WO2020021623A1 - Blower device - Google Patents

Blower device Download PDF

Info

Publication number
WO2020021623A1
WO2020021623A1 PCT/JP2018/027657 JP2018027657W WO2020021623A1 WO 2020021623 A1 WO2020021623 A1 WO 2020021623A1 JP 2018027657 W JP2018027657 W JP 2018027657W WO 2020021623 A1 WO2020021623 A1 WO 2020021623A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
port
plane
discharge
surface normal
Prior art date
Application number
PCT/JP2018/027657
Other languages
French (fr)
Japanese (ja)
Inventor
慶二郎 山口
良浩 藤岡
逸平 百瀬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/027657 priority Critical patent/WO2020021623A1/en
Publication of WO2020021623A1 publication Critical patent/WO2020021623A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling

Definitions

  • the present invention relates to a blower.
  • blower that is installed in a space such as above a ceiling of a building, supplies air to a room through a duct, and exhausts air from the room to ventilate the room.
  • a blower for example, there is a heat exchange ventilator described in Patent Document 1.
  • a heat exchanger and two blowers for air supply and exhaust are incorporated in a main casing of a rectangular parallelepiped box structure.
  • the heat exchanger is arranged in the center of the main casing, and two blowers are arranged respectively on both sides of the heat exchanger.
  • a primary flow path that is continuous through one heat exchange passage of the heat exchanger and a secondary flow path that is continuous through the other heat exchange passage of the heat exchanger are independent of each other. It is configured.
  • An exhaust blower is disposed in the primary flow path, and an air supply blower is disposed in the secondary flow path.
  • each blower is incorporated in the main body casing such that the blowing side extends toward a pair of diagonal corners of the main body casing. These corners are formed by two sides intersecting at right angles to the main casing, and one corner has one outlet on each of the two sides, which serves as an outlet end of the primary flow path or the secondary flow path. Are provided.
  • an air outlet having a pair of two outlets having directions different by 90 degrees is provided.
  • the air outlet which is convenient for laying the duct among the two air outlets is used. This makes it possible to prevent structures such as beams behind the ceiling from hindering the installation.
  • the present invention has been made in view of the above circumstances, and in a blowing device having a plurality of exhaust ports, the blowing performance when using one exhaust port and the blowing performance when using another exhaust port. It is an object of the present invention to provide a blower that can reduce the difference between the blowers and can suppress a change in blower performance.
  • the blower is provided with a first exhaust port, a first side portion extending on the first plane, and a second exhaust port, and intersects the first plane.
  • a second side portion extending on the second plane, and a casing provided with a first intake port communicating with the outside, and an intake port arranged in the casing and communicated with the first intake port.
  • a discharge port, and a first blower configured to be able to blow out air sucked in from the suction port from the discharge port, and a space surrounded by the discharge port, the first exhaust port, and the second exhaust port.
  • An outlet channel cover for communicating the outlet, the first exhaust port, and the second exhaust port with each other.
  • the first plane has a first inner surface facing the inside of the casing and a first outer surface facing the opposite side to the first inner surface
  • the second plane has a second inner surface facing the inside of the casing and a second inner surface.
  • the discharge port is arranged on the first inner surface side with respect to the first plane, and is arranged on the second inner surface side with respect to the second plane.
  • the discharge surface normal facing the discharge direction of the opening surface of the discharge port and the first outer surface side of the opening surface of the first exhaust port.
  • the angle between the first exhaust surface normal and the discharge surface is an acute angle
  • the angle between the discharge surface normal and the second exhaust surface normal facing the second outer surface side of the opening surface of the second exhaust port is an acute angle
  • the surface normal and the first exhaust surface normal are parallel to each other in the same direction
  • the angle between the discharge surface normal and the second exhaust surface normal is an acute angle
  • the discharge surface normal and the first exhaust is an acute angle
  • the angle between the discharge surface normal and the first exhaust surface normal is an acute angle and the discharge is performed in a plan view from the direction along the intersection line of the first plane and the second plane.
  • the angle between the surface normal and the second exhaust surface normal is acute, the discharge surface normal and the first exhaust surface normal are parallel to each other in the same direction, and the discharge surface normal and the second exhaust surface method
  • the angle between the line and the line is an acute angle, or the angle between the discharge surface normal and the first exhaust surface normal is an acute angle, and the discharge surface normal and the second exhaust surface normal are parallel to each other in the same direction. It is.
  • the angle between the discharge surface normal and the first exhaust surface normal is a right angle or an obtuse angle or the case where the angle between the discharge surface normal and the second exhaust surface normal is a right angle or an obtuse angle
  • the difference between the pressure loss of the flow path from the discharge port to the first exhaust port and the pressure loss of the flow path from the discharge port to the second exhaust port can be reduced. Therefore, the difference between the air blowing performance when the first exhaust port is used and the air blowing performance when the second exhaust port is used can be reduced, and a change in the air blowing performance can be suppressed.
  • FIG. 1 It is a top view which shows typically the part containing the exhaust blower in the ventilation apparatus which is the air blower which concerns on Embodiment 2 of this invention. It is the perspective view seen from the slanting lower part which penetrated some surfaces of the ventilation device. It is a top view which shows typically the part containing the exhaust blower in the ventilation apparatus which is the air blower which concerns on Embodiment 3 of this invention. It is a top view which shows the structure of the conventional ventilation apparatus typically.
  • the ventilator 1 is used, for example, when ventilating an air-conditioned target space (for example, a room in a house or a building, or in a warehouse).
  • the ventilator 1 takes in the air in the target space and discharges it to the outside of the target space, that is, exhausts the air, and also takes in the air outside the target space and supplies it to the target space, that is, supplies air.
  • FIG. 1 is a perspective view showing the external appearance of the ventilation device 1.
  • the arrows in FIG. 1 indicate the flow of air.
  • FIG. 2 is a plan view showing the ventilation device 1 through the upper surface of the ventilation device 1 in FIG.
  • the ventilation device 1 includes a casing 10, an exhaust blower (first blower) 30, and a blow-out channel cover 40.
  • the casing 10 has a first side 11 extending on the first plane P1 and a second side 12 extending on a second plane P2 intersecting the first plane P1.
  • the first side portion 11 is provided with a first exhaust port 17A.
  • the second side portion 12 is provided with a second exhaust port 17B.
  • the casing 10 is provided with a first intake port 18A communicating with the outside of the casing 10.
  • casing 10 is a rectangular parallelepiped box. Therefore, the casing 10 includes a first side portion 11, a second side portion 12, a third side portion 13 facing the first side portion 11, a fourth side portion 14 facing the second side portion 12, 1 has a fifth side portion 15 corresponding to the top surface of the casing 10 and a sixth side portion 16 corresponding to the bottom surface of the casing 10 in FIG. That is, the first side portion 11 and the second side portion 12 each constitute one surface of a rectangular parallelepiped shape of the casing 10, and the first plane P1 and the second plane P2 are orthogonal to each other.
  • first plane P1 has a first inner surface Pi1 facing the inside of the casing 10 and a first outer surface Po1 facing the opposite side to the first inner surface Pi1.
  • the second plane P2 has a second inner surface Pi2 facing the inside of the casing 10 and a second outer surface Po2 facing the opposite side to the second inner surface Pi2.
  • the casing 10 is formed of, for example, a metal plate such as a steel plate.
  • the first exhaust port 17 ⁇ / b> A provided in the first side portion 11 is, for example, a circular opening penetrating the first side portion 11. It is located on the side closer to.
  • the second exhaust port 17B provided in the second side portion 12 is, for example, a circular opening penetrating the second side portion 12, and has the same opening diameter as the first exhaust port 17A.
  • the second exhaust port 17 ⁇ / b> B is arranged on the second side portion 12 on a side closer to the first side portion 11 than the third side portion 13.
  • the first exhaust port 17 ⁇ / b> A and the second exhaust port 17 ⁇ / b> B are arranged near the ridge 19, which is a connection portion between the first side 11 and the second side 12.
  • the direction in which the first exhaust port 17A opens and the direction in which the second exhaust port 17B opens differ by 90 degrees.
  • the first exhaust port 17A and the second exhaust port 17B are not used simultaneously. That is, when one of the first exhaust port 17A and the second exhaust port 17B is used, the other is closed.
  • a duct connecting flange 20 is attached to the first side portion 11 around the first exhaust port 17A by a screw or the like. Have been.
  • the flange 20 is formed in a cylindrical shape, and the inside of the cylinder and the first exhaust port 17A communicate with each other.
  • a closing plate (blocking member) 21 for closing the second exhaust port 17B is attached to the second side portion 12 around the second exhaust port 17B by a screw or the like.
  • the closing plate 21 is formed in a plate shape that covers the entire second exhaust port 17B.
  • the first intake port 18 ⁇ / b> A provided in the casing 10 is disposed on the third side portion 13, and is disposed on the third side portion 13 on a side closer to the second side portion 12 than the fourth side portion 14. .
  • the first air inlet 18A is, for example, a circular opening that penetrates the third side portion 13.
  • a flange 20 for duct connection is attached to the third side portion 13 around the first air inlet 18A.
  • the casing 10 is further provided with a second intake port 18B and a third exhaust port 17C communicating with the outside.
  • the second intake port 18 ⁇ / b> B is disposed on the first side portion 11, and is disposed on the first side portion 11 on a side closer to the fourth side portion 14 than the second side portion 12.
  • the second intake port 18B is, for example, a circular opening penetrating the first side portion 11.
  • the third exhaust port 17 ⁇ / b> C is arranged on the third side portion 13, and is arranged on the third side portion 13 on a side closer to the fourth side portion 14 than the second side portion 12.
  • a flange 20 for duct connection is attached to the first side portion 11 around the second intake port 18B and the third side portion 13 around the third exhaust port 17C.
  • the exhaust blower 30 is arranged in the casing 10.
  • the exhaust blower 30 is provided with a suction port 31 communicating with the first intake port 18A and a discharge port 32.
  • the exhaust blower 30 is configured to be able to blow air sucked from the suction port 31 through the discharge port 32.
  • the exhaust blower 30 is a centrifugal blower.
  • the exhaust blower 30 includes a motor 33, a fan 34 rotated by driving the motor 33, and a fan casing 35 surrounding the fan 34.
  • a suction port 31 and a discharge port 32 are formed in the fan casing 35.
  • the suction port 31 is a circular opening
  • the discharge port 32 is a rectangular opening.
  • the blow-out channel cover 40 is provided so as to cover a space surrounded by the discharge port 32, the first exhaust port 17A, and the second exhaust port 17B.
  • the outlet channel cover 40 connects the discharge port 32, the first exhaust port 17A, and the second exhaust port 17B to each other.
  • the ventilation device 1 further includes an air supply blower (second blower) 50 provided in the casing 10.
  • the air supply blower 50 is arranged to blow out the air sucked in through the second intake port 18B to the third exhaust port 17C.
  • the air supply blower 50 is a centrifugal blower, like the exhaust blower 30.
  • the air supply blower 50 includes a motor 53, a fan 54 rotated by driving the motor 53, and a fan casing 55 surrounding the fan 54.
  • the ventilator 1 further includes a heat exchanger 60 for exchanging heat between the supply air flow and the exhaust air flow.
  • the supply air flow refers to a flow that flows in from the second intake port 18B and flows out of the third exhaust port 17C through the air supply blower 50 for convenience
  • the exhaust flow refers to the first intake port 18A. From the first exhaust port 17A or the second exhaust port 17B via the exhaust blower 30 for convenience.
  • the heat exchanger 60 has a flat primary passage formed by bonding corrugated paperboard (corrugated sheet) on flat paper, and a corrugated paperboard (corrugated sheet) similarly bonded on flat paper. A large number of the formed flat secondary passages are stacked so as to be orthogonal to each other.
  • the heat exchanger 60 has a rectangular parallelepiped shape as a whole, and is arranged at the center in the casing 10.
  • the exhaust blower 30 is disposed between the heat exchanger 60 and the first side portion 11
  • the air supply blower 50 is disposed between the heat exchanger 60 and the third side portion 13. I have.
  • FIG. 3 is a schematic side sectional view of the ventilation device 1.
  • a partition wall 22 that divides an internal space into two is provided in the casing 10, and the supply air flow and the exhaust air flow are configured to flow independently of each other.
  • air is sucked from the first intake port 18A as indicated by an arrow A1, passes through the primary passage of the heat exchanger 60 as indicated by an arrow A2, and passes through an arrow A3.
  • the air enters the fan casing 35 of the exhaust blower 30 and is blown out from the first exhaust port 17A or the second exhaust port 17B.
  • FIG. 4 is a plan view schematically showing a portion including the exhaust blower 30 in the ventilation device 1.
  • FIG. 5 is a perspective view of the ventilation device 1 as seen from obliquely below through the first side portion 11 and the sixth side portion 16 of the ventilation device 1.
  • FIG. 6 is a perspective view of the fan casing 35 of the exhaust blower 30.
  • FIGS. 4 and 5 in order to easily explain both the case where the first exhaust port 17A is used and the case where the second exhaust port 17B is used, the vicinity of the first exhaust port 17A and the second exhaust port 17A will be described. This shows a state in which the flanges 20 are provided both around the opening 17B.
  • the discharge port 32 of the exhaust blower 30 is arranged on the first inner surface Pi1 side with respect to the first plane P1, and is arranged on the second inner surface Pi2 side with respect to the second plane P2.
  • a normal line facing the discharge direction of the opening surface S1 of the discharge port 32 is defined as a discharge surface normal line N1
  • a normal line facing the first outer surface Po1 side of the opening surface S2 of the first exhaust port 17A is defined as a first exhaust surface normal line.
  • N2 a normal line facing the second outer surface Po2 side of the opening surface S3 of the second exhaust port 17B is set as a second exhaust surface normal line N3.
  • the discharge direction of the exhaust blower 30 is a direction in which air is blown out from the discharge port 32 when the exhaust blower 30 is operating.
  • the discharge surface normal N1 and the first exhaust gas The angle T1 formed by the surface normal N2 is an acute angle, and the angle T2 formed by the discharge surface normal N1 and the second exhaust surface normal N3 is also an acute angle.
  • the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 and the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 are both 30 degrees or more and 60 degrees. It is as follows.
  • the absolute value of the difference between the angle T1 and the angle T2 is not less than 0 degrees and not more than 30 degrees. More preferably, the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 and the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 are both 45 degrees. In other words, the absolute value of the difference between the angle T1 and the angle T2 is 0 degree.
  • the angle T1 formed between the discharge surface normal N1 and the first exhaust surface normal N2 is a right angle or an obtuse angle, or the angle formed between the discharge surface normal N1 and the second exhaust surface normal N3.
  • the difference between the pressure loss of the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss of the flow path from the discharge port 32 to the second exhaust port 17B is smaller than when T2 is a right angle or an obtuse angle. can do. As shown in FIG.
