WO2020017704A1 - Projection device and projection device operation method - Google Patents

Projection device and projection device operation method Download PDF

Info

Publication number
WO2020017704A1
WO2020017704A1 PCT/KR2018/013986 KR2018013986W WO2020017704A1 WO 2020017704 A1 WO2020017704 A1 WO 2020017704A1 KR 2018013986 W KR2018013986 W KR 2018013986W WO 2020017704 A1 WO2020017704 A1 WO 2020017704A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
light
projection
dmd element
illumination optical
Prior art date
Application number
PCT/KR2018/013986
Other languages
French (fr)
Korean (ko)
Inventor
오진택
홍승기
석창준
남세영
Original Assignee
주식회사 세코닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세코닉스 filed Critical 주식회사 세코닉스
Publication of WO2020017704A1 publication Critical patent/WO2020017704A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the projection apparatus may include an illumination optical system and a projection optical system, and specifically, the light generated from the light source may be transmitted to the projection optical system through the illumination optical system, the reflective member, the DMD element, and the prism.
  • Such a projection device is required to reduce the physical size in terms of application in various fields.
  • the projection apparatus is presented.
  • the projection apparatus according to the embodiment is disposed such that the illumination optical system and the projection optical system have a set angle, thereby reducing the physical size of the projection apparatus including the illumination optical system and the projection optical system.
  • the projection apparatus is an illumination optical system for irradiating the light generated from the light source to a DMD (Digital Micromirror Device) element, and arranged to form a set angle with the illumination optical system, the image light reflected from the DMD element It may include a projection optical system for receiving and projecting.
  • DMD Digital Micromirror Device
  • a method of operating a projection device includes irradiating light generated from a light source to a DMD element in an illumination optical system, and projecting image light reflected from the DMD element in a projection optical system arranged to form a predetermined angle with the illumination optical system. Receiving and projecting.
  • FIG. 1 is a view showing the configuration of a conventional projection apparatus.
  • FIG. 2 is a view showing the configuration of a projection apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining the law of reflection applied in the projection apparatus according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of determining an irradiation angle of light transmitted to a DMD element according to a driving characteristic of the DMD element in the projection apparatus according to the exemplary embodiment of the present invention.
  • FIG. 5 is a view showing an example of the configuration of a projection apparatus according to an embodiment of the present invention.
  • FIG. 6 is a view showing the physical size of the projection apparatus according to an embodiment of the present invention compared with the conventional projection apparatus.
  • FIG. 7 is a view showing an example of the light source arrangement in the projection apparatus according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of a reflective member in a projection apparatus according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a direction of light incident on a DMD element according to driving characteristics of the DMD element in the projection apparatus according to the exemplary embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method of operating a projection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing the configuration of a projection apparatus according to an embodiment of the present invention.
  • the projection apparatus 200 includes an illumination optical system 210, a reflecting member 220, a DMD element 230, a prism 240, a projection optical system 250, and a controller.
  • 260 may include.
  • the illumination optical system 210 may include a light source (eg, an LED), and may radiate the light generated by the light source to the digital micromirror device (DMD) device 230 through the reflective member 220.
  • a light source eg, an LED
  • DMD digital micromirror device
  • the reflective member 220 may reflect the light received from the illumination optical system 210 and transmit the reflected light to the DMD element 230.
  • the reflective member 220 may be configured in any one of a planar shape, a concave shape, and a convex shape having a different size of the transmission area for the light and a distribution degree for the light.
  • the reflective member 220 is configured in a concave shape, the light may be increased by radiating light of a narrower area to the DMD element 230 than in the planar shape, and in the case of the convex shape, a wider area than in the planar shape By irradiating the light on the DMD element 230, there is an increasing effect on the uniformity to distribute the light evenly.
  • the DMD element 230 may transmit the light received from the reflective member 220 to the prism 240.
  • the prism 204 may receive the image light reflected from the DMD element 230 vertically, change the path to the image light, and transmit the image light to the projection optical system 250.
  • the projection optical system 250 may be disposed to form a predetermined angle with the illumination optical system 210, and may receive and project image light reflected from the DMD element 230. As the illumination optical system 210 and the projection optical system 250 are arranged to have a set angle, the projection apparatus 200 including the illumination optical system 210 and the projection optical system 250 may be reduced in physical size.
  • the controller 260 determines an irradiation angle of light transmitted to the DMD element 230 based on a driving characteristic of the DMD element 230, and according to the determined irradiation angle, inclination of the reflective member 220 is determined. You can change it. At this time, the controller 260 is based on the condition that the image light reflected from the DMD element 230 is to be incident perpendicularly to the prism 240 and the law of reflection shown in FIG. 3 (that is, normal to the reflection plane). The irradiation angle of the light transmitted to the DMD element 230 may be determined based on the incident angle of the incident ray and the reflection angle of the reflected ray.
  • the controller 260 normalizes an angle at which light is irradiated onto the DMD element 230 when the driving characteristic of the DMD element 230 is 'reflection plane driving angle 12 degrees'. It can be decided as '24 degrees' for the vertical direction of output.
  • the controller 260 may set the angle at which light is irradiated to the DMD element 230 to '34 degrees' in the normal direction. Can be determined.
  • the controller 260 checks the physical size occupied by the projection apparatus 250 as the angle is changed differently by rotating the illumination optical system 210 at an arrangement position not parallel to the projection optical system 250. By resetting the illumination optical system 210 and the projection optical system 250 by setting an angle at the smallest size among the identified physical sizes, the physical size of the projection apparatus 200 may be minimized.
  • the controller 260 adjusts the inclination of the reflecting member 220 according to the degree of rotation of the illumination optical system 210 to reposition with the projection optical system 250 to irradiate the light transmitted to the DMD element 230. Make the angle constant.
  • FIG. 5 is a view showing an example of the configuration of a projection apparatus according to an embodiment of the present invention.
  • the projection apparatus 500 may include an illumination optical system 510, a reflective member 520, a DMD element 530, a prism 540, and a projection optical system 550.
