WO2020021924A1 - Laser machining device and laser machining method - Google Patents

Laser machining device and laser machining method Download PDF

Info

Publication number
WO2020021924A1
WO2020021924A1 PCT/JP2019/024556 JP2019024556W WO2020021924A1 WO 2020021924 A1 WO2020021924 A1 WO 2020021924A1 JP 2019024556 W JP2019024556 W JP 2019024556W WO 2020021924 A1 WO2020021924 A1 WO 2020021924A1
Authority
WO
WIPO (PCT)
Prior art keywords
command signal
movement command
opening
control unit
laser beam
Prior art date
Application number
PCT/JP2019/024556
Other languages
French (fr)
Japanese (ja)
Inventor
山梨 貴昭
厚司 舟木
アンドレアス クノール
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2020021924A1 publication Critical patent/WO2020021924A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/044Seam tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work

Definitions

  • the present disclosure relates to a laser processing machine and a laser processing method for processing a sheet metal by a laser beam.
  • a laser processing machine that cuts a sheet metal with a laser beam emitted from a laser oscillator to produce a product having a predetermined shape has become widespread.
  • the laser processing machine cuts the sheet metal into a predetermined shape by moving the processing head along a surface of the sheet metal by a moving mechanism of the processing head.
  • the laser processing machine bends the sheet metal by bending the cutting progress direction at a corner below a predetermined angle, or when cutting the sheet metal in a curved shape by changing the cutting direction rapidly, the sheet metal cannot be cut at high speed Therefore, the processing time becomes longer. Even when the laser processing machine cuts such a shape, it is required to cut the sheet metal as fast as possible to shorten the processing time.
  • a processing head having an opening at a tip end and a nozzle for emitting a laser beam for cutting a sheet metal through the opening, A moving mechanism that relatively moves the processing head with respect to a surface, a beam displacement mechanism that moves in the processing head and displaces a position in the opening of a laser beam emitted from the opening, A delay device for delaying a movement command signal for relatively moving the processing head by a movement mechanism; and by passing only a low frequency component of the movement command signal, the processing mechanism relatively moves the processing head by the movement mechanism.
  • a low-pass filter for generating a main movement command signal to be subtracted, and subtracting the main movement command signal from the delayed movement command signal delayed by the delay unit A movement command dividing unit having a subtractor for generating a sub-movement command signal for displacing the position of the laser beam emitted from the opening in the opening by the beam displacement mechanism in the opening; and the main movement command signal.
  • a movement mechanism control unit that controls the movement mechanism to relatively move the processing head based on the position of the laser beam emitted from the opening based on the sub-movement command signal.
  • a displacement control unit that controls the beam displacement mechanism to displace the laser beam.
  • a control device for controlling a laser beam machine has an opening at a tip end based on a machining program, and a laser for cutting a sheet metal from the opening.
  • Generating a movement command signal for moving a processing head to which a nozzle for emitting a beam is attached relative to a surface of the sheet metal generating a delayed movement command signal by delaying the movement command signal, By passing only the low frequency component in the movement command signal, a main movement command signal for relatively moving the machining head is generated, and the main movement command signal is subtracted from the delayed movement command signal, thereby A sub-movement command signal for displacing the position of the laser beam emitted from the opening in the opening is generated, and the processing head is synchronized based on the main movement command signal.
  • the sheet metal is cut by bending the cutting direction at a corner portion equal to or less than a predetermined angle, or the sheet metal is formed by rapidly changing the cutting direction. Even in the case of cutting in a curved shape, the sheet metal can be cut at a higher speed than before, and the processing time can be shortened.
  • FIG. 1 is a diagram illustrating an overall configuration example of a laser processing machine according to one or more embodiments.
  • FIG. 2 is a perspective view illustrating a detailed configuration example of a collimator unit and a processing head in a laser processing machine according to one or more embodiments.
  • FIG. 3 is a diagram for explaining the displacement of the irradiation position of the laser beam on the sheet metal by the beam vibration mechanism.
  • FIG. 4 is a block diagram illustrating an example of a functional internal configuration of the NC device included in the laser beam machine according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of cutting a sheet metal by the laser processing machine and the laser processing method according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a division process of a movement command signal by the laser processing machine and the laser processing method according to the first embodiment.
  • FIG. 7 is a block diagram illustrating an example of a functional internal configuration of an NC device included in the laser beam machine according to the second embodiment.
  • FIG. 8 is a diagram illustrating a parallel vibration pattern of a laser beam.
  • FIG. 9 is a diagram illustrating an example of cutting a sheet metal by the laser processing machine and the laser processing method according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a process of dividing a movement command signal by the laser beam machine and the laser beam machining method according to the second embodiment.
  • a laser processing machine 100 includes a laser oscillator 10 that generates and emits a laser beam, a laser processing unit 20, and a process fiber 12 that transmits the laser beam emitted from the laser oscillator 10 to the laser processing unit 20.
  • the laser beam machine 100 also includes an operation unit 40, an NC device 50, a machining program database 60, a machining condition database 70, and an assist gas supply device 80.
  • the NC device 50 is an example of a control device that controls each unit of the laser beam machine 100.
  • the laser oscillator 10 a laser oscillator that amplifies the excitation light emitted from the laser diode and emits a laser beam of a predetermined wavelength, or a laser oscillator that directly uses the laser beam emitted from the laser diode is preferable.
  • the laser oscillator 10 is, for example, a solid-state laser oscillator, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator (DDL oscillator).
  • the laser oscillator 10 emits a 1 ⁇ m band laser beam having a wavelength of 900 nm to 1100 nm.
  • the fiber laser oscillator emits a laser beam having a wavelength of 1060 nm to 1080 nm
  • the DDL oscillator emits a laser beam having a wavelength of 910 nm to 950 nm.
  • the laser processing unit 20 includes a processing table 21 on which a sheet metal W to be processed is placed, a gate-shaped X-axis carriage 22, a Y-axis carriage 23, a collimator unit 30 fixed to the Y-axis carriage 23, and a processing head 35.
  • the sheet metal W is made of, for example, stainless steel.
  • the material and thickness of the sheet metal W are not particularly limited.
  • the X-axis carriage 22 is configured to be movable on the processing table 21 in the X-axis direction.
  • the Y-axis carriage 23 is configured to be movable on the X-axis carriage 22 in the Y-axis direction perpendicular to the X-axis.
  • the X-axis carriage 22 and the Y-axis carriage 23 serve as a moving mechanism that moves the processing head 35 along the surface of the sheet metal W in the X-axis direction, the Y-axis direction, or any combined direction of the X-axis and the Y-axis. Function.
  • the position of the processing head 35 may be fixed, and the sheet metal W may be configured to move.
  • the laser processing machine 100 only needs to have a moving mechanism that moves the processing head 35 relative to the surface of the sheet metal W.
  • the processing head 35 has a circular opening 36a at the tip, and a nozzle 36 for emitting a laser beam through the opening 36a is attached.
  • the sheet metal W is irradiated with the laser beam emitted from the opening 36 a of the nozzle 36.
  • the assist gas supply device 80 supplies, for example, nitrogen to the processing head 35 as an assist gas.
  • the assist gas is blown onto the sheet metal W from the opening 36a. The assist gas discharges the molten metal in the kerf where the sheet metal W has melted.
  • the collimator unit 30 includes a collimation lens 31 that converts a divergent laser beam emitted from the process fiber 12 into parallel light (collimated light).
  • the collimator unit 30 includes a galvano scanner unit 32 and a bend mirror 33 that reflects the laser beam emitted from the galvano scanner unit 32 downward in the Z-axis direction perpendicular to the X-axis and the Y-axis.
  • the processing head 35 includes a converging lens 34 that converges the laser beam reflected by the bend mirror 33 and irradiates the laser beam onto the sheet metal W.
  • the laser beam machine 100 is centered so that the laser beam emitted from the opening 36a of the nozzle 36 is located at the center of the opening 36a. In the reference state, the laser beam is emitted from the center of the opening 36a.
  • the galvano scanner unit 32 functions as a beam displacement mechanism that travels inside the processing head 35 and displaces the position of the laser beam emitted from the opening 36a within the opening 36a.
  • the galvano scanner unit 32 includes a scan mirror 321 that reflects the laser beam emitted from the collimation lens 31, and a drive unit 322 that rotates the scan mirror 321 to a predetermined angle. Further, the galvano scanner unit 32 includes a scan mirror 323 that reflects the laser beam emitted from the scan mirror 321 and a drive unit 324 that rotates the scan mirror 323 to a predetermined angle.
  • the drive units 322 and 324 can also cause the scan mirrors 321 and 323 to reciprocate in a predetermined angular range based on the control by the NC device 50, respectively.
  • the galvano scanner unit 32 can vibrate the laser beam applied to the sheet metal W. That is, the NC device 50 can cause the galvano scanner unit 32 to function as a beam vibration mechanism that vibrates the laser beam emitted from the opening 36a while traveling in the processing head 35 and inside the opening 36a.
  • the galvano scanner unit 32 is an example of a beam displacement mechanism and a beam vibration mechanism, and the beam displacement mechanism and the beam vibration mechanism are not limited to the galvano scanner unit 32.
  • FIG. 3 shows a state where one or both of the scan mirror 321 and the scan mirror 323 are tilted, and the position of the laser beam applied to the sheet metal W is displaced.
  • a thin solid line bent by the bend mirror 33 and passing through the focusing lens 34 indicates the optical axis of the laser beam when the laser beam machine 100 is in the reference state.
  • the angle of the optical axis of the laser beam incident on the bend mirror 33 changes by the operation of the galvano scanner unit 32 located in front of the bend mirror 33, and the optical axis is shifted from the center of the bend mirror 33. Come off.
  • the incident position of the laser beam on the bend mirror 33 before and after the operation of the galvano scanner unit 32 is set to the same position.
  • the optical axis of the laser beam is displaced from the position indicated by the thin solid line to the position indicated by the thick solid line due to the action of the galvano scanner unit 32.
  • the laser beam reflected by the bend mirror 33 is inclined at the angle ⁇
  • the irradiation position of the laser beam on the sheet metal W is displaced by the distance ⁇ s.
  • the focal length of the focusing lens 34 is EFL (Effective Focal Length)
  • the distance ⁇ s is calculated by EFL ⁇ sin ⁇ .
  • the irradiation position of the laser beam on the sheet metal W is displaced by the distance ⁇ s in the direction opposite to the direction shown in FIG. be able to.
  • the distance ⁇ s is a distance less than the radius of the opening 36a, and is preferably a distance equal to or less than the maximum distance defined as the maximum distance obtained by subtracting a predetermined margin from the radius of the opening 36a.
  • the NC device 50 can displace the laser beam applied to the sheet metal W, thereby displacing the beam spot formed on the surface of the sheet metal W. it can.
  • the NC device 50 can vibrate the laser beam in a predetermined direction in the plane of the sheet metal W to vibrate a beam spot formed on the plane of the sheet metal W.
  • the sheet metal W is cut by bending the cutting direction at a corner portion equal to or less than a predetermined angle, or the sheet metal W is cut in a curved shape by changing the cutting direction abruptly.
  • a description will be given of a laser processing method according to the first embodiment, which can cut the sheet metal W at high speed.
  • the laser beam machine 100 that cuts a sheet metal W using the laser beam machining method of the first embodiment is the laser beam machine of the first embodiment.
  • the galvano scanner unit 32 functions only as a beam displacement mechanism.
  • the NC device 50 has a functional internal configuration shown in FIG.
  • the NC device 50 includes a movement control unit 501, a movement command division unit 503, a movement mechanism control unit 505, and a displacement control unit 506.
  • the movement command division unit 503 includes a delay unit 5031, a low-pass filter (hereinafter, LPF) 5032, and a subtractor 5033.
  • LPF low-pass filter
  • a straight line from the position P1 to the position P2 is in the X-axis direction
  • a straight line from the position P2 to the position P3 is in the Y-axis direction.
  • a machining program, an instruction signal for instructing start of machining, and machining conditions are input to the movement control unit 501.
  • the movement control unit 501 generates a movement command signal as shown in FIG. 6A based on the machining program.
  • the movement command signal includes an acceleration command for accelerating the processing head 35 to the moving speed specified by the processing conditions over a period from time t1 to time t2 after the stopped processing head 35 starts moving.
  • the movement command signal includes a constant speed movement command for moving the processing head 35 at a constant moving speed.
  • the movement command signal includes a deceleration command for decelerating and stopping the processing head 35 over the time from time t7 to time t12.
  • the movement command signal shown in FIG. 6A is used for both cutting in the X-axis direction from the position P1 to the position P2 in FIG. 5 and cutting in the Y-axis direction from the position P2 to the position P3 in FIG. That is, the movement command signal shown in FIG. 6A is a movement command signal in the X-axis direction or the Y-axis direction.