  • the angle T11 between the discharge surface normal N11 and the first exhaust surface normal N12 is a right angle
  • the angle formed by the surface normal N13 is 0 degrees, that is, the discharge surface normal N11 and the second exhaust surface normal N13 are parallel to each other.
  • the pressure loss in this flow path is large.
  • the flow path from the discharge port 132 to the second exhaust port 117B is substantially straight, the pressure loss in this flow path is small.
  • the difference between the air blowing performance when using the first exhaust port 117A and the air blowing performance when using the second exhaust port 117B is large.
  • the difference between the pressure loss of the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss of the flow path from the discharge port 32 to the second exhaust port 17B becomes small, so that the first exhaust port 17A is used.
  • the difference between the air blowing performance in the case where the air is discharged and the air blowing performance in the case where the second exhaust port 17B is used can be reduced. As a result, it is possible to suppress a change in the air blowing performance due to a difference in the exhaust port used.
  • the difference between the distance between the discharge port 32 of the exhaust blower 30 and the first exhaust port 17A and the distance between the discharge port 32 and the second exhaust port 17B is within a predetermined range. This prevents one of the flow path from the discharge port 32 to the first exhaust port 17A and the flow path from the discharge port 32 to the second exhaust port 17B from being lengthened, so that the pressure loss of one of them becomes large. Thus, the difference between one pressure loss and the other pressure loss can be suppressed.
  • the center of the opening surface is the centroid of the opening surface.
  • a right-angled isosceles triangle is formed by three points of the center C11 of the opening surface S11 of the discharge port 132, the center C12 of the opening surface S12 of the first exhaust port 117A, and the center C13 of the opening surface S13 of the second exhaust port 117B. Therefore, assuming that the distance D11 between the center C11 and the center C12 is 1, the distance D12 between the center C11 and the center C13 is 1.414.
  • the opening surface S1 of the discharge port 32 is set so that the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle. It is inclined with respect to the opening surface S2 of the first exhaust port 17A.
  • the distance D2 between the center C1 of the opening surface S1 of the discharge port 32 and the center C3 of the opening surface S3 of the second exhaust port 17B is equal to the center C1 of the opening surface S1 of the discharge port 32 and the first exhaust port 17A. Is smaller than 1.414 times the distance D1 between the opening surface S2 and the center C2. Therefore, the distance D2 between the center C1 of the opening surface S1 of the discharge port 32 and the center C3 of the opening surface S3 of the second exhaust port 17B is equal to the distance between the center C1 of the opening surface S1 of the discharge port 32 and the first exhaust port 17A. It is preferable that the distance be less than 1.414 times the distance D1 between the opening surface S2 and the center C2.
  • the distance D2 between the center C1 of the opening surface S1 of the discharge port 32 and the center C3 of the opening surface S3 of the second exhaust port 17B is determined by the distance between the center C1 of the opening surface S1 of the discharge port 32 and the first exhaust port 17A. More preferably, it is equal to the distance D1 between the opening surface S2 and the center C2.
  • the exhaust blower 30 is disposed such that the opening surface S4 of the suction port 31 is perpendicular to a plane orthogonal to both the first plane P1 and the second plane P2. I have. That is, in the present embodiment, the exhaust blower 30 is arranged such that the opening surface S4 of the suction port 31 is perpendicular to the sixth side portion 16 corresponding to the bottom surface of the casing 10. Thereby, the size range required for the exhaust blower 30 on the sixth side portion 16 can be reduced as compared with the case where the opening surface S4 of the suction port 31 is disposed horizontally with respect to the sixth side portion 16. .
  • the outlet flow passage cover portion 40 includes a cover portion main body 41, a portion around the first exhaust port 17 ⁇ / b> A of the first side portion 11, And a part around the second exhaust port 17 ⁇ / b> B of the side part 12.
  • the cover body 41 is made of, for example, resin and is formed integrally with the fan casing 35 of the exhaust blower 30.
  • the present invention is not limited to this, and the cover body 41 may be formed separately from the fan casing 35.
  • a part of the fifth side portion 15 and the sixth side portion 16 of the casing 10 may be used as the blowout channel cover portion 40.
  • Table 1 shows that the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 and the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 are changed.
  • the calculation result of the pressure loss PL1 of the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss PL2 of the flow path from the discharge port 32 to the second exhaust port 17B are shown.
  • Table 1 shows that the angle T1 is 0 degree, the angle T2 is 90 degrees, the case 1 is 30 degrees, the angle T1 is 30 degrees, the angle T2 is 60 degrees, the angle T1 and the angle T2 are both 45 degrees.
  • Case 3 case 4 in which the angle T1 is 60 degrees and angle T2 is 30 degrees
  • case 5 in which the angle T1 is 90 degrees and the angle T2 is 0 degrees
  • case 1 and case 5 have a conventional configuration
  • cases 2 to 4 have a configuration according to the present embodiment.
  • the first plane P1 and the second plane P2 are assumed to be orthogonal to each other.
  • the pressure loss PL1 in the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss PL2 in the flow path from the discharge port 32 to the second exhaust port 17B are such that the pipe diameter is 150 mm and the bending radius is 80 mm.
  • the calculation was made assuming the pressure loss of a certain bent pipe.
  • the flow rate was 250 m 3 / h.
  • FIG. 7 is a graph showing the ventilation performance of the ventilator 1.
  • FIG. 8 is a graph showing the ventilation performance of the ventilation device 101.
  • the air blowing performance shown in the graph of FIG. 7 is the air blowing performance when the air is blown from the exhaust air blower 30 in a state where the exhaust air blower 30 of the ventilator 1 is arranged so that both the angle T1 and the angle T2 are 45 degrees. It is.
  • the air blowing performance shown by the graph in FIG. 6 is the air blowing performance when air is blown from the exhaust blower 130 of the ventilator 101.
  • the conditions are set to be equal between the ventilator 1 and the ventilator 101.
  • the vertical axis represents static pressure and the horizontal axis represents airflow.
  • the solid line in the graph of FIG. 7 is a static pressure-air volume characteristic curve when the first exhaust port 17A is used, and the dotted line is a static pressure-air volume characteristic curve when the second exhaust port 17B is used.
  • the solid line in the graph of FIG. 8 is a static pressure-air volume characteristic curve when the first exhaust port 117A is used, and the dotted line is a static pressure-air volume characteristic curve when the second exhaust port 117B is used.
  • the curves shown by long dashed lines in the graphs of FIGS. 7 and 8 are examples of the curve showing the assumed pressure loss during use, and are common to both graphs.
  • the characteristic curve when the first exhaust port 117A is used is larger than the characteristic curve when the second exhaust port 117B is used, and Both the static pressure is small.
  • the air volume at the intersection of the characteristic curve and the pressure loss curve when the first exhaust port 117A is used is the difference between the characteristic curve and the pressure loss curve when the second exhaust port 117B is used. It is about 3% smaller than the air volume at the intersection.
  • the curve is almost overlapped.
  • the airflow at the intersection of the characteristic curve and the pressure loss curve when the first exhaust port 17A is used and the intersection between the characteristic curve and the pressure loss curve when the second exhaust port 17B is used. Is almost the same as the air volume at As described above, in the ventilation device 1 according to the present embodiment, it can be seen that there is almost no difference between the ventilation performance when the first exhaust port 17A is used and the ventilation performance when the second exhaust port 17B is used. .
  • the ventilation device 1 which is the blower according to the present embodiment is provided with the first exhaust port 17A, the first side portion 11 extending on the first plane P1, and the second exhaust port 17B, A casing 10 having a second side portion 12 extending on a second plane P2 orthogonal to the first plane P1 and having a first intake port 18A communicating with the outside, and disposed in the casing 10
  • An exhaust blower 30 that is provided with a suction port 31 and a discharge port 32 that are communicated with the first suction port 18A, and that is configured to be able to blow out air sucked from the suction port 31 through the discharge port 32;
  • a discharge channel cover portion 40 that covers a space surrounded by the first exhaust port 17A and the second exhaust port 17B, and allows the discharge port 32, the first exhaust port 17A, and the second exhaust port 17B to communicate with each other.
  • the first plane P1 has a first inner surface Pi1 facing the inside of the casing 10 and a first outer surface Po1 facing the side opposite to the first inner surface Pi1, and the second plane P2 has a second surface facing the inside of the casing 10.
  • the inner surface Pi2 has a second outer surface Po2 facing the opposite side to the second inner surface Pi2.
  • the discharge port 32 is disposed on the first inner surface Pi1 side with respect to the first plane P1, and is disposed on the second inner surface Pi2 side with respect to the second plane P2.
  • the discharge surface normal N1 facing the discharge direction of the opening surface S1 of the discharge port 32 and the opening surface of the first exhaust port 17A.
  • An angle T1 formed between S2 and the first exhaust surface normal N2 facing the first outer surface Po1 side is an acute angle, and faces the discharge surface normal N1 and the second outer surface Po2 side of the opening surface S3 of the second exhaust port 17B.
  • the angle T2 between the second exhaust surface normal N3 and the second exhaust surface normal N3 is an acute angle.
  • the first exhaust port 17A is provided on the first side portion 11 extending on the first plane P1
  • the second exhaust port 17B is provided on the second plane P2 orthogonal to the first plane P1.
  • the opening direction of the first exhaust port 17A and the opening direction of the second exhaust port 17B are different from each other by 90 degrees.
  • the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle
  • the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is an acute angle.
  • the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is a right angle or an obtuse angle
  • the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is a right angle or
  • the difference between the pressure loss in the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss in the flow path from the discharge port 32 to the second exhaust port 17B can be smaller than in the case of an obtuse angle. . Therefore, the difference between the air blowing performance when the first exhaust port 17A is used and the air blowing performance when the second exhaust port 17B is used can be reduced, and a change in the air blowing performance can be suppressed.
  • the ventilator 1 includes the heat exchanger 60, but is not limited to this.
  • the ventilation device 1 may be provided with the heat exchanger 60 and perform a ventilation operation by simultaneous supply and exhaust without performing heat exchange.
  • the ventilator 1 may further include a bypass passage that bypasses the primary passage or the secondary passage of the heat exchanger 60. Ordinary ventilation without heat exchange may be performed by this bypass flow path.
  • the second intake port 18B provided in the casing 10 is disposed on the first side portion 11 provided with the first exhaust port 17A, but the second side provided with the second exhaust port 17B is provided. It may be arranged in the unit 12. That is, the second intake port 18B is arranged so that the opening direction of one of the first exhaust port 17A and the second exhaust port 17B matches the opening direction of the second intake port 18B.
  • the closing member for closing the first exhaust port 17A or the second exhaust port 17B is the closing plate 21, it is not limited to this.
  • the closing member is not particularly limited as long as it can close the first exhaust port 17A or the second exhaust port 17B.
  • two exhaust ports that is, the first exhaust port 17A and the second exhaust port 17B are provided only for the exhaust blower 30, but the present invention is not limited to this. Also, similarly to the exhaust blower 30, two exhaust ports may be provided.
  • FIG. 9 is a plan view schematically showing a portion including the exhaust blower 230 in the ventilation device 2.
  • FIG. 9 shows a state in which the flanges 20 are provided both around the first exhaust port 17A and around the second exhaust port 17B, similarly to FIG.
  • FIG. 10 is a perspective view of the ventilation device 2 as seen obliquely from below through the first side portion 11 and the sixth side portion 16 of the ventilation device 2.
  • Parts having the same configuration as the ventilation device 1 according to Embodiment 1 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the ventilation device 2 according to the present embodiment is different from the ventilation device 1 according to the first embodiment in the arrangement of the exhaust blower.
  • the exhaust blower 30 of the ventilator 1 was disposed such that the opening surface S4 of the suction port 31 was perpendicular to the sixth side 16 corresponding to the bottom surface of the casing 10.
  • the opening surface of the suction port 231 formed in the fan casing 235 of the exhaust blower 230 corresponds to the bottom surface of the casing 10. It is arranged so as to be parallel to the sixth side portion 16.
  • the discharge port 232 of the exhaust blower 230 is arranged in the same manner as the discharge port 32 of the exhaust blower 30 of the ventilator 1.
  • FIG. 11 is a plan view schematically showing a portion including the exhaust blower 30 in the ventilation device 3.
  • FIG. 11 shows a state in which the flanges 20 are provided both around the first exhaust port 17A and around the second exhaust port 17B, similarly to FIG. Parts having the same configuration as the ventilation device 1 according to Embodiment 1 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the ventilation device 3 according to the present embodiment is different from the ventilation device 1 according to the first embodiment in that the first plane and the second plane are not orthogonal.
  • the second plane P32 is larger than the angle formed between the first inner surface Pi1 of the first plane P1 and the second outer surface Po32 of the second plane P32 by the first plane P1.
  • the first plane P1 and the second plane P32 intersect with the first plane P1 such that the angle between the second plane P32 and the second plane P32 is larger.
  • the second side 312 provided with the second exhaust port 17B extends on the second plane P32.
  • the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is only an acute angle.
  • the angle T2 may be 0 degrees, that is, the discharge surface normal N1 and the second exhaust surface normal N3 may be parallel to each other in the same direction.
  • the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle.
  • the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is an acute angle
  • the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle.
  • the discharge surface normal N1 and the first exhaust surface normal N2 are parallel to each other in the same direction.
  • blower the case of a ventilator having an exhaust blower and an air blower and capable of performing a ventilation operation by simultaneous supply and exhaust is described, but for example, only one blower is provided. It is clear that the present invention can be applied to a simple ventilator or the like that discharges air from the target space.
  • blower it is possible to reduce the difference between the blow performance when one exhaust port is used and the blow performance when using another exhaust port, and to suppress a change in the blow performance. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This blower device comprises: a casing that includes a first side part to which a first discharge port is provided and which extends on a first plane, and a second side part to which a second discharge port is provided and which extends on a second plane intersecting the first plane; a blower that is positioned in the casing; and a blowout flow path cover that places a blowout port of the blower, the first discharge port and the second discharge port in communication with one another. In a plan view from the direction extending in the intersection line of the first plane and the second plane: an acute angle is formed by a blowout-face normal, oriented in the blowout direction, of the opening face of the blowout port, and a first discharge-face normal, oriented towards a first outer surface, of the opening face of the first discharge port; and an acute angle is formed by the blowout-port-face normal and by a second discharge-face normal, oriented towards a second outer surface, of the opening face of the second discharge port.

