WO2020021847A1 - Polarizing film and method for manufacturing polarizing film - Google Patents

Polarizing film and method for manufacturing polarizing film Download PDF

Info

Publication number
WO2020021847A1
WO2020021847A1 PCT/JP2019/021299 JP2019021299W WO2020021847A1 WO 2020021847 A1 WO2020021847 A1 WO 2020021847A1 JP 2019021299 W JP2019021299 W JP 2019021299W WO 2020021847 A1 WO2020021847 A1 WO 2020021847A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
polarizing film
pva
based resin
treatment
Prior art date
Application number
PCT/JP2019/021299
Other languages
French (fr)
Japanese (ja)
Inventor
幸佑 ▲高▼永
後藤 周作
亮 嶋津
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020217001303A priority Critical patent/KR102606109B1/en
Priority to CN201980049382.8A priority patent/CN112513694B/en
Publication of WO2020021847A1 publication Critical patent/WO2020021847A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol

Definitions

  • the present invention relates to a polarizing film and a method for manufacturing a polarizing film.
  • polarizing films are disposed on both sides of a liquid crystal cell due to the image forming method.
  • OLEDs organic EL panel and displays (QLEDs) using a display panel using an inorganic light emitting material such as quantum dots
  • a polarizing film can also be applied.
  • a method of manufacturing a polarizing film for example, a method of stretching a laminate having a resin base material and a polyvinyl alcohol (PVA) -based resin layer and then performing a dyeing treatment to obtain a polarizing film on the resin base material is known. It has been proposed (for example, Patent Document 1).
  • a polarizing film having a small thickness can be obtained, and thus, it is noted that it can contribute to a reduction in thickness of an image display device in recent years.
  • uneven streaks may be visually recognized.
  • the present invention has been made to solve the above-mentioned conventional problems, and a main object of the present invention is to provide a polarizing film capable of suppressing the occurrence of uneven streaks, and a method for manufacturing such a polarizing film.
  • the polarizing film of the present invention has a thickness of 8 ⁇ m or less, and the average value of the difference between the maximum thickness and the minimum thickness of each 50 mm region from one end to the other end along the direction perpendicular to the absorption axis is 70 nm. It is as follows. In one embodiment, the single transmittance is 44.5% or more and the degree of polarization is 99.0% or more. According to another aspect of the present invention, a polarizing plate is provided. The polarizing plate includes the polarizing film and a protective layer disposed on at least one side of the polarizing film. According to another aspect of the present invention, a method for manufacturing a polarizing film is provided.
  • the method for producing a polarizing film includes forming a laminate by forming a polyvinyl alcohol-based resin layer containing a polyvinyl alcohol-based resin on one side of a thermoplastic resin base, and applying an air stretching treatment and a dyeing treatment to the laminate. And the polyvinyl alcohol-based resin layer after the aerial stretching treatment has a crystallization index calculated by attenuated total reflection spectroscopy of 1.55 or more and 1.7 or less, and The orientation function is 0.22 or more and 0.31 or less.
  • the method further includes performing an underwater stretching process on the laminate after the aerial stretching process, wherein the stretching ratio in the aerial stretching process is 3.0 times or more, and the stretching in the underwater stretching process is performed. Magnification is 1.8 times or less.
  • FIG. 1 is a schematic sectional view of a polarizing plate according to one embodiment of the present invention.
  • the polarizing film according to one embodiment of the present invention has a thickness of 8 ⁇ m or less, and has a maximum thickness and a minimum thickness for each region of 50 mm from one end to the other end along a direction perpendicular to the absorption axis. Is 70 nm or less (hereinafter sometimes referred to as thickness variation).
  • the thickness variation is, for example, measuring the thickness of the polarizing film from the one end to the other end at an interval of 2 mm, calculate the difference between the maximum thickness and the minimum thickness in an area of every 50 mm, in each area It is obtained by calculating the average value of the difference.
  • the thickness of the polarizing film can be typically measured using an optical interference thickness meter.
  • Conventional thin polarizing films may have thickness variations along a direction perpendicular to the absorption axis due to the manufacturing method and the like. As a result, when applied to an image display device, stripes along the absorption axis may occur. In some cases, unevenness in shape occurred.
  • the thickness variation of the polarizing film of the present embodiment is small despite its very small thickness. Such a polarizing film can suppress occurrence of uneven streaks when applied to an image display device.
  • the thickness of the polarizing film is preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and still more preferably 2 ⁇ m to 5 ⁇ m.
  • the thickness variation is preferably 50 nm or less, more preferably 40 nm or less, and particularly preferably 30 nm or less.
  • the thickness variation is preferably small, but a practical lower limit is, for example, 5 nm.
  • the polarizing film preferably has a single transmittance of 44.5% or more and a degree of polarization of 99.0% or more.
  • the single transmittance of the polarizing film is more preferably 45.0% or more.
  • the degree of polarization of the polarizing film is more preferably 99.5% or more, and still more preferably 99.9% or more.
  • the single transmittance is typically a Y value measured using a UV-visible spectrophotometer and subjected to visibility correction.
  • the degree of polarization is typically determined by the following equation based on the parallel transmittance Tp and the orthogonal transmittance Tc, which have been measured using a UV-visible spectrophotometer and corrected for visibility.
  • Degree of polarization (%) ⁇ (Tp ⁇ Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • the method for producing a polarizing film includes forming a polyvinyl alcohol-based resin layer (PVA-based resin layer) containing a polyvinyl alcohol-based resin (PVA-based resin) on one side of a thermoplastic resin base material to form a laminate; And subjecting the laminate to an air stretching process and a dyeing process in this order.
  • the PVA-based resin layer after the air stretching treatment has a crystallization index calculated by attenuated total reflection spectroscopy (ATR) of 1.55 or more and 1.7 or less, and an orientation function of 0.22 or more and 0 or less. .31 or less.
  • ATR attenuated total reflection spectroscopy
  • the crystallization index of the PVA-based resin layer after the air stretching treatment is determined by ATR measurement using, for example, a Fourier transform infrared spectrophotometer (FT-IR) and polarized light as measurement light. Specifically, the measurement was carried out with the measurement polarized light at 0 ° and 90 ° with respect to the stretching direction, and the intensity was calculated at 1141 cm ⁇ 1 and 1140 cm ⁇ 1 of the obtained spectrum according to the following equation. You. Note that the intensity of 1141 cm ⁇ 1 has a correlation with the amount of the crystal part of the PVA-based resin layer.
  • FT-IR Fourier transform infrared spectrophotometer
  • Crystallization index ((I C-0 + 2 ⁇ I C-90 ) / 3) / ((I R-0 + 2 ⁇ I R-90 ) / 3)
  • I C-0 Intensity of 1141 cm ⁇ 1 when measuring with measuring light (polarized light) incident in a direction parallel to the stretching direction
  • I C-90 Measurement with measuring light (polarized light) incident in a direction perpendicular to the stretching direction
  • I R-90 at 1140 cm -1 the measurement light (polarized light) in the stretching direction Of 1140 cm -1 when measured with vertical incidence
  • the orientation function (f) of the PVA-based resin layer after the air stretching treatment can be determined by, for example, ATR measurement using FT-IR and polarized light as measurement light. Specifically, the measurement is performed in a state where the measurement polarization is set to 0 ° and 90 ° with respect to the stretching direction, and the calculated value is calculated according to the following equation using the intensity of 2941 cm ⁇ 1 of the obtained spectrum.
  • the intensity I as a reference peak to 3330cm -1, a value of 2941cm -1 / 3330cm -1.
  • FIG. 1 is a schematic sectional view of a polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 100 includes a polarizing film 10, a first protective layer 20 disposed on one side of the polarizing film 10, and a second protective layer 30 disposed on the other side of the polarizing film 10.
  • the polarizing film 10 is the polarizing film of the present invention described in the above section A.
  • One of the first protective layer 20 and the second protective layer 30 may be omitted.
  • one of the first protective layer and the second protective layer may be a resin base material used for manufacturing the above-described polarizing film.
  • the first and second protective layers are formed of any appropriate film that can be used as a protective layer of a polarizing film.
  • the material that is a main component of the film include a cellulosic resin such as triacetyl cellulose (TAC), polyester, polyvinyl alcohol, polycarbonate, polyamide, polyimide, polyethersulfone, and polysulfone.
  • a transparent resin such as polystyrene, polynorbornene, polyolefin, (meth) acrylic, and acetate.
  • a thermosetting resin such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, silicone and the like, or an ultraviolet curable resin may also be used.
  • a glassy polymer such as a siloxane-based polymer may also be used.
  • a polymer film described in JP-A-2001-343529 (WO 01/37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in a side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • the polymer film may be, for example, an extruded product of the resin composition.
  • the thickness of a protective layer (outer protective layer) disposed on the side opposite to the display panel is typically 300 ⁇ m or less, preferably 100 ⁇ m or less, more preferably.
  • the thickness is 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m.
  • the thickness of the outer protective layer is a thickness including the thickness of the surface treatment layer.
  • the thickness of the protective layer (inner protective layer) disposed on the display panel side is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, and still more preferably 10 ⁇ m to 60 ⁇ m. is there.
  • the inner protective layer is a retardation layer having any suitable retardation value.
  • a retardation film having an in-plane retardation of 40 nm or more and / or a retardation having a thickness direction retardation of 80 nm or more can be used as the retardation layer.
  • the in-plane retardation is usually controlled in the range of 40 to 200 nm, and the thickness direction retardation is usually controlled in the range of 80 to 300 nm.
  • the retardation film examples include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and an alignment layer of a liquid crystal polymer supported by a film.
  • the thickness of the retardation film is not particularly limited, but is generally about 20 to 150 ⁇ m.
  • the method for producing a polarizing film according to one embodiment of the present invention is, as described above, a method of forming a laminate by forming a polyvinyl alcohol-based resin layer containing a polyvinyl alcohol-based resin on one side of a thermoplastic resin base material. And subjecting the laminate to an air stretching process and a dyeing process in this order.
  • the polyvinyl alcohol-based resin layer after the air stretching treatment has a crystallization index calculated by attenuated total reflection measurement of 1.55 or more and 1.7 or less, and an orientation function of 0.22 or more and 0.31 or less. It is as follows.
  • the method includes subjecting the laminate to an underwater stretching process after the aerial stretching process, wherein the stretching ratio in the aerial stretching process is 3.0 times or more, and the stretching ratio in the underwater stretching process is 1.8 times or less. .
  • the crystallization of the PVA-based resin layer after the aerial stretching is promoted by setting the stretching ratio in the aerial stretching to be higher than that of the conventional manufacturing method and setting the stretching ratio to be lower in the underwater stretching.
  • excessive crystallization of the thermoplastic resin substrate can be suppressed.
  • a polarizing film having small thickness variation and excellent optical characteristics can be obtained.
  • thermoplastic resin substrate and the PVA-based resin layer Any appropriate method can be adopted as a method for producing a laminate of the thermoplastic resin substrate and the PVA-based resin layer.
  • a coating liquid containing a PVA-based resin is applied to the surface of the long thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material.
  • any appropriate method can be adopted as a method of applying the coating solution.
  • a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (such as a comma coating method) and the like can be mentioned.
  • the coating / drying temperature of the coating solution is preferably 50 ° C. or higher.
  • the thickness of the PVA-based resin layer is preferably 3 ⁇ m to 40 ⁇ m, and more preferably 3 ⁇ m to 20 ⁇ m.
  • the thermoplastic resin substrate Before forming the PVA-based resin layer, the thermoplastic resin substrate may be subjected to a surface treatment (for example, corona treatment), or the easy-adhesion layer may be formed on the thermoplastic resin substrate. By performing such a treatment, the adhesion between the thermoplastic resin substrate and the PVA-based resin layer can be improved.
  • a surface treatment for example, corona treatment
  • the easy-adhesion layer may be formed on the thermoplastic resin substrate.
  • Thermoplastic resin base material The thickness of the thermoplastic resin base material is preferably from 20 ⁇ m to 300 ⁇ m, more preferably from 50 ⁇ m to 200 ⁇ m. If it is less than 20 ⁇ m, formation of a PVA-based resin layer may be difficult. If it exceeds 300 ⁇ m, for example, in the underwater stretching treatment described below, it takes a long time for the thermoplastic resin substrate to absorb water, and an excessive load may be required for stretching.
  • the thermoplastic resin substrate preferably has a water absorption of 0.2% or more, more preferably 0.3% or more.
  • the plastic resin substrate absorbs water, and the water acts as a plasticizer and can be plasticized. As a result, the stretching stress can be greatly reduced, and stretching can be performed at a high magnification.
  • the water absorption of the thermoplastic resin substrate is preferably 3.0% or less, more preferably 1.0% or less.
  • thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material.
  • the water absorption is a value determined according to JIS K7209.
  • the glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 120 ° C or lower.
  • Tg the glass transition temperature of the thermoplastic resin substrate.
  • the temperature is more preferably 100 ° C. or lower, further preferably 90 ° C. or lower.
  • the glass transition temperature of the thermoplastic resin substrate is preferably 60 ° C. or higher.
  • thermoplastic resin base material By using such a thermoplastic resin base material, the thermoplastic resin base material is deformed (for example, generation of irregularities, tarmi, wrinkles, and the like) when the coating liquid containing the PVA-based resin is applied and dried. The above problem can be prevented, and the laminate can be favorably manufactured. Further, the stretching of the PVA-based resin layer can be favorably performed at a suitable temperature (for example, about 60 ° C.).
  • the glass transition temperature of the thermoplastic resin substrate can be adjusted, for example, by heating using a crystallization material that introduces a modifying group into the constituent material.
  • the glass transition temperature (Tg) is a value obtained in accordance with JIS @ K # 7121.
  • thermoplastic resin can be adopted as a constituent material of the thermoplastic resin base material.
  • the thermoplastic resin include, for example, ester resins such as polyethylene terephthalate resin, cycloolefin resins such as norbornene resin, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. Is mentioned. Among these, a norbornene-based resin and an amorphous polyethylene terephthalate-based resin are preferred.
  • an amorphous (non-crystallized) polyethylene terephthalate resin is preferably used.
  • an amorphous (hard to crystallize) polyethylene terephthalate resin is particularly preferably used.
  • Specific examples of the amorphous polyethylene terephthalate-based resin include a copolymer further containing isophthalic acid and / or cyclohexanedicarboxylic acid as a dicarboxylic acid, and a copolymer further containing cyclohexanedimethanol or diethylene glycol as a glycol.
  • the thermoplastic resin substrate is made of a polyethylene terephthalate resin having an isophthalic acid unit.
  • a thermoplastic resin substrate is extremely excellent in stretchability and can suppress crystallization during stretching. This is considered to be due to the fact that the introduction of the isophthalic acid unit gives a large bending to the main chain.
  • the polyethylene terephthalate resin has a terephthalic acid unit and an ethylene glycol unit.
  • the content ratio of the isophthalic acid unit is preferably at least 0.1 mol%, more preferably at least 1.0 mol%, based on the total of all repeating units. This is because a thermoplastic resin substrate having extremely excellent stretchability can be obtained.
  • the content ratio of the isophthalic acid unit is preferably 20 mol% or less, more preferably 10 mol% or less, based on the total of all repeating units.
  • the crystallinity can be favorably increased in the drying shrinkage treatment described below.
  • the thermoplastic resin substrate may be stretched in advance (before forming the PVA-based resin layer). In one embodiment, it is stretched in the transverse direction of a long thermoplastic resin substrate.
  • the lateral direction is preferably a direction orthogonal to the stretching direction of the laminate described below.
  • “orthogonal” includes a case where they are substantially orthogonal.
  • substantially orthogonal includes 90 ° ⁇ 5.0 °, preferably 90 ° ⁇ 3.0 °, and more preferably 90 ° ⁇ 1.0 °.
