WO2020021812A1 - Radar sensor - Google Patents

Radar sensor Download PDF

Info

Publication number
WO2020021812A1
WO2020021812A1 PCT/JP2019/018305 JP2019018305W WO2020021812A1 WO 2020021812 A1 WO2020021812 A1 WO 2020021812A1 JP 2019018305 W JP2019018305 W JP 2019018305W WO 2020021812 A1 WO2020021812 A1 WO 2020021812A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
signal
information
radar sensor
radar
Prior art date
Application number
PCT/JP2019/018305
Other languages
French (fr)
Japanese (ja)
Inventor
永石 英幸
栗山 哲
晃 北山
黒田 浩司
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980037276.8A priority Critical patent/CN112219133A/en
Publication of WO2020021812A1 publication Critical patent/WO2020021812A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present invention relates to a radar sensor, and more particularly to a technique effective for a radar sensor that generates a narrow-angle beam.
  • peripheral detection sensors for safe operation and safe operation of automobiles, railways, transportation equipment, and the like there are, for example, Doppler sensors or radar sensors using radio waves.
  • a plurality of radar sensors with different detection distances and detection angle ranges are used so as to cover the entire periphery of the automobile to realize safe driving support and automatic driving.
  • a radar for long distances ahead is required to have a maximum detection distance of 200 m or more so that the radar can safely stop on a highway of about 200 km / h even on a highway with no speed limit.
  • the antenna of such a radar sensor uses a narrow-angle beam with a vertical azimuth half-width of ⁇ 2 deg or less while securing a horizontal azimuth detection range of ⁇ 8 deg or more in order to obtain a high gain characteristic of the antenna.
  • a radar sensor that uses a high-gain antenna with a fixed azimuth is suitable for high-speed traveling where emphasis is placed on long-distance performance in front of the vehicle.However, in city driving, when turning right or left at an intersection or at a pedestrian crossing It is necessary to detect a wider range of obstacles, such as when passing by. Therefore, wide angle detection of ⁇ 30 deg or more is desired even in a long distance radar in front.
  • a phased array antenna consisting of a plurality of antennas to match the traveling direction of a radar-mounted moving object based on the signal obtained from the traveling direction detection device
  • a phase shifter to detect a relative distance, a relative speed, and an angle with respect to an obstacle in a traveling direction
  • the antenna used for a long-distance radar sensor for an automobile has a half-width in the horizontal direction of about ⁇ 8 deg and a half-width in the vertical direction of about ⁇ 2 deg.
  • the phased array antenna controls the phase of each antenna element inside the radar sensor and actively scans the radiation azimuth, thereby realizing both high antenna gain and a wide angle detection range.
  • the radiation direction of the radar sensor is scanned in the traveling direction of the vehicle using the traveling direction detection device.
  • the traveling direction detection device By performing beam scanning in the traveling direction, it is possible to focus more on obstacles in the traveling direction of the vehicle.
  • An object of the present invention is to provide a technique capable of controlling the radiation direction and the radiation range of a beam with high accuracy according to road conditions and the like.
  • a typical radar sensor has a signal processing circuit, a plurality of transmission power supply units, a reception power supply unit, a switch unit, a phase difference detector, a phase shifter, and an information processing unit.
  • the signal processing circuit performs signal processing.
  • the plurality of transmission power supply units emit radio waves based on the reference signal supplied from the signal processing circuit.
  • the receiving power supply unit receives a radio wave and generates a reception signal based on the received radio wave.
  • the switch unit switches the connection state between the signal processing circuit and the transmission power supply unit by a switch switching operation.
  • the phase difference detector adjusts a phase shift amount of the reference signal.
  • the phase shifter is provided between the signal processing circuit and the transmission power supply unit, and shifts the phase of the reference signal based on the amount of phase shift.
  • the information processing unit generates a control signal for controlling a phase shift amount adjusted by the phase difference detector and a switch switching operation of the switch unit according to a road condition.
  • the information processing unit generates a control signal based on vehicle surrounding situation information indicating a traveling environment of the vehicle such that a beam having a radiation range and a radiation angle corresponding to a road condition is generated.
  • the signal processing circuit generates respective difference signals before and after the switch switching operation based on the received signal and the reference signal.
  • the phase difference detector calculates a phase difference between the transmission power supply units as a transmission phase difference based on the respective difference signals, and sets a phase shift amount and a switch unit based on a control signal generated by the information processing unit. Switch operation.
  • the vehicle surrounding situation information input to the information processing unit is information input from outside.
  • FIG. 3 is an explanatory diagram illustrating an example of a configuration of the radar sensor according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an example of a process of adjusting a beam radiation direction in the radar sensor of FIG. 1.
  • FIG. 2 is an explanatory diagram illustrating an example of beam radiation by the radar sensor of FIG. 1.
  • FIG. 4 is an explanatory diagram showing another example of beam radiation by the radar sensor of FIG. 3.
  • 4 is a flowchart illustrating an example of a beam emission setting process based on vehicle surrounding situation information when passing through an intersection in the long distance radar mode in FIG. 3.
  • FIG. 9 is an explanatory diagram illustrating an example of a configuration of a radar sensor according to a second embodiment.
  • FIG. 13 is an explanatory diagram illustrating an example of a configuration of a radar sensor according to a third embodiment.
  • FIG. 14 is an explanatory diagram illustrating an example of a configuration of a radar sensor according to a fourth embodiment.
  • FIG. 15 is an explanatory diagram showing an example of a configuration of a radar sensor according to a fifth embodiment.
  • FIG. 10 is a flowchart illustrating an example of a process of adjusting a beam radiation direction in the radar sensor of FIG. 9.
  • FIG. 15 is an explanatory diagram showing an example of a configuration of a radar sensor according to a sixth embodiment.
  • FIG. 1 is an explanatory diagram illustrating an example of the configuration of the radar sensor 10 according to the first embodiment.
  • the radar sensor 10 is installed, for example, at the front of the vehicle and emits a beam to detect a target in front of the vehicle. Further, the radar sensor 10 may be installed at the rear of the vehicle.
  • the radar sensor 10 includes a transmission power supply unit 11, a transmission power supply unit 12, a reception power supply unit 13, a switch unit 20, a phase shifter 30, a signal processing circuit 40, a phase difference detector 50, And an information processing unit 55.
  • the switch unit 20 includes a switch 21 and a switch 22.
  • the transmission power supply unit 11 is a transmission antenna that radiates radio waves such as millimeter-wave signals based on a reference signal supplied from the signal processing circuit 40.
  • the transmission power supply unit 12 is a transmission antenna that emits a radio wave such as a millimeter wave signal based on the reference signal phase-shifted by the phase shifter 30. Radio waves simultaneously radiated from the transmission power supply units 11 and 12 are spatially combined into beams radiated in a predetermined direction based on a phase difference (transmission phase difference) between the antenna openings.
  • the switches 21 and 22 are switches for switching a connection state between the transmission power supply units 11 and 12 and the signal processing circuit 40.
  • Examples of the switch include a transistor such as a MOSFET, a relay circuit, and the like.
  • the switch 21 is connected between the transmission power supply unit 11 and the signal processing circuit 40.
  • the switch 21 When the switch 21 is on, that is, in a conductive state, the transmission power supply unit 11 is connected to the signal processing circuit 40.
  • the reference signal is supplied to the transmission power supply unit 11, and the transmission power supply unit 11 emits a predetermined radio wave based on the reference signal.
  • the switch 22 and the phase shifter 30 are connected in series between the transmission power supply unit 12 and the signal processing circuit 40.
  • the switch 22 may be connected between the transmission power supply unit 11 and the phase shifter 30 as shown in FIG. 1, or may be connected between the phase shifter 30 and the signal processing circuit 40. It may be.
  • the transmission power supply unit 12 When the switch 22 is on, that is, in a conductive state, the transmission power supply unit 12 is connected to the signal processing circuit 40. As a result, the reference signal whose phase has been shifted by the phase shifter 30 is supplied to the transmission power supply unit 12, and the transmission power supply unit 12 radiates a predetermined radio wave based on the phase shifted reference signal.
  • the phase shifter 30 will be described later.
  • the receiving power supply unit 13 is a receiving antenna that receives a radio wave such as a millimeter wave signal.
  • the receiving power supply unit 13 is connected to the signal processing circuit 40.
  • the reception power supply unit 13 generates a predetermined reception signal based on the received radio wave, and outputs the generated reception signal to the signal processing circuit 40.
  • the radio wave received by the reception power supply unit 13 may be an incoming wave directly propagating from the transmission power supply units 11 and 12, or may be a reflected wave from a target obtained by radar scanning.
  • the transmission power supply units 11 and 12 and the reception power supply unit 13 are, for example, patch antennas and horn antennas.
  • the phase shifter 30 is a circuit that shifts the phase of the reference signal. For example, the phase shifter 30 shifts the phase of the reference signal based on the amount of phase shift set by the phase difference detector 50.
  • the transmission phase difference between the antenna openings of the transmission power supply units 11 and 12 is set by the phase shift amount set in the phase shifter 30. Thereby, the beam radiation direction is set.
  • the signal processing circuit 40 is a circuit that performs various kinds of signal processing. For example, the signal processing circuit 40 generates a millimeter wave signal as a reference signal for radio wave emission. Further, the signal processing circuit 40 amplifies the generated reference signal to a desired power, and outputs the amplified reference signal to the transmission power supply units 11 and 12. Further, the signal processing circuit 40 also performs signal processing based on the reception signal output from the reception power supply unit 13. Details of the signal processing based on the received signal will be described later.
  • the phase difference detector 50 is a circuit for adjusting the beam azimuth.
  • a control signal or the like generated by the information processing unit 55 is input to the phase difference detector 50.
  • the phase difference detector 50 calculates a transmission phase difference that is a phase difference between a plurality of transmission power supply units, and based on the calculated transmission phase difference, a control signal output from the information processing unit 55, and the like, Adjust the beam emission direction.
  • the information processing unit 55 generates a control signal to be output to the above-described phase difference detector 50 based on vehicle surrounding situation information input from the outside.
  • the control signal includes information indicating a set value of the phase shift amount set by the phase difference detector 50, information for controlling on / off of the switches 21 and 22, and the like.
  • the phase difference detector 50 sets the phase shift amount of the phase shifter 30 based on the information indicating the set value of the phase shift amount described above. Further, the phase difference detector 50 switches the switches 21 and 22 on and off based on the information for controlling the switches 21 and 22 described above.
  • the vehicle peripheral information device 100 is a device for grasping what road the host vehicle is traveling on, such as a car navigation system, a GPS (Global Positioning System) device, an information device such as a smartphone, or a connected device. Such as cars.
  • a car navigation system such as a car navigation system, a GPS (Global Positioning System) device, an information device such as a smartphone, or a connected device.
  • GPS Global Positioning System
  • a connected car is a car that has a function as an ITC (Information and Communication Technology) terminal.
  • the connected car acquires various data such as the state of the vehicle and the surrounding road conditions using sensors, and integrates and analyzes it via a network. By doing so, the comfort and safety in the vehicle are improved.
  • ITC Information and Communication Technology
  • the vehicle surrounding situation information is, for example, map information using the above-described car navigation or GPS device, information transferred from a map information application using a smartphone having a wireless communication function, or information such that the vehicle is always connected to the Internet such as a connected car.
  • This is information on the road condition of the own vehicle which is connected and output from the Internet, and indicates the traveling environment of the vehicle.
  • phase shifter 30 may be provided for each transmission power supply unit, and the phase of the reference signal may be controlled for each transmission power supply unit.
  • the transmission phase difference between the transmission power supply units 11 and 12 is calculated based on the phase information in each path via the transmission power supply units 11 and 12. Then, the adjustment of the transmission phase difference is performed based on the transmission phase difference and the preset phase difference, whereby the beam radiation direction is adjusted.
  • FIG. 2 is a flowchart illustrating an example of a process of adjusting the beam radiation direction in the radar sensor 10 of FIG. Adjustment of the beam radiation direction is performed by the processing of steps S10 to S80 shown in FIG.
  • the radar sensor 10 is started (step S10).
  • the radar sensor 10 is activated, and the phase difference detector 50 resets the phase shift amount set in the phase shifter 30 at the end of the previous operation.
  • a process of emitting radio waves from the transmission power supply unit 11 is performed (step S20).
  • the phase difference detector 50 turns on the switch 21 and turns off the switch 22.
  • the transmission power supply unit 11 is connected to the signal processing circuit 40.
  • the reference signal is supplied to the transmission power supply unit 11, and the transmission power supply unit 11 emits a radio wave based on the reference signal.
  • the receiving power supply unit 13 receives an incoming wave of a radio wave radiated from the transmission power supply unit 11 or a reflected wave from a target, and generates a reception signal before the switching operation based on the received radio wave.
  • the reception power supply unit 13 outputs the generated reception signal to the signal processing circuit 40.
  • step S30 a process of detecting the phase information ( ⁇ 1) in the path via the transmission power supply unit 11 is performed (step S30).
  • the signal processing circuit 40 generates a difference signal before the switching operation based on the reception signal before the switching operation and the reference signal output from the receiving power supply unit 13.
  • the difference signal is a signal defined by the difference between the received signal and the reference signal.
  • the differential signal generated here includes the phase information of the entire path including the switch 21 or the switch 22, the wiring, and the transmission power supply unit 11.
  • the signal processing circuit 40 converts the generated difference signal into a signal having a predetermined intermediate frequency, that is, an IF signal.
  • the difference signal converted into the signal of the intermediate frequency may be referred to as a converted difference signal.
  • the signal processing circuit 40 outputs the converted difference signal to the phase difference detector 50.
  • the phase difference detector 50 detects the amplitude information (A1) and the phase information ( ⁇ 1) of the converted difference signal from the converted difference signal.
  • the detected phase information ( ⁇ 1) is phase information on a path via the transmission power supply unit 11.
  • the amplitude information (A1) indicates the intensity of the received radio wave.
  • the phase difference detector 50 outputs the detected phase information ( ⁇ 1) to the phase shifter 30 as a default phase shift amount. Further, the phase difference detector 50 may buffer the detected amplitude information (A1) and the detected phase information ( ⁇ 1), or may store them in a storage device (not shown).
  • step S40 a process of causing the transmission power supply unit 12 to emit radio waves is performed (step S40).
  • the phase difference detector 50 turns off the switch 21 and turns on the switch 22 to switch the connection state.
  • the transmission power supply unit 11 is electrically disconnected from the signal processing circuit 40.
  • the reference signal that is phase-shifted based on the default phase shift amount in the phase shifter 30 is output to the transmission power supply unit 12.
  • the transmission power supply unit 12 emits a radio wave based on the phase-shifted reference signal.
  • the receiving power supply unit 13 receives an incoming wave of a radio wave radiated from the transmission power supply unit 12 or a reflected wave from the target, and generates a reception signal after the switching operation based on the received radio wave.
  • the receiving power supply unit 13 outputs the generated reception signal to the signal processing circuit 40.
  • step S50 a process of detecting phase information in the path via the transmission power supply unit 12 is performed (step S50).
  • the signal processing circuit 40 generates a differential signal after the switching operation based on the received signal after the switching operation and the reference signal output from the receiving power supply unit 13.
  • the differential signal generated here includes the phase information of the entire path including the switch 21 or the switch 22, the wiring, and the transmission power supply unit 12.
  • the signal processing circuit 40 converts the generated difference signal into a signal having a predetermined intermediate frequency.
  • the signal processing circuit 40 outputs the converted difference signal to the phase difference detector 50.
  • the phase difference detector 50 detects the amplitude information (A2) and the phase information ( ⁇ 2) of the converted difference signal from the converted difference signal.
  • the detected phase information ( ⁇ 2) is phase information in a path via the transmission power supply unit 12.
  • the detected amplitude (A2) is information indicating the strength of the received radio wave.
  • the phase difference detector 50 may buffer the detected phase information ( ⁇ 2) or store it in a storage device (not shown).
  • phase difference detector 50 calculates a difference ( ⁇ 2 ⁇ 1) between the phase information ( ⁇ 2) after the switching operation and the phase information ⁇ 1 before the switching operation as a transmission phase difference ( ⁇ ).
  • the phase difference detector 50 calculates the transmission phase difference ( ⁇ ) at the antenna aperture by calculating the phase difference ( ⁇ 2 ⁇ 1).
  • the phase difference detector 50 may correct the transmission phase difference ⁇ according to the difference in the distance from each of the transmission power supply units 11 and 12 to the reception power supply unit 13.
  • step S70 processing is performed to determine whether the radiation direction of the beam matches a predetermined radiation direction set in advance (step S70).
  • the phase difference detector 50 compares the transmission phase difference calculated in the process of step S60 with the set phase difference.
  • the set phase difference refers to a phase difference between the transmission power supply units when emitting a beam in a set direction, that is, between the antenna openings of the transmission power supply units 11 and 12.
  • the phase difference detector 50 determines that the beam emission direction matches the preset direction, and ends the adjustment of the beam emission direction. I do. Thereafter, for example, both the switches 21 and 22 are turned on, and the beam is emitted in the adjusted direction, in other words, in the set direction.
  • the phase difference detector 50 determines that the beam emission direction is different from the set direction. In this case, adjustment of the beam radiation direction is performed in the process of step S80 described below.
  • the phase difference detector 50 may determine that these phase differences match.
  • the allowable range may be defined as a range in which a reflected wave from a target can be detected based on information such as amplitude information (A1, A2). As described above, by allowing the error of the transmission phase difference, the adjustment time in the radar radiation direction is reduced.
  • a process of adjusting the beam radiation direction is performed based on the transmission phase difference and the set phase difference (step S80).
  • the phase difference detector 50 calculates a difference between the transmission phase difference and the set phase difference, and increments or decrements the phase shift amount according to the calculated difference value.
  • the phase difference detector 50 outputs the adjusted phase shift amount to the phase shifter 30, and the information of the phase shift amount in the phase shifter 30 is updated.
  • the reference signal that is phase-shifted based on the adjusted phase shift amount is output to the transmission power supply unit 12, and the transmission power supply unit 12 radiates a radio wave based on the reference signal after the phase shift amount adjustment. I do.
  • the above-described process of adjusting the beam emission direction shown in FIG. 2 is periodically executed to measure all the phase differences between the opening surfaces of the transmission power supply units 11 and 12, thereby obtaining the phase of the transmission power supply units 11 and 12. Calibration can be performed.
  • the ability to control the radiation azimuth of the radar with high accuracy on-time after the radar sensor 10 is mounted on the vehicle eliminates the need to generate calibration data for each operating temperature of each radar in the inspection process before shipment. And the cost of characteristic inspection can be reduced.
  • step S80 the processing in steps S50 to S70 described above is performed again.
  • the amplitude information (A2 ′) and the phase information ( ⁇ 2 ′) in the path via the transmission power supply unit 12 are based on the reference signal and the received signal generated based on the radio wave received after the direction adjustment. ) Is detected again.
  • the transmission phase difference ( ⁇ ′) after the adjustment of the beam emission direction and the set phase difference match the adjustment of the beam emission direction ends, but if these phase differences do not match, the beam is processed by the processing in step S80.
  • a readjustment of the radiation direction is performed. In this way, the adjustment of the beam radiation direction is repeatedly performed until the transmission phase difference and the set phase difference match.
  • the switch 22 may be turned off after receiving the radio wave radiated from the transmission power supply unit 12. In this case, the process returns to step S40, and the beam emission direction is adjusted. Further, the process of steps S20 to S80 may be repeated to adjust the beam radiation direction.
  • phase difference detector 50 may execute the processing of steps S20 to S80 again, or may execute only the processing of steps S40 to S80 again.
  • step S20 If the processing is executed again from the processing in step S20, it is possible to reflect an environmental change such as a temperature change in the path via the transmitting power supply unit 11 after the activation of the radar sensor 10, and to adjust the beam radiation direction accurately. Can be performed.
  • the process for readjustment of the beam radiation direction can be shortened, and readjustment can be performed in a short time.
  • the signal processing circuit 40 converts the difference signal into a signal of a predetermined intermediate frequency, and the phase difference detector 50 detects phase information ( ⁇ 1, ⁇ 2) in each path from the converted difference signal. According to this configuration, it is possible to perform signal processing while suppressing signal attenuation. Therefore, the detection accuracy of the amplitude information and the phase information can be secured.
  • the phase difference detector 50 corrects the transmission phase difference according to the difference in distance between the transmission power supply units 11 and 12 and the reception power supply unit 13 or the distance between the transmission power supply units 11 and 12. . According to this configuration, the transmission phase difference is calculated more accurately, so that the beam radiation direction can be adjusted more accurately.
  • the radar sensor 10 After the on-time adjustment of the radiation azimuth in the radar sensor 10 shown in FIG. 2, the radar sensor 10 focuses on the front, which is the traveling direction of the vehicle, and detects the target.
  • the radar sensor 10 obtains road condition information such as an intersection or a pedestrian crossing in the traveling direction as vehicle surrounding condition information from the above-described vehicle surrounding condition information device 100, so that a vehicle crossing when passing through an intersection or a pedestrian crossing is obtained.
  • the radar scans the beam at a wide angle to detect obstacles in advance to prevent contact with pedestrians and pedestrians.
  • the information processing unit 55 determines the switches 21 and 22 and the phase shifter 30 necessary for beam scanning by the phase difference detector 50 in consideration of the road condition information and the own vehicle speed included in the vehicle surrounding condition information. Control.
  • the beam emission angle of the radar is scanned in a wide angle azimuth, and the presence or absence of an obstacle is detected in advance.
  • FIG. 3 is an explanatory diagram showing an example of beam radiation by the radar sensor 10 of FIG.
  • FIG. 4 is an explanatory diagram showing another example of the beam radiation by the radar sensor 10 of FIG.
  • FIGS. 3 and 4 show examples of the distance and beam direction when the vehicle enters the intersection.
  • the beam 150 in FIG. 3 in the long distance radar mode in which the aperture phase difference between the transmission power supply units is 0 deg, all of the transmission power supply units constituting the antenna array are used. At that time, the maximum detection distance is 200 m or more, and the detection range is about ⁇ 8 deg.
  • the radiation range of the transmission power supply is defined by the effective aperture size that functions as an antenna, in an antenna array composed of a plurality of transmission power supply parts, the radiation beam depends on the number of antenna elements used. Is narrowed to have a high gain antenna radiation characteristic.
  • FIG. 3 shows an example in which the width of the road is 10 m and there is an intersection about 40 m ahead of the traveling vehicle.
  • the radiation angle azimuth to be detected at the side of the road at the intersection is about 10 deg, as shown by the beam 151 in FIG. 3 on the left side of the road in the traveling direction of the vehicle, and the beam 152 in FIG. 3 is on the right side of the road in the traveling direction of the vehicle.