Description

送風装置Blower
 本発明は、送風装置に関する。 The present invention relates to a blower.
 従来、建物の天井裏等の空間に設置され、ダクトを介して室内に給気し、また室内から排気して室内を換気する送風装置が知られている。このような送風装置として、例えば特許文献1に記載された熱交換換気装置がある。 Conventionally, there is known a blower that is installed in a space such as above a ceiling of a building, supplies air to a room through a duct, and exhausts air from the room to ventilate the room. As such a blower, for example, there is a heat exchange ventilator described in Patent Document 1.
 この熱交換換気装置では、直方体の箱構造の本体ケーシングに、熱交換器と給気用および排気用の二つの送風機とが組み込まれている。熱交換器は本体ケーシングの中央に配置され、二つの送風機はその熱交換器の両側にそれぞれ配置されている。また、本体ケーシング内には、熱交換器の一方の熱交換通路を介して連続する一次流路と、熱交換器の他方の熱交換通路を介して連続する二次流路とが互いに独立して構成されている。一次流路には排気用の送風機が配置され、二次流路には給気用の送風機が配置されている。各送風機の送風機ケーシングは、その吹出し側が本体ケーシングの対角線上の一対の隅部にそれぞれ向かって延出するように本体ケーシングに組み込まれている。これらの隅部は、本体ケーシングの直角に交わる二側面によって形成されており、一つの隅部には、一次流路または二次流路の出口端となる吹出口が二側面のそれぞれに一つずつ設けられている。 熱 In this heat exchange ventilator, a heat exchanger and two blowers for air supply and exhaust are incorporated in a main casing of a rectangular parallelepiped box structure. The heat exchanger is arranged in the center of the main casing, and two blowers are arranged respectively on both sides of the heat exchanger. In the main body casing, a primary flow path that is continuous through one heat exchange passage of the heat exchanger and a secondary flow path that is continuous through the other heat exchange passage of the heat exchanger are independent of each other. It is configured. An exhaust blower is disposed in the primary flow path, and an air supply blower is disposed in the secondary flow path. The blower casing of each blower is incorporated in the main body casing such that the blowing side extends toward a pair of diagonal corners of the main body casing. These corners are formed by two sides intersecting at right angles to the main casing, and one corner has one outlet on each of the two sides, which serves as an outlet end of the primary flow path or the secondary flow path. Are provided.
 このようにして、特許文献1に記載された熱交換換気装置では、方向が90度異なる二個を一組とする吹出口が設けられている。これにより、給排気のために吹出口にダクトを接続して室内または室外と熱交換換気装置と連絡させる際に、二つの吹出口のうちダクトの敷設に都合の良い方の吹出口を使用することで、天井裏の梁等の構造物等が敷設の障害とならないようにすることができる。 Thus, in the heat exchange ventilator described in Patent Literature 1, an air outlet having a pair of two outlets having directions different by 90 degrees is provided. Thereby, when connecting the duct to the air outlet for air supply and exhaust and connecting the indoor or outdoor with the heat exchange ventilator, the air outlet which is convenient for laying the duct among the two air outlets is used. This makes it possible to prevent structures such as beams behind the ceiling from hindering the installation.
日本国特許第3543485号公報(段落0016-0022、図1)Japanese Patent No. 3543485 (paragraph 0016-0022, FIG. 1)
 特許文献1に記載された熱交換換気装置(送風装置)では、本体ケーシングの隅部に方向が90度異なるように設けられた二つの吹出口(排気口)のうち、一方は送風機の吐出口に対して垂直に位置しており、他方は送風機の吐出口に対して平行に位置している。このため、一方の吹出口を使用する場合には流路が大きく曲がるのに対して、他方の吹出口を使用する場合では流路はほぼ直線状になる。したがって、一方の吹出口を使用する場合と他方の吹出口を使用する場合とで、送風機の吐出口から吹出口までの流路の圧力損失が変わってしまい、送風性能が大きく変化してしまう可能性があった。 In the heat exchange ventilator (blower) described in Patent Literature 1, one of two blowout outlets (exhaust outlets) provided at corners of the main body casing so as to have directions differing by 90 degrees, one of which is a discharge outlet of the blower. , And the other is parallel to the discharge port of the blower. For this reason, when one of the outlets is used, the flow path is largely bent, whereas when the other outlet is used, the flow path becomes substantially straight. Therefore, the pressure loss of the flow path from the outlet of the blower to the outlet changes between the case where one outlet is used and the case where the other outlet is used, and the blowing performance may be greatly changed. There was sex.
 本発明は、上記事情に鑑みてなされたものであって、複数の排気口を有する送風装置において、一つの排気口を使用する場合の送風性能と他の排気口を使用する場合の送風性能との差を小さくすることができ、送風性能の変化を抑制可能な送風装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in a blowing device having a plurality of exhaust ports, the blowing performance when using one exhaust port and the blowing performance when using another exhaust port. It is an object of the present invention to provide a blower that can reduce the difference between the blowers and can suppress a change in blower performance.
 本発明の一態様によれば、送風装置は、第一排気口が設けられ、第一平面上に延設された第一側部と、第二排気口が設けられ、第一平面に交差する第二平面上に延設された第二側部と、を有し、外部と連通する第一吸気口が設けられたケーシングと、ケーシング内に配置され、第一吸気口と連通された吸込口と吐出口とが設けられ、吸込口から吸い込んだ空気を吐出口から吹き出し可能に構成された第一送風機と、吐出口と第一排気口と第二排気口とによって囲まれる空間を覆い、吐出口と第一排気口と第二排気口とを互いに連通させる吹出し流路カバー部と、を備える。第一平面は、ケーシングの内側を向く第一内面と第一内面とは反対側を向く第一外面とを有し、第二平面は、ケーシングの内側を向く第二内面と第二内面とは反対側を向く第二外面とを有する。吐出口は、第一平面に対して第一内面側に配置され、かつ第二平面に対して第二内面側に配置されている。第一平面と第二平面との交線に沿った方向からの平面視において、吐出口の開口面の吐出方向を向く吐出面法線と第一排気口の開口面の第一外面側を向く第一排気面法線とのなす角が鋭角でありかつ吐出面法線と第二排気口の開口面の第二外面側を向く第二排気面法線とのなす角が鋭角である、吐出面法線と第一排気面法線とが互いに同一方向に平行でありかつ吐出面法線と第二排気面法線とのなす角が鋭角である、または、吐出面法線と第一排気面法線とのなす角が鋭角でありかつ吐出面法線と第二排気面法線とが互いに同一方向に平行である。 According to one aspect of the present invention, the blower is provided with a first exhaust port, a first side portion extending on the first plane, and a second exhaust port, and intersects the first plane. A second side portion extending on the second plane, and a casing provided with a first intake port communicating with the outside, and an intake port arranged in the casing and communicated with the first intake port. And a discharge port, and a first blower configured to be able to blow out air sucked in from the suction port from the discharge port, and a space surrounded by the discharge port, the first exhaust port, and the second exhaust port. An outlet channel cover for communicating the outlet, the first exhaust port, and the second exhaust port with each other. The first plane has a first inner surface facing the inside of the casing and a first outer surface facing the opposite side to the first inner surface, and the second plane has a second inner surface facing the inside of the casing and a second inner surface. A second outer surface facing the opposite side. The discharge port is arranged on the first inner surface side with respect to the first plane, and is arranged on the second inner surface side with respect to the second plane. In a plan view from the direction along the intersection line of the first plane and the second plane, the discharge surface normal facing the discharge direction of the opening surface of the discharge port and the first outer surface side of the opening surface of the first exhaust port. The angle between the first exhaust surface normal and the discharge surface is an acute angle, and the angle between the discharge surface normal and the second exhaust surface normal facing the second outer surface side of the opening surface of the second exhaust port is an acute angle. The surface normal and the first exhaust surface normal are parallel to each other in the same direction, and the angle between the discharge surface normal and the second exhaust surface normal is an acute angle, or the discharge surface normal and the first exhaust The angle formed by the surface normal is acute, and the discharge surface normal and the second exhaust surface normal are parallel to each other in the same direction.
 上記の送風装置によれば、第一平面と第二平面との交線に沿った方向からの平面視において、吐出面法線と第一排気面法線とのなす角が鋭角でありかつ吐出面法線と第二排気面法線とのなす角が鋭角である、吐出面法線と第一排気面法線とが互いに同一方向に平行でありかつ吐出面法線と第二排気面法線とのなす角が鋭角である、または、吐出面法線と第一排気面法線とのなす角が鋭角でありかつ吐出面法線と第二排気面法線とが互いに同一方向に平行である。このため、吐出面法線と第一排気面法線とのなす角が直角または鈍角である場合や吐出面法線と第二排気面法線とのなす角が直角または鈍角である場合に比べて、吐出口から第一排気口までの流路の圧力損失と吐出口から第二排気口までの流路の圧力損失との差を小さくすることができる。したがって、第一排気口を使用する場合の送風性能と第二排気口を使用する場合の送風性能との差を小さくすることができ、送風性能の変化を抑制することができる。 According to the above-described blower, the angle between the discharge surface normal and the first exhaust surface normal is an acute angle and the discharge is performed in a plan view from the direction along the intersection line of the first plane and the second plane. The angle between the surface normal and the second exhaust surface normal is acute, the discharge surface normal and the first exhaust surface normal are parallel to each other in the same direction, and the discharge surface normal and the second exhaust surface method The angle between the line and the line is an acute angle, or the angle between the discharge surface normal and the first exhaust surface normal is an acute angle, and the discharge surface normal and the second exhaust surface normal are parallel to each other in the same direction. It is. For this reason, as compared with the case where the angle between the discharge surface normal and the first exhaust surface normal is a right angle or an obtuse angle or the case where the angle between the discharge surface normal and the second exhaust surface normal is a right angle or an obtuse angle Thus, the difference between the pressure loss of the flow path from the discharge port to the first exhaust port and the pressure loss of the flow path from the discharge port to the second exhaust port can be reduced. Therefore, the difference between the air blowing performance when the first exhaust port is used and the air blowing performance when the second exhaust port is used can be reduced, and a change in the air blowing performance can be suppressed.
本発明の実施の形態1に係る送風装置である換気装置の外観を示す斜視図である。It is a perspective view showing the appearance of a ventilation device which is a blower concerning Embodiment 1 of the present invention. 前記換気装置をその上面を透過して示す平面図である。It is a top view which shows the said ventilation apparatus by seeing through the upper surface. 前記換気装置の模式的な側面断面図である。It is a typical side sectional view of the ventilation device. 前記換気装置において排気用送風機を含む部分を模式的に示す平面図である。It is a top view which shows typically the part containing the exhaust blower in the said ventilation apparatus. 前記換気装置の一部の面を透過して斜め下方から見た斜視図である。It is the perspective view seen from the slanting lower part which penetrated some surfaces of the ventilation device. 前記換気装置の排気用送風機のファンケーシングの斜視図である。It is a perspective view of the fan casing of the exhaust fan of the said ventilation apparatus. 前記換気装置における送風性能を示すグラフである。It is a graph which shows the ventilation performance in the said ventilation apparatus. 従来の換気装置における送風性能を示すグラフである。It is a graph which shows the ventilation performance in the conventional ventilation device. 本発明の実施の形態2に係る送風装置である換気装置において排気用送風機を含む部分を模式的に示す平面図である。It is a top view which shows typically the part containing the exhaust blower in the ventilation apparatus which is the air blower which concerns on Embodiment 2 of this invention. 前記換気装置の一部の面を透過して斜め下方から見た斜視図である。It is the perspective view seen from the slanting lower part which penetrated some surfaces of the ventilation device. 本発明の実施の形態3に係る送風装置である換気装置において排気用送風機を含む部分を模式的に示す平面図である。It is a top view which shows typically the part containing the exhaust blower in the ventilation apparatus which is the air blower which concerns on Embodiment 3 of this invention. 従来の換気装置の構成を模式的に示す平面図である。It is a top view which shows the structure of the conventional ventilation apparatus typically.
 (実施の形態1)
 以下、図面を参照しながら、本発明の実施の形態1に係る送風装置である換気装置1について説明する。換気装置1は、例えば、空気調和する対象空間(例えば、家屋やビルの室内や、倉庫内など)の換気を行う際に使用される。この場合、換気装置1は、対象空間内の空気を取り込んで対象空間外に排出、すなわち排気するとともに、対象空間外の空気を取り込んで対象空間内に供給、すなわち給気する。
(Embodiment 1)
Hereinafter, a ventilation device 1 which is a blower according to Embodiment 1 of the present invention will be described with reference to the drawings. The ventilator 1 is used, for example, when ventilating an air-conditioned target space (for example, a room in a house or a building, or in a warehouse). In this case, the ventilator 1 takes in the air in the target space and discharges it to the outside of the target space, that is, exhausts the air, and also takes in the air outside the target space and supplies it to the target space, that is, supplies air.
 図1は、換気装置1の外観を示す斜視図である。図1における矢印は、空気の流れを示している。図2は、図1における換気装置1の上面を透過して換気装置1を示す平面図である。 FIG. 1 is a perspective view showing the external appearance of the ventilation device 1. The arrows in FIG. 1 indicate the flow of air. FIG. 2 is a plan view showing the ventilation device 1 through the upper surface of the ventilation device 1 in FIG.
 図1および図2に示すように、換気装置1は、ケーシング10と、排気用送風機(第一送風機)30と、吹出し流路カバー部40と、を備える。 As shown in FIGS. 1 and 2, the ventilation device 1 includes a casing 10, an exhaust blower (first blower) 30, and a blow-out channel cover 40.
 ケーシング10は、第一平面P1上に延設された第一側部11と、第一平面P1に交差する第二平面P2上に延設された第二側部12と、を有する。第一側部11には、第一排気口17Aが設けられている。第二側部12には、第二排気口17Bが設けられている。また、ケーシング10には、ケーシング10の外部と連通する第一吸気口18Aが設けられている。 The casing 10 has a first side 11 extending on the first plane P1 and a second side 12 extending on a second plane P2 intersecting the first plane P1. The first side portion 11 is provided with a first exhaust port 17A. The second side portion 12 is provided with a second exhaust port 17B. Further, the casing 10 is provided with a first intake port 18A communicating with the outside of the casing 10.
 本実施の形態では、ケーシング10は、直方体形状の箱体である。よって、ケーシング10は、第一側部11と、第二側部12と、第一側部11に対向する第三側部13と、第二側部12に対向する第四側部14と、図1においてケーシング10の上面に相当する第五側部15と、図1においてケーシング10の底面に相当する第六側部16と、を有する。すなわち、第一側部11と第二側部12とはそれぞれケーシング10の直方体形状の一面を構成しており、第一平面P1と第二平面P2とは互いに直交している。また、第一平面P1は、ケーシング10の内側を向く第一内面Pi1と、第一内面Pi1とは反対側を向く第一外面Po1と、を有する。第二平面P2は、ケーシング10の内側を向く第二内面Pi2と、第二内面Pi2とは反対側を向く第二外面Po2と、を有する。ケーシング10は、例えば、鋼板などの金属板で形成されている。 で は In the present embodiment, casing 10 is a rectangular parallelepiped box. Therefore, the casing 10 includes a first side portion 11, a second side portion 12, a third side portion 13 facing the first side portion 11, a fourth side portion 14 facing the second side portion 12, 1 has a fifth side portion 15 corresponding to the top surface of the casing 10 and a sixth side portion 16 corresponding to the bottom surface of the casing 10 in FIG. That is, the first side portion 11 and the second side portion 12 each constitute one surface of a rectangular parallelepiped shape of the casing 10, and the first plane P1 and the second plane P2 are orthogonal to each other. Further, the first plane P1 has a first inner surface Pi1 facing the inside of the casing 10 and a first outer surface Po1 facing the opposite side to the first inner surface Pi1. The second plane P2 has a second inner surface Pi2 facing the inside of the casing 10 and a second outer surface Po2 facing the opposite side to the second inner surface Pi2. The casing 10 is formed of, for example, a metal plate such as a steel plate.
 第一側部11に設けられた第一排気口17Aは、例えば、第一側部11を貫通する円形の開口であり、第一側部11において第四側部14よりも第二側部12に近い側に配置されている。第二側部12に設けられた第二排気口17Bは、例えば、第二側部12を貫通する円形の開口であり、第一排気口17Aと同一の開口径を有する。また、第二排気口17Bは、第二側部12において第三側部13よりも第一側部11に近い側に配置されている。本実施の形態では、第一排気口17Aおよび第二排気口17Bは、第一側部11と第二側部12との接続部分である稜部19の近傍に配置されている。また、第一排気口17Aの開口する方向と第二排気口17Bの開口する方向とは、90度異なっている。 The first exhaust port 17 </ b> A provided in the first side portion 11 is, for example, a circular opening penetrating the first side portion 11. It is located on the side closer to. The second exhaust port 17B provided in the second side portion 12 is, for example, a circular opening penetrating the second side portion 12, and has the same opening diameter as the first exhaust port 17A. Further, the second exhaust port 17 </ b> B is arranged on the second side portion 12 on a side closer to the first side portion 11 than the third side portion 13. In the present embodiment, the first exhaust port 17 </ b> A and the second exhaust port 17 </ b> B are arranged near the ridge 19, which is a connection portion between the first side 11 and the second side 12. The direction in which the first exhaust port 17A opens and the direction in which the second exhaust port 17B opens differ by 90 degrees.