  • the stretching temperature of the thermoplastic resin substrate is preferably from Tg ⁇ 10 ° C. to Tg + 50 ° C. with respect to the glass transition temperature (Tg).
  • the stretch ratio of the thermoplastic resin base material is preferably 1.5 to 3.0 times. Any appropriate method can be adopted as a method for stretching the thermoplastic resin substrate. Specifically, fixed-end stretching or free-end stretching may be used. The stretching method may be a dry method or a wet method. The stretching of the thermoplastic resin substrate may be performed in one step or may be performed in multiple steps. In the case of performing in multiple stages, the above-mentioned stretching ratio is a product of the stretching ratios in each stage.
  • the coating liquid is typically a solution obtained by dissolving the PVA-based resin in a solvent.
  • the solvent include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferable.
  • the concentration of the PVA resin in the solution is preferably 3 to 20 parts by weight based on 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film adhered to the thermoplastic resin base material can be formed.
  • Additives may be added to the coating solution.
  • the additive include a plasticizer and a surfactant.
  • the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • the surfactant include a nonionic surfactant. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer.
  • any appropriate resin can be adopted.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is usually from 85 mol% to 100 mol%, preferably from 95.0 mol% to 99.95 mol%, more preferably from 99.0 mol% to 99.93 mol%. .
  • the degree of saponification can be determined according to JIS @ K-6726-1994. By using a PVA-based resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average polymerization degree of the PVA-based resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually from 1,000 to 10,000, preferably from 1,200 to 4,500, and more preferably from 1,500 to 4,300.
  • the average degree of polymerization can be determined according to JIS @ K-6726-1994.
  • the stretching ratio in the aerial stretching process is preferably 3.0 times to 4.0 times. Thereby, the crystallization index and the orientation function of the PVA-based resin layer after the air stretching treatment can be controlled within a desired numerical range. Further, as described above, by setting the stretching ratio in the aerial stretching process higher than in the conventional manufacturing method, the stretching ratio for realizing desired optical characteristics in the underwater stretching process described below can be set lower. . Thereby, excessive crystallization of the thermoplastic resin substrate due to the underwater stretching treatment can be suppressed.
  • the stretching method in the air-assisted stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, uniaxially stretching through a laminate between rolls having different peripheral speeds).
  • free end stretching can be actively employed to obtain high optical properties.
  • the air stretching process includes a heating roll stretching step in which the long laminate is stretched by a peripheral speed difference between the heating rolls while being conveyed in the longitudinal direction.
  • the aerial stretching process typically includes a zone stretching step and a heated roll stretching step.
  • the order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first.
  • the zone stretching step may be omitted.
  • the zone stretching step and the hot roll stretching step are performed in this order.
  • the film in a tenter stretching machine, the film is stretched by gripping the end of the film and increasing the distance between the tenters in the flow direction (the expansion of the distance between the tenters becomes the stretching ratio).
  • the distance of the tenter in the width direction is set to be arbitrarily small.
  • it can be set so as to be closer to the free-end stretching with respect to the stretching ratio in the flow direction.
  • the shrinkage in the width direction is calculated as (1 / stretching ratio) 1/2 .
  • the in-air auxiliary stretching may be performed in one stage or may be performed in multiple stages.
  • the stretching ratio is a product of the stretching ratios of the respective stages.
  • the stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
  • the maximum stretching ratio in the case where the in-air assisted stretching and the underwater stretching are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and still more preferably 6.0 times, with respect to the original length of the laminate. That is all.
  • the “maximum stretch ratio” refers to a stretch ratio immediately before the laminate is broken, and separately refers to a stretch ratio at which the laminate is broken, and refers to a value 0.2 lower than the value.
  • the stretching temperature of the in-air auxiliary stretching can be set to any appropriate value according to the forming material of the thermoplastic resin base material, the stretching method, and the like.
  • the stretching temperature is preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin substrate, more preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin substrate + 10 ° C., and particularly preferably equal to or higher than Tg + 15 ° C.
  • the upper limit of the stretching temperature is preferably 170 ° C.
  • an insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment and the dyeing treatment.
  • the insolubilization treatment is typically performed by immersing the PVA-based resin layer in a boric acid aqueous solution.
  • the concentration of the boric acid aqueous solution is preferably 1 part by weight to 4 parts by weight based on 100 parts by weight of water.
  • the liquid temperature of the insolubilizing bath is preferably 20 ° C to 50 ° C.
  • the above-mentioned dyeing treatment is typically performed by dyeing a PVA-based resin layer with iodine. Specifically, it is performed by adsorbing iodine on the PVA-based resin layer.
  • the adsorption method include a method of dipping a PVA-based resin layer (laminate) in a dyeing solution containing iodine, a method of coating the PVA-based resin layer with the dyeing solution, and a method of applying the dyeing solution to the PVA-based resin layer.
  • a spraying method and the like can be mentioned.
  • a preferred method is to immerse the laminate in a dye solution (dye bath). This is because iodine can be favorably adsorbed.
  • the staining solution is preferably an aqueous iodine solution.
  • the amount of iodine is preferably 0.05 to 0.5 parts by weight based on 100 parts by weight of water.
  • iodide is added to an aqueous iodine solution.
  • examples of iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. And the like.
  • potassium iodide is preferable.
  • the amount of iodide is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, based on 100 parts by weight of water.
  • the temperature of the dyeing solution at the time of dyeing is preferably 20 ° C. to 50 ° C. in order to suppress the dissolution of the PVA resin.
  • the immersion time is preferably from 5 seconds to 5 minutes, more preferably from 30 seconds to 90 seconds, in order to secure the transmittance of the PVA-based resin layer.
  • Dyeing conditions can be set so that the degree of polarization or the single transmittance of the finally obtained polarizing film is within a predetermined range.
  • the immersion time is set so that the obtained polarizing film has a single transmittance of 44.5% to 45.0%.
  • the immersion time is set so that the degree of polarization of the obtained polarizing film is 99.0% or more.
  • the boric acid contained in the treatment bath is mixed into the dyeing bath.
  • the boric acid concentration in the dye bath changes over time, and as a result, the dyeability may be unstable.
  • the upper limit of the concentration of boric acid in the dyeing bath is preferably 4 parts by weight, more preferably 2 parts by weight, based on 100 parts by weight of water. Adjusted.
  • the lower limit of the concentration of boric acid in the dyeing bath is preferably 0.1 part by weight, more preferably 0.2 part by weight, and still more preferably 0.5 part by weight with respect to 100 parts by weight of water. It is.
  • the dyeing treatment is performed using a dyeing bath in which boric acid is previously mixed. This can reduce the rate of change in boric acid concentration when boric acid in the treatment bath is mixed into the dyeing bath.
  • the amount of boric acid previously added to the dyeing bath is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of water. , More preferably 0.5 to 1.5 parts by weight.
  • crosslinking treatment is performed after the dyeing treatment and before the underwater stretching treatment.
  • the crosslinking treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution.
  • the concentration of the boric acid aqueous solution is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water.
  • the amount of iodide is preferably 1 to 5 parts by weight based on 100 parts by weight of water. Specific examples of iodide are as described above.
  • the liquid temperature of the crosslinking bath is preferably 20 ° C. to 50 ° C.
  • the stretching ratio in the underwater stretching treatment is preferably 1.8 times or less, more preferably 1.5 times or less. Thereby, excessive crystallization of the thermoplastic resin substrate due to the underwater stretching treatment can be suppressed. Further, a high total stretching ratio in combination with the auxiliary stretching in the air is realized, and a polarizing film having extremely excellent optical properties can be manufactured.
  • the underwater stretching treatment is performed by immersing the laminate in a stretching bath.
  • the thermoplastic resin substrate and the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. And can be stretched at a high magnification. As a result, a polarizing film having excellent optical characteristics can be manufactured.
  • Any suitable method can be adopted as a method for stretching the laminate.
  • fixed-end stretching or free-end stretching for example, a method of uniaxially stretching through a laminate between rolls having different peripheral speeds
  • free end stretching is selected.
  • the stretching of the laminate may be performed in one stage or may be performed in multiple stages. In the case of performing in multiple stages, the stretching ratio (maximum stretching ratio) of the laminate described later is a product of the stretching ratios in each stage.
  • the underwater stretching is preferably performed by immersing the laminate in a boric acid aqueous solution (boric acid in water stretching).
  • a boric acid aqueous solution as the stretching bath, it is possible to provide the PVA-based resin layer with rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water.
  • boric acid can generate a tetrahydroxyborate anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding.
  • rigidity and water resistance can be imparted to the PVA-based resin layer, the film can be stretched favorably, and a polarizing film having excellent optical characteristics can be manufactured.
  • the boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent.
  • the concentration of boric acid is preferably 1 to 10 parts by weight, more preferably 2.5 to 6 parts by weight, particularly preferably 3 to 5 parts by weight, based on 100 parts by weight of water. It is. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film having higher characteristics can be manufactured.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
  • an iodide is blended in the above stretching bath (boric acid aqueous solution).
  • iodide By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed.
  • Specific examples of iodide are as described above.
  • the concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight, based on 100 parts by weight of water.
  • the stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C to 85 ° C, more preferably 60 ° C to 75 ° C. At such a temperature, the film can be stretched at a high magnification while suppressing the dissolution of the PVA-based resin layer.
  • the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or more in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., there is a possibility that stretching may not be performed well even if plasticization of the thermoplastic resin substrate by water is considered.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • the drying treatment may be performed by zone heating in which the entire zone is heated, or may be performed by heating the transport rolls (using a so-called heating roll) (heating roll drying method). Preferably, both are used.
  • a heating roll By drying using a heating roll, it is possible to efficiently suppress the heating curl of the laminate and produce a polarizing film having an excellent appearance.
  • the degree of crystallinity can be increased by efficiently promoting the crystallization of the thermoplastic resin base material, and is relatively low. Even at the drying temperature, the degree of crystallinity of the thermoplastic resin substrate can be favorably increased.
  • the rigidity of the thermoplastic resin base material increases, and the thermoplastic resin base material becomes a state capable of withstanding shrinkage of the PVA-based resin layer due to drying, and curling is suppressed.
  • the laminate can be dried while maintaining the flat state, so that not only curling but also generation of wrinkles can be suppressed.
  • the optical characteristics can be improved by shrinking the laminate in the width direction by the drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively increased.
  • a washing treatment is performed after the underwater stretching treatment and before the drying treatment.
  • the above-mentioned cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
  • the measurement was performed with the measured polarized light at 0 ° and 90 ° with respect to the stretching direction, and crystallization was performed according to the following formula using the intensity of the obtained spectrum at 1141 cm ⁇ 1 and 1140 cm ⁇ 1 . An index was calculated.
  • Crystallization index ((I C-0 + 2 ⁇ I C-90 ) / 3) / ((I R-0 + 2 ⁇ I R-90 ) / 3)
  • I C-0 Intensity of 1141 cm ⁇ 1 when measuring with measuring light (polarized light) incident in a direction parallel to the stretching direction
  • I C-90 Measurement with measuring light (polarized light) incident in a direction perpendicular to the stretching direction
  • I R-90 at 1140 cm -1 the measurement light (polarized light) in the stretching direction
  • Intensity of 1140 cm -1 when measured by incidence in the vertical direction (2) Orientation function
  • SPECTRUM2000 Spectra-Spectra-Spectras
  • the surface of the PVA-based resin layer was evaluated by ATR measurement using polarized light as measurement light. Specifically, the measurement was performed with the measurement polarized light at 0 ° and 90 ° with respect to the stretching direction, and the orientation function was calculated according to the following equation using an intensity of 2941 cm ⁇ 1 .
  • Ts, Tp, and Tc are Y values measured with a two-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction.
  • the refractive index of the protective film was 1.50, and the refractive index of the surface of the polarizing film opposite to the protective film was 1.53.
  • Example 1 Preparation of Polarizing Film
  • an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m, width: 1,450 mm) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used.
  • One surface of the resin substrate was subjected to a corona treatment (treatment condition: 55 W ⁇ min / m 2 ).
  • PVA aqueous solution containing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (trade name “Gosefimer Z410” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) at a ratio of 9: 1 (coating) Liquid).
  • the PVA aqueous solution was applied to the corona-treated surface of the resin substrate and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 8 ⁇ m, thereby producing a laminate.
  • the obtained laminate was stretched at a stretching temperature of 120 ° C. to 130 ° C.
  • the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
  • the polarizing film finally obtained is placed in a dyeing bath at a liquid temperature of 30 ° C. (an aqueous solution of iodine obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water).
  • the film was uniaxially stretched so as to be twice as large (underwater stretching treatment). Thereafter, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) (washing treatment). Thereafter, by drying in an oven, a polarizing film having a width of 1500 mm and a thickness of 3.5 ⁇ m was formed on the resin substrate. 2. Preparation of Polarizing Plate On the surface of the polarizing film obtained above (the surface opposite to the resin substrate), an acrylic film (surface refractive index: 1.50, 40 ⁇ m) as a protective film was coated with an ultraviolet curable adhesive. And pasted together.
  • the adhesive was applied so that the total thickness of the curable adhesive became 1.0 ⁇ m, and was bonded using a roll machine. Thereafter, UV light was irradiated from the protective film side to cure the adhesive. Next, the resin substrate was peeled off to obtain a polarizing plate having a structure of protective film / polarizing film.
  • Example 2 A polarizing film and a polarizing plate were produced in the same manner as in Example 1 except that the stretching ratio was 3.5 times in the air-assisted stretching process.
  • Example 1 A polarizing film and a polarizing plate were produced in the same manner as in Example 1 except that the stretching ratio was 2.0 times and the stretching temperature was 140 ° C. in the auxiliary in-air stretching process.
  • Example 2 A polarizing film and a polarizing plate were produced in the same manner as in Example 1, except that the stretching ratio was set to 2.4 times in the auxiliary stretching in air.
  • Example 4 A polarizing film and a polarizing plate were produced in the same manner as in Example 1 except that the stretching ratio was set to 4.5 in the auxiliary in-air stretching process and that the in-water stretching process was not performed.
  • the polarizing film of the present invention is suitably used for an image display device.
  • Reference Signs List 10 polarizing film 20 first protective layer 30 second protective layer 100 polarizing plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a polarizing film capable of reducing streaking. The polarizing film according to the present invention has a thickness of 8 µm or less; the average difference between the maximum and minimum thicknesses of the polarizing film in each 50-mm region from one end to the other end in a direction perpendicular to the absorption axis is 70 nm or less.