  • the movement command signal generated by the movement control unit 501 is input to the movement command division unit 503.
  • the delay unit 5031 delays the movement command signal by a delay time Tdly from time t1 to time t3 and supplies the signal to the subtractor 5033.
  • the LPF 5032 generates a main movement command signal shown in FIG. 6B by executing a filtering process for passing only low frequency components in the movement command signal shown in FIG. 6A.
  • the main movement command signal is a movement command signal for moving the processing head 35.
  • FIG. 6B shows a movement command signal delayed by a two-dot chain line (hereinafter, a delay movement command signal).
  • the main movement command signal has a time t1 to t6 longer than the time from the time t1 to the time t2 of the acceleration command in the movement command signal shown in FIG. 6 (a). And an acceleration command for accelerating the machining head 35 to a moving speed specified by the machining condition.
  • the main movement command signal includes a constant speed movement command for moving the machining head 35 at a constant moving speed during a period from time t6 to time t7.
  • the main movement command signal is obtained by decelerating the machining head 35 over a time period from time t7 to time t12 longer than a time period from time t7 to time t8 of the deceleration command in the movement command signal shown in FIG. Includes deceleration command to stop.
  • the subtractor 5033 generates the sub-movement command signal shown in FIG. 6C by subtracting the main-movement command signal from the delayed-movement command signal.
  • the sub movement command signal is a movement command signal for displacing the beam spot Bs shown in FIG. 5 by the galvano scanner unit 32.
  • the negative portions of the time from time t1 to time t4 and the time from time t10 to time t12 indicate that the beam spot Bs moves in the moving direction of the processing head 35. This is a reverse movement command for displacing to the opposite side.
  • the positive portions of the time from time t4 to time t6 and the time from time t7 to time t10 are forward movement commands for displacing the beam spot Bs in the movement direction of the processing head 35.
  • the moving mechanism including the X-axis carriage 22 and the Y-axis carriage 23 has driving units 220 and 230 for driving the X-axis carriage 22 and the Y-axis carriage 23, respectively.
  • the moving mechanism control unit 505 controls the driving units 220 and 230 based on the main movement command signal to move the processing head 35.
  • the displacement control unit 506 controls the driving units 322 and 324 of the galvano scanner unit 32 based on the sub-movement command signal to displace the beam spot Bs.
  • the laser processing machine 100 moves the processing head 35 by the main movement command signal shown in FIG.
  • the beam spot Bs is displaced by the indicated sub-movement command signal.
  • the beam spot Bs is displaced rearward with respect to the moving direction of the processing head 35 in the opening 36a of the nozzle 36 indicated by the two-dot chain line and then displaced forward in accordance with the sub-movement command signal. Then, it returns to the center of the opening 36a. Thereafter, in a state where the beam spot Bs is located at the center of the opening 36a, the processing head 35 moves at a constant speed in accordance with the constant speed movement command of the main movement command signal.
  • the beam spot Bs is displaced forward in the opening 36a and reaches the position P2 according to the sub-movement command signal.
  • the processing head 35 continues to move in the X-axis direction, and the beam spot Bs returns to the center of the opening 36a after being displaced rearward in the opening 36a in accordance with the sub-movement command signal.
  • the beam spot Bs is displaced in the opening 36a so as to offset the amount of movement of the processing head 35 in the X-axis direction. Therefore, the beam spot Bs is located at a straight line portion from the position P2 to the position P3 to form the groove Wk.
  • the processing head 35 moves according to the main movement command signal, and the beam spot Bs is displaced within the opening 36a according to the sub movement command signal.
  • the delay time Tdly is determined by the acceleration (or deceleration represented by the gradient from time t7 to time t12) of the main movement command signal represented by the gradient from time t1 to time t6, and the beam spot Bs by the aperture 36a. It is set according to the distance that can be displaced within.
  • the NC device 50 when the laser processing machine cuts the sheet metal by bending the cutting progress direction at a corner that is equal to or less than a predetermined angle, the NC device 50 is configured to use a processing head that generates a large inertia. Is moved, the beam spot Bs is displaced by the galvano scanner unit 32 that generates only a small inertia. Therefore, there is no need to greatly decelerate or accelerate the processing head. Accordingly, the sheet metal W can be cut at a higher speed than in the related art, so that the processing time can be shortened.
  • FIG. 5 shows a case where the corner is at 90 degrees, but the same applies to the case where the cutting progress direction is bent at an acute angle of less than 90 degrees to cut the sheet metal W. The same applies to the case where the sheet metal W is cut into a shape.
  • the laser beam machine 100 that cuts the sheet metal W using the laser beam machining method of the second embodiment is the laser beam machine of the second embodiment.
  • the galvano scanner unit 32 functions as a beam vibration mechanism and a beam displacement mechanism.
  • the NC device 50 causes the galvano scanner unit 32 to function as one of a beam vibration mechanism and a beam displacement mechanism in a time-division manner.
  • the NC device 50 has a functional internal configuration shown in FIG. 7, the same parts as those of FIG. 4 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the NC device 50 includes a movement control unit 501, an operation switching control unit 502, a movement command division unit 503, a switching unit 504, a movement mechanism control unit 505, and a vibration / displacement control unit 507.
  • the vibration / displacement control unit 507 has functions of both a vibration control unit and a displacement control unit.
  • the operation switching control unit 502 receives a machining program, an instruction signal, and a movement command signal.
  • the operation switching control unit 502 generates a switching control signal for switching whether the galvano scanner unit 32 functions as a beam vibration mechanism or a beam displacement mechanism, and supplies the switching control signal to the switching unit 504 and the vibration / displacement control unit 507.
  • the vibration / displacement control unit 507 receives processing conditions for specifying a vibration pattern when the galvano scanner unit 32 functions as a beam vibration mechanism. Details of the vibration pattern will be described later.
  • the switching unit 504 connects to the terminal Ta and supplies a movement command signal to the moving mechanism control unit 505.
  • the moving mechanism control unit 505 controls the driving units 220 and 230 based on the movement command signal to move the processing head 35.
  • the vibration / displacement control unit 507 controls the driving units 322 and 324 so as to vibrate the laser beam in a vibration pattern specified by the processing conditions.
  • the galvano scanner unit 32 vibrates the laser beam as shown in FIG.
  • the cutting direction of the sheet metal W is defined as the x direction, and the direction perpendicular to the x direction in the plane of the sheet metal W is defined as the y direction.
  • FIG. 8 shows a vibration pattern without moving the processing head 35 in the x direction so that the vibration pattern can be easily understood.
  • the galvano scanner unit 32 vibrates the beam spot Bs in the x direction within the groove Wk formed by the progress of the beam spot Bs. This vibration pattern is called a parallel vibration pattern.
  • the laser beam is vibrated in a parallel vibration pattern while the processing head 35 moves in the cutting direction.
  • the switching unit 504 When the switching control signal indicates that the galvano scanner unit 32 functions as a beam displacement mechanism, the switching unit 504 is connected to the terminal Tb, and transmits the main movement command signal generated by the movement command dividing unit 503 to the moving mechanism control unit 505. To supply.
  • the moving mechanism control unit 505 controls the driving units 220 and 230 based on the main movement command signal to move the processing head 35.
  • the vibration / displacement control unit 507 controls the driving units 322 and 324 such that the galvano scanner unit 32 displaces the beam spot Bs based on the sub-movement command signal generated by the movement command division unit 503.
  • the operation switching control unit 502 cuts the sheet metal W without displacing the beam spot Bs in the opening 36a from the position P1 to the position P2 and the position P2 to the position P3. Is controlled to vibrate the beam spot Bs in a parallel vibration pattern. Specifically, the operation switching control unit 502 determines that the machining head 35 starts moving in the X-axis direction and ends at a predetermined distance before the processing ends, and also starts and ends moving in the Y-axis direction. The beam spot Bs is controlled so as to vibrate in a parallel vibration pattern, except for portions at predetermined distances before the beam spot Bs.
  • the processing head 35 After the relative movement of the processing head 35 is started by the NC device 50, the processing head 35 is moved by a predetermined distance for a first period, and the processing head 35 is moved by a predetermined distance before the relative movement is completed.
  • the period in which only the movement is performed is referred to as a second period.
  • the NC device 50 (the operation switching control unit 502 and the vibration / displacement control unit 507) controls the laser processing machine 100 to vibrate the laser beam in a third period excluding the first and second periods.
  • FIG. 10 shows an example of the operation of the NC device 50.
  • the machining program input to the NC device 50 includes an X-axis movement command signal shown in FIG. 10A and a Y-axis movement command signal shown in FIG.
  • the moving speed (cutting speed) of the processing head 35 set by the X-axis movement command signal and the Y-axis movement command signal is set relatively high.
  • the X-axis movement command signal includes a deceleration command for a period from time t21 to time t23
  • the Y-axis movement command signal includes an acceleration command for a period from time t23 to time t28.
  • the movement control unit 501 generates the X-axis movement command signal shown in (b) based on the X-axis movement command signal shown in (a) of FIG. 10, and generates the X-axis movement command signal shown in (e) ( A Y-axis movement command signal shown in f) is generated.
  • the switching unit 504 is connected to the terminal Ta before time t21, and is switched to the terminal Tb at time t21.
  • the parallel vibration for vibrating the beam spot Bs in the parallel vibration pattern is turned on, and at the time t21, the parallel vibration is turned off.
  • the X-axis movement command signal shown in FIG. 10B includes a deceleration command from time t21 to time t22, a constant speed movement command from time t22 to time t24, and an X-axis movement command signal from time t24 to time t26. And a time deceleration command.
  • the constant speed movement command from time t22 to time t24 the moving speed of the processing head 35 is reduced because the high speed set in the processing program is set to the normal moving speed, As in the embodiment, the processing head 35 is moved by the main movement command signal, and the beam spot Bs is displaced in the opening 36a by the sub movement command signal.
  • the movement command dividing unit 503 generates an X-axis main movement command signal shown in FIG. 10C and an X-axis sub-movement command signal shown in FIG.
  • the X-axis main movement command signal includes a deceleration command for decelerating and stopping the processing head 35 over a period from time t23 to t27 longer than a period from time t24 to time t26.
  • the X-axis sub-movement command signal includes a forward movement command for a time from time t23 to time t25 and a reverse movement command for a time from time t25 to time t27.
  • the Y-axis movement command signal shown in (f) of FIG. 10 includes an acceleration command from time t24 to time t26, a constant speed movement command from time t26 to time t29, and a constant speed command from time t29 to time t30. And a time acceleration command.
  • the reason why the moving speed of the processing head 35 is made lower than the moving speed at the time of the constant speed movement set in the processing program is as shown in FIG. The reason is that the moving speed is reduced in the X-axis main movement command signal shown in ()).
  • the movement command dividing unit 503 generates a Y-axis main movement command signal shown in (g) of FIG. 10 and a Y-axis sub-movement command signal shown in (h) of FIG.
  • the Y-axis main movement command signal includes an acceleration command for accelerating the processing head 35 over a period from time t23 to t27 longer than a period from time t24 to time t26.
  • the Y-axis sub-movement command signal includes a backward movement command from time t23 to time t25 and a forward movement command from time t25 to time t27.
  • the switching unit 504 is switched to the terminal Ta at time t30.
  • the parallel vibration is turned on again at time t30.
  • the operation switching control unit 502 switches between the first state in which the galvano scanner unit 32 functions as a beam displacement mechanism and the second state in which the galvano scanner unit 32 functions as a beam vibration mechanism.
  • the vibration / displacement control unit 507 controls the galvano scanner unit 32 so as to vibrate the laser beam in a direction parallel to the cutting direction of the sheet metal W.
  • the moving mechanism control unit 505 controls the moving mechanism of the processing head 35 based on the main movement command signal generated by the movement command dividing unit 503.
  • a main movement command signal is supplied to the control unit 505.
  • the switching unit 504 controls the movement mechanism so that the movement mechanism control unit 505 controls the movement mechanism based on a movement command signal that is not divided into a main movement command signal and a sub movement command signal.
  • a movement command signal is supplied to the mechanism control unit 505.
  • the laser beam is vibrated in the parallel vibration pattern in the third period in which the sheet metal W is cut without dividing the movement command signal into the main movement command signal and the sub movement command signal. Can be cut at a higher speed, and the processing time can be shortened.
  • the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.

