WO2020022023A1 - Polyarylene sulfide composition - Google Patents

Polyarylene sulfide composition Download PDF

Info

Publication number
WO2020022023A1
WO2020022023A1 PCT/JP2019/026677 JP2019026677W WO2020022023A1 WO 2020022023 A1 WO2020022023 A1 WO 2020022023A1 JP 2019026677 W JP2019026677 W JP 2019026677W WO 2020022023 A1 WO2020022023 A1 WO 2020022023A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
weight
parts
copolymer
modified
Prior art date
Application number
PCT/JP2019/026677
Other languages
French (fr)
Japanese (ja)
Inventor
尾崎想
後藤博之
山野直樹
春成武
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018139331A external-priority patent/JP7070198B2/en
Priority claimed from JP2019019461A external-priority patent/JP7234666B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2020022023A1 publication Critical patent/WO2020022023A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention provides a polyarylene sulfide composition having excellent weld strength, heat cycle resistance, molding fluidity, and thin-wall fluidity without impairing the inherent heat resistance, chemical resistance, and dimensional stability of polyarylene sulfide. More particularly, the present invention relates to a polyarylene sulfide composition particularly useful for electric parts such as electric / electronic parts, electric parts for automobiles, and water heater parts.
  • Polyarylene sulfide is a resin that exhibits excellent properties such as heat resistance, chemical resistance, mechanical properties, and dimensional stability. Utilizing these excellent properties, it is used for electrical and electronic equipment components, automotive equipment components, and OA equipment components. Widely used for etc.
  • polyarylene sulfide has a drawback of being inferior in toughness (low-temperature impact resistance and heat cycle resistance), so that its use has been limited in some applications.
  • a resin composition comprising (a) polyarylene sulfide and (b) an ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester copolymer (see, for example, Patent Document 1) ), (A) a composition obtained by melt-kneading polyphenylene sulfide and a non-block type polyfunctional isocyanate compound, and (b) an ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester copolymer.
  • Resin composition for example, see Patent Document 2
  • (a) polyarylene sulfide (b) an ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester-based copolymer, and (c) a specific type of alkoxy.
  • a resin composition comprising a silane compound (for example, see Patent Document 3), (a) polyarylene sulfide, and (b) polyolefin.
  • Emissions-based resin has been proposed, such as (c) a polymer containing an alkoxysilane group resin composition (for example, see Patent Document 4.).
  • a modified ethylene copolymer with polyarylene sulfide has been proposed.
  • a resin composition comprising polyarylene sulfide and an ethylene-based copolymer, a specific silane coupling agent (for example, see Patent Document 7), a resin composition comprising a specific polyarylene sulfide and a specific modified polyolefin (for example, Reference 8), etc. have been reported.
  • a polyphenylene sulfide resin composition in which a polyamide resin and a specific ethylene copolymer are blended with a modified polyphenylene sulfide obtained by melt-kneading a non-blocking polyfunctional isocyanate with PPS (see, for example, Patent Document 10) .
  • a polyphenylene sulfide resin composition in which a modified polyphenylene sulfide obtained by melt-kneading polyphenylene sulfide with a non-block type polyfunctional isocyanate is mixed with an ethylene copolymer containing maleic anhydride for example, see Patent Document 11).
  • a polyphenylene sulfide resin composition in which a specific polyphenylene sulfide is mixed with a block-type polyfunctional isocyanate and a specific maleic anhydride-modified ethylene copolymer has been reported.
  • Patent Documents 5 and 6 propose a method for producing polyarylene sulfide in which dichloroaniline is added. However, it is proposed to improve the adhesion to an epoxy resin, and the toughness of polyarylene sulfide is proposed. No mention is made of improvements.
  • the resin compositions proposed in Patent Documents 7 to 9 cannot be said to have sufficient cooling / heat resistance, which limits the use. Further, in the resin compositions proposed in Patent Documents 10 and 11, polyphenylene sulfide and polyfunctional isocyanate need to be melt-kneaded in advance, resulting in inferior productivity and no mention of cooling / heat resistance. It is. In addition, the resin compositions proposed in Patent Documents 12 and 13 are also inferior in mold contamination and have no mention of cold / heat resistance. That is, it has been difficult for all of these proposed resin compositions to simultaneously satisfy the cooling / heat resistance, mold contamination, and molding fluidity.
  • the present invention provides a polyarylene sulfide composition having excellent weld strength, heat cycle resistance, fluidity, and thin-wall fluidity without impairing the heat resistance, chemical resistance, and dimensional stability inherent to polyarylene sulfide. It is an object of the present invention to provide a polyarylene sulfide composition which is particularly useful for electric parts such as electric / electronic parts and automobile electric parts or water heater parts.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, at least a specific polyarylene sulfide, a specific modified ethylene copolymer resin, a polyarylene sulfide composition containing a fibrous filler, a weld They have found that a composition having excellent strength, heat cycle resistance, fluidity, and thin-wall fluidity can be obtained, and have completed the present invention.
  • (B1) 1 to 12 parts by weight of an ethylene- ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester- ⁇ , ⁇ -unsaturated carboxylic acid butyl ester copolymer.
  • (B2) at least one modified ethylene copolymer selected from ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and maleic anhydride graft-modified ethylene- ⁇ -olefin copolymer 1 to 30 parts by weight of the unified polymer and 0.1 to 3 parts by weight of the isocyanurate, and the ratio thereof is 0.05 to 0.3 parts by weight of the isocyanurate / the modified ethylene copolymer (parts by weight / part by weight). Within range.
  • polyarylene sulfide composition according to the above [1], wherein the polyarylene sulfide (A) is an amino group-modified polyarylene sulfide having a melt viscosity of 200 to 1000 poise.
  • polyarylene sulfide (A) according to any one of the above [1] to [3], wherein the polyarylene sulfide (A) is an amino group-modified polyarylene sulfide containing 0.05 to 5 mol% of amino groups.
  • Polyarylene sulfide composition [5] The polyarylene sulfide composition according to any one of the above [1] to [4], wherein the isocyanurate is an aliphatic isocyanurate.
  • the polyarylene sulfide (A) constituting the polyarylene sulfide composition of the present invention may be any one which belongs to a category generally called polyarylene sulfide.
  • the polyarylene sulfide include p-phenylene sulfide unit , M-phenylene sulfide unit, o-phenylene sulfide unit, phenylene sulfide sulfone unit, phenylene sulfide ketone unit, phenylene sulfide ether unit, biphenylene sulfide unit, and a homopolymer or copolymer comprising the polyarylene sulfide.
  • polyphenylene sulfide examples include poly (p-phenylene sulfide), polyphenylene sulfide sulfone, polyphenylene sulfide ketone, and polyphenylene sulfide ether.
  • polyarylene sulfide composition having excellent strength properties preferably a polyphenylene sulfide.
  • the polyarylene sulfide (A) has a melt viscosity of 100 to 2000 at a melt temperature of 315 ° C. and a load of 10 kg measured by a Koka type flow tester equipped with a die having a diameter of 1 mm and a length of 2 mm. Poise's. Here, when it is less than 100 poise, the obtained composition has poor mechanical strength. On the other hand, when it exceeds 2,000 poise, the thin-wall fluidity is poor.
  • the polyarylene sulfide (A) can be produced by a method known as a method for producing a polyarylene sulfide.
  • a method for producing a polyarylene sulfide For example, an alkali metal sulfide or a polyhalogen aromatic compound can be produced in a polar solvent. It can be obtained by polymerization.
  • the polar organic solvent at this time include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, cyclohexylpyrrolidone, dimethylformamide, dimethylacetamide, and the like.
  • Anhydrous or hydrate of sodium, rubidium sulfide and lithium sulfide can be mentioned.
  • the alkali metal sulfide may be a product obtained by reacting an alkali metal hydrosulfide with an alkali metal hydroxide.
  • the polyhalogen aromatic compound include p-dichlorobenzene, p-dibromobenzene, p-diiodobenzene, m-dichlorobenzene, m-dibromobenzene, m-diiodobenzene, 4,4′-dichlorodiphenylsulfone, 4,4'-dichlorobenzophenone, 4,4'-dichlorodiphenyl ether, 4,4'-dichlorodibiphenyl and the like can be mentioned.
  • the polyarylene sulfide (A) may be a linear one or a one obtained by adding a small amount of a polyhalogen compound of trihalogen or more at the time of polymerization to introduce a slight crosslinked or branched structure. Even if a part and / or terminal of the molecular chain of the polyarylene sulfide is modified with a functional group such as a carboxyl group, a carboxy metal salt, an alkyl group, an alkoxy group, or a nitro group, it may be non-oxidizable such as nitrogen. May be subjected to heat treatment in an inert gas described above, or may be a mixture of these structures.
  • the polyarylene sulfide (A) is subjected to a deionization treatment (acid washing or hot water washing, etc.) before or after heat curing, or a washing treatment with an organic solvent such as acetone or methyl alcohol to form ions, oligomers or the like. It may have reduced impurities. Furthermore, after the completion of the polymerization reaction, a heat treatment may be performed in an inert gas or an oxidizing gas to perform curing.
  • polyarylene sulfide (A) it is possible to provide a polyarylene sulfide composition which is particularly excellent in cold heat resistance, mold contamination, molding fluidity, and weld strength. And more preferably an amino group-modified polyarylene sulfide containing 0.05 to 5 mol% of amino groups, and particularly preferably an amino group-modified polyarylene sulfide containing 0.1 to 3 mol% of amino groups. Is preferred.
  • the amino group-modified polyarylene sulfide include the above-mentioned amino group-modified resins of polyarylene sulfide.
  • the amino group content is, for example, the absorption of amino group-modified polyarylene sulfide at 1900 cm ⁇ 1 which is the CH out-of-plane bending vibration of the benzene ring in the infrared absorption spectrum and the NH stretching vibration of the amino group.
  • the absorption at 3387 cm -1 is measured, and can be determined as the amino group content with respect to the phenyl group.
  • Examples of the method for producing the amino group-modified polyarylene sulfide include a method for copolymerizing an amino group-containing halogen aromatic compound in addition to the above-described method for producing the polyarylene sulfide.
  • Is for example, 2,5-dichloroaniline, 2,6-dichloroaniline, 3,5-dichloroaniline, 3,5-diaminochlorobenzene, 2-amino-4-chlorotoluene, 2-amino-6-chlorotoluene, -Amino-2-chlorotoluene, 3-chloro-m-phenylenediamine, 2,5-dibromoaniline, 2,6-dibromoaniline, 3,5-dibromoaniline, and mixtures thereof.
  • 5-Dichloroaniline and 3,5-diaminochlorobenzene are preferred.
  • amino group-containing polyarylene sulfide examples include, for example, amino group-modified polyphenylene sulfide, amino group-modified polyphenylene sulfide sulfone, amino group-modified polyphenylene sulfide ketone, and amino group-modified polyphenylene sulfide ether.
  • Amino group-modified poly (p-phenylene sulfide) is preferred because of its excellent heat resistance and strength properties.
  • the amino group-modified polyarylene sulfide As the amino group-modified polyarylene sulfide, a die having a diameter of 1 mm and a length of 2 mm was mounted because the polyarylene sulfide composition was excellent in weld strength, heat cycle resistance, melt fluidity, and thin moldability.
  • the melt viscosity measured with a Koka type flow tester at a measurement temperature of 315 ° C. and a load of 10 kg is preferably from 200 to 1,000 poise, and particularly preferably from 300 to 800 poise.
  • the polyarylene sulfide (A), particularly the amino group-modified polyarylene sulfide, which constitutes the present invention, can efficiently remove impurities and the like and has excellent quality. It is preferable that the polyarylene sulfide is subjected to high-pressure hot water treatment and washed. As a condition of the high-pressure hot water treatment at that time, a method of washing with water having a temperature of 150 ° C. or more and 240 ° C. or less can be mentioned.
  • the modified ethylene copolymer resin (B) constituting the polyarylene sulfide composition of the present invention includes (B1) ethylene- ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester- ⁇ , ⁇ -unsaturated butyl butyl ester copolymer. Or (B2) at least one modified ethylene selected from ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and maleic anhydride graft-modified ethylene- ⁇ -olefin copolymer It is composed of a copolymer and isocyanurate.
  • any one belonging to this category can be used.
  • ethylene residue unit: ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester residue unit: ⁇ , ⁇ -unsaturated carboxylic acid butyl ester residue 60 to 93: 2 to 10: 5 to 30.
  • ethylene- ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester- ⁇ , ⁇ -unsaturated carboxylic acid butyl ester copolymer examples include, for example, (trade name) LOTADER @ AX8700 (manufactured by Arkema Corporation), Trade name) LOTADER @ AX8750 (manufactured by Arkema Co., Ltd.).
  • LOTADER @ AX8700 manufactured by Arkema Corporation
  • AX8750 manufactured by Arkema Co., Ltd.
  • the amino group-modified polyarylene sulfide and the ethylene- ⁇ , ⁇ -unsaturated glycidyl- ⁇ -, ⁇ -unsaturated carboxylic acid butyl ester copolymer are combined. By combining them, a composition exhibiting superior weld strength and heat cycle resistance over the conventionally proposed polyarylene sulfide composition can be obtained.
  • the polyarylene sulfide composition was prepared by mixing ethylene- ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester- ⁇ , ⁇ -unsaturated butyl ester copolymer 1 with respect to 100 parts by weight of polyarylene sulfide (A). Preferably, it contains up to 12 parts by weight.
  • the modified ethylene copolymer constituting (B2) is an ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and a maleic anhydride graft-modified ethylene- ⁇ -olefin copolymer And at least one modified ethylene copolymer selected from the group consisting of
  • any copolymer may be used as long as it belongs to this category.
  • the obtained polyarylene sulfide composition has a low heat resistance.
  • Ethylene residue unit: ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester residue unit: maleic anhydride residue unit (weight ratio) 50 to 98:40 to 1: 10-1.
  • weight ratio 50 to 98:40 to 1: 10-1.
  • ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer examples include (trade name) Bondyne 5500 (manufactured by Arkema Corporation), (trade name) Bondine TX8030 (Arkema ( (Trade name) Bondyne AX8390 (manufactured by Arkema Co., Ltd.).
  • maleic anhydride graft-modified ethylene- ⁇ -olefin copolymer any one may be used as long as it belongs to this category, and among them, the resulting polyarylene sulfide composition is excellent in cold resistance and the like.
  • Ethylene residue unit: ⁇ -olefin residue unit: maleic anhydride residue unit (weight ratio) 50-98: 45-1: 5-1-1.
  • the maleic anhydride graft-modified ethylene- ⁇ -olefin copolymer can be obtained by, for example, coexisting an ethylene- ⁇ -olefin copolymer, a peroxide, and maleic anhydride, and performing a grafting reaction. It is.
  • the amount of the modified ethylene copolymer is from 1 to 30 parts by weight based on 100 parts by weight of the polyarylene sulfide (A), since the resulting composition has excellent cold heat resistance and mold contamination. It is preferred that
  • the isocyanurate constituting the component (B2) may be any one called isocyanurate.
  • aliphatic isocyanurate is a polyarylene sulfide composition having excellent cold / heat resistance. Is preferred.
  • Examples of the aliphatic isocyanurate include 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (6-isocyanatotetra-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris ( 6-isocyanatododec-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, and the like.
  • the balance is excellent in cold heat resistance and low in mold contamination.
  • An aliphatic isocyanurate having a molecular weight of 500 or more is preferred because a polyarylene sulfide composition having an excellent water resistance is obtained.
  • the aliphatic isocyanurate may be a polymer such as a dimer or trimer, or an isocyanurate containing a polymer such as a dimer or trimer in an aliphatic isocyanurate monomer, and a polyarylene.
  • the aliphatic isocyanurate may be one obtained by modifying a part of the aliphatic isocyanate with an alcohol such as 1,3-butanediol or 2,2,4-trimethyl-1,3-pentadiol. .
  • an alcohol such as 1,3-butanediol or 2,2,4-trimethyl-1,3-pentadiol.
  • 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2, It is preferably 4,6 (1H, 3H, 5H) -trione.
  • 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione are (trade names) ) Coronate HXR (manufactured by Tosoh Corporation) and (trade name) Duranate TPA-100 (manufactured by Asahi Kasei Corporation).
  • the amount of the isocyanurate to be blended is preferably 0.1 to 3 parts by weight based on 100 parts by weight of the polyarylene sulfide (A), since the resulting polyarylene sulfide composition is excellent in cold resistance and mold contamination.
  • Parts by weight, and the compounding ratio of the isocyanurate and the modified ethylene-based polymer is in the range of 0.05 to 0.3 (the isocyanurate / modified ethylene-based polymer (parts by weight / part by weight)). It is preferred that
  • the ⁇ -olefin constituting the modified ethylene copolymer resin (B) refers to an ⁇ -olefin having 3 or more carbon atoms, such as propylene, butene-1, 4-methyl-pentene-1, hexene-1, Octene-1 and the like can be exemplified.
  • alkyl esters of ⁇ , ⁇ -unsaturated carboxylic acids include alkyl esters such as acrylic acid and methacrylic acid. Specific examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, and acrylic acid.
  • Examples of the ⁇ , ⁇ -unsaturated glycidyl carboxylate include glycidyl acrylate and glycidyl methacrylate.
  • fibrous filler (C) constituting the polyarylene sulfide composition of the present invention examples include chopped strands having an average fiber diameter of 8 to 15 ⁇ m, particularly 6 to 14 ⁇ m, and flat glass having a fiber cross-sectional aspect ratio of 2 to 4.
  • Glass fibers such as chopped strands, milled fibers, and rovings made of fibers; silane fibers; aluminosilicate glass fibers; hollow glass fibers; non-enameled glass fibers; carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers; Whiskers such as silicon nitride whiskers, basic magnesium sulfate whiskers, barium titanate whiskers, potassium titanate whiskers, silicon carbide whiskers, boron whiskers, zinc oxide whiskers; metal fibers such as stainless steel fibers; rock wool, zirconia, alumina silica; Inorganic fibers such as barium titanate, silicon carbide, alumina, silica and blast furnace slag; organic fibers such as wholly aromatic polyamide fibers, phenolic resin fibers and wholly aromatic polyester fibers; mineral materials such as wollastenite and magnesium oxysulfate In particular, glass fibers having an average fiber diameter of 8 to 15 ⁇ m are polyarylene sulfide
  • the polyarylene sulfide composition of the present invention contains 15 to 100 parts by weight of the fibrous filler (C) based on 100 parts by weight of the polyarylene sulfide (A). Is less than 15 parts by weight or more than 100 parts by weight, the obtained composition has poor heat cycle resistance.
  • the polyarylene sulfide composition of the present invention is particularly excellent in weld strength, heat cycle resistance, and molding fluidity, so that a trialkoxysilane coupling agent having a glycidyl group and / or a trialkoxysilane cup having an amino group can be obtained. It preferably contains a silane coupling agent composed of a ring agent.
  • the silane capping agent at this time is not particularly limited as long as it is a trialkoxysilane coupling agent having a glycidyl group or an amino group, and as a specific example of those belonging to this category, 3-glycidoxy Propylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane and the like.
  • the amount of the silane coupling agent is preferably 0.05 to
  • the polyarylene sulfide composition of the present invention preferably contains a release agent in order to improve mold release properties and appearance when forming a molded article.
  • a release agent for example, polyethylene wax, polypropylene wax, and fatty acid amide-based wax are preferably used.
  • polyethylene wax and the polypropylene wax general commercial products can be used.
  • the fatty acid amide-based wax is a polycondensate composed of a higher aliphatic monocarboxylic acid, a polybasic acid and a diamine, and any one belonging to this category can be used, for example, stearic acid.
  • the compounding amount of the release agent is preferably 0.1 to 3 parts by weight based on 100 parts by weight of the polyarylene sulfide resin.
  • the polyarylene sulfide composition of the present invention may contain a non-fibrous filler without departing from the purpose of the present invention.
  • the non-fibrous filler include wollastonite, zeolite, and sericite.
  • Silicates such as aluminum, kaolin, mica, pyrophyllite, talc, alumina silicate; oxides such as aluminum oxide, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, zinc oxide, iron oxide; calcium carbonate, magnesium carbonate, dolomite Carbonates such as calcium sulfate and barium sulfate; nitrides such as silicon nitride, boron nitride, and aluminum nitride; glass flakes, glass beads, and the like.
  • the non-fibrous filler may be surface-treated with an isocyanate compound, a silane coupling agent, a titanate coupling agent, an epoxy compound, or the like.
  • the polyarylene sulfide composition of the present invention may be any of various thermosetting resins and thermoplastic resins, for example, an epoxy resin, a cyanate ester resin, a phenol resin, a polyimide, a silicone resin, and a polyester, without departing from the purpose of the present invention. And at least one of polyamide, polyphenylene oxide, polycarbonate, polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and the like.
  • the polyarylene sulfide composition of the present invention is a conventional heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, a foaming agent, a mold corrosion inhibitor, without departing from the purpose of the present invention.
  • One or more additives such as a flame retardant, a flame retardant auxiliary, a coloring agent such as a dye and a pigment, and an antistatic agent may be used in combination.
  • a conventionally used heat-melt kneading method can be used.
  • a heat-melt kneading method using a single-screw or twin-screw extruder, a kneader, a mill, a Brabender or the like can be mentioned, and a melt-kneading method using a twin-screw extruder having excellent kneading ability is particularly preferable.
  • the kneading temperature at this time is not particularly limited, and can be arbitrarily selected usually from 280 to 400 ° C.
  • the polyarylene sulfide composition of the present invention can be formed into an arbitrary shape using an injection molding machine, an extrusion molding machine, a transfer molding machine, a compression molding machine, or the like.
  • the polyarylene sulfide composition of the present invention has excellent resistance to cold and heat, and has the properties of excellent mold contamination, molding fluidity, and thin-wall moldability required for molding. It is suitably used for electric and electronic parts, water heater parts, and automobile electric parts, for which it is desired to reduce the thickness of parts and use them as exterior parts due to needs.
  • the present invention provides a polyarylene sulfide composition having excellent weld strength, heat cycle resistance, molding fluidity, and thin-wall moldability without impairing the inherent heat resistance, chemical resistance, and dimensional stability of polyarylene sulfide. More particularly, the present invention relates to a polyarylene sulfide composition particularly useful for electric / electronic parts such as electric / electronic parts or automobile electric parts, and water heater parts.
  • Amino group-containing poly (p-phenylene sulfide) (A1-2) (hereinafter simply referred to as PPS (A1-2)): Melt viscosity of 430 poise.
  • Amino group-containing poly (p-phenylene sulfide) (A2-2) (hereinafter simply referred to as PPS (A2-2)): a melt viscosity of 800 poise.
  • Amino group-containing poly (p-phenylene sulfide) (A3-2) (hereinafter simply referred to as PPS (A3-2)): a melt viscosity of 300 poise.
  • Poly (p-phenylene sulfide) (A'4-2) (hereinafter simply referred to as PPS (A'4-2)): Melt viscosity 500 poise.
  • Poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-5)): Melt viscosity: 800 poise.
  • Poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-6)): Melt viscosity: 430 poise.
  • Amino group-substituted poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-8)): Amino group content 0.1 mol%, melt viscosity 1200 poise.
  • Amino group-substituted poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-9)): 0.6 mol% of amino group, melt viscosity 500 poise.
  • Amino group-substituted poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-10)): amino group content 0.6 mol%, melt viscosity 3000 poise.
  • ⁇ Modified ethylene copolymer resin (B)> Ethylene- ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester- ⁇ , ⁇ -unsaturated carboxylic acid butyl ester copolymer (B1-1) (hereinafter simply referred to as modified ethylene copolymer (B1-1)): LOTADER AX8700 (trade name) manufactured by Arkema Co., Ltd., ethylene residue unit: glycidyl methacrylate ester residue unit: butyl acrylate ester residue unit (weight ratio) 67: 8: 25 Ethylene- ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester- ⁇ , ⁇ -unsaturated carboxylic acid butyl ester copolymer (B1-2) (hereinafter simply referred to as modified ethylene copolymer (B1-2)): LOTADER AX8750 (trade name) manufactured by Arkema Co., Ltd.,
  • Ethylene- ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer (B2-5) (hereinafter referred to as modified ethylene copolymer (B2-5)): manufactured by Arkema Co., Ltd. (Product name) Bondine TX8030.
  • ⁇ Fibrous filler > Glass fiber (C-1); manufactured by NSG Vetrotex Co., Ltd., (trade name) RES03-TP91; fiber diameter 9 ⁇ m, fiber length 3 mm. Glass fiber (C-2); chopped strand (trade name) T-760H manufactured by NEC Corporation. Glass fiber (C-3); Chopped strand (trade name) CSG-3PA 830 manufactured by Nitto Boseki Co., Ltd.
  • Synthesis Example 1 In a 50-liter autoclave equipped with a stirrer, 6214 g of Na 2 S.2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to obtain 1355 g. Of water was distilled off. After cooling the system to 140 ° C., 7116 g of p-dichlorobenzene, 79 g of 3,5-dichloroaniline (about 1 mol% based on the total amount of p-dichlorobenzene and 3,5-dichloroaniline), N-methyl- 5000 g of 2-pyrrolidone was added, and the system was sealed under a nitrogen stream.
  • the temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid content was washed with hot water at 200 ° C. and dried at 100 ° C. for 24 hours to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A1-1)).
  • PPS amino group-containing poly
  • PPS (A1-1) was cured at 200 ° C. for 4 hours in a nitrogen atmosphere to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A1-2)).
  • the melt viscosity of PPS (A1-2) was 430 poise.
  • Synthesis Example 2 In a 50-liter autoclave equipped with a stirrer, 6214 g of Na 2 S.2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to obtain 1355 g. Of water was distilled off. After cooling the system to 140 ° C., 7174 g of p-dichlorobenzene, 16 g of 3,5-dichloroaniline (about 1 mol% based on the total amount of p-dichlorobenzene and 3,5-dichloroaniline), N-methyl- 5000 g of 2-pyrrolidone was added, and the system was sealed under a nitrogen stream.
  • the temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid was washed with hot water at 220 ° C. and dried at 100 ° C. for 24 hours to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A2-1)).
  • PPS amino group-containing poly
  • PPS (A2-1) was cured at 250 ° C. for 4 hours in a nitrogen atmosphere to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A2-2)).
  • the melt viscosity of PPS (A2-2) was 800 poise.
  • the temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid was washed with hot water at 170 ° C. and dried at 100 ° C. for 24 hours to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A3-1)).
  • PPS amino group-containing poly
  • PPS (A3-1) was cured at 170 ° C. for 4 hours in a nitrogen atmosphere to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A3-2)).
  • the melt viscosity of PPS (A3-2) was 300 poise.
  • Synthesis Example 4 In a 50-liter autoclave equipped with a stirrer, 6214 g of Na 2 S.2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to obtain 1355 g. Of water was distilled off. After cooling the system to 140 ° C., 7188 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C.
  • PPS poly (p-phenylene sulfide)
  • PPS (A'4-1) was cured at 200 ° C. for 4 hours in a nitrogen atmosphere to obtain poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A'4-2)).
  • the melt viscosity of PPS (A'4-2) was 500 poise.
  • Synthesis Example 5 (Synthesis of PPS (A-5)) In a 50-liter autoclave equipped with a stirrer, 6214 g of sodium sulfide 2.9 hydrate and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to remove 1355 g of water. Distilled off. After cooling the system to 140 ° C., 7115 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours.
  • the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours.
  • the mixture was cooled to room temperature, and the solid content was isolated by a centrifuge.
  • the solid was repeatedly washed with warm water and dried at 100 ° C. for 24 hours to obtain poly (p-phenylene sulfide) having a melt viscosity of 400 poise.
  • the dried poly (p-phenylene sulfide) is charged into a batch type rotary kiln-type baking apparatus, and cured at 250 ° C. for 3 hours in a nitrogen atmosphere to obtain PPS (A-5) having a melt viscosity of 800 poise. Obtained.
  • Synthesis Example 6 (Synthesis of PPS (A-6)) In a 50-liter autoclave equipped with a stirrer, 5607 g of a 47% aqueous sodium hydrogen sulfide solution, 3807 g of a 48% aqueous sodium hydroxide solution, and 10773 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 200 ° C. while stirring under a nitrogen stream. 4533 g of water was distilled off. After the system was cooled to 170 ° C., 7060 g of p-dichlorobenzene and 5943 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream.
  • the temperature of this system was raised to 225 ° C., polymerization was performed at 225 ° C. for 1 hour, and further, the temperature was raised to 250 ° C., and polymerization was performed at 250 ° C. for 2 hours. Further, 1503 g of water was injected at 250 ° C., the temperature was raised again to 255 ° C., and polymerization was performed at 255 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge.
  • Synthesis Example 7 (Synthesis of PPS (A-7)) In a 50-liter autoclave equipped with a stirrer, 6214 g of sodium sulfide 2.9 hydrate and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to remove 1355 g of water. Distilled off. After cooling the system to 140 ° C., 7115 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours.
  • the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours.
  • the mixture was cooled to room temperature, and the solid content was isolated by a centrifuge.
  • the solid was repeatedly washed with warm water and dried at 100 ° C. for 24 hours to obtain poly (p-phenylene sulfide) having a melt viscosity of 400 poise.
  • the dried poly (p-phenylene sulfide) is charged into a batch-type rotary kiln-type baking apparatus, and cured at 250 ° C. for 3 hours in an oxygen atmosphere to obtain PPS (A-7) having a melt viscosity of 3000 poise. Obtained.
  • Synthesis Example 8 (Synthesis of PPS (A-8)) In a 50-liter autoclave equipped with a stirrer, 6214 g of flaky sodium sulfide (Na 2 S.2.9H 2 O) and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream. Then, 1355 g of water was distilled off. After the system was cooled to 140 ° C., 7278 g of p-dichlorobenzene, 11.7 g of 3,5-dichloroaniline and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream.
  • the temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the polymer was isolated by a centrifuge. The solid was repeatedly washed with warm water and dried at 100 ° C. for 24 hours to obtain an amino-substituted poly (p-phenylene sulfide) having a melt viscosity of 400 poise.
  • the dried amino group-substituted poly (p-phenylene sulfide) is charged into a batch-type rotary kiln-type baking apparatus, and cured at 240 ° C. for 2 hours in an air atmosphere to obtain a melt viscosity of 1200 poise and an amino acid based on phenyl group.
  • Synthesis Example 9 (Synthesis of PPS (A-9)) In a 50-liter autoclave equipped with a stirrer, 6214 g of flaky sodium sulfide (Na 2 S.2.9H 2 O) and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream. Then, 1355 g of water was distilled off. After the system was cooled to 140 ° C., 7150 g of p-dichlorobenzene, 47 g of 3,5-dichloroaniline and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream.
  • the temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the polymer was isolated by a centrifuge. The polymer was washed repeatedly with warm water and dried at 100 ° C. for 24 hours to obtain amino-substituted poly (p-phenylene sulfide) having a melt viscosity of 250 poise.
  • the dried amino group-substituted poly (p-phenylene sulfide) is charged into a batch-type rotary kiln-type baking apparatus, and cured at 250 ° C. for 5 hours in a nitrogen atmosphere to obtain a melt viscosity of 500 poise and an amino group to phenyl group.
  • Synthesis Example 10 (Synthesis of PPS (A-10)) PPS (A-9) having an amino group content of 0.6 mol% obtained in Synthesis Example 9 was further charged into a batch-type rotary kiln-type baking apparatus, and cured at 250 ° C. for 2 hours in an air atmosphere. PPS (A-10) having a melt viscosity of 3,000 poise and an amino group content of 0.6 mol% based on the phenyl group was obtained.
  • a test piece was prepared by an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., (trade name) SE-75S), and a tensile tester (Shimazu Seisakusho, (trade name) Autograph AG-5000B) was used. The measurement was performed according to ASTM D638.
  • molding fluidity 1 The obtained polyarylene sulfide composition was adjusted to a cylinder temperature of 310 ° C. and a mold temperature of 135 ° C. using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., trade name: SE-75S), and the thickness was 1 mm. Molding fluidity was determined from the flow length when injection molding was performed at 100 MPa in a spiral flow mold. Those having a flow length of 150 mm or more were determined to have excellent molding fluidity.
  • Example 1 A twin screw extruder (manufactured by Toshiba Machine Co., Ltd.) heated at a cylinder temperature of 310 ° C. was blended at a ratio of 97.1% by weight of PPS (A1-2) and 2.9% by weight of a modified ethylene copolymer (B1-1). (Trade name) TEM-35-102B).
  • the glass fiber (C-1) is put into a hopper of a side feeder of the twin-screw extruder, melt-kneaded at a screw rotation speed of 200 rpm, and a molten composition flowing out of a die is cooled and cut, and then pelletized.
  • a polyarylene sulfide composition was prepared. At that time, the composition ratio of the polyarylene sulfide composition was 68% by weight of PPS (A1-2), 2% by weight of modified ethylene copolymer (B1-1), and 30% by weight of glass fiber (C-1). .
  • the polyarylene sulfide composition was charged into a hopper of an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., SE75) heated to a cylinder temperature of 310 ° C., and a test piece for measuring weld strength, heat cycle resistance A test piece for measuring the fluidity and a test piece for measuring the fluidity were each formed and evaluated. Table 1 shows the results.
  • the obtained polyarylene sulfide composition was excellent in evaluation of weld strength, heat cycle resistance, and molding fluidity 1.
  • Examples 2 to 7 Except that the polyarylene sulfide (A), the modified ethylene copolymer resin (B), the fibrous filler (C), the silane coupling agent (E), and the release agent (F) were used in the proportions shown in Table 1, A polyarylene sulfide composition was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results.
  • Comparative Examples 1 to 6 Except that the polyarylene sulfide (A), the modified ethylene copolymer resin (B), the fibrous filler (C), the silane coupling agent (E), and the release agent (F) were used in the proportions shown in Table 2, A polyarylene sulfide composition was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
  • compositions obtained from Comparative Examples 1 to 6 were inferior in heat cycle resistance.
  • the compositions obtained from Comparative Examples 3, 4, and 5 were inferior in weld strength.
  • the composition obtained from Comparative Example 5 had poor molding fluidity 1 evaluation.
  • Example 8 Based on 100 parts by weight of the PPS (A-5) obtained in Synthesis Example 5, 14 parts by weight of the modified ethylene copolymer (B2-4), 2.4 parts by weight of isocyanurate (D-1), and mold release 0.2 part by weight of the agent (F-1) was uniformly mixed in advance and charged into a hopper of a twin-screw extruder (trade name: TEM-35-102B, manufactured by Toshiba Machine Co.) heated to a cylinder temperature of 300 ° C.
  • a twin-screw extruder trade name: TEM-35-102B, manufactured by Toshiba Machine Co.
  • the glass fiber (C-2) was charged from a hopper of a side feeder of the twin-screw extruder so as to be 50 parts by weight with respect to 100 parts by weight of PPS (A-5), and was melt-kneaded and pelletized.
  • a poly (p-phenylene sulfide) composition (hereinafter sometimes referred to as a PPS composition) was produced.
  • the resulting PPS composition was evaluated for cold heat resistance, fluidity 2, and mold contamination. Table 3 shows the evaluation results.
  • Examples 9 to 15 The polyarylene sulfide (A), the modified ethylene copolymer resin (B), the isocyanurate (D) and the release agent (F) were blended in the composition ratios shown in Table 3, and charged into a hopper of a twin-screw extruder.
  • the fibrous filler (C) was charged into the hopper of the side feeder of the twin-screw extruder so that the composition ratio shown in Table 3 was obtained, and a PPS composition was prepared in the same manner as in Example 8, and Example 8 was prepared.
  • the evaluation was performed in the same manner as described above. Table 3 shows the evaluation results.
  • the obtained PPS composition had low mold contamination and had practically sufficient cold heat resistance.
  • the evaluation of molding fluidity 2 also showed a practically sufficient value.
  • Comparative Examples 7 to 13 The polyarylene sulfide (A), the modified ethylene copolymer resin (B), the isocyanurate (D) and the release agent (F) were blended in the composition ratio shown in Table 4, and charged into a hopper of a twin-screw extruder.
  • the fibrous filler (C) was charged into the hopper of the side feeder of the twin-screw extruder so that the composition ratio shown in Table 4 was obtained, and a composition was prepared in the same manner as in Example 8;
  • the evaluation was performed in the same manner as described above. Table 4 shows the evaluation results.
  • compositions obtained in Comparative Examples 7, 8, 9, and 11 were inferior in cold / heat resistance.
  • the compositions obtained in Comparative Examples 9, 10 and 11 were inferior in mold contamination.
  • the compositions obtained in Comparative Examples 12 and 13 were inferior in the evaluation of molding fluidity 2.
  • Example 16 13 parts by weight of the modified ethylene copolymer (B2-4), 1.9 parts by weight of isocyanurate (D-1), and release from 100 parts by weight of the PPS (A-8) obtained in Synthesis Example 8 0.2 part by weight of the agent (F-2) was uniformly mixed in advance and charged into a hopper of a twin-screw extruder (trade name: TEM-35-102B, manufactured by Toshiba Machine Co., Ltd.) heated to a cylinder temperature of 300 ° C.
  • a twin-screw extruder trade name: TEM-35-102B, manufactured by Toshiba Machine Co., Ltd.
  • the glass fiber (C-2) was charged from a hopper of a side feeder of the twin-screw extruder so as to be 50 parts by weight with respect to 100 parts by weight of PPS (A-8), and was melt-kneaded and pelletized.
  • a PPS composition was prepared.
  • the resulting PPS composition was evaluated for cold heat resistance, fluidity, mold contamination, and weld strength. Table 5 shows the evaluation results.
  • the obtained PPS composition had low mold contamination, and had practically sufficient cold heat resistance and weld strength.
  • the evaluation of molding fluidity 2 also showed a practically sufficient value.
  • Examples 17 to 24 PPS (A), modified ethylene copolymer resin (B), isocyanurate (D) and mold release agent (F) were blended in the composition ratio shown in Table 5, and charged into a hopper of a twin-screw extruder to obtain a fibrous material.
  • Filler (C) was charged into the hopper of the side feeder of the twin-screw extruder so that the composition ratio shown in Table 5 was obtained, and a PPS composition was prepared in the same manner as in Example 16; Was evaluated by the following method. Table 5 shows the evaluation results.
  • the obtained PPS composition had low mold contamination and had practically sufficient cold heat resistance. Further, the molding fluidity also showed a practically sufficient value. Further, the weld strength was excellent.
  • compositions obtained in Comparative Examples 14, 15, 16, and 18 were inferior in heat resistance. Further, the compositions obtained in Comparative Examples 16, 17 and 18 were inferior in mold contamination, and in Comparative Example 17, no test piece was prepared. The compositions obtained in Comparative Examples 19 and 20 were inferior in the evaluation of molding fluidity 2.
  • the polyarylene sulfide composition of the present invention does not impair heat resistance, chemical resistance, dimensional stability, etc., and has high weld strength, heat cycle resistance, molding fluidity, and thin-wall fluidity. It is particularly useful for electric / electronic parts such as electronic parts or automobile electric parts, and for water heater parts.