  • the projection apparatus 500 may transmit the light generated from the light source to the projection optical system 550 through the illumination optical system 510, the reflective member 520, the DMD element 530, and the prism 540.
  • the projection apparatus 500 may include an illumination optical system 510 and a projection optical system 550 disposed to achieve a set angle, thereby reducing the physical size of the conventional projection apparatus. That is, the projection apparatus 500 includes a first virtual line 570 passing through the optical axis 560 of the illumination optical system 510 and a second virtual line 590 passing through the optical axis 580 of the projection optical system 550. The illumination optical system 510 and the projection optical system 550 may be disposed such that the angle 591 is the set angle.
  • the projection apparatus 500 may include an illumination optical system 510 and a projection optical system 550 arranged to form a '30 degree 'to reduce the vertical size by the first size 610.
  • the second size 620 may be reduced horizontally.
  • FIG. 7 is a view showing an example of the light source arrangement in the projection apparatus according to an embodiment of the present invention.
  • the projection apparatus may include n (n is a natural number) light sources.
  • the projection apparatus may include, for example, one or two light sources 710 on one side or the other side of the illumination optical system.
  • FIG. 8 is a diagram illustrating an example of a reflective member in a projection apparatus according to an embodiment of the present invention.
  • the reflection member in the projection apparatus may reflect light received from the illumination optical system and transmit the light to the DMD element.
  • the reflective member may be configured in any one of a planar shape, a concave shape and a convex shape.
  • the reflective member when configured as the concave shape 820, light may be increased by radiating light of a narrower area to the DMD element than when the planar shape 810 is used, and in the case of the convex shape 830, the planar shape When the light is wider than 810, the DMD device is irradiated with light, thereby increasing the uniformity of the light.
  • FIG. 9 is a diagram illustrating a direction of light incident on a DMD element according to driving characteristics of the DMD element in the projection apparatus according to the exemplary embodiment of the present invention.
  • light incident on a DMD element may be, for example, three directions (Diagonal, Side, and Bottom) according to driving characteristics of the DMD element in the projection apparatus.
  • the image light reflected by the DMD element is vertically emitted and transmitted to the projection optical system, and thus may be projected by the projection optical system.
  • FIG. 10 is a flowchart illustrating a method of operating a projection apparatus according to an embodiment of the present invention.
  • the illumination optical system in the projection apparatus may irradiate light generated from a light source to a DMD element.
  • the controller in the projection apparatus may determine an irradiation angle of light transmitted to the DMD element based on a driving characteristic of the DMD element, and change the inclination of the reflective member according to the determined irradiation angle.
  • the reflection member in the projection apparatus may reflect the light received from the illumination optical system and transmit the reflected light to the DMD element.
  • the reflective member may be configured in any one of a planar shape, a concave shape, and a convex shape in which the size of the transmission area for the light and the degree of distribution for the light are different.
  • the reflecting member may increase efficiency by irradiating the DMD device with light in a narrower area than the planar shape, and in the case of the convex shape, light in a wider area than the planar shape may be applied to the DMD device. Irradiation has an effect of increasing the uniformity to distribute the light evenly.
  • the projection optical system in the projection apparatus may receive and project the image light reflected by the light from the DMD element.
  • the projection optical system may be arranged to form an angle with the illumination optical system.
  • the prism in the projection apparatus may receive the image light reflected from the DMD element vertically, change the path to the image light, and transmit the image light to the projection optical system.
  • control unit in the projection apparatus in an arrangement position that is not parallel to the projection optical system, to change the angle differently by rotating the illumination optical system, to check the physical size occupied by the projection apparatus, and the identified physical By setting the angle at the smallest size among the sizes, the physical size of the projection apparatus can be minimized by rearranging the illumination optical system and the projection optical system.
  • the controller in the projection apparatus adjusts the inclination of the reflective member according to the degree of rotation of the illumination optical system to reposition with the projection optical system, thereby making the irradiation angle of the light transmitted to the DMD element constant.
  • the apparatus described above may be implemented as a hardware component, a software component, and / or a combination of hardware components and software components.
  • the devices and components described in the embodiments may include, for example, processors, controllers, arithmetic logic units (ALUs), digital signal processors, microcomputers, field programmable arrays (FPAs), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system.
  • the processing device may also access, store, manipulate, process, and generate data in response to the execution of the software.
  • OS operating system
  • the processing device may also access, store, manipulate, process, and generate data in response to the execution of the software.
  • the processing apparatus may be described as one used, but those skilled in the art will appreciate that the processing apparatus includes a plurality of processing elements and / or a plurality of types of processing elements. It can be seen that it may include.
  • the processing device may include a plurality of processors or one processor and one controller.
  • other processing configurations are possible, such as parallel processors.
  • the software may include a computer program, code, instructions, or a combination of one or more of the above, and may configure the processing device to operate as desired, or process independently or collectively. You can command the device.
  • Software and / or data may be any type of machine, component, physical device, virtual equipment, computer storage medium or device in order to be interpreted by or to provide instructions or data to the processing device. Or may be permanently or temporarily embodied in a signal wave to be transmitted.
  • the software may be distributed over networked computer systems so that they may be stored or executed in a distributed manner.
  • Software and data may be stored in one or more computer readable storage media.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed by various computer means and stored in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, and the like, alone or in combination.
  • the program instructions stored in the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer readable storage media include magnetic media such as hard disks, floppy disks and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks such as floppy disks.
  • Hardware devices specially configured to store and execute program instructions such as magneto-optical media and ROM, RAM, flash memory and the like.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

