WO2020020014A1 - 表面波等离子体装置 - Google Patents

表面波等离子体装置 Download PDF

Info

Publication number
WO2020020014A1
WO2020020014A1 PCT/CN2019/096156 CN2019096156W WO2020020014A1 WO 2020020014 A1 WO2020020014 A1 WO 2020020014A1 CN 2019096156 W CN2019096156 W CN 2019096156W WO 2020020014 A1 WO2020020014 A1 WO 2020020014A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
dielectric
surface wave
plasma device
wave plasma
Prior art date
Application number
PCT/CN2019/096156
Other languages
English (en)
French (fr)
Inventor
王桂滨
韦刚
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2020020014A1 publication Critical patent/WO2020020014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4615Microwave discharges using surface waves

Definitions

  • the present invention relates to the field of microelectronic technology, and in particular, to a surface wave plasma device.
  • Plasma processing equipment is widely used in the manufacturing process of integrated circuits or MEMS devices.
  • Plasma processing equipment includes capacitively coupled plasma processing equipment, inductively coupled plasma processing equipment, electronic cyclotron resonance plasma processing equipment, and surface wave plasma equipment.
  • the surface wave plasma device can obtain higher plasma density, lower electron temperature, and does not need to increase the external magnetic field. Therefore, the surface wave plasma device becomes the most advanced plasma One of the devices.
  • the existing surface wave plasma device mainly includes a microwave source mechanism, a reaction chamber, and a resonant cavity provided on the top of the reaction chamber.
  • the resonant cavity includes a metal cavity having a top wall and a side wall, and a metal cavity provided in the metal cavity.
  • An annular blind groove can be formed on the lower surface of the resonance plate, and the annular blind groove is filled with a medium. material.
  • the microwave source mechanism is used to provide microwave energy and fed into the resonant cavity through the feeding coaxial probe; the slot plate is used to couple microwaves into the reaction chamber; the resonant plate is used to make the self-slot plate The coupled microwave generates total reflection on the lower surface of the resonance plate to form a surface wave plasma.
  • an existing surface wave plasma device is implemented by setting different slot arrangements and the number of slots on the slot plate.
  • This adjustment method The types of process gases that can be applied are limited, which means that more different types of slot plates and resonance plates are needed as spare parts to adapt to the frequent adjustment of process gas types, which increases the difficulty of equipment maintenance and increases equipment and labor costs.
  • the blind groove is formed on the lower surface of the resonance plate, the bottom of the blind groove and the side wall intersect to form sharp edge corners. These sharp corners are easy to form deposits. With time, the deposits fall into the reaction chamber. Chamber, forming particles, which leads to an increase in the number of particles and affects the performance of the device.
  • the present invention aims to solve at least one of the technical problems in the prior art, and proposes a surface wave plasma device, which can not only improve the convenience and flexibility of adjusting the uniformity of plasma distribution, but also avoid the cavity Increased particles and uneven surface of the lower surface of the resonance plate.
  • a surface wave plasma device which includes a resonance plate, and at least one groove is formed on one surface of the resonance plate remote from the reaction chamber, and the groove can be separated. Is filled with a dielectric structure for adjusting the uniformity of the plasma distribution in the reaction chamber.
  • the media structure includes at least one media unit, and different media units are made of different media materials.
  • the media structure includes a plurality of media units, and a plurality of the media units are sequentially stacked along a depth direction of the groove.
  • the media structure includes a plurality of media units, and the plurality of media units are alternately arranged along the circumferential direction of the groove.
  • the media structure includes a plurality of media units, and the plurality of media units are sequentially set along a radial direction of the groove.
  • the dielectric material includes quartz, ceramic, or polytetrafluoroethylene.
  • the groove is an annular groove formed around the resonance plate in a circumferential direction, and the shape of the dielectric structure is the same as the shape of the groove.
  • the number of the grooves is plural, and the plurality of grooves are arranged at intervals along the radial direction of the resonance plate.
  • a plurality of the grooves are separably filled with the dielectric structure.
  • the cross section of the groove is circular, and one half of the inner diameter of the groove is larger than a wavelength of the microwave in the resonance plate; the radial width of the groove is smaller than that of the microwave.
  • a wavelength in the resonance plate; the depth of the groove is an integer multiple of a half wavelength or a quarter wavelength of the microwave in the resonance plate.
  • the value of one-half of the inner diameter of the groove ranges from 30 mm to 150 mm.
  • the value of the radial width of the groove ranges from 20 mm to 100 mm.
  • the depth of the groove ranges from 10 mm to 40 mm.
  • the surface wave plasma device provided by the present invention can form at least one groove on a surface of the resonance plate remote from the reaction chamber, and the groove can be detachably filled with a dielectric structure, so that the reaction chamber can be Adjust the plasma density in the region where the grooves are located, and set parameters such as the shape, size (e.g. radial width, depth, inner diameter, etc.), number, position and arrangement of the grooves, and / or Setting the material type, quantity, size and arrangement of the medium structure can adjust the uniformity of the plasma distribution in the reaction chamber, thereby expanding the applicable range of process gas types and improving the flexibility of adjusting the uniformity of the plasma distribution.
  • the dielectric structure can be detachably filled in the groove, so that the dielectric structure can be replaced more conveniently without unloading the resonance plate, thereby improving the convenience of adjusting the uniformity of the plasma distribution.