Abstract

A delaying device delays a movement command signal for causing a machining head to move in a relative manner. A low-pass filter allows only low-frequency components from the movement command signal to pass and generates a main movement command signal. A subtraction device subtracts the main movement command signal from the delayed movement command signal and generates an auxiliary movement command signal for displacing the position of a laser beam in an opening by means of a beam displacement mechanism. A movement mechanism control unit controls a movement mechanism of the machining head so that the machining head moves in a relative manner on the basis of the main movement command signal. A displacement control unit controls the beam displacement mechanism so that the position of a laser beam, which is emitted through an opening of a nozzle, in the opening is displaced on the basis of the auxiliary movement command signal.

Description

レーザ加工機及びレーザ加工方法Laser processing machine and laser processing method
 本開示は、レーザビームによって板金を加工するレーザ加工機及びレーザ加工方法に関する。 The present disclosure relates to a laser processing machine and a laser processing method for processing a sheet metal by a laser beam.
 レーザ発振器より射出されたレーザビームによって板金を切断して、所定の形状を有する製品を製作するレーザ加工機が普及している。レーザ加工機は、加工ヘッドの移動機構によって加工ヘッドを板金の面に沿って移動させて、板金を所定の形状に切断する。 2. Description of the Related Art A laser processing machine that cuts a sheet metal with a laser beam emitted from a laser oscillator to produce a product having a predetermined shape has become widespread. The laser processing machine cuts the sheet metal into a predetermined shape by moving the processing head along a surface of the sheet metal by a moving mechanism of the processing head.
米国特許第6982536号明細書U.S. Pat. No. 6,982,536
 停止状態にある加工ヘッドが移動を開始する加速時、または、移動している加工ヘッドが停止する減速時には、大きなイナーシャが発生する。従って、例えば切断進行方向を直角に曲げて板金を切断するときには、加工ヘッドの所定の移動速度(切断速度)を維持したまま角部を切断することはできない。そこで、レーザ加工機は、切断進行方向を所定の角度以下の角度で曲げて板金を切断するときには、角部で加工ヘッドを一旦停止または大幅に減速させた後に加工ヘッドの移動方向を変更する必要がある。レーザ加工機が、ヘアピン形状のように切断進行方向を急激に変更して板金を曲線状に切断する場合も同様である。 大 き な Large inertia occurs at the time of acceleration when the processing head in a stopped state starts moving or at the time of deceleration when the moving processing head stops. Therefore, for example, when cutting a sheet metal by bending the cutting direction at a right angle, it is impossible to cut a corner while maintaining a predetermined moving speed (cutting speed) of the processing head. Therefore, when cutting the sheet metal by bending the cutting direction at an angle equal to or less than a predetermined angle, the laser processing machine needs to temporarily stop or significantly reduce the speed of the processing head at the corner and then change the moving direction of the processing head. There is. The same applies to the case where the laser beam machine sharply changes the cutting progress direction like a hairpin shape and cuts a sheet metal in a curved shape.
 レーザ加工機が切断進行方向を所定の角度以下の角部で曲げて板金を切断したり、切断進行方向を急激に変更して板金を曲線状に切断したりするときには、板金を高速に切断できないので加工時間が長くなってしまう。レーザ加工機がそのような形状を切断する場合でも、板金をできるだけ高速に切断して加工時間を短くすることが求められる。 When the laser processing machine bends the sheet metal by bending the cutting progress direction at a corner below a predetermined angle, or when cutting the sheet metal in a curved shape by changing the cutting direction rapidly, the sheet metal cannot be cut at high speed Therefore, the processing time becomes longer. Even when the laser processing machine cuts such a shape, it is required to cut the sheet metal as fast as possible to shorten the processing time.
 1またはそれ以上の実施形態の第1の態様によれば、先端部に開口を有し、前記開口より板金を切断するためのレーザビームを射出するノズルが取り付けられている加工ヘッドと、前記板金の面に対して前記加工ヘッドを相対的に移動させる移動機構と、前記加工ヘッド内を進行して前記開口より射出されるレーザビームの前記開口内での位置を変位させるビーム変位機構と、前記移動機構によって前記加工ヘッドを相対的に移動させる移動指令信号を遅延させる遅延器と、前記移動指令信号における低域周波数成分のみを通過させることによって、前記移動機構によって前記加工ヘッドを相対的に移動させる主移動指令信号を生成するローパスフィルタと、前記遅延器によって遅延された遅延移動指令信号から前記主移動指令信号を減算することによって、前記ビーム変位機構によって前記開口より射出されるレーザビームの前記開口内での位置を変位させる副移動指令信号を生成する減算器とを有する移動指令分割部と、前記主移動指令信号に基づいて、前記加工ヘッドを相対的に移動させるよう前記移動機構を制御する移動機構制御部と、前記副移動指令信号に基づいて、前記開口より射出されるレーザビームの前記開口内での位置を変位させるよう前記ビーム変位機構を制御する変位制御部とを備えるレーザ加工機が提供される。 According to a first aspect of one or more embodiments, a processing head having an opening at a tip end and a nozzle for emitting a laser beam for cutting a sheet metal through the opening, A moving mechanism that relatively moves the processing head with respect to a surface, a beam displacement mechanism that moves in the processing head and displaces a position in the opening of a laser beam emitted from the opening, A delay device for delaying a movement command signal for relatively moving the processing head by a movement mechanism; and by passing only a low frequency component of the movement command signal, the processing mechanism relatively moves the processing head by the movement mechanism. A low-pass filter for generating a main movement command signal to be subtracted, and subtracting the main movement command signal from the delayed movement command signal delayed by the delay unit A movement command dividing unit having a subtractor for generating a sub-movement command signal for displacing the position of the laser beam emitted from the opening in the opening by the beam displacement mechanism in the opening; and the main movement command signal. A movement mechanism control unit that controls the movement mechanism to relatively move the processing head based on the position of the laser beam emitted from the opening based on the sub-movement command signal. And a displacement control unit that controls the beam displacement mechanism to displace the laser beam.
 1またはそれ以上の実施形態の第2の態様によれば、レーザ加工機を制御する制御装置が、加工プログラムに基づいて、先端部に開口を有し、前記開口より板金を切断するためのレーザビームを射出するノズルが取り付けられている加工ヘッドを、前記板金の面に対して相対的に移動させる移動指令信号を生成し、前記移動指令信号を遅延させて遅延移動指令信号を生成し、前記移動指令信号における低域周波数成分のみを通過させることによって、前記加工ヘッドを相対的に移動させる主移動指令信号を生成し、前記遅延移動指令信号から前記主移動指令信号を減算することによって、前記開口より射出されるレーザビームの前記開口内での位置を変位させる副移動指令信号を生成し、前記主移動指令信号に基づいて前記加工ヘッドを相対的に移動させ、かつ、前記副移動指令信号に基づいて前記開口より射出されるレーザビームの前記開口内での位置を変位させて前記板金を切断するよう前記レーザ加工機を制御するレーザ加工方法が提供される。 According to a second aspect of one or more embodiments, a control device for controlling a laser beam machine has an opening at a tip end based on a machining program, and a laser for cutting a sheet metal from the opening. Generating a movement command signal for moving a processing head to which a nozzle for emitting a beam is attached relative to a surface of the sheet metal, generating a delayed movement command signal by delaying the movement command signal, By passing only the low frequency component in the movement command signal, a main movement command signal for relatively moving the machining head is generated, and the main movement command signal is subtracted from the delayed movement command signal, thereby A sub-movement command signal for displacing the position of the laser beam emitted from the opening in the opening is generated, and the processing head is synchronized based on the main movement command signal. Laser processing method of controlling the laser processing machine to cut the sheet metal by moving the laser beam emitted from the opening based on the sub-movement command signal and displacing the position in the opening based on the sub-movement command signal Is provided.
 1またはそれ以上の実施形態のレーザ加工機及びレーザ加工方法によれば、切断進行方向を所定の角度以下の角部で曲げて板金を切断したり、切断進行方向を急激に変更して板金を曲線状に切断したりする場合でも、従来よりも板金を高速に切断することができ、加工時間を短くすることができる。 According to the laser beam machine and the laser beam machining method of one or more embodiments, the sheet metal is cut by bending the cutting direction at a corner portion equal to or less than a predetermined angle, or the sheet metal is formed by rapidly changing the cutting direction. Even in the case of cutting in a curved shape, the sheet metal can be cut at a higher speed than before, and the processing time can be shortened.
図1は、1またはそれ以上の実施形態のレーザ加工機の全体的な構成例を示す図である。FIG. 1 is a diagram illustrating an overall configuration example of a laser processing machine according to one or more embodiments. 図2は、1またはそれ以上の実施形態のレーザ加工機におけるコリメータユニット及び加工ヘッドの詳細な構成例を示す斜視図である。FIG. 2 is a perspective view illustrating a detailed configuration example of a collimator unit and a processing head in a laser processing machine according to one or more embodiments. 図3は、ビーム振動機構によるレーザビームの板金への照射位置の変位を説明するための図である。FIG. 3 is a diagram for explaining the displacement of the irradiation position of the laser beam on the sheet metal by the beam vibration mechanism. 図4は、第1実施形態のレーザ加工機が備えるNC装置の機能的な内部構成例を示すブロック図である。FIG. 4 is a block diagram illustrating an example of a functional internal configuration of the NC device included in the laser beam machine according to the first embodiment. 図5は、第1実施形態のレーザ加工機及びレーザ加工方法による板金の切断の一例を示す図である。FIG. 5 is a diagram illustrating an example of cutting a sheet metal by the laser processing machine and the laser processing method according to the first embodiment. 図6は、第1実施形態のレーザ加工機及びレーザ加工方法による移動指令信号の分割処理の一例を示す図である。FIG. 6 is a diagram illustrating an example of a division process of a movement command signal by the laser processing machine and the laser processing method according to the first embodiment. 図7は、第2実施形態のレーザ加工機が備えるNC装置の機能的な内部構成例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a functional internal configuration of an NC device included in the laser beam machine according to the second embodiment. 図8は、レーザビームの平行振動パターンを示す図である。FIG. 8 is a diagram illustrating a parallel vibration pattern of a laser beam. 図9は、第2実施形態のレーザ加工機及びレーザ加工方法による板金の切断の一例を示す図である。FIG. 9 is a diagram illustrating an example of cutting a sheet metal by the laser processing machine and the laser processing method according to the second embodiment. 図10は、第2実施形態のレーザ加工機及びレーザ加工方法による移動指令信号の分割処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of a process of dividing a movement command signal by the laser beam machine and the laser beam machining method according to the second embodiment.
 以下、1またはそれ以上の実施形態のレーザ加工機及びレーザ加工方法について、添付図面を参照して説明する。 Hereinafter, a laser beam machine and a laser beam machining method according to one or more embodiments will be described with reference to the accompanying drawings.
 図1において、レーザ加工機100は、レーザビームを生成して射出するレーザ発振器10と、レーザ加工ユニット20と、レーザ発振器10より射出されたレーザビームをレーザ加工ユニット20へと伝送するプロセスファイバ12とを備える。 In FIG. 1, a laser processing machine 100 includes a laser oscillator 10 that generates and emits a laser beam, a laser processing unit 20, and a process fiber 12 that transmits the laser beam emitted from the laser oscillator 10 to the laser processing unit 20. And
 また、レーザ加工機100は、操作部40と、NC装置50と、加工プログラムデータベース60と、加工条件データベース70と、アシストガス供給装置80とを備える。NC装置50は、レーザ加工機100の各部を制御する制御装置の一例である。 The laser beam machine 100 also includes an operation unit 40, an NC device 50, a machining program database 60, a machining condition database 70, and an assist gas supply device 80. The NC device 50 is an example of a control device that controls each unit of the laser beam machine 100.
 レーザ発振器10としては、レーザダイオードより発せられる励起光を増幅して所定の波長のレーザビームを射出するレーザ発振器、またはレーザダイオードより発せられるレーザビームを直接利用するレーザ発振器が好適である。レーザ発振器10は、例えば、固体レーザ発振器、ファイバレーザ発振器、ディスクレーザ発振器、ダイレクトダイオードレーザ発振器(DDL発振器)である。 As the laser oscillator 10, a laser oscillator that amplifies the excitation light emitted from the laser diode and emits a laser beam of a predetermined wavelength, or a laser oscillator that directly uses the laser beam emitted from the laser diode is preferable. The laser oscillator 10 is, for example, a solid-state laser oscillator, a fiber laser oscillator, a disk laser oscillator, or a direct diode laser oscillator (DDL oscillator).
 レーザ発振器10は、波長900nm~1100nmの1μm帯のレーザビームを射出する。ファイバレーザ発振器及びDDL発振器を例とすると、ファイバレーザ発振器は、波長1060nm~1080nmのレーザビームを射出し、DDL発振器は、波長910nm~950nmのレーザビームを射出する。 The laser oscillator 10 emits a 1 μm band laser beam having a wavelength of 900 nm to 1100 nm. Taking a fiber laser oscillator and a DDL oscillator as examples, the fiber laser oscillator emits a laser beam having a wavelength of 1060 nm to 1080 nm, and the DDL oscillator emits a laser beam having a wavelength of 910 nm to 950 nm.
 レーザ加工ユニット20は、加工対象の板金Wを載せる加工テーブル21と、門型のX軸キャリッジ22と、Y軸キャリッジ23と、Y軸キャリッジ23に固定されたコリメータユニット30と、加工ヘッド35とを有する。板金Wは例えばステンレス鋼よりなる。板金Wの材料及び板厚は特に限定されない。 The laser processing unit 20 includes a processing table 21 on which a sheet metal W to be processed is placed, a gate-shaped X-axis carriage 22, a Y-axis carriage 23, a collimator unit 30 fixed to the Y-axis carriage 23, and a processing head 35. Having. The sheet metal W is made of, for example, stainless steel. The material and thickness of the sheet metal W are not particularly limited.