Abstract

Provided is a polyarylene sulfide composition that is excellent in weld strength, heat cycle resistance, mold flowability and thin-wall flowability without deterioration in heat resistance, chemical resistance, dimensional stability, etc. The polyarylene sulfide composition comprises, per 100 parts by weight of a polyarylene sulfide (A) having a melt viscosity of 100-2000 poises when measured by a Koka flow tester provided with a die (diameter: 1 mm, length: 2 mm) at a measurement temperature of 315°C under a load of 10 kg, a modified ethylene copolymer resin (B) comprising (B1) or (B2) as follows and 15-100 parts by weight of a fibrous filler (C). (B1) 1-12 parts by weight of an ethylene-α,β-unsaturated carboxylic acid glycidyl ester-α,β-unsaturated carboxylic acid butyl ester copolymer. (B2) 1-30 parts by weight of at least one modified ethylene-based copolymer selected from an ethylene-α,β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and a maleic anhydride graft modified ethylene-α-olefin copolymer and 0.1-3 parts by weight of isocyanurate, wherein the ratio of the isocyanurate/the modified ethylene-based copolymer(s) (parts by weight/parts by weight) falls within the range of 0.05-0.3.

Description

ポリアリーレンスルフィド組成物Polyarylene sulfide composition
 本発明は、ポリアリーレンスルフィドの本来有する耐熱性、耐薬品性、寸法安定性などを損なうこともなく、ウエルド強度、耐ヒートサイクル性、成型流動性、薄肉流動性に優れるポリアリーレンンスルフィド組成物に関するものであり、電気・電子部品、自動車電装部品などの電気部品用途又は給湯器部品用途に特に有用なポリアリーレンスルフィド組成物に関するものである。 The present invention provides a polyarylene sulfide composition having excellent weld strength, heat cycle resistance, molding fluidity, and thin-wall fluidity without impairing the inherent heat resistance, chemical resistance, and dimensional stability of polyarylene sulfide. More particularly, the present invention relates to a polyarylene sulfide composition particularly useful for electric parts such as electric / electronic parts, electric parts for automobiles, and water heater parts.
 ポリアリーレンスルフィドは、耐熱性、耐薬品性、機械的特性、寸法安定性などに優れた特性を示す樹脂であり、その優れた特性を生かし、電気・電子機器部材、自動車機器部材およびOA機器部材等に幅広く使用されている。しかしながらポリアリーレンスルフィドは、靭性(低温耐衝撃特性や耐ヒートサイクル性)に劣るという欠点を有しているため、一部の用途で使用が制限されていた。 Polyarylene sulfide is a resin that exhibits excellent properties such as heat resistance, chemical resistance, mechanical properties, and dimensional stability. Utilizing these excellent properties, it is used for electrical and electronic equipment components, automotive equipment components, and OA equipment components. Widely used for etc. However, polyarylene sulfide has a drawback of being inferior in toughness (low-temperature impact resistance and heat cycle resistance), so that its use has been limited in some applications.
 ポリアリーレンスルフィドの靭性を改良する試みについては、例えば(a)ポリアリーレンスルフィド、(b)エチレン-α、β-不飽和カルボン酸アルキルエステル系共重合体からなる樹脂組成物(例えば特許文献1参照。)、(a)ポリフェニレンスルフィドと非ブロック型多官能イソシアネート化合物とを溶融混練してなる組成物と、(b)エチレン-α、β-不飽和カルボン酸アルキルエステル系共重合体とを配合する樹脂組成物(例えば特許文献2参照。)、さらに、(a)ポリアリーレンスルフィド、(b)エチレン-α、β-不飽和カルボン酸アルキルエステル系共重合体、及び(c)特定の種類のアルコキシシラン化合物からなる樹脂組成物(例えば特許文献3参照。)、(a)ポリアリーレンスルフィド、(b)ポリオレフィン系樹脂、(c)アルコキシシラン基を含有する高分子からなる樹脂組成物(例えば特許文献4参照。)等が提案されている。 For an attempt to improve the toughness of polyarylene sulfide, for example, a resin composition comprising (a) polyarylene sulfide and (b) an ethylene-α, β-unsaturated carboxylic acid alkyl ester copolymer (see, for example, Patent Document 1) ), (A) a composition obtained by melt-kneading polyphenylene sulfide and a non-block type polyfunctional isocyanate compound, and (b) an ethylene-α, β-unsaturated carboxylic acid alkyl ester copolymer. Resin composition (for example, see Patent Document 2), (a) polyarylene sulfide, (b) an ethylene-α, β-unsaturated carboxylic acid alkyl ester-based copolymer, and (c) a specific type of alkoxy. A resin composition comprising a silane compound (for example, see Patent Document 3), (a) polyarylene sulfide, and (b) polyolefin. Emissions-based resin has been proposed, such as (c) a polymer containing an alkoxysilane group resin composition (for example, see Patent Document 4.).
 また、ポリアリーレンスルフィドとして、ポリアリーレンスルフィドを製造する際に、活性水素基あるいは官能基含有のジハロゲン芳香族化合物を添加する方法が提案されている(例えば特許文献5、6参照。)。 方法 Also, a method of adding an active hydrogen group or a functional group-containing dihalogen aromatic compound when producing a polyarylene sulfide as a polyarylene sulfide has been proposed (see, for example, Patent Documents 5 and 6).
 さらに、ポリアリーレンスルフィドの耐冷熱性を改良するための技術として、ポリアリーレンスルフィドに変性エチレン系共重合体をブレンドすることが提案されている。例えば、ポリアリーレンスルフィドおよびエチレン系共重合体、特定のシランカップリング剤からなる樹脂組成物(例えば特許文献7参照。)、特定のポリアリーレンスルフィドおよび特定の変性ポリオレフィンからなる樹脂組成物(例えば特許文献8参照。)、等が報告されている。また、例えば、ポリフェニレンスルフィド、ガラス繊維、エポキシ基、酸無水物基を含有するオレフィン系共重合体、特定の充填材からなる樹脂組成物(例えば特許文献9参照。)が報告されている。 Furthermore, as a technique for improving the cold / heat resistance of polyarylene sulfide, blending a modified ethylene copolymer with polyarylene sulfide has been proposed. For example, a resin composition comprising polyarylene sulfide and an ethylene-based copolymer, a specific silane coupling agent (for example, see Patent Document 7), a resin composition comprising a specific polyarylene sulfide and a specific modified polyolefin (for example, Reference 8), etc. have been reported. Further, for example, a resin composition comprising polyphenylene sulfide, glass fiber, an olefin copolymer containing an epoxy group and an acid anhydride group, and a specific filler has been reported (for example, see Patent Document 9).
 また、目的は異なるものの、PPSに非ブロック型多官能性イソシアネートとを溶融混練した変性ポリフェニレンスルフィドにポリアミド樹脂と特定のエチレン系共重合体とを配合したポリフェニレンスルフィド樹脂組成物(例えば特許文献10参照。)、ポリフェニレンスルフィドに非ブロック型多官能性イソシアネートとを溶融混練した変性ポリフェニレンスルフィドに、無水マレイン酸を含むエチレン系共重合体とを配合したポリフェニレンスルフィド樹脂組成物(例えば特許文献11参照。)、特定のポリフェニレンスルフィドにブロック型多官能性イソシアネート、特定の無水マレイン酸変性エチレン系共重合体とを配合したポリフェニレンスルフィド樹脂組成物(例えば特許文献12、13参照。)が報告されている。 Although the purpose is different, a polyphenylene sulfide resin composition in which a polyamide resin and a specific ethylene copolymer are blended with a modified polyphenylene sulfide obtained by melt-kneading a non-blocking polyfunctional isocyanate with PPS (see, for example, Patent Document 10) .), A polyphenylene sulfide resin composition in which a modified polyphenylene sulfide obtained by melt-kneading polyphenylene sulfide with a non-block type polyfunctional isocyanate is mixed with an ethylene copolymer containing maleic anhydride (for example, see Patent Document 11). A polyphenylene sulfide resin composition in which a specific polyphenylene sulfide is mixed with a block-type polyfunctional isocyanate and a specific maleic anhydride-modified ethylene copolymer (for example, see Patent Documents 12 and 13) has been reported.
日本国特開昭62-151460号公報Japanese Patent Application Laid-Open No. 62-151460 日本国特開平02-255862号公報Japanese Patent Application Laid-Open No. 02-255882 日本国特開平05-202245号公報Japanese Patent Application Laid-Open No. 05-202245 日本国特開平04-164962号公報Japanese Patent Application Laid-Open No. 04-164962 日本国特公平05-052849号公報Japanese Patent Publication No. 05-052849 日本国特許3582610号公報Japanese Patent No. 3582610 日本国特開2008-144003号公報Japanese Patent Application Laid-Open No. 2008-144003 日本国特開2007-106834号公報Japanese Patent Application Laid-Open No. 2007-106834 日本国特開2005-306926号公報JP 2005-306926 A 日本国特許2704763号公報Japanese Patent No. 2704763 日本国特許2789240号公報Japanese Patent No. 2789240 日本国特許3968839号公報Japanese Patent No. 3968839 日本国特許3968840号公報Japanese Patent No. 3968840
 しかしながら、特許文献1~4に提案された樹脂組成物においては、靭性が十分に満足できないという課題があった。 However, the resin compositions proposed in Patent Documents 1 to 4 have a problem that the toughness cannot be sufficiently satisfied.
 また特許文献5~6ではポリアリーレンスルフィドを製造する方法においてジクロロアニリンを添加する方法が提案されているが、エポキシ樹脂との接着性の改良について提案されているものであり、ポリアリーレンスルフィドの靭性改良に関してはなんら言及されていない。 Patent Documents 5 and 6 propose a method for producing polyarylene sulfide in which dichloroaniline is added. However, it is proposed to improve the adhesion to an epoxy resin, and the toughness of polyarylene sulfide is proposed. No mention is made of improvements.
 さらに、特許文献7~9に提案された樹脂組成物においては、耐冷熱性が充分とは言えず、用途に制限を来していた。また、特許文献10、11に提案された樹脂組成物においては、ポリフェニレンスルフィドと多官能性イソシアネートを予め溶融混練する必要があり生産性に劣り、かつ、耐冷熱性については何ら言及のされていないものである。また、特許文献12、13に提案された樹脂組成物においても、金型汚染性に劣り、かつ、耐冷熱性については何ら言及のなされていないものであった。即ちこれらの提案樹脂組成物はおしなべて、耐冷熱性、金型汚染性、成形流動性を同時に満足することは難しいものであった。 Furthermore, the resin compositions proposed in Patent Documents 7 to 9 cannot be said to have sufficient cooling / heat resistance, which limits the use. Further, in the resin compositions proposed in Patent Documents 10 and 11, polyphenylene sulfide and polyfunctional isocyanate need to be melt-kneaded in advance, resulting in inferior productivity and no mention of cooling / heat resistance. It is. In addition, the resin compositions proposed in Patent Documents 12 and 13 are also inferior in mold contamination and have no mention of cold / heat resistance. That is, it has been difficult for all of these proposed resin compositions to simultaneously satisfy the cooling / heat resistance, mold contamination, and molding fluidity.
 そこで、本発明は、ポリアリーレンスルフィドが本来有する耐熱性、耐薬品性、寸法安定性などを損なうことなく、ウエルド強度、耐ヒートサイクル性、流動性、薄肉流動性に優れるポリアリーレンスルフィド組成物を提供することを目的とし、さらに詳しくは、電気・電子部品、自動車電装部品などの電気部品用途又は給湯器部品用途に特に有用なポリアリーレンスルフィド組成物を提供することにある。 Thus, the present invention provides a polyarylene sulfide composition having excellent weld strength, heat cycle resistance, fluidity, and thin-wall fluidity without impairing the heat resistance, chemical resistance, and dimensional stability inherent to polyarylene sulfide. It is an object of the present invention to provide a polyarylene sulfide composition which is particularly useful for electric parts such as electric / electronic parts and automobile electric parts or water heater parts.
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、少なくとも特定のポリアリーレンスルフィド、特定の変性エチレン共重合樹脂、繊維状充填剤を含むポリアリーレンスルフィド組成物とすることで、ウエルド強度、耐ヒートサイクル性、流動性、薄肉流動性に優れる組成物となりうることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, at least a specific polyarylene sulfide, a specific modified ethylene copolymer resin, a polyarylene sulfide composition containing a fibrous filler, a weld They have found that a composition having excellent strength, heat cycle resistance, fluidity, and thin-wall fluidity can be obtained, and have completed the present invention.
 即ち、本発明は、以下の[1]乃至[7]に存する。
[1] 径1mm、長さ2mmのダイスを装着した高化式フローテスターにて、測定温度315℃、荷重10kgの条件下で測定した溶融粘度が100~2000ポイズであるポリアリーレンスルフィド(A)100重量部に対し、変性エチレン共重合樹脂(B)として下記(B1)又は(B2)、及び、繊維状充填材(C)15~100重量部を含んでなることを特徴とするポリアリーレンスルフィド組成物。
That is, the present invention resides in the following [1] to [7].
[1] A polyarylene sulfide (A) having a melt viscosity of 100 to 2,000 poise measured at a temperature of 315 ° C. and a load of 10 kg using a Koka type flow tester equipped with a die having a diameter of 1 mm and a length of 2 mm. A polyarylene sulfide, which comprises the following (B1) or (B2) as a modified ethylene copolymer resin (B) and 15 to 100 parts by weight of a fibrous filler (C) based on 100 parts by weight. Composition.
 (B1)エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体1~12重量部。 (B1) 1 to 12 parts by weight of an ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated carboxylic acid butyl ester copolymer.
 (B2)エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体及び無水マレイン酸グラフト変性エチレン-α-オレフィン共重合体から選択される少なくとも1種以上の変性エチレン系共重合体1~30重量部とイソシアヌレート0.1~3重量部であって、その割合が該イソシアヌレート/該変性エチレン系共重合体(重量部/重量部)=0.05~0.3の範囲内。
[2] ポリアリーレンスルフィド(A)が、溶融粘度が200~1000ポイズであるアミノ基変性ポリアリーレンスルフィドであることを特徴とする上記[1]に記載のポリアリーレンスルフィド組成物。
[3] ポリアリーレンスルフィド(A)が、高圧熱水洗浄アミノ基変性ポリアリーレンスルフィドであることを特徴とする上記[1]又は[2]に記載のポリアリーレンスルフィド組成物。
[4] ポリアリーレンスルフィド(A)が、アミノ基0.05~5モル%を含有するアミノ基変性ポリアリーレンスルフィドであることを特徴とする上記[1]~[3]のいずれかに記載のポリアリーレンスルフィド組成物。
[5] イソシアヌレートが、脂肪族イソシアヌレートであることを特徴とする上記[1]~[4]の何れかに記載のポリアリーレンスルフィド組成物。
[6] さらに、グリシドキシ基を有するトリアルコキシシランカップリング剤及び/又はアミノ基を有するトリアルコキシシランカップリング剤からなるシランカップリング剤を含んでなることを特徴とする上記[1]~[5]のいずれかに記載のポリアリーレンスルフィド組成物。
[7] さらに、ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アマイド系ワックスからなる群より選択される少なくとも1種以上の離型剤を含んでなることを特徴とする上記[1]~[6]のいずれかに記載のポリアリーレンスルフィド組成物。
(B2) at least one modified ethylene copolymer selected from ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and maleic anhydride graft-modified ethylene-α-olefin copolymer 1 to 30 parts by weight of the unified polymer and 0.1 to 3 parts by weight of the isocyanurate, and the ratio thereof is 0.05 to 0.3 parts by weight of the isocyanurate / the modified ethylene copolymer (parts by weight / part by weight). Within range.
[2] The polyarylene sulfide composition according to the above [1], wherein the polyarylene sulfide (A) is an amino group-modified polyarylene sulfide having a melt viscosity of 200 to 1000 poise.
[3] The polyarylene sulfide composition according to the above [1] or [2], wherein the polyarylene sulfide (A) is a high-pressure hot water-washed amino group-modified polyarylene sulfide.
[4] The polyarylene sulfide (A) according to any one of the above [1] to [3], wherein the polyarylene sulfide (A) is an amino group-modified polyarylene sulfide containing 0.05 to 5 mol% of amino groups. Polyarylene sulfide composition.
[5] The polyarylene sulfide composition according to any one of the above [1] to [4], wherein the isocyanurate is an aliphatic isocyanurate.
[6] The above-mentioned [1] to [5], further comprising a silane coupling agent comprising a trialkoxysilane coupling agent having a glycidoxy group and / or a trialkoxysilane coupling agent having an amino group. ] The polyarylene sulfide composition according to any one of [1] to [10].
[7] Any of the above-mentioned [1] to [6], further comprising at least one release agent selected from the group consisting of polyethylene wax, polypropylene wax and fatty acid amide-based wax. 3. The polyarylene sulfide composition according to item 1.
 以下、本発明に関し詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のポリアリーレンスルフィド組成物を構成するポリアリーレンスルフィド(A)としては、一般にポリアリーレンスルフィドと称される範疇に属するものであればよく、該ポリアリーレンスルフィドとしては、例えばp-フェニレンスルフィド単位、m-フェニレンスルフィド単位、o-フェニレンスルフィド単位、フェニレンスルフィドスルフォン単位、フェニレンスルフィドケトン単位、フェニレンスルフィドエーテル単位、ビフェニレンスルフィド単位からなる単独重合体又は共重合体を挙げることができ、該ポリアリーレンスルフィドの具体的例示としては、ポリ(p-フェニレンスルフィド)、ポリフェニレンスルフィドスルフォン、ポリフェニレンスルフィドケトン、ポリフェニレンスルフィドエーテル等が挙げられ、その中でも、特に耐熱性、強度特性に優れるポリアリーレンスルフィド組成物となることから、ポリフェニレンスルフィドであることが好ましい。 The polyarylene sulfide (A) constituting the polyarylene sulfide composition of the present invention may be any one which belongs to a category generally called polyarylene sulfide. Examples of the polyarylene sulfide include p-phenylene sulfide unit , M-phenylene sulfide unit, o-phenylene sulfide unit, phenylene sulfide sulfone unit, phenylene sulfide ketone unit, phenylene sulfide ether unit, biphenylene sulfide unit, and a homopolymer or copolymer comprising the polyarylene sulfide. Specific examples of polyphenylene sulfide include poly (p-phenylene sulfide), polyphenylene sulfide sulfone, polyphenylene sulfide ketone, and polyphenylene sulfide ether. Among the particularly heat resistance, since the polyarylene sulfide composition having excellent strength properties, preferably a polyphenylene sulfide.
 そして、該ポリアリーレンスルフィド(A)は、直径1mm、長さ2mmのダイスを装着した高化式フローテスターにて、測定温度315℃、荷重10kgの条件下で測定した溶融粘度において、100~2000ポイズのものである。ここで、100ポイズ未満である場合、得られる組成物は機械的強度に劣るものとなる。一方、2000ポイズを越える場合、薄肉流動性に劣るものとなる。 The polyarylene sulfide (A) has a melt viscosity of 100 to 2000 at a melt temperature of 315 ° C. and a load of 10 kg measured by a Koka type flow tester equipped with a die having a diameter of 1 mm and a length of 2 mm. Poise's. Here, when it is less than 100 poise, the obtained composition has poor mechanical strength. On the other hand, when it exceeds 2,000 poise, the thin-wall fluidity is poor.