A projection device and a projection device operation method are disclosed. The projection device can comprise: a lighting optical system for emitting, at a digital micromirror device (DMD) element, light generated from a light source; and a projection optical system which is arranged so as to form a set angle with the lighting optical system, and which receives, from the DMD element, image light from which the light has been reflected, and projects same.

Description

투영장치 및 투영장치의 동작 방법Projector and Method of Operation
투영장치에 연관되며, 보다 상세하게는 투영장치의 광학계 구조에 연관된다.It is associated with the projection apparatus, and more particularly with respect to the optical system structure of the projection apparatus.
본 발명의 배경이 되는 기술은 다음의 문헌에 개시되어 있다.The background technology of the present invention is disclosed in the following documents.
1) 등록번호: 10-0813988, "조명 장치 및 이를 이용한 화상 투영 장치".1) Registration No. 10-0813988, "Lighting device and image projection device using the same".
2) 등록번호: 10-0813983, "조명 광학계, 조명 유니트 및 이를 채용한 화상 투영 장치"2) Registration No .: 10-0813983, "Lighting system, illumination unit and image projection apparatus employing the same"
투영장치는 조명광학계 및 투사광학계를 포함할 수 있으며, 구체적으로, 광원에서 발생하는 광을 조명광학계, 반사부재, DMD 소자 및 프리즘을 거쳐, 투사광학계에 전달할 수 있다.The projection apparatus may include an illumination optical system and a projection optical system, and specifically, the light generated from the light source may be transmitted to the projection optical system through the illumination optical system, the reflective member, the DMD element, and the prism.
이러한 투영장치는 다양한 분야에서의 활용 측면에서, 물리적인 크기를 축소시키는 것이 요구되고 있다.Such a projection device is required to reduce the physical size in terms of application in various fields.
그러나, 종래의 투영장치는 도 1에 도시된 바와 같이, 조명광학계와 투사광학계가 평행하게 배치되어, 각 광학계의 가로 및 세로의 크기를 확보해야 함에 따라, 물리적인 크기를 축소시키는 데 한계가 있다.However, in the conventional projection apparatus, as shown in FIG. 1, since the illumination optical system and the projection optical system are arranged in parallel, the horizontal and vertical sizes of the respective optical systems must be secured, thereby limiting the physical size. .
투영장치가 제시된다. 실시예에 따른 투영장치는 조명광학계와 투사광학계가 설정된 각도를 이루도록 배치되어, 조명광학계와 투사광학계를 포함하는 투영장치의 물리적인 크기가 축소된다.Projection apparatus is presented. The projection apparatus according to the embodiment is disposed such that the illumination optical system and the projection optical system have a set angle, thereby reducing the physical size of the projection apparatus including the illumination optical system and the projection optical system.
일측에 따르면, 투영장치는 광원에서 발생되는 광을 DMD(Digital Micromirror Device) 소자로 조사시키는 조명광학계와, 상기 조명광학계와 설정된 각도를 이루도록 배치되고, 상기 DMD 소자로부터 상기 광이 반사된 이미지광을 수신하여, 투영시키는 투사광학계를 포함할 수 있다.According to one side, the projection apparatus is an illumination optical system for irradiating the light generated from the light source to a DMD (Digital Micromirror Device) element, and arranged to form a set angle with the illumination optical system, the image light reflected from the DMD element It may include a projection optical system for receiving and projecting.
투영장치의 동작 방법은 조명광학계에서, 광원으로부터 발생되는 광을 DMD 소자로 조사시키는 단계와, 상기 조명광학계와 설정된 각도를 이루도록 배치되는 투사광학계에서, 상기 DMD 소자로부터 상기 광이 반사된 이미지광을 수신하여, 투영시키는 단계를 포함할 수 있다.A method of operating a projection device includes irradiating light generated from a light source to a DMD element in an illumination optical system, and projecting image light reflected from the DMD element in a projection optical system arranged to form a predetermined angle with the illumination optical system. Receiving and projecting.
도 1은 종래의 투영장치의 구성을 나타내는 도면이다.1 is a view showing the configuration of a conventional projection apparatus.
도 2는 본 발명의 일실시예에 따른 투영장치의 구성을 나타내는 도면이다.2 is a view showing the configuration of a projection apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 투영장치에서 적용되는 반사의 법칙을 설명하기 위한 도면이다.3 is a view for explaining the law of reflection applied in the projection apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 투영장치에서 DMD 소자에 대한 구동 특성에 따라, DMD 소자에 전달되는 광에 대한 조사 각도를 결정하는 일례를 도시한 도면이다.4 is a diagram illustrating an example of determining an irradiation angle of light transmitted to a DMD element according to a driving characteristic of the DMD element in the projection apparatus according to the exemplary embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 투영장치의 구성 일례를 나타내는 도면이다.5 is a view showing an example of the configuration of a projection apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 투영장치의 물리적 크기를 종래의 투영장치와 비교하여 나타낸 도면이다.6 is a view showing the physical size of the projection apparatus according to an embodiment of the present invention compared with the conventional projection apparatus.
도 7은 본 발명의 일실시예에 따른 투영장치에서의 광원 배치에 대한 일례를 나타내는 도면이다.7 is a view showing an example of the light source arrangement in the projection apparatus according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 투영장치 내 반사부재에 대한 일례를 나타내는 도면이다.8 is a diagram illustrating an example of a reflective member in a projection apparatus according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 투영장치에서 DMD 소자에 대한 구동 특성에 따라, DMD 소자에 입사되는 광의 방향을 나타내는 도면이다.9 is a diagram illustrating a direction of light incident on a DMD element according to driving characteristics of the DMD element in the projection apparatus according to the exemplary embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 투영장치의 동작 방법을 나타내는 흐름도이다.10 is a flowchart illustrating a method of operating a projection apparatus according to an embodiment of the present invention.
이하, 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 다양한 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited to the embodiments.
도 2는 본 발명의 일실시예에 따른 투영장치의 구성을 나타내는 도면이다.2 is a view showing the configuration of a projection apparatus according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일실시예에 따른 투영장치(200)는 조명광학계(210), 반사부재(220), DMD 소자(230), 프리즘(240), 투사광학계(250) 및 제어부(260)를 포함할 수 있다.2, the projection apparatus 200 according to an embodiment of the present invention includes an illumination optical system 210, a reflecting member 220, a DMD element 230, a prism 240, a projection optical system 250, and a controller. 260 may include.
