WO2016104868A1 - Image element calibration method for eliminating keystone effect in multi-projector-based reflective integrated imaging system - Google Patents

Image element calibration method for eliminating keystone effect in multi-projector-based reflective integrated imaging system Download PDF

Info

Publication number
WO2016104868A1
WO2016104868A1 PCT/KR2015/001929 KR2015001929W WO2016104868A1 WO 2016104868 A1 WO2016104868 A1 WO 2016104868A1 KR 2015001929 W KR2015001929 W KR 2015001929W WO 2016104868 A1 WO2016104868 A1 WO 2016104868A1
Authority
WO
WIPO (PCT)
Prior art keywords
projector
pixel
imaging system
based reflective
element image
Prior art date
Application number
PCT/KR2015/001929
Other languages
French (fr)
Korean (ko)
Inventor
김은수
장재영
최희민
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Publication of WO2016104868A1 publication Critical patent/WO2016104868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut

Definitions

  • the present invention provides a keystone effect in a multi-projector-based reflective integrated image system for elemental image correction to remove keystone effects in a high-efficiency / high resolution large screen multi-projector-based reflective integrated image system without intensity unevenness using multiple projectors.
  • a method for compensating elemental images for removal is provided.
  • Korean Patent Publication No. 10-0685151 for the purpose of maintaining a high quality and a high quality display for a long time in a projector and a display system including the same.
  • a technique has been disclosed in which a video signal input by using correction data is subjected to a correction process to input a corrected signal to a liquid crystal panel, thereby maintaining good display characteristics.
  • First, second and third liquid crystal panels for respectively displaying red, blue and green lights on the screen by inputting first, second and third image signals, respectively;
  • First, second and third detection means for obtaining first, second and third display data from the red, blue and green lights, respectively;
  • a lens cover provided to said first, second and third detection means;
  • Liquid crystal panel drive circuits Means for obtaining first, second and third correction data from the first, second and second display data, respectively;
  • First, second and third memories for storing the first, second and third correction data; And first and second corrections for the first, second and third image signals based on the first, second and third correction data stored in the first, second and third memories, respectively.
  • the display device further comprises an optical system provided between the screen and each of the first, second, and third liquid crystal panels
  • the lens cover includes: A display device is provided, which is provided between each of the first, second and third liquid crystal panels.
  • Still another prior art includes a screen for transmitting or reflecting light in a selective direction in Korean Patent Publication No. 10-0864139;
  • a screen illumination system comprising modules for generating different points on the screen and beams associated with different radial directions of the points on the screen;
  • a control system for controlling the module, wherein the screen diffuses the transmitted or reflected light according to angles between adjacent radial directions, the screen comprising: a two-dimensional display and an angle of the display;
  • Imaging optics associated with a display are disclosed in which a device for simultaneously imaging beams generated in display pixels having different coordinates in different radial or imaging directions is disclosed.
  • the conventional multi-projector based reflective integrated imaging system generates a three-dimensional image using only a limited projection area and distorts the projection surface projected by the projector according to the position and tilt of each projector used in the MPII. This occurs, and distortion of the projection surface generates distortion of the element image, which hinders normal 3D image reconstruction in the MPII system.
  • the element image correction method for removing the keystone effect in the multi-projector based reflective integrated image system of the present invention has been devised to solve the above-described problem. Because there is no wasted projection surface, it becomes a highly efficient three-dimensional display, and the MPII system scans two-dimensional element images by using multiple projectors, and key stone artifacts are applied to each element image by the scanning conditions of the projectors. This may lead to distortion of the 3D reconstructed image, and through the present invention, it is expected that the effect of eliminating the distortion of the 3D reconstructed image by removing key stone artifacts in the 2D element image projection.
  • an object of the present invention is to realize a three-dimensional display by overlapping all the projector surfaces scanned by the respective projectors and generating the three-dimensional reconstructed image by overlapping the surfaces.
  • the element image correction method for removing the keystone effect in the multi-projector-based reflective integrated imaging system comprises the steps of: setting an internal parameter of the projector; Calculating a geometric position of a ray emitted from the reference projector pixel; Calculating a geometric position of a ray emitted from the multi-projector pixel; Step S4 of calculating a reference projector beam closest to a beam from a specific pixel of the multer projector; Step S5 of checking whether two light rays are in the same element lens; Step S6 of allocating the calculated reference pixel values to specific pixels of the multi-projector; Characterizing the element image corrected for the multi-projector through the process of S7; obtaining a calibration element image for the multi-projector.