 該ポリアリーレンスルフィド(A)の製造方法としては、ポリアリーレンスルフィドの製造方法として知られている方法により製造することが可能であり、例えば極性溶媒中で硫化アルカリ金属塩、ポリハロゲン芳香族化合物を重合することにより得る事が可能である。その際の極性有機溶媒としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、シクロヘキシルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等を挙げる事ができ、硫化アルカリ金属塩としては、例えば硫化ナトリウム、硫化ルビジウム、硫化リチウムの無水物又は水和物を挙げる事ができる。また、硫化アルカリ金属塩としては、水硫化アルカリ金属塩とアルカリ金属水酸化物を反応させたものであってもよい。ポリハロゲン芳香族化合物としては、例えばp-ジクロロベンゼン、p-ジブロモベンゼン、p-ジヨードベンゼン、m-ジクロロベンゼン、m-ジブロモベンゼン、m-ジヨードベンゼン、4,4’-ジクロロジフェニルスルホン、4,4’-ジクロロベンゾフェノン、4,4’-ジクロロジフェニルエーテル、4,4’-ジクロロジビフェニル等を挙げる事ができる。 The polyarylene sulfide (A) can be produced by a method known as a method for producing a polyarylene sulfide. For example, an alkali metal sulfide or a polyhalogen aromatic compound can be produced in a polar solvent. It can be obtained by polymerization. Examples of the polar organic solvent at this time include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, cyclohexylpyrrolidone, dimethylformamide, dimethylacetamide, and the like. Anhydrous or hydrate of sodium, rubidium sulfide and lithium sulfide can be mentioned. Further, the alkali metal sulfide may be a product obtained by reacting an alkali metal hydrosulfide with an alkali metal hydroxide. Examples of the polyhalogen aromatic compound include p-dichlorobenzene, p-dibromobenzene, p-diiodobenzene, m-dichlorobenzene, m-dibromobenzene, m-diiodobenzene, 4,4′-dichlorodiphenylsulfone, 4,4'-dichlorobenzophenone, 4,4'-dichlorodiphenyl ether, 4,4'-dichlorodibiphenyl and the like can be mentioned.
 また、ポリアリーレンスルフィド(A)としては、直鎖状のものであっても、重合時にトリハロゲン以上のポリハロゲン化合物を少量添加して若干の架橋又は分岐構造を導入したものであっても、ポリアリーレンスルフィドの分子鎖の一部及び/又は末端を例えばカルボキシル基、カルボキシ金属塩、アルキル基、アルコキシ基、ニトロ基等の官能基により変性されたものであっても、窒素などの非酸化性の不活性ガス中で加熱処理を施したものであってもかまわないし、さらにこれらの構造の混合物であってもかまわない。また、該ポリアリーレンスルフィド(A)は、加熱硬化前又は後に脱イオン処理(酸洗浄や熱水洗浄など)、あるいはアセトン、メチルアルコールなどの有機溶媒による洗浄処理を行うことによってイオン、オリゴマーなどの不純物を低減させたものであってもよい。さらに、重合反応終了後に不活性ガス又は酸化性ガス中で加熱処理を行い、硬化を行ったものであってもよい。 Also, the polyarylene sulfide (A) may be a linear one or a one obtained by adding a small amount of a polyhalogen compound of trihalogen or more at the time of polymerization to introduce a slight crosslinked or branched structure. Even if a part and / or terminal of the molecular chain of the polyarylene sulfide is modified with a functional group such as a carboxyl group, a carboxy metal salt, an alkyl group, an alkoxy group, or a nitro group, it may be non-oxidizable such as nitrogen. May be subjected to heat treatment in an inert gas described above, or may be a mixture of these structures. The polyarylene sulfide (A) is subjected to a deionization treatment (acid washing or hot water washing, etc.) before or after heat curing, or a washing treatment with an organic solvent such as acetone or methyl alcohol to form ions, oligomers or the like. It may have reduced impurities. Furthermore, after the completion of the polymerization reaction, a heat treatment may be performed in an inert gas or an oxidizing gas to perform curing.
 更に、該ポリアリーレンスルフィド(A)としては、特に耐冷熱性、金型汚染性、成形流動性、ウエルド強度に優れるポリアリーレンスルフィド組成物を提供することが可能となることからアミノ基変性ポリアリーレンスルフィドであることが好ましく、更にアミノ基0.05~5モル%を含有するアミノ基変性ポリアリーレンスルフィドが好ましく、特にアミノ基0.1~3モル%を含有するアミノ基変性ポリアリーレンスルフィドであることが好ましい。該アミノ基変性ポリアリーレンスルフィドとしては、上記したポリアリーレンスルフィドのアミノ基変性樹脂を挙げることが出来る。ここで、アミノ基含有量は、例えばアミノ基変性ポリアリーレンスルフィドを赤外線吸収スペクトルによりベンゼン環のC-H面外変角振動である1900cm-1の吸収とアミノ基のN-H伸縮振動である3387cm-1の吸収を測定し、フェニル基に対するアミノ基含有量として求めることが出来る。 Further, as the polyarylene sulfide (A), it is possible to provide a polyarylene sulfide composition which is particularly excellent in cold heat resistance, mold contamination, molding fluidity, and weld strength. And more preferably an amino group-modified polyarylene sulfide containing 0.05 to 5 mol% of amino groups, and particularly preferably an amino group-modified polyarylene sulfide containing 0.1 to 3 mol% of amino groups. Is preferred. Examples of the amino group-modified polyarylene sulfide include the above-mentioned amino group-modified resins of polyarylene sulfide. Here, the amino group content is, for example, the absorption of amino group-modified polyarylene sulfide at 1900 cm −1 which is the CH out-of-plane bending vibration of the benzene ring in the infrared absorption spectrum and the NH stretching vibration of the amino group. The absorption at 3387 cm -1 is measured, and can be determined as the amino group content with respect to the phenyl group.
 該アミノ基変性ポリアリーレンスルフィドの製造方法としては、上記したポリアリーレンスルフィドの製造方法にさらにアミノ基含有ハロゲン芳香族化合物を共重合する方法を挙げることができ、該アミノ基含有ハロゲン芳香族化合物としては、例えば2,5-ジクロロアニリン、2,6-ジクロロアニリン、3,5-ジクロロアニリン、3,5-ジアミノクロロベンゼン、2-アミノ-4-クロロトルエン、2-アミノ-6-クロロトルエン、4-アミノ-2-クロロトルエン、3-クロロ-m-フェニレンジアミン、2,5-ジブロモアニリン、2,6-ジブロモアニリン、3,5-ジブロモアニリン、及びそれらの混合物等が挙げられ、特に3,5-ジクロロアニリン、3,5-ジアミノクロロベンゼンが好ましい。 Examples of the method for producing the amino group-modified polyarylene sulfide include a method for copolymerizing an amino group-containing halogen aromatic compound in addition to the above-described method for producing the polyarylene sulfide. Is, for example, 2,5-dichloroaniline, 2,6-dichloroaniline, 3,5-dichloroaniline, 3,5-diaminochlorobenzene, 2-amino-4-chlorotoluene, 2-amino-6-chlorotoluene, -Amino-2-chlorotoluene, 3-chloro-m-phenylenediamine, 2,5-dibromoaniline, 2,6-dibromoaniline, 3,5-dibromoaniline, and mixtures thereof. 5-Dichloroaniline and 3,5-diaminochlorobenzene are preferred.
 そして、該アミノ基含有ポリアリーレンスルフィドの具体的例示としては、例えばアミノ基変性ポリフェニレンスルフィド、アミノ基変性ポリフェニレンスルフィドスルフォン、アミノ基変性ポリフェニレンスルフィドケトン、アミノ基変性ポリフェニレンスルフィドエーテル等が挙げられ、その中でも、特に耐熱性、強度特性に優れることから、アミノ基変性ポリ(p-フェニレンスルフィド)であることが好ましい。 Specific examples of the amino group-containing polyarylene sulfide include, for example, amino group-modified polyphenylene sulfide, amino group-modified polyphenylene sulfide sulfone, amino group-modified polyphenylene sulfide ketone, and amino group-modified polyphenylene sulfide ether. Amino group-modified poly (p-phenylene sulfide) is preferred because of its excellent heat resistance and strength properties.
 また、該アミノ基変性ポリアリーレンスルフィドとしては、ウエルド強度、耐ヒートサイクル性、溶融流動性、薄肉成形性に優れるポリアリーレンスルフィド組成物となることから、直径1mm、長さ2mmのダイスを装着した高化式フローテスターにて、測定温度315℃、荷重10kgの条件下で測定した溶融粘度が200~1000ポイズのものであることが好ましく、特に300~800ポイズのものであることが好ましい。 As the amino group-modified polyarylene sulfide, a die having a diameter of 1 mm and a length of 2 mm was mounted because the polyarylene sulfide composition was excellent in weld strength, heat cycle resistance, melt fluidity, and thin moldability. The melt viscosity measured with a Koka type flow tester at a measurement temperature of 315 ° C. and a load of 10 kg is preferably from 200 to 1,000 poise, and particularly preferably from 300 to 800 poise.
 本発明を構成するポリアリーレンスルフィド(A)、特にアミノ基変性ポリアリーレンスルフィドは、不純物等の除去を効率的に行い品質に優れるものとなることから、ポリアリーレンスルフィドを製造する際に、重合後のポリアリーレンスルフィドの高圧熱水処理を行い洗浄を行ったものであることが好ましい。その際の高圧熱水処理条件としては、温度150℃以上240℃以下の水にて洗浄を行う方法を挙げることができる。 The polyarylene sulfide (A), particularly the amino group-modified polyarylene sulfide, which constitutes the present invention, can efficiently remove impurities and the like and has excellent quality. It is preferable that the polyarylene sulfide is subjected to high-pressure hot water treatment and washed. As a condition of the high-pressure hot water treatment at that time, a method of washing with water having a temperature of 150 ° C. or more and 240 ° C. or less can be mentioned.
 本発明のポリアリーレンスルフィド組成物を構成する変性エチレン共重合樹脂(B)としては、(B1)エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体又は(B2)エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体及び無水マレイン酸グラフト変性エチレン-α-オレフィン共重合体から選択される少なくとも1種以上の変性エチレン系共重合体とイソシアヌレートからなるものである。 The modified ethylene copolymer resin (B) constituting the polyarylene sulfide composition of the present invention includes (B1) ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated butyl butyl ester copolymer. Or (B2) at least one modified ethylene selected from ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and maleic anhydride graft-modified ethylene-α-olefin copolymer It is composed of a copolymer and isocyanurate.
 ここで、該(B1)としてのエチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体としては、この範疇に属するものであれば如何なるものを用いても良く、中でも得られるポリアリーレンスルフィド組成物が、靭性に優れることから、エチレン残基単位:α、β-不飽和カルボン酸グリシジルエステル残基単位:α、β-不飽和カルボン酸ブチルエステル残基単位(重量比)=60~93:2~10:5~30の範囲からなるものであることが好ましい。該エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体の具体的例示としては、例えば(商品名)LOTADER AX8700(アルケマ(株)製)、(商品名)LOTADER AX8750(アルケマ(株)製)、等を挙げることができる。そして、本発明のポリアリーレンスルフィド組成物としては、特にアミノ基変性ポリアリーレンスルフィドと該エチレン-α、β-不飽和カルボン酸グリシジル-α、β-不飽和カルボン酸ブチルエステル共重合体とを組合わせることにより、従来より提案されているポリアリーレンスルフィド組成物より卓越したウエルド強度、耐ヒートサイクル性を示す組成物となるものである。 Here, as the ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated carboxylic acid butyl ester copolymer as (B1), any one belonging to this category can be used. In particular, since the obtained polyarylene sulfide composition has excellent toughness, ethylene residue unit: α, β-unsaturated carboxylic acid glycidyl ester residue unit: α, β-unsaturated carboxylic acid butyl ester residue It is preferable that the ratio be in the range of base unit (weight ratio) = 60 to 93: 2 to 10: 5 to 30. Specific examples of the ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated carboxylic acid butyl ester copolymer include, for example, (trade name) LOTADER @ AX8700 (manufactured by Arkema Corporation), Trade name) LOTADER @ AX8750 (manufactured by Arkema Co., Ltd.). As the polyarylene sulfide composition of the present invention, in particular, the amino group-modified polyarylene sulfide and the ethylene-α, β-unsaturated glycidyl-α-, β-unsaturated carboxylic acid butyl ester copolymer are combined. By combining them, a composition exhibiting superior weld strength and heat cycle resistance over the conventionally proposed polyarylene sulfide composition can be obtained.
 その際のポリアリーレンスルフィド組成物は、ポリアリーレンスルフィド(A)100重量部に対して、エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体1~12重量部を含むものであることが好ましい。 At that time, the polyarylene sulfide composition was prepared by mixing ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated butyl ester copolymer 1 with respect to 100 parts by weight of polyarylene sulfide (A). Preferably, it contains up to 12 parts by weight.
 また、該(B2)を構成する変性エチレン系共重合体は、エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体及び無水マレイン酸グラフト変性エチレン-α-オレフィン共重合体からなる群より選択される少なくとも1種以上の変性エチレン系共重合体である。 Further, the modified ethylene copolymer constituting (B2) is an ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and a maleic anhydride graft-modified ethylene-α-olefin copolymer And at least one modified ethylene copolymer selected from the group consisting of
 該エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体としては、この範疇に属するものであれば如何なるものを用いても良く、中でも得られるポリアリーレンスルフィド組成物が耐冷熱性等に優れることから、エチレン残基単位:α、β-不飽和カルボン酸アルキルエステル残基単位:無水マレイン酸残基単位(重量比)=50~98:40~1:10~1の範囲であることが好ましい。該エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体の具体的例示としては、(商品名)ボンダイン5500(アルケマ(株)製)、(商品名)ボンダインTX8030(アルケマ(株)製)、(商品名)ボンダインAX8390(アルケマ(株)製)等が挙げられる。 As the ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer, any copolymer may be used as long as it belongs to this category. Among them, the obtained polyarylene sulfide composition has a low heat resistance. Ethylene residue unit: α, β-unsaturated carboxylic acid alkyl ester residue unit: maleic anhydride residue unit (weight ratio) = 50 to 98:40 to 1: 10-1. Preferably, there is. Specific examples of the ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer include (trade name) Bondyne 5500 (manufactured by Arkema Corporation), (trade name) Bondine TX8030 (Arkema ( (Trade name) Bondyne AX8390 (manufactured by Arkema Co., Ltd.).
 該無水マレイン酸グラフト変性エチレン-α-オレフィン共重合体としては、この範疇に属するものであれば如何なるものを用いても良く、中でも得られるポリアリーレンスルフィド組成物が耐冷熱性等に優れることから、エチレン残基単位:α-オレフィン残基単位:無水マレイン酸残基単位(重量比)=50~98:45~1:5~1の範囲からなるものであることが好ましく、具体的には無水マレイン酸グラフト変性直鎖状低密度ポリエチレン、無水マレイン酸グラフト変性エチレン-プロピレンゴム等が挙げられる。該無水マレイン酸グラフト変性エチレン-α-オレフィン共重合体は、例えばエチレン-α-オレフィン共重合体、過酸化物、無水マレイン酸を共存し、グラフト化反応を進行することにより入手することが可能である。 As the maleic anhydride graft-modified ethylene-α-olefin copolymer, any one may be used as long as it belongs to this category, and among them, the resulting polyarylene sulfide composition is excellent in cold resistance and the like. Ethylene residue unit: α-olefin residue unit: maleic anhydride residue unit (weight ratio) = 50-98: 45-1: 5-1-1. Maleic acid graft-modified linear low density polyethylene, maleic anhydride graft-modified ethylene-propylene rubber, and the like. The maleic anhydride graft-modified ethylene-α-olefin copolymer can be obtained by, for example, coexisting an ethylene-α-olefin copolymer, a peroxide, and maleic anhydride, and performing a grafting reaction. It is.
 該変性エチレン系共重合体の配合量は、得られる組成物が耐冷熱性、金型汚染性に優れるものとなることから、ポリアリーレンスルフィド(A)100重量部に対して、1~30重量部であることが好ましい。 The amount of the modified ethylene copolymer is from 1 to 30 parts by weight based on 100 parts by weight of the polyarylene sulfide (A), since the resulting composition has excellent cold heat resistance and mold contamination. It is preferred that
 また、該(B2)を構成するイソシアヌレートとしては、イソシアヌレートと称されるものであればよく、その中でもとりわけ、耐冷熱性に優れたポリアリーレンスルフィド組成物となることから脂肪族イソシアヌレートであることが好ましい。該脂肪族イソシアヌレートとしては、1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(6-イソシアナトテトラ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(6-イソシアナトドデカ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンなどが挙げられ、特に耐冷熱性に優れ金型汚染性の低いバランスに優れるポリアリーレンスルフィド組成物となる事から分子量500以上の脂肪族イソシアヌレートが好ましい。該脂肪族イソシアヌレートは2量体や3量体などの多量体、ないしは脂肪族イソシアヌレート単量体に2量体や3量体などの多量体を含むイソシアヌレートであってもよく、ポリアリーレンスルフィドや(B2)を構成する変性エチレン系共重合体との反応性に優れ、耐冷熱性に優れたポリアリーレンスルフィド組成物となることから、イソシアネート基20%以上含む脂肪族系イソシアヌレートである事が好ましい。 The isocyanurate constituting the component (B2) may be any one called isocyanurate. Among them, aliphatic isocyanurate is a polyarylene sulfide composition having excellent cold / heat resistance. Is preferred. Examples of the aliphatic isocyanurate include 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris (6-isocyanatotetra-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 1,3,5-tris ( 6-isocyanatododec-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, and the like. Particularly, the balance is excellent in cold heat resistance and low in mold contamination. An aliphatic isocyanurate having a molecular weight of 500 or more is preferred because a polyarylene sulfide composition having an excellent water resistance is obtained. The aliphatic isocyanurate may be a polymer such as a dimer or trimer, or an isocyanurate containing a polymer such as a dimer or trimer in an aliphatic isocyanurate monomer, and a polyarylene. It is an aliphatic isocyanurate containing at least 20% of isocyanate groups, since it is a polyarylene sulfide composition having excellent reactivity with sulfide and the modified ethylene copolymer constituting (B2), and excellent cooling and heat resistance. Is preferred.
 また、該脂肪族イソシアヌレートは、脂肪族イソシアネートの一部を1,3-ブタンジオール、2,2,4-トリメチル-1,3-ペンタジオールなどのアルコールで変性したものであっても構わない。該脂肪族イソシアヌレートの中でもとりわけ、耐冷熱性に優れその入手が容易であることから1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンである事が好ましい。1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンの具体的例示としては(商品名)コロネートHXR(東ソー(株)製)、(商品名)デュラネートTPA-100(旭化成(株)製)等が挙げられる。 The aliphatic isocyanurate may be one obtained by modifying a part of the aliphatic isocyanate with an alcohol such as 1,3-butanediol or 2,2,4-trimethyl-1,3-pentadiol. . Among these aliphatic isocyanurates, 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2, It is preferably 4,6 (1H, 3H, 5H) -trione. Specific examples of 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione are (trade names) ) Coronate HXR (manufactured by Tosoh Corporation) and (trade name) Duranate TPA-100 (manufactured by Asahi Kasei Corporation).
 該イソシアヌレートの配合量としては、とりわけ耐冷熱性に優れ、金型汚染性に優れたポリアリーレンスルフィド組成物となることから、ポリアリーレンスルフィド(A)100重量部に対して、0.1~3重量部であり、更に、該イソシアヌレートと該変性エチレン系重合体との配合割合が、該イソシアヌレート/変性エチレン系重合体(重量部/重量部)=0.05~0.3の範囲内であることが好ましい。 The amount of the isocyanurate to be blended is preferably 0.1 to 3 parts by weight based on 100 parts by weight of the polyarylene sulfide (A), since the resulting polyarylene sulfide composition is excellent in cold resistance and mold contamination. Parts by weight, and the compounding ratio of the isocyanurate and the modified ethylene-based polymer is in the range of 0.05 to 0.3 (the isocyanurate / modified ethylene-based polymer (parts by weight / part by weight)). It is preferred that