  • the beam 151 in FIG. 3 on the left side of the road in the traveling direction of the vehicle
  • the beam 152 in FIG. 3 is on the right side of the road in the traveling direction of the vehicle.
  • the radiation angle directions indicated by the beams 151 and 152 in FIG. 3 exceed the detection range of the horizontal direction in the long-range radar mode described above.
  • the setting of the phase difference detector 50 is set so that the radiating angle of the radar sensor 10 becomes 10 deg shown by the beam 151 and 15 deg shown by the beam 151.
  • a phase value corresponding to a radiation angle of about 10 deg is added to the phase difference value to the phase shifter 30 for control.
  • the added value is calculated by the information processing section 55 based on the vehicle surrounding situation information.
  • the calculated result is output to the phase difference detector 50 as a control signal.
  • the phase difference detector 50 operates the phase shifter 30 to add the phase value and shift the phase of the reference signal based on the received control signal.
  • the radiation angle directions to be detected are about 40 deg for the beam 151 and about 50 deg for the beam 152.
  • the phase value added to the phase difference setting value is a phase value based on each radiation azimuth.
  • the transmitting power supply unit configured as, for example, a phased array antenna is reduced, and the half value width of the radiation beam is widened.
  • the power intensity of the millimeter wave signal output from the signal processing circuit 40 may be suppressed to reduce the intensity of the reflected signal from outside the road area, or signal processing of the received signal, for example, a spatial filter for each distance For example, the millimeter wave signal may be cut off.
  • the phase amount radiated to the beam 153 is set in the phase shifter 30 as shown in FIG. It may be used for behavior detection or the like.
  • phase shifter 30 and the switch unit 20 are controlled by the phase difference detector 50 as described above, and the phase difference detector 50 is generated by the information processing unit 55 based on vehicle surrounding situation information input from outside.
  • the setting of the phase shifter 30 and the switch unit 20 is performed based on the control signal thus obtained.
  • FIG. 5 is a flowchart showing an example of a beam radiation setting process based on vehicle surrounding situation information when passing through an intersection in the long-range radar mode in FIG.
  • FIG. 5 shows the processing when the vehicle goes straight ahead at the intersection as shown in FIG. 3, for example, and the information processing unit 55 mainly performs the processing.
  • step S101 when the vehicle travels straight, the vehicle travels using the beam 150 shown in FIG. 4 in which the maximum antenna gain is obtained in the front direction (step S101).
  • the information processing unit 55 calculates the vehicle braking distance by analyzing the speed information of the own vehicle included in the vehicle peripheral situation information acquired from the vehicle peripheral situation information device 100 (Step S102). For example, when the vehicle speed is about 60 km / h and the weather is fine, the vehicle braking distance is calculated to be about 40 m.
  • the information processing section 55 determines whether or not the range of caution such as an intersection is within the range of the braking distance calculated in the process of step S102 from the vehicle surrounding situation information (step S103).
  • the information processing unit 55 calculates the distance from the caution area to the vehicle from the vehicle surrounding situation information (step S104). When the calculated distance approaches the braking distance range of 40 m, the information processing unit 55 instructs the phase difference detector 50 and the signal processing circuit 40 to observe the situation of the entire caution range such as an intersection with the radar sensor 10. I do.
  • the information processing unit 55 calculates a beam width covering the intersection road based on the vehicle surrounding situation information, and calculates the radiation angles of the beams 151 and 152 from the calculation result (step S104).
  • the information processing section 55 compares the calculated radiation angle with a preset radiation angle threshold to determine whether or not the radiation angle falls within the use range (step S105). If the calculated radiation angle is outside the use range, that is, larger than the radiation angle threshold value, the process returns to step S101 again.
  • the information processing unit 55 determines that the radiation angles and the beam widths of the beams 151 and 152 of the intersection road to be covered from the vehicle surrounding situation information are long. It is determined whether or not the mode is larger than the detection range of the beam 150 ⁇ 8 deg (step S106).
  • step S106 If it is determined in step S106 that the radiation angles and beam widths of the beams 151 and 152 are larger than the detection range of the beam 150 ⁇ 8 deg, one of the switches 21 and 22 is set so that the radiation angle increases. Control to turn off is performed (step S107). Accordingly, the antenna aperture size is changed, and the detection ranges of the beams 151 and 152 are widened.
  • the information processing unit 55 After the processing in step S107, or when it is determined in the processing in step S106 that the radiation angles and the beam widths of the beams 151 and 152 are smaller than the detection range of the beam 150 ⁇ 8 deg, the information processing unit 55 outputs In the combination of the beam 151 and the beam 152, it is calculated from the radiation angles and the detection ranges of the beams 150 to 152 whether or not an undetectable range is generated in the range requiring caution, for example, in the case of an intersection. S108), it is determined whether there is a non-detection area (step S109).
  • step S109 when it is determined that there is one non-detection range between the beam 150 and the beam 152, the radiation direction of the beam 153 radiated to the non-detection area is calculated (step S110).
  • step S110 When it is determined that there are a plurality of undetected areas, a radiation beam for filling the undetected areas is generated, and the undetected areas in the cautionary range are filled.
  • the operation ratio of the beam 150, the beam 151, the beam 152, and the beam 153 is determined by the information processing unit 55 according to the distance to the intersection and the vehicle speed.
  • the information processing unit 55 outputs a control signal to the phase difference detector 50, and performs control for updating the millimeter wave signal strength and the phase amount addition value of the phase shifter 30 by the time length according to the operation ratio. Perform (Step S111). Further, by outputting a control signal for controlling the switches 21 and 22 to the phase difference detector 50, control for setting on / off of the switches 21 and 22 is performed.
  • step S104 which is the distance calculation process of the range requiring attention, is performed. And the flow from the processing in step S104 is repeated.
  • the set radiation angle of the beam 151 and the beam 152 is within the range of use of the radar sensor or passes through the caution area, that is, when the distance to the vehicle is 0 m or less, only the radiation beam direction of the beam 150 is used. Return to the long-distance mode.
  • the information processing section 55 performs control to maintain the long-distance mode until the caution range is generated.
  • the occurrence of the caution range is performed by the information processing section 55 acquiring vehicle surrounding situation information such as map information in the car navigation or GPS device which is the vehicle surrounding situation information device 100, and detecting from the acquired vehicle surrounding situation information. .
  • FIG. 5 illustrates an example of the operation of the information processing unit 55 when traveling straight through an intersection as described above
  • the radar sensor 10 detects an oncoming vehicle or a pedestrian even when a vehicle turns around an intersection, for example. It is possible.
  • the information processing section 55 generates a control signal to be output to the phase difference detector 50 based on the vehicle surrounding situation information acquired from the vehicle surrounding situation information device 100, and sets or switches the switches 21 and 22.
  • the phase amounts of the phase shifters 30 are added to set the phases of the radiation beams of the beams 150 to 153 shown in FIG.
  • the traveling direction of the vehicle may not always coincide with the direction in which the vehicle should travel. There is no change in controlling the phase difference detector 50 by updating the setting.
  • FIG. 6 is an explanatory diagram illustrating an example of a configuration of the radar sensor 10 according to the second embodiment of the present invention.
  • a radar sensor 10 shown in FIG. 6 is different from the radar sensor 10 shown in FIG. 1 of the first embodiment in that a camera 60 is newly provided.
  • the camera 60 photographs a road or the like.
  • the camera 60 is provided in the radar sensor 10 in FIG. 6, the camera 60 may be provided outside the radar sensor 10.
  • the information processing section 55 acquires the photographing information that is the image and the moving image photographed by the newly provided camera 60 together with the vehicle surrounding situation information.
  • the information processing section 55 has a function of a so-called image recognition process of recognizing and detecting objects, features, and the like from images and moving images acquired by the camera 60. Then, the road condition is recognized by performing image recognition processing on the image and the moving image acquired by the camera 60.
  • the other connection configuration is the same as that of the radar sensor of FIG.
  • the information processing unit 55 recognizes, for example, an intersection based on a road shape whose image has been recognized, and recognizes a pedestrian crossing with a road sign or a road sign whose image has been recognized. Other road conditions are similarly recognized by road signs, road shapes, road signs, and the like.
  • the information processing unit 55 recognizes the road condition including the distance around the vehicle, and performs control to set the radiation range and the radiation angle of the beam according to the recognized road condition. These control processes are the same as those in the flowchart of FIG.
  • FIG. 6 shows an example in which the information processing unit 55 controls the radiation range and the radiation angle of the beam using the image and the moving image acquired by the camera 60 and the vehicle surrounding situation information. May acquire the image and the moving image acquired by the camera 60 as vehicle surrounding situation information, and control the radiation range and the radiation angle of the beam using information recognized from the acquired vehicle surrounding situation information.
  • FIG. 7 is an explanatory diagram illustrating an example of a configuration of the radar sensor 10 according to the third embodiment.
  • a radar sensor 10 shown in FIG. 7 is different from the radar sensor 10 shown in FIG. 1 of the first embodiment in that an angular velocity sensor 65 is newly provided.
  • the angular velocity sensor 65 is a sensor that detects, for example, the turning speed of the vehicle.
  • the angular velocity sensor 65 may also be provided outside the radar sensor 10, for example, outside the vehicle.
  • the angular velocity information detected by the angular velocity sensor 65 is input to the information processing unit 55 together with the vehicle surrounding situation information.
  • the information processing section 55 generates a control signal so as to scan the beam radiating angle of the radar in a wide-angle azimuth according to the angular velocity information of the vehicle detected by the angular velocity sensor 65 when the vehicle passes through the curve.
  • the presence or absence of an obstacle can be detected in advance.
  • the phase difference detector 50 and the signal processing circuit 40 are controlled so that the beam scans in a wider angle azimuth as the amount of angular velocity of the vehicle increases.
  • the horizontal axis size of the synthetic aperture surface of the antenna is changed, and the half-width of the transmission beam is switched.
  • the beam irradiation and the beam radiation focused on the traveling direction of the vehicle are performed. Range adjustment can be performed on-time.
  • the radiation range of the beam can be controlled with high accuracy according to the speed of the curve of the vehicle, so that the radar sensor 10 can detect the target earlier and estimate the obstacle with higher accuracy. it can.
  • FIG. 8 is an explanatory diagram showing an example of the configuration of the radar sensor 10 according to the fourth embodiment.
  • the radar sensor 10 shown in FIG. 8 has the same configuration as the radar sensor 10 shown in FIG. 7 of the third embodiment. The difference is that traveling information such as a traveling route of the vehicle, which is output from an automatic driving ECU (Electronic Control Unit) 111 that controls automatic driving of the vehicle, is input to the information processing unit 55.
  • traveling information such as a traveling route of the vehicle, which is output from an automatic driving ECU (Electronic Control Unit) 111 that controls automatic driving of the vehicle, is input to the information processing unit 55.
  • the traveling route to be followed by the vehicle is determined by the automatic driving ECU 111 searching for a route.
  • the automatic driving ECU 111 sequentially determines a traveling route to be followed by the vehicle for obtaining vehicle driving that has the least danger of collision with an obstacle and that does not cause a sense of discomfort such as sudden acceleration, sudden braking, or sudden steering.
  • the information processing unit 55 performs phase shifter 30 based on the travel route information determined by the automatic driving ECU 111, the angular velocity information detected by the angular velocity sensor 65, the road situation information obtained from the vehicle surrounding situation information, the own vehicle speed information, and the like. And a control signal for controlling the switching of the switches 21 and 22 is output to the phase difference detector 50.
  • the phase difference detector 50 sets the phase of the phase shifter 30 and switches the switches 21 and 22 based on the received control signal.
  • the information processing unit 55 updates the setting information of the phase shift by the phase difference detector 50 every time the route information of the automatic driving ECU 111 is updated according to the traveling environment.
  • the radiation range and radiation angle of the radar required during automatic driving are appropriately applied, and early detection by the radar sensor 10 and highly accurate estimation of an obstacle can be performed.
  • FIG. 9 is an explanatory diagram showing an example of the configuration of the radar sensor 10 according to the fifth embodiment.
  • a radar sensor 10 shown in FIG. 9 is different from the radar sensor 10 shown in FIG. 8 of the fourth embodiment in that an inclination angle detecting unit 70 and a radar reflection cross-sectional area calculating unit 71 are newly provided.
  • the tilt angle detection unit 70 detects the tilt angle of the radar sensor 10, in other words, the tilt angle of the vehicle. Information on the tilt angle detected by the tilt angle detection unit 70 is output to the information processing unit 55.
  • the information processing unit 55 detects a shift in the radar radiation direction based on the input information on the tilt angle. This detection result is output to the phase difference detector 50.
  • the information processing unit 55 detects an angle deviation in the beam radiation direction based on a plurality of relative distances of the target and the corresponding relative angles. For example, the information processing unit 55 estimates the relative angle when the radar sensor 10 is not tilted by comparing the relative angles for each relative distance, and compares the estimated relative angle with the calculated relative angle. Thus, the angular deviation in the beam radiation direction is detected. Then, the information processing section 55 detects the inclination of the radar sensor 10 based on the detected angle shift.
  • the phase difference detector 50 should adjust the beam emission direction to the left and right in subsequent tracking.
  • the information processing unit 55 can also detect the angle deviation in the beam radiation direction and the inclination of the radar sensor 10 using only the calculated relative angle.
  • the inclination angle detection unit 70 it is possible to detect the inclination of the radar sensor 10 caused by the inclination of the vehicle due to the imbalance in weight balance.
  • the radar sensor 10 may output the inclination of the radar sensor 10 detected by the information processing unit 55 to the vehicle as vehicle inclination information. Then, the optical axis leveling of a headlight or the like may be automatically adjusted using the vehicle inclination information detected by the inclination angle detection unit 70.
  • the vehicle inclination information detected by the information processing unit 55 is input to a headlight auto-leveling ECU or the like that controls the optical axis of the headlight.
  • the headlight auto-leveling ECU adjusts the optical axis of the headlight by controlling an actuator or the like of an optical axis adjustment unit that adjusts the optical axis of the headlight based on the input vehicle tilt information.
  • the radar reflection cross section calculator 71 calculates the radar reflection cross section (RCS: Radar Cross Section) of the target. For example, the radar reflection cross section calculation unit 71 calculates the radar reflection cross section of the target based on a target detection difference signal (difference signal) described later output from the signal processing circuit 40, and calculates the calculated radar reflection cross section. Is output to the information processing section 55.
  • RCS Radar Cross Section
  • FIG. 10 is a flowchart showing an example of the process of adjusting the beam radiation direction in the radar sensor 10 of FIG.
  • Step S201 the radar sensor 10 is activated (Step S201).
  • the processing in step S201 is the same as the processing in step S10 in FIG. 2 of the second embodiment described above.
  • step S202 a table is created in which the phase shift amount and the transmission phase difference are associated.
  • the phase difference detector 50 calculates the transmission phase difference for each phase shift amount while switching the phase shift amount set in the phase shifter 30. Then, the phase difference detector 50 creates a table in which the phase shift amount and the transmission phase difference are associated. Note that the method of calculating the transmission phase difference is the same as that in Embodiment 1, and a description thereof will not be repeated.
  • the amount of phase shift when the transmission phase difference becomes zero is set in the phase shifter 30 (step S203).
  • the phase difference detector 50 extracts a phase shift amount when the transmission phase difference becomes zero based on the created table, and sets the extracted phase shift amount in the phase shifter 30 as a reference phase shift amount.
  • the phase difference detector 50 turns on the switches 21 and 22.
  • the radio waves radiated from the transmission power supply units 11 and 12 are spatially combined, and a beam is radiated in the traveling direction (0 deg) of the vehicle.
  • the relative distance, relative speed, relative angle, and radar reflection cross-sectional area of the target are calculated (step S204). Radio waves emitted from the transmission power supply units 11 and 12 are reflected by the target, and the reception power supply unit 13 receives the reflected wave from the target.
  • the receiving power supply unit 13 generates a target detection reception signal when the reference phase shift amount is set in the phase shifter 30 as a reception signal based on the received reflected wave, and converts the generated target detection reception signal into a target signal.
  • the signal is output to the signal processing circuit 40.
  • the signal processing circuit 40 generates a target detection differential signal as a differential signal based on the target detection received signal and the reference signal. Then, the signal processing circuit 40 outputs the generated target detection difference signal to the radar reflection cross-sectional area calculation unit 71 and the phase difference detector 50, respectively.
  • the radar reflection cross section calculator 71 calculates the radar reflection cross section based on the target detection difference signal output from the signal processing circuit 40. Then, the radar reflection cross-section calculation unit 71 outputs the calculated radar reflection cross-section to the phase difference detector 50.
  • the phase difference detector 50 calculates the relative distance, relative speed, and relative angle with the target based on the target detection difference signal output from the signal processing circuit 40.
  • the calculation of the radar reflection cross-sectional area by the radar reflection cross-section calculation unit 71 and the calculation of the relative distance, relative velocity, and relative angle by the phase difference detector 50 may be performed in parallel.
  • the signal processing circuit 40 converts the difference signal for target detection into a signal (IF signal) of a predetermined intermediate frequency, and converts the converted difference signal for target detection into the radar reflection cross section calculator 71 and the phase difference detector 50. May be respectively output.
  • the radar reflection cross-section calculation unit 71 calculates the radar reflection cross-section based on the converted target detection difference signal. Further, the phase difference detector 50 calculates a relative distance, a relative angle, and a relative speed of the target based on the converted target detection difference signal.
  • the calculated relative distance, relative speed, relative angle, and radar reflection cross-sectional area may be buffered by the phase difference detector 50, or may be stored in a storage device (not shown) or the like.
  • the beam emission direction is adjusted according to the characteristics of the target so that the radar reflection cross-section becomes the maximum value (step S205). , S206).
  • step S205 determines whether or not the radar reflection cross-sectional area calculated in the process of step S204 is the maximum value.
  • the amount of phase shift is adjusted based on the determination result in the process of step S205.
  • Targets include, for example, low-height vehicles such as sports cars, and high-height vehicles such as large trucks. There are also vehicles such as tank trucks where reflected waves are easily scattered. If the vehicle shape is different as described above, the optimum beam radiation direction may be different for each vehicle.
  • the beam emission direction of each vehicle is adjusted in steps S205 to S206 so that tracking is not disabled.
  • step S205 since the radar reflection cross section is calculated only once, there is no information to be compared with the radar reflection cross section. Therefore, in the first process of step S205, the process of determining the radar reflection cross-sectional area by the phase difference detector 50 is not performed, and the process of step S206 is performed.
  • step S206 the phase difference detector 50 adjusts the amount of phase shift.
  • the phase difference detector 50 adjusts the amount of phase shift.
  • the phase difference detector 50 preliminarily define whether to increase or decrease or decrease the phase in the first process of step S206. This makes it possible to smoothly adjust the first phase shift amount.
  • step S240 After the adjustment of the phase shift amount, the process of step S240 is executed again, and the relative distance to the target, the relative speed, the relative angle, and the radar reflection cross-sectional area are calculated again.
  • step S205 the radar reflection cross-sectional area calculated this time is compared with the radar reflection cross-sectional area up to the previous time. As a result, if the currently calculated radar reflection cross section is the maximum value (Yes), the phase difference detector 50 does not adjust the phase shift amount. Then, the process of step S204 is performed again.
  • step S206 the phase difference detector 50 adjusts the phase shift amount. For example, if the current radar reflection cross-sectional area is smaller than the previous time, the phase difference detector 50 may return the next phase shift amount to a value of about the previous phase shift amount. Then, the process of step S204 is performed again. Thus, the phase difference detector 50 updates the target information as needed.
  • the phase difference detector 50 may perform the determination process with the plurality of beam reflection cross-sections calculated within a predetermined period including the previous time as a comparison target, or may perform the previous beam reflection cutoff.
  • the determination process may be performed using only the area as a comparison target. As a result, the number of objects to be compared is reduced, so that the determination process is simplified and the processing time is shortened.
  • the radar cross section calculator 71 may be provided in the radar sensor 10 shown in FIG.
  • the radar can track the target regardless of the shape of the target.
  • FIG. 11 is an explanatory diagram showing an example of the configuration of the radar sensor 10 according to the sixth embodiment.
  • the difference between the radar sensor 10 of FIG. 11 and the radar sensor 10 of FIG. 8 of the fourth embodiment is that the travel information such as the travel route of the vehicle that is output from the automatic driving ECU 111 is input to the information processing unit 55. In addition to this point, the steering angle information obtained by the steering angle sensor 67 is input.
  • the steering angle sensor 67 detects the steering angle of the steering wheel provided in the vehicle and outputs it as steering angle information.
  • the steering angle information is input to the automatic driving ECU 111, and is input from the automatic driving ECU 111 to the information processing unit 55.
  • the automatic driving ECU 111 grasps the route information. Therefore, the information processing unit 55 generates a control signal for setting the phase difference of the phase shifter 30 by the phase difference detector 50 based on the route information grasped by the automatic driving ECU 111.
  • the information processing unit 55 when the automatic driving is canceled or when the driver determines the traveling direction, the information processing unit 55 generates the above-described control signal based on the steering angle information of the steering wheel, and sends the control signal to the phase difference detector 50. Output.
  • the information processing section 55 detects a direction in which the driver intends to proceed the vehicle from the steering angle information, and causes the radar to scan so as to have a radiation direction suitable for the detected direction.
  • the radar sensor 10 in FIG. 11 can detect an obstacle in the direction in which the vehicle should travel at an early stage with high sensitivity and high accuracy even when the route information output from the automatic driving ECU 111 is interrupted. it can. Also in this case, the processing of the beam radiation by the radar sensor 10 is the same as in FIG.
  • the steering angle sensor 67 is a sensor that detects the steering angle of the steering wheel provided in the vehicle, but may be, for example, a sensor that detects the steering angle of the tire.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. .
  • REFERENCE SIGNS LIST 10 radar sensor 11 transmission power supply unit 12 transmission power supply unit 13 reception power supply unit 20 switch unit 21 switch 22 switch 30 phase shifter 40 signal processing circuit 50 phase difference detector 55 information processing unit 60 camera 65 angular velocity sensor 67 steering angle Sensor 70 Inclination angle detection unit 71 Radar reflection cross section calculation unit 100 Vehicle surrounding situation information device 111