 通常は、第一排気口17Aと第二排気口17Bとは同時には使用されない。すなわち、第一排気口17Aと第二排気口17Bとのうちの一方を使用している場合には、他方を閉止している。例えば、図1および図2に示すように、第一排気口17Aを使用する場合には、第一側部11において第一排気口17Aの周囲に、ダクト接続用のフランジ20がネジなどによって取り付けられている。フランジ20は、筒状に形成されており、その筒の内部と第一排気口17Aとが互いに連通している。また、第二側部12において第二排気口17Bの周囲には、第二排気口17Bを閉塞するための閉塞板(閉塞部材)21がネジなどによって取り付けられている。閉塞板21は、第二排気口17Bの全てを覆うような板状に形成されている。 Normally, the first exhaust port 17A and the second exhaust port 17B are not used simultaneously. That is, when one of the first exhaust port 17A and the second exhaust port 17B is used, the other is closed. For example, as shown in FIGS. 1 and 2, when the first exhaust port 17A is used, a duct connecting flange 20 is attached to the first side portion 11 around the first exhaust port 17A by a screw or the like. Have been. The flange 20 is formed in a cylindrical shape, and the inside of the cylinder and the first exhaust port 17A communicate with each other. A closing plate (blocking member) 21 for closing the second exhaust port 17B is attached to the second side portion 12 around the second exhaust port 17B by a screw or the like. The closing plate 21 is formed in a plate shape that covers the entire second exhaust port 17B.
 ケーシング10に設けられた第一吸気口18Aは、第三側部13に配置されており、第三側部13において第四側部14よりも第二側部12に近い側に配置されている。第一吸気口18Aは、例えば、第三側部13を貫通する円形の開口である。第三側部13において第一吸気口18Aの周囲には、ダクト接続用のフランジ20が取り付けられている。また、ケーシング10には、外部と連通する第二吸気口18Bおよび第三排気口17Cがさらに設けられている。第二吸気口18Bは、第一側部11に配置されており、第一側部11において第二側部12よりも第四側部14に近い側に配置されている。第二吸気口18Bは、例えば、第一側部11を貫通する円形の開口である。第三排気口17Cは、第三側部13に配置されており、第三側部13において第二側部12よりも第四側部14に近い側に配置されている。第一側部11において第二吸気口18Bの周囲および第三側部13において第三排気口17Cの周囲には、ダクト接続用のフランジ20がそれぞれ取り付けられている。 The first intake port 18 </ b> A provided in the casing 10 is disposed on the third side portion 13, and is disposed on the third side portion 13 on a side closer to the second side portion 12 than the fourth side portion 14. . The first air inlet 18A is, for example, a circular opening that penetrates the third side portion 13. A flange 20 for duct connection is attached to the third side portion 13 around the first air inlet 18A. Further, the casing 10 is further provided with a second intake port 18B and a third exhaust port 17C communicating with the outside. The second intake port 18 </ b> B is disposed on the first side portion 11, and is disposed on the first side portion 11 on a side closer to the fourth side portion 14 than the second side portion 12. The second intake port 18B is, for example, a circular opening penetrating the first side portion 11. The third exhaust port 17 </ b> C is arranged on the third side portion 13, and is arranged on the third side portion 13 on a side closer to the fourth side portion 14 than the second side portion 12. A flange 20 for duct connection is attached to the first side portion 11 around the second intake port 18B and the third side portion 13 around the third exhaust port 17C.
 図2に示すように、排気用送風機30は、ケーシング10内に配置されている。排気用送風機30には、第一吸気口18Aと連通された吸込口31と、吐出口32と、が設けられている。排気用送風機30は、吸込口31から吸い込んだ空気を吐出口32から吹き出し可能に構成されている。本実施の形態では、排気用送風機30は、遠心送風機である。排気用送風機30は、モータ33と、モータ33の駆動によって回転するファン34と、ファン34を囲むファンケーシング35と、を有する。ファンケーシング35には、吸込口31と吐出口32とが形成されている。吸込口31は、円形の開口であり、吐出口32は、矩形の開口である。 排 気 As shown in FIG. 2, the exhaust blower 30 is arranged in the casing 10. The exhaust blower 30 is provided with a suction port 31 communicating with the first intake port 18A and a discharge port 32. The exhaust blower 30 is configured to be able to blow air sucked from the suction port 31 through the discharge port 32. In the present embodiment, the exhaust blower 30 is a centrifugal blower. The exhaust blower 30 includes a motor 33, a fan 34 rotated by driving the motor 33, and a fan casing 35 surrounding the fan 34. A suction port 31 and a discharge port 32 are formed in the fan casing 35. The suction port 31 is a circular opening, and the discharge port 32 is a rectangular opening.
 吹出し流路カバー部40は、吐出口32と第一排気口17Aと第二排気口17Bとによって囲まれる空間を覆うように設けられている。吹出し流路カバー部40は、吐出口32と第一排気口17Aと第二排気口17Bとを互いに連通させている。吹出し流路カバー部40によって、第一排気口17Aの周囲にフランジ20が取り付けられている場合には、吐出口32から第一排気口17Aに流れる流路が形成され、第二排気口17Bの周囲にフランジ20が取り付けられている場合には、吐出口32から第二排気口17Bに流れる流路が形成されている。 The blow-out channel cover 40 is provided so as to cover a space surrounded by the discharge port 32, the first exhaust port 17A, and the second exhaust port 17B. The outlet channel cover 40 connects the discharge port 32, the first exhaust port 17A, and the second exhaust port 17B to each other. When the flange 20 is attached around the first exhaust port 17A by the outlet channel cover 40, a channel that flows from the discharge port 32 to the first exhaust port 17A is formed, and the second exhaust port 17B is closed. When the flange 20 is attached to the periphery, a flow path that flows from the discharge port 32 to the second exhaust port 17B is formed.
 換気装置1は、ケーシング10内に設けられた給気用送風機(第二送風機)50をさらに備える。給気用送風機50は、第二吸気口18Bを介して吸い込んだ空気を第三排気口17Cへ吹き出すように配置されている。本実施の形態では、給気用送風機50は、排気用送風機30と同様に、遠心送風機である。給気用送風機50は、モータ53と、モータ53の駆動によって回転するファン54と、ファン54を囲むファンケーシング55と、を有する。 The ventilation device 1 further includes an air supply blower (second blower) 50 provided in the casing 10. The air supply blower 50 is arranged to blow out the air sucked in through the second intake port 18B to the third exhaust port 17C. In the present embodiment, the air supply blower 50 is a centrifugal blower, like the exhaust blower 30. The air supply blower 50 includes a motor 53, a fan 54 rotated by driving the motor 53, and a fan casing 55 surrounding the fan 54.
 また、換気装置1は、給気流と排気流とを熱交換させる熱交換器60をさらに備える。ここで、給気流とは、第二吸気口18Bから流入し、給気用送風機50を介して第三排気口17Cから流出する流れを便宜的に指し、排気流とは、第一吸気口18Aから流入し、排気用送風機30を介して第一排気口17Aまたは第二排気口17Bから流出する流れを便宜的に指す。本実施の形態では、熱交換器60は、平板紙上に波板紙(コルゲートシート)を接着して形成された平板状の一次通路と、同様に平板紙上に波板紙(コルゲートシート)を接着して形成された平板状の二次通路と、が互いに直交するように多数積層されて構成されている。これにより、一次通路を通過する排気流と二次通路を通過する給気流との間で熱交換が可能となる。熱交換器60は、全体として直方体形状を有し、ケーシング10内の中央に配置されている。ケーシング10内において、熱交換器60と第一側部11との間に排気用送風機30が配置され、熱交換器60と第三側部13との間に給気用送風機50が配置されている。 The ventilator 1 further includes a heat exchanger 60 for exchanging heat between the supply air flow and the exhaust air flow. Here, the supply air flow refers to a flow that flows in from the second intake port 18B and flows out of the third exhaust port 17C through the air supply blower 50 for convenience, and the exhaust flow refers to the first intake port 18A. From the first exhaust port 17A or the second exhaust port 17B via the exhaust blower 30 for convenience. In the present embodiment, the heat exchanger 60 has a flat primary passage formed by bonding corrugated paperboard (corrugated sheet) on flat paper, and a corrugated paperboard (corrugated sheet) similarly bonded on flat paper. A large number of the formed flat secondary passages are stacked so as to be orthogonal to each other. This allows heat exchange between the exhaust flow passing through the primary passage and the supply air flow passing through the secondary passage. The heat exchanger 60 has a rectangular parallelepiped shape as a whole, and is arranged at the center in the casing 10. In the casing 10, the exhaust blower 30 is disposed between the heat exchanger 60 and the first side portion 11, and the air supply blower 50 is disposed between the heat exchanger 60 and the third side portion 13. I have.
 ここで、換気装置1内の給気および排気の流れについて説明する。図3は、換気装置1の模式的な側面断面図である。図3に示すように、ケーシング10内には、内部の空間を二つに分ける隔壁22が設けられており、給気流と排気流とが互いに独立して流れるように構成されている。排気流では、排気用送風機30を運転することにより、空気は、第一吸気口18Aから矢印A1のように吸い込まれ、矢印A2のように熱交換器60の一次通路を通過して、矢印A3のように排気用送風機30のファンケーシング35内に入り、矢印A4のように第一排気口17Aまたは第二排気口17Bから吹き出される。給気流では、給気用送風機50を運転することにより、空気は、第二吸気口18Bから矢印B1のように吸い込まれ、矢印B2のように熱交換器60の二次通路を通過して、矢印B3のように給気用送風機50のファンケーシング55内に入り、矢印B4のように第三排気口17Cから吹き出される。このようにして、換気装置1では、給気流と排気流との間で熱交換を行いながら同時給排気による熱交換換気運転を行うことができる。なお、排気用送風機30および給気用送風機50の回転数などの制御は、換気装置1に設けられる不図示の制御装置によって行われる。 Here, the flow of air supply and exhaust in the ventilation device 1 will be described. FIG. 3 is a schematic side sectional view of the ventilation device 1. As shown in FIG. 3, a partition wall 22 that divides an internal space into two is provided in the casing 10, and the supply air flow and the exhaust air flow are configured to flow independently of each other. In the exhaust flow, by operating the exhaust blower 30, air is sucked from the first intake port 18A as indicated by an arrow A1, passes through the primary passage of the heat exchanger 60 as indicated by an arrow A2, and passes through an arrow A3. As shown in the arrow A4, the air enters the fan casing 35 of the exhaust blower 30 and is blown out from the first exhaust port 17A or the second exhaust port 17B. In the air supply flow, by operating the air supply blower 50, air is sucked in from the second intake port 18B as shown by the arrow B1, passes through the secondary passage of the heat exchanger 60 as shown by the arrow B2, The air enters the fan casing 55 of the air supply blower 50 as indicated by an arrow B3, and is blown out from the third exhaust port 17C as indicated by an arrow B4. In this way, in the ventilator 1, the heat exchange ventilation operation by simultaneous supply and exhaust can be performed while performing heat exchange between the supply air flow and the exhaust air flow. The control of the rotation speed of the exhaust blower 30 and the air supply blower 50 is performed by a control device (not shown) provided in the ventilator 1.
 次に、図4から図6を参照して、換気装置1の排気用送風機30、第一排気口17Aおよび第二排気口17Bの周辺の構成についてより詳細に説明する。図4は、換気装置1において排気用送風機30を含む部分を模式的に示す平面図である。図5は、換気装置1の第一側部11および第六側部16を透過して換気装置1を斜め下方から見た斜視図である。図6は、排気用送風機30のファンケーシング35の斜視図である。なお、図4および図5においては、第一排気口17Aを使用する場合と第二排気口17Bを使用する場合との両方を説明しやすくするため、第一排気口17Aの周囲および第二排気口17Bの周囲の両方にフランジ20が設けられた状態を示している。 Next, the configuration around the exhaust blower 30, the first exhaust port 17A, and the second exhaust port 17B of the ventilation device 1 will be described in more detail with reference to FIGS. FIG. 4 is a plan view schematically showing a portion including the exhaust blower 30 in the ventilation device 1. FIG. 5 is a perspective view of the ventilation device 1 as seen from obliquely below through the first side portion 11 and the sixth side portion 16 of the ventilation device 1. FIG. 6 is a perspective view of the fan casing 35 of the exhaust blower 30. In FIGS. 4 and 5, in order to easily explain both the case where the first exhaust port 17A is used and the case where the second exhaust port 17B is used, the vicinity of the first exhaust port 17A and the second exhaust port 17A will be described. This shows a state in which the flanges 20 are provided both around the opening 17B.
 図4に示すように、排気用送風機30の吐出口32は、第一平面P1に対して第一内面Pi1側に配置され、第二平面P2に対して第二内面Pi2側に配置されている。また、吐出口32の開口面S1の吐出方向を向く法線を吐出面法線N1とし、第一排気口17Aの開口面S2の第一外面Po1側を向く法線を第一排気面法線N2とし、第二排気口17Bの開口面S3の第二外面Po2側を向く法線を第二排気面法線N3とする。ここで、排気用送風機30の吐出方向は、排気用送風機30の運転時に、吐出口32から空気が吹き出す方向である。この場合に、第一平面P1と第二平面P2との交線Lに沿った方向からの平面視(本実施の形態では図4に示す平面視)において、吐出面法線N1と第一排気面法線N2とのなす角T1は鋭角であり、吐出面法線N1と第二排気面法線N3とのなす角T2も鋭角である。また、好ましくは、吐出面法線N1と第一排気面法線N2とのなす角T1および吐出面法線N1と第二排気面法線N3とのなす角T2は、ともに30度以上60度以下である。言い換えると、角T1と角T2との差の絶対値は、0度以上30度以下である。より好ましくは、吐出面法線N1と第一排気面法線N2とのなす角T1および吐出面法線N1と第二排気面法線N3とのなす角T2は、ともに45度である。言い換えると、角T1と角T2との差の絶対値は、0度である。 As shown in FIG. 4, the discharge port 32 of the exhaust blower 30 is arranged on the first inner surface Pi1 side with respect to the first plane P1, and is arranged on the second inner surface Pi2 side with respect to the second plane P2. . Further, a normal line facing the discharge direction of the opening surface S1 of the discharge port 32 is defined as a discharge surface normal line N1, and a normal line facing the first outer surface Po1 side of the opening surface S2 of the first exhaust port 17A is defined as a first exhaust surface normal line. N2, and a normal line facing the second outer surface Po2 side of the opening surface S3 of the second exhaust port 17B is set as a second exhaust surface normal line N3. Here, the discharge direction of the exhaust blower 30 is a direction in which air is blown out from the discharge port 32 when the exhaust blower 30 is operating. In this case, in a plan view from the direction along the intersection line L between the first plane P1 and the second plane P2 (in the present embodiment, the plane view shown in FIG. 4), the discharge surface normal N1 and the first exhaust gas The angle T1 formed by the surface normal N2 is an acute angle, and the angle T2 formed by the discharge surface normal N1 and the second exhaust surface normal N3 is also an acute angle. Preferably, the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 and the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 are both 30 degrees or more and 60 degrees. It is as follows. In other words, the absolute value of the difference between the angle T1 and the angle T2 is not less than 0 degrees and not more than 30 degrees. More preferably, the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 and the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 are both 45 degrees. In other words, the absolute value of the difference between the angle T1 and the angle T2 is 0 degree.