 そして、変性エチレン共重合樹脂(B)を構成するα-オレフィンとは、炭素数が3以上のα-オレフィンを言い、例えばプロピレン、ブテン-1、4-メチル-ペンテン-1、ヘキセン-1、オクテン-1等を例示できる。また、α、β-不飽和カルボン酸アルキルエステルとしては、例えばアクリル酸、メタクリル酸等のアルキルエステルが挙げられ、具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル等が挙げられる。α、β-不飽和カルボン酸グリシジルエステルとしては、例えばアクリル酸グリシジルエステル、メタクリル酸グリシジルエステルが挙げられる。 The α-olefin constituting the modified ethylene copolymer resin (B) refers to an α-olefin having 3 or more carbon atoms, such as propylene, butene-1, 4-methyl-pentene-1, hexene-1, Octene-1 and the like can be exemplified. Examples of the alkyl esters of α, β-unsaturated carboxylic acids include alkyl esters such as acrylic acid and methacrylic acid. Specific examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, and acrylic acid. Isopropyl, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate Butyl and the like. Examples of the α, β-unsaturated glycidyl carboxylate include glycidyl acrylate and glycidyl methacrylate.
 本発明のポリアリーレンスルフィド組成物を構成する繊維状充填材(C)としては、例えば平均繊維径が8~15μm、特に6~14μmのチョップドストランド、繊維断面のアスペクト比が2~4の扁平ガラス繊維からなるチョップドストランド、ミルドファイバー、ロービング等のガラス繊維;シラン繊維;アルミノ珪酸塩ガラス繊維;中空ガラス繊維;ノンホーローガラス繊維;PAN系炭素繊維やピッチ系炭素繊維等の炭素繊維;グラファイト化繊維、窒化珪素ウイスカー、塩基性硫酸マグネシウムウイスカー、チタン酸バリウムウイスカー、チタン酸カリウムウイスカー、炭化珪素ウイスカー、ボロンウイスカー、酸化亜鉛ウイスカー等のウイスカー;ステンレス繊維等の金属繊維;ロックウール、ジルコニア、アルミナシリカ、チタン酸バリウム、炭化珪素、アルミナ、シリカ、高炉スラグ等の無機系繊維;全芳香族ポリアミド繊維、フェノール樹脂繊維、全芳香族ポリエステル繊維等の有機系繊維;ワラステナイト、マグネシウムオキシサルフェート等の鉱物系繊維等が挙げられ、とりわけ平均繊維径が8~15μmのガラス繊維がウエルド強度、耐ヒートサイクル性に優れるポリアリーレンスルフィド組成物となり、平均繊維径が6~14μmのチョップドストランド、ないしは、繊維断面のアスペクト比が2~4である扁平ガラス繊維からなるチョップドストランドが、耐冷熱性と成形流動性に優れたポリアリーレンスルフィド組成物となることから好ましい。また、これら2種以上を併用することも可能であり、必要によりエポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物又はポリマーで、予め表面処理したものでもよい。 Examples of the fibrous filler (C) constituting the polyarylene sulfide composition of the present invention include chopped strands having an average fiber diameter of 8 to 15 μm, particularly 6 to 14 μm, and flat glass having a fiber cross-sectional aspect ratio of 2 to 4. Glass fibers such as chopped strands, milled fibers, and rovings made of fibers; silane fibers; aluminosilicate glass fibers; hollow glass fibers; non-enameled glass fibers; carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers; Whiskers such as silicon nitride whiskers, basic magnesium sulfate whiskers, barium titanate whiskers, potassium titanate whiskers, silicon carbide whiskers, boron whiskers, zinc oxide whiskers; metal fibers such as stainless steel fibers; rock wool, zirconia, alumina silica; Inorganic fibers such as barium titanate, silicon carbide, alumina, silica and blast furnace slag; organic fibers such as wholly aromatic polyamide fibers, phenolic resin fibers and wholly aromatic polyester fibers; mineral materials such as wollastenite and magnesium oxysulfate In particular, glass fibers having an average fiber diameter of 8 to 15 μm are polyarylene sulfide compositions having excellent weld strength and heat cycle resistance, and chopped strands having an average fiber diameter of 6 to 14 μm, Chopped strands made of flat glass fibers having an aspect ratio of 2 to 4 are preferable because they are polyarylene sulfide compositions excellent in cold heat resistance and molding fluidity. It is also possible to use a combination of two or more of these, and if necessary, a surface treatment with a functional compound such as an epoxy compound, an isocyanate compound, a silane compound or a titanate compound or a polymer may be used.
 本発明のポリアリーレンスルフィド組成物は、ポリアリーレンスルフィド(A)100重量部に対し繊維状充填剤(C)15~100重量部を含有するものであり、繊維状充填剤(C)の配合量が15重量部未満あるいは100重量部を超える場合、得られる組成物は、耐ヒートサイクル性に劣るものとなる。 The polyarylene sulfide composition of the present invention contains 15 to 100 parts by weight of the fibrous filler (C) based on 100 parts by weight of the polyarylene sulfide (A). Is less than 15 parts by weight or more than 100 parts by weight, the obtained composition has poor heat cycle resistance.
 本発明のポリアリーレンスルフィド組成物は、特にウエルド強度、耐ヒートサイクル性、成型流動性に優れるものとなることからグリシジル基を有するトリアルコキシシランカップリング剤及び/又はアミノ基を有するトリアルコキシシランカップリング剤からなるシランカップリング剤を含むものであることが好ましい。その際のシランカプリリング剤としては、グリシジル基あるいはアミノ基を有するトリアルコキシシランカップリング剤であれば特に制限されるものではなく、この範疇に属するものの具体的な例として、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン等があげられる。また、該シランカップリング剤の配合量としては、0.05~5重量%であることが好ましい。 The polyarylene sulfide composition of the present invention is particularly excellent in weld strength, heat cycle resistance, and molding fluidity, so that a trialkoxysilane coupling agent having a glycidyl group and / or a trialkoxysilane cup having an amino group can be obtained. It preferably contains a silane coupling agent composed of a ring agent. The silane capping agent at this time is not particularly limited as long as it is a trialkoxysilane coupling agent having a glycidyl group or an amino group, and as a specific example of those belonging to this category, 3-glycidoxy Propylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxy Silane, N-phenyl-3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane and the like. Can be The amount of the silane coupling agent is preferably 0.05 to 5% by weight.
 本発明のポリアリーレンスルフィド組成物は、成形品とする際の金型離型性や外観を改良するために離型剤を含有することが好ましい。該離型剤としては、例えばポリエチレンワックス、ポリプロピレンワックス、脂肪酸アマイド系ワックスが好適に用いられる。該ポリエチレンワックス、ポリプロピレンワックスとしては、一般的な市販品を用いることができる。また、該脂肪酸アマイド系ワックスとは、高級脂肪族モノカルボン酸、多塩基酸及びジアミンからなる重縮合物でありこの範疇に属するものであれば如何なるものを用いることも可能であり、例えばステアリン酸、セバシン酸、エチレンジアミンからなる重縮合物である、(商品名)ライトアマイドWH-255(共栄社化学(株)製)等を挙げることができる。該離型剤の配合量としては、ポリアリーレンスルフィド樹脂100重量部に対して0.1~3重量部であることが好ましい。 ポ リ The polyarylene sulfide composition of the present invention preferably contains a release agent in order to improve mold release properties and appearance when forming a molded article. As the release agent, for example, polyethylene wax, polypropylene wax, and fatty acid amide-based wax are preferably used. As the polyethylene wax and the polypropylene wax, general commercial products can be used. The fatty acid amide-based wax is a polycondensate composed of a higher aliphatic monocarboxylic acid, a polybasic acid and a diamine, and any one belonging to this category can be used, for example, stearic acid. (Trade name) LiteAmide WH-255 (manufactured by Kyoeisha Chemical Co., Ltd.), which is a polycondensate composed of sebacic acid and ethylenediamine. The compounding amount of the release agent is preferably 0.1 to 3 parts by weight based on 100 parts by weight of the polyarylene sulfide resin.
 本発明のポリアリーレンスルフィド組成物は、本発明の目的を逸脱しない範囲で、非繊維状充填剤を配合していてもよく、非繊維状充填剤としては、例えばワラストナイト、ゼオライト、セリサイト、カオリン、マイカ、パイロフィライト、タルク、アルミナシリケート等の珪酸塩;酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化鉄等の酸化物;炭酸カルシウム、炭酸マグネシウム、ドロマイト等の炭酸塩;硫酸カルシウム、硫酸バリウム等の硫酸塩;窒化珪素、窒化硼素、窒化アルミニウム等の窒化物;ガラスフレーク、ガラスビーズ等を例示でき、その中でも、マイカ、タルク、炭酸カルシウム、ガラスフレーク、ガラスビーズが好ましい。また、該非繊維状充填剤は、イソシアネート系化合物、シラン系カップリング剤、チタネート系カップリング剤、エポキシ化合物等で表面処理したものであってもよい。 The polyarylene sulfide composition of the present invention may contain a non-fibrous filler without departing from the purpose of the present invention. Examples of the non-fibrous filler include wollastonite, zeolite, and sericite. Silicates such as aluminum, kaolin, mica, pyrophyllite, talc, alumina silicate; oxides such as aluminum oxide, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, zinc oxide, iron oxide; calcium carbonate, magnesium carbonate, dolomite Carbonates such as calcium sulfate and barium sulfate; nitrides such as silicon nitride, boron nitride, and aluminum nitride; glass flakes, glass beads, and the like. Among them, mica, talc, calcium carbonate, and glass flakes can be exemplified. Glass beads are preferred. Further, the non-fibrous filler may be surface-treated with an isocyanate compound, a silane coupling agent, a titanate coupling agent, an epoxy compound, or the like.
 さらに、本発明のポリアリーレンスルフィド組成物は、本発明の目的を逸脱しない範囲で、各種熱硬化性樹脂、熱可塑性樹脂、例えばエポキシ樹脂、シアン酸エステル樹脂、フェノール樹脂、ポリイミド、シリコーン樹脂、ポリエステル、ポリアミド、ポリフェニレンオキサイド、ポリカーボネート、ポリスルホン、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン等の1種以上を混合して使用することができる。 Further, the polyarylene sulfide composition of the present invention may be any of various thermosetting resins and thermoplastic resins, for example, an epoxy resin, a cyanate ester resin, a phenol resin, a polyimide, a silicone resin, and a polyester, without departing from the purpose of the present invention. And at least one of polyamide, polyphenylene oxide, polycarbonate, polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and the like.
 また、本発明のポリアリーレンスルフィド組成物は、本発明の目的を逸脱しない範囲で、従来公知の熱安定剤、酸化防止剤、紫外線吸収剤、結晶核剤、発泡剤、金型腐食防止剤、難燃剤、難燃助剤、染料、顔料等の着色剤、帯電防止剤等の添加剤を1種以上併用しても良い。 In addition, the polyarylene sulfide composition of the present invention is a conventional heat stabilizer, an antioxidant, an ultraviolet absorber, a crystal nucleating agent, a foaming agent, a mold corrosion inhibitor, without departing from the purpose of the present invention. One or more additives such as a flame retardant, a flame retardant auxiliary, a coloring agent such as a dye and a pigment, and an antistatic agent may be used in combination.
 本発明のポリアリーレンスルフィド組成物の製造方法としては、従来使用されている加熱溶融混練方法を用いることができる。例えば単軸または二軸押出機、ニーダー、ミル、ブラベンダー等による加熱溶融混練方法が挙げられ、特に混練能力に優れた二軸押出機による溶融混練方法が好ましい。また、この際の混練温度は特に限定されるものではなく、通常280~400℃の中から任意に選ぶことが出来る。また、本発明のポリアリーレンスルフィド組成物は、射出成形機、押出成形機、トランスファー成形機、圧縮成形機等を用いて任意の形状に成形することができる。 加熱 As a method for producing the polyarylene sulfide composition of the present invention, a conventionally used heat-melt kneading method can be used. For example, a heat-melt kneading method using a single-screw or twin-screw extruder, a kneader, a mill, a Brabender or the like can be mentioned, and a melt-kneading method using a twin-screw extruder having excellent kneading ability is particularly preferable. In addition, the kneading temperature at this time is not particularly limited, and can be arbitrarily selected usually from 280 to 400 ° C. Further, the polyarylene sulfide composition of the present invention can be formed into an arbitrary shape using an injection molding machine, an extrusion molding machine, a transfer molding machine, a compression molding machine, or the like.
 本発明のポリアリーレンスルフィド組成物は、耐冷熱性に優れ、成形加工に必要な金型汚染性、成形流動性、薄肉成形性に優れる特性をあわせもつことから、部品形状の複雑化や小型化のニーズから部品の薄肉化、外装部品としての使用が望まれている電気電子部品、給湯器部品用途又は自動車電装部品用途に好適に用いられる。 The polyarylene sulfide composition of the present invention has excellent resistance to cold and heat, and has the properties of excellent mold contamination, molding fluidity, and thin-wall moldability required for molding. It is suitably used for electric and electronic parts, water heater parts, and automobile electric parts, for which it is desired to reduce the thickness of parts and use them as exterior parts due to needs.
 本発明は、ポリアリーレンスルフィドの本来有する耐熱性、耐薬品性、寸法安定性などを損なうこともなく、ウエルド強度、耐ヒートサイクル性、成型流動性、薄肉成形性に優れるポリアリーレンンスルフィド組成物に関するものであり、さらに詳しくは、電気・電子部品又は自動車電装部品などの電気・電子部品用途、給湯器部品用途に特に有用なポリアリーレンスルフィド組成物に関するものである。 The present invention provides a polyarylene sulfide composition having excellent weld strength, heat cycle resistance, molding fluidity, and thin-wall moldability without impairing the inherent heat resistance, chemical resistance, and dimensional stability of polyarylene sulfide. More particularly, the present invention relates to a polyarylene sulfide composition particularly useful for electric / electronic parts such as electric / electronic parts or automobile electric parts, and water heater parts.
 次に、本発明を実施例により説明するが、本発明はこれらの例になんら制限されものではない。 Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 実施例及び比較例において用いたポリアリーレンスルフィド、変性エチレン共重合樹脂、繊維状充填剤、イソシアヌレート、シランカップリング剤、離型剤の詳細を以下に示す。 詳細 Details of the polyarylene sulfide, modified ethylene copolymer resin, fibrous filler, isocyanurate, silane coupling agent, and release agent used in Examples and Comparative Examples are shown below.
 <ポリアリーレンスルフィド(A)>
アミノ基含有ポリ(p-フェニレンスルフィド)(A1-2)(以下、単にPPS(A1-2)と記す。):溶融粘度430ポイズ。
アミノ基含有ポリ(p-フェニレンスルフィド)(A2-2)(以下、単にPPS(A2-2)と記す。):溶融粘度800ポイズ。
アミノ基含有ポリ(p-フェニレンスルフィド)(A3-2)(以下、単にPPS(A3-2)と記す。):溶融粘度300ポイズ。
ポリ(p-フェニレンスルフィド)(A’4-2)(以下、単にPPS(A’4-2)と記す。):溶融粘度500ポイズ。
ポリ(p-フェニレンスルフィド)(以下、PPS(A-5)と記す。):溶融粘度800ポイズ。
ポリ(p-フェニレンスルフィド)(以下、PPS(A-6)と記す。):溶融粘度430ポイズ。
ポリ(p-フェニレンスルフィド)(以下、PPS(A-7)と記す。):溶融粘度3000ポイズ。
アミノ基置換ポリ(p-フェニレンスルフィド)(以下、PPS(A-8)と記す。):アミノ基含有量0.1モル%、溶融粘度1200ポイズ。
アミノ基置換ポリ(p-フェニレンスルフィド)(以下、PPS(A-9)と記す。):アミノ基含有量0.6モル%、溶融粘度500ポイズ。
アミノ基置換ポリ(p-フェニレンスルフィド)(以下、PPS(A-10)と記す。):アミノ基含有量0.6モル%、溶融粘度3000ポイズ。
<Polyarylene sulfide (A)>
Amino group-containing poly (p-phenylene sulfide) (A1-2) (hereinafter simply referred to as PPS (A1-2)): Melt viscosity of 430 poise.
Amino group-containing poly (p-phenylene sulfide) (A2-2) (hereinafter simply referred to as PPS (A2-2)): a melt viscosity of 800 poise.
Amino group-containing poly (p-phenylene sulfide) (A3-2) (hereinafter simply referred to as PPS (A3-2)): a melt viscosity of 300 poise.
Poly (p-phenylene sulfide) (A'4-2) (hereinafter simply referred to as PPS (A'4-2)): Melt viscosity 500 poise.
Poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-5)): Melt viscosity: 800 poise.
Poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-6)): Melt viscosity: 430 poise.
Poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-7)): Melt viscosity of 3000 poise.
Amino group-substituted poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-8)): Amino group content 0.1 mol%, melt viscosity 1200 poise.
Amino group-substituted poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-9)): 0.6 mol% of amino group, melt viscosity 500 poise.
Amino group-substituted poly (p-phenylene sulfide) (hereinafter referred to as PPS (A-10)): amino group content 0.6 mol%, melt viscosity 3000 poise.
 <変性エチレン共重合樹脂(B)>
エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体(B1-1)(以下、単に変性エチレン共重合体(B1-1)と記す。):アルケマ(株)製、(商品名)LOTADER AX8700、エチレン残基単位:メタクリル酸グリシジルエステル残基単位:アクリル酸ブチルエステル残基単位(重量比)=67:8:25
エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体(B1-2)(以下、単に変性エチレン共重合体(B1-2)と記す。):アルケマ(株)製、(商品名)LOTADER AX8750、エチレン残基単位:メタクリル酸グリシジルエステル残基単位:アクリル酸ブチルエステル残基単位(重量比)=70:5:25
エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ビニルエステル共重合体(B’-3)(以下、単にポリエチレン系共重合体(B’-3)と記す。):住友化学(株)製、(商品名)ボンドファースト2B 、エチレン残基単位:メタクリル酸グリシジルエステル残基単位:酢酸ビニルエステル残基単位(重量比)=83:12:5
エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体(B2-4)(以下、変性エチレン系共重合体(B2-4)と記す。):アルケマ(株)製、(商品名)ボンダインAX8390。
エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体(B2-5)(以下、変性エチレン系共重合体(B2-5)と記す。):アルケマ(株)製、(商品名)ボンダインTX8030。
<Modified ethylene copolymer resin (B)>
Ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated carboxylic acid butyl ester copolymer (B1-1) (hereinafter simply referred to as modified ethylene copolymer (B1-1)): LOTADER AX8700 (trade name) manufactured by Arkema Co., Ltd., ethylene residue unit: glycidyl methacrylate ester residue unit: butyl acrylate ester residue unit (weight ratio) = 67: 8: 25
Ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated carboxylic acid butyl ester copolymer (B1-2) (hereinafter simply referred to as modified ethylene copolymer (B1-2)): LOTADER AX8750 (trade name) manufactured by Arkema Co., Ltd., ethylene residue unit: methacrylic acid glycidyl ester residue unit: acrylate butyl ester residue unit (weight ratio) = 70: 5: 25
Ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated carboxylic acid vinyl ester copolymer (B′-3) (hereinafter, simply referred to as polyethylene copolymer (B′-3)). ): Manufactured by Sumitomo Chemical Co., Ltd., (trade name) Bond First 2B, ethylene residue unit: glycidyl methacrylate ester residue unit: vinyl acetate ester residue unit (weight ratio) = 83: 12: 5
Ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer (B2-4) (hereinafter, referred to as modified ethylene copolymer (B2-4)): manufactured by Arkema Co., Ltd. (Product name) Bondyne AX8390.
Ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer (B2-5) (hereinafter referred to as modified ethylene copolymer (B2-5)): manufactured by Arkema Co., Ltd. (Product name) Bondine TX8030.
 <繊維状充填剤(C)>
ガラス繊維(C-1);エヌエスジー・ヴェトロテックス(株)製、(商品名)RES03-TP91;繊維径9μm、繊維長3mm。