 X軸キャリッジ22は、加工テーブル21上でX軸方向に移動自在に構成されている。Y軸キャリッジ23は、X軸キャリッジ22上でX軸に垂直なY軸方向に移動自在に構成されている。X軸キャリッジ22及びY軸キャリッジ23は、加工ヘッド35を板金Wの面に沿って、X軸方向、Y軸方向、または、X軸とY軸との任意の合成方向に移動させる移動機構として機能する。 The X-axis carriage 22 is configured to be movable on the processing table 21 in the X-axis direction. The Y-axis carriage 23 is configured to be movable on the X-axis carriage 22 in the Y-axis direction perpendicular to the X-axis. The X-axis carriage 22 and the Y-axis carriage 23 serve as a moving mechanism that moves the processing head 35 along the surface of the sheet metal W in the X-axis direction, the Y-axis direction, or any combined direction of the X-axis and the Y-axis. Function.
 加工ヘッド35を板金Wの面に沿って移動させる代わりに、加工ヘッド35は位置が固定されていて、板金Wが移動するように構成されていてもよい。レーザ加工機100は、板金Wの面に対して加工ヘッド35を相対的に移動させる移動機構を備えていればよい。 Instead of moving the processing head 35 along the surface of the sheet metal W, the position of the processing head 35 may be fixed, and the sheet metal W may be configured to move. The laser processing machine 100 only needs to have a moving mechanism that moves the processing head 35 relative to the surface of the sheet metal W.
 加工ヘッド35には、先端部に円形の開口36aを有し、開口36aよりレーザビームを射出するノズル36が取り付けられている。ノズル36の開口36aより射出されたレーザビームは板金Wに照射される。アシストガス供給装置80は、アシストガスとして例えば窒素を加工ヘッド35に供給する。板金Wの加工時に、アシストガスは開口36aより板金Wへと吹き付けられる。アシストガスは、板金Wが溶融したカーフ内の溶融金属を排出する。 The processing head 35 has a circular opening 36a at the tip, and a nozzle 36 for emitting a laser beam through the opening 36a is attached. The sheet metal W is irradiated with the laser beam emitted from the opening 36 a of the nozzle 36. The assist gas supply device 80 supplies, for example, nitrogen to the processing head 35 as an assist gas. During processing of the sheet metal W, the assist gas is blown onto the sheet metal W from the opening 36a. The assist gas discharges the molten metal in the kerf where the sheet metal W has melted.
 図2に示すように、コリメータユニット30は、プロセスファイバ12より射出された発散光のレーザビームを平行光(コリメート光)に変換するコリメーションレンズ31を備える。また、コリメータユニット30は、ガルバノスキャナユニット32と、ガルバノスキャナユニット32より射出されたレーザビームをX軸及びY軸に垂直なZ軸方向下方に向けて反射させるベンドミラー33を備える。加工ヘッド35は、ベンドミラー33で反射したレーザビームを集束して、板金Wに照射する集束レンズ34を備える。 As shown in FIG. 2, the collimator unit 30 includes a collimation lens 31 that converts a divergent laser beam emitted from the process fiber 12 into parallel light (collimated light). The collimator unit 30 includes a galvano scanner unit 32 and a bend mirror 33 that reflects the laser beam emitted from the galvano scanner unit 32 downward in the Z-axis direction perpendicular to the X-axis and the Y-axis. The processing head 35 includes a converging lens 34 that converges the laser beam reflected by the bend mirror 33 and irradiates the laser beam onto the sheet metal W.
 レーザ加工機100は、ノズル36の開口36aより射出されるレーザビームが開口36aの中心に位置するように芯出しされている。基準の状態では、レーザビームは、開口36aの中心より射出する。ガルバノスキャナユニット32は、加工ヘッド35内を進行して開口36aより射出されるレーザビームの開口36a内での位置を変位させるビーム変位機構として機能する。 The laser beam machine 100 is centered so that the laser beam emitted from the opening 36a of the nozzle 36 is located at the center of the opening 36a. In the reference state, the laser beam is emitted from the center of the opening 36a. The galvano scanner unit 32 functions as a beam displacement mechanism that travels inside the processing head 35 and displaces the position of the laser beam emitted from the opening 36a within the opening 36a.
 ガルバノスキャナユニット32は、コリメーションレンズ31より射出されたレーザビームを反射するスキャンミラー321と、スキャンミラー321を所定の角度となるように回転させる駆動部322とを有する。また、ガルバノスキャナユニット32は、スキャンミラー321より射出されたレーザビームを反射するスキャンミラー323と、スキャンミラー323を所定の角度となるように回転させる駆動部324とを有する。 The galvano scanner unit 32 includes a scan mirror 321 that reflects the laser beam emitted from the collimation lens 31, and a drive unit 322 that rotates the scan mirror 321 to a predetermined angle. Further, the galvano scanner unit 32 includes a scan mirror 323 that reflects the laser beam emitted from the scan mirror 321 and a drive unit 324 that rotates the scan mirror 323 to a predetermined angle.
 駆動部322及び324は、NC装置50による制御に基づき、それぞれ、スキャンミラー321及び323を所定の角度範囲で往復振動させることもできる。スキャンミラー321とスキャンミラー323とのいずれか一方または双方を往復振動させることによって、ガルバノスキャナユニット32は、板金Wに照射されるレーザビームを振動させることができる。即ち、NC装置50は、ガルバノスキャナユニット32を、加工ヘッド35内を進行して開口36aより射出されるレーザビームを、開口36a内で振動させるビーム振動機構として機能させることもできる。 The drive units 322 and 324 can also cause the scan mirrors 321 and 323 to reciprocate in a predetermined angular range based on the control by the NC device 50, respectively. By causing one or both of the scan mirror 321 and the scan mirror 323 to reciprocate, the galvano scanner unit 32 can vibrate the laser beam applied to the sheet metal W. That is, the NC device 50 can cause the galvano scanner unit 32 to function as a beam vibration mechanism that vibrates the laser beam emitted from the opening 36a while traveling in the processing head 35 and inside the opening 36a.
 ガルバノスキャナユニット32はビーム変位機構及びビーム振動機構の一例であり、ビーム変位機構及びビーム振動機構はガルバノスキャナユニット32に限定されない。 The galvano scanner unit 32 is an example of a beam displacement mechanism and a beam vibration mechanism, and the beam displacement mechanism and the beam vibration mechanism are not limited to the galvano scanner unit 32.
 図3は、スキャンミラー321とスキャンミラー323とのいずれか一方または双方が傾けられて、板金Wに照射されるレーザビームの位置が変位した状態を示している。図3において、ベンドミラー33で折り曲げられて集束レンズ34を通過する細実線は、レーザ加工機100が基準の状態であるときのレーザビームの光軸を示している。 FIG. 3 shows a state where one or both of the scan mirror 321 and the scan mirror 323 are tilted, and the position of the laser beam applied to the sheet metal W is displaced. In FIG. 3, a thin solid line bent by the bend mirror 33 and passing through the focusing lens 34 indicates the optical axis of the laser beam when the laser beam machine 100 is in the reference state.
 なお、詳細には、ベンドミラー33の手前に位置しているガルバノスキャナユニット32の作動により、ベンドミラー33に入射するレーザビームの光軸の角度が変化し、光軸がベンドミラー33の中心から外れる。図3では、簡略化のため、ガルバノスキャナユニット32の作動前後でベンドミラー33へのレーザビームの入射位置を同じ位置としている。 In detail, the angle of the optical axis of the laser beam incident on the bend mirror 33 changes by the operation of the galvano scanner unit 32 located in front of the bend mirror 33, and the optical axis is shifted from the center of the bend mirror 33. Come off. In FIG. 3, for simplification, the incident position of the laser beam on the bend mirror 33 before and after the operation of the galvano scanner unit 32 is set to the same position.
 ガルバノスキャナユニット32による作用によって、レーザビームの光軸が細実線で示す位置から太実線で示す位置へと変位したとする。ベンドミラー33で反射するレーザビームが角度θで傾斜したとすると、板金Wへのレーザビームの照射位置は距離Δsだけ変位する。集束レンズ34の焦点距離をEFL(Effective Focal Length)とすると、距離Δsは、EFL×sinθで計算される。 It is assumed that the optical axis of the laser beam is displaced from the position indicated by the thin solid line to the position indicated by the thick solid line due to the action of the galvano scanner unit 32. Assuming that the laser beam reflected by the bend mirror 33 is inclined at the angle θ, the irradiation position of the laser beam on the sheet metal W is displaced by the distance Δs. Assuming that the focal length of the focusing lens 34 is EFL (Effective Focal Length), the distance Δs is calculated by EFL × sinθ.
 ガルバノスキャナユニット32がレーザビームを図3に示す方向とは逆方向に角度θだけ傾ければ、板金Wへのレーザビームの照射位置を図3に示す方向とは逆方向に距離Δsだけ変位させることができる。距離Δsは開口36aの半径未満の距離であり、好ましくは、開口36aの半径から所定の余裕量だけ引いた距離を最大距離とした最大距離以下の距離である。 When the galvano scanner unit 32 tilts the laser beam by the angle θ in the direction opposite to the direction shown in FIG. 3, the irradiation position of the laser beam on the sheet metal W is displaced by the distance Δs in the direction opposite to the direction shown in FIG. be able to. The distance Δs is a distance less than the radius of the opening 36a, and is preferably a distance equal to or less than the maximum distance defined as the maximum distance obtained by subtracting a predetermined margin from the radius of the opening 36a.
 NC装置50は、ガルバノスキャナユニット32の駆動部322及び324を制御することによって、板金Wに照射されるレーザビームを変位させて、板金Wの面上に形成されるビームスポットを変位させることができる。また、NC装置50は、レーザビームを板金Wの面内の所定の方向に振動させて、板金Wの面上に形成されるビームスポットを振動させることができる。 By controlling the driving units 322 and 324 of the galvano scanner unit 32, the NC device 50 can displace the laser beam applied to the sheet metal W, thereby displacing the beam spot formed on the surface of the sheet metal W. it can. In addition, the NC device 50 can vibrate the laser beam in a predetermined direction in the plane of the sheet metal W to vibrate a beam spot formed on the plane of the sheet metal W.
<第1実施形態>
 以上のように構成されるレーザ加工機100において、切断進行方向を所定の角度以下の角部で曲げて板金Wを切断したり、切断進行方向を急激に変更して板金Wを曲線状に切断したりする場合に、板金Wを高速に切断することができる第1実施形態のレーザ加工方法を説明する。第1実施形態のレーザ加工方法を用いて板金Wを切断するレーザ加工機100が第1実施形態のレーザ加工機である。第1実施形態においては、ガルバノスキャナユニット32はビーム変位機構のみとして機能する。
<First embodiment>
In the laser beam machine 100 configured as described above, the sheet metal W is cut by bending the cutting direction at a corner portion equal to or less than a predetermined angle, or the sheet metal W is cut in a curved shape by changing the cutting direction abruptly. In this case, a description will be given of a laser processing method according to the first embodiment, which can cut the sheet metal W at high speed. The laser beam machine 100 that cuts a sheet metal W using the laser beam machining method of the first embodiment is the laser beam machine of the first embodiment. In the first embodiment, the galvano scanner unit 32 functions only as a beam displacement mechanism.
 第1実施形態において、NC装置50は、図4に示す機能的な内部構成を備える。NC装置50は、移動制御部501、移動指令分割部503、移動機構制御部505、変位制御部506を備える。移動指令分割部503は、遅延器5031、ローパスフィルタ(以下、LPF)5032、減算器5033を有する。 に お い て In the first embodiment, the NC device 50 has a functional internal configuration shown in FIG. The NC device 50 includes a movement control unit 501, a movement command division unit 503, a movement mechanism control unit 505, and a displacement control unit 506. The movement command division unit 503 includes a delay unit 5031, a low-pass filter (hereinafter, LPF) 5032, and a subtractor 5033.
 図5に示すように、板金Wを、位置P1で切断を開始して位置P2まで直線状に切断し、位置P2にて切断進行方向を90度曲げて位置P3まで直線状に切断する加工プログラムが作成されている場合を例とする。位置P1から位置P2までの直線はX軸方向であり、位置P2から位置P3までの直線はY軸方向であるとする。 As shown in FIG. 5, a processing program for starting to cut the sheet metal W at the position P1, cutting the sheet metal W straight to the position P2, bending the cutting direction at the position P2 by 90 degrees, and cutting the sheet metal W straight to the position P3. Is created as an example. A straight line from the position P1 to the position P2 is in the X-axis direction, and a straight line from the position P2 to the position P3 is in the Y-axis direction.
 図4において、移動制御部501には、加工プログラムと、加工の開始を指示する指示信号と、加工条件とが入力される。移動制御部501は、加工プログラムに基づいて、図6の(a)に示すような移動指令信号を生成する。 In FIG. 4, a machining program, an instruction signal for instructing start of machining, and machining conditions are input to the movement control unit 501. The movement control unit 501 generates a movement command signal as shown in FIG. 6A based on the machining program.
 移動指令信号は、停止状態にある加工ヘッド35が移動を開始した後に、時刻t1から時刻t2までの時間をかけて加工ヘッド35を加工条件で指定された移動速度まで加速させる加速指令を含む。移動指令信号は、加工ヘッド35を一定の移動速度で移動させる等速移動指令を含む。移動指令信号は、加工ヘッド35を時刻t7から時刻t12までの時間をかけて減速させて停止させる減速指令を含む。 The movement command signal includes an acceleration command for accelerating the processing head 35 to the moving speed specified by the processing conditions over a period from time t1 to time t2 after the stopped processing head 35 starts moving. The movement command signal includes a constant speed movement command for moving the processing head 35 at a constant moving speed. The movement command signal includes a deceleration command for decelerating and stopping the processing head 35 over the time from time t7 to time t12.
 図6の(a)に示す移動指令信号は、図5における位置P1から位置P2までのX軸方向の切断と、位置P2から位置P3までのY軸方向の切断との双方で用いられる。即ち、図6の(a)に示す移動指令信号は、X軸方向またはY軸方向の移動指令信号である。 The movement command signal shown in FIG. 6A is used for both cutting in the X-axis direction from the position P1 to the position P2 in FIG. 5 and cutting in the Y-axis direction from the position P2 to the position P3 in FIG. That is, the movement command signal shown in FIG. 6A is a movement command signal in the X-axis direction or the Y-axis direction.
 移動制御部501が生成した移動指令信号は、移動指令分割部503に入力される。遅延器5031は、移動指令信号を時刻t1から時刻t3までの遅延時間Tdlyだけ遅延させて減算器5033に供給する。LPF5032は、図6の(a)に示す移動指令信号における低域周波数成分のみを通過させるフィルタリング処理を実行することにより、図6の(b)に示す主移動指令信号を生成する。主移動指令信号は、加工ヘッド35を移動させるための移動指令信号である。図6の(b)には、二点鎖線にて、遅延させた移動指令信号(以下、遅延移動指令信号)を示している。 The movement command signal generated by the movement control unit 501 is input to the movement command division unit 503. The delay unit 5031 delays the movement command signal by a delay time Tdly from time t1 to time t3 and supplies the signal to the subtractor 5033. The LPF 5032 generates a main movement command signal shown in FIG. 6B by executing a filtering process for passing only low frequency components in the movement command signal shown in FIG. 6A. The main movement command signal is a movement command signal for moving the processing head 35. FIG. 6B shows a movement command signal delayed by a two-dot chain line (hereinafter, a delay movement command signal).