 このような構成により、吐出面法線N1と第一排気面法線N2とのなす角T1が直角または鈍角である場合や、吐出面法線N1と第二排気面法線N3とのなす角T2が直角または鈍角である場合に比べて、吐出口32から第一排気口17Aまでの流路の圧力損失と吐出口32から第二排気口17Bまでの流路の圧力損失との差を小さくすることができる。図12に例として示すように、従来の換気装置101の構成では、吐出面法線N11と第一排気面法線N12とのなす角T11は直角であり、吐出面法線N11と第二排気面法線N13とのなす角は0度、すなわち吐出面法線N11と第二排気面法線N13とは互いに平行である。この場合、排気用送風機130の吐出口132から第一排気口117Aまでの流路は直角に曲がるため、この流路の圧力損失は大きい。一方で、吐出口132から第二排気口117Bまでの流路はほぼ直線状であるため、この流路の圧力損失は小さい。よって、従来の構成では、第一排気口117Aを使用する場合の送風性能と第二排気口117Bを使用する場合の送風性能との差が大きくなっていた。これに対して、本実施の形態に係る換気装置1では、図4に示すように、吐出面法線N1と第一排気面法線N2とのなす角T1および吐出面法線N1と第二排気面法線N3とのなす角T2はともに鋭角であるので、吐出口32から第一排気口17Aまでの流路の曲がりと吐出口32から第二排気口17Bまでの流路の曲がりとの差が小さくなる。よって、吐出口32から第一排気口17Aまでの流路の圧力損失と吐出口32から第二排気口17Bまでの流路の圧力損失との差が小さくなるので、第一排気口17Aを使用する場合の送風性能と第二排気口17Bを使用する場合の送風性能との差を小さくすることができる。これによって、使用する排気口の違いによる送風性能の変化を抑制することができる。 With such a configuration, the angle T1 formed between the discharge surface normal N1 and the first exhaust surface normal N2 is a right angle or an obtuse angle, or the angle formed between the discharge surface normal N1 and the second exhaust surface normal N3. The difference between the pressure loss of the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss of the flow path from the discharge port 32 to the second exhaust port 17B is smaller than when T2 is a right angle or an obtuse angle. can do. As shown in FIG. 12 as an example, in the configuration of the conventional ventilation device 101, the angle T11 between the discharge surface normal N11 and the first exhaust surface normal N12 is a right angle, and the discharge surface normal N11 and the second exhaust The angle formed by the surface normal N13 is 0 degrees, that is, the discharge surface normal N11 and the second exhaust surface normal N13 are parallel to each other. In this case, since the flow path from the discharge port 132 of the exhaust blower 130 to the first exhaust port 117A bends at a right angle, the pressure loss in this flow path is large. On the other hand, since the flow path from the discharge port 132 to the second exhaust port 117B is substantially straight, the pressure loss in this flow path is small. Therefore, in the conventional configuration, the difference between the air blowing performance when using the first exhaust port 117A and the air blowing performance when using the second exhaust port 117B is large. On the other hand, in the ventilator 1 according to the present embodiment, as shown in FIG. 4, the angle T1 formed between the discharge surface normal N1 and the first exhaust surface normal N2 and the discharge surface normal N1 and the second Since both angles T2 formed by the exhaust surface normal line N3 are acute angles, the curvature of the flow path from the discharge port 32 to the first exhaust port 17A and the curvature of the flow path from the discharge port 32 to the second exhaust port 17B are different. The difference becomes smaller. Therefore, the difference between the pressure loss of the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss of the flow path from the discharge port 32 to the second exhaust port 17B becomes small, so that the first exhaust port 17A is used. In this case, the difference between the air blowing performance in the case where the air is discharged and the air blowing performance in the case where the second exhaust port 17B is used can be reduced. As a result, it is possible to suppress a change in the air blowing performance due to a difference in the exhaust port used.
 また、排気用送風機30の吐出口32と第一排気口17Aとの間の距離と吐出口32と第二排気口17Bとの間の距離との差は、所定の範囲内にある。これにより、吐出口32から第一排気口17Aまでの流路と吐出口32から第二排気口17Bまでの流路とのうち、一方だけが長くなりその一方の圧力損失が大きくなることを防ぎ、一方の圧力損失と他方の圧力損失との差を抑制することができる。より具体的には、吐出口32の開口面S1の中心C1と第一排気口17Aの開口面S2の中心C2との間の距離D1と、吐出口32の開口面S1の中心C1と第二排気口17Bの開口面S3の中心C3との間の距離D2との差は、所定の範囲内にある。ここで、開口面の中心は、開口面の図心とする。図12に示す従来の換気装置101では、第一平面P1と第二平面P2との交線Lに沿った方向からの平面視(図12に示す平面視)において、吹出し流路カバー部140で覆われる空間は略正方形状になっている。このとき、吐出口132の開口面S11の中心C11と第一排気口117Aの開口面S12の中心C12と第二排気口117Bの開口面S13の中心C13との三点によって直角二等辺三角形が形成されているので、中心C11と中心C12との間の距離D11を1とすると、中心C11と中心C13との間の距離D12は1.414になっている。図4に示すように、本実施の形態に係る換気装置1では、吐出面法線N1と第一排気面法線N2とのなす角T1が鋭角となるように吐出口32の開口面S1が第一排気口17Aの開口面S2に対して傾いている。このため、吐出口32の開口面S1の中心C1と第二排気口17Bの開口面S3の中心C3との間の距離D2は、吐出口32の開口面S1の中心C1と第一排気口17Aの開口面S2の中心C2との間の距離D1の1.414倍よりも小さくなる。したがって、吐出口32の開口面S1の中心C1と第二排気口17Bの開口面S3の中心C3との間の距離D2は、吐出口32の開口面S1の中心C1と第一排気口17Aの開口面S2の中心C2との間の距離D1の1.414倍未満であることが好ましい。さらに、吐出口32の開口面S1の中心C1と第二排気口17Bの開口面S3の中心C3との間の距離D2は、吐出口32の開口面S1の中心C1と第一排気口17Aの開口面S2の中心C2との間の距離D1と等しいことがより好ましい。 The difference between the distance between the discharge port 32 of the exhaust blower 30 and the first exhaust port 17A and the distance between the discharge port 32 and the second exhaust port 17B is within a predetermined range. This prevents one of the flow path from the discharge port 32 to the first exhaust port 17A and the flow path from the discharge port 32 to the second exhaust port 17B from being lengthened, so that the pressure loss of one of them becomes large. Thus, the difference between one pressure loss and the other pressure loss can be suppressed. More specifically, the distance D1 between the center C1 of the opening surface S1 of the discharge port 32 and the center C2 of the opening surface S2 of the first exhaust port 17A, the center C1 of the opening surface S1 of the discharge port 32 and the second The difference from the distance D2 between the exhaust port 17B and the center C3 of the opening surface S3 is within a predetermined range. Here, the center of the opening surface is the centroid of the opening surface. In the conventional ventilation device 101 shown in FIG. 12, in a plan view (a plan view shown in FIG. 12) from the direction along the intersection line L of the first plane P1 and the second plane P2, The covered space has a substantially square shape. At this time, a right-angled isosceles triangle is formed by three points of the center C11 of the opening surface S11 of the discharge port 132, the center C12 of the opening surface S12 of the first exhaust port 117A, and the center C13 of the opening surface S13 of the second exhaust port 117B. Therefore, assuming that the distance D11 between the center C11 and the center C12 is 1, the distance D12 between the center C11 and the center C13 is 1.414. As shown in FIG. 4, in the ventilation device 1 according to the present embodiment, the opening surface S1 of the discharge port 32 is set so that the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle. It is inclined with respect to the opening surface S2 of the first exhaust port 17A. Therefore, the distance D2 between the center C1 of the opening surface S1 of the discharge port 32 and the center C3 of the opening surface S3 of the second exhaust port 17B is equal to the center C1 of the opening surface S1 of the discharge port 32 and the first exhaust port 17A. Is smaller than 1.414 times the distance D1 between the opening surface S2 and the center C2. Therefore, the distance D2 between the center C1 of the opening surface S1 of the discharge port 32 and the center C3 of the opening surface S3 of the second exhaust port 17B is equal to the distance between the center C1 of the opening surface S1 of the discharge port 32 and the first exhaust port 17A. It is preferable that the distance be less than 1.414 times the distance D1 between the opening surface S2 and the center C2. Further, the distance D2 between the center C1 of the opening surface S1 of the discharge port 32 and the center C3 of the opening surface S3 of the second exhaust port 17B is determined by the distance between the center C1 of the opening surface S1 of the discharge port 32 and the first exhaust port 17A. More preferably, it is equal to the distance D1 between the opening surface S2 and the center C2.
 図4および図5に示すように、排気用送風機30は、吸込口31の開口面S4が第一平面P1および第二平面P2の両方に直交する平面に対して垂直になるように配置されている。すなわち、本実施の形態では、排気用送風機30は、吸込口31の開口面S4がケーシング10の底面に相当する第六側部16に対して垂直になるように配置されている。これによって、吸込口31の開口面S4が第六側部16に対して水平に配置された場合に比べて、排気用送風機30が第六側部16上で要する寸法範囲を小さくすることができる。 As shown in FIGS. 4 and 5, the exhaust blower 30 is disposed such that the opening surface S4 of the suction port 31 is perpendicular to a plane orthogonal to both the first plane P1 and the second plane P2. I have. That is, in the present embodiment, the exhaust blower 30 is arranged such that the opening surface S4 of the suction port 31 is perpendicular to the sixth side portion 16 corresponding to the bottom surface of the casing 10. Thereby, the size range required for the exhaust blower 30 on the sixth side portion 16 can be reduced as compared with the case where the opening surface S4 of the suction port 31 is disposed horizontally with respect to the sixth side portion 16. .
 図4から図6に示すように、本実施の形態では、吹出し流路カバー部40は、カバー部本体41と、第一側部11の第一排気口17Aの周囲の一部と、第二側部12の第二排気口17Bの周囲の一部と、から構成されている。カバー部本体41は、例えば樹脂で、排気用送風機30のファンケーシング35と一体的に形成されている。しかしながら、これに限らず、カバー部本体41は、ファンケーシング35とは別個に形成されていてもよい。また、ケーシング10の第五側部15や第六側部16の一部を、吹出し流路カバー部40として用いてもよい。 As shown in FIG. 4 to FIG. 6, in the present embodiment, the outlet flow passage cover portion 40 includes a cover portion main body 41, a portion around the first exhaust port 17 </ b> A of the first side portion 11, And a part around the second exhaust port 17 </ b> B of the side part 12. The cover body 41 is made of, for example, resin and is formed integrally with the fan casing 35 of the exhaust blower 30. However, the present invention is not limited to this, and the cover body 41 may be formed separately from the fan casing 35. Further, a part of the fifth side portion 15 and the sixth side portion 16 of the casing 10 may be used as the blowout channel cover portion 40.
 次に、本実施の形態に係る換気装置1の実施例について、従来の構成と比較しつつ説明する。表1に、吐出面法線N1と第一排気面法線N2とのなす角T1および吐出面法線N1と第二排気面法線N3とのなす角T2を変化させて、排気用送風機30の吐出口32から第一排気口17Aまでの流路の圧力損失PL1および吐出口32から第二排気口17Bまでの流路の圧力損失PL2を計算した結果を示す。表1には、角T1を0度とし、角T2を90度としたケース1、角T1を30度とし、角T2を60度としたケース2、角T1および角T2をともに45度としたケース3、角T1を60度とし、角T2を30度としたケース4、および角T1を90度とし、角T2を0度としたケース5の5つのケースを示している。このうち、ケース1およびケース5は従来の構成であり、ケース2からケース4は本実施の形態に係る構成である。計算条件として、第一平面P1と第二平面P2とは互いに直交しているとした。また、吐出口32から第一排気口17Aまでの流路の圧力損失PL1および吐出口32から第二排気口17Bまでの流路の圧力損失PL2は、管径が150mmであり曲がり半径が80mmである曲り管の圧力損失とみなして計算した。流量は250m/hとした。 Next, an example of the ventilation device 1 according to the present embodiment will be described in comparison with a conventional configuration. Table 1 shows that the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 and the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 are changed. The calculation result of the pressure loss PL1 of the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss PL2 of the flow path from the discharge port 32 to the second exhaust port 17B are shown. Table 1 shows that the angle T1 is 0 degree, the angle T2 is 90 degrees, the case 1 is 30 degrees, the angle T1 is 30 degrees, the angle T2 is 60 degrees, the angle T1 and the angle T2 are both 45 degrees. Five cases are shown: Case 3, case 4 in which the angle T1 is 60 degrees and angle T2 is 30 degrees, and case 5 in which the angle T1 is 90 degrees and the angle T2 is 0 degrees. Among them, case 1 and case 5 have a conventional configuration, and cases 2 to 4 have a configuration according to the present embodiment. As a calculation condition, the first plane P1 and the second plane P2 are assumed to be orthogonal to each other. The pressure loss PL1 in the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss PL2 in the flow path from the discharge port 32 to the second exhaust port 17B are such that the pipe diameter is 150 mm and the bending radius is 80 mm. The calculation was made assuming the pressure loss of a certain bent pipe. The flow rate was 250 m 3 / h.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、従来の構成であるケース1およびケース5では、圧力損失PL1と圧力損失PL2との差の絶対値が15Paであるのに対して、本実施の形態に係る構成であるケース2およびケース4では、圧力損失PL1と圧力損失PL2との差の絶対値が4.9Paまで小さくなっている。さらにケース3では、圧力損失PL1と圧力損失PL2との差が0Paになっている。このように、本実施の形態では、従来の構成に比べて圧力損失PL1と圧力損失PL2との差を大幅に小さくできることが分かる。 As can be seen from Table 1, in cases 1 and 5 which are conventional configurations, the absolute value of the difference between pressure loss PL1 and pressure loss PL2 is 15 Pa, whereas the configuration according to the present embodiment is provided. In Case 2 and Case 4, the absolute value of the difference between the pressure loss PL1 and the pressure loss PL2 is reduced to 4.9 Pa. Further, in Case 3, the difference between the pressure loss PL1 and the pressure loss PL2 is 0 Pa. Thus, it can be seen that in the present embodiment, the difference between the pressure loss PL1 and the pressure loss PL2 can be significantly reduced as compared with the conventional configuration.
 また、図7および図8を参照して、本実施の形態に係る換気装置1の送風性能と従来の換気装置101の送風性能とを、実測した結果に基づいて比較する。図7は、換気装置1における送風性能を示すグラフである。図8は、換気装置101における送風性能を示すグラフである。図7のグラフで示す送風性能は、角T1および角T2がともに45度となるように換気装置1の排気用送風機30が配置された状態において、排気用送風機30から送風される場合の送風性能である。図6のグラフで示す送風性能は、換気装置101の排気用送風機130から送風される場合の送風性能である。換気装置1において角T1および角T2がともに45度であり、換気装置101において角T11が90度である点以外については、換気装置1と換気装置101とで条件が等しくなるように設定している。図7および図8では、縦軸に静圧をとり、横軸に風量をとっている。図7のグラフの実線は、第一排気口17Aを使用した場合の静圧-風量特性曲線であり、点線は、第二排気口17Bを使用した場合の静圧-風量特性曲線である。図8のグラフの実線は、第一排気口117Aを使用した場合の静圧-風量特性曲線であり、点線は、第二排気口117Bを使用した場合の静圧-風量特性曲線である。図7および図8のグラフにおいて長破線で示す曲線は、想定される使用時の圧力損失を示す曲線の一例であり、両グラフにおいて共通である。 Referring to FIGS. 7 and 8, the ventilation performance of ventilation device 1 according to the present embodiment and the ventilation performance of conventional ventilation device 101 are compared based on the actually measured results. FIG. 7 is a graph showing the ventilation performance of the ventilator 1. FIG. 8 is a graph showing the ventilation performance of the ventilation device 101. The air blowing performance shown in the graph of FIG. 7 is the air blowing performance when the air is blown from the exhaust air blower 30 in a state where the exhaust air blower 30 of the ventilator 1 is arranged so that both the angle T1 and the angle T2 are 45 degrees. It is. The air blowing performance shown by the graph in FIG. 6 is the air blowing performance when air is blown from the exhaust blower 130 of the ventilator 101. Except for the angle T1 and the angle T2 being 45 degrees in the ventilator 1 and the angle T11 being 90 degrees in the ventilator 101, the conditions are set to be equal between the ventilator 1 and the ventilator 101. I have. 7 and 8, the vertical axis represents static pressure and the horizontal axis represents airflow. The solid line in the graph of FIG. 7 is a static pressure-air volume characteristic curve when the first exhaust port 17A is used, and the dotted line is a static pressure-air volume characteristic curve when the second exhaust port 17B is used. The solid line in the graph of FIG. 8 is a static pressure-air volume characteristic curve when the first exhaust port 117A is used, and the dotted line is a static pressure-air volume characteristic curve when the second exhaust port 117B is used. The curves shown by long dashed lines in the graphs of FIGS. 7 and 8 are examples of the curve showing the assumed pressure loss during use, and are common to both graphs.
 従来の換気装置101では、図8のグラフに示されるように、第一排気口117Aを使用した場合の特性曲線は、第二排気口117Bを使用した場合の特性曲線と比較して、風量および静圧ともに小さくなっている。そして、想定される使用時において、第一排気口117Aを使用した場合の特性曲線と圧力損失曲線との交点における風量は、第二排気口117Bを使用した場合の特性曲線と圧力損失曲線との交点における風量と比較して、約3%小さくなっている。このように、従来の換気装置101では、第一排気口117Aを使用した場合の送風性能と第二排気口117Bを使用した場合の送風性能との間にやや差があることが分かる。これに対して、本実施の形態に係る換気装置1では、図7のグラフに示されるように、第一排気口17Aを使用した場合の特性曲線と第二排気口17Bを使用した場合の特性曲線とがほぼ重なっている。また、想定される使用時において、第一排気口17Aを使用した場合の特性曲線と圧力損失曲線との交点における風量と第二排気口17Bを使用した場合の特性曲線と圧力損失曲線との交点における風量とはほぼ同じである。このように、本実施の形態に係る換気装置1では、第一排気口17Aを使用した場合の送風性能と第二排気口17Bを使用した場合の送風性能との間でほぼ変わらないことが分かる。 In the conventional ventilation device 101, as shown in the graph of FIG. 8, the characteristic curve when the first exhaust port 117A is used is larger than the characteristic curve when the second exhaust port 117B is used, and Both the static pressure is small. At the time of the assumed use, the air volume at the intersection of the characteristic curve and the pressure loss curve when the first exhaust port 117A is used is the difference between the characteristic curve and the pressure loss curve when the second exhaust port 117B is used. It is about 3% smaller than the air volume at the intersection. As described above, in the conventional ventilation device 101, it can be seen that there is a slight difference between the air blowing performance when the first exhaust port 117A is used and the air blowing performance when the second exhaust port 117B is used. On the other hand, in the ventilation device 1 according to the present embodiment, as shown in the graph of FIG. 7, the characteristic curve when the first exhaust port 17A is used and the characteristic when the second exhaust port 17B is used. The curve is almost overlapped. In addition, in an assumed use, the airflow at the intersection of the characteristic curve and the pressure loss curve when the first exhaust port 17A is used and the intersection between the characteristic curve and the pressure loss curve when the second exhaust port 17B is used. Is almost the same as the air volume at As described above, in the ventilation device 1 according to the present embodiment, it can be seen that there is almost no difference between the ventilation performance when the first exhaust port 17A is used and the ventilation performance when the second exhaust port 17B is used. .