  • FIG. 1 is a cross-sectional view of a surface wave plasma device according to a first embodiment of the present invention
  • FIG. 2 is a top view of a resonance plate used in a first embodiment of the present invention
  • FIG. 3 is a top view of a resonance plate used in a second embodiment of the present invention.
  • FIG. 4 is a top view of a resonance plate used in a third embodiment of the present invention.
  • FIG. 5 is a top view of a resonance plate used in a fourth embodiment of the present invention.
  • FIG. 6 is a top view of a resonance plate used in a fifth embodiment of the present invention.
  • the surface wave plasma device provided by the first embodiment of the present invention includes a microwave source system 1 for providing microwaves, a waveguide 2 for transmitting microwaves, a coaxial probe 3, The reaction chamber 6 and the resonance chamber 4 provided on the top of the reaction chamber 6, wherein the coaxial probe 3 is used to feed microwave into the resonance chamber 4.
  • the resonant cavity 4 includes a metal cavity having a top wall 41 and a side wall 42, a slot plate 5 disposed inside the side wall 42 of the metal cavity, and a resonant plate 7 disposed below the slot plate 5, wherein the metal cavity
  • the body is generally made of metal such as stainless steel.
  • the slot plate 5 is generally made of a metal such as aluminum or copper. The thickness of the slot plate 5 usually ranges from 0.5 mm to 6 mm.
  • the slit plate 5 has a plurality of slits 51 for coupling electromagnetic waves in the resonant cavity 4 to the reaction chamber 6 below.
  • each slit 51 on the plane of the slit plate 5 is similar to an “L” shape, that is, it is composed of two mutually perpendicular slits, and the width of the slit 51 ranges from 1 mm to 6 mm; the length of the slit 51 The value ranges from 10mm to 35mm.
  • the plurality of slits 51 surround at least one turn in the circumferential direction of the resonant cavity 4. The number of turns can be adjusted according to the actual diameter of the resonant cavity 4, and is usually between 1 to 6 turns. Also, the number of the slits 51 in the slit loop that is closer to the edge of the slit plate 5 is larger.
  • the plurality of slits 51 surrounds two turns in the circumferential direction of the resonant cavity 4, among which there are eight slits in the inner ring and 16 slits in the outer ring.
  • the distribution of the electromagnetic waves coupled below the slit plate 5 can be adjusted, so that the plasma distribution uniformity in the reaction chamber 6 can be adjusted.
  • the resonant plate 7 is made of a high dielectric constant material such as ceramics, quartz, and the like.
  • the main role of the resonant plate 7 is to couple the electromagnetic waves from the slot plate 5 above it to generate total reflection on the lower surface of the resonant plate 7 to form a surface Wave plasma.
  • one surface of the resonance plate 7 near the reaction chamber 6 ie, the lower surface of the resonance plate 7 in FIG. 1 is exposed in the reaction chamber 6, and one surface of the resonance plate 7 remote from the reaction chamber 6 (ie, A groove 71 is formed on the upper surface of the resonance plate 7 in FIG. 1.
  • the groove 71 is separably filled with a dielectric structure 8 for adjusting the uniformity of the plasma distribution in the reaction chamber 6.
  • the so-called separable filling means that the dielectric structure 8 filled in the groove 71 can be taken out, so that the dielectric structure 8 can be flexibly and conveniently replaced without the need to replace the resonant plate 7 in its entirety, thereby improving the convenience of adjustment.
  • Adapting to the frequent adjustment of the type of process gas can reduce the difficulty of equipment maintenance, thereby reducing equipment and labor costs.
  • the dielectric structure 8 can be detachably filled in the groove 71, so that the dielectric structure 8 can be replaced more easily without unloading the resonance plate 7, thereby improving the convenience of adjusting the uniformity of the plasma distribution.
  • the reaction chamber can be adjusted by setting the shape, size, number, position and arrangement of the different grooves 71 and / or the material type, number, size and arrangement of the dielectric structure 8
  • the uniformity of plasma distribution in the chamber can expand the applicable range of process gas types and improve the flexibility of adjusting the uniformity of plasma distribution.
  • the groove 71 is an annular groove that surrounds the circumferential direction of the resonance plate 7 (that is, the circumferential direction of the reaction chamber 6).
  • the longitudinal section of the annular groove is rectangular.
  • the number of the grooves 71 may be one.
  • the parameters e.g., longitudinal section shape, cross-sectional shape, etc.), dimensions (e.g., radial width, depth, inner diameter, etc.), number, position, and arrangement method of the groove 71 can be adjusted in the reaction chamber by setting parameters such as Uniform plasma distribution.
  • the cross section of the groove 71 has a circular ring shape, and one-half of the inner diameter of the groove 71 (that is, the dimension R in FIG. 2) is larger than the microwave resonance.
  • a wavelength in the plate 7 is optional.
  • the value R ranges from 30 to 150 mm.
  • the radial width B of the annular groove is smaller than a wavelength of the microwave in the resonance plate 7.
  • the radial width The value of B ranges from 20 to 100 mm;
  • the depth of the groove 71 is an integer multiple of one-half or one-fourth of the wavelength of the microwave in the resonance plate 7.
  • the depth of the groove 71 is The value ranges from 10 to 40 mm.
  • the dielectric structure 8 includes at least one dielectric unit, and different kinds of dielectric units are made of different kinds of dielectric materials.
  • the medium structure 8 includes a medium unit.
  • the number of the medium units is one, and the medium unit is a ring-shaped medium plate.
  • the shape of the dielectric structure 8 filled in the groove 71 is consistent with the shape of the groove 71.
  • the cross section of the groove 71 is circular
  • the shape of the dielectric structure 8 filled in the groove 71 is also Round ring.
