hydraulic pressure control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175601U (en) * 1985-04-19 1986-11-01
JPH08216853A (en) * 1995-02-14 1996-08-27 Unisia Jecs Corp Reservoir structure
JPH11508854A (en) * 1995-07-08 1999-08-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Vibration damping device for damping liquid vibration in a vehicle's slip-controlled hydraulic brake system
JPH09132126A (en) * 1995-10-26 1997-05-20 Robert Bosch Gmbh Vibration damper to attenuate liquid vibration in slip control type hydraulic braking system of automobile
JP2015222109A (en) * 2014-05-23 2015-12-10 株式会社アドヴィックス Hydraulic damper
DE102014224828A1 (en) * 2014-12-04 2016-06-09 Robert Bosch Gmbh Pressure change damper for a brake force-controlled hydraulic vehicle brake system and brake force-controlled hydraulic vehicle brake system with such a pressure change damper
WO2018097235A1 (en) * 2016-11-24 2018-05-31 株式会社アドヴィックス Pulsation reduction device and hydraulic pressure control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023073492A1 (en) * 2021-10-26 2023-05-04 ロベルト·ボッシュ·ゲゼルシャフト·ミト•ベシュレンクテル·ハフツング Damping device, liquid-pressure control unit, and brake system

Similar Documents

Publication Publication Date Title
US8087911B2 (en) Pump of electronically controlled brake system
EP2470403B1 (en) Slip control system with attenuator
JP4040111B2 (en) Piston pump
EP2867077B1 (en) Damping element for a motor vehicle hydraulic system
US9415755B2 (en) Vehicle brake hydraulic pressure control apparatus
KR20010072857A (en) Piston pump
US20200017090A1 (en) Hydraulic pressure control unit for vehicle brake system
US8936323B2 (en) Brake apparatus
JP2004521025A (en) Penetrating master cylinder with reduced non-operating distance and its use
WO2020022331A1 (en) Hydraulic damper
US8403428B2 (en) Check valve and brake hydraulic pressure control device using the same
JP7259245B2 (en) hydraulic damper
JP2020020467A (en) Liquid pressure damper
JP2020050265A (en) Liquid pressure damper
JP2011051469A (en) Vehicular brake fluid pressure control device
KR20230113366A (en) pump unit
JP2002200972A (en) Reservoir
JPWO2020012349A1 (en) Hydraulic control unit for brake system for vehicles
JP7476349B2 (en) Pumping equipment
US20200130664A1 (en) Hydraulic braking device
JP3955312B2 (en) Brake device
JPWO2020128742A1 (en) Brake fluid pressure control device
JP2001080487A (en) Hydraulic unit
JP7056396B2 (en) Brake device
US20210122344A1 (en) Master cylinder device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841336

Country of ref document: EP

Kind code of ref document: A1