조명광학계(210)는 광원(예컨대, LED)를 구비할 수 있으며, 상기 광원에서 발생되는 광을 반사부재(220)를 통해, DMD(Digital Micromirror Device) 소자(230)로 조사시킬 수 있다.The illumination optical system 210 may include a light source (eg, an LED), and may radiate the light generated by the light source to the digital micromirror device (DMD) device 230 through the reflective member 220.
반사부재(220)는 조명광학계(210)로부터 수신된 광을 반사시켜, DMD 소자(230)로 전달할 수 있다. 이때, 반사부재(220)는 상기 광에 대한 전달 영역의 크기 및 상기 광에 대한 분포도가 상이한, 평면 형상, 오목 형상 및 볼록 형상 중 어느 하나의 형상으로 구성될 수 있다. 반사부재(220)는 오목 형상으로 구성될 경우, 평면 형상일 때보다 좁은 영역의 광을 DMD 소자(230)에 조사시켜 효율을 증대시킬 수 있으며, 볼록 형상일 경우, 평면 형상일 때보다 넓은 영역의 광을 DMD 소자(230)에 조사시켜, 빛을 고르게 분포 시켜주는 균일도에 대한 증대 효과가 있다.The reflective member 220 may reflect the light received from the illumination optical system 210 and transmit the reflected light to the DMD element 230. In this case, the reflective member 220 may be configured in any one of a planar shape, a concave shape, and a convex shape having a different size of the transmission area for the light and a distribution degree for the light. When the reflective member 220 is configured in a concave shape, the light may be increased by radiating light of a narrower area to the DMD element 230 than in the planar shape, and in the case of the convex shape, a wider area than in the planar shape By irradiating the light on the DMD element 230, there is an increasing effect on the uniformity to distribute the light evenly.
DMD 소자(230)는 반사부재(220)로부터 수신된 광을 프리즘(240)으로 전달할 수 있다.The DMD element 230 may transmit the light received from the reflective member 220 to the prism 240.
프리즘(204)은 DMD 소자(230)로부터 반사된 이미지광을 수직으로 입사받고, 상기 이미지광에 대한 경로를 변경하여, 투사광학계(250)로 전달할 수 있다.The prism 204 may receive the image light reflected from the DMD element 230 vertically, change the path to the image light, and transmit the image light to the projection optical system 250.
투사광학계(250)는 조명광학계(210)와 설정된 각도를 이루도록 배치되고, DMD 소자(230)로부터 상기 광이 반사된 이미지광을 수신하여, 투영시킬 수 있다. 조명광학계(210)와 투사광학계(250)가 설정된 각도를 이루도록 배치 됨에 따라, 조명광학계(210)와 투사광학계(250)를 포함하는 투영장치(200)는 물리적인 크기가 축소될 수 있다.The projection optical system 250 may be disposed to form a predetermined angle with the illumination optical system 210, and may receive and project image light reflected from the DMD element 230. As the illumination optical system 210 and the projection optical system 250 are arranged to have a set angle, the projection apparatus 200 including the illumination optical system 210 and the projection optical system 250 may be reduced in physical size.
제어부(260)는 DMD 소자(230)에 대한 구동 특성에 기초하여, DMD 소자(230)에 전달되는 광에 대한 조사 각도를 결정하고, 상기 결정된 조사 각도에 따라, 반사부재(220)의 기울기를 변경할 수 있다. 이때, 제어부(260)는 DMD 소자(230)에서 반사된 이미지광이 프리즘(240)에 수직으로 입사되어야 하는 조건과, 도 3에 도시된 반사의 법칙(즉, 반사면에 수직인 법선 기준으로 입사 광선의 입사각과 반사 광선의 반사각은 같음)에 기초하여, DMD 소자(230)에 전달되는 광에 대한 조사 각도를 결정할 수 있다.The controller 260 determines an irradiation angle of light transmitted to the DMD element 230 based on a driving characteristic of the DMD element 230, and according to the determined irradiation angle, inclination of the reflective member 220 is determined. You can change it. At this time, the controller 260 is based on the condition that the image light reflected from the DMD element 230 is to be incident perpendicularly to the prism 240 and the law of reflection shown in FIG. 3 (that is, normal to the reflection plane). The irradiation angle of the light transmitted to the DMD element 230 may be determined based on the incident angle of the incident ray and the reflection angle of the reflected ray.
예컨대, 도 4에 도시된 바와 같이, 제어부(260)는 DMD 소자(230)에 대한 구동 특성이, '반사면 구동 각도 12도'일 경우, DMD 소자(230)로 광이 조사되는 각도를 법선 방향 수직 출사 위해 '24도'로 결정할 수 있다. 또한, 제어부(260)는 DMD 소자(230)에 대한 구동 특성이, '반사면 구동 각도 17도'일 경우, DMD 소자(230)로 광이 조사되는 각도를 법선 방향 수직 출사 위해 '34도'로 결정할 수 있다.For example, as shown in FIG. 4, the controller 260 normalizes an angle at which light is irradiated onto the DMD element 230 when the driving characteristic of the DMD element 230 is 'reflection plane driving angle 12 degrees'. It can be decided as '24 degrees' for the vertical direction of output. In addition, when the driving characteristic of the DMD element 230 is' the reflection surface driving angle of 17 degrees', the controller 260 may set the angle at which light is irradiated to the DMD element 230 to '34 degrees' in the normal direction. Can be determined.
또한, 제어부(260)는 투사광학계(250)와 평행하지 않는 배치 위치에서, 조명광학계(210)를 회전시켜 상기 각도를 상이하게 변경 함에 따라, 투영장치(250)가 점유하는 물리적 크기를 확인하고, 확인된 상기 물리적 크기 중 가장 작은 크기에서의 각도를 설정하여, 조명광학계(210)와 투사광학계(250)를 재배치 함으로써, 투영장치(200)의 물리적인 크기를 최소화할 수 있다.In addition, the controller 260 checks the physical size occupied by the projection apparatus 250 as the angle is changed differently by rotating the illumination optical system 210 at an arrangement position not parallel to the projection optical system 250. By resetting the illumination optical system 210 and the projection optical system 250 by setting an angle at the smallest size among the identified physical sizes, the physical size of the projection apparatus 200 may be minimized.
이때, 제어부(260)는 투사광학계(250)와의 재배치를 위해 조명광학계(210)가 회전하는 정도에 따라 반사부재(220)의 기울기를 조정하여, DMD 소자(230)에 전달되는 광에 대한 조사 각도를 일정하게 한다.At this time, the controller 260 adjusts the inclination of the reflecting member 220 according to the degree of rotation of the illumination optical system 210 to reposition with the projection optical system 250 to irradiate the light transmitted to the DMD element 230. Make the angle constant.
도 5는 본 발명의 일실시예에 따른 투영장치의 구성 일례를 나타내는 도면이다.5 is a view showing an example of the configuration of a projection apparatus according to an embodiment of the present invention.
도 5를 참조하면, 투영장치(500)는 조명광학계(510), 반사부재(520), DMD 소자(530), 프리즘(540) 및 투사광학계(550)를 포함할 수 있다.Referring to FIG. 5, the projection apparatus 500 may include an illumination optical system 510, a reflective member 520, a DMD element 530, a prism 540, and a projection optical system 550.