Description

偏光膜および偏光膜の製造方法Polarizing film and method for manufacturing polarizing film
 本発明は、偏光膜および偏光膜の製造方法に関する。 The present invention relates to a polarizing film and a method for manufacturing a polarizing film.
 代表的な画像表示装置である液晶表示装置には、その画像形成方式に起因して、液晶セルの両側に偏光膜が配置されている。また、薄型ディスプレイの普及と共に、有機ELパネルを搭載したディスプレイ(OLED)や、量子ドットなどの無機発光材料を用いた表示パネルを用いたディスプレイ(QLED)が提案されており、これらの画像表示装置にも偏光膜が適用され得る。偏光膜の製造方法としては、例えば、樹脂基材とポリビニルアルコール(PVA)系樹脂層とを有する積層体を延伸し、次に染色処理を施して、樹脂基材上に偏光膜を得る方法が提案されている(例えば、特許文献1)。このような方法によれば、厚みの薄い偏光膜が得られるため、近年の画像表示装置の薄型化に寄与し得るとして注目されている。しかしながら、上記のような従来の薄型偏光膜は、画像表示装置に適用した場合に、スジムラが視認される場合がある。 (4) In a liquid crystal display device, which is a typical image display device, polarizing films are disposed on both sides of a liquid crystal cell due to the image forming method. With the spread of thin displays, displays (OLEDs) equipped with an organic EL panel and displays (QLEDs) using a display panel using an inorganic light emitting material such as quantum dots have been proposed. A polarizing film can also be applied. As a method of manufacturing a polarizing film, for example, a method of stretching a laminate having a resin base material and a polyvinyl alcohol (PVA) -based resin layer and then performing a dyeing treatment to obtain a polarizing film on the resin base material is known. It has been proposed (for example, Patent Document 1). According to such a method, a polarizing film having a small thickness can be obtained, and thus, it is noted that it can contribute to a reduction in thickness of an image display device in recent years. However, when the conventional thin polarizing film as described above is applied to an image display device, uneven streaks may be visually recognized.
特開2001-343521号公報JP 2001-343521 A
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、スジムラの発生を抑制し得る偏光膜、およびそのような偏光膜の製造方法を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and a main object of the present invention is to provide a polarizing film capable of suppressing the occurrence of uneven streaks, and a method for manufacturing such a polarizing film.
 本発明の偏光膜は、厚みが8μm以下であり、吸収軸と直交する方向に沿って一方の端部から他方の端部まで50mmの領域ごとの最大厚みと最小厚みの差の平均値が70nm以下である。
 1つの実施形態においては、単体透過率が44.5%以上であり、偏光度が99.0%以上である。
 本発明の別の局面によれば、偏光板が提供される。この偏光板は、上記偏光膜と、上記偏光膜の少なくとも一方の側に配置された保護層とを有する。
 本発明の別の局面によれば、偏光膜の製造方法が提供される。この偏光膜の製造方法は、熱可塑性樹脂基材の片側に、ポリビニルアルコール系樹脂を含むポリビニルアルコール系樹脂層を形成して積層体とすること、および上記積層体に、空中延伸処理と染色処理とをこの順に施すこと、を含み、上記空中延伸処理後の上記ポリビニルアルコール系樹脂層は、全反射減衰分光測定により算出される結晶化指数が1.55以上1.7以下であり、かつ、配向関数が0.22以上0.31以下である。
 1つの実施形態においては、上記空中延伸処理の後に、上記積層体に水中延伸処理を施すことをさらに含み、上記空中延伸処理における延伸倍率が3.0倍以上であり、上記水中延伸処理における延伸倍率が1.8倍以下である。
The polarizing film of the present invention has a thickness of 8 μm or less, and the average value of the difference between the maximum thickness and the minimum thickness of each 50 mm region from one end to the other end along the direction perpendicular to the absorption axis is 70 nm. It is as follows.
In one embodiment, the single transmittance is 44.5% or more and the degree of polarization is 99.0% or more.
According to another aspect of the present invention, a polarizing plate is provided. The polarizing plate includes the polarizing film and a protective layer disposed on at least one side of the polarizing film.
According to another aspect of the present invention, a method for manufacturing a polarizing film is provided. The method for producing a polarizing film includes forming a laminate by forming a polyvinyl alcohol-based resin layer containing a polyvinyl alcohol-based resin on one side of a thermoplastic resin base, and applying an air stretching treatment and a dyeing treatment to the laminate. And the polyvinyl alcohol-based resin layer after the aerial stretching treatment has a crystallization index calculated by attenuated total reflection spectroscopy of 1.55 or more and 1.7 or less, and The orientation function is 0.22 or more and 0.31 or less.
In one embodiment, the method further includes performing an underwater stretching process on the laminate after the aerial stretching process, wherein the stretching ratio in the aerial stretching process is 3.0 times or more, and the stretching in the underwater stretching process is performed. Magnification is 1.8 times or less.
本発明の1つの実施形態による偏光板の概略断面図である。FIG. 1 is a schematic sectional view of a polarizing plate according to one embodiment of the present invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.偏光膜
 本発明の1つの実施形態による偏光膜は、厚みが8μm以下であり、吸収軸と直交する方向に沿って一方の端部から他方の端部まで50mmの領域ごとの最大厚みと最小厚みの差の平均値(以下、厚みバラつきと称する場合がある)が70nm以下である。厚みバラつきは、例えば、偏光膜の厚みを上記一方の端部から上記他方の端部まで2mm間隔で測定し、50mmごとの領域内での最大厚みと最小厚みの差を算出し、各領域における上記差の平均値を算出することにより得られる。偏光膜の厚みは、代表的には、光学干渉膜厚計を用いて測定され得る。従来の薄型の偏光膜は、その製造方法などに起因して、吸収軸と直交する方向に沿った厚みのバラつきが生じ得、その結果、画像表示装置に適用したときに吸収軸に沿ったスジ状のムラが生じる場合があった。本実施形態の偏光膜は、厚みが非常に薄いにも関わらず、厚みバラつきが小さい。このような偏光膜は、画像表示装置に適用した場合に、スジムラの発生を抑制し得る。
A. Polarizing Film The polarizing film according to one embodiment of the present invention has a thickness of 8 μm or less, and has a maximum thickness and a minimum thickness for each region of 50 mm from one end to the other end along a direction perpendicular to the absorption axis. Is 70 nm or less (hereinafter sometimes referred to as thickness variation). The thickness variation is, for example, measuring the thickness of the polarizing film from the one end to the other end at an interval of 2 mm, calculate the difference between the maximum thickness and the minimum thickness in an area of every 50 mm, in each area It is obtained by calculating the average value of the difference. The thickness of the polarizing film can be typically measured using an optical interference thickness meter. Conventional thin polarizing films may have thickness variations along a direction perpendicular to the absorption axis due to the manufacturing method and the like. As a result, when applied to an image display device, stripes along the absorption axis may occur. In some cases, unevenness in shape occurred. The thickness variation of the polarizing film of the present embodiment is small despite its very small thickness. Such a polarizing film can suppress occurrence of uneven streaks when applied to an image display device.
 偏光膜の厚みは、好ましくは1μm~8μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。厚みバラつきは、好ましくは50nm以下であり、より好ましくは40nm以下であり、特に好ましくは30nm以下である。厚みバラつきは小さいことが好ましいが、現実的な下限は、例えば5nmである。 The thickness of the polarizing film is preferably 1 μm to 8 μm, more preferably 1 μm to 7 μm, and still more preferably 2 μm to 5 μm. The thickness variation is preferably 50 nm or less, more preferably 40 nm or less, and particularly preferably 30 nm or less. The thickness variation is preferably small, but a practical lower limit is, for example, 5 nm.
 偏光膜は、好ましくは、単体透過率が44.5%以上であり、偏光度が99.0%以上である。偏光膜の単体透過率は、より好ましくは45.0%以上である。偏光膜の偏光度は、より好ましくは99.5%以上であり、さらに好ましくは99.9%以上である。上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The polarizing film preferably has a single transmittance of 44.5% or more and a degree of polarization of 99.0% or more. The single transmittance of the polarizing film is more preferably 45.0% or more. The degree of polarization of the polarizing film is more preferably 99.5% or more, and still more preferably 99.9% or more. The single transmittance is typically a Y value measured using a UV-visible spectrophotometer and subjected to visibility correction. The degree of polarization is typically determined by the following equation based on the parallel transmittance Tp and the orthogonal transmittance Tc, which have been measured using a UV-visible spectrophotometer and corrected for visibility.
Degree of polarization (%) = {(Tp−Tc) / (Tp + Tc)} 1/2 × 100
 上記偏光膜の製造方法は、熱可塑性樹脂基材の片側に、ポリビニルアルコール系樹脂(PVA系樹脂)を含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、上記積層体に、空中延伸処理と染色処理とをこの順に施すこと、を含む。上記空中延伸処理後の上記PVA系樹脂層は、全反射減衰分光(ATR)測定により算出される結晶化指数が1.55以上1.7以下であり、かつ、配向関数が0.22以上0.31以下である。上記のように、空中延伸処理後のPVA系樹脂層の結晶化指数および配向関数を上記の範囲内に制御することにより、厚みが薄く、厚みバラつきが小さく、さらには高い光学特性を有する偏光膜を製造することができる。 The method for producing a polarizing film includes forming a polyvinyl alcohol-based resin layer (PVA-based resin layer) containing a polyvinyl alcohol-based resin (PVA-based resin) on one side of a thermoplastic resin base material to form a laminate; And subjecting the laminate to an air stretching process and a dyeing process in this order. The PVA-based resin layer after the air stretching treatment has a crystallization index calculated by attenuated total reflection spectroscopy (ATR) of 1.55 or more and 1.7 or less, and an orientation function of 0.22 or more and 0 or less. .31 or less. As described above, by controlling the crystallization index and the orientation function of the PVA-based resin layer after the aerial stretching treatment within the above ranges, the thickness is small, the thickness variation is small, and the polarizing film further has high optical characteristics. Can be manufactured.
 空中延伸処理後のPVA系樹脂層の結晶化指数は、例えば、フーリエ変換赤外分光光度計(FT-IR)を用い、偏光を測定光として、ATR測定により求められる。具体的には、測定偏光を延伸方向に対して0°と90°にした状態で測定を実施し、得られたスペクトルの1141cm-1および1140cm-1の強度を用いて、下記式に従って算出される。なお、1141cm-1の強度はPVA系樹脂層の結晶部分の量と相関性がある。
   結晶化指数=((IC-0+2×IC-90)/3)/((IR-0+2×IR-90)/3)
ただし、
C-0:測定光(偏光)を延伸方向と平行方向に入射して測定したときの1141cm-1の強度
C-90:測定光(偏光)を延伸方向と垂直方向に入射して測定したときの1141cm-1の強度
R-0:測定光(偏光)を延伸方向と平行方向に入射して測定したときの1140cm-1の強度
R-90:測定光(偏光)を延伸方向と垂直方向に入射して測定したときの1140cm-1の強度
The crystallization index of the PVA-based resin layer after the air stretching treatment is determined by ATR measurement using, for example, a Fourier transform infrared spectrophotometer (FT-IR) and polarized light as measurement light. Specifically, the measurement was carried out with the measurement polarized light at 0 ° and 90 ° with respect to the stretching direction, and the intensity was calculated at 1141 cm −1 and 1140 cm −1 of the obtained spectrum according to the following equation. You. Note that the intensity of 1141 cm −1 has a correlation with the amount of the crystal part of the PVA-based resin layer.
Crystallization index = ((I C-0 + 2 × I C-90 ) / 3) / ((I R-0 + 2 × I R-90 ) / 3)
However,
I C-0 : Intensity of 1141 cm −1 when measuring with measuring light (polarized light) incident in a direction parallel to the stretching direction I C-90 : Measurement with measuring light (polarized light) incident in a direction perpendicular to the stretching direction Intensity I R-0 at 1141 cm -1 when the measurement light (polarized light) is incident in a direction parallel to the stretching direction and measured at an intensity I R-90 at 1140 cm -1 : the measurement light (polarized light) in the stretching direction Of 1140 cm -1 when measured with vertical incidence
 空中延伸処理後のPVA系樹脂層の配向関数(f)は、例えば、FT-IRを用い、偏光を測定光として、ATR測定により求められる。具体的には、測定偏光を延伸方向に対して0°と90°にした状態で測定を実施し、得られたスペクトルの2941cm-1の強度を用いて、下記式に従って算出される。ここで、強度Iは、3330cm-1を参照ピークとして、2941cm-1/3330cm-1の値である。なお、f=1のとき完全配向、f=0のときランダムとなる。また、2941cm-1のピークは、PVAの主鎖(-CH2-)の振動に起因する吸収であると考えられている。
     f=(3<cosθ>-1)/2
      =(1-D)/[c(2D+1)]
ただし、
c=(3cosβ-1)/2
β=90deg⇒f=-2×(1-D)/(2D+1)
θ:分子鎖・延伸方向
β:分子鎖・遷移双極子モーメント
D=(I⊥)/(I//)
(PVA分子が配向するほどDの値が大きくなる)
I⊥:測定光(偏光)を延伸方向と垂直方向に入射して測定したときの強度
I//:測定光(偏光)を延伸方向と平行方向に入射して測定したときの強度
The orientation function (f) of the PVA-based resin layer after the air stretching treatment can be determined by, for example, ATR measurement using FT-IR and polarized light as measurement light. Specifically, the measurement is performed in a state where the measurement polarization is set to 0 ° and 90 ° with respect to the stretching direction, and the calculated value is calculated according to the following equation using the intensity of 2941 cm −1 of the obtained spectrum. Here, the intensity I, as a reference peak to 3330cm -1, a value of 2941cm -1 / 3330cm -1. When f = 1, the orientation is perfect, and when f = 0, the orientation is random. The peak at 2941 cm −1 is considered to be absorption due to vibration of the main chain (—CH 2 —) of PVA.
f = (3 <cos 2 θ> -1) / 2
= (1-D) / [c (2D + 1)]
However,
c = (3 cos 2 β-1) / 2
β = 90deg⇒f = -2 × (1-D) / (2D + 1)
θ: molecular chain, stretching direction β: molecular chain, transition dipole moment D = (I⊥) / (I //)
(The value of D increases as the PVA molecules are oriented.)
I⊥: Intensity measured when measuring light (polarized light) is incident in the direction perpendicular to the stretching direction I //: Intensity measured when measuring light (polarized light) is incident in the direction parallel to the stretching direction
B.偏光板
 図1は、本発明の1つの実施形態による偏光板の概略断面図である。偏光板100は、偏光膜10と、偏光膜10の一方の側に配置された第1の保護層20と、偏光膜10の他方の側に配置された第2の保護層30とを有する。偏光膜10は、上記A項で説明した本発明の偏光膜である。第1の保護層20および第2の保護層30のうち一方の保護層は省略されてもよい。なお、第1の保護層および第2の保護層のうち一方は、上記の偏光膜の製造に用いられる樹脂基材であってもよい。
B. Polarizing Plate FIG. 1 is a schematic sectional view of a polarizing plate according to one embodiment of the present invention. The polarizing plate 100 includes a polarizing film 10, a first protective layer 20 disposed on one side of the polarizing film 10, and a second protective layer 30 disposed on the other side of the polarizing film 10. The polarizing film 10 is the polarizing film of the present invention described in the above section A. One of the first protective layer 20 and the second protective layer 30 may be omitted. Note that one of the first protective layer and the second protective layer may be a resin base material used for manufacturing the above-described polarizing film.
 第1および第2の保護層は、偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。 The first and second protective layers are formed of any appropriate film that can be used as a protective layer of a polarizing film. Specific examples of the material that is a main component of the film include a cellulosic resin such as triacetyl cellulose (TAC), polyester, polyvinyl alcohol, polycarbonate, polyamide, polyimide, polyethersulfone, and polysulfone. And a transparent resin such as polystyrene, polynorbornene, polyolefin, (meth) acrylic, and acetate. Further, a thermosetting resin such as (meth) acrylic, urethane, (meth) acrylic urethane, epoxy, silicone and the like, or an ultraviolet curable resin may also be used. In addition, for example, a glassy polymer such as a siloxane-based polymer may also be used. Further, a polymer film described in JP-A-2001-343529 (WO 01/37007) can also be used. As a material of the film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in a side chain And, for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer. The polymer film may be, for example, an extruded product of the resin composition.
 偏光板100を画像表示装置に適用したときに表示パネルとは反対側に配置される保護層(外側保護層)の厚みは、代表的には300μm以下であり、好ましくは100μm以下、より好ましくは5μm~80μm、さらに好ましくは10μm~60μmである。なお、表面処理が施されている場合、外側保護層の厚みは、表面処理層の厚みを含めた厚みである。 When the polarizing plate 100 is applied to an image display device, the thickness of a protective layer (outer protective layer) disposed on the side opposite to the display panel is typically 300 μm or less, preferably 100 μm or less, more preferably. The thickness is 5 μm to 80 μm, more preferably 10 μm to 60 μm. When the surface treatment is performed, the thickness of the outer protective layer is a thickness including the thickness of the surface treatment layer.