Abstract

The present invention controls, with high accuracy, the radiation azimuth and the radiation range of a beam according to road conditions, etc. A radar sensor 10 wherein an information processing unit 55 generates a control signal, on the basis of vehicle surrounding-area state information, so that a beam having a radiation range and a radiation angle corresponding to the road state is generated. On the basis of a received signal and a reference signal, a signal processing circuit 40 generates respective difference signals before and after a switch-switching operation. On the basis of the respective difference signals, a phase difference detector 50 calculates a phase difference between transmission power supply units 11, 12 as a transmission phase difference, and on the basis of the control signal generated by the information processing unit 55, sets the phase shift amount and switches a switch of a switching unit.

Description

レーダセンサRadar sensor
 本発明は、レーダセンサに関し、特に、狭角ビームを生成するレーダセンサに有効な技術に関する。 The present invention relates to a radar sensor, and more particularly to a technique effective for a radar sensor that generates a narrow-angle beam.
 自動車、鉄道、搬送機器などの安全運行や安全動作のための周辺検知センサとして、例えば電波を用いたドップラセンサまたはレーダセンサがある。 周 辺 As peripheral detection sensors for safe operation and safe operation of automobiles, railways, transportation equipment, and the like, there are, for example, Doppler sensors or radar sensors using radio waves.
 例えば自動車用には、安全運転支援や自動運転の実現に向けて、自動車の全周囲をカバーできるように、検知距離と検知角度範囲とが異なる複数のレーダセンサが用いられる。特に、前方遠距離向けのレーダは、時速制限のない高速道路であるアウトバーンなどを200km/h程度の高速走行時においても安全に停止できるように200m以上の最大検知距離が望まれている。 For example, for automobiles, a plurality of radar sensors with different detection distances and detection angle ranges are used so as to cover the entire periphery of the automobile to realize safe driving support and automatic driving. In particular, a radar for long distances ahead is required to have a maximum detection distance of 200 m or more so that the radar can safely stop on a highway of about 200 km / h even on a highway with no speed limit.
 そのようなレーダセンサのアンテナは、アンテナの高利得特性を得るために水平方位の検知範囲を±8deg以上確保しつつ垂直方位のアンテナ半値幅を±2deg以下の狭角ビームとしている。 ア ン テ ナ The antenna of such a radar sensor uses a narrow-angle beam with a vertical azimuth half-width of ± 2 deg or less while securing a horizontal azimuth detection range of ± 8 deg or more in order to obtain a high gain characteristic of the antenna.
 放射方位が固定された高利得のアンテナを採用するレーダセンサは、正面の遠距離性能を重要視する高速移動時の仕様には適合するが、市街地走行では、交差点での右折左折時あるいは横断歩道での通過時など、より広範囲の障害物を検知する必要がある。よって、前方遠距離レーダにおいても±30deg以上の広角検知が望まれている。 A radar sensor that uses a high-gain antenna with a fixed azimuth is suitable for high-speed traveling where emphasis is placed on long-distance performance in front of the vehicle.However, in city driving, when turning right or left at an intersection or at a pedestrian crossing It is necessary to detect a wider range of obstacles, such as when passing by. Therefore, wide angle detection of ± 30 deg or more is desired even in a long distance radar in front.
 しかしながら、レーダに用いるアンテナの放射角度範囲を単に拡大すれば、アンテナ最大利得低下と、多方からのドップラ検知信号の混信とにより、障害物の検知精度の劣化が生じる。 However, if the radiation angle range of the antenna used for the radar is simply enlarged, the detection accuracy of the obstacle is degraded due to a decrease in the antenna maximum gain and interference of Doppler detection signals from various directions.
 このような課題の解決技術としては、例えばレーダセンサ内部にてアンテナの放射方位を能動的に走査することより、アンテナ利得および広角度検知範囲の両立を実現することができる。 As a technique for solving such a problem, for example, by actively scanning the radiation direction of the antenna inside the radar sensor, it is possible to realize both the antenna gain and the wide-angle detection range.
 この種のアンテナ利得と広角度検知範囲の両立を実現する技術としては、進行方向検知装置から得た信号に基づいて、レーダ搭載移動体の進行方向に一致させるよう複数のアンテナからなるフェーズドアレイアンテナの各々の位相を移相器により制御し、進行方向の障害物との相対距離や相対速度、角度を検出するものがある(例えば特許文献1参照)。 As a technique for realizing this type of antenna gain and wide angle detection range at the same time, a phased array antenna consisting of a plurality of antennas to match the traveling direction of a radar-mounted moving object based on the signal obtained from the traveling direction detection device Are controlled by a phase shifter to detect a relative distance, a relative speed, and an angle with respect to an obstacle in a traveling direction (for example, see Patent Document 1).
特開平2-287180号公報JP-A-2-287180
 背景技術で述べたように、自動車用の遠距離用レーダセンサに用いるアンテナは、水平方位の半値幅が±8deg程度であり、垂直方位の半値幅が±2deg程度である。フェーズドアレイアンテナは、レーダセンサ内部にて各アンテナ素子の位相を制御して、放射方位を能動的に走査することによって、アンテナ高利得化および広角度検知範囲の両立を実現する。 As described in the background art, the antenna used for a long-distance radar sensor for an automobile has a half-width in the horizontal direction of about ± 8 deg and a half-width in the vertical direction of about ± 2 deg. The phased array antenna controls the phase of each antenna element inside the radar sensor and actively scans the radiation azimuth, thereby realizing both high antenna gain and a wide angle detection range.
 上述した特許文献1の技術では、進行方向検知装置を用いて、レーダセンサの放射方位を車両の進行方向に走査する。進行方向へビーム走査することにより、車両の進行方向の障害物をより注力することが可能となる。 In the technique of Patent Document 1 described above, the radiation direction of the radar sensor is scanned in the traveling direction of the vehicle using the traveling direction detection device. By performing beam scanning in the traveling direction, it is possible to focus more on obstacles in the traveling direction of the vehicle.
 この場合、直線状の道路のように、進行したい方位と車両進行方向が一致する場合には問題ない。しかし、交差点や横断歩道などの進行したい方向と車両の進行方向とが一致していても、左右方向からの車両や歩行者を検知したい場合や、車両が右折左折しようと交差点に進行する際、ハンドルを操作する前に障害物を検知したい場合など、レーダセンサの放射方位を進行方向に一致させるのみでは、障害物の検知が遅れてしまうという問題がある。 In this case, there is no problem when the direction in which the vehicle wants to travel and the vehicle traveling direction match, such as a straight road. However, even if the traveling direction of the vehicle such as an intersection or pedestrian crossing matches the traveling direction of the vehicle, if you want to detect a vehicle or pedestrian from the left or right direction, or when the vehicle goes to the intersection to turn right or left, For example, when it is desired to detect an obstacle before operating the steering wheel, there is a problem that the detection of the obstacle is delayed only by making the radiation direction of the radar sensor coincide with the traveling direction.
 本発明の目的は、道路状況などに応じてビームの放射方位および放射範囲を高精度に制御することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of controlling the radiation direction and the radiation range of a beam with high accuracy according to road conditions and the like.
 本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 の う ち Among the inventions disclosed in the present application, the outline of a representative one will be briefly described as follows.
 すなわち、代表的なレーダセンサは、信号処理回路、複数の送信用給電部、受信用給電部、スイッチ部、位相差検出器、移相器、および情報処理部を有する。信号処理回路は、信号処理を行う。 That is, a typical radar sensor has a signal processing circuit, a plurality of transmission power supply units, a reception power supply unit, a switch unit, a phase difference detector, a phase shifter, and an information processing unit. The signal processing circuit performs signal processing.
 複数の送信用給電部は、信号処理回路から供給される基準信号に基づいて、電波を放射する。受信用給電部は、電波を受信して、受信した電波に基づいて、受信信号を生成する。 (4) The plurality of transmission power supply units emit radio waves based on the reference signal supplied from the signal processing circuit. The receiving power supply unit receives a radio wave and generates a reception signal based on the received radio wave.
 スイッチ部は、スイッチ切り替え操作により信号処理回路と送信用給電部との接続状態を切り替える。位相差検出器は、基準信号の位相シフト量を調整する。 The switch unit switches the connection state between the signal processing circuit and the transmission power supply unit by a switch switching operation. The phase difference detector adjusts a phase shift amount of the reference signal.
 移相器は、信号処理回路と送信用給電部との間に設けられ、位相シフト量に基づいて、基準信号の位相をシフトさせる。情報処理部は、道路状況に応じて、位相差検出器が調整する位相シフト量およびスイッチ部のスイッチ切り替え操作を制御する制御信号を生成する。 相 The phase shifter is provided between the signal processing circuit and the transmission power supply unit, and shifts the phase of the reference signal based on the amount of phase shift. The information processing unit generates a control signal for controlling a phase shift amount adjusted by the phase difference detector and a switch switching operation of the switch unit according to a road condition.
 情報処理部は、車両の走行環境を示す車両周辺状況情報に基づいて、道路状況に応じた放射範囲および放射角度となるビームが生成されるように制御信号を生成する。信号処理回路は、受信信号および基準信号に基づいて、スイッチ切り替え操作の前後におけるそれぞれの差分信号を生成する。 (4) The information processing unit generates a control signal based on vehicle surrounding situation information indicating a traveling environment of the vehicle such that a beam having a radiation range and a radiation angle corresponding to a road condition is generated. The signal processing circuit generates respective difference signals before and after the switch switching operation based on the received signal and the reference signal.
 位相差検出器は、それぞれの差分信号に基づいて、送信用給電部間における位相差を送信位相差として算出し、情報処理部が生成した制御信号に基づいて、位相シフト量の設定およびスイッチ部のスイッチ切り替え操作を行う。 The phase difference detector calculates a phase difference between the transmission power supply units as a transmission phase difference based on the respective difference signals, and sets a phase shift amount and a switch unit based on a control signal generated by the information processing unit. Switch operation.
 また、情報処理部に入力される車両周辺状況情報は、外部から入力される情報である。 {Circle around (4)} The vehicle surrounding situation information input to the information processing unit is information input from outside.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 効果 Of the inventions disclosed in the present application, the effects obtained by typical ones will be briefly described as follows.
 (1)ターゲットの早期検出を高精度に行うことができる。 (1) Early detection of a target can be performed with high accuracy.
 (2)上記(1)により、車両の安全性を向上させることができる。 (2) According to the above (1), the safety of the vehicle can be improved.
実施の形態1によるレーダセンサにおける構成の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a configuration of the radar sensor according to the first embodiment. 図1のレーダセンサにおけるビーム放射方向の調整処理の一例を示すフローチャート図である。FIG. 2 is a flowchart illustrating an example of a process of adjusting a beam radiation direction in the radar sensor of FIG. 1. 図1のレーダセンサによるビーム放射の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of beam radiation by the radar sensor of FIG. 1. 図3のレーダセンサによるビーム放射の他の例を示す説明図である。FIG. 4 is an explanatory diagram showing another example of beam radiation by the radar sensor of FIG. 3. 図3の遠距離レーダモード時における交差点通過時の車両周辺状況情報に基づくビーム放射の設定処理の一例を示すフローチャートである。4 is a flowchart illustrating an example of a beam emission setting process based on vehicle surrounding situation information when passing through an intersection in the long distance radar mode in FIG. 3. 実施の形態2によるレーダセンサにおける構成の一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of a configuration of a radar sensor according to a second embodiment. 実施の形態3によるレーダセンサにおける構成の一例を示す説明図である。FIG. 13 is an explanatory diagram illustrating an example of a configuration of a radar sensor according to a third embodiment. 実施の形態4によるレーダセンサにおける構成の一例を示す説明図である。FIG. 14 is an explanatory diagram illustrating an example of a configuration of a radar sensor according to a fourth embodiment. 実施の形態5によるレーダセンサにおける構成の一例を示す説明図である。FIG. 15 is an explanatory diagram showing an example of a configuration of a radar sensor according to a fifth embodiment. 図9のレーダセンサにおけるビーム放射方向の調整処理の一例を示すフローチャート図である。FIG. 10 is a flowchart illustrating an example of a process of adjusting a beam radiation direction in the radar sensor of FIG. 9. 実施の形態6によるレーダセンサにおける構成の一例を示す説明図である。FIG. 15 is an explanatory diagram showing an example of a configuration of a radar sensor according to a sixth embodiment.
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 に お い て In all the drawings for describing the embodiments, the same members are denoted by the same reference numerals in principle, and the repeated description thereof will be omitted. Note that hatching may be used even in a plan view so as to make the drawings easy to understand.
 (実施の形態1)
 以下、実施の形態を詳細に説明する。
(Embodiment 1)
Hereinafter, embodiments will be described in detail.
 <レーダセンサの構成>
 図1は、本実施の形態1によるレーダセンサ10における構成の一例を示す説明図である。
<Configuration of radar sensor>
FIG. 1 is an explanatory diagram illustrating an example of the configuration of the radar sensor 10 according to the first embodiment.
 レーダセンサ10は、例えば、車両前部に設置され、ビームを放射して車両前方のターゲットの検出などを行う。また、レーダセンサ10は、車両後部に設置されてもよい。 The radar sensor 10 is installed, for example, at the front of the vehicle and emits a beam to detect a target in front of the vehicle. Further, the radar sensor 10 may be installed at the rear of the vehicle.
 レーダセンサ10は、図1に示すように、送信用給電部11、送信用給電部12、受信用給電部13、スイッチ部20、移相器30、信号処理回路40、位相差検出器50、および情報処理部55を備えている。 As shown in FIG. 1, the radar sensor 10 includes a transmission power supply unit 11, a transmission power supply unit 12, a reception power supply unit 13, a switch unit 20, a phase shifter 30, a signal processing circuit 40, a phase difference detector 50, And an information processing unit 55.
 スイッチ部20は、スイッチ21およびスイッチ22を備えている。送信用給電部11は、信号処理回路40から供給される基準信号に基づいて、ミリ波信号などの電波を放射する送信用アンテナである。 The switch unit 20 includes a switch 21 and a switch 22. The transmission power supply unit 11 is a transmission antenna that radiates radio waves such as millimeter-wave signals based on a reference signal supplied from the signal processing circuit 40.
 送信用給電部12は、移相器30により位相シフトされた基準信号に基づいて、ミリ波信号などの電波を放射する送信用アンテナである。送信用給電部11,12から同時に放射される電波は、空間合成されて、互いのアンテナ開口部間における位相差(送信位相差)に基づいて所定の方向に向けて放射されるビームとなる。 The transmission power supply unit 12 is a transmission antenna that emits a radio wave such as a millimeter wave signal based on the reference signal phase-shifted by the phase shifter 30. Radio waves simultaneously radiated from the transmission power supply units 11 and 12 are spatially combined into beams radiated in a predetermined direction based on a phase difference (transmission phase difference) between the antenna openings.
 スイッチ21,22は、送信用給電部11,12と信号処理回路40との接続状態を切り換えるスイッチである。スイッチとしては、例えば、MOSFETなどのトランジスタや、リレー回路などが挙げられる。 The switches 21 and 22 are switches for switching a connection state between the transmission power supply units 11 and 12 and the signal processing circuit 40. Examples of the switch include a transistor such as a MOSFET, a relay circuit, and the like.
 送信用給電部11と信号処理回路40との間には、スイッチ21が接続されている。スイッチ21がオン、すなわち導通状態のとき、送信用給電部11は、信号処理回路40と接続される。これにより、送信用給電部11に基準信号が供給され、送信用給電部11は、基準信号に基づく所定の電波を放射する。 The switch 21 is connected between the transmission power supply unit 11 and the signal processing circuit 40. When the switch 21 is on, that is, in a conductive state, the transmission power supply unit 11 is connected to the signal processing circuit 40. Thereby, the reference signal is supplied to the transmission power supply unit 11, and the transmission power supply unit 11 emits a predetermined radio wave based on the reference signal.
 送信用給電部12と信号処理回路40との間には、スイッチ22および移相器30が直列接続されている。なお、スイッチ22は、図1に示すように、送信用給電部11と移相器30との間に接続してもよいし、移相器30と信号処理回路40との間に接続するようにしてもよい。 The switch 22 and the phase shifter 30 are connected in series between the transmission power supply unit 12 and the signal processing circuit 40. The switch 22 may be connected between the transmission power supply unit 11 and the phase shifter 30 as shown in FIG. 1, or may be connected between the phase shifter 30 and the signal processing circuit 40. It may be.
 スイッチ22がオン、すなわち導通状態のとき、送信用給電部12は、信号処理回路40と接続される。これにより、送信用給電部12には、移相器30により位相シフトされた基準信号が供給されて、送信用給電部12は、位相シフトされた基準信号に基づいて所定の電波を放射する。なお、移相器30については後述する。 When the switch 22 is on, that is, in a conductive state, the transmission power supply unit 12 is connected to the signal processing circuit 40. As a result, the reference signal whose phase has been shifted by the phase shifter 30 is supplied to the transmission power supply unit 12, and the transmission power supply unit 12 radiates a predetermined radio wave based on the phase shifted reference signal. The phase shifter 30 will be described later.
 受信用給電部13は、ミリ波信号などの電波を受信する受信用アンテナである。受信用給電部13は、信号処理回路40と接続されている。受信用給電部13は、受信した電波に基づいて所定の受信信号を生成して、生成した受信信号を信号処理回路40へ出力する。 The receiving power supply unit 13 is a receiving antenna that receives a radio wave such as a millimeter wave signal. The receiving power supply unit 13 is connected to the signal processing circuit 40. The reception power supply unit 13 generates a predetermined reception signal based on the received radio wave, and outputs the generated reception signal to the signal processing circuit 40.
 なお、受信用給電部13が受信する電波は、送信用給電部11,12から直接伝播する到来波であってもよいし、レーダ走査により得られたターゲットからの反射波であってもよい。これら送信用給電部11,12、および受信用給電部13は、例えば、パッチアンテナやホーンアンテナなどである。 The radio wave received by the reception power supply unit 13 may be an incoming wave directly propagating from the transmission power supply units 11 and 12, or may be a reflected wave from a target obtained by radar scanning. The transmission power supply units 11 and 12 and the reception power supply unit 13 are, for example, patch antennas and horn antennas.
 移相器30は、基準信号の位相をシフトさせる回路である。例えば、移相器30は、位相差検出器50にて設定された位相シフト量に基づいて、基準信号の位相をシフトさせる。移相器30に設定される位相シフト量により、送信用給電部11,12のアンテナ開口部間の送信位相差が設定される。これにより、ビーム放射方向が設定される。 The phase shifter 30 is a circuit that shifts the phase of the reference signal. For example, the phase shifter 30 shifts the phase of the reference signal based on the amount of phase shift set by the phase difference detector 50. The transmission phase difference between the antenna openings of the transmission power supply units 11 and 12 is set by the phase shift amount set in the phase shifter 30. Thereby, the beam radiation direction is set.
 信号処理回路40は、各種の信号処理を行う回路である。例えば、信号処理回路40は、電波放射用の基準信号としてのミリ波信号を生成する。また、信号処理回路40は、生成した基準信号を所望の電力に増幅して、増幅した基準信号を送信用給電部11,12へ出力する。また、信号処理回路40は、受信用給電部13から出力される受信信号に基づいた信号処理も行う。受信信号に基づいた信号処理の詳細については後述する。 The signal processing circuit 40 is a circuit that performs various kinds of signal processing. For example, the signal processing circuit 40 generates a millimeter wave signal as a reference signal for radio wave emission. Further, the signal processing circuit 40 amplifies the generated reference signal to a desired power, and outputs the amplified reference signal to the transmission power supply units 11 and 12. Further, the signal processing circuit 40 also performs signal processing based on the reception signal output from the reception power supply unit 13. Details of the signal processing based on the received signal will be described later.
 位相差検出器50は、ビーム放射方位の調整を行う回路である。この位相差検出器50には、情報処理部55が生成した制御信号などが入力される。例えば、位相差検出器50は、複数の送信用給電部間における位相差である送信位相差を算出して、算出した送信位相差および情報処理部55から出力される制御信号などに基づいて、ビーム放射方向の調整を行う。 The phase difference detector 50 is a circuit for adjusting the beam azimuth. A control signal or the like generated by the information processing unit 55 is input to the phase difference detector 50. For example, the phase difference detector 50 calculates a transmission phase difference that is a phase difference between a plurality of transmission power supply units, and based on the calculated transmission phase difference, a control signal output from the information processing unit 55, and the like, Adjust the beam emission direction.
 情報処理部55は、外部から入力される車両周辺状況情報などに基づいて、上述した位相差検出器50に出力する制御信号を生成する。制御信号は、位相差検出器50が設定する位相シフト量の設定値を示す情報およびスイッチ21,22のオン・オフを制御する情報などを含む。 The information processing unit 55 generates a control signal to be output to the above-described phase difference detector 50 based on vehicle surrounding situation information input from the outside. The control signal includes information indicating a set value of the phase shift amount set by the phase difference detector 50, information for controlling on / off of the switches 21 and 22, and the like.
 位相差検出器50は、上述した位相シフト量の設定値を示す情報に基づいて、移相器30の位相シフト量を設定する。また、位相差検出器50は、上述したスイッチ21,22のオン・オフを制御する情報に基づいて、スイッチ21,22のオン・オフの切り替えを行う。 The phase difference detector 50 sets the phase shift amount of the phase shifter 30 based on the information indicating the set value of the phase shift amount described above. Further, the phase difference detector 50 switches the switches 21 and 22 on and off based on the information for controlling the switches 21 and 22 described above.
 車両周辺状況情報機器100は、自車両がどのような道路を走行しているかなど把握するための機器であり、例えばカーナビゲーションシステム、GPS(Global Positioning System)機器、スマートフォンなどの情報機器、あるいはコネクテッドカーなどである。 The vehicle peripheral information device 100 is a device for grasping what road the host vehicle is traveling on, such as a car navigation system, a GPS (Global Positioning System) device, an information device such as a smartphone, or a connected device. Such as cars.
 コネクテッドカーは、ITC(Information and Communication Technology)端末としての機能を有する自動車のことであり、車両の状態や周囲の道路状況などの様々なデータをセンサによって取得して、ネットワークを介して集積、分析することによって、車内の快適性や安全性などを向上させるものである。 A connected car is a car that has a function as an ITC (Information and Communication Technology) terminal. The connected car acquires various data such as the state of the vehicle and the surrounding road conditions using sensors, and integrates and analyzes it via a network. By doing so, the comfort and safety in the vehicle are improved.
 車両周辺状況情報は、例えば上述したカーナビゲーションやGPS機器を用いた地図情報、無線通信機能を有するスマートフォンを用いた地図情報アプリから転送された情報、あるいはコネクテッドカーのようなインターネットに常に自車両が接続されて、該インターネットから出力される自車両の道路状況の情報などであり、車両の走行環境を示すものである。 The vehicle surrounding situation information is, for example, map information using the above-described car navigation or GPS device, information transferred from a map information application using a smartphone having a wireless communication function, or information such that the vehicle is always connected to the Internet such as a connected car. This is information on the road condition of the own vehicle which is connected and output from the Internet, and indicates the traveling environment of the vehicle.
 なお、送信用給電部は、3個以上設けられてもよい。また、送信用給電部ごとに移相器30が設けられ、送信用給電部ごとに基準信号の位相が制御されてもよい。 Note that three or more transmission power supply units may be provided. Further, the phase shifter 30 may be provided for each transmission power supply unit, and the phase of the reference signal may be controlled for each transmission power supply unit.
 <ビーム放射方向の調整>
 続いて、ビーム放射方向の調整について説明する。
<Adjustment of beam radiation direction>
Subsequently, adjustment of the beam radiation direction will be described.
 本実施の形態1では、送信用給電部11,12を介するそれぞれの経路における位相情報に基づいて、送信用給電部11,12間の送信位相差が算出される。そして、送信位相差および予め設定される設定位相差に基づいて、送信位相差の調整が行われることによって、ビーム放射方向の調整が行われる。 In the first embodiment, the transmission phase difference between the transmission power supply units 11 and 12 is calculated based on the phase information in each path via the transmission power supply units 11 and 12. Then, the adjustment of the transmission phase difference is performed based on the transmission phase difference and the preset phase difference, whereby the beam radiation direction is adjusted.
 図2は、図1のレーダセンサ10におけるビーム放射方向の調整処理の一例を示すフローチャート図である。図2に示すステップS10~S80の処理により、ビーム放射方向の調整が行われる。 FIG. 2 is a flowchart illustrating an example of a process of adjusting the beam radiation direction in the radar sensor 10 of FIG. Adjustment of the beam radiation direction is performed by the processing of steps S10 to S80 shown in FIG.