ガラス繊維(C-2);日本電気硝子(株)製チョップドストランド、(商品名)T-760H。
ガラス繊維(C-3);日東紡(株)製チョップドストランド、(商品名)CSG-3PA 830。
<Fibrous filler (C)>
Glass fiber (C-1); manufactured by NSG Vetrotex Co., Ltd., (trade name) RES03-TP91; fiber diameter 9 μm, fiber length 3 mm.
Glass fiber (C-2); chopped strand (trade name) T-760H manufactured by NEC Corporation.
Glass fiber (C-3); Chopped strand (trade name) CSG-3PA 830 manufactured by Nitto Boseki Co., Ltd.
 <イソシアヌレート(D)>
イソシアヌレート(D-1);東ソー(株)製、(商品名)コロネートHXR(イソシアネート含量21.8%、分子量504)。
イソシアヌレート(D-2);旭化成(株)製、(商品名)デュラネートTPA-100(イソシアネート含量23.2%、分子量504)。
芳香族系多官能イソシアネート(D-3);ポリメリックMDI、東ソー(株)製、(商品名)ミリオネートMR-100(イソシアネート含量31.0%、平均分子量450)。
脂肪族系イソシアネート(D-4);ヘキサメチレンジイソシアネート、東ソー(株)製(イソシアネート含量50.0%、分子量168)。
<Isocyanurate (D)>
Isocyanurate (D-1); Coronate HXR (trade name) manufactured by Tosoh Corporation (isocyanate content 21.8%, molecular weight 504).
Isocyanurate (D-2); manufactured by Asahi Kasei Corporation, (trade name) Duranate TPA-100 (isocyanate content 23.2%, molecular weight 504).
Aromatic polyfunctional isocyanate (D-3); Polymeric MDI, manufactured by Tosoh Corporation, trade name: Millionate MR-100 (isocyanate content 31.0%, average molecular weight 450).
Aliphatic isocyanate (D-4); hexamethylene diisocyanate, manufactured by Tosoh Corporation (isocyanate content: 50.0%, molecular weight: 168).
 <シランカップリング剤(E)>
グリシジル基を有するトリアルコキシシランカップリング剤(E-1);信越化学工業(株)製、(商品名)KBM-403;3-グリシドキシプロピルトリメトキシシラン。
<Silane coupling agent (E)>
Trialkoxysilane coupling agent having a glycidyl group (E-1); KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd .; 3-glycidoxypropyltrimethoxysilane.
 <離型剤(F)>
離型剤(F-1);共栄社化学(株)製、(商品名)ライトアマイドWH-255。
カルナバワックス(F-2);日興リカ(株)製、(商品名)精製カルナバ粉末1号。
<Release agent (F)>
Release agent (F-1); Kyoeisha Chemical Co., Ltd., (trade name) Light Amide WH-255.
Carnauba wax (F-2); manufactured by Nikko Rika Co., Ltd., (trade name) purified carnauba powder No. 1.
 合成例1
 攪拌機を装備する50リットルオートクレーブに、NaS・2.9HO、6214g及びN-メチル-2-ピロリドン、17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7116g、3,5-ジクロロアニリン79g(p-ジクロロベンゼンと3,5-ジクロロアニリンの総量に対して約1モル%)、N-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却し、遠心分離器により固形分を単離した。該固形分を200℃の熱水で洗浄し100℃で一昼夜乾燥することにより、アミノ基含有ポリ(p-フェニレンスルフィド)(以下、PPS(A1-1)と記す。)を得た。
Synthesis Example 1
In a 50-liter autoclave equipped with a stirrer, 6214 g of Na 2 S.2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to obtain 1355 g. Of water was distilled off. After cooling the system to 140 ° C., 7116 g of p-dichlorobenzene, 79 g of 3,5-dichloroaniline (about 1 mol% based on the total amount of p-dichlorobenzene and 3,5-dichloroaniline), N-methyl- 5000 g of 2-pyrrolidone was added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid content was washed with hot water at 200 ° C. and dried at 100 ° C. for 24 hours to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A1-1)).
 このPPS(A1-1)を、窒素雰囲気下200℃で4時間硬化を行い、アミノ基含有ポリ(p-フェニレンスルフィド)(以下、PPS(A1-2)と記す。)を得た。PPS(A1-2)の溶融粘度は430poiseであった。 (4) This PPS (A1-1) was cured at 200 ° C. for 4 hours in a nitrogen atmosphere to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A1-2)). The melt viscosity of PPS (A1-2) was 430 poise.
 合成例2
 攪拌機を装備する50リットルオートクレーブに、NaS・2.9HO、6214g及びN-メチル-2-ピロリドン、17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7174g、3,5-ジクロロアニリン16g(p-ジクロロベンゼンと3,5-ジクロロアニリンの総量に対して約1モル%)、N-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却し、遠心分離器により固形分を単離した。該固形分を220℃の熱水で洗浄し100℃で一昼夜乾燥することにより、アミノ基含有ポリ(p-フェニレンスルフィド)(以下、PPS(A2-1)と記す。)を得た。
Synthesis Example 2
In a 50-liter autoclave equipped with a stirrer, 6214 g of Na 2 S.2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to obtain 1355 g. Of water was distilled off. After cooling the system to 140 ° C., 7174 g of p-dichlorobenzene, 16 g of 3,5-dichloroaniline (about 1 mol% based on the total amount of p-dichlorobenzene and 3,5-dichloroaniline), N-methyl- 5000 g of 2-pyrrolidone was added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid was washed with hot water at 220 ° C. and dried at 100 ° C. for 24 hours to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A2-1)).
 このPPS(A2-1)を、窒素雰囲気下250℃で4時間硬化を行い、アミノ基含有ポリ(p-フェニレンスルフィド)(以下、PPS(A2-2)と記す。)を得た。PPS(A2-2)の溶融粘度は800poiseであった。 (4) This PPS (A2-1) was cured at 250 ° C. for 4 hours in a nitrogen atmosphere to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A2-2)). The melt viscosity of PPS (A2-2) was 800 poise.
 合成例3
 攪拌機を装備する50リットルオートクレーブに、NaS・2.9HO、6214g及びN-メチル-2-ピロリドン、17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7045g、3,5-ジクロロアニリン158g(p-ジクロロベンゼンと3,5-ジクロロアニリンの総量に対して約2モル%)、N-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却し、遠心分離器により固形分を単離した。該固形分を170℃の熱水で洗浄し100℃で一昼夜乾燥することにより、アミノ基含有ポリ(p-フェニレンスルフィド)(以下、PPS(A3-1)と記す。)を得た。
Synthesis Example 3
In a 50-liter autoclave equipped with a stirrer, 6214 g of Na 2 S.2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to obtain 1355 g. Of water was distilled off. After cooling the system to 140 ° C., 7045 g of p-dichlorobenzene, 158 g of 3,5-dichloroaniline (about 2 mol% based on the total amount of p-dichlorobenzene and 3,5-dichloroaniline), N-methyl- 5000 g of 2-pyrrolidone was added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid was washed with hot water at 170 ° C. and dried at 100 ° C. for 24 hours to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A3-1)).
 このPPS(A3-1)を、窒素雰囲気下170℃で4時間硬化を行い、アミノ基含有ポリ(p-フェニレンスルフィド)(以下、PPS(A3-2)と記す。)を得た。PPS(A3-2)の溶融粘度は300poiseであった。 (4) This PPS (A3-1) was cured at 170 ° C. for 4 hours in a nitrogen atmosphere to obtain amino group-containing poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A3-2)). The melt viscosity of PPS (A3-2) was 300 poise.
 合成例4
 攪拌機を装備する50リットルオートクレーブに、NaS・2.9HO、6214g及びN-メチル-2-ピロリドン、17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7188g、N-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却し、遠心分離器により固形分を単離した。該固形分を200℃の熱水で洗浄し100℃で一昼夜乾燥することにより、ポリ(p-フェニレンスルフィド)(以下、PPS(A’4-1)と記す。)を得た。
Synthesis Example 4
In a 50-liter autoclave equipped with a stirrer, 6214 g of Na 2 S.2.9H 2 O and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to obtain 1355 g. Of water was distilled off. After cooling the system to 140 ° C., 7188 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid was washed with hot water at 200 ° C. and dried at 100 ° C. for 24 hours to obtain poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A′4-1)).
 このPPS(A’4-1)を、窒素雰囲気下200℃で4時間硬化を行い、ポリ(p-フェニレンスルフィド)(以下、PPS(A’4-2)と記す。)を得た。PPS(A’4-2)の溶融粘度は500poiseであった。 (4) This PPS (A'4-1) was cured at 200 ° C. for 4 hours in a nitrogen atmosphere to obtain poly (p-phenylene sulfide) (hereinafter, referred to as PPS (A'4-2)). The melt viscosity of PPS (A'4-2) was 500 poise.
 合成例5(PPS(A-5)の合成)
 攪拌機を装備する50リットルオートクレーブに、硫化ナトリウム2.9水和物6214g及びN-メチル-2-ピロリドン17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7115gとN-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却し固形分を遠心分離機により単離した。該固形分を温水で繰り返し洗浄し100℃で一昼夜乾燥することにより溶融粘度が400ポイズのポリ(p-フェニレンスルフィド)を得た。次いで、乾燥したポリ(p-フェニレンスルフィド)を、バッチ式ロータリーキルン型焼成装置に充填し、窒素雰囲気下250℃で3時間硬化処理を行うことによって、溶融粘度800ポイズのPPS(A-5)を得た。
Synthesis Example 5 (Synthesis of PPS (A-5))
In a 50-liter autoclave equipped with a stirrer, 6214 g of sodium sulfide 2.9 hydrate and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to remove 1355 g of water. Distilled off. After cooling the system to 140 ° C., 7115 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the solid content was isolated by a centrifuge. The solid was repeatedly washed with warm water and dried at 100 ° C. for 24 hours to obtain poly (p-phenylene sulfide) having a melt viscosity of 400 poise. Next, the dried poly (p-phenylene sulfide) is charged into a batch type rotary kiln-type baking apparatus, and cured at 250 ° C. for 3 hours in a nitrogen atmosphere to obtain PPS (A-5) having a melt viscosity of 800 poise. Obtained.
 合成例6(PPS(A-6)の合成)
 攪拌機を装備する50リットルオートクレーブに、47%硫化水素ナトリウム水溶液5607g、48%水酸化ナトリウム水溶液3807g及びN-メチル-2-ピロリドン10773gを仕込み、窒素気流下攪拌しながら徐々に200℃まで昇温して、4533gの水を留去した。この系を170℃まで冷却した後、p-ジクロロベンゼン7060gとN-メチル-2-ピロリドン5943gを添加し、窒素気流下に系を封入した。この系を225℃に昇温し、225℃にて1時間重合し、さらに250℃まで昇温し、250℃にて2時間重合した。更に、250℃で水1503gを圧入し、再度255℃まで昇温し、255℃にて3時間重合を行った。重合終了後、室温まで冷却し、遠心分離器により固形分を単離した。該固形分を130℃のN-メチル-2-ピロリドンで洗浄し、続いてアセトンで順次2回繰り返し洗浄し、さらに、窒素気流下で0.2%塩酸及び温水で、次いで100℃で一昼夜乾燥することにより、溶融粘度が430ポイズの直鎖状ポリ(p-フェニレンスルフィド)(以下、PPS(A-6)と記す。)を得た。
Synthesis Example 6 (Synthesis of PPS (A-6))
In a 50-liter autoclave equipped with a stirrer, 5607 g of a 47% aqueous sodium hydrogen sulfide solution, 3807 g of a 48% aqueous sodium hydroxide solution, and 10773 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 200 ° C. while stirring under a nitrogen stream. 4533 g of water was distilled off. After the system was cooled to 170 ° C., 7060 g of p-dichlorobenzene and 5943 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C., polymerization was performed at 225 ° C. for 1 hour, and further, the temperature was raised to 250 ° C., and polymerization was performed at 250 ° C. for 2 hours. Further, 1503 g of water was injected at 250 ° C., the temperature was raised again to 255 ° C., and polymerization was performed at 255 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and a solid content was isolated by a centrifuge. The solid content was washed with N-methyl-2-pyrrolidone at 130 ° C., then twice with acetone successively, and further dried under a nitrogen stream with 0.2% hydrochloric acid and warm water, and then dried at 100 ° C. overnight. As a result, a linear poly (p-phenylene sulfide) having a melt viscosity of 430 poise (hereinafter referred to as PPS (A-6)) was obtained.
 合成例7(PPS(A-7)の合成)
 攪拌機を装備する50リットルオートクレーブに、硫化ナトリウム2.9水和物6214g及びN-メチル-2-ピロリドン17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7115gとN-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却し固形分を遠心分離機により単離した。該固形分を温水で繰り返し洗浄し100℃で一昼夜乾燥することにより溶融粘度が400ポイズのポリ(p-フェニレンスルフィド)を得た。次いで、乾燥したポリ(p-フェニレンスルフィド)を、バッチ式ロータリーキルン型焼成装置に充填し、酸素雰囲気下250℃で3時間硬化処理を行うことによって、溶融粘度3000ポイズのPPS(A-7)を得た。
Synthesis Example 7 (Synthesis of PPS (A-7))
In a 50-liter autoclave equipped with a stirrer, 6214 g of sodium sulfide 2.9 hydrate and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream to remove 1355 g of water. Distilled off. After cooling the system to 140 ° C., 7115 g of p-dichlorobenzene and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the solid content was isolated by a centrifuge. The solid was repeatedly washed with warm water and dried at 100 ° C. for 24 hours to obtain poly (p-phenylene sulfide) having a melt viscosity of 400 poise. Next, the dried poly (p-phenylene sulfide) is charged into a batch-type rotary kiln-type baking apparatus, and cured at 250 ° C. for 3 hours in an oxygen atmosphere to obtain PPS (A-7) having a melt viscosity of 3000 poise. Obtained.
 合成例8(PPS(A-8)の合成)
 攪拌機を装備する50リットルオートクレーブに、フレーク状硫化ソーダ(NaS・2.9HO)6214g及びN-メチル-2-ピロリドン17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7278g、3,5-ジクロロアニリン11.7g、N-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却しポリマーを遠心分離機により単離した。該固形分を温水でポリマーを繰り返し洗浄し100℃で一昼夜乾燥することにより、溶融粘度が400ポイズのアミノ基置換ポリ(p-フェニレンスルフィド)を得た。次いで、乾燥したアミノ基置換ポリ(p-フェニレンスルフィド)を、バッチ式ロータリーキルン型焼成装置に充填し、空気雰囲気下240℃で2時間硬化処理を行うことによって、溶融粘度1200ポイズ、フェニル基に対するアミノ基の含有量0.1モル%のPPS(A-8)を得た。
Synthesis Example 8 (Synthesis of PPS (A-8))
In a 50-liter autoclave equipped with a stirrer, 6214 g of flaky sodium sulfide (Na 2 S.2.9H 2 O) and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream. Then, 1355 g of water was distilled off. After the system was cooled to 140 ° C., 7278 g of p-dichlorobenzene, 11.7 g of 3,5-dichloroaniline and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the polymer was isolated by a centrifuge. The solid was repeatedly washed with warm water and dried at 100 ° C. for 24 hours to obtain an amino-substituted poly (p-phenylene sulfide) having a melt viscosity of 400 poise. Next, the dried amino group-substituted poly (p-phenylene sulfide) is charged into a batch-type rotary kiln-type baking apparatus, and cured at 240 ° C. for 2 hours in an air atmosphere to obtain a melt viscosity of 1200 poise and an amino acid based on phenyl group. PPS (A-8) having a group content of 0.1 mol% was obtained.
 合成例9(PPS(A-9)の合成)
 攪拌機を装備する50リットルオートクレーブに、フレーク状硫化ソーダ(NaS・2.9HO)6214g及びN-メチル-2-ピロリドン17000gを仕込み、窒素気流下攪拌しながら徐々に205℃まで昇温して、1355gの水を留去した。この系を140℃まで冷却した後、p-ジクロロベンゼン7150g、3,5-ジクロロアニリン47g、N-メチル-2-ピロリドン5000gを添加し、窒素気流下に系を封入した。この系を2時間かけて225℃に昇温し、225℃にて2時間重合させた後、30分かけて250℃に昇温し、さらに250℃にて3時間重合を行った。重合終了後、室温まで冷却し、ポリマーを遠心分離機により単離した。該固形分を温水でポリマーを繰り返し洗浄し100℃で一昼夜乾燥することにより、溶融粘度が250ポイズのアミノ基置換ポリ(p-フェニレンスルフィド)を得た。次いで、乾燥したアミノ基置換ポリ(p-フェニレンスルフィド)を、バッチ式ロータリーキルン型焼成装置に充填し、窒素雰囲気下250℃で5時間硬化を行うことによって、溶融粘度500ポイズ、フェニル基に対するアミノ基の含有量0.6モル%のPPS(A-9)を得た。
Synthesis Example 9 (Synthesis of PPS (A-9))
In a 50-liter autoclave equipped with a stirrer, 6214 g of flaky sodium sulfide (Na 2 S.2.9H 2 O) and 17000 g of N-methyl-2-pyrrolidone were charged, and the temperature was gradually raised to 205 ° C. while stirring under a nitrogen stream. Then, 1355 g of water was distilled off. After the system was cooled to 140 ° C., 7150 g of p-dichlorobenzene, 47 g of 3,5-dichloroaniline and 5000 g of N-methyl-2-pyrrolidone were added, and the system was sealed under a nitrogen stream. The temperature of this system was raised to 225 ° C. over 2 hours, and polymerized at 225 ° C. for 2 hours. Then, the temperature was raised to 250 ° C. over 30 minutes, and polymerization was further performed at 250 ° C. for 3 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the polymer was isolated by a centrifuge. The polymer was washed repeatedly with warm water and dried at 100 ° C. for 24 hours to obtain amino-substituted poly (p-phenylene sulfide) having a melt viscosity of 250 poise. Next, the dried amino group-substituted poly (p-phenylene sulfide) is charged into a batch-type rotary kiln-type baking apparatus, and cured at 250 ° C. for 5 hours in a nitrogen atmosphere to obtain a melt viscosity of 500 poise and an amino group to phenyl group. PPS (A-9) having a content of 0.6 mol% was obtained.
 合成例10(PPS(A-10)の合成)
 合成例9により得られたアミノ基の含有量0.6モル%のPPS(A-9)をさらにバッチ式ロータリーキルン型焼成装置に充填し、空気雰囲気下250℃で2時間硬化を行うことによって、溶融粘度3000ポイズ、フェニル基に対するアミノ基の含有量0.6モル%のPPS(A-10)を得た。
Synthesis Example 10 (Synthesis of PPS (A-10))
PPS (A-9) having an amino group content of 0.6 mol% obtained in Synthesis Example 9 was further charged into a batch-type rotary kiln-type baking apparatus, and cured at 250 ° C. for 2 hours in an air atmosphere. PPS (A-10) having a melt viscosity of 3,000 poise and an amino group content of 0.6 mol% based on the phenyl group was obtained.
 得られたポリアリーレンスルフィド、ポリアリーレンスルフィド組成物の評価・測定方法を以下に示す。 評 価 Evaluation and measurement methods for the obtained polyarylene sulfide and polyarylene sulfide composition are shown below.
 ~溶融粘度測定~
 直径1mm、長さ2mmのダイスを装着した高化式フローテスター((株)島津製作所製、(商品名)CFT-500)にて、測定温度315℃、荷重10kgの条件下で溶融粘度の測定を行った。
~ Melt viscosity measurement ~
Measurement of melt viscosity at a measuring temperature of 315 ° C. and a load of 10 kg with a Koka type flow tester (CFT-500, manufactured by Shimadzu Corporation) equipped with a die having a diameter of 1 mm and a length of 2 mm. Was done.
 ~ウエルド強度の測定~
 射出成形機(住友重機械工業(株)製、(商品名)SE-75S)によって試験片を作製し、引張試験機((株)島津製作所製、(商品名)オートグラフAG-5000B)を用いて、ASTM D638に準拠し測定を行った。
~ Measurement of weld strength ~
A test piece was prepared by an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., (trade name) SE-75S), and a tensile tester (Shimazu Seisakusho, (trade name) Autograph AG-5000B) was used. The measurement was performed according to ASTM D638.
 ~耐ヒートサイクル性~
 射出成形機(住友重機械工業(株)製、(商品名)SE-75S)によって、30mm×20mm×10mmの直方体の鋼材(炭素鋼)をインサートするインサート成形をシリンダー温度310℃、金型温度135℃で行い、肉厚1mmのポリアリーレンスルフィド組成物で被覆する耐ヒートサイクル用テストピースを作製した。得られたテストピースを150℃で30分保持した後、-40℃で30分保持を行うことを1サイクルとする冷熱サイクルに供し、目視によりクラックが発生するまで該サイクルを継続し、クラックの発生が認められた冷熱サイクル処理数を耐ヒートサイクル性として評価した。該冷熱サイクル処理数が250サイクル以上のものを耐ヒートサイクル性に優れると判断した。
~ Heat cycle resistance ~