 図6の(b)に示すように、主移動指令信号は、図6の(a)に示す移動指令信号における加速指令の時刻t1から時刻t2までの時間よりも長い時刻t1~t6の時間をかけて加工ヘッド35を加工条件で指定された移動速度まで加速させる加速指令を含む。主移動指令信号は、加工ヘッド35を時刻t6から時刻t7までの時間に一定の移動速度で移動させる等速移動指令を含む。主移動指令信号は、図6の(a)に示す移動指令信号における減速指令の時刻t7から時刻t8までの時間よりも長い時刻t7から時刻t12までの時間をかけて加工ヘッド35を減速させて停止させる減速指令を含む。 As shown in FIG. 6 (b), the main movement command signal has a time t1 to t6 longer than the time from the time t1 to the time t2 of the acceleration command in the movement command signal shown in FIG. 6 (a). And an acceleration command for accelerating the machining head 35 to a moving speed specified by the machining condition. The main movement command signal includes a constant speed movement command for moving the machining head 35 at a constant moving speed during a period from time t6 to time t7. The main movement command signal is obtained by decelerating the machining head 35 over a time period from time t7 to time t12 longer than a time period from time t7 to time t8 of the deceleration command in the movement command signal shown in FIG. Includes deceleration command to stop.
 減算器5033は、遅延移動指令信号から主移動指令信号を減算することにより、図6の(c)に示す副移動指令信号を生成する。副移動指令信号は、ガルバノスキャナユニット32によって図5に示すビームスポットBsを変位させるための移動指令信号である。図6の(c)に示す副移動指令信号のうち、時刻t1から時刻t4までの時間及び時刻t10から時刻t12までの時間の負の部分は、ビームスポットBsを加工ヘッド35の移動方向とは反対側に変位させる逆方向移動指令である。副移動指令信号のうち、時刻t4から時刻t6までの時間及び時刻t7から時刻t10までの時間の正の部分は、ビームスポットBsを加工ヘッド35の移動方向に変位させる正方向移動指令である。 The subtractor 5033 generates the sub-movement command signal shown in FIG. 6C by subtracting the main-movement command signal from the delayed-movement command signal. The sub movement command signal is a movement command signal for displacing the beam spot Bs shown in FIG. 5 by the galvano scanner unit 32. In the sub-movement command signal shown in FIG. 6C, the negative portions of the time from time t1 to time t4 and the time from time t10 to time t12 indicate that the beam spot Bs moves in the moving direction of the processing head 35. This is a reverse movement command for displacing to the opposite side. Of the sub-movement command signal, the positive portions of the time from time t4 to time t6 and the time from time t7 to time t10 are forward movement commands for displacing the beam spot Bs in the movement direction of the processing head 35.
 図4に示すように、X軸キャリッジ22及びY軸キャリッジ23よりなる移動機構は、X軸キャリッジ22及びY軸キャリッジ23をそれぞれ駆動する駆動部220及び230を有する。移動機構制御部505は、主移動指令信号に基づいて駆動部220及び230を制御して、加工ヘッド35を移動させる。変位制御部506は、副移動指令信号に基づいてガルバノスキャナユニット32の駆動部322及び324を制御して、ビームスポットBsを変位させる。 (4) As shown in FIG. 4, the moving mechanism including the X-axis carriage 22 and the Y-axis carriage 23 has driving units 220 and 230 for driving the X-axis carriage 22 and the Y-axis carriage 23, respectively. The moving mechanism control unit 505 controls the driving units 220 and 230 based on the main movement command signal to move the processing head 35. The displacement control unit 506 controls the driving units 322 and 324 of the galvano scanner unit 32 based on the sub-movement command signal to displace the beam spot Bs.
 このように、レーザ加工機100は、板金Wを図5に示すように切断するとき、図6の(b)に示す主移動指令信号によって加工ヘッド35を移動させ、図6の(c)に示す副移動指令信号によってビームスポットBsを変位させる。 As described above, when cutting the sheet metal W as shown in FIG. 5, the laser processing machine 100 moves the processing head 35 by the main movement command signal shown in FIG. The beam spot Bs is displaced by the indicated sub-movement command signal.
 図5において、レーザ加工機100が位置P1で板金Wの切断を開始すると、加工ヘッド35は主移動指令信号に従って位置P2に向けて移動する。板金Wには、ビームスポットBsの径をカーフ幅とする溝Wkが形成される。 In FIG. 5, when the laser processing machine 100 starts cutting the sheet metal W at the position P1, the processing head 35 moves toward the position P2 according to the main movement command signal. A groove Wk having a diameter of the beam spot Bs as a kerf width is formed in the sheet metal W.
 板金Wの切断開始直後、ビームスポットBsは、副移動指令信号に従って、二点鎖線にて示すノズル36の開口36a内で加工ヘッド35の移動方向に対して後方側に変位した後に前方側に変位して、開口36aの中央に戻る。その後、ビームスポットBsが開口36aの中央に位置した状態で、加工ヘッド35は主移動指令信号の等速移動指令に従って等速で移動する。 Immediately after the cutting of the sheet metal W is started, the beam spot Bs is displaced rearward with respect to the moving direction of the processing head 35 in the opening 36a of the nozzle 36 indicated by the two-dot chain line and then displaced forward in accordance with the sub-movement command signal. Then, it returns to the center of the opening 36a. Thereafter, in a state where the beam spot Bs is located at the center of the opening 36a, the processing head 35 moves at a constant speed in accordance with the constant speed movement command of the main movement command signal.
 加工ヘッド35が位置P2に近付くと、ビームスポットBsは、副移動指令信号に従って、開口36a内で前方側に変位して位置P2に到達する。加工ヘッド35は引き続きX軸方向に移動し、ビームスポットBsは、副移動指令信号に従って、開口36a内で後方側に変位した後に開口36aの中央に戻る。ビームスポットBsが位置P2に位置した後、ビームスポットBsは開口36a内で加工ヘッド35のX軸方向への移動量を相殺させるように変位する。従って、ビームスポットBsは位置P2から位置P3までの直線の部分に位置して溝Wkを形成する。 と When the processing head 35 approaches the position P2, the beam spot Bs is displaced forward in the opening 36a and reaches the position P2 according to the sub-movement command signal. The processing head 35 continues to move in the X-axis direction, and the beam spot Bs returns to the center of the opening 36a after being displaced rearward in the opening 36a in accordance with the sub-movement command signal. After the beam spot Bs is located at the position P2, the beam spot Bs is displaced in the opening 36a so as to offset the amount of movement of the processing head 35 in the X-axis direction. Therefore, the beam spot Bs is located at a straight line portion from the position P2 to the position P3 to form the groove Wk.
 加工ヘッド35は、位置P2から位置P3までのY軸方向の移動においても同様に、主移動指令信号に従って移動し、ビームスポットBsは開口36a内で副移動指令信号に従って変位する。 Similarly, also in the movement in the Y-axis direction from the position P2 to the position P3, the processing head 35 moves according to the main movement command signal, and the beam spot Bs is displaced within the opening 36a according to the sub movement command signal.
 これにより、二点鎖線にて示す開口36aの移動軌跡より分かるように、位置P1から位置P2より所定の距離だけ前の位置までの直線の部分、及び、位置P2より所定の距離だけ後の位置から位置P3までの直線の部分では、加工ヘッド35は直線状に移動する。位置P2の角部においては、加工ヘッド35は、矢印線で示すように、位置P2の角の内角側を曲線状に移動する。従って、加工ヘッド35を位置P2の角部で一旦停止または大幅に減速させる必要はなく、所定の移動速度を維持したまま加工ヘッド35の移動方向を変更することができる。 Thereby, as can be seen from the movement locus of the opening 36a indicated by the two-dot chain line, a straight line portion from the position P1 to a position a predetermined distance before the position P2 and a position after a predetermined distance from the position P2 The processing head 35 moves linearly in a straight line portion from to the position P3. At the corner of the position P2, the processing head 35 moves in a curved shape on the inner corner side of the corner of the position P2 as indicated by an arrow line. Therefore, there is no need to temporarily stop or significantly reduce the processing head 35 at the corner of the position P2, and the moving direction of the processing head 35 can be changed while maintaining the predetermined moving speed.
 ところで、遅延時間Tdlyは、主移動指令信号における時刻t1から時刻t6までの傾きで表される加速度(または時刻t7から時刻t12までの傾きで表される減速度)と、ビームスポットBsを開口36a内で変位させることができる距離とに応じて設定される。 By the way, the delay time Tdly is determined by the acceleration (or deceleration represented by the gradient from time t7 to time t12) of the main movement command signal represented by the gradient from time t1 to time t6, and the beam spot Bs by the aperture 36a. It is set according to the distance that can be displaced within.
 以上のように、第1実施形態によれば、レーザ加工機が切断進行方向を所定の角度以下の角部で曲げて板金を切断するときに、NC装置50は、大きなイナーシャが発生する加工ヘッドを移動させる代わりに、小さなイナーシャしか発生しないガルバノスキャナユニット32によってビームスポットBsを変位させる。よって、加工ヘッドを大きく減速させたり加速させたりする必要がない。これにより、従来よりも板金Wを高速に切断することができるので、加工時間を短くすることができる。図5は角部が90度である場合を示しているが、切断進行方向を90度未満の鋭角で曲げて板金Wを切断する場合も同様であり、切断進行方向を急激に変更して曲線状に板金Wを切断する場合も同様である。 As described above, according to the first embodiment, when the laser processing machine cuts the sheet metal by bending the cutting progress direction at a corner that is equal to or less than a predetermined angle, the NC device 50 is configured to use a processing head that generates a large inertia. Is moved, the beam spot Bs is displaced by the galvano scanner unit 32 that generates only a small inertia. Therefore, there is no need to greatly decelerate or accelerate the processing head. Accordingly, the sheet metal W can be cut at a higher speed than in the related art, so that the processing time can be shortened. FIG. 5 shows a case where the corner is at 90 degrees, but the same applies to the case where the cutting progress direction is bent at an acute angle of less than 90 degrees to cut the sheet metal W. The same applies to the case where the sheet metal W is cut into a shape.
<第2実施形態>
 第2実施形態のレーザ加工方法を用いて板金Wを切断するレーザ加工機100が第2実施形態のレーザ加工機である。第2実施形態においては、ガルバノスキャナユニット32はビーム振動機構及びビーム変位機構として機能する。NC装置50は、ガルバノスキャナユニット32を時分割でビーム振動機構とビーム変位機構とのいずれか一方として機能させる。
<Second embodiment>
The laser beam machine 100 that cuts the sheet metal W using the laser beam machining method of the second embodiment is the laser beam machine of the second embodiment. In the second embodiment, the galvano scanner unit 32 functions as a beam vibration mechanism and a beam displacement mechanism. The NC device 50 causes the galvano scanner unit 32 to function as one of a beam vibration mechanism and a beam displacement mechanism in a time-division manner.
 第2実施形態において、NC装置50は、図7に示す機能的な内部構成を備える。図7において、図4と同一部分には同一符号を付し、その説明を省略することがある。図7に示すように、NC装置50は、移動制御部501、動作切替制御部502、移動指令分割部503、切替部504、移動機構制御部505、振動・変位制御部507を備える。振動・変位制御部507は、振動制御部及び変位制御部双方の機能を有する。 に お い て In the second embodiment, the NC device 50 has a functional internal configuration shown in FIG. 7, the same parts as those of FIG. 4 are denoted by the same reference numerals, and the description thereof may be omitted. As shown in FIG. 7, the NC device 50 includes a movement control unit 501, an operation switching control unit 502, a movement command division unit 503, a switching unit 504, a movement mechanism control unit 505, and a vibration / displacement control unit 507. The vibration / displacement control unit 507 has functions of both a vibration control unit and a displacement control unit.
 図7において、動作切替制御部502には、加工プログラムと、指示信号と、移動指令信号とが入力される。動作切替制御部502は、ガルバノスキャナユニット32をビーム振動機構として機能させるかビーム変位機構として機能させるかを切り替える切替制御信号を生成して、切替部504及び振動・変位制御部507に供給する。 In FIG. 7, the operation switching control unit 502 receives a machining program, an instruction signal, and a movement command signal. The operation switching control unit 502 generates a switching control signal for switching whether the galvano scanner unit 32 functions as a beam vibration mechanism or a beam displacement mechanism, and supplies the switching control signal to the switching unit 504 and the vibration / displacement control unit 507.
 振動・変位制御部507には、ガルバノスキャナユニット32をビーム振動機構として機能させるときの振動パターンを指定する加工条件が入力される。振動パターンの詳細については後述する。 加工 The vibration / displacement control unit 507 receives processing conditions for specifying a vibration pattern when the galvano scanner unit 32 functions as a beam vibration mechanism. Details of the vibration pattern will be described later.
 切替部504は、切替制御信号がガルバノスキャナユニット32をビーム振動機構として機能させることを示すとき、端子Taに接続して移動指令信号を移動機構制御部505に供給する。移動機構制御部505は、移動指令信号に基づいて駆動部220及び230を制御して、加工ヘッド35を移動させる。このとき、振動・変位制御部507は、加工条件で指定されている振動パターンでレーザビームを振動させるよう駆動部322及び324を制御する。 When the switching control signal indicates that the galvano scanner unit 32 functions as a beam vibration mechanism, the switching unit 504 connects to the terminal Ta and supplies a movement command signal to the moving mechanism control unit 505. The moving mechanism control unit 505 controls the driving units 220 and 230 based on the movement command signal to move the processing head 35. At this time, the vibration / displacement control unit 507 controls the driving units 322 and 324 so as to vibrate the laser beam in a vibration pattern specified by the processing conditions.