  • the size of the dielectric structure 8 filled in the groove 71 is consistent with the size of the groove 71. The dielectric structure 8 is completely filled in the groove 71, thereby improving the flatness of one surface of the resonance plate 7 away from the reaction chamber 6.
  • the dielectric material used in the dielectric unit includes quartz, ceramic, or polytetrafluoroethylene.
  • the dielectric structure 8 includes a plurality of types of media units, and the plurality of types of media units are alternately arranged in a circumferential direction of the groove 71 into a circular dielectric plate.
  • a first media unit 8a and a second media unit 8b both of which have the same number, and are alternately arranged along the circumferential direction of the groove 71 to form a circular ring shape.
  • Media board The dielectric material used for the first dielectric unit 8a and the second dielectric unit 8b may be quartz, ceramic, polytetrafluoroethylene, or the like.
  • the center angles corresponding to different media units may be the same as shown in FIG. 3 or may be set differently according to the actual situation, so as to adjust the uniformity of the plasma distribution on the circumferential area corresponding to the annular groove 71.
  • the dielectric structure 8 includes a plurality of types of media units, and the plurality of types of media units are sequentially stacked along the depth direction of the groove 71.
  • the number of the media units is three, namely the first media unit 8a, the second media unit 8b, and the third media unit 8c, and the first media unit 8a, the second media unit 8b, and
  • the number of the third dielectric units 8c is one, and the cross-sectional shape of each dielectric unit is the same as the cross-sectional shape of the groove 71, and the three are sequentially stacked in the vertical direction (that is, the axial direction of the resonance plate 7).
  • the dielectric material used for the first dielectric unit 8a, the second dielectric unit 8b, and the third dielectric unit 8c may be quartz, ceramic, or polytetrafluoroethylene, and the thickness of each dielectric unit ranges from 5 mm to 20 mm. .
  • the electric field distribution under the resonance plate 7 can be adjusted to a greater extent, and the plasma uniformity can be adjusted.
  • the medium structure 8 includes a plurality of medium units, and the plurality of medium units are sequentially set along the radial direction of the groove 71.
  • the number of the media units is three, namely the first media unit 8a, the second media unit 8b, and the third media unit 8c, and the first media unit 8a, the second media unit 8b, and
  • the number of the third dielectric units 8c is one, and the three have the same thickness in the radial direction, and the three are sequentially set in the radial direction.
  • the dielectric material used for the first dielectric unit 8a, the second dielectric unit 8b, and the third dielectric unit 8c may be quartz or ceramics or polytetrafluoroethylene or the like.
  • the electric field distribution under the resonance plate 7 can be adjusted to a greater extent, and the plasma uniformity can be adjusted.
  • either one dielectric structure 8 may be provided in each groove 71, or a plurality of dielectric structures 8 may be provided in each groove 71.
  • the shape of the dielectric structure 8 is consistent with the shape of the corresponding groove 71, so that the dielectric structure 8 is completely filled in the groove 71, thereby improving the resonance plate.
  • each groove 71 when a plurality of dielectric structures 8 are provided in each groove 71, the overall shape formed by the plurality of dielectric structures 8 is consistent with the shape of the groove 71, each Each of the dielectric structures 8 is a ring-shaped dielectric plate structure, and a plurality of the dielectric structures 8 are sequentially stacked along the depth direction of the groove 71, or are sequentially set along the radial direction of the groove 71.
  • the above-mentioned setting methods all belong to the protection scope of the present invention.
  • each groove 71 is an annular groove formed around the resonance plate 7 in a circumferential direction, and the inner diameter of different annular grooves is different, and they are coaxially nested with each other.
  • the cross section is rectangular and the cross section is circular. For example, as shown in FIG. 6, there are three annular grooves, and the radial widths and depths of the three annular grooves are the same, and the spacing between two adjacent annular grooves is equal.
  • each annular groove (8a, 8b, 8c) ranges from 5mm to 20mm, and one-half of the inner diameter of each annular groove is larger than the microwave at the resonance plate 7 For one wavelength, the value (one half of the inner diameter of each annular groove) ranges from 30 to 150 mm.
  • the electric field distribution under the resonance plate 7 can be adjusted more effectively, and the plasma uniformity can be adjusted.
  • the dielectric structure 8 is the same as the dielectric structure 8 shown in FIG. 2, that is, each dielectric structure 8 is a complete ring.
  • the present invention is not limited to this.
  • the dielectric structure 8 may be a dielectric structure 8 of any structure provided by the present invention.
  • the dielectric structures 8 in the plurality of annular grooves may be the same dielectric structure as shown in FIG. 6, or different dielectric structures may be set according to actual conditions.
  • the surface wave plasma device provided by the present invention is provided with at least one groove 71 on a surface of the resonance plate away from the reaction chamber, and the groove is detachably filled with at least one medium.
  • Structure which can adjust the plasma density in the area of the reaction chamber corresponding to the groove, and by setting the shape, size (such as radial width, depth, inner diameter, etc.), number, position and arrangement of the groove And other parameters, and / or setting the material type, quantity, size, and arrangement of the medium structure, can adjust the uniformity of the plasma distribution in the reaction chamber, thereby expanding the applicable range of process gas types and improving plasma adjustment. Flexibility in distribution uniformity.
  • the dielectric structure can be detachably filled in the groove, so that the dielectric structure can be replaced more conveniently without unloading the resonance plate, thereby improving the convenience of adjusting the uniformity of the plasma distribution.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

一种表面波等离子体装置,包括谐振板(7),在谐振板(7)的远离反应腔室(6)的一个表面上形成有凹槽(71),在凹槽(71)中可分离的填充有介质结构(8),用于调节反应腔室(6)中的等离子体分布均匀性。该表面波等离子体装置不仅可以提高调节等离子体分布均匀性的便捷性、灵活性,而且还可以避免反应腔室(6)颗粒增加、谐振板(7)下表面不平整的问题。

Description

表面波等离子体装置 技术领域
本发明涉及微电子技术领域,具体地,涉及一种表面波等离子体装置。
背景技术
目前,等离子体加工设备被广泛地应用于集成电路或MEMS器件的制造工艺中。等离子体加工设备包括电容耦合等离子体加工设备、电感耦合等离子体加工设备、电子回旋共振等离子体加工设备和表面波等离子体装置等。其中,表面波等离子体装置相对其他等离子体加工设备而言,可以获得更高的等离子体密度、更低的电子温度,且不需要增加外磁场,因此表面波等离子体装置成为最先进的等离子体设备之一。
现有的表面波等离子体装置主要包括微波源机构、反应腔室和设置在反应腔室顶部的谐振腔,其中,谐振腔包括具有顶壁和侧壁的金属腔体、设置在金属腔体的侧壁内侧的缝隙板,以及设置在缝隙板下方的谐振板,该谐振板的下表面暴露在反应腔室中,在谐振板下表面可形成环形盲槽,在该环形盲槽中填充有介质材料。在进行工艺时,微波源机构用于提供微波能量,并通过馈电同轴探针馈入到谐振腔中;缝隙板用于将微波耦合至反应腔室中;谐振板用于使自缝隙板耦合下来的微波在谐振板下表面产生全反射,以形成表面波等离子体。
为了调节在反应腔室内形成的等离子体的分布均匀性,现有的一种表面波等离子体装置是通过设定缝隙板上不同的缝隙排布、缝隙数量来实现的,但是,这种调节方式能够适用的工艺气体的种类有限,这意味着需要更多不同种类的缝隙板和谐振板作为备件,以适应工艺气体种类的频繁调整,从而增加了设备的维护难度,增加了设备和人力成本。另外,由于盲槽形成于谐 振板的下表面,盲槽的底部与侧壁相交形成了尖锐的边缘角落,这些尖锐角落部位易形成沉积物,随着时间的延长,沉积物掉落进入反应腔室,形成颗粒,从而导致颗粒数量增加,影响设备的性能。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种表面波等离子体装置,其不仅可以提高调节等离子体分布均匀性的便捷性、灵活性,而且还可以避免腔室颗粒增加、谐振板下表面不平整的问题。
为实现本发明的目的而提供了一种表面波等离子体装置,其包括谐振板,在所述谐振板的远离反应腔室的一个表面上形成有至少一个凹槽,所述凹槽中可分离的填充有介质结构,用于调节所述反应腔室中的等离子体分布均匀性。
可选地,所述介质结构包括至少一种介质单元,不同种所述介质单元由不同种介质材料制成。
可选地,所述介质结构包括多种介质单元,多种所述介质单元沿所述凹槽的深度方向依次叠置。
可选地,所述介质结构包括多种介质单元,多种所述介质单元沿所述凹槽周向交替排布。
可选地,所述介质结构包括多种介质单元,多种所述介质单元沿所述凹槽的径向依次套设。
可选地,所述介质材料包括石英、陶瓷或者聚四氟乙烯。
可选地,所述凹槽为沿所述谐振板的周向环绕形成的环形凹槽,且所述介质结构与所述凹槽的形状一致。
可选地,所述凹槽的数量为多个,多个所述凹槽沿所述谐振板的径向间隔设置。
可选地,多个所述凹槽可分离的填充有所述介质结构。
可选地,所述凹槽的横截面呈圆环形,所述凹槽的内径的二分之一大于微波在所述谐振板中的一个波长;所述凹槽的径向宽度小于微波在所述谐振板中的一个波长;所述凹槽的深度是微波在所述谐振板中的二分之一波长或者四分之一波长的整数倍。
可选地,所述凹槽的内径的二分之一的取值范围在30mm~150mm。
可选地,所述凹槽的径向宽度的取值范围在20mm~100mm。
可选地,所述凹槽的深度的取值范围在10mm~40mm。
本发明具有以下有益效果:
本发明提供的表面波等离子体装置,其通过在谐振板的远离反应腔室的一个表面上形成有至少一个凹槽,且在该凹槽中可分离的填充有介质结构,可以对反应腔室内对应该凹槽所在区域中的等离子体密度进行调节,而且通过设定凹槽的形状、尺寸(例如径向宽度、深度、内径等)、数量、位置和排布方式等的参数,和/或设定介质结构的材料种类、数量、尺寸和排布方式,可以调节反应腔室中的等离子体分布均匀性,从而可以扩大工艺气体种类的适用范围,提高调节等离子体分布均匀性的灵活性。