Using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., (trade name) SE-75S), insert molding of a rectangular parallelepiped steel (carbon steel) measuring 30 mm x 20 mm x 10 mm was performed at a cylinder temperature of 310 ° C and a mold temperature. The test was performed at 135 ° C. to prepare a heat cycle-resistant test piece coated with a polyarylene sulfide composition having a thickness of 1 mm. After holding the obtained test piece at 150 ° C. for 30 minutes, it is subjected to a cooling and heating cycle in which holding at −40 ° C. for 30 minutes is one cycle, and the cycle is continued until cracks are visually observed. The number of cold cycle treatments in which generation was observed was evaluated as heat cycle resistance. It was judged that the samples having the number of heat treatment cycles of 250 or more were excellent in heat cycle resistance.
 ~成型流動性の評価1~
 得られたポリアリーレンスルフィド組成物をシリンダー温度310℃、金型温度135℃に調整した射出成形機(住友重機械工業(株)製、(商品名)SE-75S)を用い、肉厚1mmのスパイラルフロー金型に射出圧100MPaで射出成形した際の流動長から成型流動性を判定した。該流動長が150mm以上のものを成型流動性に優れるとした。
~ Evaluation of molding fluidity 1 ~
The obtained polyarylene sulfide composition was adjusted to a cylinder temperature of 310 ° C. and a mold temperature of 135 ° C. using an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., trade name: SE-75S), and the thickness was 1 mm. Molding fluidity was determined from the flow length when injection molding was performed at 100 MPa in a spiral flow mold. Those having a flow length of 150 mm or more were determined to have excellent molding fluidity.
 ~ポリアリーレンスルフィドに含まれるアミノ基含有量の測定~
 赤外線吸収スペクトルによりベンゼン環のC-H面外変角振動である1900cm-1の吸収とアミノ基のN-H伸縮振動である3387cm-1の吸収を測定し、別途作成した検量線からフェニル基に対する含量としてアミノ基含有量を求めた。
-Measurement of amino group content in polyarylene sulfide-
From the infrared absorption spectrum, the absorption at 1900 cm -1 which is the CH out-of-plane bending vibration of the benzene ring and the absorption at 3387 cm -1 which is the NH stretching vibration of the amino group were measured. The amino group content was determined as the content with respect to.
 ~成形流動性の測定2~
 射出成形機(住友重機械工業(株)製、(商品名)SE75S)に、深さ1mm、幅10mmの溝がスパイラル状に掘られた金型を装着し、次いで、シリンダー温度を310℃、射出圧力を190MPa、射出速度を最大、射出時間を1.5秒、及び金型温度を135℃に設定した該射出成形機のホッパーにポリアリーレンスルフィド組成物を投入し、射出した。そして金型内のスパイラル状の溝を溶融流動した長さを成形流動性として測定した。成形流動性として200mmを超えるものを実用上十分な流動性を示すものと判断した。
~ Measuring molding fluidity 2 ~
An injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., SE75S (trade name) SE75S) was fitted with a mold having a groove with a depth of 1 mm and a width of 10 mm formed in a spiral shape. The polyarylene sulfide composition was charged into a hopper of the injection molding machine set at an injection pressure of 190 MPa, an injection speed of maximum, an injection time of 1.5 seconds, and a mold temperature of 135 ° C., and was injected. Then, a length of the spiral groove in the mold melt-flowed was measured as a molding fluidity. Molding fluidity exceeding 200 mm was judged to exhibit practically sufficient fluidity.
 ~金型汚染性の測定~
 得られたポリアリーレンスルフィド組成物を試験片とした後の金型表面を目視にて観察した。評価基準を以下に示す。
○:金型表面に付着物は認められない。
×:金型表面にわずかでも付着物が認められる、又は成形不可である。
~ Measuring mold contamination ~
The mold surface after using the obtained polyarylene sulfide composition as a test piece was visually observed. The evaluation criteria are shown below.
:: No deposit is observed on the mold surface.
×: A slight amount of deposit is observed on the mold surface or molding is impossible.
 実施例1
 PPS(A1-2)97.1重量%、変性エチレン共重合体(B1-1)2.9重量%の割合で配合して、シリンダー温度310℃に加熱した二軸押出機(東芝機械製、(商品名)TEM-35-102B)のホッパーに投入した。一方、ガラス繊維(C-1)を該二軸押出機のサイドフィーダーのホッパーに投入し、スクリュー回転数200rpmにて溶融混練し、ダイより流出する溶融組成物を冷却後裁断し、ペレット状のポリアリーレンスルフィド組成物を作製した。その際のポリアリーレンスルフィド組成物の構成割合は,PPS(A1-2)68重量%、変性エチレン共重合体(B1-1)2重量%、ガラス繊維(C-1)30重量%であった。
Example 1
A twin screw extruder (manufactured by Toshiba Machine Co., Ltd.) heated at a cylinder temperature of 310 ° C. was blended at a ratio of 97.1% by weight of PPS (A1-2) and 2.9% by weight of a modified ethylene copolymer (B1-1). (Trade name) TEM-35-102B). On the other hand, the glass fiber (C-1) is put into a hopper of a side feeder of the twin-screw extruder, melt-kneaded at a screw rotation speed of 200 rpm, and a molten composition flowing out of a die is cooled and cut, and then pelletized. A polyarylene sulfide composition was prepared. At that time, the composition ratio of the polyarylene sulfide composition was 68% by weight of PPS (A1-2), 2% by weight of modified ethylene copolymer (B1-1), and 30% by weight of glass fiber (C-1). .
 該ポリアリーレンスルフィド組成物を、シリンダー温度310℃に加熱した射出成形機(住友重機械工業製、(商品名)SE75)のホッパーに投入し、ウエルド強度を測定するための試験片、耐ヒートサイクル性を測定するための試験片を、流動性を測定するための試験片をそれぞれ成形し、それぞれの評価を行った。これらの結果を表1に示した。 The polyarylene sulfide composition was charged into a hopper of an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., SE75) heated to a cylinder temperature of 310 ° C., and a test piece for measuring weld strength, heat cycle resistance A test piece for measuring the fluidity and a test piece for measuring the fluidity were each formed and evaluated. Table 1 shows the results.
 得られたポリアリーレンスルフィド組成物は、ウエルド強度、耐ヒートサイクル性、成型流動性1の評価に優れていた。 ポ リ The obtained polyarylene sulfide composition was excellent in evaluation of weld strength, heat cycle resistance, and molding fluidity 1.
 実施例2~7
 ポリアリーレンスルフィド(A)、変性エチレン共重合樹脂(B)、繊維状充填剤(C)、シランカップリング剤(E)、離型剤(F)を表1に示す配合割合とした以外は、実施例1と同様の方法によりポリアリーレンスルフィド組成物を作製し、実施例1と同様の方法により評価した。評価結果を表1に示した。
Examples 2 to 7
Except that the polyarylene sulfide (A), the modified ethylene copolymer resin (B), the fibrous filler (C), the silane coupling agent (E), and the release agent (F) were used in the proportions shown in Table 1, A polyarylene sulfide composition was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the evaluation results.
 得られた全てのポリアリーレンスルフィド組成物は、ウエルド強度、耐ヒートサイクル性、成型流動性1の評価に優れていた。 全 て All the obtained polyarylene sulfide compositions were excellent in evaluation of weld strength, heat cycle resistance, and molding fluidity 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1~6
 ポリアリーレンスルフィド(A)、変性エチレン共重合樹脂(B)、繊維状充填剤(C)、シランカップリング剤(E)、離型剤(F)を表2に示す配合割合とした以外は、実施例1と同様の方法によりポリアリーレンスルフィド組成物を作製し、実施例1と同様の方法により評価した。評価結果を表2に示した。
Comparative Examples 1 to 6
Except that the polyarylene sulfide (A), the modified ethylene copolymer resin (B), the fibrous filler (C), the silane coupling agent (E), and the release agent (F) were used in the proportions shown in Table 2, A polyarylene sulfide composition was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.
 比較例1~6より得られた組成物は、耐ヒートサイクル性が劣るものであった。比較例3、4、5より得られた組成物は、ウエルド強度が劣るものであった。比較例5より得られた組成物は、成型流動性1の評価が劣るものであった。 組成 The compositions obtained from Comparative Examples 1 to 6 were inferior in heat cycle resistance. The compositions obtained from Comparative Examples 3, 4, and 5 were inferior in weld strength. The composition obtained from Comparative Example 5 had poor molding fluidity 1 evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例8
 合成例5で得られたPPS(A-5)100重量部に対し、変性エチレン系共重合体(B2-4)14重量部、イソシアヌレート(D-1)2.4重量部、及び離型剤(F-1)0.2重量部を予め均一に混合し、シリンダー温度300℃に加熱した二軸押出機(東芝機械製、(商品名)TEM-35-102B)のホッパーに投入した。一方、ガラス繊維(C-2)をPPS(A-5)100重量部に対して50重量部となるように該二軸押出機のサイドフィーダーのホッパーから投入し、溶融混練してペレット化したポリ(p-フェニレンスルフィド)組成物(以下、PPS組成物と記す場合もある。)を作製した。得られたPPS組成物の、耐冷熱性、流動性2、金型汚染性を評価した。評価結果を表3に示す。
Example 8
Based on 100 parts by weight of the PPS (A-5) obtained in Synthesis Example 5, 14 parts by weight of the modified ethylene copolymer (B2-4), 2.4 parts by weight of isocyanurate (D-1), and mold release 0.2 part by weight of the agent (F-1) was uniformly mixed in advance and charged into a hopper of a twin-screw extruder (trade name: TEM-35-102B, manufactured by Toshiba Machine Co.) heated to a cylinder temperature of 300 ° C. On the other hand, the glass fiber (C-2) was charged from a hopper of a side feeder of the twin-screw extruder so as to be 50 parts by weight with respect to 100 parts by weight of PPS (A-5), and was melt-kneaded and pelletized. A poly (p-phenylene sulfide) composition (hereinafter sometimes referred to as a PPS composition) was produced. The resulting PPS composition was evaluated for cold heat resistance, fluidity 2, and mold contamination. Table 3 shows the evaluation results.
 得られたPPS組成物は、金型汚染性が少なく、実用上十分な耐冷熱性を有した。また、成形流動性2の評価も実用上十分な値を示した。 (4) The obtained PPS composition had little mold contamination and had practically sufficient cold heat resistance. The evaluation of molding fluidity 2 also showed a practically sufficient value.
 実施例9~15
 ポリアリーレンスルフィド(A)、変性エチレン共重合樹脂(B)、イソシアヌレート(D)及び離型剤(F)を表3に示す構成割合で配合して、二軸押出機のホッパーに投入し、繊維状充填剤(C)を、表3に示す構成割合になるように二軸押出機のサイドフィーダーのホッパーに投入し、実施例8と同様の方法によりPPS組成物を作製し、実施例8と同様の方法により評価した。評価結果を表3に示す。
Examples 9 to 15
The polyarylene sulfide (A), the modified ethylene copolymer resin (B), the isocyanurate (D) and the release agent (F) were blended in the composition ratios shown in Table 3, and charged into a hopper of a twin-screw extruder. The fibrous filler (C) was charged into the hopper of the side feeder of the twin-screw extruder so that the composition ratio shown in Table 3 was obtained, and a PPS composition was prepared in the same manner as in Example 8, and Example 8 was prepared. The evaluation was performed in the same manner as described above. Table 3 shows the evaluation results.
 得られたPPS組成物は、金型汚染性が少なく、実用上十分な耐冷熱性を有した。また、成形流動性2の評価も実用上十分な値を示した。 PP The obtained PPS composition had low mold contamination and had practically sufficient cold heat resistance. The evaluation of molding fluidity 2 also showed a practically sufficient value.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例7~13
 ポリアリーレンスルフィド(A)、変性エチレン共重合樹脂(B)、イソシアヌレート(D)及び離型剤(F)を表4に示す構成割合で配合して、二軸押出機のホッパーに投入し、繊維状充填剤(C)を、表4に示す構成割合になるように、二軸押出機のサイドフィーダーのホッパーに投入し、実施例8と同様の方法により組成物を作製し、実施例8と同様の方法により評価した。評価結果を表4に示す。
Comparative Examples 7 to 13
The polyarylene sulfide (A), the modified ethylene copolymer resin (B), the isocyanurate (D) and the release agent (F) were blended in the composition ratio shown in Table 4, and charged into a hopper of a twin-screw extruder. The fibrous filler (C) was charged into the hopper of the side feeder of the twin-screw extruder so that the composition ratio shown in Table 4 was obtained, and a composition was prepared in the same manner as in Example 8; The evaluation was performed in the same manner as described above. Table 4 shows the evaluation results.
 比較例7、比較例8、比較例9、比較例11により得られた組成物は、耐冷熱性に劣った。また、比較例9、比較例10、比較例11により得られた組成物は、金型汚染性に劣った。また、比較例12、比較例13により得られた組成物は、成形流動性2の評価に劣った。 組成 The compositions obtained in Comparative Examples 7, 8, 9, and 11 were inferior in cold / heat resistance. The compositions obtained in Comparative Examples 9, 10 and 11 were inferior in mold contamination. The compositions obtained in Comparative Examples 12 and 13 were inferior in the evaluation of molding fluidity 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例16
 合成例8で得られたPPS(A-8)100重量部に対し、変性エチレン系共重合体(B2-4)13重量部、イソシアヌレート(D-1)1.9重量部、及び離型剤(F-2)0.2重量部を予め均一に混合し、シリンダー温度300℃に加熱した二軸押出機(東芝機械製、(商品名)TEM-35-102B)のホッパーに投入した。一方、ガラス繊維(C-2)をPPS(A-8)100重量部に対して50重量部となるように該二軸押出機のサイドフィーダーのホッパーから投入し、溶融混練してペレット化したPPS組成物を作製した。得られたPPS組成物の、耐冷熱性、流動性、金型汚染性、ウエルド強度を評価した。評価結果を表5に示す。
Example 16
13 parts by weight of the modified ethylene copolymer (B2-4), 1.9 parts by weight of isocyanurate (D-1), and release from 100 parts by weight of the PPS (A-8) obtained in Synthesis Example 8 0.2 part by weight of the agent (F-2) was uniformly mixed in advance and charged into a hopper of a twin-screw extruder (trade name: TEM-35-102B, manufactured by Toshiba Machine Co., Ltd.) heated to a cylinder temperature of 300 ° C. On the other hand, the glass fiber (C-2) was charged from a hopper of a side feeder of the twin-screw extruder so as to be 50 parts by weight with respect to 100 parts by weight of PPS (A-8), and was melt-kneaded and pelletized. A PPS composition was prepared. The resulting PPS composition was evaluated for cold heat resistance, fluidity, mold contamination, and weld strength. Table 5 shows the evaluation results.
 得られたPPS組成物は、金型汚染性が少なく、実用上十分な耐冷熱性、ウエルド強度を有した。また、成形流動性2の評価も実用上十分な値を示した。 The obtained PPS composition had low mold contamination, and had practically sufficient cold heat resistance and weld strength. The evaluation of molding fluidity 2 also showed a practically sufficient value.
 実施例17~24
 PPS(A)、変性エチレン共重合樹脂(B)、イソシアヌレート(D)及び離型剤(F)を表5に示す構成割合で配合して、二軸押出機のホッパーに投入し、繊維状充填剤(C)を、表5に示す構成割合になるように二軸押出機のサイドフィーダーのホッパーに投入し、実施例16と同様の方法によりPPS組成物を作製し、実施例16と同様の方法により評価した。評価結果を表5に示す。
Examples 17 to 24
PPS (A), modified ethylene copolymer resin (B), isocyanurate (D) and mold release agent (F) were blended in the composition ratio shown in Table 5, and charged into a hopper of a twin-screw extruder to obtain a fibrous material. Filler (C) was charged into the hopper of the side feeder of the twin-screw extruder so that the composition ratio shown in Table 5 was obtained, and a PPS composition was prepared in the same manner as in Example 16; Was evaluated by the following method. Table 5 shows the evaluation results.
 得られたPPS組成物は、金型汚染性が少なく、実用上十分な耐冷熱性を有した。また、成形流動性も実用上十分な値を示した。さらにウエルド強度にも優れるものであった。 PP The obtained PPS composition had low mold contamination and had practically sufficient cold heat resistance. Further, the molding fluidity also showed a practically sufficient value. Further, the weld strength was excellent.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 比較例14~20
 PPS(A)、変性エチレン共重合樹脂(B)、イソシアヌレート(D)、及び離型剤(F)を表6に示す構成割合で配合して、二軸押出機のホッパーに投入し、繊維状充填剤(C)を、表6に示す構成割合になるように、二軸押出機のサイドフィーダーのホッパーに投入し、実施例16と同様の方法により組成物を作製し、実施例16と同様の方法により評価した。評価結果を表6に示す。
Comparative Examples 14 to 20
The PPS (A), the modified ethylene copolymer resin (B), the isocyanurate (D), and the release agent (F) were blended in the composition ratios shown in Table 6, and the mixture was charged into a hopper of a twin-screw extruder to obtain a fiber. The filler (C) was charged into a hopper of a side feeder of a twin-screw extruder so as to have a composition ratio shown in Table 6, and a composition was prepared in the same manner as in Example 16; Evaluation was performed in the same manner. Table 6 shows the evaluation results.
 比較例14、比較例15、比較例16、比較例18により得られた組成物は、耐冷熱性に劣った。また、比較例16、比較例17、比較例18により得られた組成物は、金型汚染性に劣り、比較例17では試験片の作成を行わなかった。また、比較例19、比較例20により得られた組成物は、成形流動性2の評価に劣った。 組成 The compositions obtained in Comparative Examples 14, 15, 16, and 18 were inferior in heat resistance. Further, the compositions obtained in Comparative Examples 16, 17 and 18 were inferior in mold contamination, and in Comparative Example 17, no test piece was prepared. The compositions obtained in Comparative Examples 19 and 20 were inferior in the evaluation of molding fluidity 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
本発明を詳細に、また特定の実施形態を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2018年7月25日に出願された日本特許出願2018-139331号、2018年8月22日に出願された日本特許出願2018-155235号及び2019年2月6日に出願された日本特許出願2019-19461号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that Japanese Patent Application No. 2018-139331 filed on July 25, 2018, Japanese Patent Application No. 2018-155235 filed on August 22, 2018, and Japanese Patent Application No. 2018-155235 filed on February 6, 2019. The entire contents of the specification, claims, drawings and abstract of application 2019-19461 are hereby incorporated by reference as the disclosure of the specification of the present invention.
 本発明のポリアリーレンスルフィド組成物は、耐熱性、耐薬品性、寸法安定性などを損なうこともなく、ウエルド強度、耐ヒートサイクル性、成型流動性、薄肉流動性の高いものであり、電気・電子部品又は自動車電装部品などの電気・電子部品用途、給湯器部品用途に特に有用なものである。 The polyarylene sulfide composition of the present invention does not impair heat resistance, chemical resistance, dimensional stability, etc., and has high weld strength, heat cycle resistance, molding fluidity, and thin-wall fluidity. It is particularly useful for electric / electronic parts such as electronic parts or automobile electric parts, and for water heater parts.