 本実施の形態に係る送風装置である換気装置1は、第一排気口17Aが設けられ、第一平面P1上に延設された第一側部11と、第二排気口17Bが設けられ、第一平面P1に直交する第二平面P2上に延設された第二側部12と、を有し、外部と連通する第一吸気口18Aが設けられたケーシング10と、ケーシング10内に配置され、第一吸気口18Aと連通された吸込口31と吐出口32とが設けられ、吸込口31から吸い込んだ空気を吐出口32から吹き出し可能に構成された排気用送風機30と、吐出口32と第一排気口17Aと第二排気口17Bとによって囲まれる空間を覆い、吐出口32と第一排気口17Aと第二排気口17Bとを互いに連通させる吹出し流路カバー部40と、を備える。第一平面P1は、ケーシング10の内側を向く第一内面Pi1と第一内面Pi1とは反対側を向く第一外面Po1とを有し、第二平面P2は、ケーシング10の内側を向く第二内面Pi2と第二内面Pi2とは反対側を向く第二外面Po2とを有する。吐出口32は、第一平面P1に対して第一内面Pi1側に配置され、かつ第二平面P2に対して第二内面Pi2側に配置されている。第一平面P1と第二平面P2との交線Lに沿った方向からの平面視において、吐出口32の開口面S1の吐出方向を向く吐出面法線N1と第一排気口17Aの開口面S2の第一外面Po1側を向く第一排気面法線N2とのなす角T1が鋭角であり、かつ吐出面法線N1と第二排気口17Bの開口面S3の第二外面Po2側を向く第二排気面法線N3とのなす角T2が鋭角である。 The ventilation device 1 which is the blower according to the present embodiment is provided with the first exhaust port 17A, the first side portion 11 extending on the first plane P1, and the second exhaust port 17B, A casing 10 having a second side portion 12 extending on a second plane P2 orthogonal to the first plane P1 and having a first intake port 18A communicating with the outside, and disposed in the casing 10 An exhaust blower 30 that is provided with a suction port 31 and a discharge port 32 that are communicated with the first suction port 18A, and that is configured to be able to blow out air sucked from the suction port 31 through the discharge port 32; And a discharge channel cover portion 40 that covers a space surrounded by the first exhaust port 17A and the second exhaust port 17B, and allows the discharge port 32, the first exhaust port 17A, and the second exhaust port 17B to communicate with each other. . The first plane P1 has a first inner surface Pi1 facing the inside of the casing 10 and a first outer surface Po1 facing the side opposite to the first inner surface Pi1, and the second plane P2 has a second surface facing the inside of the casing 10. The inner surface Pi2 has a second outer surface Po2 facing the opposite side to the second inner surface Pi2. The discharge port 32 is disposed on the first inner surface Pi1 side with respect to the first plane P1, and is disposed on the second inner surface Pi2 side with respect to the second plane P2. In a plan view from the direction along the intersection line L between the first plane P1 and the second plane P2, the discharge surface normal N1 facing the discharge direction of the opening surface S1 of the discharge port 32 and the opening surface of the first exhaust port 17A. An angle T1 formed between S2 and the first exhaust surface normal N2 facing the first outer surface Po1 side is an acute angle, and faces the discharge surface normal N1 and the second outer surface Po2 side of the opening surface S3 of the second exhaust port 17B. The angle T2 between the second exhaust surface normal N3 and the second exhaust surface normal N3 is an acute angle.
 上述した構成によれば、第一排気口17Aは第一平面P1上に延設された第一側部11に設けられ、第二排気口17Bは第一平面P1に直交する第二平面P2上に延設された第二側部12に設けられているので、第一排気口17Aの開口方向と第二排気口17Bの開口方向とは互いに90度異なっている。そして、第一平面P1と第二平面P2との交線Lに沿った方向からの平面視において、吐出面法線N1と第一排気面法線N2とのなす角T1が鋭角であり、かつ吐出面法線N1と第二排気面法線N3とのなす角T2が鋭角である。このため、吐出面法線N1と第一排気面法線N2とのなす角T1が直角または鈍角である場合や吐出面法線N1と第二排気面法線N3とのなす角T2が直角または鈍角である場合に比べて、吐出口32から第一排気口17Aまでの流路の圧力損失と吐出口32から第二排気口17Bまでの流路の圧力損失との差を小さくすることができる。したがって、第一排気口17Aを使用する場合の送風性能と第二排気口17Bを使用する場合の送風性能との差を小さくすることができ、送風性能の変化を抑制することができる。 According to the above-described configuration, the first exhaust port 17A is provided on the first side portion 11 extending on the first plane P1, and the second exhaust port 17B is provided on the second plane P2 orthogonal to the first plane P1. The opening direction of the first exhaust port 17A and the opening direction of the second exhaust port 17B are different from each other by 90 degrees. Then, in a plan view from the direction along the intersection line L between the first plane P1 and the second plane P2, the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle, and The angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is an acute angle. Therefore, when the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is a right angle or an obtuse angle, or when the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is a right angle or The difference between the pressure loss in the flow path from the discharge port 32 to the first exhaust port 17A and the pressure loss in the flow path from the discharge port 32 to the second exhaust port 17B can be smaller than in the case of an obtuse angle. . Therefore, the difference between the air blowing performance when the first exhaust port 17A is used and the air blowing performance when the second exhaust port 17B is used can be reduced, and a change in the air blowing performance can be suppressed.
 なお、本実施の形態において、換気装置1は熱交換器60を備えていたが、これに限らない。換気装置1は、熱交換器60を備えずに、熱交換を行わない同時給排気による換気運転を行うようにしてもよい。また、換気装置1は、熱交換器60の一次通路または二次通路をバイパスするバイパス流路をさらに備えてもよい。このバイパス流路によって、熱交換を伴わない普通換気を行ってもよい。 In the present embodiment, the ventilator 1 includes the heat exchanger 60, but is not limited to this. The ventilation device 1 may be provided with the heat exchanger 60 and perform a ventilation operation by simultaneous supply and exhaust without performing heat exchange. In addition, the ventilator 1 may further include a bypass passage that bypasses the primary passage or the secondary passage of the heat exchanger 60. Ordinary ventilation without heat exchange may be performed by this bypass flow path.
 また、ケーシング10に設けられた第二吸気口18Bは、第一排気口17Aが設けられた第一側部11に配置されているとしたが、第二排気口17Bが設けられた第二側部12に配置されていてもよい。すなわち、第二吸気口18Bは、第一排気口17Aおよび第二排気口17Bのうちのいずれか一方の開口方向と第二吸気口18Bの開口方向とを合わせるように配置されている。 Further, the second intake port 18B provided in the casing 10 is disposed on the first side portion 11 provided with the first exhaust port 17A, but the second side provided with the second exhaust port 17B is provided. It may be arranged in the unit 12. That is, the second intake port 18B is arranged so that the opening direction of one of the first exhaust port 17A and the second exhaust port 17B matches the opening direction of the second intake port 18B.
 また、第一排気口17Aまたは第二排気口17Bを閉塞するための閉塞部材は、閉塞板21であるとしたが、これに限らない。閉塞部材は、第一排気口17Aまたは第二排気口17Bを閉塞できる構成であれば、特に限定されない。 閉塞 Although the closing member for closing the first exhaust port 17A or the second exhaust port 17B is the closing plate 21, it is not limited to this. The closing member is not particularly limited as long as it can close the first exhaust port 17A or the second exhaust port 17B.
 本実施の形態では、排気用送風機30のみに対して二つの排気口、すなわち第一排気口17Aおよび第二排気口17Bを設けているが、これに限らず、給気用送風機50に対しても、排気用送風機30と同様に、二つの排気口を設けるようにしてもよい。 In the present embodiment, two exhaust ports, that is, the first exhaust port 17A and the second exhaust port 17B are provided only for the exhaust blower 30, but the present invention is not limited to this. Also, similarly to the exhaust blower 30, two exhaust ports may be provided.
 (実施の形態2)
 次に、本発明の実施の形態2に係る送風装置である換気装置2について、図9および図10を参照して説明する。図9は、換気装置2において排気用送風機230を含む部分を模式的に示す平面図である。図9では、図4と同様に、第一排気口17Aの周囲および第二排気口17Bの周囲の両方にフランジ20が設けられた状態を示している。図10は、換気装置2の第一側部11および第六側部16を透過して換気装置2を斜め下方から見た斜視図である。なお、上述した実施の形態1に係る換気装置1と同様の構成を有する部分については、同一の符号を付し、その詳細な説明を省略する。
(Embodiment 2)
Next, a ventilation device 2 as a blower according to Embodiment 2 of the present invention will be described with reference to FIG. 9 and FIG. FIG. 9 is a plan view schematically showing a portion including the exhaust blower 230 in the ventilation device 2. FIG. 9 shows a state in which the flanges 20 are provided both around the first exhaust port 17A and around the second exhaust port 17B, similarly to FIG. FIG. 10 is a perspective view of the ventilation device 2 as seen obliquely from below through the first side portion 11 and the sixth side portion 16 of the ventilation device 2. Parts having the same configuration as the ventilation device 1 according to Embodiment 1 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態に係る換気装置2は、排気用送風機の配置に関して実施の形態1に係る換気装置1と異なっている。換気装置1の排気用送風機30は、吸込口31の開口面S4がケーシング10の底面に相当する第六側部16に対して垂直になるように配置されていた。これに対して、換気装置2の排気用送風機230は、図9および図10に示すように、排気用送風機230のファンケーシング235に形成された吸込口231の開口面がケーシング10の底面に相当する第六側部16に対して平行になるように配置されている。なお、この場合でも、排気用送風機230の吐出口232は、換気装置1の排気用送風機30の吐出口32と同様に配置されている。 換 気 The ventilation device 2 according to the present embodiment is different from the ventilation device 1 according to the first embodiment in the arrangement of the exhaust blower. The exhaust blower 30 of the ventilator 1 was disposed such that the opening surface S4 of the suction port 31 was perpendicular to the sixth side 16 corresponding to the bottom surface of the casing 10. On the other hand, in the exhaust blower 230 of the ventilation device 2, as shown in FIGS. 9 and 10, the opening surface of the suction port 231 formed in the fan casing 235 of the exhaust blower 230 corresponds to the bottom surface of the casing 10. It is arranged so as to be parallel to the sixth side portion 16. Note that, also in this case, the discharge port 232 of the exhaust blower 230 is arranged in the same manner as the discharge port 32 of the exhaust blower 30 of the ventilator 1.
 このように構成された換気装置2においても、実施の形態1に係る換気装置1と同様の効果を得ることができる。 換 気 In the ventilation device 2 configured as above, the same effect as the ventilation device 1 according to the first embodiment can be obtained.
 (実施の形態3)
 次に、本発明の実施の形態3に係る送風装置である換気装置3について、図11を参照して説明する。図11は、換気装置3において排気用送風機30を含む部分を模式的に示す平面図である。図11では、図4と同様に、第一排気口17Aの周囲および第二排気口17Bの周囲の両方にフランジ20が設けられた状態を示している。なお、上述した実施の形態1に係る換気装置1と同様の構成を有する部分については、同一の符号を付し、その詳細な説明を省略する。
(Embodiment 3)
Next, a ventilation device 3 which is a blower according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 11 is a plan view schematically showing a portion including the exhaust blower 30 in the ventilation device 3. FIG. 11 shows a state in which the flanges 20 are provided both around the first exhaust port 17A and around the second exhaust port 17B, similarly to FIG. Parts having the same configuration as the ventilation device 1 according to Embodiment 1 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態に係る換気装置3は、第一平面と第二平面とが直交していない点で実施の形態1に係る換気装置1と異なっている。図11に示すように、換気装置3において、第二平面P32は、第一平面P1の第一内面Pi1と第二平面P32の第二外面Po32との間でなす角よりも第一平面P1の第一内面Pi1と第二平面P32の第二内面Pi32との間でなす角のほうが大きくなるように、第一平面P1と交差している。第二排気口17Bが設けられた第二側部312は、この第二平面P32上に延設されている。このように第二平面P32が第一平面P1と直角ではない角度で交差している場合には、吐出面法線N1と第二排気面法線N3とのなす角T2は鋭角である場合だけでなく、角T2が0度、すなわち吐出面法線N1と第二排気面法線N3とが互いに同一方向に平行であってもよい。吐出面法線N1と第二排気面法線N3とが互いに同一方向に平行である場合には、吐出面法線N1と第一排気面法線N2とのなす角T1は鋭角である。また、吐出面法線N1と第二排気面法線N3とのなす角T2が鋭角である場合には、吐出面法線N1と第一排気面法線N2とのなす角T1は鋭角である、または吐出面法線N1と第一排気面法線N2とが互いに同一方向に平行である。 The ventilation device 3 according to the present embodiment is different from the ventilation device 1 according to the first embodiment in that the first plane and the second plane are not orthogonal. As shown in FIG. 11, in the ventilation device 3, the second plane P32 is larger than the angle formed between the first inner surface Pi1 of the first plane P1 and the second outer surface Po32 of the second plane P32 by the first plane P1. The first plane P1 and the second plane P32 intersect with the first plane P1 such that the angle between the second plane P32 and the second plane P32 is larger. The second side 312 provided with the second exhaust port 17B extends on the second plane P32. As described above, when the second plane P32 intersects the first plane P1 at an angle other than a right angle, the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is only an acute angle. Alternatively, the angle T2 may be 0 degrees, that is, the discharge surface normal N1 and the second exhaust surface normal N3 may be parallel to each other in the same direction. When the discharge surface normal N1 and the second exhaust surface normal N3 are parallel to each other in the same direction, the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle. When the angle T2 between the discharge surface normal N1 and the second exhaust surface normal N3 is an acute angle, the angle T1 between the discharge surface normal N1 and the first exhaust surface normal N2 is an acute angle. Alternatively, the discharge surface normal N1 and the first exhaust surface normal N2 are parallel to each other in the same direction.
 このように構成された換気装置3においても、実施の形態1に係る換気装置1と同様の効果を得ることができる。 換 気 With the ventilation device 3 configured as described above, the same effect as the ventilation device 1 according to the first embodiment can be obtained.
 なお、上述の説明では、送風装置として、排気用送風機と給気用送風機とを有して同時給排気による換気運転が可能な換気装置の場合について記載したが、例えば送風機を一つのみ有して対象空間内の空気を排出する単純な換気装置などにも本発明を利用できることは明らかである。 In the above description, as the blower, the case of a ventilator having an exhaust blower and an air blower and capable of performing a ventilation operation by simultaneous supply and exhaust is described, but for example, only one blower is provided. It is clear that the present invention can be applied to a simple ventilator or the like that discharges air from the target space.
 以上、本発明の好ましい実施の形態を説明したが、本発明はこれら実施の形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention.
 上記の送風装置によれば、一つの排気口を使用する場合の送風性能と他の排気口を使用する場合の送風性能との差を小さくすることができ、送風性能の変化を抑制することができる。 According to the above blower, it is possible to reduce the difference between the blow performance when one exhaust port is used and the blow performance when using another exhaust port, and to suppress a change in the blow performance. it can.
 1、2、3:換気装置(送風装置)、10:ケーシング、11:第一側部、12、312:第二側部、17A:第一排気口、17B:第二排気口、17C:第三排気口、18A:第一吸気口、18B:第二吸気口、19:稜部、20:フランジ、21:閉塞板(閉塞部材)、30、230:排気用送風機(第一送風機)、31、231:吸込口、32、232:吐出口、33、53:モータ、34、54:ファン、35、55、235:ファンケーシング、40:吹出し流路カバー部、41:カバー部本体、50:給気用送風機(第二送風機)、60:熱交換器、C1、C2、C3:中心、D1、D2:距離、L:交線、N1:吐出面法線、N2:第一排気面法線、N3:第二排気面法線、P1:第一平面、P2、P32:第二平面、Pi1:第一内面、Pi2、Pi32:第二内面、Po1:第一外面、Po2、Po32:第二外面、S1、S2、S3、S4:開口面、T1、T2:角。 1, 2, 3: ventilator (blower), 10: casing, 11: first side, 12, 312: second side, 17A: first exhaust port, 17B: second exhaust port, 17C: first Three exhaust ports, 18A: first intake port, 18B: second intake port, 19: ridge, 20: flange, 21: obstruction plate (occlusive member), 30, 230: exhaust blower (first blower), 31 , 231: Suction port, 32, 232: Discharge port, 33, 53: Motor, 34, 54: Fan, 35, 55, 235: Fan casing, 40: Blow-off channel cover, 41: Cover body, 50: Air supply blower (second blower), 60: heat exchanger, C1, C2, C3: center, D1, D2: distance, L: intersection, N1: discharge surface normal, N2: first exhaust surface normal , N3: second exhaust plane normal, P1: first plane, P2, P32: second plane, Pi : First inner surface, Pi2, Pi 32: second inner surface, Po1: first outer surface, Po2, Po32: second outer surface, S1, S2, S3, S4: opening surface, T1, T2: corner.