 偏光板100を画像表示装置に適用したときに表示パネル側に配置される保護層(内側保護層)の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは10μm~60μmである。1つの実施形態においては、内側保護層は、任意の適切な位相差値を有する位相差層である。位相差層としては、面内位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有する位相差フィルムを用いることができる。面内位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。位相差フィルムとしては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差フィルムの厚さは特に制限されないが、一般的には20~150μm程度である。 When the polarizing plate 100 is applied to an image display device, the thickness of the protective layer (inner protective layer) disposed on the display panel side is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, and still more preferably 10 μm to 60 μm. is there. In one embodiment, the inner protective layer is a retardation layer having any suitable retardation value. As the retardation layer, a retardation film having an in-plane retardation of 40 nm or more and / or a retardation having a thickness direction retardation of 80 nm or more can be used. The in-plane retardation is usually controlled in the range of 40 to 200 nm, and the thickness direction retardation is usually controlled in the range of 80 to 300 nm. Examples of the retardation film include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, an alignment film of a liquid crystal polymer, and an alignment layer of a liquid crystal polymer supported by a film. The thickness of the retardation film is not particularly limited, but is generally about 20 to 150 μm.
C.偏光膜の製造方法
 本発明の1つの実施形態による偏光膜の製造方法は、上記のとおり、熱可塑性樹脂基材の片側に、ポリビニルアルコール系樹脂を含むポリビニルアルコール系樹脂層を形成して積層体とすること、および、上記積層体に、空中延伸処理と染色処理とをこの順に施すこと、を含む。上記空中延伸処理後の上記ポリビニルアルコール系樹脂層は、全反射減衰分光測定により算出される結晶化指数が1.55以上1.7以下であり、かつ、配向関数が0.22以上0.31以下である。好ましくは、空中延伸処理の後に、積層体に水中延伸処理を施すことを含み、空中延伸処理における延伸倍率は3.0倍以上であり、水中延伸処理における延伸倍率は1.8倍以下である。このように、従来の製造方法に比べて空中延伸処理における延伸倍率を高く、かつ、水中延伸処理における延伸倍率を低く設定することにより、空中延伸処理後のPVA系樹脂層の結晶化を促進するとともに、熱可塑性樹脂基材の過度の結晶化を抑制することができる。これにより、厚みバラつきが小さく、かつ、優れた光学特性を有する偏光膜が得られ得る。
C. Method for Producing Polarizing Film The method for producing a polarizing film according to one embodiment of the present invention is, as described above, a method of forming a laminate by forming a polyvinyl alcohol-based resin layer containing a polyvinyl alcohol-based resin on one side of a thermoplastic resin base material. And subjecting the laminate to an air stretching process and a dyeing process in this order. The polyvinyl alcohol-based resin layer after the air stretching treatment has a crystallization index calculated by attenuated total reflection measurement of 1.55 or more and 1.7 or less, and an orientation function of 0.22 or more and 0.31 or less. It is as follows. Preferably, the method includes subjecting the laminate to an underwater stretching process after the aerial stretching process, wherein the stretching ratio in the aerial stretching process is 3.0 times or more, and the stretching ratio in the underwater stretching process is 1.8 times or less. . As described above, the crystallization of the PVA-based resin layer after the aerial stretching is promoted by setting the stretching ratio in the aerial stretching to be higher than that of the conventional manufacturing method and setting the stretching ratio to be lower in the underwater stretching. At the same time, excessive crystallization of the thermoplastic resin substrate can be suppressed. Thus, a polarizing film having small thickness variation and excellent optical characteristics can be obtained.
C-1.積層体の作製
 熱可塑性樹脂基材とPVA系樹脂層との積層体の作製する方法としては、任意の適切な方法が採用され得る。好ましくは、長尺状の熱可塑性樹脂基材の表面に、PVA系樹脂を含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。
C-1. Production of Laminate Any appropriate method can be adopted as a method for producing a laminate of the thermoplastic resin substrate and the PVA-based resin layer. Preferably, a coating liquid containing a PVA-based resin is applied to the surface of the long thermoplastic resin base material and dried to form a PVA-based resin layer on the thermoplastic resin base material.
 塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 は Any appropriate method can be adopted as a method of applying the coating solution. For example, a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (such as a comma coating method) and the like can be mentioned. The coating / drying temperature of the coating solution is preferably 50 ° C. or higher.
 PVA系樹脂層の厚みは、好ましくは、3μm~40μm、さらに好ましくは3μm~20μmである。 (4) The thickness of the PVA-based resin layer is preferably 3 μm to 40 μm, and more preferably 3 μm to 20 μm.
 PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。 (4) Before forming the PVA-based resin layer, the thermoplastic resin substrate may be subjected to a surface treatment (for example, corona treatment), or the easy-adhesion layer may be formed on the thermoplastic resin substrate. By performing such a treatment, the adhesion between the thermoplastic resin substrate and the PVA-based resin layer can be improved.
C-1-1.熱可塑性樹脂基材
 熱可塑性樹脂基材の厚みは、好ましくは20μm~300μm、より好ましくは50μm~200μmである。20μm未満であると、PVA系樹脂層の形成が困難になるおそれがある。300μmを超えると、例えば、後述の水中延伸処理において、熱可塑性樹脂基材が水を吸収するのに長時間を要するとともに、延伸に過大な負荷を要するおそれがある。
C-1-1. Thermoplastic resin base material The thickness of the thermoplastic resin base material is preferably from 20 μm to 300 μm, more preferably from 50 μm to 200 μm. If it is less than 20 μm, formation of a PVA-based resin layer may be difficult. If it exceeds 300 μm, for example, in the underwater stretching treatment described below, it takes a long time for the thermoplastic resin substrate to absorb water, and an excessive load may be required for stretching.
 熱可塑性樹脂基材は、好ましくは、その吸水率が0.2%以上であり、さらに好ましくは0.3%以上である。可塑性樹脂基材は、水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、延伸応力を大幅に低下させることができ、高倍率に延伸することができる。一方、熱可塑性樹脂基材の吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このような熱可塑性樹脂基材を用いることにより、製造時に熱可塑性樹脂基材の寸法安定性が著しく低下して、得られる偏光膜の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に基材が破断したり、熱可塑性樹脂基材からPVA系樹脂層が剥離したりするのを防止することができる。なお、熱可塑性樹脂基材の吸水率は、例えば、構成材料に変性基を導入することにより調整することができる。吸水率は、JIS K 7209に準じて求められる値である。 The thermoplastic resin substrate preferably has a water absorption of 0.2% or more, more preferably 0.3% or more. The plastic resin substrate absorbs water, and the water acts as a plasticizer and can be plasticized. As a result, the stretching stress can be greatly reduced, and stretching can be performed at a high magnification. On the other hand, the water absorption of the thermoplastic resin substrate is preferably 3.0% or less, more preferably 1.0% or less. By using such a thermoplastic resin substrate, it is possible to prevent problems such as the dimensional stability of the thermoplastic resin substrate being significantly reduced during production and the appearance of the obtained polarizing film being deteriorated. Further, it is possible to prevent the base material from being broken during the stretching in water and the PVA-based resin layer from peeling off from the thermoplastic resin base material. The water absorption of the thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material. The water absorption is a value determined according to JIS K7209.
 熱可塑性樹脂基材のガラス転移温度(Tg)は、好ましくは120℃以下である。このような熱可塑性樹脂基材を用いることにより、PVA系樹脂層の結晶化を抑制しながら、積層体の延伸性を十分に確保することができる。さらに、水による熱可塑性樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、100℃以下、さらには90℃以下であることがより好ましい。一方、熱可塑性樹脂基材のガラス転移温度は、好ましくは60℃以上である。このような熱可塑性樹脂基材を用いることにより、上記PVA系樹脂を含む塗布液を塗布・乾燥する際に、熱可塑性樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)するなどの不具合を防止して、良好に積層体を作製することができる。また、PVA系樹脂層の延伸を、好適な温度(例えば、60℃程度)にて良好に行うことができる。なお、熱可塑性樹脂基材のガラス転移温度は、例えば、構成材料に変性基を導入する、結晶化材料を用いて加熱することにより調整することができる。ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。 ガ ラ ス The glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 120 ° C or lower. By using such a thermoplastic resin substrate, it is possible to sufficiently secure the stretchability of the laminate while suppressing crystallization of the PVA-based resin layer. Further, in consideration of plasticizing the thermoplastic resin substrate with water and performing good stretching in water, the temperature is more preferably 100 ° C. or lower, further preferably 90 ° C. or lower. On the other hand, the glass transition temperature of the thermoplastic resin substrate is preferably 60 ° C. or higher. By using such a thermoplastic resin base material, the thermoplastic resin base material is deformed (for example, generation of irregularities, tarmi, wrinkles, and the like) when the coating liquid containing the PVA-based resin is applied and dried. The above problem can be prevented, and the laminate can be favorably manufactured. Further, the stretching of the PVA-based resin layer can be favorably performed at a suitable temperature (for example, about 60 ° C.). The glass transition temperature of the thermoplastic resin substrate can be adjusted, for example, by heating using a crystallization material that introduces a modifying group into the constituent material. The glass transition temperature (Tg) is a value obtained in accordance with JIS @ K # 7121.
 熱可塑性樹脂基材の構成材料としては、任意の適切な熱可塑性樹脂が採用され得る。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。これらの中でも、好ましくは、ノルボルネン系樹脂、非晶質のポリエチレンテレフタレート系樹脂である。 構成 Any suitable thermoplastic resin can be adopted as a constituent material of the thermoplastic resin base material. Examples of the thermoplastic resin include, for example, ester resins such as polyethylene terephthalate resin, cycloolefin resins such as norbornene resin, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. Is mentioned. Among these, a norbornene-based resin and an amorphous polyethylene terephthalate-based resin are preferred.
 1つの実施形態においては、非晶質の(結晶化していない)ポリエチレンテレフタレート系樹脂が好ましく用いられる。中でも、非晶性の(結晶化しにくい)ポリエチレンテレフタレート系樹脂が特に好ましく用いられる。非晶性のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸および/またはシクロヘキサンジカルボン酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールやジエチレングリコールをさらに含む共重合体が挙げられる。 非晶 質 In one embodiment, an amorphous (non-crystallized) polyethylene terephthalate resin is preferably used. Among them, an amorphous (hard to crystallize) polyethylene terephthalate resin is particularly preferably used. Specific examples of the amorphous polyethylene terephthalate-based resin include a copolymer further containing isophthalic acid and / or cyclohexanedicarboxylic acid as a dicarboxylic acid, and a copolymer further containing cyclohexanedimethanol or diethylene glycol as a glycol.
 好ましい実施形態においては、熱可塑性樹脂基材は、イソフタル酸ユニットを有するポリエチレンテレフタレート系樹脂で構成される。このような熱可塑性樹脂基材は延伸性に極めて優れるとともに、延伸時の結晶化が抑制され得るからである。これは、イソフタル酸ユニットを導入することで、主鎖に大きな屈曲を与えることによるものと考えられる。ポリエチレンテレフタレート系樹脂は、テレフタル酸ユニットおよびエチレングリコールユニットを有する。イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは0.1モル%以上、さらに好ましくは1.0モル%以上である。延伸性に極めて優れた熱可塑性樹脂基材が得られるからである。一方、イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは20モル%以下、より好ましく10モル%以下である。このような含有割合に設定することで、後述の乾燥収縮処理において結晶化度を良好に増加させることができる。 In a preferred embodiment, the thermoplastic resin substrate is made of a polyethylene terephthalate resin having an isophthalic acid unit. This is because such a thermoplastic resin substrate is extremely excellent in stretchability and can suppress crystallization during stretching. This is considered to be due to the fact that the introduction of the isophthalic acid unit gives a large bending to the main chain. The polyethylene terephthalate resin has a terephthalic acid unit and an ethylene glycol unit. The content ratio of the isophthalic acid unit is preferably at least 0.1 mol%, more preferably at least 1.0 mol%, based on the total of all repeating units. This is because a thermoplastic resin substrate having extremely excellent stretchability can be obtained. On the other hand, the content ratio of the isophthalic acid unit is preferably 20 mol% or less, more preferably 10 mol% or less, based on the total of all repeating units. By setting such a content ratio, the crystallinity can be favorably increased in the drying shrinkage treatment described below.
 熱可塑性樹脂基材は、予め(PVA系樹脂層を形成する前)、延伸されていてもよい。1つの実施形態においては、長尺状の熱可塑性樹脂基材の横方向に延伸されている。横方向は、好ましくは、後述の積層体の延伸方向に直交する方向である。なお、本明細書において、「直交」とは、実質的に直交する場合も包含する。ここで、「実質的に直交」とは、90°±5.0°である場合を包含し、好ましくは90°±3.0°、さらに好ましくは90°±1.0°である。熱可塑性樹脂基材の延伸温度は、ガラス転移温度(Tg)に対し、好ましくはTg-10℃~Tg+50℃である。熱可塑性樹脂基材の延伸倍率は、好ましくは1.5倍~3.0倍である。熱可塑性樹脂基材の延伸方法としては、任意の適切な方法が採用され得る。具体的には、固定端延伸でもよいし、自由端延伸でもよい。延伸方式は、乾式でもよいし、湿式でもよい。熱可塑性樹脂基材の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、上述の延伸倍率は、各段階の延伸倍率の積である。 The thermoplastic resin substrate may be stretched in advance (before forming the PVA-based resin layer). In one embodiment, it is stretched in the transverse direction of a long thermoplastic resin substrate. The lateral direction is preferably a direction orthogonal to the stretching direction of the laminate described below. In addition, in this specification, "orthogonal" includes a case where they are substantially orthogonal. Here, “substantially orthogonal” includes 90 ° ± 5.0 °, preferably 90 ° ± 3.0 °, and more preferably 90 ° ± 1.0 °. The stretching temperature of the thermoplastic resin substrate is preferably from Tg−10 ° C. to Tg + 50 ° C. with respect to the glass transition temperature (Tg). The stretch ratio of the thermoplastic resin base material is preferably 1.5 to 3.0 times. Any appropriate method can be adopted as a method for stretching the thermoplastic resin substrate. Specifically, fixed-end stretching or free-end stretching may be used. The stretching method may be a dry method or a wet method. The stretching of the thermoplastic resin substrate may be performed in one step or may be performed in multiple steps. In the case of performing in multiple stages, the above-mentioned stretching ratio is a product of the stretching ratios in each stage.
C-1-2.塗布液
 塗布液は、代表的には、上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。
C-1-2. Coating Liquid The coating liquid is typically a solution obtained by dissolving the PVA-based resin in a solvent. Examples of the solvent include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferable. The concentration of the PVA resin in the solution is preferably 3 to 20 parts by weight based on 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film adhered to the thermoplastic resin base material can be formed.
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。 添加 Additives may be added to the coating solution. Examples of the additive include a plasticizer and a surfactant. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include a nonionic surfactant. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer.
 上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 任意 As the PVA-based resin, any appropriate resin can be adopted. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying the ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually from 85 mol% to 100 mol%, preferably from 95.0 mol% to 99.95 mol%, more preferably from 99.0 mol% to 99.93 mol%. . The degree of saponification can be determined according to JIS @ K-6726-1994. By using a PVA-based resin having such a saponification degree, a polarizing film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 (4) The average polymerization degree of the PVA-based resin can be appropriately selected according to the purpose. The average degree of polymerization is usually from 1,000 to 10,000, preferably from 1,200 to 4,500, and more preferably from 1,500 to 4,300. The average degree of polymerization can be determined according to JIS @ K-6726-1994.
C-2.空中補助延伸処理
 空中延伸処理における延伸倍率は、好ましくは3.0倍~4.0倍である。これにより、空中延伸処理後のPVA系樹脂層の結晶化指数および配向関数を所望の数値範囲内に制御し得る。さらに、このように、従来の製造方法に比べて空中延伸処理における延伸倍率を高く設定することにより、後述の水中延伸処理において所望の光学特性を実現するための延伸倍率を低く設定することができる。これにより、水中延伸処理による熱可塑性樹脂基材の過度の結晶化を抑制することができる。