Claims (7)

  1. 径1mm、長さ2mmのダイスを装着した高化式フローテスターにて、測定温度315℃、荷重10kgの条件下で測定した溶融粘度が100~2000ポイズであるポリアリーレンスルフィド(A)100重量部に対し、変性エチレン共重合樹脂(B)として下記(B1)又は(B2)、及び、繊維状充填材(C)15~100重量部を含んでなることを特徴とするポリアリーレンスルフィド組成物。
    (B1)エチレン-α、β-不飽和カルボン酸グリシジルエステル-α、β-不飽和カルボン酸ブチルエステル共重合体1~12重量部。
    (B2)エチレン-α、β-不飽和カルボン酸アルキルエステル-無水マレイン酸共重合体及び無水マレイン酸グラフト変性エチレン-α-オレフィン共重合体から選択される少なくとも1種以上の変性エチレン系共重合体1~30重量部とイソシアヌレート0.1~3重量部であって、その割合が該イソシアヌレート/該変性エチレン系共重合体(重量部/重量部)=0.05~0.3の範囲内。
    100 parts by weight of a polyarylene sulfide (A) having a melt viscosity of 100 to 2,000 poise measured at a temperature of 315 ° C. and a load of 10 kg with a Koka type flow tester equipped with a die having a diameter of 1 mm and a length of 2 mm. On the other hand, a polyarylene sulfide composition comprising the following (B1) or (B2) as a modified ethylene copolymer resin (B) and 15 to 100 parts by weight of a fibrous filler (C).
    (B1) 1 to 12 parts by weight of an ethylene-α, β-unsaturated carboxylic acid glycidyl ester-α, β-unsaturated carboxylic acid butyl ester copolymer.
    (B2) at least one modified ethylene copolymer selected from ethylene-α, β-unsaturated carboxylic acid alkyl ester-maleic anhydride copolymer and maleic anhydride graft-modified ethylene-α-olefin copolymer 1 to 30 parts by weight of the unified polymer and 0.1 to 3 parts by weight of the isocyanurate, and the ratio thereof is 0.05 to 0.3 parts by weight of the isocyanurate / the modified ethylene copolymer (parts by weight / part by weight). Within range.
  2. ポリアリーレンスルフィド(A)が、溶融粘度が200~1000ポイズであるアミノ基変性ポリアリーレンスルフィドであることを特徴とする上記請求項1に記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide composition according to claim 1, wherein the polyarylene sulfide (A) is an amino group-modified polyarylene sulfide having a melt viscosity of 200 to 1000 poise.
  3. ポリアリーレンスルフィド(A)が、高圧熱水洗浄アミノ基変性ポリアリーレンスルフィドであることを特徴とする上記請求項1又は2に記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide composition according to claim 1 or 2, wherein the polyarylene sulfide (A) is an amino group-modified polyarylene sulfide washed with high-pressure hot water.
  4. ポリアリーレンスルフィド(A)が、アミノ基0.05~5モル%を含有するアミノ基変性ポリアリーレンスルフィドであることを特徴とする上記請求項1~3のいずれかに記載のポリアリーレンスルフィド組成物。 The polyarylene sulfide composition according to any one of claims 1 to 3, wherein the polyarylene sulfide (A) is an amino group-modified polyarylene sulfide containing 0.05 to 5 mol% of amino groups. .
  5. イソシアヌレートが、脂肪族イソシアヌレートであることを特徴とする上記請求項1~4の何れかに記載のポリアリーレンスルフィド組成物。 5. The polyarylene sulfide composition according to claim 1, wherein the isocyanurate is an aliphatic isocyanurate.
  6. さらに、グリシドキシ基を有するトリアルコキシシランカップリング剤及び/又はアミノ基を有するトリアルコキシシランカップリング剤からなるシランカップリング剤を含んでなることを特徴とする上記請求項1~5のいずれかに記載のポリアリーレンスルフィド組成物。 The method according to any one of claims 1 to 5, further comprising a silane coupling agent comprising a trialkoxysilane coupling agent having a glycidoxy group and / or a trialkoxysilane coupling agent having an amino group. The polyarylene sulfide composition according to the above.
  7. さらに、ポリエチレンワックス、ポリプロピレンワックス、脂肪酸アマイド系ワックスからなる群より選択される少なくとも1種以上の離型剤を含んでなることを特徴とする上記請求項1~6のいずれかに記載のポリアリーレンスルフィド組成物。 The polyarylene according to any one of claims 1 to 6, further comprising at least one release agent selected from the group consisting of polyethylene wax, polypropylene wax, and fatty acid amide wax. Sulfide composition.
PCT/JP2019/026677 2018-07-25 2019-07-04 Polyarylene sulfide composition WO2020022023A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018139331A JP7070198B2 (en) 2018-07-25 2018-07-25 Polyarylene sulfide composition
JP2018-139331 2018-07-25
JP2018155235 2018-08-22
JP2018-155235 2018-08-22
JP2019-019461 2019-02-06
JP2019019461A JP7234666B2 (en) 2018-08-22 2019-02-06 Polyarylene sulfide resin composition