 まず、レーダセンサ10を起動させる(ステップS10)。電源がオンされると、レーダセンサ10が起動して、位相差検出器50は、前回の動作終了時、移相器30に設定されている位相シフト量をリセットする。 First, the radar sensor 10 is started (step S10). When the power is turned on, the radar sensor 10 is activated, and the phase difference detector 50 resets the phase shift amount set in the phase shifter 30 at the end of the previous operation.
 そして、送信用給電部11から電波を放射させる処理を行う(ステップS20)。位相差検出器50は、スイッチ21をオンして、スイッチ22をオフする。これにより、送信用給電部11は、信号処理回路40と接続される。これにより、送信用給電部11には、基準信号が供給され、送信用給電部11は、基準信号に基づく電波を放射する。 {Circle around (2)} Then, a process of emitting radio waves from the transmission power supply unit 11 is performed (step S20). The phase difference detector 50 turns on the switch 21 and turns off the switch 22. Thereby, the transmission power supply unit 11 is connected to the signal processing circuit 40. Thereby, the reference signal is supplied to the transmission power supply unit 11, and the transmission power supply unit 11 emits a radio wave based on the reference signal.
 受信用給電部13は、送信用給電部11から放射された電波の到来波や、ターゲットからの反射波を受信し、受信した電波に基づく切り替え操作前の受信信号を生成する。受信用給電部13は、生成した受信信号を信号処理回路40に出力する。 The receiving power supply unit 13 receives an incoming wave of a radio wave radiated from the transmission power supply unit 11 or a reflected wave from a target, and generates a reception signal before the switching operation based on the received radio wave. The reception power supply unit 13 outputs the generated reception signal to the signal processing circuit 40.
 続いて、送信用給電部11を介する経路における位相情報(φ1)を検出する処理を行う(ステップS30)。信号処理回路40は、受信用給電部13から出力された切り替え操作前の受信信号および基準信号に基づいて、切り替え操作前の差分信号を生成する。 Next, a process of detecting the phase information (φ1) in the path via the transmission power supply unit 11 is performed (step S30). The signal processing circuit 40 generates a difference signal before the switching operation based on the reception signal before the switching operation and the reference signal output from the receiving power supply unit 13.
 差分信号は、受信信号と基準信号との差分で規定される信号である。ここで生成される差分信号には、スイッチ21あるいはスイッチ22、配線、送信用給電部11を含む経路全体の位相情報が含まれている。 The difference signal is a signal defined by the difference between the received signal and the reference signal. The differential signal generated here includes the phase information of the entire path including the switch 21 or the switch 22, the wiring, and the transmission power supply unit 11.
 そして、信号処理回路40は、生成した差分信号を所定の中間周波数の信号、すなわちIF信号に変換する。なお、以下では、中間周波数の信号に変換された差分信号を変換差分信号と呼ぶことがある。そして、信号処理回路40は、変換差分信号を位相差検出器50へ出力する。 (4) The signal processing circuit 40 converts the generated difference signal into a signal having a predetermined intermediate frequency, that is, an IF signal. Hereinafter, the difference signal converted into the signal of the intermediate frequency may be referred to as a converted difference signal. Then, the signal processing circuit 40 outputs the converted difference signal to the phase difference detector 50.
 位相差検出器50は、変換差分信号から、変換差分信号の振幅情報(A1)および位相情報(φ1)を検出する。検出された位相情報(φ1)は、送信用給電部11を介する経路における位相情報である。また、振幅情報(A1)は、受信した電波の強度を示している。 The phase difference detector 50 detects the amplitude information (A1) and the phase information (φ1) of the converted difference signal from the converted difference signal. The detected phase information (φ1) is phase information on a path via the transmission power supply unit 11. The amplitude information (A1) indicates the intensity of the received radio wave.
 位相差検出器50は、検出した位相情報(φ1)をデフォルトの位相シフト量として移相器30へ出力する。また、位相差検出器50は、検出した振幅情報(A1)および位相情報(φ1)をバッファリングしてもよいし、図示しない記憶装置などに格納してもよい。 The phase difference detector 50 outputs the detected phase information (φ1) to the phase shifter 30 as a default phase shift amount. Further, the phase difference detector 50 may buffer the detected amplitude information (A1) and the detected phase information (φ1), or may store them in a storage device (not shown).
 その後、送信用給電部12から電波を放射させる処理を実行する(ステップS40)。位相差検出器50は、スイッチ21をオフし、スイッチ22をオンして、接続状態の切り替え操作を行う。 (4) Thereafter, a process of causing the transmission power supply unit 12 to emit radio waves is performed (step S40). The phase difference detector 50 turns off the switch 21 and turns on the switch 22 to switch the connection state.
 そうすると、送信用給電部11は、信号処理回路40と電気的に切断される。これにより、送信用給電部12には、移相器30においてデフォルトの位相シフト量に基づいて位相シフトされた基準信号が出力される。送信用給電部12は、位相シフトされた基準信号に基づいた電波を放射する。 Then, the transmission power supply unit 11 is electrically disconnected from the signal processing circuit 40. As a result, the reference signal that is phase-shifted based on the default phase shift amount in the phase shifter 30 is output to the transmission power supply unit 12. The transmission power supply unit 12 emits a radio wave based on the phase-shifted reference signal.
 受信用給電部13は、送信用給電部12から放射された電波の到来波や、ターゲットからの反射波を受信して、受信した電波に基づいた、切り替え操作後の受信信号を生成する。受信用給電部13は、生成した受信信号を信号処理回路40へ出力する。 The receiving power supply unit 13 receives an incoming wave of a radio wave radiated from the transmission power supply unit 12 or a reflected wave from the target, and generates a reception signal after the switching operation based on the received radio wave. The receiving power supply unit 13 outputs the generated reception signal to the signal processing circuit 40.
 続いて、送信用給電部12を介する経路における位相情報を検出する処理を行う(ステップS50)。信号処理回路40は、受信用給電部13から出力された切り替え操作後の受信信号および基準信号に基づいて、切り替え操作後の差分信号を生成する。ここで生成される差分信号には、スイッチ21あるいはスイッチ22、配線、送信用給電部12を含む経路全体の位相情報が含まれている。 Next, a process of detecting phase information in the path via the transmission power supply unit 12 is performed (step S50). The signal processing circuit 40 generates a differential signal after the switching operation based on the received signal after the switching operation and the reference signal output from the receiving power supply unit 13. The differential signal generated here includes the phase information of the entire path including the switch 21 or the switch 22, the wiring, and the transmission power supply unit 12.
 そして、信号処理回路40は、生成した差分信号を所定の中間周波数の信号に変換する。信号処理回路40は、変換差分信号を位相差検出器50へ出力する。 (4) The signal processing circuit 40 converts the generated difference signal into a signal having a predetermined intermediate frequency. The signal processing circuit 40 outputs the converted difference signal to the phase difference detector 50.
 位相差検出器50は、変換差分信号から、変換差分信号の振幅情報(A2)および位相情報(φ2)を検出する。検出された位相情報(φ2)は、送信用給電部12を介する経路における位相情報である。 The phase difference detector 50 detects the amplitude information (A2) and the phase information (φ2) of the converted difference signal from the converted difference signal. The detected phase information (φ2) is phase information in a path via the transmission power supply unit 12.
 また、検出された振幅(A2)は、受信した電波の強度を示す情報である。位相差検出器50は、検出した位相情報(φ2)をバッファリングしてもよいし、図示しない記憶装置に格納させてもよい。 振幅 The detected amplitude (A2) is information indicating the strength of the received radio wave. The phase difference detector 50 may buffer the detected phase information (φ2) or store it in a storage device (not shown).
 その後、送信用給電部11,12のアンテナ開口面における位相差を算出する処理を行う(ステップS60)。位相差検出器50は、切り替え操作後の位相情報(φ2)と、切り替え操作前の位相情報φ1との差分(φ2-φ1)を送信位相差(Δφ)として算出する。 (4) After that, a process of calculating a phase difference at the antenna aperture surface of the transmission power supply units 11 and 12 is performed (step S60). The phase difference detector 50 calculates a difference (φ2−φ1) between the phase information (φ2) after the switching operation and the phase information φ1 before the switching operation as a transmission phase difference (Δφ).
 それぞれの位相情報(φ1,φ2)は、共通の受信用給電部13にて受信された電波に基づいて検出されているので、経路間の位相差(φ2-φ1)は、アンテナ開口面での位相差に準ずるものである。したがって、位相差検出器50は、位相差(φ2-φ1)を算出することにより、アンテナ開口面における送信位相差(Δφ)を算出する。 Since the respective phase information (φ1, φ2) is detected based on the radio wave received by the common receiving power supply unit 13, the phase difference between the paths (φ2−φ1) is determined at the antenna aperture plane. This is in accordance with the phase difference. Therefore, the phase difference detector 50 calculates the transmission phase difference (Δφ) at the antenna aperture by calculating the phase difference (φ2−φ1).
 なお、送信用給電部11,12の配置により、受信用給電部13までの距離がそれぞれ異なる。このため、位相差検出器50は、それぞれの送信用給電部11,12から受信用給電部13までの距離の差に応じて、送信位相差Δφを補正してもよい。 Note that the distance to the receiving power supply unit 13 differs depending on the arrangement of the transmitting power supply units 11 and 12. For this reason, the phase difference detector 50 may correct the transmission phase difference Δφ according to the difference in the distance from each of the transmission power supply units 11 and 12 to the reception power supply unit 13.
 続いて、ビームの放射方向が予め設定された所定の放射方向と一致しているかどうかを判定する処理を行う(ステップS70)。位相差検出器50は、ステップS60の処理において算出された送信位相差と設定位相差とを比較する。なお、設定位相差とは、設定された方向にビームを放射させるときの送信用給電部間、すなわち送信用給電部11,12のアンテナ開口部間の位相差をいう。 Next, processing is performed to determine whether the radiation direction of the beam matches a predetermined radiation direction set in advance (step S70). The phase difference detector 50 compares the transmission phase difference calculated in the process of step S60 with the set phase difference. Note that the set phase difference refers to a phase difference between the transmission power supply units when emitting a beam in a set direction, that is, between the antenna openings of the transmission power supply units 11 and 12.
 送信位相差が設定位相差と一致する場合(Yes)、位相差検出器50は、ビーム放射方向が事前に設定された方向と一致しているものと判定して、ビーム放射方向の調整を終了する。その後は、例えば、スイッチ21,22がいずれもオンにされ、調整された方向、言い換えれば設定された方向にビームが放射される。 If the transmission phase difference matches the set phase difference (Yes), the phase difference detector 50 determines that the beam emission direction matches the preset direction, and ends the adjustment of the beam emission direction. I do. Thereafter, for example, both the switches 21 and 22 are turned on, and the beam is emitted in the adjusted direction, in other words, in the set direction.
 一方、送信位相差が設定位相差と異なる場合(No)、位相差検出器50は、ビーム放射方向が設定された方向とは異なっていると判定する。この場合、後述するステップS80の処理において、ビーム放射方向の調整が行われる。 On the other hand, when the transmission phase difference is different from the set phase difference (No), the phase difference detector 50 determines that the beam emission direction is different from the set direction. In this case, adjustment of the beam radiation direction is performed in the process of step S80 described below.
 なお、送信位相差が、設定位相差を含む所定の許容範囲内に収まっていれば、位相差検出器50は、これらの位相差が一致しているものと判定してもよい。許容範囲は、例えば、振幅情報(A1,A2)などの情報に基づいて、ターゲットからの反射波を検出可能な範囲で規定されてもよい。このように、送信位相差の誤差を許容することにより、レーダ放射方向の調整時間が短縮される。 If the transmission phase difference falls within a predetermined allowable range including the set phase difference, the phase difference detector 50 may determine that these phase differences match. For example, the allowable range may be defined as a range in which a reflected wave from a target can be detected based on information such as amplitude information (A1, A2). As described above, by allowing the error of the transmission phase difference, the adjustment time in the radar radiation direction is reduced.
 続いて、送信位相差および設定位相差に基づいて、ビーム放射方向を調整する処理が実行される(ステップS80)。例えば、位相差検出器50は、送信位相差と設定位相差との差分を算出し、算出した差分の値に応じて、位相シフト量をインクリメントまたはデクリメントする。位相差検出器50は、調整後の位相シフト量を移相器30へ出力し、移相器30における位相シフト量の情報が更新される。 Next, a process of adjusting the beam radiation direction is performed based on the transmission phase difference and the set phase difference (step S80). For example, the phase difference detector 50 calculates a difference between the transmission phase difference and the set phase difference, and increments or decrements the phase shift amount according to the calculated difference value. The phase difference detector 50 outputs the adjusted phase shift amount to the phase shifter 30, and the information of the phase shift amount in the phase shifter 30 is updated.
 これにより、送信用給電部12には、調整後の位相シフト量に基づいて位相シフトされた基準信号が出力され、送信用給電部12は、位相シフト量調整後の基準信号に基づく電波を放射する。 As a result, the reference signal that is phase-shifted based on the adjusted phase shift amount is output to the transmission power supply unit 12, and the transmission power supply unit 12 radiates a radio wave based on the reference signal after the phase shift amount adjustment. I do.
 上記した図2に示すビーム放射方向の調整の処理を定期的に実行して、送信用給電部11,12の開口面の位相差を全て計測することにより、送信用給電部11,12の位相校正を行うことができる。 The above-described process of adjusting the beam emission direction shown in FIG. 2 is periodically executed to measure all the phase differences between the opening surfaces of the transmission power supply units 11 and 12, thereby obtaining the phase of the transmission power supply units 11 and 12. Calibration can be performed.
 このように、レーダセンサ10を車両搭載した後にレーダの放射方位を高精度にオンタイムにて制御できることは、出荷前検査工程におけるレーダ個々での動作温度毎の校正データの生成を不要とすることができ、特性検査コストを低減することができる。 As described above, the ability to control the radiation azimuth of the radar with high accuracy on-time after the radar sensor 10 is mounted on the vehicle eliminates the need to generate calibration data for each operating temperature of each radar in the inspection process before shipment. And the cost of characteristic inspection can be reduced.
 〈ビーム放射方向の調整が行われた後の処理〉
 ステップS80の処理が行われると、すでに述べたステップS50~S70の処理が再度行われる。再度のステップS50の処理では、基準信号および方向調整後に受信した電波に基づいて生成された受信信号に基づいて、送信用給電部12を介する経路における振幅情報(A2’)や位相情報(φ2’)が再度検出される。
<Processing after adjustment of beam radiation direction>
When the processing in step S80 is performed, the processing in steps S50 to S70 described above is performed again. In the process of step S50 again, the amplitude information (A2 ′) and the phase information (φ2 ′) in the path via the transmission power supply unit 12 are based on the reference signal and the received signal generated based on the radio wave received after the direction adjustment. ) Is detected again.
 再度のステップS60の処理では、方向調整後の送信位相差(Δφ’=φ2’-φ1)が算出され、再度のステップS70では、方向調整後の送信位相差(Δφ’)と設定位相差との比較が行われる。 In the process of step S60 again, the transmission phase difference after the direction adjustment (Δφ ′ = φ2′−φ1) is calculated, and in the step S70 again, the transmission phase difference (Δφ ′) after the direction adjustment and the set phase difference are calculated. Are compared.
 ビーム放射方向調整後の送信位相差(Δφ’)と設定位相差とが一致していればビーム放射方向の調整は終了するが、これらの位相差が一致しなければ、ステップS80の処理によりビーム放射方向の再調整が行われる。このように、送信位相差と設定位相差とが一致するまで、ビーム放射方向の調整が繰り返し行われる。 If the transmission phase difference (Δφ ′) after the adjustment of the beam emission direction and the set phase difference match, the adjustment of the beam emission direction ends, but if these phase differences do not match, the beam is processed by the processing in step S80. A readjustment of the radiation direction is performed. In this way, the adjustment of the beam radiation direction is repeatedly performed until the transmission phase difference and the set phase difference match.
 なお、ここでは、ステップS50~S80の処理を繰り返してビーム放射方向の調整を行う場合について説明したが、これ以外の方法により調整が行われてもよい。 Here, the case where the process of steps S50 to S80 is repeated to adjust the beam radiation direction has been described, but the adjustment may be performed by other methods.
 例えば、ステップS50の処理において、送信用給電部12から放射された電波を受信した後、スイッチ22がオフされてもよい。この場合、ステップS40の処理に戻り、ビーム放射方向の調整が行われる。また、ステップS20~S80の処理を繰り返してビーム放射方向の調整が行われてもよい。 For example, in the process of step S50, the switch 22 may be turned off after receiving the radio wave radiated from the transmission power supply unit 12. In this case, the process returns to step S40, and the beam emission direction is adjusted. Further, the process of steps S20 to S80 may be repeated to adjust the beam radiation direction.
 また、ビーム放射方向の調整が終了した後、ターゲットへの追従などのため、さらに再調整を行ってもよい。その際、位相差検出器50は、ステップS20~S80の処理を再度実行してもよいし、ステップS40~S80の処理のみ再度実行しても構わない。 After the adjustment of the beam radiation direction is completed, further adjustment may be performed for following the target. At that time, the phase difference detector 50 may execute the processing of steps S20 to S80 again, or may execute only the processing of steps S40 to S80 again.
 ステップS20の処理から再度実行されれば、レーダセンサ10の起動後における、送信用給電部11を介する経路における、例えば温度変化などの環境変化を反映させることができ、ビーム放射方向の調整を正確に行うことが可能となる。 If the processing is executed again from the processing in step S20, it is possible to reflect an environmental change such as a temperature change in the path via the transmitting power supply unit 11 after the activation of the radar sensor 10, and to adjust the beam radiation direction accurately. Can be performed.
 また、ステップS40~S80の処理のみであれば、ビーム放射方向の再調整に係る工程が短縮され、短時間での再調整を可能にすることができる。 Also, if only the processes in steps S40 to S80 are performed, the process for readjustment of the beam radiation direction can be shortened, and readjustment can be performed in a short time.
 上述したレーダセンサ10におけるビーム放射方向の調整処理によって、スイッチ部20による切り替え操作の前後におけるそれぞれの差分信号に基づいて送信用給電部11,12のアンテナ開口部間の送信位相差を算出することができるので、ビームの放射方位を高精度に制御することが可能となる。 Calculating the transmission phase difference between the antenna openings of the transmission power supply units 11 and 12 based on the respective difference signals before and after the switching operation by the switch unit 20 by the adjustment process of the beam radiation direction in the radar sensor 10 described above. Therefore, it is possible to control the radiation direction of the beam with high accuracy.
 また、信号処理回路40は、差分信号を所定の中間周波数の信号に変換し、位相差検出器50は、変換後の差分信号からそれぞれの経路における位相情報(φ1,φ2)を検出する。この構成によれば、信号の減衰を抑えつつ信号処理を行うことが可能となる。よって、振幅情報及び位相情報の検出精度を確保することができる。 {Circle around (4)} The signal processing circuit 40 converts the difference signal into a signal of a predetermined intermediate frequency, and the phase difference detector 50 detects phase information (φ1, φ2) in each path from the converted difference signal. According to this configuration, it is possible to perform signal processing while suppressing signal attenuation. Therefore, the detection accuracy of the amplitude information and the phase information can be secured.
 さらに、位相差検出器50は、送信用給電部11,12から受信用給電部13までの距離の差、または、送信用給電部11,12間の距離に応じて、送信位相差を補正する。この構成によれば、送信位相差がより正確に算出されるので、ビーム放射方向の調整をより正確に行うことができる。 Further, the phase difference detector 50 corrects the transmission phase difference according to the difference in distance between the transmission power supply units 11 and 12 and the reception power supply unit 13 or the distance between the transmission power supply units 11 and 12. . According to this configuration, the transmission phase difference is calculated more accurately, so that the beam radiation direction can be adjusted more accurately.
 〈ビーム放射例〉
 図2に示すレーダセンサ10における放射方位のオンタイム調整後、レーダセンサ10は、車両進行方向である正面に注力してターゲット検知する。
<Example of beam radiation>
After the on-time adjustment of the radiation azimuth in the radar sensor 10 shown in FIG. 2, the radar sensor 10 focuses on the front, which is the traveling direction of the vehicle, and detects the target.
 レーダセンサ10は、進行方向にある交差点や横断歩道などの道路状況情報を、上述した車両周辺状況情報機器100から車両周辺状況情報として取得することによって、交差点や横断歩道を通過する際に横切る車両や歩行者と接触が起きないよう、レーダのビーム放射角度を広角度方位に走査し、障害物の有無を事前に検知する。 The radar sensor 10 obtains road condition information such as an intersection or a pedestrian crossing in the traveling direction as vehicle surrounding condition information from the above-described vehicle surrounding condition information device 100, so that a vehicle crossing when passing through an intersection or a pedestrian crossing is obtained. The radar scans the beam at a wide angle to detect obstacles in advance to prevent contact with pedestrians and pedestrians.
 その際、情報処理部55は、車両周辺状況情報に含まれる道路状況情報および自車速度などを鑑み、ビームスキャンに必要なスイッチ21,22と移相器30とを位相差検出器50にて制御する。これによって、レーダのビーム放射角度を広角度方位に走査して、障害物の有無を事前に検知する。 At this time, the information processing unit 55 determines the switches 21 and 22 and the phase shifter 30 necessary for beam scanning by the phase difference detector 50 in consideration of the road condition information and the own vehicle speed included in the vehicle surrounding condition information. Control. Thus, the beam emission angle of the radar is scanned in a wide angle azimuth, and the presence or absence of an obstacle is detected in advance.
 図3は、図1のレーダセンサ10によるビーム放射の一例を示す説明図である。図4は、図3のレーダセンサ10によるビーム放射の他の例を示す説明図である。 FIG. 3 is an explanatory diagram showing an example of beam radiation by the radar sensor 10 of FIG. FIG. 4 is an explanatory diagram showing another example of the beam radiation by the radar sensor 10 of FIG.
 これら図3および図4は、車両が交差点に進入する際の距離およびビーム方位の例を示したものである。 FIGS. 3 and 4 show examples of the distance and beam direction when the vehicle enters the intersection.
 図3のビーム150に示すように、送信用給電部間の開口面位相差が0degとなる遠距離レーダモードでは、アンテナアレイを構成する送信用給電部のすべてを利用する。その際、最大検知距離は、200m以上であり、検知範囲は±8deg程度である。 ビ ー ム As shown by the beam 150 in FIG. 3, in the long distance radar mode in which the aperture phase difference between the transmission power supply units is 0 deg, all of the transmission power supply units constituting the antenna array are used. At that time, the maximum detection distance is 200 m or more, and the detection range is about ± 8 deg.
 送信用給電部の放射範囲は、アンテナとして機能する実効的な開口面サイズで規定されるため、複数の送信用給電部から構成されるアンテナアレイでは、利用されるアンテナ素子数に応じて放射ビームは狭角化して、高利得のアンテナ放射特性となる。 Since the radiation range of the transmission power supply is defined by the effective aperture size that functions as an antenna, in an antenna array composed of a plurality of transmission power supply parts, the radiation beam depends on the number of antenna elements used. Is narrowed to have a high gain antenna radiation characteristic.
 図3では、道路の幅が10mであり、走行する車両の前方40m程度先に交差点がある例を示している。交差点における道路脇にて検知したい放射角度方位は、車両の進行方向左側の道路脇が図3のビーム151に示すように、10deg程度となり、車両の進行方向右側の道路脇が図3のビーム152に示すように、15deg程度となる。 FIG. 3 shows an example in which the width of the road is 10 m and there is an intersection about 40 m ahead of the traveling vehicle. The radiation angle azimuth to be detected at the side of the road at the intersection is about 10 deg, as shown by the beam 151 in FIG. 3 on the left side of the road in the traveling direction of the vehicle, and the beam 152 in FIG. 3 is on the right side of the road in the traveling direction of the vehicle. As shown in FIG.
 遠距離レーダモードにおいて、図3のビーム151およびビーム152に示す放射角度方位は、上述した遠距離レーダモードによる水平方位の検知範囲を超えている。遠距離レーダモード時にレーダのビーム放射角度を広角度方位に走査するためには、レーダセンサ10の放射角度がビーム151に示す10degおよびビーム151に示す15degとなるように位相差検出器50の設定位相差値に放射角度10deg分程度の位相値を移相器30にそれぞれ加算して制御する。 In the long-range radar mode, the radiation angle directions indicated by the beams 151 and 152 in FIG. 3 exceed the detection range of the horizontal direction in the long-range radar mode described above. In order to scan the beam radiating angle of the radar in the wide-angle azimuth in the long-range radar mode, the setting of the phase difference detector 50 is set so that the radiating angle of the radar sensor 10 becomes 10 deg shown by the beam 151 and 15 deg shown by the beam 151. A phase value corresponding to a radiation angle of about 10 deg is added to the phase difference value to the phase shifter 30 for control.
 この加算値は、情報処理部55が車両周辺状況情報に基づいて算出する。算出した結果は、制御信号として位相差検出器50に出力される。位相差検出器50は、受け取った制御信号に基づいて、位相値を加算して基準信号の位相をシフトさせるように移相器30を動作させる。 情報 処理 The added value is calculated by the information processing section 55 based on the vehicle surrounding situation information. The calculated result is output to the phase difference detector 50 as a control signal. The phase difference detector 50 operates the phase shifter 30 to add the phase value and shift the phase of the reference signal based on the received control signal.
 図3において、車両がさらに前進して交差点までの距離が5m程度になった場合、検知したい放射角度方位は、ビーム151が40deg程度、ビーム152が50deg程度にそれぞれなり、位相差検出器50の位相差設定値に加味する位相値はそれぞれの放射方位に基づいた位相値となる。 In FIG. 3, when the vehicle further advances and the distance to the intersection becomes about 5 m, the radiation angle directions to be detected are about 40 deg for the beam 151 and about 50 deg for the beam 152. The phase value added to the phase difference setting value is a phase value based on each radiation azimuth.
 道路幅に応じた横断歩道全体の範囲を検知したい場合、遠距離レーダモードの角度検知範囲±8degより広い範囲に照射するためには、スイッチの一部を切り、送信用給電部からの電力放射の一部を無効化して、例えばフェーズドアレイアンテナとして構成される送信用給電部による合成開口面の水平軸方向サイズを縮小し、放射ビームの半値幅を広角化することによって対応する。 If you want to detect the entire range of the pedestrian crossing according to the road width, in order to irradiate the range wider than the angle detection range ± 8 deg in the long-range radar mode, turn off a part of the switch and radiate the power from the transmission power supply. In order to cope with the above problem, the size of the synthetic aperture plane in the horizontal axis direction by the transmitting power supply unit configured as, for example, a phased array antenna is reduced, and the half value width of the radiation beam is widened.
 これにより、遠距離レーダモード時であってもレーダのビーム放射角度を広角度方位に走査することができる。その結果、車両進行方向である正面だけでなく、交差点や横断歩道を通過する際に横切る車両や歩行者などのターゲットを検知することができるので、安全性を向上させることができる。 This makes it possible to scan the beam emission angle of the radar in a wide-angle azimuth even in the long-range radar mode. As a result, not only the front which is the vehicle traveling direction, but also a target such as a vehicle or a pedestrian crossing when crossing an intersection or a crosswalk can be detected, so that safety can be improved.
 また、信号処理回路40から出力されるミリ波信号の電力強度を抑圧して道路エリア外からの反射信号強度を低減するようにしてもよい、あるいは受信信号の信号処理、例えば距離別の空間フィルタなどによってミリ波信号をカットしてもよい。 Further, the power intensity of the millimeter wave signal output from the signal processing circuit 40 may be suppressed to reduce the intensity of the reflected signal from outside the road area, or signal processing of the received signal, for example, a spatial filter for each distance For example, the millimeter wave signal may be cut off.
 さらに、ビーム150とビーム152との間に不検知角度範囲が発生した場合には、図4に示すように、ビーム153へ放射する位相量を移相器30に設定して、対向右折車の挙動検知などに用いるようにしてもよい。 Further, when an undetected angle range occurs between the beam 150 and the beam 152, the phase amount radiated to the beam 153 is set in the phase shifter 30 as shown in FIG. It may be used for behavior detection or the like.
 移相器30およびスイッチ部20は、上述したように位相差検出器50によって制御され、該位相差検出器50は、外部から入力される車両周辺状況情報に基づいて、情報処理部55が生成した制御信号に基づいて、移相器30およびスイッチ部20の設定を行う。 The phase shifter 30 and the switch unit 20 are controlled by the phase difference detector 50 as described above, and the phase difference detector 50 is generated by the information processing unit 55 based on vehicle surrounding situation information input from outside. The setting of the phase shifter 30 and the switch unit 20 is performed based on the control signal thus obtained.
 図5は、図3の遠距離レーダモード時における交差点通過時の車両周辺状況情報に基づくビーム放射の設定処理の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of a beam radiation setting process based on vehicle surrounding situation information when passing through an intersection in the long-range radar mode in FIG.
 この図5のフローチャートでは、例えば図3に示したように車両が交差点を直進する際における処理を示しており、主に情報処理部55が主体となって処理を行うものである。 {Circle around (3)} The flowchart in FIG. 5 shows the processing when the vehicle goes straight ahead at the intersection as shown in FIG. 3, for example, and the information processing unit 55 mainly performs the processing.
 まず、遠距離モードでは、車両の直進走行において、正面方向にアンテナ最大利得が得られる図4のビーム150を用いて車両走行する(ステップS101)。 First, in the long-distance mode, when the vehicle travels straight, the vehicle travels using the beam 150 shown in FIG. 4 in which the maximum antenna gain is obtained in the front direction (step S101).
 情報処理部55は、車両周辺状況情報機器100から取得した車両周辺状況情報に含まれる自車両の速度情報などを解析して車両制動距離を算出する(ステップS102)。例えば車両速度が60km/h程度であり、天気が晴天である場合、車両制動距離は、約40mと計算される。 The information processing unit 55 calculates the vehicle braking distance by analyzing the speed information of the own vehicle included in the vehicle peripheral situation information acquired from the vehicle peripheral situation information device 100 (Step S102). For example, when the vehicle speed is about 60 km / h and the weather is fine, the vehicle braking distance is calculated to be about 40 m.
 そして、情報処理部55は、車両周辺状況情報からステップS102の処理にて算出した制動距離の範囲に例えば交差点などの要注意範囲があるか否かを判断する(ステップS103)。 Then, the information processing section 55 determines whether or not the range of caution such as an intersection is within the range of the braking distance calculated in the process of step S102 from the vehicle surrounding situation information (step S103).
 例えば交差点などの要注意範囲があると判断した場合、情報処理部55は、車両周辺状況情報から該要注意範囲から車両までの距離を算出する(ステップS104)。算出した距離が制動距離範囲40mに近づくと、情報処理部55は、交差点などの要注意範囲全体の状況をレーダセンサ10にて観測するように位相差検出器50および信号処理回路40にそれぞれ指令する。 If it is determined that there is a caution area such as an intersection, the information processing unit 55 calculates the distance from the caution area to the vehicle from the vehicle surrounding situation information (step S104). When the calculated distance approaches the braking distance range of 40 m, the information processing unit 55 instructs the phase difference detector 50 and the signal processing circuit 40 to observe the situation of the entire caution range such as an intersection with the radar sensor 10. I do.
 例えば交差点の場合には、横断歩道などの方位である図4に示すビーム151およびビーム152の方位に電波を放射する必要がある。そこで、情報処理部55は、車両周辺状況情報に基づいて、交差道路をカバーするビーム幅を算出して、その結果からビーム151およびビーム152の放射角度をそれぞれ算出する(ステップS104)。 For example, in the case of an intersection, it is necessary to radiate radio waves in the directions of the beams 151 and 152 shown in FIG. Therefore, the information processing unit 55 calculates a beam width covering the intersection road based on the vehicle surrounding situation information, and calculates the radiation angles of the beams 151 and 152 from the calculation result (step S104).
 そして、情報処理部55は、算出した放射角度と予め設定した放射角度しきい値とを比較して放射角度が利用範囲内に収まっているか否かを判断する(ステップS105)。算出した放射角度が利用範囲外、すなわち放射角度しきい値よりも大きい場合には、再びステップS101の処理に戻る。 Then, the information processing section 55 compares the calculated radiation angle with a preset radiation angle threshold to determine whether or not the radiation angle falls within the use range (step S105). If the calculated radiation angle is outside the use range, that is, larger than the radiation angle threshold value, the process returns to step S101 again.
 算出した放射角度が利用範囲内、すなわち放射角度しきい値よりも小さい場合、情報処理部55は、車両周辺状況情報からカバーしたい交差道路のビーム151,152の放射角度とビーム幅とが遠距離モードであるビーム150の検知範囲±8degより大きい場合か否かを判断する(ステップS106)。 When the calculated radiation angle is within the use range, that is, smaller than the radiation angle threshold, the information processing unit 55 determines that the radiation angles and the beam widths of the beams 151 and 152 of the intersection road to be covered from the vehicle surrounding situation information are long. It is determined whether or not the mode is larger than the detection range of the beam 150 ± 8 deg (step S106).
 ステップS106の処理にて、ビーム151,152の放射角度とビーム幅とがビーム150の検知範囲±8degよりも大きいと判断した場合には、放射角度が広がるようにスイッチ21,22のいずれかをオフとする制御を行う(ステップS107)。これにより、アンテナ開口サイズが変更されて、ビーム151およびビーム152の検知範囲が広がる。 If it is determined in step S106 that the radiation angles and beam widths of the beams 151 and 152 are larger than the detection range of the beam 150 ± 8 deg, one of the switches 21 and 22 is set so that the radiation angle increases. Control to turn off is performed (step S107). Accordingly, the antenna aperture size is changed, and the detection ranges of the beams 151 and 152 are widened.
 ステップS107の処理の後、あるいはステップS106の処理にてビーム151,152の放射角度とビーム幅とがビーム150の検知範囲±8degよりも小さいと判断した場合、情報処理部55は、ビーム150、ビーム151、およびビーム152の組み合わせにおいて、要注意範囲、例えば交差点の場合には交差点全域にて不検知範囲が発生しないか否かをビーム150~152の放射角度および検知範囲から算出して(ステップS108)、不検知領域の有無を判断する(ステップS109)。 After the processing in step S107, or when it is determined in the processing in step S106 that the radiation angles and the beam widths of the beams 151 and 152 are smaller than the detection range of the beam 150 ± 8 deg, the information processing unit 55 outputs In the combination of the beam 151 and the beam 152, it is calculated from the radiation angles and the detection ranges of the beams 150 to 152 whether or not an undetectable range is generated in the range requiring caution, for example, in the case of an intersection. S108), it is determined whether there is a non-detection area (step S109).
 ステップS109の処理において、ビーム150とビーム152との間に1つの不検知範囲があると判断した際には、不検知領域へ放射するビーム153の放射方位を算出する(ステップS110)。また、不検知領域が複数存在すると判定した際には、さらに不検知領域を穴埋めする放射ビームを生成して、要注意範囲の不検知領域の穴埋めを実施する。 In the process of step S109, when it is determined that there is one non-detection range between the beam 150 and the beam 152, the radiation direction of the beam 153 radiated to the non-detection area is calculated (step S110). When it is determined that there are a plurality of undetected areas, a radiation beam for filling the undetected areas is generated, and the undetected areas in the cautionary range are filled.
 ビーム150、ビーム151、ビーム152、およびビーム153の運用比率は、交差点までの距離と自車速度に応じて、情報処理部55が決定する。この場合、情報処理部55は、位相差検出器50に制御信号を出力して、ミリ波信号強度および移相器30の位相量加算値を運用比率に応じて時間長さによって更新する制御を行う(ステップS111)。また、スイッチ21,22を制御する制御信号を位相差検出器50に出力することによって、スイッチ21,22のオン/オフを設定する制御を行う。 The operation ratio of the beam 150, the beam 151, the beam 152, and the beam 153 is determined by the information processing unit 55 according to the distance to the intersection and the vehicle speed. In this case, the information processing unit 55 outputs a control signal to the phase difference detector 50, and performs control for updating the millimeter wave signal strength and the phase amount addition value of the phase shifter 30 by the time length according to the operation ratio. Perform (Step S111). Further, by outputting a control signal for controlling the switches 21 and 22 to the phase difference detector 50, control for setting on / off of the switches 21 and 22 is performed.
 そして、各方位にビーム150、ビーム151、ビーム152、およびビーム153を一通り放射すれば、言い換えれば運用比率積算時間が100%になれば、要注意範囲の距離算出処理であるステップS104の処理まで戻り、該ステップS104の処理からのフローを繰り返す。 Then, if the beam 150, the beam 151, the beam 152, and the beam 153 are radiated in one direction in each direction, in other words, if the operation ratio integration time becomes 100%, the process of step S104, which is the distance calculation process of the range requiring attention, is performed. And the flow from the processing in step S104 is repeated.
 また、ビーム151およびビーム152の設定放射角度がレーダセンサの利用範囲内、あるいは要注意領域を通過した際、すなわち車両までの距離が0m以下の場合には、ビーム150の放射ビーム方位のみを利用した遠距離モードに戻る。 When the set radiation angle of the beam 151 and the beam 152 is within the range of use of the radar sensor or passes through the caution area, that is, when the distance to the vehicle is 0 m or less, only the radiation beam direction of the beam 150 is used. Return to the long-distance mode.
 そして、情報処理部55は、要注意範囲が発生するまで遠距離モードを維持する制御を行う。要注意範囲の発生は、情報処理部55が車両周辺状況情報機器100であるカーナビゲーションやGPS機器などにおける地図情報などの車両周辺状況情報を取得し、取得した該車両周辺状況情報から検知を行う。 (4) The information processing section 55 performs control to maintain the long-distance mode until the caution range is generated. The occurrence of the caution range is performed by the information processing section 55 acquiring vehicle surrounding situation information such as map information in the car navigation or GPS device which is the vehicle surrounding situation information device 100, and detecting from the acquired vehicle surrounding situation information. .
 以上により、ビーム放射の設定処理が終了となる。 With the above, the beam radiation setting process is completed.
 なお、図5では、上述したように交差点を直進する際における情報処理部55の動作例について示したが、レーダセンサ10は、例えば車両が交差点を曲がる際にも対向車両あるいは歩行者を検知することが可能である。 Although FIG. 5 illustrates an example of the operation of the information processing unit 55 when traveling straight through an intersection as described above, the radar sensor 10 detects an oncoming vehicle or a pedestrian even when a vehicle turns around an intersection, for example. It is possible.
 その場合、情報処理部55は、車両周辺状況情報機器100から取得した車両周辺状況情報に基づいて、位相差検出器50に出力する制御信号を生成して、スッチ21,22の切り替え設定や移相器30の位相量加算などを行い、図4に示すビーム150~153の放射ビームの位相を設定する。 In this case, the information processing section 55 generates a control signal to be output to the phase difference detector 50 based on the vehicle surrounding situation information acquired from the vehicle surrounding situation information device 100, and sets or switches the switches 21 and 22. The phase amounts of the phase shifters 30 are added to set the phases of the radiation beams of the beams 150 to 153 shown in FIG.
 道路状況および車両の通過経路などに応じてビーム150~153の運用比率は変化するが、情報処理部55における処理につては、図5に示すフローチャートと同様である。 (5) Although the operation ratio of the beams 150 to 153 changes according to the road conditions and the passing route of the vehicle, the processing in the information processing unit 55 is the same as the flowchart shown in FIG.
 さらに、曲がりくねった道路、いわゆるワインディングロードでは、車両の進行方向と進むべき方向とが必ずしも一致しない場合があるが、車両周辺状況情報によって取得される道路状況情報などに基づいて、今後進むべき方向へ位相差検出器50を設定更新して制御することに変わりはない。 Furthermore, on a winding road, a so-called winding road, the traveling direction of the vehicle may not always coincide with the direction in which the vehicle should travel. There is no change in controlling the phase difference detector 50 by updating the setting.
 以上により、交差点や横断歩道を通過する際にオンタイムにて横切る車両や歩行者などのターゲットを検知することができる。これにより、安全性を向上させることができる。 As described above, it is possible to detect a target such as a vehicle or a pedestrian who crosses at an on-time when passing through an intersection or a crosswalk. Thereby, safety can be improved.
 (実施の形態2)
 〈レーダセンサの構成例および動作例〉
 図6は、本発明の実施の形態2によるレーダセンサ10における構成の一例を示す説明図である。
(Embodiment 2)
<Configuration example and operation example of radar sensor>
FIG. 6 is an explanatory diagram illustrating an example of a configuration of the radar sensor 10 according to the second embodiment of the present invention.
 図6に示すレーダセンサ10が前記実施の形態1の図1に示すレーダセンサ10と異なるところは、新たにカメラ60が設けられた点である。このカメラ60は、道路などを撮影する。なお、図6では、レーダセンサ10にカメラ60を設けた構成としたが、このカメラ60は、レーダセンサ10の外部に設けるようにしてもよい。 が A radar sensor 10 shown in FIG. 6 is different from the radar sensor 10 shown in FIG. 1 of the first embodiment in that a camera 60 is newly provided. The camera 60 photographs a road or the like. Although the camera 60 is provided in the radar sensor 10 in FIG. 6, the camera 60 may be provided outside the radar sensor 10.
 図6に示すレーダセンサ10において、新たに設けられたカメラ60が撮影した画像および動画である撮影情報は、車両周辺状況情報とともに情報処理部55が取得する構成となっている。 に お い て In the radar sensor 10 shown in FIG. 6, the information processing section 55 acquires the photographing information that is the image and the moving image photographed by the newly provided camera 60 together with the vehicle surrounding situation information.
 また、情報処理部55は、カメラ60が取得した画像および動画からオブジェクトや特徴などを認識して検出する、いわゆる画像認識処理の機能を備えている。そして、カメラ60が取得した画像および動画を画像認識処理することによって道路状況を認識する。その他の接続構成については、図1のレーダセンサと同様であるので、説明は省略する。 (4) The information processing section 55 has a function of a so-called image recognition process of recognizing and detecting objects, features, and the like from images and moving images acquired by the camera 60. Then, the road condition is recognized by performing image recognition processing on the image and the moving image acquired by the camera 60. The other connection configuration is the same as that of the radar sensor of FIG.
 情報処理部55は、例えば交差点を画像認識した道路形状により認識し、横断歩道を画像認識した道路標示や道路標識などによって認識する。その他の道路状況についても、同様に道路標識、道路形状、あるいは道路標示などにて認識する。 The information processing unit 55 recognizes, for example, an intersection based on a road shape whose image has been recognized, and recognizes a pedestrian crossing with a road sign or a road sign whose image has been recognized. Other road conditions are similarly recognized by road signs, road shapes, road signs, and the like.
 このように、情報処理部55は、車両周辺の距離を含めた道路状況を認識して、認識した道路状況に応じてビームの放射範囲と放射角度とを設定する制御を行う。これらの制御処理については、図5のフローチャートと同様である。 As described above, the information processing unit 55 recognizes the road condition including the distance around the vehicle, and performs control to set the radiation range and the radiation angle of the beam according to the recognized road condition. These control processes are the same as those in the flowchart of FIG.
 以上により、カメラ60が取得した画像および動画から画像認識処理を行うことにより、より高度な道路状況情報を取得することができる。 As described above, by performing the image recognition processing from the image and the moving image acquired by the camera 60, more advanced road condition information can be acquired.
 なお、図6では、カメラ60が取得した画像および動画と車両周辺状況情報とを用いて情報処理部55がビームの放射範囲と放射角度とを制御する例を示したが、該情報処理部55は、カメラ60が取得した画像および動画を車両周辺状況情報として取得し、取得した車両周辺状況情報から認識した情報を用いてビームの放射範囲と放射角度とを制御するようにしてもよい。 FIG. 6 shows an example in which the information processing unit 55 controls the radiation range and the radiation angle of the beam using the image and the moving image acquired by the camera 60 and the vehicle surrounding situation information. May acquire the image and the moving image acquired by the camera 60 as vehicle surrounding situation information, and control the radiation range and the radiation angle of the beam using information recognized from the acquired vehicle surrounding situation information.
 (実施の形態3)
 〈レーダセンサの構成例および動作例〉
 図7は、本実施の形態3によるレーダセンサ10における構成の一例を示す説明図である。
(Embodiment 3)
<Configuration example and operation example of radar sensor>
FIG. 7 is an explanatory diagram illustrating an example of a configuration of the radar sensor 10 according to the third embodiment.
 図7に示すレーダセンサ10が前記実施の形態1の図1に示すレーダセンサ10と異なるところは、新たに角速度センサ65を設けた点である。 が A radar sensor 10 shown in FIG. 7 is different from the radar sensor 10 shown in FIG. 1 of the first embodiment in that an angular velocity sensor 65 is newly provided.
 角速度センサ65は、例えば車両の旋回速度を検出するセンサである。この角速度センサ65についても、レーダセンサ10ではなく、例えば車両などの外部に設けるようにしてもよい。 The angular velocity sensor 65 is a sensor that detects, for example, the turning speed of the vehicle. The angular velocity sensor 65 may also be provided outside the radar sensor 10, for example, outside the vehicle.
 角速度センサ65が検出した角速度情報は、車両周辺状況情報とともに情報処理部55に入力される。情報処理部55は、車両がカーブを通過する際に角速度センサ65が検出した車両の角速度情報に応じてレーダのビーム放射角度を広角度方位に走査するように制御信号を生成する。これによって、障害物の有無を事前に検知することができる。 角 The angular velocity information detected by the angular velocity sensor 65 is input to the information processing unit 55 together with the vehicle surrounding situation information. The information processing section 55 generates a control signal so as to scan the beam radiating angle of the radar in a wide-angle azimuth according to the angular velocity information of the vehicle detected by the angular velocity sensor 65 when the vehicle passes through the curve. Thus, the presence or absence of an obstacle can be detected in advance.
 具体的には、車両の角速度量が大きくなるに従ってより広角度方位にビームが切り込むよう走査すべく、位相差検出器50および信号処理回路40を制御する。車両周辺情報情報から得た自車速度情報に応じて、スイッチ21,22を切り替える制御を行うことにより、アンテナの合成開口面の水平軸サイズを変更して、送信ビームの半値幅を切り替える。 Specifically, the phase difference detector 50 and the signal processing circuit 40 are controlled so that the beam scans in a wider angle azimuth as the amount of angular velocity of the vehicle increases. By performing control to switch the switches 21 and 22 in accordance with the vehicle speed information obtained from the vehicle surrounding information information, the horizontal axis size of the synthetic aperture surface of the antenna is changed, and the half-width of the transmission beam is switched.
 それにより、車両の進行方向の変移量および自車速度に応じて、放射範囲と放射角度を設定することが可能となる。その結果、高速道路のカーブや、一般道の緩やかなカーブ、あるいはカーブ半径の小さい急カーブを走行する際などの様々環境の走行状況であっても、進むべき進行方向へ適切にビームを走査することができる。 This makes it possible to set the radiation range and the radiation angle in accordance with the amount of displacement in the traveling direction of the vehicle and the vehicle speed. As a result, the beam is appropriately scanned in the traveling direction in which the vehicle should travel, even when traveling in various environments, such as when traveling on a highway curve, a gentle curve on a general road, or a sharp curve with a small curve radius. be able to.
 このように、角速度センサ65が検出する角速度情報に基づいて、移相器30の位相シフト量およびスイッチ21,22の切り替えを制御することによって、車両の進行方向に注力したビーム照射およびビームの放射範囲の調整をオンタイムにて行うことができる。 As described above, by controlling the phase shift amount of the phase shifter 30 and the switching of the switches 21 and 22 based on the angular velocity information detected by the angular velocity sensor 65, the beam irradiation and the beam radiation focused on the traveling direction of the vehicle are performed. Range adjustment can be performed on-time.
 これにより、車両のカーブの緩急に応じてビームの放射範囲を高精度に制御することができるので、レーダセンサ10によるターゲットのより早期検知およびより高確度の障害物の推定を可能にすることができる。 Thus, the radiation range of the beam can be controlled with high accuracy according to the speed of the curve of the vehicle, so that the radar sensor 10 can detect the target earlier and estimate the obstacle with higher accuracy. it can.
 (実施の形態4)
 〈レーダセンサの構成例および動作例〉
 本実施の形態4では、レーダセンサ10を自動運転可能な車両に搭載した例について説明する。
(Embodiment 4)
<Configuration example and operation example of radar sensor>
In the fourth embodiment, an example will be described in which the radar sensor 10 is mounted on a vehicle capable of automatically driving.
 図8は、本実施の形態4によるレーダセンサ10における構成の一例を示す説明図である。 FIG. 8 is an explanatory diagram showing an example of the configuration of the radar sensor 10 according to the fourth embodiment.
 図8に示すレーダセンサ10は、前記実施の形態3の図7に示すレーダセンサ10と同様の構成からなる。異なる点は、情報処理部55に車両の自動運転を制御する自動運転ECU(Electronic Control Unit)111から出力される車両の進むべき走行経路などの走行情報が入力されているところである。 The radar sensor 10 shown in FIG. 8 has the same configuration as the radar sensor 10 shown in FIG. 7 of the third embodiment. The difference is that traveling information such as a traveling route of the vehicle, which is output from an automatic driving ECU (Electronic Control Unit) 111 that controls automatic driving of the vehicle, is input to the information processing unit 55.
 自動運転が可能な車両の場合、該車両の進むべき走行経路は、自動運転ECU111の経路検索により決定される。障害物との衝突危険性が最も小さく、急加速、急ブレーキ、あるいは急ハンドルなどの違和感がない車両ドライビングを得るための車両の進むべき走行経路が自動運転ECU111にて逐次決定される。 In the case of a vehicle capable of automatic driving, the traveling route to be followed by the vehicle is determined by the automatic driving ECU 111 searching for a route. The automatic driving ECU 111 sequentially determines a traveling route to be followed by the vehicle for obtaining vehicle driving that has the least danger of collision with an obstacle and that does not cause a sense of discomfort such as sudden acceleration, sudden braking, or sudden steering.