C-2. Auxiliary aerial stretching process The stretching ratio in the aerial stretching process is preferably 3.0 times to 4.0 times. Thereby, the crystallization index and the orientation function of the PVA-based resin layer after the air stretching treatment can be controlled within a desired numerical range. Further, as described above, by setting the stretching ratio in the aerial stretching process higher than in the conventional manufacturing method, the stretching ratio for realizing desired optical characteristics in the underwater stretching process described below can be set lower. . Thereby, excessive crystallization of the thermoplastic resin substrate due to the underwater stretching treatment can be suppressed.
 空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよいが、高い光学特性を得るためには、自由端延伸が積極的に採用されうる。1つの実施形態においては、空中延伸処理は、長尺状の上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、フィルム端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定されうる。自由端延伸の場合、幅方向の収縮率=(1/延伸倍率)1/2で計算される。 The stretching method in the air-assisted stretching may be fixed-end stretching (for example, a method of stretching using a tenter stretching machine) or free-end stretching (for example, uniaxially stretching through a laminate between rolls having different peripheral speeds). Although good, free end stretching can be actively employed to obtain high optical properties. In one embodiment, the air stretching process includes a heating roll stretching step in which the long laminate is stretched by a peripheral speed difference between the heating rolls while being conveyed in the longitudinal direction. The aerial stretching process typically includes a zone stretching step and a heated roll stretching step. The order of the zone stretching step and the heating roll stretching step is not limited, and the zone stretching step may be performed first, or the heating roll stretching step may be performed first. The zone stretching step may be omitted. In one embodiment, the zone stretching step and the hot roll stretching step are performed in this order. In another embodiment, in a tenter stretching machine, the film is stretched by gripping the end of the film and increasing the distance between the tenters in the flow direction (the expansion of the distance between the tenters becomes the stretching ratio). At this time, the distance of the tenter in the width direction (perpendicular to the flow direction) is set to be arbitrarily small. Preferably, it can be set so as to be closer to the free-end stretching with respect to the stretching ratio in the flow direction. In the case of free end stretching, the shrinkage in the width direction is calculated as (1 / stretching ratio) 1/2 .
 空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。 補助 The in-air auxiliary stretching may be performed in one stage or may be performed in multiple stages. When the stretching is performed in multiple stages, the stretching ratio is a product of the stretching ratios of the respective stages. The stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
 空中補助延伸と水中延伸とを組み合わせた場合の最大延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上、より好ましくは5.5倍以上、さらに好ましくは6.0倍以上である。本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。 The maximum stretching ratio in the case where the in-air assisted stretching and the underwater stretching are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and still more preferably 6.0 times, with respect to the original length of the laminate. That is all. In the present specification, the “maximum stretch ratio” refers to a stretch ratio immediately before the laminate is broken, and separately refers to a stretch ratio at which the laminate is broken, and refers to a value 0.2 lower than the value.
 空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。 延伸 The stretching temperature of the in-air auxiliary stretching can be set to any appropriate value according to the forming material of the thermoplastic resin base material, the stretching method, and the like. The stretching temperature is preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin substrate, more preferably equal to or higher than the glass transition temperature (Tg) of the thermoplastic resin substrate + 10 ° C., and particularly preferably equal to or higher than Tg + 15 ° C. On the other hand, the upper limit of the stretching temperature is preferably 170 ° C. By stretching at such a temperature, it is possible to suppress the rapid progress of crystallization of the PVA-based resin, and to suppress problems caused by the crystallization (for example, hinder the orientation of the PVA-based resin layer by stretching). it can.
C-3.不溶化処理
 必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与し、水に浸漬した時のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。
C-3. Insolubilization treatment If necessary, an insolubilization treatment is performed after the aerial auxiliary stretching treatment and before the underwater stretching treatment and the dyeing treatment. The insolubilization treatment is typically performed by immersing the PVA-based resin layer in a boric acid aqueous solution. By performing the insolubilization treatment, it is possible to impart water resistance to the PVA-based resin layer and to prevent a decrease in the orientation of PVA when immersed in water. The concentration of the boric acid aqueous solution is preferably 1 part by weight to 4 parts by weight based on 100 parts by weight of water. The liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20 ° C to 50 ° C.
C-4.染色処理
 上記染色処理は、代表的には、PVA系樹脂層をヨウ素で染色することにより行う。具体的には、PVA系樹脂層にヨウ素を吸着させることにより行う。当該吸着方法としては、例えば、ヨウ素を含む染色液にPVA系樹脂層(積層体)を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法等が挙げられる。好ましくは、染色液(染色浴)に積層体を浸漬させる方法である。ヨウ素が良好に吸着し得るからである。
C-4. Dyeing treatment The above-mentioned dyeing treatment is typically performed by dyeing a PVA-based resin layer with iodine. Specifically, it is performed by adsorbing iodine on the PVA-based resin layer. Examples of the adsorption method include a method of dipping a PVA-based resin layer (laminate) in a dyeing solution containing iodine, a method of coating the PVA-based resin layer with the dyeing solution, and a method of applying the dyeing solution to the PVA-based resin layer. A spraying method and the like can be mentioned. A preferred method is to immerse the laminate in a dye solution (dye bath). This is because iodine can be favorably adsorbed.
 上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.05重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.1重量部~10重量部、より好ましくは0.3重量部~5重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分であり、より好ましくは30秒~90秒である。 The staining solution is preferably an aqueous iodine solution. The amount of iodine is preferably 0.05 to 0.5 parts by weight based on 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add iodide to an aqueous iodine solution. Examples of iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. And the like. Among these, potassium iodide is preferable. The amount of iodide is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, based on 100 parts by weight of water. The temperature of the dyeing solution at the time of dyeing is preferably 20 ° C. to 50 ° C. in order to suppress the dissolution of the PVA resin. When the PVA-based resin layer is immersed in the dyeing solution, the immersion time is preferably from 5 seconds to 5 minutes, more preferably from 30 seconds to 90 seconds, in order to secure the transmittance of the PVA-based resin layer.
 染色条件(濃度、液温、浸漬時間)は、最終的に得られる偏光膜の偏光度もしくは単体透過率が所定の範囲となるように、設定することができる。1つの実施形態においては、得られる偏光膜の単体透過率が44.5%~45.0%となるように、浸漬時間を設定する。別の実施形態においては、得られる偏光膜の偏光度が99.0%以上となるように、浸漬時間を設定する。 Dyeing conditions (concentration, solution temperature, immersion time) can be set so that the degree of polarization or the single transmittance of the finally obtained polarizing film is within a predetermined range. In one embodiment, the immersion time is set so that the obtained polarizing film has a single transmittance of 44.5% to 45.0%. In another embodiment, the immersion time is set so that the degree of polarization of the obtained polarizing film is 99.0% or more.
 ホウ酸を含有する処理浴に積層体を浸漬する処理(代表的には、不溶化処理)の後に連続して染色処理を行う場合、当該処理浴に含まれるホウ酸が染色浴に混入することにより染色浴のホウ酸濃度が経時的に変化し、その結果、染色性が不安定になる場合がある。上記のような染色性の不安定化を抑制するために、染色浴のホウ酸濃度の上限は、水100重量部に対して、好ましくは4重量部、より好ましくは2重量部となるように調整される。一方で、染色浴のホウ酸濃度の下限は、水100重量部に対して、好ましくは0.1重量部であり、より好ましくは0.2重量部であり、さらに好ましくは0.5重量部である。1つの実施形態においては、予めホウ酸が配合された染色浴を用いて染色処理を行う。これにより、上記処理浴のホウ酸が染色浴に混入した場合のホウ酸濃度の変化の割合を低減し得る。予め染色浴に配合されるホウ酸の配合量(すなわち、上記処理浴に由来しないホウ酸の含有量)は、水100重量部に対して、好ましくは0.1重量部~2重量部であり、より好ましくは0.5重量部~1.5重量部である。 When the dyeing treatment is continuously performed after the treatment of immersing the laminate in a treatment bath containing boric acid (typically, the insolubilization treatment), the boric acid contained in the treatment bath is mixed into the dyeing bath. The boric acid concentration in the dye bath changes over time, and as a result, the dyeability may be unstable. In order to suppress the instability of the dyeing properties as described above, the upper limit of the concentration of boric acid in the dyeing bath is preferably 4 parts by weight, more preferably 2 parts by weight, based on 100 parts by weight of water. Adjusted. On the other hand, the lower limit of the concentration of boric acid in the dyeing bath is preferably 0.1 part by weight, more preferably 0.2 part by weight, and still more preferably 0.5 part by weight with respect to 100 parts by weight of water. It is. In one embodiment, the dyeing treatment is performed using a dyeing bath in which boric acid is previously mixed. This can reduce the rate of change in boric acid concentration when boric acid in the treatment bath is mixed into the dyeing bath. The amount of boric acid previously added to the dyeing bath (that is, the content of boric acid not derived from the treatment bath) is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of water. , More preferably 0.5 to 1.5 parts by weight.
C-5.架橋処理
 必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与し、後の水中延伸で、高温の水中へ浸漬した際のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~5重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。
C-5. Crosslinking treatment If necessary, crosslinking treatment is performed after the dyeing treatment and before the underwater stretching treatment. The crosslinking treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution. By performing the cross-linking treatment, water resistance is imparted to the PVA-based resin layer, and it is possible to prevent a decrease in the orientation of PVA when immersed in high-temperature water during subsequent stretching in water. The concentration of the boric acid aqueous solution is preferably 1 part by weight to 5 parts by weight with respect to 100 parts by weight of water. When a crosslinking treatment is performed after the above-mentioned dyeing treatment, it is preferable to further add an iodide. By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. The amount of iodide is preferably 1 to 5 parts by weight based on 100 parts by weight of water. Specific examples of iodide are as described above. The liquid temperature of the crosslinking bath (aqueous boric acid solution) is preferably 20 ° C. to 50 ° C.
C-6.水中延伸処理
 水中延伸処理における延伸倍率は、好ましくは1.8倍以下であり、より好ましくは1.5倍以下である。これにより、水中延伸処理による熱可塑性樹脂基材の過度の結晶化を抑制することができる。さらに空中補助延伸と組み合わせた高い総延伸倍率を実現し、光学特性に極めて優れた偏光膜を製造することができる。
C-6. Underwater stretching treatment The stretching ratio in the underwater stretching treatment is preferably 1.8 times or less, more preferably 1.5 times or less. Thereby, excessive crystallization of the thermoplastic resin substrate due to the underwater stretching treatment can be suppressed. Further, a high total stretching ratio in combination with the auxiliary stretching in the air is realized, and a polarizing film having extremely excellent optical properties can be manufactured.
 水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する偏光膜を製造することができる。 The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the in-water stretching treatment, the thermoplastic resin substrate and the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80 ° C.), and the PVA-based resin layer is crystallized. And can be stretched at a high magnification. As a result, a polarizing film having excellent optical characteristics can be manufactured.
 積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。 延伸 Any suitable method can be adopted as a method for stretching the laminate. Specifically, fixed-end stretching or free-end stretching (for example, a method of uniaxially stretching through a laminate between rolls having different peripheral speeds) may be used. Preferably, free end stretching is selected. The stretching of the laminate may be performed in one stage or may be performed in multiple stages. In the case of performing in multiple stages, the stretching ratio (maximum stretching ratio) of the laminate described later is a product of the stretching ratios in each stage.
 水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する偏光膜を製造することができる。 The underwater stretching is preferably performed by immersing the laminate in a boric acid aqueous solution (boric acid in water stretching). By using a boric acid aqueous solution as the stretching bath, it is possible to provide the PVA-based resin layer with rigidity to withstand the tension applied during stretching and water resistance that does not dissolve in water. Specifically, boric acid can generate a tetrahydroxyborate anion in an aqueous solution and crosslink with a PVA-based resin by hydrogen bonding. As a result, rigidity and water resistance can be imparted to the PVA-based resin layer, the film can be stretched favorably, and a polarizing film having excellent optical characteristics can be manufactured.
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の偏光膜を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The boric acid aqueous solution is preferably obtained by dissolving boric acid and / or borate in water as a solvent. The concentration of boric acid is preferably 1 to 10 parts by weight, more preferably 2.5 to 6 parts by weight, particularly preferably 3 to 5 parts by weight, based on 100 parts by weight of water. It is. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and a polarizing film having higher characteristics can be manufactured. In addition to the boric acid or the borate, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde or the like in a solvent can also be used.
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。 Preferably, an iodide is blended in the above stretching bath (boric acid aqueous solution). By blending iodide, elution of iodine adsorbed on the PVA-based resin layer can be suppressed. Specific examples of iodide are as described above. The concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight, based on 100 parts by weight of water.