Claims (10)

  1.  第一排気口が設けられ、第一平面上に延設された第一側部と、第二排気口が設けられ、前記第一平面に交差する第二平面上に延設された第二側部と、を有し、外部と連通する第一吸気口が設けられたケーシングと、
     前記ケーシング内に配置され、前記第一吸気口と連通された吸込口と吐出口とが設けられ、前記吸込口から吸い込んだ空気を前記吐出口から吹き出し可能に構成された第一送風機と、
     前記吐出口と前記第一排気口と前記第二排気口とによって囲まれる空間を覆い、前記吐出口と前記第一排気口と前記第二排気口とを互いに連通させる吹出し流路カバー部と、
     を備え、
     前記第一平面は、前記ケーシングの内側を向く第一内面と前記第一内面とは反対側を向く第一外面とを有し、
     前記第二平面は、前記ケーシングの内側を向く第二内面と前記第二内面とは反対側を向く第二外面とを有し、
     前記吐出口は、前記第一平面に対して前記第一内面側に配置され、かつ前記第二平面に対して前記第二内面側に配置され、
     前記第一平面と前記第二平面との交線に沿った方向からの平面視において、前記吐出口の開口面の吐出方向を向く吐出面法線と前記第一排気口の開口面の前記第一外面側を向く第一排気面法線とのなす角が鋭角でありかつ前記吐出面法線と前記第二排気口の開口面の前記第二外面側を向く第二排気面法線とのなす角が鋭角である、前記吐出面法線と前記第一排気面法線とが互いに同一方向に平行でありかつ前記吐出面法線と前記第二排気面法線とのなす角が鋭角である、または、前記吐出面法線と前記第一排気面法線とのなす角が鋭角でありかつ前記吐出面法線と前記第二排気面法線とが互いに同一方向に平行である
     送風装置。
    A first exhaust port is provided, a first side portion extending on the first plane, and a second exhaust port is provided, a second side extending on a second plane intersecting the first plane. And a casing having a first intake port that communicates with the outside,
    A first blower arranged in the casing, provided with a suction port and a discharge port communicating with the first suction port, and configured to be able to blow out air sucked from the suction port from the discharge port,
    An outlet channel cover that covers a space surrounded by the discharge port, the first exhaust port, and the second exhaust port, and allows the discharge port, the first exhaust port, and the second exhaust port to communicate with each other,
    With
    The first plane has a first inner surface facing the inside of the casing and a first outer surface facing the opposite side to the first inner surface,
    The second plane has a second inner surface facing the inside of the casing and a second outer surface facing the opposite side to the second inner surface,
    The discharge port is arranged on the first inner surface side with respect to the first plane, and is arranged on the second inner surface side with respect to the second plane,
    In a plan view from the direction along the line of intersection of the first plane and the second plane, the discharge surface normal to the discharge direction of the opening surface of the discharge port and the second of the opening surface of the first exhaust port. The angle between the first exhaust surface normal facing the outer surface side is an acute angle, and the discharge surface normal and the second exhaust surface normal facing the second outer surface side of the opening surface of the second exhaust port. The angle formed is an acute angle, the discharge surface normal and the first exhaust surface normal are parallel to each other in the same direction, and the angle between the discharge surface normal and the second exhaust surface normal is an acute angle. Or, the angle between the discharge surface normal and the first exhaust surface normal is an acute angle, and the discharge surface normal and the second exhaust surface normal are parallel to each other in the same direction. .
  2.  前記第二平面は、前記第一平面に直交しており、
     前記第一平面と前記第二平面との交線に沿った方向からの平面視において、前記吐出面法線と前記第一排気面法線とのなす角および前記吐出面法線と前記第二排気面法線とのなす角はともに鋭角である
     請求項1に記載の送風装置。
    The second plane is orthogonal to the first plane,
    In a plan view from the direction along the line of intersection of the first plane and the second plane, the angle between the discharge surface normal and the first exhaust surface normal and the discharge surface normal and the second The blower according to claim 1, wherein the angle formed by the normal to the exhaust surface is an acute angle.
  3.  前記第一平面と前記第二平面との交線に沿った方向からの平面視において、前記吐出面法線と前記第一排気面法線とのなす角および前記吐出面法線と前記第二排気面法線とのなす角はともに30度以上60度以下である
     請求項2に記載の送風装置。
    In a plan view from the direction along the line of intersection of the first plane and the second plane, the angle between the discharge surface normal and the first exhaust surface normal and the discharge surface normal and the second The blower according to claim 2, wherein the angles formed by the normal to the exhaust surface are both 30 degrees or more and 60 degrees or less.
  4.  前記第一平面と前記第二平面との交線に沿った方向からの平面視において、前記吐出面法線と前記第一排気面法線とのなす角および前記吐出面法線と前記第二排気面法線とのなす角はともに45度である
     請求項3に記載の送風装置。
    In a plan view from the direction along the line of intersection of the first plane and the second plane, the angle between the discharge surface normal and the first exhaust surface normal and the discharge surface normal and the second The blower according to claim 3, wherein the angle formed by the normal to the exhaust surface is 45 degrees.
  5.  前記吐出口の開口面の中心と前記第二排気口の開口面の中心との間の距離は、前記吐出口の開口面の中心と前記第一排気口の開口面の中心との間の距離の1.414倍未満である
     請求項1から4のいずれか一項に記載の送風装置。
    The distance between the center of the opening of the outlet and the center of the opening of the second outlet is the distance between the center of the opening of the outlet and the center of the opening of the first outlet. The blower according to any one of claims 1 to 4, wherein the blower is less than 1.414 times.
  6.  前記吐出口の開口面の中心と前記第二排気口の開口面の中心との間の距離は、前記吐出口の開口面の中心と前記第一排気口の開口面の中心との間の距離と等しい
     請求項5に記載の送風装置。
    The distance between the center of the opening of the outlet and the center of the opening of the second outlet is the distance between the center of the opening of the outlet and the center of the opening of the first outlet. The blower according to claim 5.
  7.  前記第一送風機は、遠心送風機であり、前記吸込口の開口面が前記第一平面および前記第二平面の両方に直交する平面に対して垂直になるように配置されている
     請求項2から6のいずれか一項に記載の送風装置。
    The said 1st blower is a centrifugal blower, It is arrange | positioned so that the opening surface of the said suction opening may become perpendicular | vertical with respect to the plane orthogonal to both the said 1st plane and the said 2nd plane. The blower according to any one of the above.
  8.  前記ケーシング内に設けられた第二送風機をさらに備え、
     前記ケーシングには、外部と連通する第二吸気口と第三排気口とがさらに設けられ、
     前記第二送風機は、前記第二吸気口を介して吸い込んだ空気を前記第三排気口へ吹き出すように配置されている
     請求項1から7のいずれか一項に記載の送風装置。
    Further comprising a second blower provided in the casing,
    The casing further includes a second intake port and a third exhaust port communicating with the outside,
    The blower according to any one of claims 1 to 7, wherein the second blower is arranged to blow out the air sucked in through the second intake port to the third exhaust port.
  9.  前記第二吸気口は、前記第一側部または前記第二側部に設けられている
     請求項8に記載の送風装置。
    The blower according to claim 8, wherein the second intake port is provided on the first side portion or the second side portion.
  10.  前記第一排気口および前記第二排気口はそれぞれ、閉塞部材によって閉塞可能である
     請求項1から9のいずれか一項に記載の送風装置。
    The blower according to any one of claims 1 to 9, wherein the first exhaust port and the second exhaust port are each closable by a closing member.
PCT/JP2018/027657 2018-07-24 2018-07-24 Blower device WO2020021623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027657 WO2020021623A1 (en) 2018-07-24 2018-07-24 Blower device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027657 WO2020021623A1 (en) 2018-07-24 2018-07-24 Blower device