 ガルバノスキャナユニット32は、図8に示すようにレーザビームを振動させる。板金Wの切断進行方向をx方向、板金Wの面内でx方向と直交する方向をy方向とする。図8は、振動パターンを理解しやすいよう、加工ヘッド35をx方向に移動させない状態での振動パターンを示している。ガルバノスキャナユニット32は、ビームスポットBsをビームスポットBsの進行によって形成される溝Wk内でx方向に振動させる。この振動パターンを平行振動パターンと称する。実際には、加工ヘッド35が切断進行方向に移動しながらレーザビームが平行振動パターンで振動させられる。 The galvano scanner unit 32 vibrates the laser beam as shown in FIG. The cutting direction of the sheet metal W is defined as the x direction, and the direction perpendicular to the x direction in the plane of the sheet metal W is defined as the y direction. FIG. 8 shows a vibration pattern without moving the processing head 35 in the x direction so that the vibration pattern can be easily understood. The galvano scanner unit 32 vibrates the beam spot Bs in the x direction within the groove Wk formed by the progress of the beam spot Bs. This vibration pattern is called a parallel vibration pattern. In practice, the laser beam is vibrated in a parallel vibration pattern while the processing head 35 moves in the cutting direction.
 切替部504は、切替制御信号がガルバノスキャナユニット32をビーム変位機構として機能させることを示すとき、端子Tbに接続して、移動指令分割部503が生成した主移動指令信号を移動機構制御部505に供給する。移動機構制御部505は、主移動指令信号に基づいて駆動部220及び230を制御して、加工ヘッド35を移動させる。このとき、振動・変位制御部507は、ガルバノスキャナユニット32が、移動指令分割部503が生成した副移動指令信号に基づいてビームスポットBsを変位させるよう、駆動部322及び324を制御する。 When the switching control signal indicates that the galvano scanner unit 32 functions as a beam displacement mechanism, the switching unit 504 is connected to the terminal Tb, and transmits the main movement command signal generated by the movement command dividing unit 503 to the moving mechanism control unit 505. To supply. The moving mechanism control unit 505 controls the driving units 220 and 230 based on the main movement command signal to move the processing head 35. At this time, the vibration / displacement control unit 507 controls the driving units 322 and 324 such that the galvano scanner unit 32 displaces the beam spot Bs based on the sub-movement command signal generated by the movement command division unit 503.
 図9に示すように、動作切替制御部502は、位置P1から位置P2まで及び位置P2から位置P3までの部分のうち、ビームスポットBsを開口36a内で変位させずに板金Wを切断するときにビームスポットBsを平行振動パターンで振動させるよう制御する。具体的には、動作切替制御部502は、加工ヘッド35が、X軸方向の移動を開始した後及び終了する前の各所定の距離の部分と、Y軸方向の移動を開始した後及び終了する前の各所定の距離の部分とを除き、ビームスポットBsを平行振動パターンで振動させるよう制御する。 As shown in FIG. 9, the operation switching control unit 502 cuts the sheet metal W without displacing the beam spot Bs in the opening 36a from the position P1 to the position P2 and the position P2 to the position P3. Is controlled to vibrate the beam spot Bs in a parallel vibration pattern. Specifically, the operation switching control unit 502 determines that the machining head 35 starts moving in the X-axis direction and ends at a predetermined distance before the processing ends, and also starts and ends moving in the Y-axis direction. The beam spot Bs is controlled so as to vibrate in a parallel vibration pattern, except for portions at predetermined distances before the beam spot Bs.
 NC装置50が加工ヘッド35の相対的な移動を開始させた後に加工ヘッド35を所定の距離だけ移動させる期間を第1の期間、相対的な移動を終了させる前に加工ヘッド35を所定の距離だけ移動させる期間を第2の期間とする。NC装置50(動作切替制御部502及び振動・変位制御部507)は、第1及び第2の期間を除く第3の期間において、レーザビームを振動させるようレーザ加工機100を制御する。 After the relative movement of the processing head 35 is started by the NC device 50, the processing head 35 is moved by a predetermined distance for a first period, and the processing head 35 is moved by a predetermined distance before the relative movement is completed. The period in which only the movement is performed is referred to as a second period. The NC device 50 (the operation switching control unit 502 and the vibration / displacement control unit 507) controls the laser processing machine 100 to vibrate the laser beam in a third period excluding the first and second periods.
 図10を用いて、図7に示すNC装置50の動作を説明する。図10はNC装置50の動作の一例を示している。NC装置50に入力される加工プログラムは、図10の(a)に示すX軸移動指令信号と、図10の(e)に示すY軸移動指令信号とを含む。レーザ加工機100がビームスポットBsを平行振動パターンで振動させると、ビームスポットBsを振動させない場合よりも、板金Wを高速に切断することができる。X軸移動指令信号及びY軸移動指令信号で設定される加工ヘッド35の移動速度(切断速度)は比較的高速に設定されている。 The operation of the NC device 50 shown in FIG. 7 will be described with reference to FIG. FIG. 10 shows an example of the operation of the NC device 50. The machining program input to the NC device 50 includes an X-axis movement command signal shown in FIG. 10A and a Y-axis movement command signal shown in FIG. When the laser beam machine 100 vibrates the beam spot Bs in a parallel vibration pattern, the sheet metal W can be cut faster than when the beam spot Bs is not vibrated. The moving speed (cutting speed) of the processing head 35 set by the X-axis movement command signal and the Y-axis movement command signal is set relatively high.
 X軸移動指令信号は時刻t21から時刻t23までの時間の減速指令を含み、Y軸移動指令信号は時刻t23から時刻t28までの時間の加速指令を含む。移動制御部501は、図10の(a)に示すX軸移動指令信号に基づいて(b)に示すX軸移動指令信号を生成し、(e)に示すY軸移動指令信号に基づいて(f)に示すY軸移動指令信号を生成する。 The X-axis movement command signal includes a deceleration command for a period from time t21 to time t23, and the Y-axis movement command signal includes an acceleration command for a period from time t23 to time t28. The movement control unit 501 generates the X-axis movement command signal shown in (b) based on the X-axis movement command signal shown in (a) of FIG. 10, and generates the X-axis movement command signal shown in (e) ( A Y-axis movement command signal shown in f) is generated.
 図10の(i)に示すように、時刻t21以前で切替部504は端子Taに接続しており、時刻t21で端子Tbへと切り替えられる。図10の(j)に示すように、時刻t21以前でビームスポットBsを平行振動パターンで振動させる平行振動オンとされており、時刻t21で平行振動オフとされる。 切 替 As shown in FIG. 10 (i), the switching unit 504 is connected to the terminal Ta before time t21, and is switched to the terminal Tb at time t21. As shown in FIG. 10 (j), before the time t21, the parallel vibration for vibrating the beam spot Bs in the parallel vibration pattern is turned on, and at the time t21, the parallel vibration is turned off.
 図10の(b)に示すX軸移動指令信号は、時刻t21から時刻t22までの時間の減速指令と、時刻t22から時刻t24までの時間の等速移動指令と、時刻t24から時刻t26までの時間の減速指令とを含む。時刻t22から時刻t24までの等速移動指令において、加工ヘッド35の移動速度を低減させているのは、加工プログラムで設定されている高速の移動速度を通常の移動速度とした上で、第1実施形態と同様に、加工ヘッド35を主移動指令信号によって移動させ、ビームスポットBsを副移動指令信号によって開口36a内で変位させるためである。 The X-axis movement command signal shown in FIG. 10B includes a deceleration command from time t21 to time t22, a constant speed movement command from time t22 to time t24, and an X-axis movement command signal from time t24 to time t26. And a time deceleration command. In the constant speed movement command from time t22 to time t24, the moving speed of the processing head 35 is reduced because the high speed set in the processing program is set to the normal moving speed, As in the embodiment, the processing head 35 is moved by the main movement command signal, and the beam spot Bs is displaced in the opening 36a by the sub movement command signal.
 移動指令分割部503は、図10の(c)に示すX軸主移動指令信号と、(d)に示すX軸副移動指令信号を生成する。X軸主移動指令信号は、時刻t24から時刻t26までの時間よりも長い時刻t23からt27までの時間をかけて加工ヘッド35を減速させて停止させる減速指令を含む。X軸副移動指令信号は、時刻t23から時刻t25までの時間の正方向移動指令と、時刻t25から時刻t27までの時間の逆方向移動指令を含む。 The movement command dividing unit 503 generates an X-axis main movement command signal shown in FIG. 10C and an X-axis sub-movement command signal shown in FIG. The X-axis main movement command signal includes a deceleration command for decelerating and stopping the processing head 35 over a period from time t23 to t27 longer than a period from time t24 to time t26. The X-axis sub-movement command signal includes a forward movement command for a time from time t23 to time t25 and a reverse movement command for a time from time t25 to time t27.
 図10の(f)に示すY軸移動指令信号は、時刻t24から時刻t26までの時間の加速指令と、時刻t26から時刻t29までの時間の等速移動指令と、時刻t29から時刻t30までの時間の加速指令とを含む。時刻t26から時刻t29までの時間の等速移動指令において、加工ヘッド35の移動速度を加工プログラムで設定されている等速移動時の移動速度よりも低減させている理由は、図10の(b)に示すX軸主移動指令信号において移動速度を低減させている理由と同じである。 The Y-axis movement command signal shown in (f) of FIG. 10 includes an acceleration command from time t24 to time t26, a constant speed movement command from time t26 to time t29, and a constant speed command from time t29 to time t30. And a time acceleration command. In the constant speed movement command from time t26 to time t29, the reason why the moving speed of the processing head 35 is made lower than the moving speed at the time of the constant speed movement set in the processing program is as shown in FIG. The reason is that the moving speed is reduced in the X-axis main movement command signal shown in ()).
 移動指令分割部503は、図10の(g)に示すY軸主移動指令信号と、(h)に示すY軸副移動指令信号を生成する。Y軸主移動指令信号は、時刻t24から時刻t26までの時間よりも長い時刻t23からt27までの時間をかけて加工ヘッド35を加速させる加速指令を含む。Y軸副移動指令信号は、時刻t23から時刻t25までの時間の逆方向移動指令と、時刻t25から時刻t27までの時間の正方向移動指令を含む。 The movement command dividing unit 503 generates a Y-axis main movement command signal shown in (g) of FIG. 10 and a Y-axis sub-movement command signal shown in (h) of FIG. The Y-axis main movement command signal includes an acceleration command for accelerating the processing head 35 over a period from time t23 to t27 longer than a period from time t24 to time t26. The Y-axis sub-movement command signal includes a backward movement command from time t23 to time t25 and a forward movement command from time t25 to time t27.
 図10の(i)に示すように、切替部504は時刻t30で端子Taへと切り替えられる。図10の(j)に示すように、時刻t30で再び平行振動オンとされる。 切 替 As shown in FIG. 10 (i), the switching unit 504 is switched to the terminal Ta at time t30. As shown in FIG. 10 (j), the parallel vibration is turned on again at time t30.
 以上のように、第2実施形態においては、動作切替制御部502は、ガルバノスキャナユニット32をビーム変位機構として機能させる第1の状態と、ビーム振動機構として機能させる第2の状態とを切り替える。振動・変位制御部507は、第2の状態とされているとき、レーザビームを板金Wの切断進行方向と平行方向に振動させるようガルバノスキャナユニット32を制御する。 As described above, in the second embodiment, the operation switching control unit 502 switches between the first state in which the galvano scanner unit 32 functions as a beam displacement mechanism and the second state in which the galvano scanner unit 32 functions as a beam vibration mechanism. When in the second state, the vibration / displacement control unit 507 controls the galvano scanner unit 32 so as to vibrate the laser beam in a direction parallel to the cutting direction of the sheet metal W.
 切替部504は、第1の状態とされているとき、移動機構制御部505が移動指令分割部503によって生成された主移動指令信号に基づいて加工ヘッド35の移動機構を制御するよう、移動機構制御部505に主移動指令信号を供給する。切替部504は、第2の状態とされているとき、移動機構制御部505が主移動指令信号と副移動指令信号とに分割していない移動指令信号に基づいて移動機構を制御するよう、移動機構制御部505に移動指令信号を供給する。 When the switching unit 504 is in the first state, the moving mechanism control unit 505 controls the moving mechanism of the processing head 35 based on the main movement command signal generated by the movement command dividing unit 503. A main movement command signal is supplied to the control unit 505. When in the second state, the switching unit 504 controls the movement mechanism so that the movement mechanism control unit 505 controls the movement mechanism based on a movement command signal that is not divided into a main movement command signal and a sub movement command signal. A movement command signal is supplied to the mechanism control unit 505.
 第2実施形態によれば、移動指令信号を主移動指令信号と副移動指令信号とに分割せず板金Wを切断する第3の期間において、レーザビームを平行振動パターンで振動させるので、板金Wをさらに高速に切断することができ、加工時間を短くすることができる。 According to the second embodiment, the laser beam is vibrated in the parallel vibration pattern in the third period in which the sheet metal W is cut without dividing the movement command signal into the main movement command signal and the sub movement command signal. Can be cut at a higher speed, and the processing time can be shortened.
 本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.
 2018年7月24日にドイツ連邦共和国に出願された特許出願10 2018 212 281.4号の全ての開示内容は引用によりここに援用される。 The entire disclosure of patent application No. 10/2018/212 / 281.4 filed in the Federal Republic of Germany on July 24, 2018 is hereby incorporated by reference.
 10 レーザ発振器
 12 プロセスファイバ
 20 レーザ加工ユニット
 22 X軸キャリッジ(移動機構)
 23 Y軸キャリッジ(移動機構)
 30 コリメータユニット
 31 コリメーションレンズ
 32 ガルバノスキャナユニット(ビーム変位機構,ビーム振動機構)
 33 ベンドミラー
 34 集束レンズ
 35 加工ヘッド
 36 ノズル
 36a 開口
 40 操作部
 50 NC装置(制御装置)
 60 加工プログラムデータベース
 70 加工条件データベース
 80 アシストガス供給装置
 100 レーザ加工機
 321,323 スキャンミラー
 322,324 駆動部
 501 移動制御部
 502 動作切替制御部
 503 移動指令分割部
 504 切替部
 505 移動機構制御部
 506 変位制御部
 507 振動・変位制御部(変位制御部,振動制御部)
 5031 遅延器
 5032 ローパスフィルタ
 5033 減算器
 W 板金
Reference Signs List 10 laser oscillator 12 process fiber 20 laser processing unit 22 X-axis carriage (moving mechanism)
23 Y-axis carriage (moving mechanism)
30 collimator unit 31 collimation lens 32 galvano scanner unit (beam displacement mechanism, beam vibration mechanism)
33 Bend mirror 34 Focusing lens 35 Processing head 36 Nozzle 36a Opening 40 Operation unit 50 NC device (control device)
Reference Signs List 60 processing program database 70 processing condition database 80 assist gas supply device 100 laser processing machine 321, 323 scan mirror 322, 324 drive unit 501 movement control unit 502 operation switching control unit 503 movement command division unit 504 switching unit 505 moving mechanism control unit 506 Displacement controller 507 Vibration / displacement controller (displacement controller, vibration controller)
5031 delay unit 5032 low-pass filter 5033 subtractor W sheet metal