 延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。 The stretching temperature (liquid temperature of the stretching bath) is preferably 40 ° C to 85 ° C, more preferably 60 ° C to 75 ° C. At such a temperature, the film can be stretched at a high magnification while suppressing the dissolution of the PVA-based resin layer. Specifically, as described above, the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60 ° C. or more in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40 ° C., there is a possibility that stretching may not be performed well even if plasticization of the thermoplastic resin substrate by water is considered. On the other hand, the higher the temperature of the stretching bath is, the higher the solubility of the PVA-based resin layer is, and there is a possibility that excellent optical properties cannot be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
C-7.乾燥処理
 上記乾燥処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた偏光膜を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。
C-7. Drying Treatment The drying treatment may be performed by zone heating in which the entire zone is heated, or may be performed by heating the transport rolls (using a so-called heating roll) (heating roll drying method). Preferably, both are used. By drying using a heating roll, it is possible to efficiently suppress the heating curl of the laminate and produce a polarizing film having an excellent appearance. Specifically, by drying the laminate along the heating roll, the degree of crystallinity can be increased by efficiently promoting the crystallization of the thermoplastic resin base material, and is relatively low. Even at the drying temperature, the degree of crystallinity of the thermoplastic resin substrate can be favorably increased. As a result, the rigidity of the thermoplastic resin base material increases, and the thermoplastic resin base material becomes a state capable of withstanding shrinkage of the PVA-based resin layer due to drying, and curling is suppressed. In addition, by using a heating roll, the laminate can be dried while maintaining the flat state, so that not only curling but also generation of wrinkles can be suppressed. At this time, the optical characteristics can be improved by shrinking the laminate in the width direction by the drying shrinkage treatment. This is because the orientation of PVA and the PVA / iodine complex can be effectively increased.
C-8.その他の処理
 好ましくは、水中延伸処理の後、乾燥処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
C-8. Other Treatments Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying treatment. The above-mentioned cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法および評価方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)結晶化指数
 空中延伸処理後の積層体について、フーリエ変換赤外分光光度計(Perkin Elmer社製、製品名「SPECTRUM2000」)を用い、偏光を測定光として、ATR測定によりPVA系樹脂層表面の評価を行った。具体的には、測定偏光を延伸方向に対して0°と90°にした状態で測定を実施し、得られたスペクトルの1141cm-1および1140cm-1の強度を用いて、下記式に従って結晶化指数を算出した。
   結晶化指数=((IC-0+2×IC-90)/3)/((IR-0+2×IR-90)/3)
ただし、
C-0:測定光(偏光)を延伸方向と平行方向に入射して測定したときの1141cm-1の強度
C-90:測定光(偏光)を延伸方向と垂直方向に入射して測定したときの1141cm-1の強度
R-0:測定光(偏光)を延伸方向と平行方向に入射して測定したときの1140cm-1の強度
R-90:測定光(偏光)を延伸方向と垂直方向に入射して測定したときの1140cm-1の強度
(2)配向関数
 空中延伸処理後の積層体について、フーリエ変換赤外分光光度計(Perkin Elmer社製、製品名「SPECTRUM2000」)を用い、偏光を測定光として、ATR測定によりPVA系樹脂層表面の評価を行った。具体的には、測定偏光を延伸方向に対して0°と90°にした状態で測定を実施し、2941cm-1の強度を用いて、下記式に従って配向関数を算出した。
     f=(3<cosθ>-1)/2
      =(1-D)/[c(2D+1)]
ただし、
c=(3cosβ-1)/2
β=90deg⇒f=-2×(1-D)/(2D+1)
θ:分子鎖・延伸方向
β:分子鎖・遷移双極子モーメント
D=(I⊥)/(I//)
(PVA分子が配向するほどDの値が大きくなる)
I⊥:測定光(偏光)を延伸方向と垂直方向に入射して測定したときの強度
I//:測定光(偏光)を延伸方向と平行方向に入射して測定したときの強度
(3)厚みバラつき
 実施例および比較例の偏光膜の厚みを、干渉膜厚計(大塚電子社製、製品名「MCPD-3700」を用いて、吸収軸と直交する方向における一方の端部から他方の端部まで、2mm間隔で測定した。
次いで、上記一方の端部から上記他方の端部まで、50mmごとの領域内での最大厚みと最小厚みの差を算出し、各領域における上記差の平均値を算出し、上記平均値を厚みバラつきとした。
(4)光学特性(単体透過率および偏光度)
 実施例および比較例の偏光板(保護フィルム/偏光膜)について、紫外可視分光光度計(日本分光社製V-7100)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、偏光膜のTs、TpおよびTcとした。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。なお、保護フィルムの屈折率は1.50であり、偏光膜の保護フィルムとは反対側の表面の屈折率は1.53であった。
 得られたTpおよびTcから、下記式により偏光度Pを求めた。
   偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 得られた単体透過率および偏光度の値に基づき、以下の基準で光学特性を評価した。
○:偏光度が99.0%以上である。(単体透過率=44.5%)
×:偏光度が99.0%未満である。(単体透過率=44.5%)
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. The measuring method and evaluation method of each characteristic are as follows. Unless otherwise specified, “parts” and “%” in Examples and Comparative Examples are based on weight.
(1) Crystallization index The PVA-based resin layer was subjected to ATR measurement using a Fourier-transform infrared spectrophotometer (Perkin Elmer, product name "SPECTRUM2000") for the laminate after the aerial stretching treatment, using polarized light as measurement light. The surface was evaluated. Specifically, the measurement was performed with the measured polarized light at 0 ° and 90 ° with respect to the stretching direction, and crystallization was performed according to the following formula using the intensity of the obtained spectrum at 1141 cm −1 and 1140 cm −1 . An index was calculated.
Crystallization index = ((I C-0 + 2 × I C-90 ) / 3) / ((I R-0 + 2 × I R-90 ) / 3)
However,
I C-0 : Intensity of 1141 cm −1 when measuring with measuring light (polarized light) incident in a direction parallel to the stretching direction I C-90 : Measurement with measuring light (polarized light) incident in a direction perpendicular to the stretching direction Intensity I R-0 at 1141 cm -1 when the measurement light (polarized light) is incident in a direction parallel to the stretching direction and measured at an intensity I R-90 at 1140 cm -1 : the measurement light (polarized light) in the stretching direction (1) Intensity of 1140 cm -1 when measured by incidence in the vertical direction (2) Orientation function For the laminate after the air stretching treatment, a Fourier transform infrared spectrophotometer (Perkin Elmer, product name “SPECTRUM2000”) was used. The surface of the PVA-based resin layer was evaluated by ATR measurement using polarized light as measurement light. Specifically, the measurement was performed with the measurement polarized light at 0 ° and 90 ° with respect to the stretching direction, and the orientation function was calculated according to the following equation using an intensity of 2941 cm −1 .
f = (3 <cos 2 θ> -1) / 2
= (1-D) / [c (2D + 1)]
However,
c = (3 cos 2 β-1) / 2
β = 90deg⇒f = -2 × (1-D) / (2D + 1)
θ: molecular chain, stretching direction β: molecular chain, transition dipole moment D = (I⊥) / (I //)
(The value of D increases as the PVA molecules are oriented.)
I⊥: intensity when measuring light (polarized light) is incident in the direction perpendicular to the stretching direction and measuring I //: intensity when measuring light (polarized light) is incident in the direction parallel to the stretching direction and measuring (3) Thickness variation The thickness of the polarizing film of each of Examples and Comparative Examples was measured using an interference film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3700”) from one end to the other in the direction orthogonal to the absorption axis. The measurement was performed at 2 mm intervals up to the part.
Next, from the one end to the other end, a difference between a maximum thickness and a minimum thickness in a region of every 50 mm is calculated, an average value of the difference in each region is calculated, and the average value is calculated as a thickness. It was uneven.
(4) Optical properties (single transmittance and degree of polarization)
For the polarizing plates (protective film / polarizing film) of Examples and Comparative Examples, single transmittance Ts, parallel transmittance Tp, and orthogonal transmittance Tc measured using an ultraviolet-visible spectrophotometer (V-7100 manufactured by JASCO Corporation). Are defined as Ts, Tp and Tc of the polarizing film, respectively. These Ts, Tp, and Tc are Y values measured with a two-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction. The refractive index of the protective film was 1.50, and the refractive index of the surface of the polarizing film opposite to the protective film was 1.53.
From the obtained Tp and Tc, the degree of polarization P was determined by the following equation.
Degree of polarization P (%) = {(Tp−Tc) / (Tp + Tc)} 1/2 × 100
Based on the obtained values of the single transmittance and the degree of polarization, the optical characteristics were evaluated according to the following criteria.
Good: The degree of polarization is 99.0% or more. (Single transmittance = 44.5%)
X: The degree of polarization is less than 99.0%. (Single transmittance = 44.5%)
[実施例1]
1.偏光膜の作製
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm、幅:1450mm)を用いた。樹脂基材の片面に、コロナ処理(処理条件:55W・min/m)を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1の比で含むPVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み8μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、延伸温度を120℃~130℃とし、周速の異なるロール間で縦方向(長手方向)に3.0倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が44.5%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、オーブン中で乾燥することにより、樹脂基材上に、幅1500mm、厚み3.5μmの偏光膜を形成した。
2.偏光板の作製
 上記で得られた偏光膜の表面(樹脂基材とは反対側の面)に、保護フィルムとして、アクリル系フィルム(表面屈折率1.50、40μm)を、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線を保護フィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離し、保護フィルム/偏光膜の構成を有する偏光板を得た。
[Example 1]
1. Preparation of Polarizing Film As a thermoplastic resin substrate, an amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm, width: 1,450 mm) having a long shape, a water absorption of 0.75%, and a Tg of about 75 ° C. was used. Using. One surface of the resin substrate was subjected to a corona treatment (treatment condition: 55 W · min / m 2 ).
PVA aqueous solution containing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (trade name “Gosefimer Z410” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) at a ratio of 9: 1 (coating) Liquid).
The PVA aqueous solution was applied to the corona-treated surface of the resin substrate and dried at 60 ° C. to form a PVA-based resin layer having a thickness of 8 μm, thereby producing a laminate.
The obtained laminate was stretched at a stretching temperature of 120 ° C. to 130 ° C. and uniaxially stretched 3.0 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds (auxiliary stretching in air).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, the polarizing film finally obtained is placed in a dyeing bath at a liquid temperature of 30 ° C. (an aqueous solution of iodine obtained by mixing iodine and potassium iodide in a weight ratio of 1: 7 with respect to 100 parts by weight of water). It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) became 44.5% (dyeing treatment).
Next, it was immersed in a crosslinking bath of a liquid temperature of 40 ° C. (a boric acid aqueous solution obtained by mixing 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crosslinking treatment).
Thereafter, while the laminate is immersed in a boric acid aqueous solution (boric acid concentration: 4.0% by weight) at a liquid temperature of 70 ° C, the total stretching ratio in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds is 5.5. The film was uniaxially stretched so as to be twice as large (underwater stretching treatment).
Thereafter, the laminate was immersed in a washing bath at a liquid temperature of 20 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) (washing treatment).
Thereafter, by drying in an oven, a polarizing film having a width of 1500 mm and a thickness of 3.5 μm was formed on the resin substrate.
2. Preparation of Polarizing Plate On the surface of the polarizing film obtained above (the surface opposite to the resin substrate), an acrylic film (surface refractive index: 1.50, 40 μm) as a protective film was coated with an ultraviolet curable adhesive. And pasted together. Specifically, the adhesive was applied so that the total thickness of the curable adhesive became 1.0 μm, and was bonded using a roll machine. Thereafter, UV light was irradiated from the protective film side to cure the adhesive. Next, the resin substrate was peeled off to obtain a polarizing plate having a structure of protective film / polarizing film.
[実施例2]
 空中補助延伸処理において、延伸倍率を3.5倍としたこと以外は実施例1と同様にして偏光膜および偏光板を作製した。
[Example 2]
A polarizing film and a polarizing plate were produced in the same manner as in Example 1 except that the stretching ratio was 3.5 times in the air-assisted stretching process.
[比較例1]
 空中補助延伸処理において、延伸倍率を2.0倍としたこと、および、延伸温度を140℃としたこと以外は実施例1と同様にして偏光膜および偏光板を作製した。
[Comparative Example 1]
A polarizing film and a polarizing plate were produced in the same manner as in Example 1 except that the stretching ratio was 2.0 times and the stretching temperature was 140 ° C. in the auxiliary in-air stretching process.
[比較例2]
 空中補助延伸処理において、延伸倍率を2.4倍としたこと以外は実施例1と同様にして偏光膜および偏光板を作製した。
[Comparative Example 2]
A polarizing film and a polarizing plate were produced in the same manner as in Example 1, except that the stretching ratio was set to 2.4 times in the auxiliary stretching in air.
[比較例3]
 空中補助延伸処理において、延伸倍率を4.0倍としたこと、および、延伸温度を140℃としたこと以外は実施例1と同様にして偏光膜の作製を試みたが、水中延伸処理において積層体が破断し、偏光膜および偏光板を作製することができなかった。
[Comparative Example 3]
In the air-assisted stretching treatment, an attempt was made to produce a polarizing film in the same manner as in Example 1 except that the stretching ratio was 4.0 times and the stretching temperature was 140 ° C. The body was broken, and a polarizing film and a polarizing plate could not be produced.
[比較例4]
 空中補助延伸処理において、延伸倍率を4.5倍としたこと、および、水中延伸処理を施さなかったこと以外は実施例1と同様にして偏光膜および偏光板を作製した。
[Comparative Example 4]
A polarizing film and a polarizing plate were produced in the same manner as in Example 1 except that the stretching ratio was set to 4.5 in the auxiliary in-air stretching process and that the in-water stretching process was not performed.
<評価>
 実施例および比較例について、空中延伸処理後のPVA系樹脂層の結晶化指数および配向関数を上記(1)および(2)に従い算出し、偏光膜の厚みバラつきを上記(3)に従い算出し、偏光板の光学特性を上記(4)に従い評価した。さらに、実施例および比較例の偏光板を画像表示装置に適用したときのスジムラの有無を確認した。結果を表1に示す。
<Evaluation>
For Examples and Comparative Examples, the crystallization index and orientation function of the PVA-based resin layer after the air stretching treatment were calculated according to the above (1) and (2), and the thickness variation of the polarizing film was calculated according to the above (3), The optical properties of the polarizing plate were evaluated according to the above (4). Further, the presence or absence of streaks when the polarizing plates of Examples and Comparative Examples were applied to an image display device was confirmed. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、比較例1および4の偏光板は光学特性が低く、また、比較例1および2の偏光板ではスジムラが視認された。比較例3の製造条件では、水中延伸処理において積層体が破断してしまい、偏光膜を作製することすらできなかった。これに対して、実施例1および2の偏光板は、優れた光学特性を有し、スジムラは確認されなかった。 よ う As is clear from Table 1, the polarizing plates of Comparative Examples 1 and 4 had low optical characteristics, and the polarizing plates of Comparative Examples 1 and 2 showed uneven streaks. Under the production conditions of Comparative Example 3, the laminate was broken during the underwater stretching treatment, and it was not even possible to produce a polarizing film. On the other hand, the polarizing plates of Examples 1 and 2 had excellent optical characteristics, and no streaks were observed.
 本発明の偏光膜は、画像表示装置に好適に用いられる。 偏光 The polarizing film of the present invention is suitably used for an image display device.
 10    偏光膜
 20    第1の保護層
 30    第2の保護層
 100   偏光板
Reference Signs List 10 polarizing film 20 first protective layer 30 second protective layer 100 polarizing plate