同时,通过使上述凹槽形成在谐振板的远离反应腔室的一个表面上,这不仅可以避免因凹槽暴露在反应腔室中而出现腔室颗粒增加、谐振板下表面不平整的问题,而且可以允许介质结构可分离的填充在凹槽中,从而可以更方便地更换介质结构,而无需卸载谐振板,进而可以提高调节等离子体分布均匀性的便捷性。
附图说明
图1为本发明第一实施例提供的表面波等离子体装置的剖视图;
图2为本发明第一实施例采用的谐振板的俯视图;
图3为本发明第二实施例采用的谐振板的俯视图;
图4为本发明第三实施例采用的谐振板的俯视图;
图5为本发明第四实施例采用的谐振板的俯视图;
图6为本发明第五实施例采用的谐振板的俯视图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图来对本发明提供的表面波等离子体装置进行详细描述。
请一并参阅图1和图2,本发明第一实施例提供的表面波等离子体装置,其包括用于提供微波的微波源系统1、用于传输微波的波导2、同轴探针3、反应腔室6和设置在反应腔室6顶部的谐振腔4,其中,同轴探针3用于将微波馈入谐振腔4中。
谐振腔4包括具有顶壁41和侧壁42的金属腔体、设置在该金属腔体的侧壁42内侧的缝隙板5,以及设置在该缝隙板5下方的谐振板7,其中,金属腔体一般采用不锈钢等金属制作。缝隙板5一般采用铝或铜等金属制作。缝隙板5的厚度的取值范围通常在0.5mm~6mm。并且,在缝隙板5中具有多个缝隙51,用于将谐振腔4中的电磁波耦合到下方的反应腔室6中。每个缝隙51在缝隙板5所在平面上的正投影形状类似为“L”形,即,由两条相互垂直的缝隙组成,缝隙51的宽度的取值范围在1mm~6mm;缝隙51的长度的取值范围在10mm~35mm。多个缝隙51沿谐振腔4的周向环绕至少一圈,圈数可以根据实际谐振腔4的直径大小作调整,通常在1~6圈之间。并且,越靠近缝隙板5的边缘的缝隙圈中的缝隙51的数量越多。例如,多个缝隙51沿谐振腔4的周向环绕两圈,其中,内圈中的缝隙为8个,外圈中的缝隙为16个。通过改变缝隙51的圈数以及同一圈中的缝隙数量,可以调节耦合到缝隙板5下方的电磁波的分布,从而可以调节反应腔室6中的等离子体分 布均匀性。
谐振板7采用例如陶瓷、石英等的高介电常数材料制作,谐振板7的主要作用是使自其上方缝隙板5耦合下来的电磁波,在谐振板7的下表面产生全反射,进而形成表面波等离子体。并且,谐振板7的靠近反应腔室6的一个表面(即图1中谐振板7的下表面)暴露在反应腔室6中,在谐振板7的远离反应腔室6的一个表面(即,图1中谐振板7的上表面)上形成有凹槽71。并且,在该凹槽71中可分离的填充有介质结构8,用于调节反应腔室6中的等离子体分布均匀性。
所谓可分离的填充,是指填充在凹槽71中的介质结构8能够被取出,从而可以灵活方便地更换介质结构8,而无需整块更换谐振板7,进而提高了调节便捷性,既能够适应工艺气体种类的频繁调整,又能够降低设备的维护难度,进而降低了设备和人力成本。
通过使上述凹槽71形成在谐振板7的远离反应腔室6的一个表面,这不仅可以避免因凹槽71暴露在反应腔室6中而出现腔室颗粒增加、谐振板下表面不平整的问题,而且可以允许介质结构8可分离的填充在凹槽71中,从而可以更方便地更换介质结构8,而无需卸载谐振板7,进而可以提高调节等离子体分布均匀性的便捷性。
在实际应用中,可以通过设定不同的凹槽71的形状、尺寸、数量、位置和排布方式,和/或,介质结构8的材料种类、数量、尺寸和排布方式,来调节反应腔室中的等离子体分布均匀性,从而可以扩大工艺气体种类的适用范围,提高调节等离子体分布均匀性的灵活性。
在本实施例中,如图2所示,凹槽71为沿谐振板7的周向(也即,反应腔室6的周向)环绕的环形凹槽,该环形凹槽的纵截面呈矩形,其中,凹槽71的数量可为一个。通过设定凹槽71的形状(例如纵截面形状、横截面形状等)、尺寸(例如径向宽度、深度、内径等)、数量、位置和排布方式等 的参数可以调节反应腔室中的等离子体分布均匀性。
在本实施例中,如图1至图2所示,凹槽71的横截面呈圆环形,凹槽71的内径的二分之一(即,图2中的尺寸R)大于微波在谐振板7中的一个波长,可选的,该尺寸R的取值范围在30~150mm;环形凹槽的径向宽度B小于微波在谐振板7中的一个波长,可选的,该径向宽度B的取值范围在20~100mm;凹槽71的深度是微波在谐振板7中的二分之一个波长或者四分之一个波长的整数倍,可选的,凹槽71的深度的取值范围在10~40mm。
下面结合附图对本发明实施例中采用的介质结构的具体结构进行描述。
介质结构8包括至少一种介质单元,不同种介质单元由不同种介质材料制成。
作为介质结构的一种具体实施方式,请参阅图2,介质结构8包括一种介质单元,介质单元的数量为一个,该介质单元为环形介质板。
优选的,凹槽71内填充的介质结构8的形状与该凹槽71的形状一致,例如,凹槽71的横截面呈圆环形,则凹槽71内填充的介质结构8的形状也为圆环形。并且,凹槽71内填充的介质结构8的尺寸与该凹槽71的尺寸一致。以使介质结构8完全填充在凹槽71内,从而提高谐振板7的远离反应腔室6的一个表面的平整性。
可选的,介质单元所采用的介质材料包括石英、陶瓷或者聚四氟乙烯等等。
作为介质结构的另一种具体实施方式,介质结构8包括多种介质单元,多种介质单元沿凹槽71周向交替排布成环形介质板。
具体地,如图3所示,介质单元为两种,分别为第一介质单元8a和第二介质单元8b,二者的数量相同,且沿凹槽71的周向交替排布形成圆环形介质板。第一介质单元8a和第二介质单元8b所采用的介质材料可以采用石英或者陶瓷或者聚四氟乙烯等等。通过设定第一介质单元8a和第二介质单元 8b的材料种类、数量以及排布,可以改变在谐振板7下表面对应环形凹槽所在圆周区域产生的电场分布,从而可以调节对应环形凹槽71所在圆周区域上的等离子体分布均匀性。
其中,不同介质单元所对应的圆心角,既可以如图3所示为相同的,也可以根据实际情况设置为不同,从而调节对应环形凹槽71所在圆周区域上的等离子体分布均匀性。
作为介质结构的又一种具体实施方式,介质结构8包括多种介质单元,多种介质单元沿凹槽71的深度方向依次叠置。
具体地,如图4所示,介质单元的数量为三种,分别为第一介质单元8a、第二介质单元8b和第三介质单元8c,且第一介质单元8a、第二介质单元8b和第三介质单元8c的数量均为一个,每种介质单元的横截面形状均与凹槽71的横截面形状相同,三者沿竖直方向(即谐振板7轴向)依次叠置。第一介质单元8a、第二介质单元8b和第三介质单元8c所采用的介质材料可以为石英或者陶瓷或者聚四氟乙烯等等,且每个介质单元的厚度的取值范围在5mm~20mm。
通过多种介质单元的材料种类、横截面形状、厚度和数量,以形成不同形式的介质填充组合,从而可以更大范围的调节谐振板7下方的电场分布,进而可以调节等离子体均匀性。
作为介质结构的再一种具体实施方式,介质结构8包括多种介质单元,多种介质单元沿凹槽71的径向依次套设。
具体地,如图5所示,介质单元的数量为三种,分别为第一介质单元8a、第二介质单元8b和第三介质单元8c,且第一介质单元8a、第二介质单元8b和第三介质单元8c的数量均为一个,三者在径向上的厚度相同,且三者沿径向依次套设。第一介质单元8a、第二介质单元8b和第三介质单元8c所采用的介质材料可以为石英或者陶瓷或者聚四氟乙烯等等。
通过多种介质单元的材料种类、横截面形状、厚度和数量,以形成不同形式的介质填充组合,从而可以更大范围的调节谐振板7下方的电场分布,进而可以调节等离子体均匀性。
需要说明的是,既可以在每个凹槽71中设置有一个介质结构8,也可以在每个凹槽71中设置有多个介质结构8。当每个凹槽71中设置有一个介质结构8时,优选地,介质结构8的形状与对应的凹槽71的形状一致,以使介质结构8完全填充在凹槽71内,从而提高谐振板7的远离反应腔室6的一个表面的平整性;当每个凹槽71中设置有多个介质结构8时,多个介质结构8所形成的整体的形状与凹槽71的形状一致,每个介质结构8呈环形介质板结构,且多个介质结构8沿凹槽71的深度方向依次叠置、或沿凹槽71的径向依次套设。上述这些设置方式均属于本发明的保护范围。
当凹槽71的数量为多个时,多个凹槽71沿谐振板7的径向间隔设置。在本实施例中,每个凹槽71为沿谐振板7的周向环绕形成的环形凹槽,并且不同的环形凹槽的内径不同,相互同轴嵌套,且每个凹槽71的纵截面呈矩形,横截面呈圆环形。例如,如图6所示,环形凹槽为三个,且三个环形凹槽的径向宽度和深度均一致,并且相邻的两个环形凹槽之间的间距相等。
可选的,每个环形凹槽(8a、8b、8c)的径向宽度和深度的取值范围均在5mm~20mm,且各个环形凹槽的内径的二分之一大于微波在谐振板7中的一个波长,该尺寸(各个环形凹槽的内径的二分之一)的取值范围在30~150mm。
通过改变多个环形凹槽的径向半径、深度、数量和间隔以及填充材料的种类,可以更有效的调节谐振板7下方的电场分布,进而可以调节等离子体均匀性。
需要说明的是,在图6所示的实施例中,对于每个环形凹槽,介质结构8与如图2所示的介质结构8相同,即每个介质结构8均为一个完整的圆环形介质板,但是,本发明并不局限于此,在实际应用中,对于每个环形凹槽, 介质结构8可以为本发明提供的任意结构的介质结构8。并且,多个环形凹槽中的介质结构8既可以如图6所示为相同的介质结构,也可以根据实际情况设置不同的介质结构。
综上所述,本发明提供的表面波等离子体装置,其通过在谐振板远离反应腔室的一个表面上开设至少一个凹槽71,且在该凹槽中可分离的填充有至少一种介质结构,可以对反应腔室内对应该凹槽所在区域中的等离子体密度进行调节,而且通过设定凹槽的形状、尺寸(例如径向宽度、深度、内径等)、数量、位置和排布方式等的参数,和/或设定介质结构的材料种类、数量、尺寸和排布方式,可以调节反应腔室中的等离子体分布均匀性,从而可以扩大工艺气体种类的适用范围,提高调节等离子体分布均匀性的灵活性。
同时,通过使上述凹槽形成在谐振板的远离反应腔室的一个表面上,这不仅可以避免因凹槽暴露在反应腔室中而出现腔室颗粒增加、谐振板下表面不平整的问题,而且可以允许介质结构可分离的填充在凹槽中,从而可以更方便地更换介质结构,而无需卸载谐振板,进而可以提高调节等离子体分布均匀性的便捷性。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种表面波等离子体装置,其特征在于,包括谐振板,在所述谐振板的远离反应腔室的一个表面上形成有至少一个凹槽,所述凹槽中可分离的填充有介质结构,用于调节所述反应腔室中的等离子体分布均匀性。
  2. 根据权利要求1所述的表面波等离子体装置,其特征在于,所述介质结构包括至少一种介质单元,不同种所述介质单元由不同种介质材料制成。
  3. 根据权利要求2所述的表面波等离子体装置,其特征在于,所述介质结构包括多种介质单元,多种所述介质单元沿所述凹槽的深度方向依次叠置。
  4. 根据权利要求2所述的表面波等离子体装置,其特征在于,所述介质结构包括多种介质单元,多种所述介质单元沿所述凹槽周向交替排布。
  5. 根据权利要求2所述的表面波等离子体装置,其特征在于,所述介质结构包括多种介质单元,多种所述介质单元沿所述凹槽的径向依次套设。
  6. 根据权利要求2所述的表面波等离子体装置,其特征在于,所述介质材料包括石英、陶瓷或者聚四氟乙烯。
  7. 根据权利要求1-6中任一所述的表面波等离子体装置,其特征在于,所述凹槽为沿所述谐振板的周向环绕形成的环形凹槽,且所述介质结构与所述凹槽的形状一致。
  8. 根据权利要求7所述的表面波等离子体装置,其特征在于,所述凹槽的数量为多个,多个所述凹槽沿所述谐振板的径向间隔设置。
  9. 根据权利要求8所述的表面波等离子体装置,其特征在于,多个所述凹槽可分离的填充有所述介质结构。
  10. 根据权利要求1所述的表面波等离子体装置,其特征在于,所述凹槽的横截面呈圆环形,所述凹槽的内径的二分之一大于微波在所述谐振板中的一个波长;所述凹槽的径向宽度小于微波在所述谐振板中的一个波长;所述凹槽的深度是微波在所述谐振板中的二分之一波长或者四分之一波长的整数倍。
  11. 根据权利要求11所述的表面波等离子体装置,其特征在于,所述凹槽的内径的二分之一的取值范围在30mm~150mm。
  12. 根据权利要求11所述的表面波等离子体装置,其特征在于,所述凹槽的径向宽度的取值范围在20mm~100mm。
  13. 根据权利要求11所述的表面波等离子体装置,其特征在于,所述凹槽的深度的取值范围在10mm~40mm。
PCT/CN2019/096156 2018-07-27 2019-07-16 表面波等离子体装置 WO2020020014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810844700.7 2018-07-27
CN201810844700.7A CN110769585B (zh) 2018-07-27 2018-07-27 表面波等离子体装置