Claims (5)

  1.  先端部に開口を有し、前記開口より板金を切断するためのレーザビームを射出するノズルが取り付けられている加工ヘッドと、
     前記板金の面に対して前記加工ヘッドを相対的に移動させる移動機構と、
     前記加工ヘッド内を進行して前記開口より射出されるレーザビームの前記開口内での位置を変位させるビーム変位機構と、
     前記移動機構によって前記加工ヘッドを相対的に移動させる移動指令信号を遅延させる遅延器と、前記移動指令信号における低域周波数成分のみを通過させることによって、前記移動機構によって前記加工ヘッドを相対的に移動させる主移動指令信号を生成するローパスフィルタと、前記遅延器によって遅延された遅延移動指令信号から前記主移動指令信号を減算することによって、前記ビーム変位機構によって前記開口より射出されるレーザビームの前記開口内での位置を変位させる副移動指令信号を生成する減算器とを有する移動指令分割部と、
     前記主移動指令信号に基づいて、前記加工ヘッドを相対的に移動させるよう前記移動機構を制御する移動機構制御部と、
     前記副移動指令信号に基づいて、前記開口より射出されるレーザビームの前記開口内での位置を変位させるよう前記ビーム変位機構を制御する変位制御部と、
     を備えるレーザ加工機。
    A processing head having an opening at the tip, and a nozzle for emitting a laser beam for cutting a sheet metal from the opening is attached,
    A moving mechanism for relatively moving the processing head with respect to the surface of the sheet metal,
    A beam displacement mechanism that travels in the processing head and displaces a position in the opening of the laser beam emitted from the opening,
    A delay device that delays a movement command signal for relatively moving the processing head by the moving mechanism, and by passing only a low-frequency component in the movement command signal, the processing mechanism relatively moves the processing head. A low-pass filter that generates a main movement command signal to be moved, and a laser beam emitted from the aperture by the beam displacement mechanism by subtracting the main movement command signal from the delayed movement command signal delayed by the delay unit. A movement command division unit having a subtractor that generates a sub-movement command signal that displaces a position in the opening,
    A moving mechanism control unit that controls the moving mechanism to relatively move the processing head based on the main movement command signal;
    Based on the sub-movement command signal, a displacement control unit that controls the beam displacement mechanism to displace the position of the laser beam emitted from the opening in the opening,
    Laser processing machine equipped with.
  2.  前記開口より射出されるレーザビームを前記開口内で振動させるビーム振動機構と、
     前記ビーム変位機構を動作させる第1の状態と前記ビーム振動機構を動作させる第2の状態とを切り替える動作切替制御部と、
     前記動作切替制御部によって前記第2の状態とされているとき、レーザビームを前記板金の切断進行方向と平行方向に振動させるよう前記ビーム振動機構を制御する振動制御部と、
     前記動作切替制御部によって前記第1の状態とされているとき、前記移動機構制御部が前記主移動指令信号に基づいて前記移動機構を制御するよう、前記移動機構制御部に前記主移動指令信号を供給し、前記動作切替制御部によって前記第2の状態とされているとき、前記移動機構制御部が前記移動指令信号に基づいて前記移動機構を制御するよう、前記移動機構制御部に前記移動指令信号を供給する切替部と、
     をさらに備える請求項1に記載のレーザ加工機。
    A beam vibration mechanism that vibrates a laser beam emitted from the opening in the opening,
    An operation switching control unit that switches between a first state for operating the beam displacement mechanism and a second state for operating the beam vibration mechanism;
    A vibration control unit that controls the beam vibration mechanism so as to vibrate a laser beam in a direction parallel to a cutting direction of the sheet metal when the operation switching control unit is in the second state;
    When the first state is set by the operation switching control unit, the moving mechanism control unit controls the moving mechanism based on the main movement command signal so that the moving mechanism control unit controls the main movement command signal. And when the operation switching control unit is in the second state, the moving mechanism control unit controls the moving mechanism so that the moving mechanism control unit controls the moving mechanism based on the movement command signal. A switching unit for supplying a command signal;
    The laser beam machine according to claim 1, further comprising:
  3.  前記ビーム変位機構及び前記ビーム振動機構双方として機能するガルバノスキャナユニットを備え、
     前記変位制御部は、前記動作切替制御部によって前記第1の状態とされているとき、前記ガルバノスキャナユニットを前記ビーム変位機構として動作させ、
     前記振動制御部は、前記動作切替制御部によって前記第2の状態とされているとき、前記ガルバノスキャナユニットを前記ビーム振動機構として動作させる
     請求項2に記載のレーザ加工機。
    A galvano scanner unit functioning as both the beam displacement mechanism and the beam vibration mechanism,
    The displacement control unit, when being in the first state by the operation switching control unit, operates the galvano scanner unit as the beam displacement mechanism,
    The laser processing machine according to claim 2, wherein the vibration control unit operates the galvano scanner unit as the beam vibration mechanism when the operation switching control unit sets the vibration control unit in the second state.
  4.  レーザ加工機を制御する制御装置が、
     加工プログラムに基づいて、先端部に開口を有し、前記開口より板金を切断するためのレーザビームを射出するノズルが取り付けられている加工ヘッドを、前記板金の面に対して相対的に移動させる移動指令信号を生成し、
     前記移動指令信号を遅延させて遅延移動指令信号を生成し、
     前記移動指令信号における低域周波数成分のみを通過させることによって、前記加工ヘッドを相対的に移動させる主移動指令信号を生成し、
     前記遅延移動指令信号から前記主移動指令信号を減算することによって、前記開口より射出されるレーザビームの前記開口内での位置を変位させる副移動指令信号を生成し、
     前記主移動指令信号に基づいて前記加工ヘッドを相対的に移動させ、かつ、前記副移動指令信号に基づいて前記開口より射出されるレーザビームの前記開口内での位置を変位させて前記板金を切断するよう前記レーザ加工機を制御する
     レーザ加工方法。
    The control device that controls the laser processing machine,
    Based on a processing program, a processing head having an opening at a tip end and having a nozzle for emitting a laser beam for cutting a sheet metal through the opening is attached to a surface of the sheet metal. Generate a movement command signal,
    A delayed movement command signal is generated by delaying the movement command signal,
    By passing only low frequency components in the movement command signal, a main movement command signal for relatively moving the processing head is generated,
    By subtracting the main movement command signal from the delayed movement command signal, a sub-movement command signal for displacing the position of the laser beam emitted from the opening in the opening is generated,
    The processing head is relatively moved based on the main movement command signal, and the position of the laser beam emitted from the opening in the opening is displaced within the opening based on the sub-movement command signal to cause the sheet metal to move. A laser processing method for controlling the laser processing machine to perform cutting.
  5.  前記制御装置が、前記移動指令信号による、前記加工ヘッドの相対的な移動を開始させた後に前記加工ヘッドを所定の距離だけ移動させる第1の期間と、前記加工ヘッドの相対的な移動を終了させる前に前記加工ヘッドを所定の距離だけ移動させる第2の期間とを除く第3の期間において、前記開口より射出されるレーザビームを前記板金の切断進行方向と平行方向に振動させるよう前記レーザ加工機を制御する請求項4に記載のレーザ加工方法。 A first period in which the control device moves the processing head by a predetermined distance after the relative movement of the processing head is started by the movement command signal, and ends the relative movement of the processing head; The laser beam emitted from the opening is vibrated in a direction parallel to a cutting direction of the sheet metal during a third period except for a second period in which the processing head is moved by a predetermined distance before the laser beam is moved. The laser processing method according to claim 4, which controls the processing machine.
PCT/JP2019/024556 2018-07-24 2019-06-20 Laser machining device and laser machining method WO2020021924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018212281.4 2018-07-24
DE102018212281.4A DE102018212281A1 (en) 2018-07-24 2018-07-24 Laser processing machine and laser processing method