  • the keystone effect which is a problem of the conventional MPII system, is eliminated, and a wider projection screen surface is used than the conventional MPII system. It is possible to obtain a high resolution normal 3D image regardless of the position of the projector.
  • FIG. 1 is a flowchart illustrating an element image correction method for removing a keystone effect in a reflection integrated imaging system based on the present invention.
  • FIG. 2 is a block diagram of a reflection integrated imaging system based on the present invention multi-projector.
  • the element image correction method for removing the keystone effect in the multi-projector-based reflective integrated imaging system comprises the steps of: setting an internal parameter of the projector; Calculating a geometric position of a ray emitted from the reference projector pixel; Calculating a geometric position of a ray emitted from the multi-projector pixel; Step S4 of calculating a reference projector beam closest to a beam from a specific pixel of the multer projector; Step S5 of checking whether two light rays are in the same element lens; Step S6 of allocating the calculated reference pixel values to specific pixels of the multi-projector; Acquiring the corrected element image for the multi-projector through the process of step S7 to obtain a calibration element image for the multi-projector.
  • the geometric position of the light beam emitted from the reference projector pixel in step S2 is that the light beam emitted from the projector reaches a different geometric position according to the position of the pixel
  • x i and y i are the geometric coordinates at which a specific pixel in the projector arrives.
  • R x and R y are the x and y axis resolution of the projector.
  • is the angle between the projector and the x axis.
  • is the angle between the projector and the z axis.
  • i and j are pixel indices respectively.
  • ⁇ x and ⁇ y are constant spread angles between two consecutive pixels.
  • x p , y p , z p are the spatial coordinates of the projector.
  • steps S1 and S2 are set at the time of setting as a basic setting process
  • steps S3 to S6 are calibration processes and the calculation is repeatedly performed for the pixels of all the projectors 200 and 300.
  • the multi-projector based reflective integrated imaging system includes a mirror array 400 including a set of convex mirrors, a reference projector 100 as a reference for radiating element images to the mirror array 400, and the reference projector. It is characterized by consisting of a plurality of projectors (200, 300) installed in the vicinity of the 100, and the image distribution device 500 for sending the element image to the reference projector (100) and a plurality of projectors (200, 300). to be.
  • the size of the projector surface scanned by the projectors 100, 200, and 300 is increased in proportion to the distance between the projection screen and the projector.
  • the present invention is directed to a high efficiency / high resolution large screen reflective integrated imaging system without intensity unevenness using multiple projectors.
  • the MPII system of the present invention generates three-dimensional reconstructed images by overlapping all projection surfaces, resulting in a high efficiency three-dimensional display because there is no wasted projection surface.
  • MPII stands for Multi Projection Integral Imaging.
  • the MPII system scans two-dimensional element images using a plurality of projectors, and key stone artifacts may be generated in each element image by scanning conditions of the projector, which leads to distortion of the three-dimensional reconstructed image.
  • the effect of eliminating distortion of the 3D reconstructed image is expected by removing key stone artifacts in the 2D element image projection.
  • the three-dimensional display is realized by overlapping all the projector surfaces scanned by the respective projectors and generating the three-dimensional reconstructed image by overlapping the surfaces.
  • the size of the projector surface scanned by the projector is increased in proportion to the distance between the projection screen and the projector.
  • a large screen three-dimensional display can be realized by using multiple projectors.
  • the MPII system consists of a mirror array and a number of projectors.
  • Projectors are devices that emit two-dimensional images in space.
  • a mirror array is a set of convex mirrors in which one convex mirror is composed of one element mirror.
  • Elemental images are two-dimensional images with depth and perspective information about three-dimensional objects.
  • Specific element images emitted from a plurality of projectors are reflected by element mirrors of the mirror array having the same index to form a 3D image.
  • the projection surface radiated from a plurality of projectors may not be parallel to the mirror array, which is called key stone artifact.
  • the existing MPII system has a vertical relationship between a plurality of projectors and a mirror array, wherein the element images emitted from each projector are located in the same two-dimensional plane.
  • the overlapped area of the scanning surface decreases as the number of projectors increases.
  • the distortion of the generated 3D image may be removed.
  • FIG. 1 is a flowchart illustrating an element image correction method for removing a keystone effect in a multi-projector based reflective integrated imaging system according to the present invention.
  • the element image correction method for removing the keystone effect in the multi-projector based reflective integrated imaging system according to the present invention is as follows.
  • Internal parameter setting (S 1 ) is set by the projector's inherent parameters such as spread angle, resolution, depth of field, and position and tilt of the projector.