 情報処理部55は、自動運転ECU111が決定した走行経路情報、角速度センサ65が検出する角速度情報、および車両周辺状況情報から得た道路状況情報や自車速度情報などに基づいて、移相器30の位相およびスイッチ21,22の切り替え制御を行う制御信号を位相差検出器50に出力する。位相差検出器50は、受け取った制御信号に基づいて、移相器30の位相設定およびスイッチ21,22の切り替えを行う。 The information processing unit 55 performs phase shifter 30 based on the travel route information determined by the automatic driving ECU 111, the angular velocity information detected by the angular velocity sensor 65, the road situation information obtained from the vehicle surrounding situation information, the own vehicle speed information, and the like. And a control signal for controlling the switching of the switches 21 and 22 is output to the phase difference detector 50. The phase difference detector 50 sets the phase of the phase shifter 30 and switches the switches 21 and 22 based on the received control signal.
 この場合、情報処理部55は、走行環境に応じて自動運転ECU111の経路情報が更新される度に位相差検出器50による位相シフトの設定情報を更新する。これにより、自動運転時に必要なレーダの放射範囲および放射角度が適宜適用されるようになり、レーダセンサ10による早期検知および高確度の障害物の推定を可能にすることができる。 In this case, the information processing unit 55 updates the setting information of the phase shift by the phase difference detector 50 every time the route information of the automatic driving ECU 111 is updated according to the traveling environment. As a result, the radiation range and radiation angle of the radar required during automatic driving are appropriately applied, and early detection by the radar sensor 10 and highly accurate estimation of an obstacle can be performed.
 (実施の形態5)
 〈レーダセンサの構成例〉
 図9は、本実施の形態5によるレーダセンサ10における構成の一例を示す説明図である。
(Embodiment 5)
<Configuration example of radar sensor>
FIG. 9 is an explanatory diagram showing an example of the configuration of the radar sensor 10 according to the fifth embodiment.
 図9に示すレーダセンサ10が前記実施の形態4の図8に示すレーダセンサ10と異なるところは、新たに傾斜角度検出部70およびレーダ反射断面積算出部71が設けられた点である。 異 な る A radar sensor 10 shown in FIG. 9 is different from the radar sensor 10 shown in FIG. 8 of the fourth embodiment in that an inclination angle detecting unit 70 and a radar reflection cross-sectional area calculating unit 71 are newly provided.
 傾斜角度検出部70は、レーダセンサ10の傾き角、言い換えれば車両の傾き角を検出する。傾斜角度検出部70が検出した傾き角の情報は、情報処理部55に出力される。情報処理部55は、入力された傾き角の情報に基づいて、レーダ放射方向のずれを検出する。この検出結果は、位相差検出器50に出力される。 The tilt angle detection unit 70 detects the tilt angle of the radar sensor 10, in other words, the tilt angle of the vehicle. Information on the tilt angle detected by the tilt angle detection unit 70 is output to the information processing unit 55. The information processing unit 55 detects a shift in the radar radiation direction based on the input information on the tilt angle. This detection result is output to the phase difference detector 50.
 具体的には、情報処理部55は、ターゲットの複数の相対距離と、それぞれに対応する相対角度と、に基づいて、ビーム放射方向の角度ずれを検出する。例えば、情報処理部55は、相対距離ごとの相対角度を比較することにより、レーダセンサ10が傾いていない場合の相対角度を推定し、推定した相対角度と、算出された相対角度とを比較することにより、ビーム放射方向の角度ずれを検出する。そして、情報処理部55は、検出した角度ずれに基づいて、レーダセンサ10の傾きを検出する。 Specifically, the information processing unit 55 detects an angle deviation in the beam radiation direction based on a plurality of relative distances of the target and the corresponding relative angles. For example, the information processing unit 55 estimates the relative angle when the radar sensor 10 is not tilted by comparing the relative angles for each relative distance, and compares the estimated relative angle with the calculated relative angle. Thus, the angular deviation in the beam radiation direction is detected. Then, the information processing section 55 detects the inclination of the radar sensor 10 based on the detected angle shift.
 ターゲットの追尾開始時のビーム放射方向が概ね水平方向であれば、その後の追尾において、位相差検出器50は、左右方向にビーム放射方向を調整すればよいはずである。この場合、情報処理部55は、算出された相対角度のみでビーム放射方向の角度ずれ、およびレーダセンサ10の傾きを検出することも可能である。 If the beam emission direction at the start of tracking of the target is substantially horizontal, the phase difference detector 50 should adjust the beam emission direction to the left and right in subsequent tracking. In this case, the information processing unit 55 can also detect the angle deviation in the beam radiation direction and the inclination of the radar sensor 10 using only the calculated relative angle.
 これにより、傾斜角度検出部70を設けることによって、重量バランスの偏りにより車両に傾きが生じることに起因するレーダセンサ10の傾きを検出することができる。 Thus, by providing the inclination angle detection unit 70, it is possible to detect the inclination of the radar sensor 10 caused by the inclination of the vehicle due to the imbalance in weight balance.
 また、レーダセンサ10は、情報処理部55によって検出されたレーダセンサ10の傾きを車両傾き情報として車両に出力してもよい。そして、傾斜角度検出部70が検出する車両傾き情報を用いて、ヘッドライトなどの光軸レベリングを自動的に調整するようにしてもよい。 The radar sensor 10 may output the inclination of the radar sensor 10 detected by the information processing unit 55 to the vehicle as vehicle inclination information. Then, the optical axis leveling of a headlight or the like may be automatically adjusted using the vehicle inclination information detected by the inclination angle detection unit 70.
 この場合、情報処理部55がが検出する車両傾き情報は、ヘッドライトの光軸を調整する制御を司るヘッドライトオートレベリングECUなどに入力される。ヘッドライトオートレベリングECUは、入力された車両傾き情報に基づいて、ヘッドライトの光軸を調整する光軸調整部のアクチュエータなどを制御して該ヘッドライトの光軸を調整する。 In this case, the vehicle inclination information detected by the information processing unit 55 is input to a headlight auto-leveling ECU or the like that controls the optical axis of the headlight. The headlight auto-leveling ECU adjusts the optical axis of the headlight by controlling an actuator or the like of an optical axis adjustment unit that adjusts the optical axis of the headlight based on the input vehicle tilt information.
 これにより、車両が傾いている場合であっても、ヘッドライトの光を適正な方向に保つことが可能となり、車両走行時の安全性を向上させることができる。 This makes it possible to maintain the headlight in an appropriate direction even when the vehicle is tilted, thereby improving the safety of the vehicle when traveling.
 レーダ反射断面積算出部71は、ターゲットのレーダ反射断面積(RCS:Radar Cross Section)を算出する。例えば、レーダ反射断面積算出部71は、信号処理回路40から出力される後述のターゲット検出用差分信号(差分信号)に基づいてターゲットのレーダ反射断面積を算出して、算出したレーダ反射断面積を情報処理部55に出力する。 The radar reflection cross section calculator 71 calculates the radar reflection cross section (RCS: Radar Cross Section) of the target. For example, the radar reflection cross section calculation unit 71 calculates the radar reflection cross section of the target based on a target detection difference signal (difference signal) described later output from the signal processing circuit 40, and calculates the calculated radar reflection cross section. Is output to the information processing section 55.
 〈ビーム放射の調整例〉
 続いて、レーダセンサ10におけるビーム放射方向の調整について説明する。
<Example of beam radiation adjustment>
Next, adjustment of the beam radiation direction in the radar sensor 10 will be described.
 図10は、図9のレーダセンサ10におけるビーム放射方向の調整処理の一例を示すフローチャート図である。 FIG. 10 is a flowchart showing an example of the process of adjusting the beam radiation direction in the radar sensor 10 of FIG.
 まず、レーダセンサ10が起動する(ステップS201)。このステップS201の処理は、上述した前記実施の形態2の図2のステップS10の処理と同様である。 First, the radar sensor 10 is activated (Step S201). The processing in step S201 is the same as the processing in step S10 in FIG. 2 of the second embodiment described above.
 レーダセンサ10が起動すると、位相シフト量と送信位相差とを対応させたテーブルを作成する(ステップS202)。位相差検出器50は、移相器30に設定される位相シフト量を切り替えながら、それぞれの位相シフト量における送信位相差を算出する。そして、位相差検出器50は、位相シフト量と送信位相差とを対応させたテーブルを作成する。なお、送信位相差の算出方法は、実施の形態1と同様であるので、ここではその説明は省略する。 (4) When the radar sensor 10 is activated, a table is created in which the phase shift amount and the transmission phase difference are associated (step S202). The phase difference detector 50 calculates the transmission phase difference for each phase shift amount while switching the phase shift amount set in the phase shifter 30. Then, the phase difference detector 50 creates a table in which the phase shift amount and the transmission phase difference are associated. Note that the method of calculating the transmission phase difference is the same as that in Embodiment 1, and a description thereof will not be repeated.
 続いて、送信位相差がゼロとなるときの位相シフト量を移相器30に設定する(ステップS203)。位相差検出器50は、作成したテーブルに基づいて、送信位相差がゼロとなるときの位相シフト量を抽出し、抽出した位相シフト量を基準位相シフト量として移相器30に設定する。 Next, the amount of phase shift when the transmission phase difference becomes zero is set in the phase shifter 30 (step S203). The phase difference detector 50 extracts a phase shift amount when the transmission phase difference becomes zero based on the created table, and sets the extracted phase shift amount in the phase shifter 30 as a reference phase shift amount.
 そして、位相差検出器50は、スイッチ21,22をオンする。これにより、送信用給電部11,12から放射される電波は、空間合成されて、車両の進行方向(0deg)にビームが放射される。 (4) Then, the phase difference detector 50 turns on the switches 21 and 22. As a result, the radio waves radiated from the transmission power supply units 11 and 12 are spatially combined, and a beam is radiated in the traveling direction (0 deg) of the vehicle.
 その後、ターゲットの相対距離、相対速度、相対角度、およびレーダ反射断面積を算出する(ステップS204)。送信用給電部11,12から放射された電波は、ターゲットにて反射して、受信用給電部13は、ターゲットからの反射波を受信する。 Then, the relative distance, relative speed, relative angle, and radar reflection cross-sectional area of the target are calculated (step S204). Radio waves emitted from the transmission power supply units 11 and 12 are reflected by the target, and the reception power supply unit 13 receives the reflected wave from the target.
 受信用給電部13は、受信した反射波に基づいて、移相器30に基準位相シフト量が設定されたときのターゲット検出用受信信号を受信信号として生成し、生成したターゲット検出用受信信号を信号処理回路40へ出力する。 The receiving power supply unit 13 generates a target detection reception signal when the reference phase shift amount is set in the phase shifter 30 as a reception signal based on the received reflected wave, and converts the generated target detection reception signal into a target signal. The signal is output to the signal processing circuit 40.
 信号処理回路40は、ターゲット検出用受信信号および基準信号に基づいて、ターゲット検出用差分信号を差分信号として生成する。そして、信号処理回路40は、生成したターゲット検出用差分信号を、レーダ反射断面積算出部71および位相差検出器50へそれぞれ出力する。 The signal processing circuit 40 generates a target detection differential signal as a differential signal based on the target detection received signal and the reference signal. Then, the signal processing circuit 40 outputs the generated target detection difference signal to the radar reflection cross-sectional area calculation unit 71 and the phase difference detector 50, respectively.
 レーダ反射断面積算出部71は、信号処理回路40から出力されるターゲット検出用差分信号に基づいてレーダ反射断面積を算出する。そして、レーダ反射断面積算出部71は、算出したレーダ反射断面積を位相差検出器50へ出力する。 The radar reflection cross section calculator 71 calculates the radar reflection cross section based on the target detection difference signal output from the signal processing circuit 40. Then, the radar reflection cross-section calculation unit 71 outputs the calculated radar reflection cross-section to the phase difference detector 50.
 一方、位相差検出器50は、信号処理回路40から出力されるターゲット検出用差分信号に基づいて、ターゲットとの相対距離、相対速度、および相対角度を算出する。レーダ反射断面積算出部71によるレーダ反射断面積の算出、位相差検出器50による相対距離、相対速度、および相対角度の算出は、並行して行われてもよい。 On the other hand, the phase difference detector 50 calculates the relative distance, relative speed, and relative angle with the target based on the target detection difference signal output from the signal processing circuit 40. The calculation of the radar reflection cross-sectional area by the radar reflection cross-section calculation unit 71 and the calculation of the relative distance, relative velocity, and relative angle by the phase difference detector 50 may be performed in parallel.
 なお、信号処理回路40は、ターゲット検出用差分信号を所定の中間周波数の信号(IF信号)に変換して、変換したターゲット検出用差分信号をレーダ反射断面積算出部71および位相差検出器50へそれぞれ出力してもよい。 The signal processing circuit 40 converts the difference signal for target detection into a signal (IF signal) of a predetermined intermediate frequency, and converts the converted difference signal for target detection into the radar reflection cross section calculator 71 and the phase difference detector 50. May be respectively output.
 この場合、レーダ反射断面積算出部71は、変換後のターゲット検出用差分信号に基づいて、レーダ反射断面積を算出する。また、位相差検出器50は、変換後のターゲット検出用差分信号に基づいて、ターゲットの相対距離、相対角度、および相対速度を算出する。 In this case, the radar reflection cross-section calculation unit 71 calculates the radar reflection cross-section based on the converted target detection difference signal. Further, the phase difference detector 50 calculates a relative distance, a relative angle, and a relative speed of the target based on the converted target detection difference signal.
 算出された相対距離、相対速度、相対角度、およびレーダ反射断面積は、例えば、位相差検出器50にてバッファリングされてもよいし、図示しない記憶装置などに格納されてもよい。 The calculated relative distance, relative speed, relative angle, and radar reflection cross-sectional area may be buffered by the phase difference detector 50, or may be stored in a storage device (not shown) or the like.
 レーダ反射断面積算出部71が算出したレーダ反射断面積を位相差検出器50に出力すると、レーダ反射断面積が最大値となるよう、ターゲットの特性に応じてビーム放射方向を調整する(ステップS205,S206)。 When the radar reflection cross-section calculated by the radar reflection cross-section calculation unit 71 is output to the phase difference detector 50, the beam emission direction is adjusted according to the characteristics of the target so that the radar reflection cross-section becomes the maximum value (step S205). , S206).
 具体的には、ステップS205の処理は、ステップS204の処理にて算出されたレーダ反射断面積が最大値であるかどうかを判定する。また、ステップS206の処理は、ステップS205の処理における判定結果に基づいて、位相シフト量を調整する。 Specifically, the process of step S205 determines whether or not the radar reflection cross-sectional area calculated in the process of step S204 is the maximum value. In the process of step S206, the amount of phase shift is adjusted based on the determination result in the process of step S205.
 ターゲットには、例えば、スポーツカーなどの車高の低い車両もあれば、大型トラックなどの車高の高い車両もある。また、タンクローリー車などの反射波が散乱しやすい車両もある。このように車両形状が異なると、車両ごとに、最適なビーム放射方向が異なる場合がある。 Targets include, for example, low-height vehicles such as sports cars, and high-height vehicles such as large trucks. There are also vehicles such as tank trucks where reflected waves are easily scattered. If the vehicle shape is different as described above, the optimum beam radiation direction may be different for each vehicle.
 ビーム放射方向が最適な方向に設定されていないと、ターゲットからの反射波の反射強度が弱くなり、受信する反射波の信号SN比が不足する。そうすると、レーダによるターゲットの追尾が困難となる恐れがある。そこで、本実施の形態では、ステップS205~S206により、車両ごとのビーム放射方向を調整し、追尾不能にならないようにしている。 If the beam emission direction is not set to the optimal direction, the reflection intensity of the reflected wave from the target becomes weak, and the signal SN ratio of the received reflected wave becomes insufficient. Then, it may be difficult for the radar to track the target. Therefore, in the present embodiment, the beam emission direction of each vehicle is adjusted in steps S205 to S206 so that tracking is not disabled.
 以下、ステップS205~S206の処理について詳しく説明する。 Hereinafter, the processing of steps S205 to S206 will be described in detail.
 〈1回目のレーダ反射断面積算出後の処理〉
 まず、1回目のレーダ反射断面積算出後の処理について説明する。
<Process after the first calculation of radar cross section>
First, processing after the first radar cross section calculation will be described.
 この場合、レーダ反射断面積は1回しか算出されていないので、レーダ反射断面積の比較対象となる情報が存在しない。このため、1回目のステップS205の処理では、位相差検出器50によるレーダ反射断面積の判定処理は行われず、ステップS206の処理が行われる。 In this case, since the radar reflection cross section is calculated only once, there is no information to be compared with the radar reflection cross section. Therefore, in the first process of step S205, the process of determining the radar reflection cross-sectional area by the phase difference detector 50 is not performed, and the process of step S206 is performed.
 ステップS206の処理において、位相差検出器50は、位相シフト量の調整を行う。ただし、1回目のステップS206の処理では、ステップS205の処理における判定結果が存在していないので、位相を増減させるための判断基準が存在しない。 In the process of step S206, the phase difference detector 50 adjusts the amount of phase shift. However, in the first processing of step S206, since there is no determination result in the processing of step S205, there is no determination criterion for increasing or decreasing the phase.
 そこで、位相差検出器50は、1回目のステップS206の処理において、位相を増減させるのか、あるいは減少させるのかを予め規定しておくことが好ましい。これにより、1回目の位相シフト量の調整をスムーズに行うことが可能となる。 Therefore, it is preferable that the phase difference detector 50 preliminarily define whether to increase or decrease or decrease the phase in the first process of step S206. This makes it possible to smoothly adjust the first phase shift amount.
 位相シフト量の調整後は、ステップS240の処理が再度実行され、ターゲットとの相対距離、相対速度、相対角度、およびレーダ反射断面積が再度算出される。 After the adjustment of the phase shift amount, the process of step S240 is executed again, and the relative distance to the target, the relative speed, the relative angle, and the radar reflection cross-sectional area are calculated again.
 〈2回目以降のレーダ反射断面積算出後の処理〉
 続いて、2回目以降にレーダ反射断面積が算出された後の処理について説明する。
<Process after calculation of radar cross section for the second and subsequent times>
Subsequently, a process after the radar reflection cross-sectional area is calculated for the second and subsequent times will be described.
 2回目以降のステップS205の処理では、今回算出されたレーダ反射断面積と、前回までのレーダ反射断面積との比較を行う。その結果、今回算出されたレーダ反射断面積が最大値であれば(Yes)、位相差検出器50は、位相シフト量の調整を行わない。そして、再度ステップS204の処理が行われる。 で は In the processing of step S205 after the second time, the radar reflection cross-sectional area calculated this time is compared with the radar reflection cross-sectional area up to the previous time. As a result, if the currently calculated radar reflection cross section is the maximum value (Yes), the phase difference detector 50 does not adjust the phase shift amount. Then, the process of step S204 is performed again.
 一方、今回算出されたレーダ反射断面積が最大値でなければ(No)、ステップS206の処理に移行して、位相差検出器50は、位相シフト量の調整を行う。例えば、今回のレーダ反射断面積が前回より小さければ、位相差検出器50は、次回の位相シフト量を、前回の位相シフト量程度の値に戻してもよい。そして、再度ステップS204の処理が行われる。このように、位相差検出器50は、ターゲット情報を随時更新する。 On the other hand, if the currently calculated radar reflection cross-sectional area is not the maximum value (No), the process proceeds to step S206, and the phase difference detector 50 adjusts the phase shift amount. For example, if the current radar reflection cross-sectional area is smaller than the previous time, the phase difference detector 50 may return the next phase shift amount to a value of about the previous phase shift amount. Then, the process of step S204 is performed again. Thus, the phase difference detector 50 updates the target information as needed.
 なお、ステップS205の処理において、位相差検出器50は、前回を含む所定の期間内に算出された複数のビーム反射断面積を比較対象として判定処理を行ってもよいし、前回のビーム反射断面積のみを比較対象として判定処理を行ってもよい。これにより、比較対象が少なくなるので、判定処理が簡略化され、処理時間が短縮される。 In the process of step S205, the phase difference detector 50 may perform the determination process with the plurality of beam reflection cross-sections calculated within a predetermined period including the previous time as a comparison target, or may perform the previous beam reflection cutoff. The determination process may be performed using only the area as a comparison target. As a result, the number of objects to be compared is reduced, so that the determination process is simplified and the processing time is shortened.
 また、レーダ反射断面積算出器71については、図1のレーダセンサ10などに設けられてもよい。 The radar cross section calculator 71 may be provided in the radar sensor 10 shown in FIG.
 以上により、ターゲットのレーダ反射断面積が最大値となるようにビーム放射方向が調整されるので、ターゲットからの反射波の反射強度の低下が抑えられる。これにより、前述の各実施の形態における効果に加えて、ターゲットの形状にかかわらず、レーダによるターゲットの追尾を可能にすることができる。 As described above, since the beam radiation direction is adjusted so that the radar reflection cross-sectional area of the target becomes the maximum value, a decrease in the reflection intensity of the reflected wave from the target is suppressed. Thus, in addition to the effects of the above-described embodiments, the radar can track the target regardless of the shape of the target.
 (実施の形態6)
 〈レーダセンサの構成例および動作例〉
 図11は、本実施の形態6によるレーダセンサ10における構成の一例を示す説明図である。
(Embodiment 6)
<Configuration example and operation example of radar sensor>
FIG. 11 is an explanatory diagram showing an example of the configuration of the radar sensor 10 according to the sixth embodiment.
 図11のレーダセンサ10が、前記実施の形態4の図8のレーダセンサ10と異なる点は、情報処理部55に自動運転ECU111から出力される車両の進むべき走行経路などの走行情報が入力される点に加えて、操舵角センサ67が取得する操舵角情報が入力される点である。 The difference between the radar sensor 10 of FIG. 11 and the radar sensor 10 of FIG. 8 of the fourth embodiment is that the travel information such as the travel route of the vehicle that is output from the automatic driving ECU 111 is input to the information processing unit 55. In addition to this point, the steering angle information obtained by the steering angle sensor 67 is input.
 操舵角センサ67は、車両に備えられるハンドルの操舵角を検出して操舵角情報として出力する。この操舵角情報は、自動運転ECU111に入力されており、該自動運転ECU111から情報処理部55に入力される。 The steering angle sensor 67 detects the steering angle of the steering wheel provided in the vehicle and outputs it as steering angle information. The steering angle information is input to the automatic driving ECU 111, and is input from the automatic driving ECU 111 to the information processing unit 55.
 前記実施の形態4にて述べたように、自動運転時には、自動運転ECU111により経路情報が把握されている。よって、情報処理部55は、自動運転ECU111が把握する経路情報に基づいて、位相差検出器50が移相器30の位相差を設定する制御信号を生成する。 As described in the fourth embodiment, during automatic driving, the automatic driving ECU 111 grasps the route information. Therefore, the information processing unit 55 generates a control signal for setting the phase difference of the phase shifter 30 by the phase difference detector 50 based on the route information grasped by the automatic driving ECU 111.
 一方、自動運転が解除された場合あるいは運転者自らが進行方向を決定する場合、情報処理部55は、ハンドルの操舵角度情報に基づいて、上述の制御信号を生成して位相差検出器50に出力する。情報処理部55は、操舵角情報から運転者が意図した車両を進めたい方向を検知して、検知した方位に適した放射方位となるようにレーダを走査させる。 On the other hand, when the automatic driving is canceled or when the driver determines the traveling direction, the information processing unit 55 generates the above-described control signal based on the steering angle information of the steering wheel, and sends the control signal to the phase difference detector 50. Output. The information processing section 55 detects a direction in which the driver intends to proceed the vehicle from the steering angle information, and causes the radar to scan so as to have a radiation direction suitable for the detected direction.
 これにより、図11のレーダセンサ10は、自動運転ECU111から出力される経路情報が途絶えた場合であっても車両が進むべき方向での障害物を高感度に高精度に早期に検知することができる。この場合においても、レーダセンサ10によるビーム放射の処理については、図5と同様である。 Thereby, the radar sensor 10 in FIG. 11 can detect an obstacle in the direction in which the vehicle should travel at an early stage with high sensitivity and high accuracy even when the route information output from the automatic driving ECU 111 is interrupted. it can. Also in this case, the processing of the beam radiation by the radar sensor 10 is the same as in FIG.
 ここでは、図11に示す例では、操舵角センサ67が車両に備えられるハンドルの操舵角を検出するセンサとしたが、例えばタイヤの操舵角度を検出するセンサであってもよい。 Here, in the example shown in FIG. 11, the steering angle sensor 67 is a sensor that detects the steering angle of the steering wheel provided in the vehicle, but may be, for example, a sensor that detects the steering angle of the tire.
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
 また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。 Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. . In addition, it is possible to add, delete, or replace another configuration with respect to a part of the configuration of each embodiment.
10 レーダセンサ
11 送信用給電部
12 送信用給電部
13 受信用給電部
20 スイッチ部
21 スイッチ
22 スイッチ
30 移相器
40 信号処理回路
50 位相差検出器
55 情報処理部
60 カメラ
65 角速度センサ
67 操舵角センサ
70 傾斜角度検出部
71 レーダ反射断面積算出部
100 車両周辺状況情報機器
111 自動運転ECU
REFERENCE SIGNS LIST 10 radar sensor 11 transmission power supply unit 12 transmission power supply unit 13 reception power supply unit 20 switch unit 21 switch 22 switch 30 phase shifter 40 signal processing circuit 50 phase difference detector 55 information processing unit 60 camera 65 angular velocity sensor 67 steering angle Sensor 70 Inclination angle detection unit 71 Radar reflection cross section calculation unit 100 Vehicle surrounding situation information device 111