Publications (1)

Publication Number Publication Date
WO2020021924A1 true WO2020021924A1 (en) 2020-01-30

Family

ID=69148723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024556 WO2020021924A1 (en) 2018-07-24 2019-06-20 Laser machining device and laser machining method

Country Status (2)

Country Link
DE (1) DE102018212281A1 (en)
WO (1) WO2020021924A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288541A (en) * 2004-03-31 2005-10-20 Eo Technics Co Ltd Laser processing apparatus employing polygon mirror
JP2007021579A (en) * 2005-06-17 2007-02-01 Nippon Steel Corp Copying laser beam-oscillating device, and beam oscillating laser machining apparatus
WO2015156119A1 (en) * 2014-04-10 2015-10-15 三菱電機株式会社 Laser processing device and laser processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288541A (en) * 2004-03-31 2005-10-20 Eo Technics Co Ltd Laser processing apparatus employing polygon mirror
JP2007021579A (en) * 2005-06-17 2007-02-01 Nippon Steel Corp Copying laser beam-oscillating device, and beam oscillating laser machining apparatus
WO2015156119A1 (en) * 2014-04-10 2015-10-15 三菱電機株式会社 Laser processing device and laser processing method

Also Published As

Publication number Publication date
DE102018212281A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP6638011B2 (en) Laser processing machine and laser processing method
WO2020008827A1 (en) Laser machining device and laser machining method
JP6684872B2 (en) Laser processing machine and laser processing method
JPWO2017134964A1 (en) Laser processing machine and laser processing method
CN112912202B (en) Laser processing machine and laser processing method
JP2009178720A (en) Laser beam machining apparatus
JP6538911B1 (en) Laser processing machine and laser processing method
JPH04327394A (en) Light moving type laser beam machine
WO2020021924A1 (en) Laser machining device and laser machining method
CN112912201B (en) Laser processing machine and laser processing method
JP7367861B2 (en) Laser processing machine, laser processing method and control program generation device
JP6643442B1 (en) Laser processing machine and laser processing method
JP6638032B1 (en) Laser processing machine and laser processing method
JP7194588B2 (en) Laser processing method
JP6820358B2 (en) Laser machining machine and laser machining method
WO2020045081A1 (en) Laser machining device and laser machining method
JP7291527B2 (en) Laser processing machine and laser processing method
JP6655692B1 (en) Laser processing machine and laser processing method
WO2022202797A1 (en) Laser machining device and laser machining method
JP2014111259A (en) Laser processing method, laser processing device, and laser processing program
JP6643444B1 (en) Laser processing machine, method for setting processing conditions, and control device for laser processing machine
WO2023286658A1 (en) Laser lamination molding method and laser lamination molding device
JP2019155401A (en) Laser processor and laser processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841836

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19841836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP