WO2020020373A1 - 一种无线通信方法和设备 - Google Patents

一种无线通信方法和设备 Download PDF

Info

Publication number
WO2020020373A1
WO2020020373A1 PCT/CN2019/098016 CN2019098016W WO2020020373A1 WO 2020020373 A1 WO2020020373 A1 WO 2020020373A1 CN 2019098016 W CN2019098016 W CN 2019098016W WO 2020020373 A1 WO2020020373 A1 WO 2020020373A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
scheduling information
uplink data
uplink transmission
uplink
Prior art date
Application number
PCT/CN2019/098016
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202110344363.7A priority Critical patent/CN113037439B/zh
Priority to CN201980049229.5A priority patent/CN112514507A/zh
Priority to EP19841583.8A priority patent/EP3813465B1/en
Publication of WO2020020373A1 publication Critical patent/WO2020020373A1/zh
Priority to US17/148,235 priority patent/US20210136797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication, and more particularly, to a method and device for wireless communication.
  • Random access is the most basic function of a cellular system, which makes it possible for a terminal device to establish a communication connection with a network device.
  • a new wireless (new radio (NR)) system also called 5G system, 5G network
  • LTE long term evolution
  • LTE long term evolution
  • the present application provides a method and a device for wireless communication, which can reduce the delay of a two-step random access process.
  • a wireless communication method including: a terminal device sending a preamble and uplink data to a network device; the terminal device receiving scheduling information sent by the network device, the scheduling information used to instruct the terminal The device retransmits the uplink data; based on the scheduling information, the terminal device retransmits the uplink data.
  • a wireless communication method including: a network device detects a preamble and uplink data sent by a terminal device; the network device detects the preamble without detecting the uplink data or the uplink data When the uplink data detection fails, the network device sends scheduling information to the terminal device, where the scheduling information is used to instruct the terminal device to retransmit the uplink data.
  • a terminal device for executing the method described in the first aspect or any optional implementation manner of the first aspect.
  • the terminal device includes a functional module for executing the method described in the first aspect or any optional implementation manner of the first aspect.
  • a network device for performing the method described in the second aspect or any optional implementation manner of the second aspect.
  • the network device includes a functional module for executing the method described in the second aspect or any optional implementation manner of the second aspect.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the second aspect or the implementations thereof.
  • a chip for implementing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the method in the first aspect or any possible implementation manner of the first aspect.
  • a chip for implementing the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • the chip includes a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the method in the second aspect or any possible implementation manner of the second aspect.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing first aspect or a method in any possible implementation manner of the first aspect.
  • a computer program product including computer program instructions that cause a computer to perform the foregoing second aspect or a method in any possible implementation manner of the second aspect.
  • a computer program that, when run on a computer, causes the computer to execute the above-mentioned first aspect or the method in any possible implementation manner of the first aspect.
  • a computer program is provided that, when run on a computer, causes the computer to execute the second aspect or the method in any possible implementation manner of the second aspect.
  • a terminal device when a terminal device selects a two-step random access procedure for random access, it will send a preamble and uplink data to the network device.
  • the network device may send scheduling information to the terminal device to indicate retransmission of the uplink data.
  • the terminal device can retransmit uplink data based on the scheduling information without resending the random access request, that is, resending the preamble and uplink data, which can reduce the delay of the random access process.
  • FIG. 1 is a schematic diagram of a wireless communication system applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a four-step random access process according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a two-step random access process according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another wireless communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System (Mobile) system
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • NR Universal Mobile Communication System
  • UMTS Universal Mobile Communication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the embodiments of the present application do not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • FIG. 1 shows a wireless communication system 100 applied in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110.
  • the network device 100 may be a device that communicates with a terminal device.
  • the network device 100 may provide communication coverage for a specific geographic area, and may communicate with terminal devices (such as UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or may be an LTE system or an NR system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • Evolution base station (Evolutionary Node B, eNB or eNodeB), or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point, an in-vehicle device, Wearable devices, network-side devices in 5G networks, or network devices in public land mobile networks (PLMNs) that will evolve in the future.
  • PLMNs public land mobile networks
  • the wireless communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • terminal devices 120 may also perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or network may also be referred to as an NR system or network.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and the coverage range of each network device may include other numbers of terminal devices.
  • the application example does not limit this.
  • the wireless communication system 100 may further include an Access and Mobility Management Function (AMF), a Session Management Function (SMF), and a Unified Data Management (UDM) , Other network entities such as Authentication Server Function (AUSF), which is not limited in this embodiment of the present application.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AUSF Authentication Server Function
  • various aspects or features of the application may be implemented as a method, apparatus, or article of manufacture using standard programming and / or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, Compact Disc (CD), Digital Versatile Disc (DVD) Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and / or other machine-readable media used to store information.
  • machine-readable medium may include, but is not limited to, various media capable of storing, containing, and / or carrying instruction (s) and / or data.
  • a terminal device usually can perform uplink transmission only after obtaining synchronization with a network device through a random access process.
  • the random access process generally uses a contention-based four-step random access process. The four-step random access process is described below with reference to FIG. 2.
  • the embodiment of the present application only uses competition-based random access as an example for description, but the present application is not limited thereto, and the embodiment of the present application can also be applied to non-contention-based random access.
  • step S210 the terminal device sends a message 1 (message1, MSG1) on the random access channel, and the MSG1 includes a random access preamble.
  • step 220 after receiving the MSG1, the network device sends MSG2 on a downlink shared channel (DL-SCH), where MSG2 is a Random Access Response (RAR).
  • DL-SCH downlink shared channel
  • RAR Random Access Response
  • the RAR response carries uplink transmission timing advancement (TA) adjustment and available uplink resource information and temporary cell radio network temporary network identifier (T-CRNTI), which is temporary CRNTI.
  • TA uplink transmission timing advancement
  • T-CRNTI temporary cell radio network temporary network identifier
  • the RAR response may be generated by a Media Access Control (MAC) layer of the network device.
  • MAC Media Access Control
  • One MSG2 can correspond to a random access request response of multiple terminal devices at the same time.
  • the terminal device determines whether it belongs to its own RAR message. When it determines that it belongs to its own RAR message, it sends a message 3 (message3, MSG3) in the uplink resource designated by MSG2. End device specific RNTI.
  • the network device may send an MSG4 message to the terminal device.
  • the MSG4 includes a contention resolution message and uplink transmission resources allocated by the network device to the terminal device.
  • the terminal device After receiving the MSG4, the terminal device can detect whether the specific RNTI sent by the MSG3 is included in the contention resolution message sent by the network device. If it contains, it indicates that the terminal device's random access process is successful, otherwise it is considered that the random process has failed. After the random access process fails, the terminal device needs to initiate the random access process again from the first step.
  • the traditional four-step random access process requires terminal equipment and network equipment to perform four signaling interactions in order to successfully access.
  • the four-step random access process is prone to problems of large signaling overhead and prolonged access.
  • a two-step random access procedure is proposed.
  • the two-step random access process simply, it is equivalent to combining the first step and the third step of the four-step random access process into the first step in the two-step random access process, and the four-step random access
  • the second and fourth steps of the process are combined into the second step of the two-step random access process.
  • step S310 the terminal device sends MSG1 to the network device.
  • the MSG1 includes a random access preamble and uplink data.
  • the uplink data may be carried on a physical uplink shared channel (physical uplink shared channel (PUSCH)).
  • PUSCH physical uplink shared channel
  • the PUSCH may carry a terminal equipment-specific RNTI.
  • the content of the uplink data may be different according to different random access scenarios.
  • the uplink data may include a radio resource control (radio resource control, RRC) connection request message.
  • RRC radio resource control
  • the uplink data may include an RRC connection re-establishment request message.
  • the uplink data may also be uplink information carried in a physical uplink control channel (PDCCH).
  • PDCH physical uplink control channel
  • the preamble may be a preamble randomly selected by the terminal device.
  • the preamble may be one of a plurality of preambles provided by the network device.
  • step S320 the network device sends a random access response MSG2 to the terminal device.
  • An embodiment of the present application provides a wireless transmission method to avoid that when a network device receives only a preamble but does not receive a PUSCH, the terminal device needs to re-initiate a random access request, that is, resend the preamble and uplink data. In this case, the delay of the random access process of the terminal device can be reduced, which is beneficial for the terminal device to complete the random access process.