Claims (10)

  1.  信号処理を行う信号処理回路と、
     前記信号処理回路から供給される基準信号に基づいて、電波を放射する複数の送信用給電部と、
     前記電波を受信して、受信した前記電波に基づいて、受信信号を生成する受信用給電部と、
     スイッチ切り替え操作により前記信号処理回路と前記送信用給電部との接続状態を切り替えるスイッチ部と、
     位相シフト量に基づいて、基準信号の位相をシフトさせる移相器と、
     前記位相シフト量の制御および前記スイッチ切り替え操作の制御を行う制御信号を生成する情報処理部と、
     を有し、
     前記情報処理部は、車両の走行環境を示す車両周辺状況情報に基づいて、前記制御信号を生成し、照射されるビームが道路状況に応じた放射範囲および放射角度となるように調整する、レーダセンサ。
    A signal processing circuit for performing signal processing;
    Based on a reference signal supplied from the signal processing circuit, a plurality of transmission power supply units that emit radio waves,
    Receiving the radio wave, based on the received radio wave, a receiving power supply for generating a reception signal,
    A switch unit that switches a connection state between the signal processing circuit and the transmission power supply unit by a switch switching operation,
    A phase shifter that shifts the phase of the reference signal based on the amount of phase shift;
    An information processing unit that generates a control signal for controlling the phase shift amount and controlling the switch switching operation,
    Has,
    The radar, wherein the information processing unit generates the control signal based on vehicle surrounding situation information indicating a traveling environment of the vehicle, and adjusts an emitted beam to have a radiation range and a radiation angle corresponding to a road condition. Sensor.
  2.  信号処理を行う信号処理回路と、
     前記信号処理回路から供給される基準信号に基づいて、電波を放射する複数の送信用給電部と、
     前記電波を受信して、受信した前記電波に基づいて、受信信号を生成する受信用給電部と、
     スイッチ切り替え操作により前記信号処理回路と前記送信用給電部との接続状態を切り替えるスイッチ部と、
     前記基準信号の位相シフト量を調整する位相差検出器と、
     前記信号処理回路と前記送信用給電部との間に設けられ、前記位相シフト量に基づいて、前記基準信号の位相をシフトさせる移相器と、
     道路状況に応じて、前記位相差検出器が調整する位相シフト量および前記スイッチ部のスイッチ切り替え操作を制御する制御信号を生成する情報処理部と、
     を有し、
     前記情報処理部は、車両の走行環境を示す車両周辺状況情報に基づいて、道路状況に応じた放射範囲および放射角度となるビームが生成されるように前記制御信号を生成し、
     前記信号処理回路は、前記受信信号および前記基準信号に基づいて、前記スイッチ切り替え操作の前後におけるそれぞれの差分信号を生成し、
     前記位相差検出器は、それぞれの前記差分信号に基づいて、前記送信用給電部間における位相差を送信位相差として算出して、前記情報処理部が生成した制御信号に基づいて、前記位相シフト量の設定および前記スイッチ部のスイッチ切り替え操作を行う、レーダセンサ。
    A signal processing circuit for performing signal processing;
    Based on a reference signal supplied from the signal processing circuit, a plurality of transmission power supply units that emit radio waves,
    Receiving the radio wave, based on the received radio wave, a receiving power supply for generating a reception signal,
    A switch unit that switches a connection state between the signal processing circuit and the transmission power supply unit by a switch switching operation,
    A phase difference detector for adjusting a phase shift amount of the reference signal,
    A phase shifter provided between the signal processing circuit and the transmission power supply unit, for shifting a phase of the reference signal based on the phase shift amount;
    An information processing unit that generates a control signal for controlling a phase shift amount adjusted by the phase difference detector and a switch switching operation of the switch unit according to a road condition;
    Has,
    The information processing unit is configured to generate the control signal such that a beam having a radiation range and a radiation angle corresponding to a road condition is generated based on vehicle surrounding situation information indicating a traveling environment of the vehicle,
    The signal processing circuit, based on the received signal and the reference signal, to generate respective difference signals before and after the switch switching operation,
    The phase difference detector calculates a phase difference between the transmission power supply units as a transmission phase difference based on each of the difference signals, and the phase shift based on a control signal generated by the information processing unit. A radar sensor for setting an amount and performing a switching operation of the switch unit.
  3.  請求項2記載のレーダセンサにおいて、
     前記情報処理部に入力される前記車両周辺状況情報は、外部から入力される情報である、レーダセンサ。
    The radar sensor according to claim 2,
    The radar sensor, wherein the vehicle surrounding state information input to the information processing unit is information input from outside.
  4.  請求項2記載のレーダセンサにおいて、
     前記車両が走行する道路状況を撮影するカメラを有し、
     前記情報処理部は、前記カメラが撮影した撮影情報を前記車両周辺状況情報として取得し、取得した撮影情報を画像認識処理した認識結果に基づいて前記制御信号を生成する、レーダセンサ。
    The radar sensor according to claim 2,
    Having a camera for photographing the road conditions on which the vehicle travels,
    The radar sensor, wherein the information processing unit acquires photographing information photographed by the camera as the vehicle surrounding situation information, and generates the control signal based on a recognition result obtained by performing image recognition processing on the acquired photographing information.
  5.  請求項1記載のレーダセンサにおいて、
     前記車両の角速度を検出する角速度センサを有し、
     前記情報処理部は、前記角速度センサが検出した角速度情報に基づいて、前記車両の進行方向の変化量を認識し、認識した前記車両の変化量に応じて、前記制御信号を生成する、レーダセンサ。
    The radar sensor according to claim 1,
    An angular velocity sensor for detecting an angular velocity of the vehicle,
    A radar sensor configured to recognize a change amount in a traveling direction of the vehicle based on the angular speed information detected by the angular speed sensor and generate the control signal in accordance with the recognized change amount of the vehicle; .
  6.  請求項2記載のレーダセンサにおいて、
     前記情報処理部に入力される前記車両周辺状況情報は、前記車両に備えられ、前記車両の自動運転を制御する自動運転ECUから出力される前記車両の走行情報である、レーダセンサ。
    The radar sensor according to claim 2,
    The radar sensor, wherein the vehicle surrounding information input to the information processing unit is traveling information of the vehicle output from an automatic driving ECU provided in the vehicle and controlling automatic driving of the vehicle.
  7.  請求項6記載のレーダセンサにおいて、
     前記信号処理回路が前記差分信号として生成したターゲット検出用差分信号に基づいて、ターゲットのレーダ反射断面積を算出するレーダ反射断面積算出部を有し、
     前記情報処理部は、レーダ反射断面積算出部が算出したレーダ反射断面積から前記レーダ反射断面積が最大となるように前記制御信号を生成する、レーダセンサ。
    The radar sensor according to claim 6,
    The signal processing circuit has a radar reflection cross-sectional area calculation unit that calculates a radar reflection cross-sectional area of the target based on the target detection difference signal generated as the difference signal,
    The radar sensor, wherein the information processing unit generates the control signal from the radar reflection cross-sectional area calculated by the radar reflection cross-section calculation unit so that the radar reflection cross-section becomes maximum.
  8.  請求項7記載のレーダセンサにおいて、
     前記車両の傾斜角度を検出する傾斜角度検出部を有し、
     前記情報処理部は、前記傾斜角度検出部が検出した前記傾斜角度に基づいて、レーダ放射方向のずれを検出して、検出したずれに応じて前記ビームの放射範囲および放射方位を修正する制御信号を生成する、レーダセンサ。
    The radar sensor according to claim 7,
    A tilt angle detection unit that detects a tilt angle of the vehicle,
    The information processing unit detects a deviation in a radar radiation direction based on the inclination angle detected by the inclination angle detection unit, and corrects a radiation range and a radiation direction of the beam according to the detected deviation. Generate a radar sensor.
  9.  請求項8記載のレーダセンサにおいて、
     前記車両に備えられるハンドルまたはタイヤの操舵角を検出する操舵角センサを有し、
     前記情報処理部は、前記操舵角センサが検出した操舵角情報に基づいて、前記車両が進行する方向を認識して、認識した前記車両の進行方向に応じて、前記ビームの放射方位を設定する前記制御信号を生成する、レーダセンサ。
    The radar sensor according to claim 8,
    A steering angle sensor that detects a steering angle of a steering wheel or a tire provided in the vehicle,
    The information processing unit recognizes a traveling direction of the vehicle based on steering angle information detected by the steering angle sensor, and sets a radiation direction of the beam according to the recognized traveling direction of the vehicle. A radar sensor that generates the control signal.
  10.  請求項2記載のレーダセンサにおいて、
     前記信号処理回路が供給する基準信号は、ミリ波信号である、レーダセンサ。
    The radar sensor according to claim 2,
    A radar sensor, wherein the reference signal supplied by the signal processing circuit is a millimeter wave signal.
PCT/JP2019/018305 2018-07-26 2019-05-07 Radar sensor WO2020021812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980037276.8A CN112219133A (en) 2018-07-26 2019-05-07 Radar sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018140307A JP2020016572A (en) 2018-07-26 2018-07-26 Radar sensor
JP2018-140307 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020021812A1 true WO2020021812A1 (en) 2020-01-30

Family

ID=69182174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018305 WO2020021812A1 (en) 2018-07-26 2019-05-07 Radar sensor

Country Status (3)

Country Link
JP (1) JP2020016572A (en)
CN (1) CN112219133A (en)
WO (1) WO2020021812A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370887B2 (en) 2020-02-05 2023-10-30 古河電気工業株式会社 Radar equipment, radar system, signal processing method, and signal processing program
WO2022014269A1 (en) * 2020-07-15 2022-01-20 株式会社小糸製作所 Vehicular radar system and vehicle
KR102177837B1 (en) * 2020-07-20 2020-11-11 이재선 Speed display device
CN116990819B (en) * 2023-09-27 2023-12-15 成都国营锦江机器厂 Anti-collision radar starting detection protection method, system and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287180A (en) * 1989-04-27 1990-11-27 Matsushita Electric Works Ltd On-vehicle radar system
US6295027B1 (en) * 1999-09-14 2001-09-25 Robert Bosch Gmbh Method of calibrating a group antenna
JP2015190777A (en) * 2014-03-27 2015-11-02 株式会社豊田中央研究所 pedestrian detection device
WO2017146020A1 (en) * 2016-02-23 2017-08-31 三菱電機株式会社 Array antenna device and calibration method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031185A (en) * 2007-07-30 2009-02-12 Fujitsu Ten Ltd Radar system and target detecting method
CA2982490A1 (en) * 2015-05-22 2016-12-01 Panasonic Intellectual Property Management Co., Ltd. Road information detection apparatus and road information detection method
CN107615090B (en) * 2015-05-29 2021-06-11 三菱电机株式会社 Radar signal processing device
CN108248506A (en) * 2018-01-26 2018-07-06 浙江力邦合信智能制动系统股份有限公司 A kind of automobile active safety system, central control unit and control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287180A (en) * 1989-04-27 1990-11-27 Matsushita Electric Works Ltd On-vehicle radar system
US6295027B1 (en) * 1999-09-14 2001-09-25 Robert Bosch Gmbh Method of calibrating a group antenna
JP2015190777A (en) * 2014-03-27 2015-11-02 株式会社豊田中央研究所 pedestrian detection device
WO2017146020A1 (en) * 2016-02-23 2017-08-31 三菱電機株式会社 Array antenna device and calibration method therefor

Also Published As

Publication number Publication date
CN112219133A (en) 2021-01-12
JP2020016572A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2020021812A1 (en) Radar sensor
US20220308204A1 (en) Beam steering radar with selective scanning mode for autonomous vehicles
US10098175B2 (en) Wireless communication apparatus and wireless communication method
US20120150386A1 (en) Method for operating at least one sensor of a vehicle and driver assistance system for a vehicle
JPWO2007111130A1 (en) Radar device and moving body
US20210341598A1 (en) Electronic device, control method of electronic device, and control program of electronic device
US11099264B2 (en) Variable range and frame-rate radar operation for automated vehicle
US11867830B2 (en) Side lobe reduction in a beam steering vehicle radar antenna for object identification
US11719803B2 (en) Beam steering radar with adjustable long-range radar mode for autonomous vehicles
CN112654888A (en) Electronic device, control method for electronic device, and control program for electronic device
US20220081006A1 (en) Vehicle and autonomous driving control method therefor
US20210208269A1 (en) Angular resolution refinement in a vehicle radar for object identification
US20220252721A1 (en) Guard band antenna in a beam steering radar for resolution refinement
US20190204438A1 (en) Control device, measuring device, control method, and program
JP6923478B2 (en) Radar sensor
JP2006242622A (en) Radar for mounting in vehicle and mounting method
JP2010181257A (en) Obstacle detector
JPH1027299A (en) On-vehicle radar device
JP2012229947A (en) Target detection device, target detection method and program
JPH08327731A (en) Method for detecting azimuth by radar, azimuth detecting radar equipment and collision avoidance device for automobile
CN112888961A (en) Electronic device, control method for electronic device, and control program for electronic device
US20210208239A1 (en) Amplitude tapering in a beam steering vehicle radar for object identification
JP6883594B2 (en) Communication devices, communication systems, mobiles, platooning systems, servers, communication methods, information management methods and programs
JPH11183608A (en) Detecting apparatus for position of object
JP3909764B2 (en) Target width calculation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840785

Country of ref document: EP

Kind code of ref document: A1