Publications (1)

Publication Number Publication Date
WO2020021623A1 true WO2020021623A1 (en) 2020-01-30

Family

ID=69180977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027657 WO2020021623A1 (en) 2018-07-24 2018-07-24 Blower device

Country Status (1)

Country Link
WO (1) WO2020021623A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466542A (en) * 1977-11-08 1979-05-29 Nippon Esu Efu Kk Method of conditioning and ventilating air in atmosphere by daily vent system
JPS5633710U (en) * 1979-08-24 1981-04-02
JPS61162733U (en) * 1985-03-29 1986-10-08
JPH0495249U (en) * 1990-12-28 1992-08-18
JP2001272074A (en) * 2000-03-28 2001-10-05 Mitsubishi Electric Corp Ventilator
EP2116785A1 (en) * 2008-05-08 2009-11-11 NuAire Limited A combined heating and ventilation unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466542A (en) * 1977-11-08 1979-05-29 Nippon Esu Efu Kk Method of conditioning and ventilating air in atmosphere by daily vent system
JPS5633710U (en) * 1979-08-24 1981-04-02
JPS61162733U (en) * 1985-03-29 1986-10-08
JPH0495249U (en) * 1990-12-28 1992-08-18
JP2001272074A (en) * 2000-03-28 2001-10-05 Mitsubishi Electric Corp Ventilator
EP2116785A1 (en) * 2008-05-08 2009-11-11 NuAire Limited A combined heating and ventilation unit

Similar Documents

Publication Publication Date Title
JP5267690B2 (en) Indoor unit
US8899309B2 (en) Ventilation device
JP2003028452A (en) Air conditioner
US11085654B2 (en) Outdoor unit for air conditioner
JP2008045780A (en) Indoor unit of air conditioner
US11306924B2 (en) Indoor unit for air conditioning device
JP2004156800A (en) Outdoor unit for refrigerating apparatus
WO2020021623A1 (en) Blower device
JPWO2014174625A1 (en) Air conditioner
JP6468303B2 (en) Air conditioner indoor unit
JP2014047970A (en) Refrigerant pipe structure of air conditioner
EP3130860B1 (en) Air conditioner
JP2014092333A (en) Heat exchange ventilation device
JP7065298B2 (en) Heat exchange type ventilator
JP6463168B2 (en) Blower
JP6358534B2 (en) Integrated air conditioner
JP2002295891A (en) Air conditioner
JP2013249994A (en) Ceiling-embedded duct type indoor unit
JP2004156801A (en) Outdoor unit for refrigerating apparatus
JP2017187242A (en) Air blowing device
JP2006046170A (en) Duct fan
JP7241918B2 (en) Indoor unit of air conditioner
WO2015104791A1 (en) Air-conditioning device
AU2018272237B2 (en) Indoor unit for air conditioner
EP3614057B1 (en) Indoor unit for air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP