WO2020019219A1 - 节能方法、装置及计算机可读存储介质 - Google Patents

节能方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2020019219A1
WO2020019219A1 PCT/CN2018/097117 CN2018097117W WO2020019219A1 WO 2020019219 A1 WO2020019219 A1 WO 2020019219A1 CN 2018097117 W CN2018097117 W CN 2018097117W WO 2020019219 A1 WO2020019219 A1 WO 2020019219A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrus
terminal
centralized controller
rru
downlink
Prior art date
Application number
PCT/CN2018/097117
Other languages
English (en)
French (fr)
Inventor
彭劲东
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18927962.3A priority Critical patent/EP3820190B1/en
Priority to BR112021001380-6A priority patent/BR112021001380A2/pt
Priority to JP2021503922A priority patent/JP7200355B2/ja
Priority to CN201880095883.5A priority patent/CN112534857B/zh
Priority to PCT/CN2018/097117 priority patent/WO2020019219A1/zh
Publication of WO2020019219A1 publication Critical patent/WO2020019219A1/zh
Priority to US17/156,987 priority patent/US11606747B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/386TPC being performed in particular situations centralized, e.g. when the radio network controller or equivalent takes part in the power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an energy-saving method, device, and computer-readable storage medium.
  • the LampSite architecture consists of BBUs. + rHub + pRRU, that is, the LampSite architecture includes one BBU and multiple pRRUs, and multiple pRRUs are connected through rHub and BBU.
  • Hub is a wireless hub
  • r means RRU
  • rHub means Hub connected to RRU
  • P in pRRU means pico.
  • the indoor area of medium and large buildings reaches 20,000 to 50,000 square meters, and even 100,000 square meters.
  • the number of pRRUs in the LampSite architecture needs to be tens to hundreds. Due to the large number of pRRUs, multiple pRRUs start up for a long time and generate huge power consumption.
  • Embodiments of the present application provide an energy-saving method, device, and computer-readable storage medium for reducing power consumption of LampSite.
  • an energy-saving method for a communication system.
  • the communication system includes a centralized controller and m RRUs connected to the centralized controller, where m is an integer greater than 1.
  • the energy-saving method includes: the centralized controller determines m Out of n RRUs of the RRUs, the sum of the first downlink RSRPs of the n terminals corresponding to the same terminal is greater than or equal to the first preset value, one RRU corresponds to the first downlink RSRP of multiple terminals, and one terminal of one RRU corresponds to one terminal
  • the first downlink RSRP is the received power of the RS transmitted by the RRU measured by the centralized controller at the corresponding first RS transmit power
  • the first RS transmit power corresponding to one RRU is the first RS transmit power corresponding to the RRU.
  • the second RS transmit powers corresponding to m RRUs are all pre-configured.
  • the first preset value is the level required when multiple terminals perform downlink services.
  • N is an integer greater than 0 and less than m; the centralized controller closes RRUs other than n RRUs among the m RRUs; the centralized controller increases the second RS transmit power corresponding to each RRU in the n RRUs to the corresponding first One RS transmit power and make n RRUs Do RS is transmitted at transmission power corresponding to the first RS.
  • the method provided in the first aspect improves the RS transmit power of the RRUs, so that n RRUs in the m RRUs can meet the downlink coverage requirements of the cell. Then, the m RRUs other than the n RRUs can be The RRU is turned off, which reduces the power consumption of the communication system.
  • the method provided by the first aspect ensures the KPI performance of the network while ensuring the downlink coverage requirements of the cell.
  • the centralized controller increases the second RS transmit power corresponding to each RRU of the n RRUs to the corresponding first RS transmit power, including: the centralized controller increases data transmission power by reducing The RS transmit power increases the second RS transmit power corresponding to each RRU in the n RRUs to the corresponding first RS transmit power; or, the centralized controller increases the total RS transmit power on the service bandwidth of the logical cell to which the RRU belongs. Focusing on the intermediate bandwidth of the service bandwidth, the second RS transmit power corresponding to each of the n RRUs is increased to the corresponding first RS transmit power.
  • This possible implementation manner provides multiple ways to increase the RS transmit power of the RRU, so that the method provided by the embodiments of the present application has more implementation possibilities.
  • the energy saving method further includes: the centralized controller determines that each of the m RRUs corresponds to a second downlink of multiple terminals RSRP, the second downlink RSRP of a terminal corresponding to an RRU is the received power of the RS measured by the terminal and transmitted by the RRU at the corresponding second RS transmit power; the centralized controller determines the RS boosted by each of the m RRUs Transmit power; the centralized controller determines that each RRU in m RRUs corresponds to the first downlink of multiple terminals according to the second downlink RSRP of each RRU corresponding to multiple terminals and the RS transmit power boosted by each RRU. Run RSRP.
  • This possible implementation manner provides a way to obtain the first downlink RSRP of the RRU.
  • the centralized controller aggregates the total RS transmission power on the service bandwidth of the logical cell to which the RRU belongs to the intermediate bandwidth of the service bandwidth to place the second corresponding to each RRU in the n RRUs.
  • the energy saving method further includes: the centralized controller determines an intermediate bandwidth corresponding to the n RRUs according to the RS transmission power boosted by each RRU in the n RRUs. This possible implementation provides a way to determine the intermediate bandwidth.
  • the centralized controller determining that the first RRU of the m RRUs corresponds to the second downlink RSRP of the first terminal includes: the centralized controller measures the m RSs corresponding to the uplink RSRP of the first terminal, and one RRU The uplink RSRP corresponding to the first terminal is the received power of the SRS sent by the first terminal through the RRU measured by the centralized controller.
  • the first terminal is any one of the multiple terminals; the centralized controller receives m from the first terminal.
  • the centralized controller determines the first according to the information of the sum of the uplink RSRPs of the first terminal of m RRUs and the second downlink RSRP of the first terminal of m RRUs
  • the RRU corresponds to the second downlink RSRP of the first terminal, and the first RRU is any one of the m RRUs. This possible implementation manner provides a way to obtain a second downlink RSRP of the RRU.
  • the centralized controller determines the first RRU corresponding to the first terminal according to the information of the sum of the m RSs corresponding to the uplink RSRP of the first terminal and the m RRUs corresponding to the second downlink RSRP of the first terminal.
  • the two downlink RSRPs include: the centralized controller determines, according to a preset algorithm, a linear value of a second downlink RSRP corresponding to the first terminal of the first terminal; wherein the preset algorithm is: S uplink RSRP is the sum of the linear values of the uplink RSRPs of the first terminal corresponding to m RRUs, S downlink RSRP is the sum of the linear values of the second RSRP of the first terminals corresponding to m RRUs, and RSRP1 ′ is the first The linear value of the uplink RSRP of a terminal.
  • RSRP1 is the linear value of the second downlink RSRP of the first terminal corresponding to the first terminal; the centralized controller determines the first RRU according to the linear value of the second downlink RSRP of the first terminal corresponding to the first terminal Corresponds to the second downlink RSRP of the first terminal.
  • This possible implementation manner provides a way to determine the second downlink RSRP of the RRU.
  • determining n RRUs out of m RRUs with a preset value as a starting value can make the number of determined n RRUs as small as possible, thereby further reducing power consumption of the communication system.
  • the energy saving method further includes: the centralized controller determines to enter the energy saving mode.
  • the centralized controller may execute the above method when it is determined to enter the energy saving mode, thereby reducing the power consumption of the communication system when the communication system needs energy saving.
  • an energy saving device is provided.
  • the energy saving device is located in a communication system.
  • the communication system further includes m RRUs connected to the energy saving device, where m is an integer greater than 1, and the energy saving device includes: A processing unit; the processing unit is configured to determine n RRUs among the m RRUs, where the n RRUs correspond to a sum of a first downlink RSRP of the same terminal greater than or equal to a first preset value, and one RRU corresponds to The first downlink RSRP of multiple terminals, and the first downlink RSRP of one terminal corresponding to one RRU is the received power of the RS transmitted by the RRU measured by the energy saving device and measured by the terminal at the corresponding first RS transmit power.
  • the first RS transmit power corresponding to one RRU is the RS transmit power after power boosting the second RS transmit power corresponding to the RRU, and the second RS transmit powers corresponding to the m RRUs are all pre-configured, the The first preset value is a level value required when the multiple terminals perform downlink services, n is an integer greater than 0 and less than m; and the processing unit is further configured to turn off the division among the m RRUs. RRUs other than n RRUs; the processing unit further Corresponding to each of the n RRU RRU second RS to the first RS transmit power boost transmission power corresponding to the number n and the RRU that are transmitted to a corresponding RS RS a first transmit power.
  • the processing unit is specifically configured to: by reducing data transmission power and increasing RS transmission power, increase the second RS transmission power corresponding to each of the n RRUs to a corresponding The first RS transmit power; or by concentrating the total RS transmit power on the service bandwidth of the logical cell to which the RRU belongs to the middle bandwidth of the service bandwidth, a second RS corresponding to each of the n RRUs The transmission power is increased to the corresponding first RS transmission power.
  • the processing unit is further configured to determine that each RRU of the m RRUs corresponds to a second downlink RSRP of the multiple terminals, and a second downlink RSRP of one terminal corresponding to one RRU
  • the downlink RSRP is the received power of the RS transmitted by the terminal and measured by the RRU at the corresponding second RS transmit power; determining the RS transmit power boosted by each of the m RRUs; and according to each of the m RRUs
  • Each RRU corresponds to the second downlink RSRP of the multiple terminals and the RS transmit power boosted by each RRU determines that each RRU in the m RRUs corresponds to the first downlink RSRP of the multiple terminals.
  • the processing unit is further configured to determine an intermediate bandwidth corresponding to the n RRUs according to the RS transmit power boosted by each of the n RRUs.
  • the energy-saving device further includes a communication unit, and the processing unit is specifically configured to: measure the m RRUs corresponding to the uplink RSRP of the first terminal, and one RRU corresponding to the first
  • the uplink RSRP of the terminal is the received power of the SRS sent by the first terminal through the RRU measured by the energy saving device, and the first terminal is any one of the multiple terminals; and is received through the communication unit.
  • the uplink RSRPs of the first terminal correspond to the m RRUs.
  • the information of the sum of the second downlink RSRP of the first terminal determines that the first RRU corresponds to the second downlink RSRP of the first terminal, and the first RRU is any one of the m RRUs.
  • the processing unit is specifically configured to determine a linear value of a second downlink RSRP of the first RRU corresponding to the first terminal according to a preset algorithm; wherein the preset algorithm for:
  • the S uplink RSRP is the sum of the linear values of the uplink RSRPs of the m RRUs corresponding to the first terminal, and the S downlink RSRP is the linearity of the second downlink RSRPs of the m RRUs corresponding to the first terminal
  • the sum of the values, the RSRP1 ′ is a linear value of the uplink RSRP of the first terminal corresponding to the first terminal, and the RSRP1 is a linear value of the second downlink RSRP of the first terminal corresponding to the first terminal. ; Determining that the first RRU corresponds to the second downlink RSRP of the first terminal according to a linear value of the second downlink RSRP of the first terminal that corresponds to the first terminal.
  • the processing unit is further configured to determine to enter an energy saving mode.
  • an energy-saving device including: a memory, a processor, and a communication bus.
  • the memory is used to store computer-executing instructions.
  • the processor and the memory are connected through the communication bus.
  • the device implements any one of the methods provided by the first aspect.
  • the device can exist in the form of a chip product.
  • a computer-readable storage medium including instructions, which, when run on a computer, cause the computer to implement any one of the methods provided by the first aspect.
  • a computer program product containing instructions which when run on a computer, causes the computer to implement any one of the methods provided in the first aspect.
  • FIG. 1 is a schematic architecture diagram of a LampSite according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware structure of an energy-saving device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of downlink coverage comparison of a cell before and after an RS transmission power of an RRU is improved according to an embodiment of the present application;
  • FIG. 6 is a schematic diagram of an effect of increasing RS transmit power of an RRU according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of receiving power of an uplink and downlink RS according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an energy-saving device according to an embodiment of the present application.
  • GSM Global System for Mobile
  • E-UTRA Evolved UTRA
  • UMTS Universal Mobile Telecommunications System
  • LTE Long-term evolution
  • 5G 5th-generation
  • NR new radio
  • the method provided in the embodiment of the present application may be applied in a LampSite scenario.
  • the LampSite architecture includes one BBU and m pRRUs connected to the BBU through an rHub.
  • the m pRRUs belong to the same logical cell.
  • multiple pRRUs combine to transmit information (for example, combined transmission data and / or reference signal (RS)), that is, when a terminal sends information to a BBU through multiple pRRUs, the BBU does not distinguish which information Which pRRU is sent.
  • RS reference signal
  • the centralized controller in the method provided in the embodiment of the present application may be a BBU
  • the RRU may be a pRRU.
  • the method provided in the embodiment of the present application can also be applied to the scenario shown in FIG. 2, which includes m BBUs, each BBU is connected to an RRU, and each RRU belongs to a different logical cell.
  • the centralized controller in the method provided in the embodiment of the present application may be a centralized control unit for controlling m BBUs, and may specifically be one of the m BBUs, or may be other than the m BBUs. Centralized control unit.
  • the centralized controller can be connected to m RRUs through m BBUs.
  • an energy-saving method is: During low traffic periods, the entrance and exit of the building or the pRRU at a key gate remain powered on, the logical community to which it belongs is turned on and real-time service monitoring is performed. Power on other pRRUs to achieve "people come and go.” When the user leaves the room, the pRRU is powered off to implement a “people walking gateway”. Under the LTE system, users do not need to initiate random access when they reside, which may lead to a "missing detection” situation. If the pRRU is not selected properly in a particular location, a “missing inspection” situation may also occur.
  • the embodiment of the present application provides a schematic diagram of a hardware structure of an energy saving device.
  • the energy saving device 30 may be a centralized controller hereinafter.
  • the energy-saving device 30 includes a processor 301, a communication bus 302, a memory 303, and at least one communication interface 304.
  • the processor 301 may be one or more general-purpose central processing units (CPUs), microprocessors, application-specific integrated circuits (ASICs), or one or more for controlling the Integrated circuit for application program execution.
  • CPUs central processing units
  • ASICs application-specific integrated circuits
  • the communication bus 302 is configured to communicate between the aforementioned components to transmit information.
  • the communication interface 304 is used to communicate with other devices or communication networks. Any device such as a transceiver can be used, such as Ethernet, radio access network (RAN) nodes, and wireless local area networks. WLAN for short).
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 303 is configured to store a computer execution instruction for executing the solution of the present application, and the execution is controlled by the processor 301.
  • the processor 301 is configured to execute a computer execution instruction stored in the memory 303, so as to implement the method provided in the following embodiments of the present application, for example, to perform an action of a centralized controller hereinafter.
  • the memory 303 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or a device that can store information and instructions
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices can also be electrically erasable programmable read-only memory (read-only memory (referred to as EEPROM), compact read-only memory (referred to as CD-ROM) or other optical discs Storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures And any other medium that can be accessed by a computer, but is not limited to this.
  • the memory 303 may exist independently, and is connected to the processor 301 through a communication bus 302.
  • the memory 303 may also be integrated with the processor 301.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the energy saving device 30 may include multiple processors, such as the processor 301 and the processor 308 in FIG. 3. Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the energy saving device 30 may further include an output device 305 and an input device 306.
  • the output device 305 communicates with the processor 301 and can display information in a variety of ways.
  • the input device 306 communicates with the processor 301 and can receive user input in a variety of ways.
  • An embodiment of the present application provides an energy saving method, which is applied to a communication system.
  • the communication system includes a centralized controller and m RRUs connected to the centralized controller, where m is an integer greater than 1.
  • the energy saving method includes :
  • the centralized controller determines n RRUs out of m RRUs, where the n RRUs correspond to a sum of a first downlink reference signal receiving power (reference signal receiving power (RSRP) of the same terminal) greater than or equal to a first preset value,
  • RSRP reference signal receiving power
  • One RRU corresponds to the first downlink RSRP of multiple terminals
  • the first downlink RSRP of one terminal corresponding to one RRU is the RS of the RS measured by the terminal and estimated by the centralized controller and transmitted at the corresponding first RS transmit power.
  • Receive power The first RS transmit power corresponding to one RRU is the RS transmit power after power boosting the second RS transmit power corresponding to the RRU.
  • the second RS transmit power corresponding to m RRUs are all pre-configured.
  • the preset value is a level value required by multiple terminals for downlink services, and n is an integer greater than 0 and less than m.
  • the first preset value may specifically be a lowest level value required by multiple terminals when performing downlink services.
  • the first preset value may be configured by an operator, or may be determined by the centralized controller according to a downlink service requirement.
  • P dij 1 means that the i-th terminal estimated by the centralized controller receives the j-th RRU and sends it at the corresponding first RS transmit power.
  • the received power of the RS that is, the j-th RRU corresponds to the first downlink RSRP of the i-th terminal.
  • i is an integer greater than 0 and less than or equal to 6
  • j is an integer greater than 0 and less than or equal to 4.
  • n RRUs can be RRU2, RRU3, and RRU4.
  • the downlink coverage of the cell may cover the location where the terminal is located.
  • the downlink coverage of the cell may cover the locations where the multiple terminals are located.
  • Each of the multiple terminals in the embodiment of the present application is a sampling sample, and the received power of the RS measured by each sampling sample may be sampled by the centralized controller in a non-energy-saving mode. Since the sampling samples are randomly determined, the number may be dozens or hundreds. Therefore, when the downlink coverage of the cell can cover the locations of the multiple terminals, it can be considered that the downlink coverage of the cell meets the requirements.
  • the cell when the present application is applied to the scenario shown in FIG. 1, the cell refers to a BBU cell.
  • the cell refers to Cells of m BBUs.
  • the second RS transmit power corresponding to different RRUs may be the same or different.
  • the boosted transmit power of the second RS transmit power corresponding to different RRUs may be the same or different.
  • the first RS transmit power corresponding to different RRUs may be the same or different. different.
  • the method provided in the embodiment of the present application may be executed when the communication system needs to enter an energy saving mode. That is, before step 401, the method may further include: the centralized controller determines to enter the energy saving mode.
  • the centralized controller is a BBU
  • the BBU may periodically collect the load (or the number of users) of the BBU's cell.
  • the load or the number of users
  • the BBU can also determine to enter the energy saving mode when the time is a set energy saving time. For example, if the energy saving time is 22:00 to 8:00, when the time is 22:00, the BBU determines to enter the energy saving mode.
  • the centralized controller may periodically collect the load (or the number of users) of the m BBU cells. When the load (or the number of users) is greater than a preset threshold, it is determined to enter the energy saving mode. , And then perform the method of step 401 and thereafter.
  • the centralized controller may also determine to enter the energy saving mode when the time is a set energy saving time. For example, if the energy saving time is 22:00 to 8:00, when the time is 22:00, the centralized controller determines to enter the energy saving mode.
  • the centralized controller shuts down RRUs except m RRUs among m RRUs.
  • the manner in which the centralized controller closes an RRU may specifically include: closing a carrier of the RRU, closing a radio channel of the RRU, turning off RS transmission of the RRU, and powering off the RRU.
  • the centralized controller increases the second RS transmission power corresponding to each RRU of the n RRUs to the corresponding first RS transmission power, and causes the n RRUs to send RSs at the corresponding first RS transmission powers.
  • step 402 and step 403 is in no particular order.
  • the downlink coverage of a cell is determined by the downlink RSRP value of the cell. After the RS transmit power of the RRU is increased, the downlink RSRP value of the cell will increase. At this time, some of the RRUs in m RRUs can meet the downlink of the cell. Coverage requirements, so the remaining RRUs can be turned off, which reduces the power consumption of the communication system. Exemplarily, referring to FIG. 5, before the RS transmit power of the RRU is not increased, all 6 RRUs need to be turned on to cover the 12 terminals shown in the figure. After the RS transmit power of the RRU is increased, The 3 terminals can cover the 12 terminals shown in the figure. Therefore, the remaining 3 RRUs can be closed to reduce the power consumption of the communication system.
  • step 403 when the RS transmission power of the RRU is improved, it can be implemented in any of the following two ways:
  • Method 1 The centralized controller reduces the data transmission power and increases the RS transmission power to increase the second RS transmission power corresponding to each of the n RRUs to the corresponding first RS transmission power.
  • the centralized controller may share the reduced data transmission power to all RSs sent by the BBU.
  • the centralized controller may share the reduced data transmission power on the service bandwidth of the logical cell of each BBU to all RSs sent by the BBU.
  • the transmission power of data and RS are P1 and P2, respectively.
  • the transmission power of data becomes P3, and the transmission power of RS becomes P4.
  • P1 is larger than P3, and P2 is smaller than P4.
  • the RS transmission power corresponding to each RRU can be increased by about 3 dB.
  • Method 2 The centralized controller increases the total RS transmission power on the service bandwidth of the logical cell to which the RRU belongs to the intermediate bandwidth of the service bandwidth to increase the second RS transmission power corresponding to each RRU in the n RRUs to the corresponding First RS transmit power.
  • the centralized controller may determine the intermediate bandwidth corresponding to the n RRUs according to the RS transmit power boosted by each of the n RRUs.
  • the centralized controller may determine, according to Formula 1, the number of resource units (resource elements, REs) that send RSs when an RRU sends RSs at the corresponding first RS transmit power, and then determine the positions of these REs in the service bandwidth.
  • the transmission power of data and RS are P1 and P2, respectively.
  • the transmission power of the RS becomes P5, and P2 is smaller than P5.
  • the actual downlink bandwidth is reduced, and the total RS transmission power is concentrated on the middle bandwidth of the service bandwidth.
  • RSs are not sent on other bandwidths, and the RS transmission power corresponding to each RRU can be increased. 6dB to 9dB.
  • the method further includes: the centralized controller sends scheduling information to the terminal, and the scheduling information includes frequency domain resources that the terminal receives and / or sends data, and the frequency domain resources are intermediate bandwidths.
  • the base station can notify the terminal of the actually used bandwidth information, and the terminal receives and / or sends data in the intermediate bandwidth to ensure the correct transmission of the data.
  • the above embodiments only exemplarily show two methods for increasing the RS transmit power of the RRU.
  • other methods can also be used to increase the RS transmit power corresponding to the RRU.
  • the service bandwidth of the logical cell to which the RRU belongs The data transmission power and / or RS transmission power of a part of the bandwidth are used to enhance the RS transmission power of the other part of the bandwidth.
  • the embodiment of the present application does not specifically limit the method for increasing the RS transmission power corresponding to the RRU.
  • the method provided in the embodiment of the present application improves the transmission power of the RS corresponding to the RRU, so that the n RRUs in the m RRUs can meet the downlink coverage requirements of the cell. Then, the m RRUs can be divided by the n RRUs. The external RRU is turned off, which reduces the power consumption of the communication system.
  • the method provided in the embodiment of the present application ensures the performance of key performance indicators (KPI) of the network while ensuring the downlink coverage requirements of the cell.
  • KPI key performance indicators
  • j RRUs are RRU2, RRU3, and RRU4, the sum of the first downlink RSRPs of terminal i among 6 terminals corresponding to j RRUs is P di2 1 , P di3 1, and P di4 1 and, when i is 1, 2, and 6, if DI2 P 1, P 1 to P DI3 DI4 1 and equal to or greater than a first predetermined value, j can be an RRU RRU2, RRU3, and RRU4, then n RRUs are RRU2, RRU3, and RRU4.
  • the method further includes: 21) The centralized controller determines that each of the m RRUs corresponds to the second downlink RSRP of multiple terminals, and the second downlink RSRP of one terminal corresponding to one RRU is The received power of the RS measured by the terminal and transmitted by the RRU at the corresponding second RS transmit power; 22) the centralized controller determines the RS transmit power boosted by each RRU among the m RRUs; 23) the centralized controller according to the m RRUs Each of the RRUs corresponds to the second downlink RSRP of the multiple terminals and the RS transmit power boosted by each RRU determines that each of the m RRUs corresponds to the first downlink RSRP of the multiple terminals.
  • the centralized controller may determine the RS transmit power boosted by the RRU according to the manner in which the RRU boosts the RS transmit power, and one of the ways to boost the RS transmit power may correspond to an increased value of the RS transmit power. Exemplarily, if the way in which the RRU increases the RS transmission power is the above-mentioned way 1, the centralized controller determines that the value of the RS transmission power increased by the RRU may be 3dB. If the way in which the RRU increases the RS transmission power is the above-mentioned way 2, the centralized controller determines The value of the RS transmit power boosted by the RRU may be 6 dB.
  • Step 23) if the received power of an RS transmitted by an RRU measured by a terminal at a corresponding second RS transmit power is A and the RS transmit power boosted by the RRU is N, the terminal estimated by the centralized controller The measured received power of the RS sent by the RRU at the corresponding first RS transmit power is A + N, that is, the first downlink RSRP of the RRU corresponding to the terminal is A + N.
  • the centralized controller may determine the first downlink RSRP corresponding to each terminal by each RRU according to the method.
  • the method provided by the foregoing embodiment may be executed once each time the centralized controller determines that it needs to enter the energy-saving mode.
  • the method for determining the second downlink RSRP corresponding to each terminal of each of the m RRUs does not need to be performed every time when entering the energy saving mode, and may be performed once in a period of time, for example, one month, half a year, and so on.
  • a terminal can measure the received power of RSs transmitted by m RRUs at corresponding second RS transmit powers, and report them to the corresponding m BBUs, and then report the m BBUs To the centralized controller.
  • other terminals may also report the received power of the RSs sent by the measured m RRUs at the corresponding second RS transmit power to the centralized controller.
  • the centralized controller determines that the first RRU of the m RRUs corresponds to the second downlink RSRP of the first terminal, including: 31
  • the centralized controller measures m RRUs corresponding to the uplink RSRP of the first terminal, and one RRU corresponds to the uplink RSRP of the first terminal is a sounding reference signal (sounding reference signal, SRS for short) sent by the first terminal and measured by the centralized controller.
  • SRS sounding reference signal
  • the first terminal is any one of a plurality of terminals; 32) the centralized controller receives the information that the m RRUs sent by the first terminal correspond to the sum of the second downlink RSRP of the first terminal; 33) the centralized control And determining that the first RRU corresponds to the second downlink RSRP of the first terminal according to the information of the sum of the m RSs corresponding to the uplink RSRP of the first terminal and the m RRUs corresponding to the second downlink RSRP of the first terminal, and the first RRU is m RRU Any one of the RRUs.
  • the SRS sent by the terminal may be the SRS in the SRS resources configured by the terminal after the terminal accesses the BBU's logical cell. After receiving the SRS resource, the terminal periodically sends the SRS in the SRS resource.
  • an uplink subframe has 14 symbols, the first 13 symbols are used to send data, and the last symbol is used to send SRS. Therefore, the first 13 symbols can be called data symbols, and the last symbol can be called SRS. symbol.
  • the BBU can control a terminal on the SRS symbol, m RRUs are not connected, and only one RRU performs uplink transmission, that is, on the SRS symbol, closing other RRUs and turning on only one RRU, and thus on the RRU Measure the uplink RSRP of the SRS sent by the terminal through the RRU.
  • the centralized controller may poll the RRUs of the m RRUs, thereby obtaining each RRU of the m RRUs corresponding to the uplink RSRP of the terminal. For example, only the first RRU among m RRUs is turned on in uplink subframe 1 to obtain the uplink RSRP of the first RRU corresponding to the terminal, and only the second RRU among m RRUs is turned on in uplink subframe 2 to obtain the second The RRU corresponds to the uplink RSRP of the terminal.
  • m RRUs can still combine to transmit data.
  • the RRUi measured by the centralized controller corresponds to the uplink RSRP of terminal 1, terminal 2, terminal 3, terminal 4, terminal 5, and terminal 6, respectively. It is P u1i, P u2i, P u3i , P u4i, P u5i and P u6i.
  • Puij refers to the received power of the SRS sent by the i-th terminal through the j-th RRU measured by the centralized controller.
  • Step 32) the centralized controller controls each terminal to perform downlink RSRP measurement of the cell and report it.
  • the information of the sum of the second downlink RSRPs of m RRUs corresponding to one terminal may be included in a measurement report (measurement report, MR for short) of the terminal.
  • MR measurement report
  • P dij 2 refers to the reception power of the i-th terminal receiving the RS transmitted by the j-th RRU and transmitting at the second RS, that is, the first The j RRUs correspond to the second downlink RSRP of the i-th terminal.
  • Step 33) it may include: 41) The centralized controller determines a linear value of the second downlink RSRP of the first terminal corresponding to the first terminal according to a preset algorithm, where the preset algorithm is: S uplink RSRP is the sum of the linear values of the uplink RSRPs of the first terminal corresponding to m RRUs, S downlink RSRP is the sum of the linear values of the second RSRP of the first terminals corresponding to m RRUs, and RSRP1 ′ is the first RRU corresponding to the first The linear value of the uplink RSRP of a terminal, RSRP1 is the linear value of the second downlink RSRP of the first terminal corresponding to the first terminal; 42) The centralized controller determines the first linear value of the second downlink RSRP of the first terminal corresponding to the first terminal. One RRU corresponds to the second downlink RSRP of the first terminal.
  • the method may include: the centralized controller calculates a second downlink RSRP corresponding to the first terminal by the first RRU according to Formula 2 and a linear value of the second downlink RSRP corresponding to the first terminal by the first RRU, where Equation 2
  • this application exemplarily describes a process in which the centralized controller determines that the first RRU corresponds to the second downlink RSRP of the first terminal. In fact, this process can be used to determine that each RRU corresponds to the second downlink of each terminal. Downlink RSRP.
  • the centralized controller measures the sum of the uplink RSRP corresponding to multiple terminals for each RRU in m RRUs and the sum of the second downlink RSRP corresponding to multiple terminals for m RRUs received by multiple terminals.
  • the time interval of the information is very small, or the process in which the centralized controller receives the information that the m RRUs sent by multiple terminals corresponds to the sum of the second downlink RSRPs of the multiple terminals.
  • the centralized controller measures each RRU corresponding to the m RRUs. Uplink RSRP for multiple terminals.
  • the parameters in the derivation are all parameters corresponding to one terminal.
  • RSRP2-RSRP1 RSRP2′-RSRP1 ′ (3)
  • L_RSRP2 / L_RSRP1 L_RSRP2 ′ / L_RSRP1 ′
  • L_RSRP3 / L_RSRP1 L_RSRP3 ′ / L_RSRP1 ′;
  • L_RSRPm / L_RSRP1 L_RSRPm ′ / L_RSRP1 ′;
  • L_RSRP1 + L_RSRP2 + L_RSRP3 + L_RSRP4 (L_RSRP1 ′ + L_RSRP2 ′ + L_RSRP4 ′ + L_RSRP4 ′ ′) / L_RSRP1 ′, L_RSRP1 + L_RSRP2 + L_RSRP3 + L_RSRP4 can be measured by the terminal and fed back to the centralized controller.
  • L_RSRP1 ′, L_RSRP2 ′, L_RSRP3 ′, and L_RSRP4 ′ can be measured by the centralized controller, and the centralized controller can be measured According to this formula, L_RSRP1 is calculated, and then RSRP1 is obtained.
  • the energy saving device includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the functional units of the energy saving device may be divided according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in the embodiments of the present application is schematic, and is only a logical function division. There may be another division manner in actual implementation.
  • FIG. 8 shows a possible structural diagram of the energy-saving device 80 involved in the foregoing embodiment.
  • the device 80 may include a processing unit 801 and a communication unit.
  • 802 may further include a storage unit 803.
  • the processing unit 801 is configured to control and manage the actions of the energy-saving device.
  • the processing unit 801 is configured to support the energy-saving device to execute the steps in FIG. 4 and / or the energy-saving device in other processes described in the embodiments of the present application. action.
  • the communication unit 802 is configured to support the energy saving device to communicate with other network equipment, for example, communicate with a terminal through an RRU.
  • the storage unit 803 is configured to store program codes and data of the energy-saving device.
  • the processing unit 801 may be a processor or a controller, the communication unit 802 may be a communication interface, and the storage unit 803 may be a memory.
  • the processing unit 801 is a processor
  • the communication unit 802 is a communication interface
  • the storage unit 803 is a memory
  • the device involved in this embodiment of the present application may be the device shown in FIG. 3.
  • the processor 301 is configured to control and manage the actions of the energy-saving device.
  • the processor 301 is configured to support the energy-saving device to execute the steps in FIG. 4 and / or the energy-saving device in other processes described in the embodiments of the present application. action.
  • the communication interface 304 is used to support the energy-saving device to communicate with other network equipment, for example, to communicate with a terminal through an RRU.
  • the memory 303 is configured to store program codes and data of the energy-saving device.
  • An embodiment of the present application further provides a computer-readable storage medium including instructions, which, when run on a computer, cause the computer to execute the foregoing method.
  • An embodiment of the present application further provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the foregoing method.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (for example, Coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) for transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (solid state disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种节能方法、装置及计算机可读存储介质,用于降低LampSite的功耗。该方法包括:集中控制器确定m个RRU中的n个RRU,n个RRU对应同一终端的第一下行RSRP的和大于或等于第一预设值,一个RRU对应的一个终端的第一下行RSRP为集中控制器预估的该终端测量的该RRU以对应的第一RS发射功率发送的RS的接收功率;集中控制器关闭m个RRU中的除n个RRU之外的RRU(402);集中控制器将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率,并使得n个RRU分别以对应的第一RS发射功率发送RS(403)。

Description

节能方法、装置及计算机可读存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种节能方法、装置及计算机可读存储介质。
背景技术
分布式皮基站(LampSite)用于为室内提供网络覆盖。与传统基站(由一个基带处理单元(building baseband unit,简称BBU)和一个射频拉远单元(remote radio unit,简称RRU)组成的基站)相比,为了降低成本,提升网络覆盖,LampSite架构由BBU+rHub+pRRU组成,即LampSite架构中包括1个BBU和多个pRRU,多个pRRU通过rHub和BBU连接。其中,Hub为无线集线器,r表示RRU,rHub则表示连接RRU的Hub,pRRU中的P为pico(皮)之意。一般中大型建筑物室内面积达到2至5万平方米,甚至10万平方米,要完成如此大面积的网络覆盖,LampSite架构中pRRU的个数需要在几十至数百个。由于pRRU个数较多,多个pRRU长时间开机运行,会产生巨大的功耗。
发明内容
本申请实施例提供了一种节能方法、装置及计算机可读存储介质,用于降低LampSite的功耗。
第一方面,提供了一种节能方法,应用于通信系统,通信系统包括集中控制器和与集中控制器连接的m个RRU,m为大于1的整数,该节能方法包括:集中控制器确定m个RRU中的n个RRU,n个RRU对应同一终端的第一下行RSRP的和大于或等于第一预设值,一个RRU对应多个终端的第一下行RSRP,一个RRU对应的一个终端的第一下行RSRP为集中控制器预估的该终端测量的该RRU以对应的第一RS发射功率发送的RS的接收功率,一个RRU对应的第一RS发射功率为对该RRU对应的第二RS发射功率进行功率提升后的RS发射功率,m个RRU对应的第二RS发射功率均为预先配置的,第一预设值为多个终端进行下行业务时要求达到的电平值,n为大于0小于m的整数;集中控制器关闭m个RRU中的除n个RRU之外的RRU;集中控制器将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率,并使得n个RRU分别以对应的第一RS发射功率发送RS。第一方面提供的方法,通过提升RRU的RS发射功率,从而使得m个RRU中的n个RRU就可以满足小区的下行覆盖要求,那么就可以将m个RRU中的除n个RRU之外的RRU关闭,降低通信系统的功耗。第一方面提供的方法,在保证小区的下行覆盖要求的同时,保证了网络的KPI性能。
在一种可能的实现方式中,集中控制器将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率,包括:集中控制器通过降低数据发射功率,增加RS发射功率将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率;或者,集中控制器通过将RRU归属的逻辑小区的服务带宽上的RS 发射总功率集中在服务带宽的中间带宽上将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率。该种可能的实现方式,提供了多种提升RRU的RS发射功率的方式,从而使得本申请实施例提供的方法有更多的实现可能。
在一种可能的实现方式中,在集中控制器确定m个RRU中的n个RRU之前,该节能方法还包括:集中控制器确定m个RRU中的每个RRU对应多个终端的第二下行RSRP,一个RRU对应的一个终端的第二下行RSRP为该终端测量的该RRU以对应的第二RS发射功率发送的RS的接收功率;集中控制器确定m个RRU中的每个RRU提升的RS发射功率;集中控制器根据m个RRU中的每个RRU对应多个终端的第二下行RSRP和每个RRU提升的RS发射功率确定m个RRU中的每个RRU对应多个终端的第一下行RSRP。该种可能的实现方式,提供了一种获取RRU的第一下行RSRP的方式。
在一种可能的实现方式中,在集中控制器通过将RRU归属的逻辑小区的服务带宽上的RS发射总功率集中在服务带宽的中间带宽上将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率之前,该节能方法还包括:集中控制器根据n个RRU中的每个RRU提升的RS发射功率确定n个RRU对应的中间带宽。该种可能的实现方式,提供了一种确定中间带宽的方式。
在一种可能的实现方式中,集中控制器确定m个RRU中的第一RRU对应第一终端的第二下行RSRP,包括:集中控制器测量m个RRU对应第一终端的上行RSRP,一个RRU对应第一终端的上行RSRP为集中控制器测量到的第一终端通过该RRU发送的SRS的接收功率,第一终端为多个终端中的任意一个终端;集中控制器接收第一终端发送的m个RRU对应第一终端的第二下行RSRP之和的信息;集中控制器根据m个RRU对应第一终端的上行RSRP和m个RRU对应第一终端的第二下行RSRP之和的信息确定第一RRU对应第一终端的第二下行RSRP,第一RRU为m个RRU中的任意一个RRU。该种可能的实现方式,提供了一种获取RRU的第二下行RSRP的方式。
在一种可能的实现方式中,集中控制器根据m个RRU对应第一终端的上行RSRP和m个RRU对应第一终端的第二下行RSRP之和的信息确定第一RRU对应第一终端的第二下行RSRP,包括:集中控制器根据预设算法确定第一RRU对应第一终端的第二下行RSRP的线性值;其中,预设算法为:
Figure PCTCN2018097117-appb-000001
S 上行RSRP为m个RRU对应第一终端的上行RSRP的线性值之和,S 下行RSRP为m个RRU对应第一终端的第二下行RSRP的线性值之和,RSRP1′为第一RRU对应第一终端的上行RSRP的线性值,RSRP1为第一RRU对应第一终端的第二下行RSRP的线性值;集中控制器根据第一RRU对应第一终端的第二下行RSRP的线性值确定第一RRU对应第一终端的第二下行RSRP。该种可能的实现方式,提供了一种确定RRU的第二下行RSRP的方式。
在一种可能的实现方式中,集中控制器确定m个RRU中的n个RRU,包括:集中控制器确定m个RRU中的任意j个RRU对应多个终端中的每个终端的第一下行RSRP的和是否均大于或等于第一预设值;若是,集中控制器确定j个RRU为n个RRU;若否,令j=j+1,集中控制器继续确定m个RRU中的任意j个RRU对应多个终端中的每个终端的第一下行RSRP的和是否均大于或等于第一预设值,直至确定n个RRU,其中,j的初始值为预设值。该种可能的实现方式,以预设值为起始值确定m个RRU 中的n个RRU,能够使得确定的n个RRU的数量尽量少,从而更加降低通信系统的功耗。
在一种可能的实现方式中,在集中控制器确定m个RRU中的n个RRU之前,该节能方法还包括:集中控制器确定进入节能模式。该种可能的实现方式,集中控制器可以在确定进入节能模式时执行上述方法,从而在通信系统需要节能时降低通信系统的功耗。
第二方面,提供了一种节能装置,所述节能装置位于通信系统中,所述通信系统还包括与所述节能装置连接的m个RRU,m为大于1的整数,所述节能装置包括:处理单元;所述处理单元,用于确定所述m个RRU中的n个RRU,所述n个RRU对应同一终端的第一下行RSRP的和大于或等于第一预设值,一个RRU对应多个终端的第一下行RSRP,一个RRU对应的一个终端的第一下行RSRP为所述节能装置预估的该终端测量的该RRU以对应的第一RS发射功率发送的RS的接收功率,一个RRU对应的第一RS发射功率为对该RRU对应的第二RS发射功率进行功率提升后的RS发射功率,所述m个RRU对应的第二RS发射功率均为预先配置的,所述第一预设值为所述多个终端进行下行业务时要求达到的电平值,n为大于0小于m的整数;所述处理单元,还用于关闭所述m个RRU中的除所述n个RRU之外的RRU;所述处理单元,还用于将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率,并使得所述n个RRU分别以对应的第一RS发射功率发送RS。
在一种可能的实现方式中,所述处理单元,具体用于:通过降低数据发射功率,增加RS发射功率将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率;或者,通过将RRU归属的逻辑小区的服务带宽上的RS发射总功率集中在所述服务带宽的中间带宽上将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率。
在一种可能的实现方式中,所述处理单元,还用于:确定所述m个RRU中的每个RRU对应所述多个终端的第二下行RSRP,一个RRU对应的一个终端的第二下行RSRP为该终端测量的该RRU以对应的第二RS发射功率发送的RS的接收功率;确定所述m个RRU中的每个RRU提升的RS发射功率;根据所述m个RRU中的每个RRU对应所述多个终端的第二下行RSRP和每个RRU提升的RS发射功率确定所述m个RRU中的每个RRU对应所述多个终端的第一下行RSRP。
在一种可能的实现方式中,所述处理单元,还用于:根据所述n个RRU中的每个RRU提升的RS发射功率确定所述n个RRU对应的中间带宽。
在一种可能的实现方式中,所述节能装置还包括通信单元,所述处理单元,具体用于:测量所述m个RRU对应所述第一终端的上行RSRP,一个RRU对应所述第一终端的上行RSRP为所述节能装置测量到的所述第一终端通过该RRU发送的SRS的接收功率,所述第一终端为所述多个终端中的任意一个终端;通过所述通信单元接收所述第一终端发送的所述m个RRU对应所述第一终端的第二下行RSRP之和的信息;根据所述m个RRU对应所述第一终端的上行RSRP和所述m个RRU对应所述第一终端的第二下行RSRP之和的信息确定所述第一RRU对应所述第一终端的第二下行RSRP,所述第一RRU为所述m个RRU中的任意一个RRU。
在一种可能的实现方式中,所述处理单元,具体用于:根据预设算法确定所述第一RRU对应所述第一终端的第二下行RSRP的线性值;其中,所述预设算法为:
Figure PCTCN2018097117-appb-000002
所述S 上行RSRP为所述m个RRU对应所述第一终端的上行RSRP的线性值之和,所述S 下行RSRP为所述m个RRU对应所述第一终端的第二下行RSRP的线性值之和,所述RSRP1′为所述第一RRU对应所述第一终端的上行RSRP的线性值,所述RSRP1为所述第一RRU对应所述第一终端的第二下行RSRP的线性值;根据所述第一RRU对应所述第一终端的第二下行RSRP的线性值确定所述第一RRU对应所述第一终端的第二下行RSRP。
在一种可能的实现方式中,所述处理单元,具体用于:确定所述m个RRU中的任意j个RRU对应所述多个终端中的每个终端的第一下行RSRP的和是否均大于或等于所述第一预设值;若是,确定所述j个RRU为所述n个RRU;若否,令j=j+1,继续确定m个RRU中的任意j个RRU对应所述多个终端中的每个终端的第一下行RSRP的和是否均大于或等于所述第一预设值,直至确定所述n个RRU,其中,j的初始值为预设值。
在一种可能的实现方式中,所述处理单元,还用于:确定进入节能模式。
第三方面,提供了一种节能装置,包括:存储器,处理器和通信总线,存储器用于存储计算机执行指令,处理器与存储器通过通信总线连接,处理器执行存储器存储的计算机执行指令,以使该装置实现第一方面提供的任意一种方法。该装置可以以芯片的产品形态存在。
第四方面,提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机实现第一方面提供的任意一种方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机实现第一方面提供的任意一种方法。
第二方面至第五方面中任一方面中的各种实现方式的有益效果可以参见第一方面提供的相应的实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种LampSite的架构示意图;
图2为本申请实施例提供的一种应用场景示意图;
图3为本申请实施例提供的一种节能装置的硬件结构示意图;
图4为本申请实施例提供的一种节能方法的流程图;
图5为本申请实施例提供的一种提升RRU的RS发射功率前后小区的下行覆盖对比示意图;
图6为本申请实施例提供的提升RRU的RS发射功率的效果示意图;
图7为本申请实施例提供的上下行RS的接收功率示意图;
图8为本申请实施例提供的一种节能装置的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系, 例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种通信系统。例如:全球移动通信系统(global system for mobile communication,简称GSM)、演进通用无线陆地接入(evolved UTRA,简称E-UTRA)、通用移动通信系统(universal mobile telecommunications system,简称UMTS)以及UMTS演进版本、长期演进(long term evolution,简称LTE)和基于LTE演进的各种版本、或第五代(5th-generation,简称5G)通信系统、以及新空口(new radio,简称NR)等下一代通信系统。
示例性的,本申请实施例提供的方法可以应用在LampSite场景中,参见图1所示的LampSite架构,在LampSite架构中包括1个BBU和通过rHub与BBU连接的m个pRRU。m个pRRU属于同一个逻辑小区。一般情况下,多个pRRU合路传输信息(例如,合路传输数据和/或参考信号(reference signal,简称RS)),即终端通过多个pRRU向BBU发送信息时,BBU不会区分哪个信息是哪个pRRU发送的,BBU通过多个pRRU向终端发送信息时,终端也不会区分哪个信息是哪个pRRU发送的。该情况下,本申请实施例提供的方法中的集中控制器可以为BBU,RRU可以为pRRU。
本申请实施例提供的方法还可以应用在图2所示的场景下,该场景中包括m个BBU,每个BBU连接一个RRU,每个RRU属于不同的逻辑小区。该情况下,本申请实施例提供的方法中的集中控制器可以为用于控制m个BBU的集中控制单元,具体可以为m个BBU中的某个BBU,也可以为m个BBU之外的集中控制单元。集中控制器可以通过m个BBU分别与m个RRU连接。
在LampSite场景中,一种节能的方法为:在低话务时段内,大楼的进出口或关键关口的pRRU保持上电,所属的逻辑小区开启并实时进行业务监测,随着用户的移动远程上电其他pRRU,实现“人来网开”。在用户离开室内时,pRRU下电,实现“人走网关”。由于在LTE制式下,用户驻留无需发起随机接入,可能导致“漏检”情况。若特定位置的pRRU选择不当,则也可能出现“漏检”情况。
本申请实施例提供了一种节能装置的硬件结构示意图,如图3所示,该节能装置30可以为下文中的集中控制器。该节能装置30包括处理器301,通信总线302,存储器303以及至少一个通信接口304。
处理器301可以是一个或多个通用中央处理器(central processing unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线302,用于在上述组件之间通信,以传送信息。
通信接口304,用于与其他设备或通信网络通信,可以使用任何收发器一类的装置,如以太网、无线接入网(radio access network,简称RAN)节点、无线局域网(wireless local area networks,简称WLAN)等。
存储器303,用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。处理器301用于执行存储器303中存储的计算机执行指令,从而实现本申请下述实施例提供的方法,例如,执行下文中集中控制器的动作。存储器303可以是只 读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,简称EEPROM)、只读光盘(compact disc read-only memory,简称CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器303可以是独立存在,通过通信总线302与处理器301相连接。存储器303也可以和处理器301集成在一起。
可选地,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
作为一种实施例,节能装置30可以包括多个处理器,例如图3中的处理器301和处理器308。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
作为一种实施例,节能装置30还可以包括输出设备305和输入设备306。输出设备305和处理器301通信,可以以多种方式来显示信息。输入设备306和处理器301通信,可以以多种方式接收用户的输入。
本申请实施例提供了一种节能方法,应用于通信系统,通信系统包括集中控制器和与集中控制器连接的m个RRU,m为大于1的整数,如图4所示,该节能方法包括:
401、集中控制器确定m个RRU中的n个RRU,n个RRU对应同一终端的第一下行参考信号接收功率(reference signal receiving power,简称RSRP)的和大于或等于第一预设值,一个RRU对应多个终端的第一下行RSRP,一个RRU对应的一个终端的第一下行RSRP为集中控制器预估的该终端测量的该RRU以对应的第一RS发射功率发送的RS的接收功率,一个RRU对应的第一RS发射功率为对该RRU对应的第二RS发射功率进行功率提升后的RS发射功率,m个RRU对应的第二RS发射功率均为预先配置的,第一预设值为多个终端进行下行业务时要求达到的电平值,n为大于0小于m的整数。
其中,第一预设值具体可以为多个终端进行下行业务时要求达到的最低电平值。第一预设值可以是运营商配置的,也可以是集中控制器根据下行业务需求自行确定的。
示例性的,参见表1,假设多个终端为6个终端,m=4,P dij 1是指集中控制器预估的第i个终端接收第j个RRU以对应的第一RS发射功率发送的RS的接收功率,即第j个RRU对应第i个终端的第一下行RSRP。其中,i为大于0小于等于6的整数,j为大于0小于等于4的整数。
表1
Figure PCTCN2018097117-appb-000003
Figure PCTCN2018097117-appb-000004
基于表1所示的示例,若P di2 1、P di3 1与P di4 1的和在i为1、2、3、4、5和6时均大于或等于第一预设值时,n个RRU可以为RRU2、RRU3和RRU4。
当n个RRU对应同一终端的第一下行RSRP的和大于或等于第一预设值时,小区的下行覆盖范围可以覆盖到该终端所在的位置。本申请实施例中,小区的下行覆盖范围可以覆盖到上述多个终端所在的位置。本申请实施例中的多个终端中每个终端为一个采样样本,每个采样样本测量的RS的接收功率可以为集中控制器在非节能模式下采样到的。由于采样样本是随机确定的,个数可以为几十个,也可以为上百个。因此,当小区的下行覆盖范围可以覆盖到上述多个终端所在的位置,可以认为小区的下行覆盖满足要求。在本申请实施例中关于“小区”的描述中,当本申请应用于图1所示的场景时,小区是指BBU的小区,当本申请应用于图2所示的场景时,小区是指m个BBU的小区。
不同的RRU对应的第二RS发射功率可以相同也可以不同,不同的RRU对应的第二RS发射功率提升的发射功率可以相同也可以不同,不同的RRU对应的第一RS发射功率可以相同也可以不同。
本申请实施例提供的方法可以是在通信系统需要进入节能模式时执行。即在步骤401之前,该方法还可以包括:集中控制器确定进入节能模式。
其中,当本申请应用于图1所示的场景时,集中控制器为BBU,BBU可以周期性采集BBU的小区的负载(或用户数),当负载(或用户数)大于预设阈值时,确定进入节能模式,进而执行步骤401以及之后的方法。BBU还可以在时间为设定的节能时间时,确定进入节能模式。例如,若节能时间为22:00至8:00,在时间为22:00时,BBU确定进入节能模式。
当本申请应用于图2所示的场景时,集中控制器可以周期性采集m个BBU的小区的负载(或用户数),当负载(或用户数)大于预设阈值时,确定进入节能模式,进而执行步骤401以及之后的方法。集中控制器还可以在时间为设定的节能时间时,确定进入节能模式。例如,若节能时间为22:00至8:00,在时间为22:00时,集中控制器确定进入节能模式。
402、集中控制器关闭m个RRU中的除n个RRU之外的RRU。
集中控制器关闭一个RRU的方式具体可以包括:关闭该RRU的载波,关闭该RRU的射频通道,关闭该RRU的RS的发送,使得该RRU下电等。
403、集中控制器将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率,并使得n个RRU分别以对应的第一RS发射功率发送RS。
其中,步骤402和步骤403的执行顺序不分先后。
需要说明的是,小区的下行覆盖,由小区的下行RSRP值决定,提升RRU的RS 发射功率后,小区的下行RSRP值会增加,此时,m个RRU中的部分RRU就可以满足小区的下行覆盖要求,因此,可以将其余RRU关闭,从而降低通信系统的功耗。示例性的,参见图5,在未提升RRU的RS发射功率之前,6个RRU需要全部打开才能够覆盖图中所示的12个终端,在提升RRU的RS发射功率之后,6个RRU中的3个打开就能够覆盖图中所示的12个终端,因此,可以将其余3个RRU关闭,以降低通信系统的功耗。
步骤403在具体实现时,提升RRU的RS发射功率可以通过以下两种方式中的任意一种方式实现:
方式一、集中控制器通过降低数据发射功率,增加RS发射功率将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率。
当本申请应用于图1所示的场景时,集中控制器可以将降低的数据发射功率均分给BBU发送的全部的RS。
当本申请应用于图2所示的场景时,集中控制器可以将每个BBU的逻辑小区的服务带宽上降低的数据发射功率均分给该BBU发送的全部的RS。
示例性的,如图6所示,正常情况下,数据和RS的发射功率分别为P1和P2。经过方式一的处理之后,数据的发射功率变为P3,RS的发射功率变为P4。P1大于P3,P2小于P4。
在图1所示的场景中,通过降低数据发射功率,将节省的功率用于发射RS,大约可以使得每个RRU对应的RS发射功率提升3dB。
方式二、集中控制器通过将RRU归属的逻辑小区的服务带宽上的RS发射总功率集中在服务带宽的中间带宽上将n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率。
方式二在具体实现时,集中控制器可以根据n个RRU中的每个RRU提升的RS发射功率确定n个RRU对应的中间带宽。
具体的,集中控制器可以根据公式1确定一个RRU以对应的第一RS发射功率发送RS时发送RS的资源单位(resource element,简称RE)个数,再根据这些RE在服务带宽中的位置确定中间带宽,其中,公式1为:第二RS发射功率*发送RS的RE个数=第一RS发射功率*发送RS的RE个数。
示例性的,如图6所示,正常情况下,数据和RS的发射功率分别为P1和P2。经过方式二的处理之后,RS的发射功率变为P5,P2小于P5。
在图1所示的场景中,减少下行实际使用的带宽大小,将RS发射总功率集中在服务带宽的中间带宽上,其他带宽上可以不发RS,每个RRU对应的RS发射功率大约可以提升6dB至9dB。
在方式二下,可选地,该方法还包括:集中控制器向终端发送调度信息,调度信息中包括终端接收和/或发送数据的频域资源,频域资源为中间带宽。
该可选地方法,基站可以将实际使用的带宽信息通知终端,终端在中间带宽接收和/或发送数据,保证数据的正确传输。
上述实施例中仅仅示例性的示出了两种为RRU提升RS发射功率的方法,实际上,还可以采用其他方法提升RRU对应的RS发射功率,例如,将RRU所属的逻辑小区 的服务带宽中的一部分带宽的数据发射功率和/或RS发射功率用于增强其他部分带宽的RS发射功率。本申请实施例对提升RRU对应的RS发射功率的方法不作具体限定。
本申请实施例提供的方法,通过提升RRU对应的RS发射功率,从而使得m个RRU中的n个RRU就可以满足小区的下行覆盖要求,那么就可以将m个RRU中的除n个RRU之外的RRU关闭,降低通信系统的功耗。本申请实施例提供的方法,在保证小区的下行覆盖要求的同时,保证了网络的关键业绩指标(key performance indicators,简称KPI)性能。并且,本申请实施例提供的方法,由于n个RRU已经可以满足小区的下行覆盖要求,因此,不会出现终端的“漏检”情况。
步骤401在具体实现时,可以包括:11)集中控制器确定m个RRU中的任意j个RRU对应多个终端中的每个终端的第一下行RSRP的和是否均大于或等于第一预设值;12)若是,集中控制器确定j个RRU为n个RRU;13)若否,令j=j+1,集中控制器继续确定m个RRU中的任意j个RRU对应多个终端中的每个终端的第一下行RSRP的和是否均大于或等于第一预设值,直至确定n个RRU,其中,j的初始值为预设值,例如,当m=50时,j的初始值可以为30。
示例性的,参见表1,若j个RRU为RRU2、RRU3和RRU4,j个RRU对应的6个终端中的终端i的第一下行RSRP的和为P di2 1、P di3 1与P di4 1的和,则当i为1、2、3、4、5和6时,若P di2 1、P di3 1与P di4 1的和均大于或等于第一预设值时,j个RRU可以为RRU2、RRU3和RRU4,则n个RRU为RRU2、RRU3和RRU4。
可选地,在步骤401之前,该方法还包括:21)集中控制器确定m个RRU中的每个RRU对应多个终端的第二下行RSRP,一个RRU对应的一个终端的第二下行RSRP为该终端测量的该RRU以对应的第二RS发射功率发送的RS的接收功率;22)集中控制器确定m个RRU中的每个RRU提升的RS发射功率;23)集中控制器根据m个RRU中的每个RRU对应多个终端的第二下行RSRP和每个RRU提升的RS发射功率确定m个RRU中的每个RRU对应多个终端的第一下行RSRP。
步骤22)在具体实现时,集中控制器可以根据RRU提升RS发射功率的方式确定RRU提升的RS发射功率,其中,一种提升RS发射功率的方式可以对应一个提升的RS发射功率的值。示例性的,若RRU提升RS发射功率的方式为上述方式一,集中控制器确定RRU提升的RS发射功率的值可以为3dB,若RRU提升RS发射功率的方式为上述方式二,集中控制器确定RRU提升的RS发射功率的值可以为6dB。
步骤23)在具体实现时,若一个终端测量的一个RRU以对应的第二RS发射功率发送的RS的接收功率为A,该RRU提升的RS发射功率为N,则集中控制器预估的终端测量的该RRU以对应的第一RS发射功率发送的RS的接收功率为A+N,即该RRU对应该终端的第一下行RSRP为A+N。集中控制器可以根据该方法确定每个RRU对应每个终端的第一下行RSRP。
上述实施例提供的方法,在集中控制器每次确定需要进入节能模式时可以执行一次。下文中的确定m个RRU中的每个RRU对应多个终端的第二下行RSRP的方法不需要每次进入节能模式时都执行,可以一段时间执行一次,例如,一个月,半年等。
当本申请应用于图2所示的场景时,一个终端可以自行测量m个RRU以对应的第二RS发射功率发送的RS的接收功率,并上报给对应的m个BBU,m个BBU再上 报给集中控制器。类似的,其他终端也可以上报测量的m个RRU以对应的第二RS发射功率发送的RS的接收功率给集中控制器。
当本申请应用于图1所示的场景时,可选地,步骤21)在具体实现时,集中控制器确定m个RRU中的第一RRU对应第一终端的第二下行RSRP,包括:31)集中控制器测量m个RRU对应第一终端的上行RSRP,一个RRU对应第一终端的上行RSRP为集中控制器测量到的第一终端通过该RRU发送的探测参考信号(sounding reference signal,简称SRS)的接收功率,第一终端为多个终端中的任意一个终端;32)集中控制器接收第一终端发送的m个RRU对应第一终端的第二下行RSRP之和的信息;33)集中控制器根据m个RRU对应第一终端的上行RSRP和m个RRU对应第一终端的第二下行RSRP之和的信息确定第一RRU对应第一终端的第二下行RSRP,第一RRU为m个RRU中的任意一个RRU。
其中,终端发送的SRS可以是终端接入BBU的逻辑小区后,BBU为终端配置的SRS资源中的SRS,终端在接收到SRS资源后,周期性的发送SRS资源中的SRS。
需要说明的是,一个上行子帧有14个符号,前面13个符号用于发送数据,最后一个符号用于发送SRS,因此,前面13个符号可以称为数据符号,最后一个符号可以称为SRS符号。步骤31)在具体实现时,BBU可以控制一个终端在SRS符号上,m个RRU不合路,仅一个RRU进行上行传输,即在SRS符号上,关闭其他RRU仅开启一个RRU,从而在该RRU上测量该终端通过该RRU发送的SRS的上行RSRP。在具体实现时,集中控制器可以轮询开启m个RRU中的RRU,从而获取m个RRU中的每个RRU对应该终端的上行RSRP。例如,在上行子帧1仅开启m个RRU中的第一RRU,从而获取第一RRU对应该终端的上行RSRP,在上行子帧2仅开启m个RRU中的第二RRU,从而获取第二RRU对应该终端的上行RSRP。
需要说明的是,在数据符号上,m个RRU仍然可以合路传输数据。
示例性的,参见表2,若多个终端为6个终端,m=4,则集中控制器测量的RRUi对应终端1、终端2、终端3、终端4、终端5和终端6的上行RSRP分别为P u1i、P u2i、P u3i、P u4i、P u5i和P u6i
表2
Figure PCTCN2018097117-appb-000005
注:P uij是指集中控制器测量的第i个终端通过第j个RRU发送的SRS的接收功率。
步骤32)在具体实现时,集中控制器控制每个终端进行小区的下行RSRP测量并上报。m个RRU对应一个终端的第二下行RSRP之和的信息可以包含在该终端的测量 报告(measurement report,简称MR)中。需要说明的是,当本申请应用于图1所示的场景时,由于m个RRU在发送RS时是合路的,因此,终端直接测量到的下行RSRP即m个RRU对应该终端的第二下行RSRP的和。
示例性的,参见表3,假设多个终端为6个终端,m=4,P dij 2是指第i个终端接收第j个RRU以第二RS发射功率发送的RS的接收功率,即第j个RRU对应第i个终端的第二下行RSRP。
表3
Figure PCTCN2018097117-appb-000006
步骤33)在具体实现时可以包括:41)集中控制器根据预设算法确定第一RRU对应第一终端的第二下行RSRP的线性值;其中,预设算法为:
Figure PCTCN2018097117-appb-000007
S 上行RSRP为m个RRU对应第一终端的上行RSRP的线性值之和,S 下行RSRP为m个RRU对应第一终端的第二下行RSRP的线性值之和,RSRP1′为第一RRU对应第一终端的上行RSRP的线性值,RSRP1为第一RRU对应第一终端的第二下行RSRP的线性值;42)集中控制器根据第一RRU对应第一终端的第二下行RSRP的线性值确定第一RRU对应第一终端的第二下行RSRP。
步骤42)在具体实现时可以包括:集中控制器根据公式2和第一RRU对应第一终端的第二下行RSRP的线性值计算第一RRU对应第一终端的第二下行RSRP,其中,公式2为:第一RRU对应第一终端的第二下行RSRP=10log 10(第一RRU对应第一终端的第二下行RSRP的线性值)。
需要说明的是,本申请示例性的描述了集中控制器确定第一RRU对应第一终端的第二下行RSRP的过程,实际上,该过程可以用于确定每个RRU对应每个终端的第二下行RSRP。
其中,为了保证计算的准确性,集中控制器测量m个RRU中的每个RRU对应多个终端的上行RSRP和接收多个终端发送的m个RRU对应多个终端的第二下行RSRP之和的信息的时间间隔很小,或者,集中控制器接收多个终端发送的m个RRU对应多个终端的第二下行RSRP之和的信息的过程在集中控制器测量m个RRU中的每个RRU对应多个终端的上行RSRP的过程中。
以下对预设算法的推导作具体说明,该推导过程中的参数均为一个终端对应的参数。首先,对推导过程中用到的参数作具体说明:RSRPj:终端测量到的m个RRU中的第j个RRU以对应的第二RS发射功率发送的RS的接收功率,j为大于0小于等于m的整数;RSRPj′:集中控制器测量到的终端通过m个RRU中的第j个RRU发送的SRS的接收功率;H:由上下行频段差异引起的上下行传输损耗;L_RSRPj:RSRPj的 线性值,L_RSRPj=(RSRPj/10) 10;L_RSRPj′:RSRPj′的线性值,L_RSRPj′=(RSRPj′/10) 10
推导过程如下:
根据上下行互易以及固定差异,可以得到下面的等式:
RSRP1=RSRP1′+H        (1)
RSRP2=RSRP2′+H        (2)
表达式(1)和(2)可以变化为:
RSRP2-RSRP1=RSRP2′-RSRP1′            (3)
将表达式(3)转化为线性值可以得到:
L_RSRP2/L_RSRP1=L_RSRP2′/L_RSRP1′
同样的道理可以得到:
L_RSRP3/L_RSRP1=L_RSRP3′/L_RSRP1′;
L_RSRPm/L_RSRP1=L_RSRPm′/L_RSRP1′;
则:(L_RSRP1+L_RSRP2+…+L_RSRPm)/L_RSRP1=(L_RSRP1′+L_RSRP2′+…+L_RSRPm′)/L_RSRP1′;
进一步可以得到:(L_RSRP1+L_RSRP2+…+L_RSRPm)/L_RSRPj=(L_RSRP1′+L_RSRP2′+…+L_RSRPm′)/L_RSRPj′。
示例性的,参见图7,若m=4,以计算终端接收RRU1发送的RS的接收功率为例,(L_RSRP1+L_RSRP2+L_RSRP3+L_RSRP4)/L_RSRP1=(L_RSRP1′+L_RSRP2′+L_RSRP3′+L_RSRP4′)/L_RSRP1′,L_RSRP1+L_RSRP2+L_RSRP3+L_RSRP4的值可以由终端测量得到并反馈给集中控制器,L_RSRP1′、L_RSRP2′、L_RSRP3′和L_RSRP4′可以由集中控制器测量得到,集中控制器可以根据该公式计算得到L_RSRP1,进而得到RSRP1。
上述主要从方法的角度对本申请实施例的方案进行了介绍。可以理解的是,节能装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对节能装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用集成的功能模块的情况下,图8示出了上述实施例中所涉及的节能装置80的一种可能的结构示意图,参见图8,装置80可以包括:处理单元801、通信单元802,还可以包括存储单元803。
处理单元801用于对节能装置的动作进行控制管理,例如,处理单元801用于支持节能装置执行图4中的步骤,和/或本申请实施例中所描述的其他过程中的节能装置执行的动作。通信单元802用于支持节能装置与其他网络设备通信,例如,通过RRU与终端通信。存储单元803用于存储节能装置的程序代码和数据。
其中,处理单元801可以是处理器或控制器,通信单元802可以是通信接口,存储单元803可以是存储器。当处理单元801为处理器,通信单元802为通信接口,存储单元803为存储器时,本申请实施例所涉及的装置可以为图3所示的装置。
处理器301用于对节能装置的动作进行控制管理,例如,处理器301用于支持节能装置执行图4中的步骤,和/或本申请实施例中所描述的其他过程中的节能装置执行的动作。通信接口304用于支持节能装置与其他网络设备通信,例如,通过RRU与终端通信。存储器303用于存储节能装置的程序代码和数据。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。

Claims (10)

  1. 一种节能方法,其特征在于,应用于通信系统,所述通信系统包括集中控制器和与所述集中控制器连接的m个射频拉远单元RRU,m为大于1的整数,所述节能方法包括:
    所述集中控制器确定所述m个RRU中的n个RRU,所述n个RRU对应同一终端的第一下行参考信号接收功率RSRP的和大于或等于第一预设值,一个RRU对应多个终端的第一下行RSRP,一个RRU对应的一个终端的第一下行RSRP为所述集中控制器预估的该终端测量的该RRU以对应的第一参考信号RS发射功率发送的RS的接收功率,一个RRU对应的第一RS发射功率为对该RRU对应的第二RS发射功率进行功率提升后的RS发射功率,所述m个RRU对应的第二RS发射功率均为预先配置的,所述第一预设值为所述多个终端进行下行业务时要求达到的电平值,n为大于0小于m的整数;
    所述集中控制器关闭所述m个RRU中的除所述n个RRU之外的RRU;
    所述集中控制器将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率,并使得所述n个RRU分别以对应的第一RS发射功率发送RS。
  2. 根据权利要求1所述的节能方法,其特征在于,所述集中控制器将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率,包括:
    所述集中控制器通过降低数据发射功率,增加RS发射功率将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率;或者,
    所述集中控制器通过将RRU归属的逻辑小区的服务带宽上的RS发射总功率集中在所述服务带宽的中间带宽上将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率。
  3. 根据权利要求1或2所述的节能方法,其特征在于,在所述集中控制器确定所述m个RRU中的n个RRU之前,所述节能方法还包括:
    所述集中控制器确定所述m个RRU中的每个RRU对应所述多个终端的第二下行RSRP,一个RRU对应的一个终端的第二下行RSRP为该终端测量的该RRU以对应的第二RS发射功率发送的RS的接收功率;
    所述集中控制器确定所述m个RRU中的每个RRU提升的RS发射功率;
    所述集中控制器根据所述m个RRU中的每个RRU对应所述多个终端的第二下行RSRP和每个RRU提升的RS发射功率确定所述m个RRU中的每个RRU对应所述多个终端的第一下行RSRP。
  4. 根据权利要求3所述的节能方法,其特征在于,在所述集中控制器通过将RRU归属的逻辑小区的服务带宽上的RS发射总功率集中在所述服务带宽的中间带宽上将所述n个RRU中的每个RRU对应的第二RS发射功率提升至对应的第一RS发射功率之前,所述节能方法还包括:
    所述集中控制器根据所述n个RRU中的每个RRU提升的RS发射功率确定所述n个RRU对应的中间带宽。
  5. 根据权利要求3或4所述的节能方法,其特征在于,所述集中控制器确定所述 m个RRU中的第一RRU对应第一终端的第二下行RSRP,包括:
    所述集中控制器测量所述m个RRU对应所述第一终端的上行RSRP,一个RRU对应所述第一终端的上行RSRP为所述集中控制器测量到的所述第一终端通过该RRU发送的探测参考信号SRS的接收功率,所述第一终端为所述多个终端中的任意一个终端;
    所述集中控制器接收所述第一终端发送的所述m个RRU对应所述第一终端的第二下行RSRP之和的信息;
    所述集中控制器根据所述m个RRU对应所述第一终端的上行RSRP和所述m个RRU对应所述第一终端的第二下行RSRP之和的信息确定所述第一RRU对应所述第一终端的第二下行RSRP,所述第一RRU为所述m个RRU中的任意一个RRU。
  6. 根据权利要求5所述的节能方法,其特征在于,所述集中控制器根据所述m个RRU对应所述第一终端的上行RSRP和所述m个RRU对应所述第一终端的第二下行RSRP之和的信息确定所述第一RRU对应所述第一终端的第二下行RSRP,包括:
    所述集中控制器根据预设算法确定所述第一RRU对应所述第一终端的第二下行RSRP的线性值;其中,所述预设算法为:
    Figure PCTCN2018097117-appb-100001
    所述S 上行RSRP为所述m个RRU对应所述第一终端的上行RSRP的线性值之和,所述S 下行RSRP为所述m个RRU对应所述第一终端的第二下行RSRP的线性值之和,所述RSRP1′为所述第一RRU对应所述第一终端的上行RSRP的线性值,所述RSRP1为所述第一RRU对应所述第一终端的第二下行RSRP的线性值;
    所述集中控制器根据所述第一RRU对应所述第一终端的第二下行RSRP的线性值确定所述第一RRU对应所述第一终端的第二下行RSRP。
  7. 根据权利要求1-6任一项所述的节能方法,其特征在于,所述集中控制器确定所述m个RRU中的n个RRU,包括:
    所述集中控制器确定所述m个RRU中的任意j个RRU对应所述多个终端中的每个终端的第一下行RSRP的和是否均大于或等于所述第一预设值;
    若是,所述集中控制器确定所述j个RRU为所述n个RRU;
    若否,令j=j+1,所述集中控制器继续确定m个RRU中的任意j个RRU对应所述多个终端中的每个终端的第一下行RSRP的和是否均大于或等于所述第一预设值,直至确定所述n个RRU,其中,j的初始值为预设值。
  8. 根据权利要求1-7任一项所述的节能方法,其特征在于,在所述集中控制器确定所述m个RRU中的n个RRU之前,所述节能方法还包括:
    所述集中控制器确定进入节能模式。
  9. 一种节能装置,其特征在于,所述节能装置包括:存储器和处理器;
    所述存储器用于存储计算机执行指令,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述节能装置实现如权利要求1-8中任意一项所述的节能方法。
  10. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机实现如权利要求1-8中任意一项所述的节能方法。
PCT/CN2018/097117 2018-07-25 2018-07-25 节能方法、装置及计算机可读存储介质 WO2020019219A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18927962.3A EP3820190B1 (en) 2018-07-25 2018-07-25 Energy saving method, device and computer readable storage medium
BR112021001380-6A BR112021001380A2 (pt) 2018-07-25 2018-07-25 método de economia de energia e aparelho, e meio de armazenamento legível por computador
JP2021503922A JP7200355B2 (ja) 2018-07-25 2018-07-25 エネルギー節約方法および装置、ならびにコンピュータ可読記憶媒体
CN201880095883.5A CN112534857B (zh) 2018-07-25 2018-07-25 节能方法、装置及计算机可读存储介质
PCT/CN2018/097117 WO2020019219A1 (zh) 2018-07-25 2018-07-25 节能方法、装置及计算机可读存储介质
US17/156,987 US11606747B2 (en) 2018-07-25 2021-01-25 Energy saving method and apparatus, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097117 WO2020019219A1 (zh) 2018-07-25 2018-07-25 节能方法、装置及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/156,987 Continuation US11606747B2 (en) 2018-07-25 2021-01-25 Energy saving method and apparatus, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020019219A1 true WO2020019219A1 (zh) 2020-01-30

Family

ID=69181075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097117 WO2020019219A1 (zh) 2018-07-25 2018-07-25 节能方法、装置及计算机可读存储介质

Country Status (6)

Country Link
US (1) US11606747B2 (zh)
EP (1) EP3820190B1 (zh)
JP (1) JP7200355B2 (zh)
CN (1) CN112534857B (zh)
BR (1) BR112021001380A2 (zh)
WO (1) WO2020019219A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669810A (zh) * 2020-05-12 2020-09-15 中国联合网络通信集团有限公司 一种数字化室内分布系统的节能方法和装置
CN113766619A (zh) * 2020-06-02 2021-12-07 中国联合网络通信集团有限公司 Rru动态调度方法、装置、电子设备和存储介质
WO2021249287A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 信息传输方法、装置及存储介质
WO2024123300A1 (en) * 2022-12-09 2024-06-13 Turkcell Teknoloji Arastirma Ve Gelistirme Anonim Sirketi A system for remote control of equipment emitting radio frequency

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867086A (zh) * 2022-03-24 2022-08-05 中国联合网络通信集团有限公司 设备节能方法、通信装置及存储介质
WO2023224864A1 (en) * 2022-05-18 2023-11-23 Intel Corporation Remote radio head low-power tuning procedure
CN117479274A (zh) * 2022-07-22 2024-01-30 中兴通讯股份有限公司 节能方法、系统、设备及存储介质
CN116193550B (zh) * 2023-04-24 2023-06-30 广州世炬网络科技有限公司 一种5g扩展皮基站的节能方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625451A (zh) * 2012-03-09 2012-08-01 华为技术有限公司 信号覆盖的方法及基站
CN103298096A (zh) * 2012-02-23 2013-09-11 华为技术有限公司 一种控制数据发送的方法、终端及基站
WO2013143386A1 (zh) * 2012-03-30 2013-10-03 华为技术有限公司 异构网络中用户设备的上行功率控制方法和网络设备
CN103458455A (zh) * 2013-08-21 2013-12-18 中国联合网络通信集团有限公司 天线选择方法、基站和用户设备
CN103906153A (zh) * 2012-12-28 2014-07-02 中国移动通信集团公司 一种基于节能的基站休眠方法和设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011215256B2 (en) * 2010-02-12 2016-01-21 Mitsubishi Electric Corporation Mobile communication system
US9036523B2 (en) * 2010-02-16 2015-05-19 Zte Corporation Methods and apparatus for network energy savings in a wireless communication system
JP5978566B2 (ja) * 2011-07-07 2016-08-24 ソニー株式会社 通信装置、通信方法および基地局
JP5891623B2 (ja) 2011-07-07 2016-03-23 ソニー株式会社 通信制御装置、通信制御方法およびプログラム
CN102256346B (zh) * 2011-07-25 2014-02-12 中国移动通信集团山西有限公司 一种基于rru的最大发射功率设置方法、设备及系统
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
CN102916754A (zh) 2012-10-15 2013-02-06 华为技术有限公司 一种参考信号接收功率的测量方法及装置
WO2014140667A1 (en) * 2013-03-15 2014-09-18 Hitachi, Ltd. Dual connectivity of user equipment to macro and small cell in long term evolution system
CN105519205B (zh) * 2013-05-27 2019-05-24 华为技术有限公司 一种基站节能的方法、设备和系统
CN104969607B (zh) * 2014-01-10 2019-03-05 华为技术有限公司 分布式基站的节能系统、设备和方法
US10263747B2 (en) * 2015-01-06 2019-04-16 Lg Electronics Inc. Downlink signal reception method and user equipment, and downlink signal transmission method and base station
CN107409366A (zh) 2015-03-02 2017-11-28 日本电气株式会社 无线基站、核心网络装置、无线通信系统及无线通信方法
JP6524859B2 (ja) 2015-08-24 2019-06-05 沖電気工業株式会社 スリープ制御方法及び動的波長割当制御方法
US10608734B2 (en) * 2015-10-22 2020-03-31 Phluido, Inc. Virtualization and orchestration of a radio access network
JP6080988B2 (ja) 2016-01-06 2017-02-15 ソフトバンク株式会社 基地局装置
WO2018017468A1 (en) * 2016-07-18 2018-01-25 Phluido, Inc. Synchronization of radio units in radio access networks
CN109314865A (zh) * 2016-11-28 2019-02-05 华为技术有限公司 一种基站发送数据的方法、bbu和rhub

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298096A (zh) * 2012-02-23 2013-09-11 华为技术有限公司 一种控制数据发送的方法、终端及基站
CN102625451A (zh) * 2012-03-09 2012-08-01 华为技术有限公司 信号覆盖的方法及基站
WO2013143386A1 (zh) * 2012-03-30 2013-10-03 华为技术有限公司 异构网络中用户设备的上行功率控制方法和网络设备
CN103906153A (zh) * 2012-12-28 2014-07-02 中国移动通信集团公司 一种基于节能的基站休眠方法和设备
CN103458455A (zh) * 2013-08-21 2013-12-18 中国联合网络通信集团有限公司 天线选择方法、基站和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3820190A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669810A (zh) * 2020-05-12 2020-09-15 中国联合网络通信集团有限公司 一种数字化室内分布系统的节能方法和装置
CN113766619A (zh) * 2020-06-02 2021-12-07 中国联合网络通信集团有限公司 Rru动态调度方法、装置、电子设备和存储介质
CN113766619B (zh) * 2020-06-02 2023-07-25 中国联合网络通信集团有限公司 Rru动态调度方法、装置、电子设备和存储介质
WO2021249287A1 (zh) * 2020-06-12 2021-12-16 华为技术有限公司 信息传输方法、装置及存储介质
WO2024123300A1 (en) * 2022-12-09 2024-06-13 Turkcell Teknoloji Arastirma Ve Gelistirme Anonim Sirketi A system for remote control of equipment emitting radio frequency

Also Published As

Publication number Publication date
EP3820190A1 (en) 2021-05-12
JP7200355B2 (ja) 2023-01-06
EP3820190A4 (en) 2021-07-14
EP3820190B1 (en) 2024-01-24
CN112534857B (zh) 2022-07-19
US20210144636A1 (en) 2021-05-13
US11606747B2 (en) 2023-03-14
CN112534857A (zh) 2021-03-19
JP2021533608A (ja) 2021-12-02
BR112021001380A2 (pt) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2020019219A1 (zh) 节能方法、装置及计算机可读存储介质
CN111434157B (zh) 用于确定双连接最大传输功率的方法、无线设备和介质
TWI745851B (zh) 藉由聯合網路及雲端資源管理之服務傳遞
CN112911691B (zh) 一种小区节能方法、设备及存储介质
WO2016033736A1 (zh) 无线网络中小区选择的方法、基站和用户设备
WO2017197879A1 (zh) 功率的调整方法及装置
WO2020114030A1 (en) Methods, nodes and computer readable media for phr
WO2020186401A1 (zh) 一种配置发射功率的方法和接入回传一体化节点设备
WO2020118600A1 (en) Method and apparatus for multiple antenna systems
US20240056989A1 (en) Precoding and power allocation for access points in a cell-free communication system
CN116803052A (zh) 用于akma的路由指示符检索
WO2021089858A1 (en) Methods for determining minimum scheduling offset application delay
WO2018121220A1 (zh) 一种系统信息传输方法、用户终端和传输节点
WO2023185870A1 (zh) 通信方法及相关装置
US20240224185A1 (en) Energy saving for periodic transmissions
WO2021259174A1 (zh) 随机接入资源的确定方法和自回传iab节点
US20240236676A9 (en) Authentication and Authorization of Servers and Clients in Edge Computing
US20240137765A1 (en) Authentication and Authorization of Servers and Clients in Edge Computing
WO2021032011A1 (zh) 一种功率控制方法和装置
JP7022848B2 (ja) 無線リソース制御(rrc)設定前の物理アップリンク制御チャネル(pucch)リソース選択
WO2024093739A1 (zh) 一种通信方法及装置
US20230088733A1 (en) Dynamic machine learning decision threshold for resource allocation
WO2020211837A1 (zh) 一种终端设备的管理方法及装置
US20220104137A1 (en) Power Control Reporting in a Wireless Communication System
WO2023242616A1 (en) Radio resource arbitration to optimally balance multimedia broadcast single frequency network (mbsfn) slot utilization and non-mbsfn slot utilization in dynamic spectrum sharing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001380

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018927962

Country of ref document: EP

Effective date: 20210205

ENP Entry into the national phase

Ref document number: 112021001380

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210125