Publications (1)

Publication Number Publication Date
WO2020022023A1 true WO2020022023A1 (en) 2020-01-30

Family

ID=69181478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026677 WO2020022023A1 (en) 2018-07-25 2019-07-04 Polyarylene sulfide composition

Country Status (1)

Country Link
WO (1) WO2020022023A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354257A (en) * 1989-07-24 1991-03-08 Asahi Chem Ind Co Ltd Composition of polyphenylene sulfide resin
JPH04258622A (en) * 1991-02-12 1992-09-14 Asahi Chem Ind Co Ltd Polyphenylene sulfide resin reaction composition
JP2002003716A (en) * 2000-06-16 2002-01-09 Toray Ind Inc Polyphenylene sulfide resin composition and injection molding
JP2007106834A (en) * 2005-10-12 2007-04-26 Tosoh Corp Polyarylene sulfide resin composition
JP2009084174A (en) * 2007-09-28 2009-04-23 Nippon Chem Ind Co Ltd Antibacterial agent
JP2011016942A (en) * 2009-07-09 2011-01-27 Tosoh Corp Polyarylene sulfide resin composition
JP2011195756A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Resin composition and method for producing the same
JP2015195338A (en) * 2014-03-18 2015-11-05 東レフィルム加工株式会社 Rework method for solar battery module
JP2015228423A (en) * 2014-06-02 2015-12-17 東レフィルム加工株式会社 Polyolefin-based resin film for solar battery module backside protective sheet
WO2017100395A1 (en) * 2015-12-11 2017-06-15 Ticona Llc Crosslinkable polyarylene sulfide composition
JP2017155221A (en) * 2016-02-26 2017-09-07 東レ株式会社 Polyphenylene sulfide resin composition and molded article
JP2018009148A (en) * 2016-06-29 2018-01-18 東レ株式会社 Method for producing polyarylene sulfide resin composition
JP2018145367A (en) * 2017-03-09 2018-09-20 東ソー株式会社 Polyarylene sulfide composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354257A (en) * 1989-07-24 1991-03-08 Asahi Chem Ind Co Ltd Composition of polyphenylene sulfide resin
JPH04258622A (en) * 1991-02-12 1992-09-14 Asahi Chem Ind Co Ltd Polyphenylene sulfide resin reaction composition
JP2002003716A (en) * 2000-06-16 2002-01-09 Toray Ind Inc Polyphenylene sulfide resin composition and injection molding
JP2007106834A (en) * 2005-10-12 2007-04-26 Tosoh Corp Polyarylene sulfide resin composition
JP2009084174A (en) * 2007-09-28 2009-04-23 Nippon Chem Ind Co Ltd Antibacterial agent
JP2011016942A (en) * 2009-07-09 2011-01-27 Tosoh Corp Polyarylene sulfide resin composition
JP2011195756A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Resin composition and method for producing the same
JP2015195338A (en) * 2014-03-18 2015-11-05 東レフィルム加工株式会社 Rework method for solar battery module
JP2015228423A (en) * 2014-06-02 2015-12-17 東レフィルム加工株式会社 Polyolefin-based resin film for solar battery module backside protective sheet
WO2017100395A1 (en) * 2015-12-11 2017-06-15 Ticona Llc Crosslinkable polyarylene sulfide composition
JP2017155221A (en) * 2016-02-26 2017-09-07 東レ株式会社 Polyphenylene sulfide resin composition and molded article
JP2018009148A (en) * 2016-06-29 2018-01-18 東レ株式会社 Method for producing polyarylene sulfide resin composition
JP2018145367A (en) * 2017-03-09 2018-09-20 東ソー株式会社 Polyarylene sulfide composition

Similar Documents

Publication Publication Date Title
JP5023682B2 (en) Polyarylene sulfide composition
JP5158350B2 (en) Polyarylene sulfide composition
JP4873149B2 (en) Polyarylene sulfide composition
JP2011016942A (en) Polyarylene sulfide resin composition
JP4961921B2 (en) Polyarylene sulfide composition
JP5029311B2 (en) Polyarylene sulfide composition
JP2016160396A (en) Polyarylene sulfide resin composition and composite body
JP2018145367A (en) Polyarylene sulfide composition
JP5040631B2 (en) Polyarylene sulfide composition
JP7234666B2 (en) Polyarylene sulfide resin composition
JP7070198B2 (en) Polyarylene sulfide composition
JP5029506B2 (en) Polyarylene sulfide composition
JP5029310B2 (en) Polyarylene sulfide composition
JP5601171B2 (en) Polyarylene sulfide composition
JP5040630B2 (en) Polyarylene sulfide composition
WO2020022023A1 (en) Polyarylene sulfide composition
JP5103763B2 (en) Resin composition and molded article comprising the same
JP2016166268A (en) Polyarylene sulfide composition
JP6926729B2 (en) Polyarylene sulfide composition
JP7234589B2 (en) Polyarylene sulfide composition and water pressure resistant part made of same
JP7243139B2 (en) Polyarylene sulfide composition
JP2023034488A (en) Polyarylene sulfide resin composition
JP6040706B2 (en) Polyarylene sulfide composition
JP2685976B2 (en) Polyarylene sulfide resin composition and method for producing the same
JP2021130736A (en) Polyarylene sulfide resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19839917

Country of ref document: EP

Kind code of ref document: A1