  • the spread angle means the angle at which light emitted from the projector spreads out in space.
  • Resolution is the total number of pixels that can represent an image.
  • Depth of field represents the physical distance at which the projection plane is clearly formed.
  • the position and inclination of the projectors mean the inclination of the geometric array of the plurality of projectors and the mirror array, respectively.
  • the light rays emitted from the projector reach different geometric positions according to the position of the pixel (S 2 ).
  • the position to reach is represented by (Formula 1).
  • x i and y i denote the geometric coordinates at which a particular pixel of the projector arrives.
  • R x and R y represent the x and y axis resolution of the projector.
  • means the angle between the projector and the x-axis.
  • means the angle between the projector and the z axis.
  • i and j mean each pixel index.
  • ⁇ x , ⁇ y means a constant spread angle between two consecutive pixels.
  • x p , y p , and z p refer to the spatial coordinates of the projector.
  • Reference projector refers to a projector whose radiation direction is perpendicular to the mirror array display direction.
  • the emitted element image does not need to be corrected for key stone artifacts.
  • the element image to be used is referred to as a reference element image.
  • Equation 1 the geometric position of ray 1 emitted from a specific pixel of the reference projector is calculated.
  • Equation 1 Using the formula represented by Equation 1 to calculate the geometric position of the ray 2 emitted from the multi-projector (S 3 ).
  • the calculated geometric position of ray 2 is emitted at a specific pixel position of the projector to be added.
  • This process is performed for all pixels of the projector (S 6 ).
  • the final generated element image becomes the element image of the added projector (S 7 ).
  • FIG. 2 is a block diagram of a reflective integrated imaging system based on the present invention.
  • the multi-projector-based reflective integrated imaging system of the present invention provides elementary images to the reference projector 100, the plurality of projectors 200 and 300, the mirror array 400, and each projector as a reference. Consists of a video distribution device 500 for sending.
  • the reference projector 100 emits the element image to the mirror array.
  • the remaining projectors 200 and 300 have different positions from the reference projector and the angle of the mirror array.
  • the image distribution device 500 generates the element images for the remaining projectors 200 and 300 and puts them into the input.
  • the element image correction method for removing the keystone effect in the multi-projector based reflective integrated image system of the present invention the keystone effect, which is a problem of the conventional MPII system, is eliminated, and compared with the conventional MPII system.
  • the wide projection screen surface can be used, and the remarkable effect is that a high resolution normal three-dimensional image can be obtained regardless of the position of the projector.

Abstract

The present invention relates to an image element calibration method for eliminating the keystone effect in a multi-projector-based reflective integrated imaging system that is characterised by obtaining a corrected image element for a multi-projector through: step S1 of setting internal projector parameters; step S2 of calculating the geometrical position of a light beam emitted from a reference projector pixel; step S3 of calculating the geometrical position of a light beam emitted from a multi-projector pixel; step S4 of calculating the reference projector light beam that is the closest to the light beam emitted from a particular pixel of the multi-projector; step S5 of checking a mapping as to whether two light beams exist in the same lens element; step S6 of assigning the calculated reference pixel value to the particular pixel of the multi-projector; and step S7 of obtaining a calibration image element for a multi-projector.

Description

멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법Element Image Correction Method for Eliminating Keystone Effect in Multi Projector-based Reflective Integrated Image System
본 발명은 다수의 프로젝터를 사용하여 세기 불균등이 없는 고효율/고해상도 대화면 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정하는 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법에 관한 것이다.The present invention provides a keystone effect in a multi-projector-based reflective integrated image system for elemental image correction to remove keystone effects in a high-efficiency / high resolution large screen multi-projector-based reflective integrated image system without intensity unevenness using multiple projectors. A method for compensating elemental images for removal.