Publications (1)

Publication Number Publication Date
WO2020020014A1 true WO2020020014A1 (zh) 2020-01-30

Family

ID=69181221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096156 WO2020020014A1 (zh) 2018-07-27 2019-07-16 表面波等离子体装置

Country Status (2)

Country Link
CN (1) CN110769585B (zh)
WO (1) WO2020020014A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985109A (en) * 1989-02-08 1991-01-15 Hitachi, Ltd. Apparatus for plasma processing
CN1176486A (zh) * 1996-09-02 1998-03-18 株式会社日立制作所 表面波等离子体处理装置
EP1306893A1 (en) * 2000-07-11 2003-05-02 Tokyo Electron Limited Plasma processing apparatus
JP2006253056A (ja) * 2005-03-14 2006-09-21 Univ Nagoya プラズマ発生装置
CN101953236A (zh) * 2008-02-13 2011-01-19 东京毅力科创株式会社 微波等离子体处理装置的顶板、等离子体处理装置以及等离子体处理方法
CN102597305A (zh) * 2009-09-08 2012-07-18 东京毅力科创株式会社 稳定的表面波等离子源
CN107155256A (zh) * 2016-03-03 2017-09-12 北京北方微电子基地设备工艺研究中心有限责任公司 一种表面波等离子体装置
CN107369601A (zh) * 2016-05-11 2017-11-21 北京北方华创微电子装备有限公司 表面波等离子体加工设备
CN107464994A (zh) * 2017-07-17 2017-12-12 北京交通大学 一种准表面等离子体激元传输线馈电的漏波天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008728B2 (ja) * 2002-03-20 2007-11-14 株式会社 液晶先端技術開発センター プラズマ処理装置
JP3723783B2 (ja) * 2002-06-06 2005-12-07 東京エレクトロン株式会社 プラズマ処理装置
US6998565B2 (en) * 2003-01-30 2006-02-14 Rohm Co., Ltd. Plasma processing apparatus
JP2006324551A (ja) * 2005-05-20 2006-11-30 Shibaura Mechatronics Corp プラズマ発生装置及びプラズマ処理装置
CN105430862A (zh) * 2014-09-23 2016-03-23 北京北方微电子基地设备工艺研究中心有限责任公司 一种表面波等离子体设备
CN107731646B (zh) * 2016-08-12 2019-08-23 北京北方华创微电子装备有限公司 表面波等离子体加工设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985109A (en) * 1989-02-08 1991-01-15 Hitachi, Ltd. Apparatus for plasma processing
CN1176486A (zh) * 1996-09-02 1998-03-18 株式会社日立制作所 表面波等离子体处理装置
EP1306893A1 (en) * 2000-07-11 2003-05-02 Tokyo Electron Limited Plasma processing apparatus
JP2006253056A (ja) * 2005-03-14 2006-09-21 Univ Nagoya プラズマ発生装置
CN101953236A (zh) * 2008-02-13 2011-01-19 东京毅力科创株式会社 微波等离子体处理装置的顶板、等离子体处理装置以及等离子体处理方法
CN102597305A (zh) * 2009-09-08 2012-07-18 东京毅力科创株式会社 稳定的表面波等离子源
CN107155256A (zh) * 2016-03-03 2017-09-12 北京北方微电子基地设备工艺研究中心有限责任公司 一种表面波等离子体装置
CN107369601A (zh) * 2016-05-11 2017-11-21 北京北方华创微电子装备有限公司 表面波等离子体加工设备
CN107464994A (zh) * 2017-07-17 2017-12-12 北京交通大学 一种准表面等离子体激元传输线馈电的漏波天线

Also Published As

Publication number Publication date
CN110769585A (zh) 2020-02-07
CN110769585B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
TWI790538B (zh) 模組式微波電漿源及電漿處理工具
CN110612594B (zh) 使用模块化微波源的具有对称且不规则的形状的等离子体
WO2017148208A1 (zh) 表面波等离子体设备
JP6999697B2 (ja) 局所的なローレンツ力を用いるモジュール式マイクロ波源
US20040011465A1 (en) Plasma Processing apparatus
WO2006009213A1 (ja) プラズマ処理装置
KR20160143521A (ko) 마이크로파 플라즈마원 및 플라즈마 처리 장치
TW202003913A (zh) 具有整合氣體分配的模組化高頻源
WO2018192064A1 (zh) 表面波等离子体加工设备
TWI821275B (zh) 用於遠端模組化高頻率源的處理工具
WO2020020014A1 (zh) 表面波等离子体装置
TWI527082B (zh) 電漿處理系統
TW201446080A (zh) 微波電漿產生裝置之空腔共振器
JP5676675B2 (ja) プラズマ発生装置及びプラズマ処理装置
TWI612853B (zh) 表面波電漿裝置
JP5273759B1 (ja) プラズマ処理装置およびプラズマ処理方法
CN109494145B (zh) 表面波等离子体加工设备
JP2013175480A (ja) プラズマ処理装置およびプラズマ処理方法
KR102164480B1 (ko) 개선된 ecr 균일 플라즈마 발생 장치
US20130126094A1 (en) Substrate processing apparatus
TW201946503A (zh) 模組化高頻源
KR20220114041A (ko) 플라스마 처리 장치 및 플라스마 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841244

Country of ref document: EP

Kind code of ref document: A1