투영장치(500)는 광원에서 발생한 광을, 조명광학계(510), 반사부재(520), DMD 소자(530) 및 프리즘(540)을 거쳐, 투사광학계(550)에 전달할 수 있다.The projection apparatus 500 may transmit the light generated from the light source to the projection optical system 550 through the illumination optical system 510, the reflective member 520, the DMD element 530, and the prism 540.
이때, 투영장치(500)는 설정된 각도를 이루도록 배치된 조명광학계(510)와 투사광학계(550)를 포함하여, 종래의 투영장치 보다 물리적 크기를 축소시킬 수 있다. 즉, 투영장치(500)는 조명광학계(510)의 광 축(560)을 지나는 제1 가상선(570)과 투사광학계(550)의 광 축(580)을 지나는 제2 가상선(590)이 이루는 각도(591)가, 상기 설정된 각도가 되도록 조명광학계(510)와 투사광학계(550)를 배치시킬 수 있다.At this time, the projection apparatus 500 may include an illumination optical system 510 and a projection optical system 550 disposed to achieve a set angle, thereby reducing the physical size of the conventional projection apparatus. That is, the projection apparatus 500 includes a first virtual line 570 passing through the optical axis 560 of the illumination optical system 510 and a second virtual line 590 passing through the optical axis 580 of the projection optical system 550. The illumination optical system 510 and the projection optical system 550 may be disposed such that the angle 591 is the set angle.
예컨대, 도 6에 도시된 바와 같이, 투영장치(500)는 '30도'를 이루도록 배치된 조명광학계(510)와 투사광학계(550)를 포함하여, 세로측으로 제1 크기(610) 만큼 축소시킬 수 있으며, 가로측으로 제2 크기(620) 만큼 축소시킬 수 있다.For example, as shown in FIG. 6, the projection apparatus 500 may include an illumination optical system 510 and a projection optical system 550 arranged to form a '30 degree 'to reduce the vertical size by the first size 610. The second size 620 may be reduced horizontally.
도 7은 본 발명의 일실시예에 따른 투영장치에서의 광원 배치에 대한 일례를 나타내는 도면이다.7 is a view showing an example of the light source arrangement in the projection apparatus according to an embodiment of the present invention.
도 7을 참조하면, 투영장치는 n(n은 자연수)개의 광원을 구비할 수 있다. 이때, 투영장치는 예컨대, 조명광학계의 일측 또는 다른 일측에 1개 또는 2개의 광원(710)을 구비할 수 있다.Referring to FIG. 7, the projection apparatus may include n (n is a natural number) light sources. In this case, the projection apparatus may include, for example, one or two light sources 710 on one side or the other side of the illumination optical system.
도 8은 본 발명의 일실시예에 따른 투영장치 내 반사부재에 대한 일례를 나타내는 도면이다.8 is a diagram illustrating an example of a reflective member in a projection apparatus according to an embodiment of the present invention.
도 8을 참조하면, 투영장치 내 반사부재는 조명광학계로부터 수신된 광을 반사시켜, DMD 소자로 전달할 수 있다. 이때, 반사부재는 평면 형상, 오목 형상 및 볼록 형상 중 어느 하나의 형상으로 구성될 수 있다.Referring to FIG. 8, the reflection member in the projection apparatus may reflect light received from the illumination optical system and transmit the light to the DMD element. In this case, the reflective member may be configured in any one of a planar shape, a concave shape and a convex shape.
예컨대, 반사부재는 오목 형상(820)으로 구성될 경우, 평면 형상(810)일 때보다 좁은 영역의 광을 DMD 소자에 조사시켜 효율을 증대시킬 수 있으며, 볼록 형상(830)일 경우, 평면 형상(810)일 때보다 넓은 영역의 광을 DMD 소자에 조사시켜, 빛을 고르게 분포 시켜주는 균일도에 대한 증대 효과가 있다.For example, when the reflective member is configured as the concave shape 820, light may be increased by radiating light of a narrower area to the DMD element than when the planar shape 810 is used, and in the case of the convex shape 830, the planar shape When the light is wider than 810, the DMD device is irradiated with light, thereby increasing the uniformity of the light.
도 9는 본 발명의 일실시예에 따른 투영장치에서 DMD 소자에 대한 구동 특성에 따라, DMD 소자에 입사되는 광의 방향을 나타내는 도면이다.9 is a diagram illustrating a direction of light incident on a DMD element according to driving characteristics of the DMD element in the projection apparatus according to the exemplary embodiment of the present invention.
도 9를 참조하면, 투영장치 내 DMD 소자에 대한 구동 특성에 따라, DMD 소자에 입사되는 광은 예컨대, 3가지 방향(Diagonal, Side, Bottom)일 수 있다. 이때, DMD 소자에서 반사된 이미지광은 수직 출사되어 투사광학계로 전달 됨에 따라, 투사광학계에 의해 투영될 수 있다.Referring to FIG. 9, light incident on a DMD element may be, for example, three directions (Diagonal, Side, and Bottom) according to driving characteristics of the DMD element in the projection apparatus. At this time, the image light reflected by the DMD element is vertically emitted and transmitted to the projection optical system, and thus may be projected by the projection optical system.
도 10은 본 발명의 일실시예에 따른 투영장치의 동작 방법을 나타내는 흐름도이다.10 is a flowchart illustrating a method of operating a projection apparatus according to an embodiment of the present invention.
도 10을 참조하면, 단계(1010)에서, 투영장치 내 조명광학계는 광원으로부터 발생되는 광을 DMD 소자로 조사시킬 수 있다. 이때, 투영장치 내 제어부는 상기 DMD 소자에 대한 구동 특성에 기초하여, 상기 DMD 소자에 전달되는 광에 대한 조사 각도를 결정하고, 상기 결정된 조사 각도에 따라, 반사부재의 기울기를 변경할 수 있다. 이후, 투영장치 내 반사부재는 상기 조명광학계로부터 수신된 광을 반사시켜, 상기 DMD 소자로 전달할 수 있다.Referring to FIG. 10, in step 1010, the illumination optical system in the projection apparatus may irradiate light generated from a light source to a DMD element. In this case, the controller in the projection apparatus may determine an irradiation angle of light transmitted to the DMD element based on a driving characteristic of the DMD element, and change the inclination of the reflective member according to the determined irradiation angle. Thereafter, the reflection member in the projection apparatus may reflect the light received from the illumination optical system and transmit the reflected light to the DMD element.
상기 반사부재는 상기 광에 대한 전달 영역의 크기 및 상기 광에 대한 분포도가 상이한, 평면 형상, 오목 형상 및 볼록 형상 중 어느 하나의 형상으로 구성될 수 있다. 반사부재는 오목 형상으로 구성될 경우, 평면 형상일 때보다 좁은 영역의 광을 DMD 소자에 조사시켜 효율을 증대시킬 수 있으며, 볼록 형상일 경우, 평면 형상일 때보다 넓은 영역의 광을 DMD 소자에 조사시켜, 빛을 고르게 분포 시켜주는 균일도에 대한 증대 효과가 있다.The reflective member may be configured in any one of a planar shape, a concave shape, and a convex shape in which the size of the transmission area for the light and the degree of distribution for the light are different. In the case of the concave shape, the reflecting member may increase efficiency by irradiating the DMD device with light in a narrower area than the planar shape, and in the case of the convex shape, light in a wider area than the planar shape may be applied to the DMD device. Irradiation has an effect of increasing the uniformity to distribute the light evenly.