프로젝터를 포함하는 집적영상에 대한 종래기술로는 등록특허공보 제10-0685151호에 프로젝터 및 이를 포함한 디스플레이 시스템에 있어서, 장시간에 걸쳐 고화질, 양질의 표시를 유지시키기 위한 것으로, 사용자의 필요에 따라 얻어지는 보정데이터를 이용하여 입력된 비디오 신호에 대해 보정처리를 하여 보정된 신호를 액정패널에 입력하고, 그것에 의해 양호한 표시특성을 유지할 수 있는 기술이 공개되어 있으며, 청구항 1항은 표시 장치에 있어서, 스크린; 제 1, 제 2 및 제 3 영상 신호들을 각각 입력함으로써 상기 스크린상에 적색, 청색 및 녹색광들을 각각 표시하기 위한 제 1, 제 2 및 제 3 액정 패널들; 상기 적색, 청색 및 녹색광들로부터 제 1, 제 2 및 제 3 표시 데이터를 각각 얻기 위한 제 1, 제 2 및 제 3 검출 수단; 상기 제 1, 제 2 및 제 3 검출 수단에 제공되는 렌즈 커버; 액정 패널 구동 회로; 상기 제 1, 제 2 및 제 2 표시 데이터로부터 제 1, 제 2 및 제 3 보정 데이터를 각각 얻기 위한 수단; 상기 제 1, 제 2 및 제 3 보정 데이터를 저장하기 위한 제 1, 제 2 및 제 3 메모리들; 및 상기 제 1, 제 2 및 제 3 메모리들에 각각 저장되어 있는 상기 제 1, 제 2 및 제 3 보정 데이터에 기초하여 상기 제 1, 제 2 및 제 3 영상 신호들을 보정하기 위한 제 1, 제 2 및 제 3 감마 보정 회로들을 포함하고, 상기 표시 장치는, 상기 스크린과 각각의 상기 제 1, 제 2 및 제 3 액정 패널들 사이에 제공되는 광학계를 더 포함하고, 상기 렌즈 커버는 상기 광학계와 각각의 상기 제 1, 제 2 및 제 3 액정 패널들 사이에 제공되는, 표시 장치가 기술되어 있다.The prior art for an integrated image including a projector is disclosed in Korean Patent Publication No. 10-0685151 for the purpose of maintaining a high quality and a high quality display for a long time in a projector and a display system including the same. A technique has been disclosed in which a video signal input by using correction data is subjected to a correction process to input a corrected signal to a liquid crystal panel, thereby maintaining good display characteristics. ; First, second and third liquid crystal panels for respectively displaying red, blue and green lights on the screen by inputting first, second and third image signals, respectively; First, second and third detection means for obtaining first, second and third display data from the red, blue and green lights, respectively; A lens cover provided to said first, second and third detection means; Liquid crystal panel drive circuits; Means for obtaining first, second and third correction data from the first, second and second display data, respectively; First, second and third memories for storing the first, second and third correction data; And first and second corrections for the first, second and third image signals based on the first, second and third correction data stored in the first, second and third memories, respectively. And second and third gamma correction circuits, wherein the display device further comprises an optical system provided between the screen and each of the first, second, and third liquid crystal panels, and the lens cover includes: A display device is provided, which is provided between each of the first, second and third liquid crystal panels.
또 다른 종래기술로는 등록특허공보 제10-0864139호에 빛을 선택적 방향으로 투과 또는 반사시키는 스크린; 스크린상의 여러 다른 지점들 및 스크린의 상기 지점들의 각각 다른 방사방향에 관련된 비임들을 생성하는 모듈들을 포함하는 스크린 조명시스템; 및 상기 모듈을 제어하는 제어시스템;을 포함하고, 상기 스크린은 인접 방사방향들 사이의 각도에 따라 투과되거나 반사된 빛을 확산시키는 3D 영상 표시장치에 있어서: 상기 모듈은 이차원 디스플레이와, 디스플레이의 각 화소를 동시에 스크린에 촬상하는 광학계를 포함하고; 스크린상의 각각 다른 포인트들에 관련되고 이들 서로 다른 스크린 포인트들에 관련된 서로 다른 방사방향들에 대응하는 이차원 디스플레이상의 표시화소들은 좌표가 다른 비임들을 방사방향 정보 없이 거의 동시에 생성하며; 디스플레이에 관련된 촬상 광학장치들은 좌표가 서로 다른 표시화소들에서 생성된 비임들을 서로 다른 방사방향이나 촬상방향으로 동시에 촬상하는 것을 특징으로 하는 장치가 등록공개되어 있다.Still another prior art includes a screen for transmitting or reflecting light in a selective direction in Korean Patent Publication No. 10-0864139; A screen illumination system comprising modules for generating different points on the screen and beams associated with different radial directions of the points on the screen; And a control system for controlling the module, wherein the screen diffuses the transmitted or reflected light according to angles between adjacent radial directions, the screen comprising: a two-dimensional display and an angle of the display; An optical system for simultaneously imaging pixels on the screen; Display pixels on a two-dimensional display that are related to different points on the screen and that correspond to different radial directions relative to these different screen points generate beams with different coordinates almost simultaneously without radial information; Imaging optics associated with a display are disclosed in which a device for simultaneously imaging beams generated in display pixels having different coordinates in different radial or imaging directions is disclosed.