  • the wireless communication method according to the embodiment of the present application is described in detail below with reference to FIG. 4.
  • the method of FIG. 4 includes at least part of the following.
  • step 410 the terminal device sends a preamble and uplink data to the network device.
  • the uplink data may be carried on a PUSCH.
  • the uplink data may also be uplink information carried on the PUCCH.
  • the content of the uplink data may be different according to different random access scenarios.
  • the uplink data may include an RRC connection request message.
  • the uplink data may include an RRC connection re-establishment request message.
  • the preamble may be one of a plurality of preambles provided by the network device.
  • the terminal device may randomly select one preamble from a plurality of preambles provided by the network device for transmission.
  • the preamble may be specifically allocated by the network device to the terminal device, that is, the preamble is bound to the terminal device.
  • the network device After receiving the preamble, the network device can uniquely identify the terminal device corresponding to the preamble.
  • the terminal device needs to select resources for sending the preamble and uplink data.
  • the network device may specify multiple resources available for transmission in advance, and the terminal device may randomly select one resource from the multiple resources to transmit the preamble and uplink data.
  • step 420 the terminal device receives scheduling information sent by the network device, and the scheduling information is used to instruct the terminal device to retransmit the uplink data.
  • the terminal device After sending the preamble and uplink data, the terminal device receives the scheduling information sent by the network device within a certain time window.
  • the time window may be a preset time period after uplink data is sent from the terminal device.
  • step 430 the terminal device retransmits the uplink data based on the scheduling information.
  • the network device in the two-step random access process, when the network device receives only the preamble sent by the terminal device and does not receive uplink data, it sends an instruction to the terminal device to retransmit the uplink. Data scheduling information. In this way, the terminal device only needs to retransmit uplink data without re-initiating the random access process, that is, resending the preamble and uplink data, which can reduce the delay of the terminal device's random access process and help the terminal device complete random access process.
  • the network device when the network device only receives the preamble sent by the terminal device and does not receive the uplink data, the network device may send a response signal according to the four-step access process, resulting in an increase in the access delay.
  • the solution provided in the embodiment of the present application can avoid the fallback to the four-step random access process and reduce the access delay.
  • the scheduling information may carry an indication identifier, which may instruct the terminal device to retransmit uplink data.
  • the indication information carried in the scheduling information may instruct the terminal device to receive a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the terminal device may determine whether to retransmit uplink data or receive PDSCH sent by the network device according to the information indicated by the indication identifier.
  • the terminal device When the indication instructs the terminal device to retransmit the uplink data, the terminal device retransmits the uplink data based on the scheduling information. When the indication indicates that the terminal device receives the uplink data, the terminal device receives the PDSCH based on the scheduling information.
  • the indication identifier may be represented by bits.
  • a bit can be used to indicate the indication. When the bit is 0, it indicates that the terminal device needs to retransmit uplink data; when the bit is 1, it indicates that the terminal device needs to receive the PDSCH sent by the network device.
  • the embodiment of the present application is only described by using a bit as an example.
  • the indication of the indication identifier may also be in other forms, which is not limited in the embodiment of the present application.
  • the scheduling information includes an uplink transmission parameter
  • the uplink transmission parameter is a parameter for the terminal device to retransmit the uplink data.
  • the terminal device After receiving the scheduling information indicating the retransmission, the terminal device retransmits the uplink data in the corresponding uplink transmission parameters according to the scheduling information.
  • the uplink transmission parameters include at least one of the following parameters: time domain resources, frequency domain resources, pilot resources, and modulation and coding schemes (MCS).
  • MCS modulation and coding schemes
  • the time domain resource may be a radio frame, a subframe, a time slot or a symbol.
  • the time domain resource may include a start symbol and a number of symbols in one slot.
  • the frequency domain resource may be a bandwidth, a subcarrier, or the like.
  • the pilot resource may be a cyclic shift value of a reference sequence, a sequence initialization value, or an orthogonal code.
  • the terminal device can determine the transmission rate used for transmitting uplink data through the value of MCS.
  • the scheduling information may include multiple sets of uplink transmission parameters
  • the terminal device may select a set of uplink transmission resources from the multiple sets of uplink transmission parameters based on the scheduling information, and retransmit the uplink based on the selected uplink transmission parameters. data.
  • the network device may carry multiple sets of available uplink transmission parameters in the scheduling information.
  • the terminal device can randomly select a set of uplink transmission parameters from a plurality of sets of uplink transmission parameters as parameters for retransmitting the uplink data.
  • the scheduling information Compared with a scheme that only one set of uplink transmission parameters is carried in the scheduling information, To a certain extent, it can reduce the probability that a terminal device uses the same set of uplink transmission parameters to retransmit uplink data, which is beneficial to conflict resolution.
  • each of the multiple sets of uplink transmission parameters may include at least one of the following parameters: time domain resources, frequency domain resources, pilot resources, and modulation and coding schemes (MCS).
  • MCS modulation and coding schemes
  • the terminal device adopts a hybrid automatic repeat request (HARQ) process determined before the uplink data is first transmitted to transmit the uplink data. Thereafter, the terminal device may use the determined HARQ process when initially transmitting uplink data and / or retransmitting the uplink data.
  • the initial transmission uplink data may be uplink data sent by the terminal device when initiating a random access request.
  • HARQ hybrid automatic repeat request
  • the determined HARQ process may be preset on the terminal device, or the terminal device may also be obtained by reading a system broadcast message.
  • the manner in which the terminal device acquires the HARQ process may not be limited to the scenario of retransmitting uplink data.
  • the manner in which the terminal device acquires the HARQ process can also be applied to the scenario where the network device correctly receives the preamble and uplink data.
  • the determined process may be a process in which the network device is configured to the terminal device in advance, or a process preset in the protocol.
  • the scheduling information sent by the network device may not carry the HARQ process for retransmitting the uplink data.
  • the scheduling information may further include TA information, and the TA is used for uplink transmission after the terminal device receives the scheduling information.
  • the TA can be used for the terminal device to retransmit uplink data, and can also be used for uplink data sent by the terminal device after the random access is successful.
  • TA information can indicate the amount of time advancement used by the terminal device when retransmitting uplink data.
  • the scheduling information may further carry indication information, and the indication information may indicate that the scheduling information is scheduling information for the terminal device.
  • the scheduling information is scheduling information specific to the terminal device.
  • the indication information may be represented by at least one of the following information: specific RNTI information of the terminal device, ID information of the preamble, and ID information of the terminal device.
  • the terminal device may determine that the scheduling information is its exclusive Scheduling information.
  • the indication information may be represented by bits.
  • the scheduling information includes a specific RNTI of the terminal device
  • a certain length of bits may be used in the scheduling information to indicate the specific RNTI of the terminal device.
  • the scheduling information may be scrambled by a specific RNTI of the terminal device.
  • the scheduling information is scrambled with a specific RNTI of the terminal device, if the terminal device can correctly decode the scheduling information, it means that the scheduling information is exclusive scheduling information for the terminal device.
  • the specific RNTI of the terminal device included in the scheduling information may be that the check bit in the scheduling information is scrambled with the specific RNTI of the terminal device.
  • the terminal device can understand that the random access competition is successful. That is, after the terminal device receives the scheduling information, if the scheduling information includes the ID of the preamble sent by the terminal device, the specific RNTI of the terminal device, and / or the ID of the terminal device, the terminal device may consider that the random access competition is successful.
  • the preamble may be bound to a terminal device, and one preamble corresponds to one terminal device.
  • the network device After the network device receives the preamble sent by the terminal device, it can find the ID information of the terminal device and / or specific RNTI information according to the correspondence between the preamble and the terminal device.
  • the network device can obtain ID information of the terminal device and / or specific RNTI information according to the previous recorded information.
  • the network device can obtain ID information of the preamble.
  • FIG. 5 is a schematic flowchart of another wireless communication method according to an embodiment of the present application. The method of FIG. 5 includes at least part of the following.
  • step 510 the network device detects a preamble and uplink data sent by the terminal device.
  • the uplink data may be carried on a PUSCH.
  • the uplink data may also be uplink information carried in the PUCCH.
  • step 520 when the network device detects the preamble but does not detect the uplink data or the uplink data fails to be detected, the network device sends scheduling information to the terminal device.
  • the scheduling information is used to instruct the terminal device to retransmit the uplink data.
  • the network device can obtain in advance whether the four-step random access procedure or the two-step random access procedure is adopted by the terminal device.
  • the network device may determine whether the terminal device selects four-step random access or two-step random access according to the sequence of the preamble sent by the terminal device. If the set of preamble sequences of four-step random access is set 1, the set of preamble sequences of two-step random access is set 2. The network device and the terminal device can obtain the preamble sequences in the set 1 and the set 2 respectively.
  • the terminal device Before sending the preamble, the terminal device may select the preamble from different sets to send according to its own needs. When the terminal device determines that it needs to use four-step random access, it can randomly select a preamble from the set 1 for transmission. When the terminal device determines that it needs to use two-step random access, it can randomly select a preamble from the set 2 for transmission.
  • the network device After the network device receives the preamble sent by the terminal device, it can determine whether the terminal device uses two-step random access or four-step random access according to the set to which the preamble sequence belongs. When the received preamble sequence belongs to set 1, the network device can determine that the terminal device uses four-step random access. When the received preamble belongs to set 2, the network device can determine that the terminal device is using two-step random access.
  • the preamble and uplink data sent by the terminal device can be detected on the corresponding resources.
  • the network device When the network device detects the preamble but does not detect uplink data or the uplink data fails to be detected, it sends scheduling information to the terminal device to indicate retransmission of the uplink data.
  • the network device When the network device detects both the preamble sent by the terminal device and the uplink data, it can send the terminal device scheduling information indicating receiving the PDSCH.
  • the scheduling information may include an indication identifier, which may indicate whether the terminal device performs retransmission of uplink data or receives PDSCH.
  • the indication identifier may be represented by bits.
  • a bit can be used to indicate the indication. When the bit is 0, it indicates that the terminal device needs to retransmit uplink data; when the bit is 1, it indicates that the terminal device needs to receive the PDSCH sent by the network device.
  • the embodiment of the present application is only described by using a bit as an example.
  • the indication of the indication identifier may also be in other forms, which is not limited in the embodiment of the present application.
  • the scheduling information includes an uplink transmission parameter
  • the uplink transmission parameter is a parameter for the terminal device to retransmit the uplink data.
  • the uplink transmission parameters include at least one of the following parameters: time domain resources, frequency domain resources, pilot resources, and MCS.
  • the time domain resource may be a radio frame, a subframe, a time slot or a symbol.
  • the time domain resource may include a start symbol and a number of symbols in one slot.
  • the frequency domain resource may be a bandwidth, a subcarrier, or the like.
  • the pilot resource may be a cyclic shift value of a reference sequence, a sequence initialization value, or an orthogonal code.
  • the terminal device can determine the transmission rate used for transmitting uplink data through the value of MCS.
  • the scheduling information may include multiple sets of uplink transmission parameters, and the multiple sets of uplink transmission parameters may be used by the terminal device to select parameters for retransmitting uplink data.
  • the network device when a network device receives a random access request sent by multiple terminal devices, and the multiple random access requests use the same preamble, and the preamble is transmitted using the same transmission resource, the network device
  • the scheduling information sent to multiple terminal devices carries multiple sets of uplink transmission parameters for selection by the multiple terminal devices.
  • the terminal device can randomly select a set of uplink transmission parameters from multiple sets of uplink transmission resources as a parameter for retransmitting the uplink data. Compared with a scheme that only one set of uplink transmission parameters is carried in the scheduling information, To a certain extent, the probability that a terminal device uses the same uplink transmission parameter to retransmit uplink data can be reduced, which is beneficial to conflict resolution.
  • the network device may not carry the HARQ process used for retransmitting uplink data when sending scheduling information.
  • the HARQ process determined by the terminal device may be agreed in advance by the terminal device and the network device, or may be indicated by the network device to the terminal device through a system broadcast message.
  • the scheduling information may further include TA information, and the TA is used for uplink transmission after the terminal device receives the scheduling information.
  • the TA can be used for the terminal device to retransmit uplink data, and can also be used for uplink data sent by the terminal device after the random access is successful.
  • the scheduling information may further carry indication information, and the indication information may indicate that the scheduling information is scheduling information for the terminal device.
  • the scheduling information is scheduling information specific to the terminal device.
  • the indication information may be represented by at least one of the following information: specific RNTI information of the terminal device, ID information of the preamble, and ID information of the terminal device.
  • the terminal device may determine that the scheduling information is its exclusive Scheduling information.
  • the indication information may be represented by bits.
  • the scheduling information includes a specific RNTI of the terminal device
  • a certain length of bits may be used in the scheduling information to indicate the specific RNTI of the terminal device, or the scheduling information may be scrambled with the specific RNTI of the terminal device.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 600 in FIG. 6 includes a communication unit 610 and a processing unit 620, where:
  • the communication unit 610 is configured to send a preamble and uplink data to a network device.
  • the communication unit 610 is further configured to receive scheduling information sent by the network device, where the scheduling information is used to instruct the terminal device to retransmit the uplink data.
  • the processing unit 620 is configured to retransmit the uplink data based on the scheduling information.
  • the scheduling information includes an uplink transmission parameter
  • the uplink transmission parameter is a parameter for the terminal device to retransmit the uplink data.
  • the uplink transmission parameters include at least one of the following: time domain resources, frequency domain resources, pilot resources, and modulation and coding strategy MCS.
  • the scheduling information includes multiple sets of uplink transmission parameters
  • the processing unit 620 is specifically configured to select a set of uplink transmission parameters from the multiple sets of uplink transmission parameters based on the scheduling information; based on the A selected set of uplink transmission parameters, and the uplink data is retransmitted.
  • the terminal device uses the hybrid automatic repeat request HARQ process determined before the uplink data is first transmitted to transmit the uplink data.
  • the determined HARQ process is preset on the terminal device.
  • the scheduling information does not include a HARQ process used by the terminal device to retransmit the uplink data.
  • the scheduling information includes a TA for uplink transmission, and the TA is used for uplink transmission after the terminal device receives the scheduling information.
  • the scheduling information carries indication information, and the indication information is used to indicate that the scheduling information is scheduling information for the terminal device.
  • the indication information includes at least one of the following information: an ID of the terminal device, a specific RNTI of the terminal device, and an ID of the preamble.
  • FIG. 7 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 700 shown in FIG. 7 includes a processing unit 710 and a communication unit 720, where:
  • the processing unit 710 is configured to detect a preamble and uplink data sent by the terminal device.
  • a communication unit 720 configured to send scheduling information to the terminal device when the preamble is detected but the uplink data is not detected or the uplink data fails to be detected, where the scheduling information is used to indicate The terminal device retransmits the uplink data.
  • the scheduling information includes an uplink transmission parameter
  • the uplink transmission parameter is a parameter for the terminal device to retransmit the uplink data.
  • the uplink transmission parameters include at least one of the following parameters: time domain resources, frequency domain resources, pilot resources, and modulation and coding strategy MCS.
  • the scheduling information includes multiple sets of uplink transmission parameters, and the multiple sets of uplink transmission parameters are used by the terminal device to select parameters for retransmitting the uplink data.
  • the scheduling information does not include a HARQ process used by the terminal device to retransmit the uplink data.
  • the scheduling information includes a TA for uplink transmission, and the TA is used for uplink transmission after the terminal device receives the scheduling information.
  • the scheduling information carries indication information, and the indication information is used to indicate that the scheduling information is scheduling information for the terminal device.
  • the indication information includes at least one of the following information: an ID of the terminal device, a specific RNTI of the terminal device, and an ID of the preamble.
  • FIG. 8 is a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 810 may control the transceiver 830 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device according to an embodiment of the present application, and the communication device 800 may implement a corresponding process implemented by a network device in each method of the embodiments of the present application. .
  • the communication device 800 may specifically be a mobile terminal / terminal device in the embodiment of the present application, and the communication device 800 may implement a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, for simplicity , Will not repeat them here.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the chip 900 may further include an input interface 930.
  • the processor 910 may control the input interface 930 to communicate with other devices or chips. Specifically, the processor 910 may obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940.
  • the processor 910 may control the output interface 940 to communicate with other devices or chips. Specifically, the processor 910 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal / terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiments of the present application. For simplicity, here No longer.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 10 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application. As shown in FIG. 10, the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 1020 may be used to implement the corresponding functions implemented by the network device in the foregoing method. For brevity, details are not repeated here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Abstract

本申请提供了一种无线通信方法和设备,当终端设备选用两步的随机接入过程进行随机接入时,会向网络设备发送前导码和上行数据。而当网络设备只收到前导码,而没有收到上行数据或者所述上行数据检测失败的情况下,网络设备可以向终端设备发送指示重传上行数据的调度信息。终端设备可以基于该调度信息进行上行数据的重传,而不需要重新发送随机接入请求,即重新发送前导码和上行数据,能够减小随机接入过程的时延。该方法包括:终端设备向网络设备发送前导码和上行数据;所述终端设备接收所述网络设备发送的调度信息,所述调度信息用于指示所述终端设备重传所述上行数据;基于所述调度信息,所述终端设备重传所述上行数据。

Description

一种无线通信方法和设备
本申请要求于2018年7月27日提交中国专利局、申请号为201810846833.8、发明名称为“一种无线通信方法和设备”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信的方法和设备。
背景技术
随机接入是蜂窝系统具有的最基本的功能,它使终端设备与网络设备建立通信连接成为可能。在新无线(new radio,NR)系统(或称5G系统、5G网络)中,采用了类似长期演进(long term evolution,LTE)的四步随机接入过程,然而,传统的四步随机接入过程的信令开销比较大。
因此,为了减小信令开销,两步的随机接入过程被提出,但是如何基于两步的随机接入过程进行数据的传输是亟需解决的问题。
发明内容
本申请提供一种无线通信的方法和设备,能够减小两步随机接入过程的时延。
第一方面,提供了一种无线通信方法,包括:终端设备向网络设备发送前导码和上行数据;所述终端设备接收所述网络设备发送的调度信息,所述调度信息用于指示所述终端设备重传所述上行数据;基于所述调度信息,所述终端设备重传所述上行数据。
第二方面,提供了一种无线通信方法,包括:网络设备检测终端设备发送的前导码和上行数据;所述网络设备在检测到所述前导码,而未检测到所述上行数据或者所述上行数据检测失败的情况下,所述网络设备向所述终端设备发送调度信息,所述调度信息用于指示所述终端设备重传所述上行数据。
第三方面,提供一种终端设备,用于执行上述第一方面或第一方面的任意可选的实现方式中所述的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可选的实现方式中所述的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可选的实现方式中所述的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任意可选的实现方式中所述的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行 上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种芯片,用于实现上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
本申请提供的技术方案,当终端设备选用两步的随机接入过程进行随机接入时,会向网络设备发送前导码和上行数据。而当网络设备只收到前导码而没有检测到上行数据或上行数据检测失败的情况下,网络设备可以向终端设备发送指示重传上行数据的调度信息。终端设备可以基于该调度信息进行上行数据的重传,而不需要重新发送随机接入请求,即重新发送前导码和上行数据,能够减小随机接入过程的时延。
附图说明
图1是本申请实施例应用的无线通信系统的示意图。
图2是本申请实施例提供的一种四步随机接入过程的示意图。
图3是本申请实施例提供的一种两步步随机接入过程的示意图。
图4是本申请实施例提供的一种无线通信方法的示意性流程图。
图5是本申请实施例提供的另一种无线通信方法的示意性流程图。
图6是本申请实施例提供的一种终端设备的示意性框图。
图7是本申请实施例提供的一种网络设备的示意性框图。
图8是本申请实施例提供的一种通信设备的示意性结构图。
图9是本申请实施例提供的一种芯片的示意性结构图。
图10是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统或NR系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议 (Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。其中,可选地,终端设备120之间也可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或网络还可以称为NR系统或网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括接入与移动性管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、统一数据管理(Unified Data Management,UDM),认证服务器功能(Authentication Server Function,AUSF)等其他网络实体,本申请实施例对此不作限定。
此外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种介质。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
终端设备通常在通过随机接入过程,取得与网络设备的同步后,才能够进行上行传输。目前,随机接入过程通常采用基于竞争的四步随机接入过程,下面结合图2来描述四步随机接入过程。
需要说明的是,本申请实施例仅以基于竞争的随机接入为例进行说明,但本申请并不限于此,本申请实施例还可以应用于基于非竞争的随机接入。
在步骤S210中,终端设备在随机接入信道发送消息1(message1,MSG1),该MSG1中包含随机接入前导码。
在步骤220中,网络设备收到MSG1之后,在下行共享信道(downlink share channel,DL-SCH)发送MSG2,其中,MSG2为随机接入响应(Random Access Response,RAR)。
其中,RAR响应中携带了上行传输的时间提前量(timeing advance,TA)调整和可以使用的上行资源信息以及临时小区无线网络临时标识(temporary cell radio network temporary identifier,T-CRNTI),也即临时CRNTI。
可选地,RAR响应可以由网络设备的媒体接入控制(Media Access Control,MAC)层产生。一条MSG2可以同时对应多个终端设备的随机接入请求响应。
在步骤230中,终端设备在接收到MSG2后,判断是否属于自己的RAR消息,在判断为属于自己的RAR消息时,在MSG2指定的上行资源中发送消息3(message3,MSG3),该MSG3携带终端设备特定的RNTI。
在步骤240中,网络设备在接收到MSG3之后,可以向终端设备发送MSG4消息。其中,该MSG4中包括竞争解决消息以及网络设备为终端设备分配的上行传输资源。
终端设备接收到MSG4后,可以检测在MSG3发送的特定的RNTI是否包含在网络设备发送的竞争解决消息中。若包含,则表明终端设备随机接入过程成功,否则认为随机过程失败。随机接入过程失败后,终端设备需要再次从第一步开始发起随机接入过程。
但是传统的四步随机接入过程需要终端设备与网络设备进行四次信令交互,才能成功接入。四步随机接入过程容易造成信令开销大,接入时延长的问题。
因此,为了节省信令开销,减小接入时延,两步随机接入过程被提出。在两步随机接入过程中,简单的说,相当于将四步随机接入过程的第一步和第三步合并为两步随机接入过程中的第一步,将四步随机接入过程的第二步和第四步合并为两步随机接入过程中的第二步。
下面结合图3,对两步随机接入过程进行描述。
在步骤S310中,终端设备向网络设备发送MSG1。该MSG1中包括随机接入前导码和上行数据。
可选地,该上行数据可以承载在物理上行共享信道(physical uplink shared channel,PUSCH)上。其中,该PUSCH中可以携带终端设备特定的RNTI。
可选地,该上行数据的内容可以根据随机接入场景的不同而不同。例如,对于为了初始接入发起的随机接入,该上行数据中可以包含无线资源控制(radio resource control,RRC)连接请求消息。又例如,对于为了RRC连接重建立发起的随机接入,该上行数据中可以包含RRC连接重建立请求消息。
可选地,该上行数据也可以是承载物理上行控制信道(physical uplink control channel,PDCCH)中的上行信息。
可选地,该前导码可以是终端设备随机选择的前导码。例如,该前导码可以是网络设备提供的多个前导码中的一个。
在步骤S320中,网络设备向终端设备发送随机接入响应MSG2。
但是,在两步随机接入过程中,前导码和上行数据一起发送时,可能会存在网络设备只收到前导码而没有收到上行数据的情况,这时该如何完成随机接入过程是亟需解决的问题。
本申请实施例提供了一种无线传输方法,避免网络设备在只接收到前导码,而没有接收到PUSCH的情况下,终端设备需要重新发起随机接入请求,即重新发送前导码和上行数据的情况,能够减小终端设备随机接入过程的时延,有利于终端设备完成随机接入过程。
下面结合图4,对本申请实施例的无线通信方法进行详细描述。图4的方法包括以下内容中的至少部分内容。
在步骤410中,终端设备向网络设备发送前导码和上行数据。
可选地,该上行数据可以承载在PUSCH上。
可选地,该上行数据也可以是承载在PUCCH上的上行信息。
可选地,该上行数据的内容可以根据随机接入场景的不同而不同。例如,对于为了初始接入发起的随机接入,该上行数据中可以包含RRC连接请求消息。又例如,对于为了RRC连接重建立发起的随机接入,该上行数据中可以包含RRC连接重建立请求消息。
可选地,该前导码可以是网络设备提供的多个前导码中的一个。终端设备可以从网络设备提供的多个前导码中随机选择一个前导码进行发送。
可选地,该前导码可以是网络设备专门为终端设备分配的,即该前导码是与该终端设备绑定的。网络设备收到该前导码后,能唯一的识别出与该前导码对应的终端设备。
终端设备需要选择发送前导码和上行数据的资源。网络设备可以提前指定可用于传输的多个资源,终端设备可以从该多个资源中随机选择一个资源传输前导码和上行数据。
在步骤420中,终端设备接收网络设备发送的调度信息,该调度信息用于指示所述终端设备重传所述上行数据。
可选地,终端设备在发送前导码和上行数据之后,在一定的时间窗内接收网络设备发送的调度信息。
该时间窗可以是从终端设备发送上行数据之后的预设时间段。
在步骤430中,基于所述调度信息,终端设备重传上行数据。
本申请实施例提供的技术方案,在两步的随机接入过程中,当网络设备只收到了终端设备发送的前导码,而没有收到上行数据的情况下,向终端设备发送指示重传上行数据的调度信息。这样终端设备只需重传上行数据,而不需要重新发起随机接入过程,即重新发送前导码和上行数据,能够减小终端设备随机接入过程的时延,有利于终端设备完成随机接入过程。
此外,当网络设备只收到了终端设备发送的前导码,而没有收到上行数据的情况下,网络设备可能会按照四步的接入过程发送响应信号,造成接入时延的增大。本申请实施例提供的方案,能够避免回退到四步随机接入过程,减小接入时延。
可选地,调度信息中可以携带指示标识,该指示标识可以指示终端设备重传上行数据。
当然,在网络设备正确接收到前导码和上行数据的情况下,该调度信息中 携带的指示标识可以指示终端设备去接收物理下行共享信道(physical downlink shared channel,PDSCH)。
具体地,终端设备在收到调度信息后,可以根据该指示标识所指示的信息,确定是进行重传上行数据,还是接收网络设备发送的PDSCH。
当该指示标识指示终端设备重传上行数据时,终端设备基于调度信息,重传上行数据。当该指示标识指示终端设备接收上行数据时,终端设备基于调度信息接收PDSCH。
可选地,该指示标识可以用比特位来表示。例如,可以用一个比特位来表示指示标识。当该比特位为0时,表示终端设备需要重传上行数据;当该比特位为1时,表示终端设备需要接收网络设备发送的PDSCH。
本申请实施例仅是以比特位为例进行说明,指示标识的表示方式还可以是其他的形式,本申请实施例对此不做限定。
可选地,该调度信息中包括上行传输参数,该上行传输参数为用于终端设备重传上行数据的参数。
终端设备收到指示重传的调度信息后,根据调度信息,在相应的上行传输参数中重传上行数据。
可选地,上行传输参数包括以下参数中的至少一种:时域资源、频域资源、导频资源及调制与编码策略(modulation and coding scheme,MCS)。
所述时域资源可以是无线帧、子帧、时隙或者符号等。例如,该时域资源可以包括一个时隙中的起始符号以及符号数量。
所述频域资源可以是带宽、子载波等。
导频资源可以是参考序列的循环移位值、序列初始化值、正交码。
终端设备通过MCS的值可以确定传输上行数据所使用的传输速率。
可选地,所述调度信息中可以包括多套上行传输参数,终端设备可以基于调度信息,从该多套上行传输参数中选择一套上行传输资源,并基于所选择的上行传输参数重传上行数据。
例如,当有多个终端设备选择同一个前导码,并在相同的资源上传输时,为了减小发生冲突的概率,网络设备可以在调度信息中携带多套可用的上行传输参数。这样,终端设备在收到调度信息后,可以从多套上行传输参数中随机选择一套上行传输参数作为重传上行数据的参数,相比于调度信息中只携带一套上行传输参数的方案,能够在一定程度上能够减小终端设备使用同一套上行传输参数来重传上行数据的概率,有利于冲突的解决。
可以理解,多套上行传输参数中的每套上行传输参数可以包括以下参数中的至少一种:时域资源、频域资源、导频资源及调制与编码策略(modulation and coding scheme,MCS)。
可选地,所述终端设备采用在初传所述上行数据之前确定的混合自动重传请求(hybrid automatic repeat request,HARQ)进程来传输所述上行数据。之后,终端设备可以在初传上行数据和/或重传该上行数据时使用该确定的HARQ进程。其中,该初传上行数据可以是终端设备在发起随机接入请求时 发送的上行数据。
该确定的HARQ进程例如可以预设在终端设备上,或者终端设备也可以通过读取系统广播消息来获得。
需要说明的是,本申请实施例中,终端设备获取HARQ进程的方式也可以不局限于重传上行数据的场景。例如,终端设备获取HARQ进程的方式也可以应用在网络设备正确接收到前导码和上行数据的场景。
该确定的进程可以是网络设备提前配置给终端设备的进程,或者是协议中预设的进程。
当传输上行数据使用确定的HARQ进程时,网络设备发送的调度信息中可以不携带重传上行数据的HARQ进程。
可选地,该调度信息还可以包括TA信息,该TA用于所述终端设备接收所述调度信息后的上行传输。
例如,该TA可以用于终端设备重传上行数据,也可以用于在随机接入成功后终端设备发送的上行数据。
TA信息可以表示终端设备在重传上行数据时使用的时间提前量。
可选地,所述调度信息中还可以携带指示信息,该指示信息可以指示该调度信息是针对该终端设备的调度信息。具体地,该调度信息是终端设备专属的调度信息。
该指示信息可以通过以下信息中的至少一种来表示:终端设备的特定RNTI信息,前导码的ID信息和终端设备的ID信息。
具体地,当终端设备收到的调度信息中包含终端设备的特定RNTI信息,终端设备发送的前导码的ID信息,和/或终端设备的ID信息,则终端设备可以确定该调度信息是其专属的调度信息。
可选地,该指示信息可以用比特位来表示。
对于调度信息中包含终端设备的特定RNTI的情况,可以是在调度信息中用一定长度的比特位来表示终端设备的特定RNTI。终端设备收到调度信息后,如果确定该调度信息中的比特位表示自己的特定RNTI,则该终端设备可以确定该调度信息是自己的专属调度信息。
或者也可以是该调度信息用终端设备的特定RNTI进行加扰。当调度信息用终端设备的特定RNTI进行加扰时,如果终端设备能正确解码该调度信息,表示该调度信息是针对该终端设备的专属调度信息。
可选地,该调度信息中包含终端设备的特定RNTI可以是该调度信息中的校验位用该终端设备的特定RNTI进行加扰。
可选地,当终端设备收到的调度信息中包含上述指示信息时,终端设备可以理解随机接入竞争成功。即当终端设备收到调度信息后,如果调度信息中包含终端设备发送的前导码的ID,终端设备的特定RNTI,和/或终端设备的ID,则终端设备可以认为随机接入竞争成功。
本申请实施例对网络设备获取指示信息的方式不作具体限定。例如,前导码可以是与终端设备绑定的,一个前导码对应一个终端设备。当网络设备收到 终端设备发送的前导码后,可以根据前导码与终端设备的对应关系,查找出终端设备的ID信息,和/或特定RNTI等信息。又例如,对终端设备与网络设备从连接态断开后,需要重新建立连接时,该网络设备可以根据之前的记录信息来获得该终端设备的ID信息,和/或者特定RNTI等信息。
可选地,网络设备可以在收到终端设备发送的前导码后,即可获得该前导码的ID信息。
图5是本申请实施例提供的另一种无线通信方法的示意性流程图。图5的方法包括以下内容中的至少部分内容。
在步骤510中,网络设备检测终端设备发送的前导码和上行数据。
可选地,该上行数据可以承载在PUSCH上。
可选地,该上行数据也可以是承载在PUCCH中的上行信息。
在步骤520中,所述网络设备在检测到所述前导码,而未检测到所述上行数据或者所述上行数据检测失败的情况下,所述网络设备向所述终端设备发送调度信息,所述调度信息用于指示所述终端设备重传所述上行数据。
可选地,网络设备可以提前获取终端设备采用的是四步随机接入过程还是两步随机接入过程。
例如,网络设备可以根据终端设备发送的前导码的序列来判断终端设备选择的是四步随机接入还是两步随机接入。假如四步随机接入的前导码序列集合为集合1,两步随机接入的前导码序列集合为集合2。网络设备和终端设备可以分别获得集合1和集合2中的前导码序列。
终端设备在发送前导码之前,可以根据自己的需要从不同的集合中选择前导码来发送。当终端设备确定自己需要使用四步随机接入时,可以从集合1中随机选择一个前导码进行发送。当终端设备确定自己需要使用两步随机接入时,可以从集合2中随机选择一个前导码进行发送。
当网络设备在收到终端设备发送的前导码后,可以根据该前导码序列所属的集合来判断终端设备使用的是两步随机接入还是四步随机接入。当收到的前导码序列属于集合1时,网络设备可以确定终端设备采用的是四步随机接入。当收到的前导码属于集合2时,网络设备可以确定终端设备采用的是两步随机接入。
当网络设备确定终端设备使用的是两步随机接入过程时,可以在相应的资源上检测终端设备发送的前导码和上行数据。
当网络设备在检测到前导码,而没有检测到上行数据或上行数据检测失败的情况下,向终端设备发送指示重传上行数据的调度信息。
当网络设备在既检测到终端设备发送的前导码也检测到上行数据的情况下,可以向终端设备发送指示接收PDSCH的调度信息。
可选地,该调度信息中可以包含指示标识,该指示标识可以指示终端设备是进行重传上行数据还是接收PDSCH。
可选地,该指示标识可以用比特位来表示。例如,可以用一个比特位来表示指示标识。当该比特位为0时,表示终端设备需要重传上行数据;当该比特 位为1时,表示终端设备需要接收网络设备发送的PDSCH。
本申请实施例仅是以比特位为例进行说明,指示标识的表示方式还可以是其他的形式,本申请实施例对此不做限定。
可选地,该调度信息中包括上行传输参数,该上行传输参数为用于终端设备重传上行数据的参数。
可选地,上行传输参数包括以下参数中的至少一种:时域资源、频域资源、导频资源及MCS。
所述时域资源可以是无线帧、子帧、时隙或者符号等。例如,该时域资源可以包括一个时隙中的起始符号以及符号数量。
所述频域资源可以是带宽、子载波等。
导频资源可以是参考序列的循环移位值、序列初始化值、正交码。
终端设备通过MCS的值可以确定传输上行数据所使用的传输速率。
可选地,所述调度信息中可以包括多套上行传输参数,该多套上行传输参数可以用于终端设备选择重传上行数据的参数。
具体地,当网络设备收到多个终端设备发送的随机接入请求,且该多个随机接入请求使用的是相同的前导码,且传输前导码使用的是相同的传输资源时,网络设备在向多个终端设备发送的调度信息中携带多套上行传输参数,以供该多个终端设备进行选择。
这样,终端设备在收到调度信息后,可以从多套上行传输资源中随机选择一套上行传输参数作为重传上行数据的参数,相比于调度信息中只携带一套上行传输参数的方案,能够在一定程度上能够减小终端设备使用同一个上行传输参数来重传上行数据的概率,有利于冲突的解决。
当该终端设备在初传上行数据时就已确定了HARQ进程,则网络设备在发送调度信息时可以不携带重传上行数据使用的HARQ进程。
终端设备确定的HARQ进程例如可以终端设备和网络设备提前约定好的,或者也可以是网络设备通过系统广播消息指示给终端设备的。
可选地,该调度信息还可以包括TA信息,该TA用于所述终端设备接收所述调度信息后的上行传输。
例如,该TA可以用于终端设备重传上行数据,也可以用于在随机接入成功后终端设备发送的上行数据。
可选地,所述调度信息中还可以携带指示信息,该指示信息可以指示该调度信息是针对该终端设备的调度信息。具体地,该调度信息是终端设备专属的调度信息。
该指示信息可以通过以下信息中的至少一种来表示:终端设备的特定RNTI信息,前导码的ID信息和终端设备的ID信息。
具体地,当终端设备收到的调度信息中包含终端设备的特定RNTI信息,终端设备发送的前导码的ID信息,和/或终端设备的ID信息,则终端设备可以确定该调度信息是其专属的调度信息。
可选地,该指示信息可以用比特位来表示。
对于调度信息中包含终端设备的特定RNTI的情况,可以是在调度信息中用一定长度的比特位来表示终端设备的特定RNTI,或者也可以是该调度信息用终端设备的特定RNTI进行加扰。
上文中详细描述了根据本申请实施例的无线通信方法,下面将结合图6至图10,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图6是本申请实施例的一种终端设备的示意性框图,图6的终端设备600包括通信单元610和处理单元620,其中:
通信单元610,用于向网络设备发送前导码和上行数据。
所述通信单元610,还用于接收所述网络设备发送的调度信息,所述调度信息用于指示所述终端设备重传所述上行数据。
处理单元620,用于基于所述调度信息,重传所述上行数据。
可选地,所述调度信息中包括上行传输参数,所述上行传输参数为用于所述终端设备重传所述上行数据的参数。
可选地,所述上行传输参数包括以下中的至少一种:时域资源、频域资源、导频资源和调制与编码策略MCS。
可选地,所述调度信息中包括多套上行传输参数,所述处理单元620具体用于:基于所述调度信息,从所述多套上行传输参数中选择一套上行传输参数;基于所述选择的一套上行传输参数,重传所述上行数据。
可选地,所述终端设备采用在初传所述上行数据之前确定的混合自动重传请求HARQ进程来传输所述上行数据。
可选地,所述确定的HARQ进程预设在所述终端设备上。
可选地,所述调度信息中不包含所述终端设备重传所述上行数据使用的HARQ进程。
可选地,所述调度信息包括上行传输的TA,所述TA用于所述终端设备接收所述调度信息后的上行传输。
可选地,所述调度信息携带指示信息,所述指示信息用于指示所述调度信息为针对所述终端设备的调度信息。
可选地,所述指示信息包括以下信息中的至少一种:所述终端设备的ID、所述终端设备的特定RNTI和所述前导码的ID。
图7是本申请实施例提供的网络设备的示意性框图。图7所示的网络设备700包括处理单元710和通信单元720,其中:
处理单元710,用于检测终端设备发送的前导码和上行数据。
通信单元720,用于在检测到所述前导码,而未检测到所述上行数据或者所述上行数据检测失败的情况下,向所述终端设备发送调度信息,所述调度信息用于指示所述终端设备重传所述上行数据。
可选地,所述调度信息中包括上行传输参数,所述上行传输参数为用于所述终端设备重传所述上行数据的参数。
可选地,所述上行传输参数包括以下参数中的至少一种:时域资源、频域 资源、导频资源和调制与编码策略MCS。
可选地,所述调度信息中包括多套上行传输参数,所述多套上行传输参数用于所述终端设备选择重传所述上行数据的参数。
可选地,所述调度信息中不包含终端设备重传所述上行数据使用的HARQ进程。
可选地,所述调度信息包括上行传输的TA,所述TA用于所述终端设备接收所述调度信息后的上行传输。
可选地,所述调度信息携带指示信息,所述指示信息用于指示所述调度信息为针对所述终端设备的调度信息。
可选地,所述指示信息包括以下信息中的至少一种:所述终端设备的ID、所述终端设备的特定RNTI和所述前导码的ID。
图8是本申请实施例提供的一种通信设备800示意性结构图。图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的移动终端/终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控 制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统1000的示意性框图。如图10所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM, DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应 用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (46)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备向网络设备发送前导码和上行数据;
    所述终端设备接收所述网络设备发送的调度信息,所述调度信息用于指示所述终端设备重传所述上行数据;
    基于所述调度信息,所述终端设备重传所述上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述调度信息中包括上行传输参数,所述上行传输参数为用于所述终端设备重传所述上行数据的参数。
  3. 根据权利要求2所述的方法,其特征在于,所述上行传输参数包括以下中的至少一种:时域资源、频域资源、导频资源和调制与编码策略MCS。
  4. 根据权利要求2或3所述的方法,其特征在于,所述调度信息中包括多套上行传输参数,
    所述基于所述调度信息,所述终端设备重传所述PUSCH,包括:
    所述终端设备基于所述调度信息,从所述多套上行传输参数中选择一套上行传输参数;
    所述终端设备基于所述选择的一套上行传输参数,重传所述上行数据。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述终端设备采用在初传所述上行数据之前确定的混合自动重传请求HARQ进程来传输所述上行数据。
  6. 根据权利要求5所述的方法,其特征在于,所述确定的HARQ进程预设在所述终端设备上。
  7. 根据权利要求5或6所述的方法,其特征在于,所述调度信息中不包含所述终端设备重传所述上行数据使用的HARQ进程。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述调度信息包括上行传输的时间提前量TA,所述TA用于所述终端设备接收所述调度信息后的上行传输。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述调度信息携带指示信息,所述指示信息用于指示所述调度信息为针对所述终端设备的调度信息。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信息包括以下信息中的至少一种:所述终端设备的ID、所述终端设备的特定RNTI和所述前导码的ID。
  11. 一种无线通信方法,其特征在于,包括:
    网络设备检测终端设备发送的前导码和上行数据;
    所述网络设备在检测到所述前导码,而未检测到所述上行数据或者所述上行数据检测失败的情况下,所述网络设备向所述终端设备发送调度信息,所述调度信息用于指示所述终端设备重传所述上行数据。
  12. 根据权利要求11所述的方法,其特征在于,所述调度信息中包括上行传输参数,所述上行传输参数为用于所述终端设备重传所述上行数据的参 数。
  13. 根据权利要求12所述的方法,其特征在于,所述上行传输参数包括以下参数中的至少一种:时域资源、频域资源、导频资源和调制与编码策略MCS。
  14. 根据权利要求12或13所述的方法,其特征在于,所述调度信息中包括多套上行传输参数,所述多套上行传输参数用于所述终端设备选择重传所述上行数据的参数。
  15. 根据权利要求14所述的方法,其特征在于,所述调度信息中不包含所述终端设备重传所述上行数据使用的HARQ进程。
  16. 根据权利要求11-15中任一项所述的方法,其特征在于,所述调度信息包括上行传输的时间提前量TA,所述TA用于所述终端设备接收所述调度信息后的上行传输。
  17. 根据权利要求11-16中任一项所述的方法,其特征在于,所述调度信息携带指示信息,所述指示信息用于指示所述调度信息为针对所述终端设备的调度信息。
  18. 根据权利要求17所述的方法,其特征在于,所述指示信息包括以下信息中的至少一种:所述终端设备的ID、所述终端设备的特定RNTI和所述前导码的ID。
  19. 一种终端设备,其特征在于,包括:
    通信单元,用于向网络设备发送前导码和上行数据;
    所述通信单元:还用于接收所述网络设备发送的调度信息,所述调度信息用于指示所述终端设备重传所述上行数据;
    处理单元,用于基于所述调度信息,重传所述上行数据。
  20. 根据权利要求19所述的终端设备,其特征在于,所述调度信息中包括上行传输参数,所述上行传输参数为用于所述终端设备重传所述上行数据的参数。
  21. 根据权利要求20所述的终端设备,其特征在于,所述上行传输参数包括以下中的至少一种:时域资源、频域资源、导频资源和调制与编码策略MCS。
  22. 根据权利要求20或21所述的终端设备,其特征在于,所述调度信息中包括多套上行传输参数,所述处理单元具体用于:
    基于所述调度信息,从所述多套上行传输参数中选择一套上行传输参数;
    基于所述选择的一套上行传输参数,重传所述上行数据。
  23. 根据权利要求19-22中任一项所述的终端设备,其特征在于,所述终端设备采用在初传所述上行数据之前确定的混合自动重传请求HARQ进程来传输所述上行数据。
  24. 根据权利要求23所述的终端设备,其特征在于,所述确定的HARQ进程预设在所述终端设备上。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述调度信 息中不包含所述终端设备重传所述上行数据使用的HARQ进程。
  26. 根据权利要求19-25中任一项所述的终端设备,其特征在于,所述调度信息包括上行传输的时间提前量TA,所述TA用于所述终端设备接收所述调度信息后的上行传输。
  27. 根据权利要求19-26中任一项所述的终端设备,其特征在于,所述调度信息携带指示信息,所述指示信息用于指示所述调度信息为针对所述终端设备的调度信息。
  28. 根据权利要求27所述的终端设备,其特征在于,所述指示信息包括以下信息中的至少一种:所述终端设备的ID、所述终端设备的特定RNTI和所述前导码的ID。
  29. 一种网络设备,其特征在于,包括:
    处理单元,用于检测终端设备发送的前导码和上行数据;
    通信单元,用于在检测到所述前导码,而未检测到所述上行数据或者所述上行数据检测失败的情况下,向所述终端设备发送调度信息,所述调度信息用于指示所述终端设备重传所述上行数据。
  30. 根据权利要求29所述的网络设备,其特征在于,所述调度信息中包括上行传输参数,所述上行传输参数为用于所述终端设备重传所述上行数据的参数。
  31. 根据权利要求30所述的网络设备,其特征在于,所述上行传输参数包括以下参数中的至少一种:时域资源、频域资源、导频资源和调制与编码策略MCS。
  32. 根据权利要求30或31所述的网络设备,其特征在于,所述调度信息中包括多套上行传输参数,所述多套上行传输参数用于所述终端设备选择重传所述上行数据的参数。
  33. 根据权利要求32所述的网络设备,其特征在于,所述调度信息中不包含所述终端设备重传所述上行数据使用的HARQ进程。
  34. 根据权利要求29-33中任一项所述的网络设备,其特征在于,所述调度信息包括上行传输的时间提前量TA,所述TA用于所述终端设备接收所述调度信息后的上行传输。
  35. 根据权利要求29-34中任一项所述的网络设备,其特征在于,所述调度信息携带指示信息,所述指示信息用于指示所述调度信息为针对所述终端设备的调度信息。
  36. 根据权利要求35所述的网络设备,其特征在于,所述指示信息包括以下信息中的至少一种:所述终端设备的ID、所述终端设备的特定RNTI和所述前导码的ID。
  37. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  38. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于 存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求11至18中任一项所述的方法。
  39. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的终端设备执行如权利要求1至10中任一项所述的传输下行控制信息的方法。
  40. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的网络设备执行如权利要求11至18中任一项所述的传输下行控制信息的方法。
  41. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  42. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11至18中任一项所述的方法。
  43. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的无线通信方法。
  44. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至18中任一项所述的无线通信方法。
  45. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  46. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求11至18中任一项所述的方法。
PCT/CN2019/098016 2018-07-27 2019-07-26 一种无线通信方法和设备 WO2020020373A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110344363.7A CN113037439B (zh) 2018-07-27 2019-07-26 一种无线通信方法和设备
CN201980049229.5A CN112514507A (zh) 2018-07-27 2019-07-26 一种无线通信方法和设备
EP19841583.8A EP3813465B1 (en) 2018-07-27 2019-07-26 Wireless communication method and device
US17/148,235 US20210136797A1 (en) 2018-07-27 2021-01-13 Wireless communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810846833.8 2018-07-27
CN201810846833 2018-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/148,235 Continuation US20210136797A1 (en) 2018-07-27 2021-01-13 Wireless communication method and device

Publications (1)

Publication Number Publication Date
WO2020020373A1 true WO2020020373A1 (zh) 2020-01-30

Family

ID=69181354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098016 WO2020020373A1 (zh) 2018-07-27 2019-07-26 一种无线通信方法和设备

Country Status (5)

Country Link
US (1) US20210136797A1 (zh)
EP (1) EP3813465B1 (zh)
CN (2) CN112514507A (zh)
TW (1) TW202008824A (zh)
WO (1) WO2020020373A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022002051A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种数据传输方法以及相关设备
EP4092938A4 (en) * 2020-02-18 2023-01-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. SIGNAL TRANSMISSION METHODS AND DEVICES, DEVICES AND STORAGE MEDIA

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085428A1 (en) * 2016-11-01 2018-05-11 Qualcomm Incorporated Two step random access procedure
WO2018127549A1 (en) * 2017-01-06 2018-07-12 Sony Corporation Wireless telecommunications apparatuses and methods
CN108282897A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入反馈、处理方法、基站及终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8582511B2 (en) * 2006-06-20 2013-11-12 Lg Electronics Inc. Procedure for initial access
CN101911755A (zh) * 2008-01-07 2010-12-08 松下电器产业株式会社 无线发送装置和重发控制方法
US8230291B2 (en) * 2008-08-04 2012-07-24 Research In Motion Limited Dynamic overwriting of physical downlink control channel for hybrid automatic repeat request associations for downlink semi-persistent scheduling
US10382169B2 (en) * 2016-04-01 2019-08-13 Huawei Technologies Co., Ltd. HARQ systems and methods for grant-free uplink transmissions
CN109314910B (zh) * 2016-04-01 2020-11-06 华为技术有限公司 用于免授权上行传输的harq系统和方法
CN108076534A (zh) * 2016-11-14 2018-05-25 北京信威通信技术股份有限公司 随机接入方法和装置
CN108282899B (zh) * 2017-01-05 2020-03-06 电信科学技术研究院 一种两步竞争随机接入方法和装置
CN108282903B (zh) * 2017-01-06 2020-03-24 电信科学技术研究院 一种信息传输方法、ue及接入网实体
US10313158B2 (en) * 2017-01-09 2019-06-04 Mediatek Inc. Method for data transmission and reception of random access procedure
US11057935B2 (en) * 2017-03-22 2021-07-06 Comcast Cable Communications, Llc Random access process in new radio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085428A1 (en) * 2016-11-01 2018-05-11 Qualcomm Incorporated Two step random access procedure
WO2018127549A1 (en) * 2017-01-06 2018-07-12 Sony Corporation Wireless telecommunications apparatuses and methods
CN108282897A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入反馈、处理方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813465A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092938A4 (en) * 2020-02-18 2023-01-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. SIGNAL TRANSMISSION METHODS AND DEVICES, DEVICES AND STORAGE MEDIA
WO2022002051A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种数据传输方法以及相关设备

Also Published As

Publication number Publication date
TW202008824A (zh) 2020-02-16
CN112514507A (zh) 2021-03-16
EP3813465A4 (en) 2021-08-25
EP3813465B1 (en) 2024-05-08
CN113037439B (zh) 2022-11-08
US20210136797A1 (en) 2021-05-06
EP3813465A1 (en) 2021-04-28
CN113037439A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
EP3672333B1 (en) Uplink transmission
US11191106B2 (en) Random access for low latency wireless communications
KR20200036797A (ko) 무선통신 시스템에서 랜덤 액세스 방법 및 장치
US10462822B2 (en) Random access method and apparatus
JP7191248B2 (ja) ランダムアクセス方法、端末装置及びネットワーク装置
US20200374920A1 (en) Method and apparatus for transmitting data in random access process
US20220007426A1 (en) Random access method and device
WO2020020270A1 (zh) 随机接入的方法和通信设备
WO2020063828A1 (zh) 一种随机接入的方法和通信装置
US20220256620A1 (en) Random access method and apparatus and communication system
US20210136797A1 (en) Wireless communication method and device
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
US20220007436A1 (en) Random access method and device
US20210136834A1 (en) Random Access Method, Terminal Device, and Network Device
WO2017208768A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
US20240080817A1 (en) Wireless communication method, terminal device, and network device
US20210385881A1 (en) Wireless communication method, terminal device, and network device
WO2019158096A1 (zh) 随机接入过程中传输数据的方法和装置
CN114342465A (zh) 无线通信的方法和终端设备
CN116074970A (zh) 无线通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019841583

Country of ref document: EP

Effective date: 20210119