단계(1020)에서, 투영장치 내 투사광학계는 상기 DMD 소자로부터 상기 광이 반사된 이미지광을 수신하여, 투영시킬 수 있다. 상기 투사광학계는 조명광학계와 설정된 각도를 이루도록 배치될 수 있다.In operation 1020, the projection optical system in the projection apparatus may receive and project the image light reflected by the light from the DMD element. The projection optical system may be arranged to form an angle with the illumination optical system.
이때, 투영장치 내 프리즘은 상기 DMD 소자로부터 반사된 이미지광을 수직으로 입사받고, 상기 이미지광에 대한 경로를 변경하여, 상기 투사광학계로 전달할 수 있다.At this time, the prism in the projection apparatus may receive the image light reflected from the DMD element vertically, change the path to the image light, and transmit the image light to the projection optical system.
한편, 투영장치 내 제어부는 상기 투사광학계와 평행하지 않는 배치 위치에서, 상기 조명광학계를 회전시켜 상기 각도를 상이하게 변경 함에 따라, 상기 투영장치가 점유하는 물리적 크기를 확인하고, 상기 확인된 상기 물리적 크기 중 가장 작은 크기에서의 각도를 설정하여, 상기 조명광학계와 상기 투사광학계를 재배치 함으로써, 투영장치의 물리적 크기를 최소화할 수 있다.On the other hand, the control unit in the projection apparatus, in an arrangement position that is not parallel to the projection optical system, to change the angle differently by rotating the illumination optical system, to check the physical size occupied by the projection apparatus, and the identified physical By setting the angle at the smallest size among the sizes, the physical size of the projection apparatus can be minimized by rearranging the illumination optical system and the projection optical system.
또한, 투영장치 내 제어부는 상기 투사광학계와의 재배치를 위해 상기 조명광학계가 회전하는 정도에 따라 상기 반사부재의 기울기를 조정하여, 상기 DMD 소자에 전달되는 광에 대한 조사 각도를 일정하게 한다.In addition, the controller in the projection apparatus adjusts the inclination of the reflective member according to the degree of rotation of the illumination optical system to reposition with the projection optical system, thereby making the irradiation angle of the light transmitted to the DMD element constant.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The apparatus described above may be implemented as a hardware component, a software component, and / or a combination of hardware components and software components. For example, the devices and components described in the embodiments may include, for example, processors, controllers, arithmetic logic units (ALUs), digital signal processors, microcomputers, field programmable arrays (FPAs), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions. The processing device may execute an operating system (OS) and one or more software applications running on the operating system. The processing device may also access, store, manipulate, process, and generate data in response to the execution of the software. For the convenience of understanding, the processing apparatus may be described as one used, but those skilled in the art will appreciate that the processing apparatus includes a plurality of processing elements and / or a plurality of types of processing elements. It can be seen that it may include. For example, the processing device may include a plurality of processors or one processor and one controller. In addition, other processing configurations are possible, such as parallel processors.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 저장 매체에 저장될 수 있다.The software may include a computer program, code, instructions, or a combination of one or more of the above, and may configure the processing device to operate as desired, or process independently or collectively. You can command the device. Software and / or data may be any type of machine, component, physical device, virtual equipment, computer storage medium or device in order to be interpreted by or to provide instructions or data to the processing device. Or may be permanently or temporarily embodied in a signal wave to be transmitted. The software may be distributed over networked computer systems so that they may be stored or executed in a distributed manner. Software and data may be stored in one or more computer readable storage media.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 저장될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 저장되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 저장 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광저장 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media) 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The method according to the embodiment may be implemented in the form of program instructions that can be executed by various computer means and stored in a computer readable medium. The computer readable medium may include program instructions, data files, data structures, and the like, alone or in combination. The program instructions stored in the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer readable storage media include magnetic media such as hard disks, floppy disks and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks such as floppy disks. Hardware devices specially configured to store and execute program instructions such as magneto-optical media and ROM, RAM, flash memory and the like. Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like. The hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described by the limited embodiments and the drawings as described above, various modifications and variations are possible to those skilled in the art from the above description. For example, the described techniques may be performed in a different order than the described method, and / or components of the described systems, structures, devices, circuits, etc. may be combined or combined in a different form than the described method, or other components. Or, even if replaced or substituted by equivalents, an appropriate result can be achieved.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents to the claims are within the scope of the claims that follow.

Claims (12)

  1. 광원에서 발생되는 광을 DMD(Digital Micromirror Device) 소자로 조사시키는 조명광학계; 및An illumination optical system for irradiating light generated from a light source to a digital micromirror device (DMD) device; And
    상기 조명광학계와 설정된 각도를 이루도록 배치되고, 상기 DMD 소자로부터 상기 광이 반사된 이미지광을 수신하여, 투영시키는 투사광학계A projection optical system arranged to form a predetermined angle with the illumination optical system and receiving and projecting image light reflected from the DMD element
    를 포함하는 투영장치.Projection apparatus comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 투사광학계와 평행하지 않는 배치 위치에서, 상기 조명광학계를 회전시켜 상기 각도를 상이하게 변경 함에 따라, 상기 투영장치가 점유하는 물리적 크기를 확인하고, 확인된 상기 물리적 크기 중 가장 작은 크기에서의 각도를 설정하여, 상기 조명광학계와 상기 투사광학계를 재배치하는 제어부In an arrangement position not parallel to the projection optical system, by rotating the illumination optical system to change the angle differently, the physical size occupied by the projection apparatus is checked, and the angle at the smallest of the identified physical sizes is checked. A controller configured to rearrange the illumination optical system and the projection optical system
    를 더 포함하는 투영장치.Projector further comprising a.
  3. 제1항에 있어서,The method of claim 1,
    상기 조명광학계로부터 수신된 광을 반사시켜, 상기 DMD 소자로 전달하는 반사부재; 및A reflecting member reflecting light received from the illumination optical system and transmitting the reflected light to the DMD element; And
    상기 DMD 소자에 대한 구동 특성에 기초하여, 상기 DMD 소자에 전달되는 광에 대한 조사 각도를 결정하고, 상기 결정된 조사 각도에 따라, 상기 반사부재의 기울기를 변경하는 제어부A controller configured to determine an irradiation angle of light transmitted to the DMD element based on a driving characteristic of the DMD element, and to change an inclination of the reflective member according to the determined irradiation angle
    를 더 포함하는 투영장치.Projector further comprising a.
  4. 제3항에 있어서,The method of claim 3,
    상기 반사부재는,The reflective member,
    상기 광에 대한 전달 영역의 크기 및 상기 광에 대한 분포도가 상이한, 평면 형상, 오목 형상 및 볼록 형상 중 어느 하나의 형상으로 구성되는The shape of any one of a planar shape, a concave shape, and a convex shape in which the magnitude | size of the transmission area | region with respect to the said light and the distribution degree with respect to the light are different
    투영장치.Projection device.
  5. 제3항에 있어서,The method of claim 3,
    상기 제어부는,The control unit,
    상기 투사광학계와의 재배치를 위해 상기 조명광학계가 회전하는 정도에 따라 상기 반사부재의 기울기를 조정하여, 상기 DMD 소자에 전달되는 광에 대한 조사 각도를 일정하게 하는By adjusting the inclination of the reflecting member according to the degree of rotation of the illumination optical system to reposition with the projection optical system, the irradiation angle of the light transmitted to the DMD element is constant
    투영장치.Projection device.
  6. 제1항에 있어서,The method of claim 1,
    상기 DMD 소자로부터 반사된 이미지광을 수직으로 입사받고, 상기 이미지광에 대한 경로를 변경하여, 상기 투사광학계로 전달하는 프리즘The prism receiving the image light reflected from the DMD element vertically, changing the path to the image light, and transferring the image light to the projection optical system
    을 더 포함하는 투영장치.Projector further comprising a.
  7. 조명광학계에서, 광원으로부터 발생되는 광을 DMD 소자로 조사시키는 단계; 및In an illumination optical system, irradiating light generated from a light source to a DMD element; And
    상기 조명광학계와 설정된 각도를 이루도록 배치되는 투사광학계에서, 상기 DMD 소자로부터 상기 광이 반사된 이미지광을 수신하여, 투영시키는 단계Receiving and projecting the image light reflected by the light from the DMD element in a projection optical system arranged to form an angle with the illumination optical system;
    를 포함하는 투영장치의 동작 방법.Method of operation of the projection device comprising a.
  8. 제7항에 있어서,The method of claim 7, wherein
    제어부에서, 상기 투사광학계와 평행하지 않는 배치 위치에서, 상기 조명광학계를 회전시켜 상기 각도를 상이하게 변경 함에 따라, 상기 투영장치가 점유하는 물리적 크기를 확인하는 단계; 및Confirming, by a controller, a physical size occupied by the projection apparatus as the angle is changed differently by rotating the illumination optical system at an arrangement position not parallel to the projection optical system; And
    상기 제어부에서, 상기 확인된 상기 물리적 크기 중 가장 작은 크기에서의 각도를 설정하여, 상기 조명광학계와 상기 투사광학계를 재배치하는 단계Repositioning the illumination optical system and the projection optical system by setting an angle at the smallest size among the identified physical sizes in the controller;
    를 더 포함하는 투영장치의 동작 방법.Operation method of the projection device further comprising.
  9. 제7항에 있어서,The method of claim 7, wherein
    제어부에서, 상기 DMD 소자에 대한 구동 특성에 기초하여, 상기 DMD 소자에 전달되는 광에 대한 조사 각도를 결정하고, 상기 결정된 조사 각도에 따라, 반사부재의 기울기를 변경하는 단계; 및Determining, at the controller, an irradiation angle of light transmitted to the DMD element based on a driving characteristic of the DMD element, and changing an inclination of the reflective member according to the determined irradiation angle; And
    상기 기울기가 변경된 반사부재에서, 상기 조명광학계로부터 수신된 광을 반사시켜, 상기 DMD 소자로 전달하는 단계Reflecting the light received from the illumination optical system and transmitting the reflected light to the DMD device
    를 더 포함하는 투영장치의 동작 방법.Operation method of the projection device further comprising.
  10. 제9항에 있어서,The method of claim 9,
    상기 반사부재는,The reflective member,
    상기 광에 대한 전달 영역의 크기 및 상기 광에 대한 분포도가 상이한, 평면 형상, 오목 형상 및 볼록 형상 중 어느 하나의 형상으로 구성되는It is composed of any one of a planar shape, a concave shape and a convex shape, the size of the transmission region for the light and the distribution of the light is different.
    투영장치의 동작 방법.How the projection device works.
  11. 제9항에 있어서,The method of claim 9,
    상기 제어부에서, 상기 투사광학계와의 재배치를 위해 상기 조명광학계가 회전하는 정도에 따라 상기 반사부재의 기울기를 조정하여, 상기 DMD 소자에 전달되는 광에 대한 조사 각도를 일정하게 하는 단계Adjusting the inclination of the reflective member according to the degree of rotation of the illumination optical system to reposition the projection optical system, thereby making the irradiation angle of light transmitted to the DMD element constant;
    를 더 포함하는 투영장치의 동작 방법.Operation method of the projection device further comprising.
  12. 제7항에 있어서,The method of claim 7, wherein
    프리즘에서, 상기 DMD 소자로부터 반사된 이미지광을 수직으로 입사받고, 상기 이미지광에 대한 경로를 변경하여, 상기 투사광학계로 전달하는 단계In the prism, receiving the image light reflected from the DMD element vertically, changing the path to the image light, and transmitting to the projection optical system
    를 더 포함하는 투영장치의 동작 방법.Operation method of the projection device further comprising.
PCT/KR2018/013986 2018-07-18 2018-11-15 Projection device and projection device operation method WO2020017704A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0083599 2018-07-18
KR1020180083599A KR20200009352A (en) 2018-07-18 2018-07-18 Projection apparatus and method for operating projection apparatus

Publications (1)

Publication Number Publication Date
WO2020017704A1 true WO2020017704A1 (en) 2020-01-23

Family

ID=69164521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013986 WO2020017704A1 (en) 2018-07-18 2018-11-15 Projection device and projection device operation method

Country Status (2)

Country Link
KR (1) KR20200009352A (en)
WO (1) WO2020017704A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090047017A (en) * 2007-11-07 2009-05-12 엘지전자 주식회사 Projector
KR20090093666A (en) * 2008-02-29 2009-09-02 삼성전자주식회사 Projection optical system
JP2012226273A (en) * 2011-04-22 2012-11-15 Dainippon Printing Co Ltd Projection type video display device
KR20130019191A (en) * 2011-08-16 2013-02-26 삼성전자주식회사 Projector with offset between projection optical system and display unit
KR20130084449A (en) * 2012-01-17 2013-07-25 엘지전자 주식회사 A projector and a method of processing an image thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090047017A (en) * 2007-11-07 2009-05-12 엘지전자 주식회사 Projector
KR20090093666A (en) * 2008-02-29 2009-09-02 삼성전자주식회사 Projection optical system
JP2012226273A (en) * 2011-04-22 2012-11-15 Dainippon Printing Co Ltd Projection type video display device
KR20130019191A (en) * 2011-08-16 2013-02-26 삼성전자주식회사 Projector with offset between projection optical system and display unit
KR20130084449A (en) * 2012-01-17 2013-07-25 엘지전자 주식회사 A projector and a method of processing an image thereof

Also Published As

Publication number Publication date
KR20200009352A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US7922335B2 (en) Projector
JP5122597B2 (en) Sending interrupts directly to the virtual processor
US8341237B2 (en) Systems, methods and computer program products for automatically triggering operations on a queue pair
WO2006100857A1 (en) Illumination system
US10698731B1 (en) Systems and methods for executing parallel computations for virtual machines
US20160198134A1 (en) Image projection apparatus
CN109194883B (en) Light filling lamp device and shooting equipment
CN107148595B (en) Method for optimizing incident angle of reflector display
US20210034547A1 (en) Securing memory using protected memory regions
GB2603605A (en) Intelligent and redundant air-cooled cooling loop for datacenter cooling systems
WO2020017704A1 (en) Projection device and projection device operation method
CN108449587A (en) Forward direction high dynamic range framework for digital micro-mirror device
KR20200067020A (en) Method and apparatus for calibration
WO2018186507A1 (en) Method for performing calibration by using measured data without assumed calibration model and three-dimensional scanner calibration system for performing same
EP1828675A1 (en) Multiple light source illumination for image display systems
US10921611B2 (en) Methods for system layout optimization for retro-reflective based display systems
CN109154769B (en) Customized reflection profile features for retroreflective display system optimization
KR20170031384A (en) Optical layer and desplay device including the same and back light unit
US10274710B2 (en) Rear-projection display system and rear-projection screen
JP2002139698A (en) Condensing optical system and image display device
GB2606821A (en) Intelligent fan wall-cooled overhead liquid-to-air heat exchanger for datacenter cooling systems
WO2017030318A1 (en) Digital micromirror device controller and exposure image output processing method of same
WO2016124064A1 (en) Infrared ray positioning node device and system
WO2016104868A1 (en) Image element calibration method for eliminating keystone effect in multi-projector-based reflective integrated imaging system
US20200404226A1 (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927057

Country of ref document: EP

Kind code of ref document: A1