Claims (5)

  1.  厚みが8μm以下であり、
     吸収軸と直交する方向に沿って一方の端部から他方の端部まで50mmの領域ごとの最大厚みと最小厚みの差の平均値が70nm以下である、偏光膜。
    The thickness is 8 μm or less,
    A polarizing film, wherein the average value of the difference between the maximum thickness and the minimum thickness for each 50 mm region from one end to the other end along a direction perpendicular to the absorption axis is 70 nm or less.
  2.  単体透過率が44.5%以上であり、偏光度が99.0%以上である、請求項1に記載の偏光膜。 (2) The polarizing film according to claim 1, wherein the single film transmittance is 44.5% or more and the degree of polarization is 99.0% or more.
  3.  請求項1または2に記載の偏光膜と、該偏光膜の少なくとも一方の側に配置された保護層とを有する、偏光板。 (4) A polarizing plate, comprising: the polarizing film according to claim 1; and a protective layer disposed on at least one side of the polarizing film.
  4.  熱可塑性樹脂基材の片側に、ポリビニルアルコール系樹脂を含むポリビニルアルコール系樹脂層を形成して積層体とすること、および
     前記積層体に、空中延伸処理と染色処理とをこの順に施すこと、を含み、
     前記空中延伸処理後の前記ポリビニルアルコール系樹脂層は、全反射減衰分光測定により算出される結晶化指数が1.55以上1.7以下であり、かつ、配向関数が0.22以上0.31以下である、偏光膜の製造方法。
    On one side of the thermoplastic resin base material, a polyvinyl alcohol-based resin layer containing a polyvinyl alcohol-based resin is formed into a laminate, and the laminate is subjected to an air stretching process and a dyeing process in this order. Including
    The polyvinyl alcohol-based resin layer after the air stretching treatment has a crystallization index calculated by attenuated total reflection spectroscopy of 1.55 or more and 1.7 or less, and an orientation function of 0.22 or more and 0.31 or less. The following is a method for producing a polarizing film.
  5.  前記空中延伸処理の後に、前記積層体に水中延伸処理を施すことをさらに含み、
     前記空中延伸処理における延伸倍率が3.0倍以上であり、前記水中延伸処理における延伸倍率が1.8倍以下である、請求項4に記載の偏光膜の製造方法。
     
    After the aerial stretching process, further comprising performing an underwater stretching process on the laminate,
    The method for producing a polarizing film according to claim 4, wherein the stretching ratio in the air stretching process is 3.0 times or more, and the stretching ratio in the underwater stretching process is 1.8 times or less.
PCT/JP2019/021299 2018-07-25 2019-05-29 Polarizing film and method for manufacturing polarizing film WO2020021847A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217001303A KR102606109B1 (en) 2018-07-25 2019-05-29 Polarizing film and method of manufacturing the polarizing film
CN201980049382.8A CN112513694B (en) 2018-07-25 2019-05-29 Polarizing film and method for producing polarizing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139286 2018-07-25
JP2018139286A JP7041017B2 (en) 2018-07-25 2018-07-25 Method for manufacturing a polarizing film and a polarizing film

Publications (1)

Publication Number Publication Date
WO2020021847A1 true WO2020021847A1 (en) 2020-01-30

Family

ID=69181659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021299 WO2020021847A1 (en) 2018-07-25 2019-05-29 Polarizing film and method for manufacturing polarizing film

Country Status (5)

Country Link
JP (1) JP7041017B2 (en)
KR (1) KR102606109B1 (en)
CN (1) CN112513694B (en)
TW (1) TWI801599B (en)
WO (1) WO2020021847A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196439A1 (en) * 2019-03-28 2020-10-01 日東電工株式会社 Polarizing film, polarizing plate, and method for producing said polarizing film
WO2021065107A1 (en) * 2019-09-30 2021-04-08 日東電工株式会社 Retardation-layer-equipped polarizing plate and image display device using same
WO2021095526A1 (en) * 2019-11-11 2021-05-20 日東電工株式会社 Polarizing film, polarizing plate, and image display device
JPWO2021095527A1 (en) * 2019-11-11 2021-05-20
US20220057560A1 (en) * 2020-08-18 2022-02-24 Dongwoo Fine-Chem Co., Ltd. Polarizing plate for antireflection and display device comprising the same
JP7469893B2 (en) 2020-02-04 2024-04-17 住友化学株式会社 Polarizing film manufacturing method and polarizing film manufacturing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022121012A (en) * 2021-02-08 2022-08-19 日東電工株式会社 Polarizing plate and polarizing plate with retardation layer
CN115505149B (en) * 2022-08-30 2024-04-02 华东理工大学 Circularly polarized luminescent material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039140A (en) * 1996-07-26 1998-02-13 Nippon Synthetic Chem Ind Co Ltd:The Polarizing plate and liquid crystal display device using the polarizing plate
JP2012256018A (en) * 2010-12-16 2012-12-27 Nitto Denko Corp Method for manufacturing polarizing film
JP2017173793A (en) * 2016-03-22 2017-09-28 住友化学株式会社 Polarizer, polarization film, and method for producing polarizer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343521A (en) 2000-05-31 2001-12-14 Sumitomo Chem Co Ltd Polarizing plate and method for manufacturing the same
JP4149200B2 (en) * 2002-06-12 2008-09-10 株式会社クラレ Manufacturing method of polarizing film
JP5361941B2 (en) * 2010-09-03 2013-12-04 日東電工株式会社 Method for producing laminate strip roll having polarizing film
JP4691205B1 (en) * 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film
JP5502023B2 (en) * 2010-09-03 2014-05-28 日東電工株式会社 Method for producing optical film laminate roll having polarizing film
JP5701679B2 (en) * 2010-09-03 2015-04-15 日東電工株式会社 Method and apparatus for sequentially attaching optical films having polarizing films on rectangular panels
KR102059228B1 (en) * 2012-08-06 2019-12-24 주식회사 쿠라레 Layered object, polarizing film, and process for producing polarizing film
JP6794106B2 (en) 2015-12-07 2020-12-02 住友化学株式会社 Method of manufacturing polarizing film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1039140A (en) * 1996-07-26 1998-02-13 Nippon Synthetic Chem Ind Co Ltd:The Polarizing plate and liquid crystal display device using the polarizing plate
JP2012256018A (en) * 2010-12-16 2012-12-27 Nitto Denko Corp Method for manufacturing polarizing film
JP2017173793A (en) * 2016-03-22 2017-09-28 住友化学株式会社 Polarizer, polarization film, and method for producing polarizer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196439A1 (en) * 2019-03-28 2020-10-01 日東電工株式会社 Polarizing film, polarizing plate, and method for producing said polarizing film
WO2021065107A1 (en) * 2019-09-30 2021-04-08 日東電工株式会社 Retardation-layer-equipped polarizing plate and image display device using same
WO2021095526A1 (en) * 2019-11-11 2021-05-20 日東電工株式会社 Polarizing film, polarizing plate, and image display device
JPWO2021095527A1 (en) * 2019-11-11 2021-05-20
JPWO2021095526A1 (en) * 2019-11-11 2021-05-20
WO2021095527A1 (en) * 2019-11-11 2021-05-20 日東電工株式会社 Polarizing film, polarizing plate, and image display device
JP7469893B2 (en) 2020-02-04 2024-04-17 住友化学株式会社 Polarizing film manufacturing method and polarizing film manufacturing device
US20220057560A1 (en) * 2020-08-18 2022-02-24 Dongwoo Fine-Chem Co., Ltd. Polarizing plate for antireflection and display device comprising the same

Also Published As

Publication number Publication date
JP2020016743A (en) 2020-01-30
TWI801599B (en) 2023-05-11
JP7041017B2 (en) 2022-03-23
KR102606109B1 (en) 2023-11-29
CN112513694A (en) 2021-03-16
TW202007518A (en) 2020-02-16
KR20210035174A (en) 2021-03-31
CN112513694B (en) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2020021847A1 (en) Polarizing film and method for manufacturing polarizing film
JP6409142B1 (en) Polarizing film, polarizing plate, and manufacturing method of polarizing film
JP7376494B2 (en) Polarizing plate, method for manufacturing the same, and image display device including the polarizing plate
WO2019054273A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
TW201915066A (en) Polarizing film, polarizing plate, and method for manufacturing polarizing film
WO2019054268A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
WO2019054274A1 (en) Polarizing film, polarizing plate, and method for manufacturing polarizing film
WO2019054271A1 (en) Polarizing plate, polarizing plate roll, and method for manufacturing polarizing film
WO2019054272A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
WO2019054275A1 (en) Polarizing film, polarizing plate, and method for manufacturing polarizing film
JP7096700B2 (en) A method for manufacturing a polarizing film, a polarizing plate, a polarizing plate roll, and a polarizing film.
JP2019053280A (en) Polarization film, polarization plate and manufacturing method of polarization film
JP7219017B2 (en) Method for manufacturing polarizing film
JP6513269B1 (en) Polarizing film, polarizing plate, polarizing plate roll, and method of manufacturing polarizing film
JP6496862B2 (en) Manufacturing method of polarizing film
WO2019054269A1 (en) Polarizing plate, polarizing plate roll, and method for producing polarizing film
WO2019054270A1 (en) Polarizing plate, polarizing plate roll, and method for manufacturing polarizing film
WO2022158235A1 (en) Method for producing polarizing film
JP6513270B1 (en) Polarizing film, polarizing plate, polarizing plate roll, and method of manufacturing polarizing film
JP6513271B1 (en) Polarizing film, polarizing plate, polarizing plate roll, and method of manufacturing polarizing film
WO2019208181A1 (en) Polarizer, polarizer roll, and method for manufacturing polarizing film
JP2020101805A (en) Polarizing plate and polarizing plate roll
JP2023050227A (en) Method for producing polarizing film
JP2023050226A (en) Method for producing polarizing film
JP2019197205A (en) Polarizing plate and polarizing plate roll

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840383

Country of ref document: EP

Kind code of ref document: A1