그러나 종래의 멀티 프로젝터 기반의 반사형 집적 영상 시스템은 제한된 프로젝션 영역만을 사용하여 3차원 영상이 생성되며, MPII에서 사용된 각각의 프로젝터의 위치와 기울임에 따라 프로젝터에서 주사된(Projection) 프로젝션 면에 왜곡이 발생하고, 프로젝션 면의 왜곡은 요소 영상의 왜곡은 발생시키고 이는 MPII시스템에서 정상적인 3차원 영상 복원을 방해한다는 단점이 있다.However, the conventional multi-projector based reflective integrated imaging system generates a three-dimensional image using only a limited projection area and distorts the projection surface projected by the projector according to the position and tilt of each projector used in the MPII. This occurs, and distortion of the projection surface generates distortion of the element image, which hinders normal 3D image reconstruction in the MPII system.
본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 MPII 시스템은 모든 프로젝션 면을 오버랩 하여 3차원 복원 영상을 생성하기 때문에 낭비되는 프로젝션 면이 없기 때문에 고효율 3차원 디스플레이가 되며, MPII 시스템은 다수의 프로젝터를 이용하여 2차원 요소 영상을 각각 주사하는데, 프로젝터의 주사 조건에 의해 각각의 요소 영상에 key stone artifact가 발생할 수 있고, 이는 3차원 복원 영상의 왜곡으로 이어지고, 본 발명을 통해 2차원 요소 영상 투영에서의 key stone artifact를 제거함으로써 3차원 복원영상의 왜곡을 없애는 효과를 기대하게 된다.The element image correction method for removing the keystone effect in the multi-projector based reflective integrated image system of the present invention has been devised to solve the above-described problem. Because there is no wasted projection surface, it becomes a highly efficient three-dimensional display, and the MPII system scans two-dimensional element images by using multiple projectors, and key stone artifacts are applied to each element image by the scanning conditions of the projectors. This may lead to distortion of the 3D reconstructed image, and through the present invention, it is expected that the effect of eliminating the distortion of the 3D reconstructed image by removing key stone artifacts in the 2D element image projection.
또한, 각각의 프로젝터들에서 주사된 프로젝터 면을 모두 오버랩 시킨 후 겹쳐진 면을 3차원 복원 영상 생성에 하여 3차원 디스플레이를 구현하는 데 그 목적이 있다.In addition, an object of the present invention is to realize a three-dimensional display by overlapping all the projector surfaces scanned by the respective projectors and generating the three-dimensional reconstructed image by overlapping the surfaces.
본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법은 프로젝터 내부 파라미터를 설정하는 S1단계; 레퍼런스 프로젝터 픽셀에서 방사된 광선의 기하학적 위치를 계산하는 S2단계; 멀터 프로젝터 픽셀에서 방사된 광선의 기하학적 위치를 계산하는 S3단계; 멀터 프로젝터의 특정 픽셀에서 나온 광선에 가장 가까운 레퍼런스 프로젝터 광선을 계산하는 S4단계; 두 개의 광선이 동일한 요소렌즈에 있는지 맵핑여부를 확인하는 S5단계; 멀티 프로젝터의 특정 픽셀에 계산된 레퍼런스 픽셀 값을 할당하는 S6단계; 멀티 프로젝터용 켈리브레이션 요소영상을 획득하는 S7단계;의 과정을 통해 멀티 프로젝터용으로 보정된 요소영상을 획득하는 것이 특징이다.The element image correction method for removing the keystone effect in the multi-projector-based reflective integrated imaging system comprises the steps of: setting an internal parameter of the projector; Calculating a geometric position of a ray emitted from the reference projector pixel; Calculating a geometric position of a ray emitted from the multi-projector pixel; Step S4 of calculating a reference projector beam closest to a beam from a specific pixel of the multer projector; Step S5 of checking whether two light rays are in the same element lens; Step S6 of allocating the calculated reference pixel values to specific pixels of the multi-projector; Characterizing the element image corrected for the multi-projector through the process of S7; obtaining a calibration element image for the multi-projector.
본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법에 의하면 기존의 MPII 시스템의 문제점인 키스톤 효과를 제거하고, 또한 기존의 MPII시스템에 비해 넓은 프로젝션 스크린 면을 사용할 수 있으며, 프로젝터의 위치에 상관없이 고해상도 정상적인 3차원 영상 획득 가능하다는 등의 현저한 효과가 있다.According to the element image correction method for removing the keystone effect in the multi-projector based reflective integrated image system, the keystone effect, which is a problem of the conventional MPII system, is eliminated, and a wider projection screen surface is used than the conventional MPII system. It is possible to obtain a high resolution normal 3D image regardless of the position of the projector.
도 1은 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법을 나타낸 흐름도.1 is a flowchart illustrating an element image correction method for removing a keystone effect in a reflection integrated imaging system based on the present invention.
도 2는 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템 구성도.2 is a block diagram of a reflection integrated imaging system based on the present invention multi-projector.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100. 레퍼런스 프로젝터 200, 300. 프로젝터100. Projector 200, 300. Projector
400. 미러 어레이 500. 영상분배장치400. Mirror Array 500. Image Distribution System
본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법은 프로젝터 내부 파라미터를 설정하는 S1단계; 레퍼런스 프로젝터 픽셀에서 방사된 광선의 기하학적 위치를 계산하는 S2단계; 멀터 프로젝터 픽셀에서 방사된 광선의 기하학적 위치를 계산하는 S3단계; 멀터 프로젝터의 특정 픽셀에서 나온 광선에 가장 가까운 레퍼런스 프로젝터 광선을 계산하는 S4단계; 두 개의 광선이 동일한 요소렌즈에 있는지 맵핑여부를 확인하는 S5단계; 멀티 프로젝터의 특정 픽셀에 계산된 레퍼런스 픽셀 값을 할당하는 S6단계; 멀티 프로젝터용 켈리브레이션 요소영상을 획득하는 S7단계;의 과정을 통해 멀티 프로젝터용으로 보정된 요소영상을 획득하는 것이다.The element image correction method for removing the keystone effect in the multi-projector-based reflective integrated imaging system comprises the steps of: setting an internal parameter of the projector; Calculating a geometric position of a ray emitted from the reference projector pixel; Calculating a geometric position of a ray emitted from the multi-projector pixel; Step S4 of calculating a reference projector beam closest to a beam from a specific pixel of the multer projector; Step S5 of checking whether two light rays are in the same element lens; Step S6 of allocating the calculated reference pixel values to specific pixels of the multi-projector; Acquiring the corrected element image for the multi-projector through the process of step S7 to obtain a calibration element image for the multi-projector.
또한, S2단계에서 레퍼런스 프로젝터 픽셀에서 방사된 광선의 기하학적 위치는 프로젝터로부터 방사된 광선은 픽셀의 위치에 따라 서로 다른 기하학적 위치에 도달하며, 도달하는 위치는In addition, the geometric position of the light beam emitted from the reference projector pixel in step S2 is that the light beam emitted from the projector reaches a different geometric position according to the position of the pixel,
Figure PCTKR2015001929-appb-I000001
으로 나타내는 것이다.
Figure PCTKR2015001929-appb-I000001
It is represented by.
xi, yi 는 프로젝터의 특정 픽셀이 도달하는 기하학적 좌표.x i and y i are the geometric coordinates at which a specific pixel in the projector arrives.
Rx, Ry 는 프로젝터의 x, y 축 해상도.R x and R y are the x and y axis resolution of the projector.
θ는 프로젝터와 x 축과 이루는 각도.θ is the angle between the projector and the x axis.
φ는 프로젝터와 z 축과 이루는 각도.φ is the angle between the projector and the z axis.
i, j 는 각각의 픽셀 인덱스.i and j are pixel indices respectively.
εx, εy는 연속된 두 픽셀 사이의 일정한 퍼짐각.ε x and ε y are constant spread angles between two consecutive pixels.
xp, yp, zp 는 프로젝터의 공간 좌표.x p , y p , z p are the spatial coordinates of the projector.
또한, 상기 S1단계와 S2단계는 기본 설정과정으로서 세팅시 설정되며, S3단계로부터 S6단계는 켈리브레이션 과정으로서 모든 프로젝터(200, 300)의 픽셀에 대해 계산이 반복적으로 진행되는 것이다.In addition, the steps S1 and S2 are set at the time of setting as a basic setting process, and the steps S3 to S6 are calibration processes and the calculation is repeatedly performed for the pixels of all the projectors 200 and 300.
그리고 상기 멀티 프로젝터 기반의 반사형 집적 영상 시스템은 볼록거울의 집합으로 이루어진 미러 어레이(400)와, 상기 미러 어레이(400)에 요소영상을 방사하는 기준이 되는 레퍼런스 프로젝터(100)와, 상기 레퍼런스 프로젝터(100)의 주변에 설치되는 다수의 프로젝터(200, 300)와, 상기 레퍼런스 프로젝터(100) 및 다수의 프로젝터(200, 300)에 요소영상을 보내주는 영상분배장치(500)로 구성되는 것이 특징이다.The multi-projector based reflective integrated imaging system includes a mirror array 400 including a set of convex mirrors, a reference projector 100 as a reference for radiating element images to the mirror array 400, and the reference projector. It is characterized by consisting of a plurality of projectors (200, 300) installed in the vicinity of the 100, and the image distribution device 500 for sending the element image to the reference projector (100) and a plurality of projectors (200, 300). to be.
또한, 상기 프로젝터(100, 200, 300)에서 주사된 프로젝터 면의 크기는 프로젝션 스크린과 프로젝터간 거리에 비례하여 커지게 되는 것이 특징이다.In addition, the size of the projector surface scanned by the projectors 100, 200, and 300 is increased in proportion to the distance between the projection screen and the projector.
이하, 본 발명 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법을 첨부한 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, an element image correction method for removing a keystone effect in a multi-projector based reflective integrated imaging system according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 다수의 프로젝터를 사용하여 세기 불균등이 없는 고효율/고해상도 대화면 반사형 집적 영상 시스템에 대한 것이다. The present invention is directed to a high efficiency / high resolution large screen reflective integrated imaging system without intensity unevenness using multiple projectors.
본 발명의 MPII 시스템은 모든 프로젝션 면을 오버랩 하여 3차원 복원 영상을 생성하기 때문에 낭비되는 프로젝션 면이 없기 때문에 고효율 3차원 디스플레이가 된다. The MPII system of the present invention generates three-dimensional reconstructed images by overlapping all projection surfaces, resulting in a high efficiency three-dimensional display because there is no wasted projection surface.
MPII는 Multi Projection Integral Imaging의 약자이다.MPII stands for Multi Projection Integral Imaging.
MPII 시스템은 다수의 프로젝터를 이용하여 2차원 요소 영상을 각각 주사하는데, 프로젝터의 주사 조건에 의해 각각의 요소 영상에 key stone artifact가 발생할 수 있고, 이는 3차원 복원 영상의 왜곡으로 이어진다. The MPII system scans two-dimensional element images using a plurality of projectors, and key stone artifacts may be generated in each element image by scanning conditions of the projector, which leads to distortion of the three-dimensional reconstructed image.
본 발명을 통해 2차원 요소 영상 투영에서의 key stone artifact를 제거함으로써 3차원 복원영상의 왜곡을 없애는 효과를 기대한다.Through the present invention, the effect of eliminating distortion of the 3D reconstructed image is expected by removing key stone artifacts in the 2D element image projection.
또한, 각각의 프로젝터들에서 주사된 프로젝터 면을 모두 오버랩 시킨 후 겹쳐진 면을 3차원 복원 영상으로 생성하여 3차원 디스플레이를 구현한다. In addition, the three-dimensional display is realized by overlapping all the projector surfaces scanned by the respective projectors and generating the three-dimensional reconstructed image by overlapping the surfaces.
이때, 프로젝터에서 주사된 프로젝터 면의 크기는 프로젝션 스크린과 프로젝터간 거리에 비례하여 커지게 된다. At this time, the size of the projector surface scanned by the projector is increased in proportion to the distance between the projection screen and the projector.
프로젝터 면의 크기는 일반적인 모니터에 비해 훨씬 크기 때문에 다수의 프로젝터를 이용하여 대화면 3차원 디스플레이 구현이 가능하다.Since the size of the projector surface is much larger than that of a general monitor, a large screen three-dimensional display can be realized by using multiple projectors.
MPII 시스템은 미러 어레이와 다수의 프로젝터로 구성된다. The MPII system consists of a mirror array and a number of projectors.
프로젝터는 2차원 영상을 공간상에 방사하는 장치이다. Projectors are devices that emit two-dimensional images in space.
미러 어레이는 볼록 거울의 집합으로 하나의 볼록 거울이 하나의 요소미러로 구성된다. A mirror array is a set of convex mirrors in which one convex mirror is composed of one element mirror.
요소 영상은 3차원 물체에 대한 깊이 및 Perspective 정보를 가지고 있는 2차원 이미지이다. Elemental images are two-dimensional images with depth and perspective information about three-dimensional objects.
다수의 프로젝터에서 방사된 특정 요소 영상은 동일한 인덱스를 가지는 미러 어레이의 요소 미러에서 반사되면서 3차원 영상을 형성하게 된다.Specific element images emitted from a plurality of projectors are reflected by element mirrors of the mirror array having the same index to form a 3D image.
이때, 다수의 프로젝터에서 방사된 프로젝션 면이 미러 어레이와 수평을 이루지 않는 경우가 있는데 이것을 Key stone artifact 라고 한다.At this time, the projection surface radiated from a plurality of projectors may not be parallel to the mirror array, which is called key stone artifact.
Key stone artifact가 발생할 경우 프로젝터에서 방사된 직사각형 프로젝션 면이 서로 비대칭 사각형 프로젝션 면으로 되는 왜곡이 발생한다.When key stone artifacts occur, distortion occurs that the rectangular projection planes emitted from the projectors become asymmetric rectangular projection planes.
이는 프로젝션 면의 비대칭은 각각의 프로젝터 픽셀이 서로 다른 크기로 주사되었다는 것을 의미한다. This means that the projection plane's asymmetry means that each projector pixel was scanned at a different size.
그래서 동일한 미러 어레이에 서로 다른 크기의 픽셀들이 주사되기 때문에 요소 영상과 미러 어레이 간 맵핑 불일치 문제가 발생한다. Therefore, since pixels of different sizes are scanned in the same mirror array, a mapping mismatch problem between the element image and the mirror array occurs.
또한, 기존의 MPII 시스템은 다수의 프로젝터와 미러 어레이 간 수직관계를 갖고 있는데 이때 각각의 프로젝터에서 방사된 요소 영상들은 동일한 2차원 평면에 위치하게 된다.In addition, the existing MPII system has a vertical relationship between a plurality of projectors and a mirror array, wherein the element images emitted from each projector are located in the same two-dimensional plane.
이때, 방사는 일정한 퍼짐각을 가지고 진행되기 때문에 프로젝터의 개수가 증가할수록 주사면 중 오버랩 된 영역은 감소한다.At this time, since the radiation proceeds with a constant spread angle, the overlapped area of the scanning surface decreases as the number of projectors increases.
기존의 MPII시스템은 방사된 프로젝션 면들 중 서로 겹쳐진 부분을 사용하여 3차원 영상을 생성하기 때문에 오버랩되는 영역이 감소할수록 3차원 복원 영상 생성에 실제 사용되는 영역은 감소된다.Existing MPII systems generate three-dimensional images by using overlapping portions of the radiated projection planes, and as the overlapping area decreases, the area actually used to generate the three-dimensional reconstructed image decreases.
따라서, MPII 시스템에서 3차원 영상 생성에 활용할 수 있는 영역을 증가시키기 위해서는 프로젝터를 적절하게 기울여 방사되는 모든 프로젝션면들의 오버랩 영역을 최대화해야 한다.Therefore, in order to increase the area that can be used for generating 3D images in the MPII system, it is necessary to tilt the projector appropriately to maximize the overlap area of all the projected surfaces.
이럴 경우 프로젝터의 기울임에 따른 key stone artifact 가 발생하게 된다.In this case, key stone artifacts are generated by tilting the projector.
이때, Key stone artifact를 제거하여 각각의 프로젝터에서 주사된 프로젝션 면의 비대칭 왜곡을 보정할 경우 생성된 3차원 영상의 왜곡을 제거할 수 있다.At this time, when the key stone artifact is removed to correct the asymmetric distortion of the projection plane scanned by each projector, the distortion of the generated 3D image may be removed.
도 1은 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법을 나타낸 흐름도이다.1 is a flowchart illustrating an element image correction method for removing a keystone effect in a multi-projector based reflective integrated imaging system according to the present invention.
도 1에 도시된 같이 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법은 다음과 같다.As shown in FIG. 1, the element image correction method for removing the keystone effect in the multi-projector based reflective integrated imaging system according to the present invention is as follows.
1. 제안하는 Calibration 과정을 수행하기 위해 먼저 프로젝터의 내부 파라미터 (S1)를 설정한다.1. To perform the proposed calibration procedure, first set up the projector's internal parameter (S 1 ).
내부 파라미터 설정(S1)에는 프로젝터의 고유 변수인 퍼짐각, 해상도, Depth of field와 프로젝터의 위치 및 기울기로 설정한다.Internal parameter setting (S 1 ) is set by the projector's inherent parameters such as spread angle, resolution, depth of field, and position and tilt of the projector.
퍼짐각은 프로젝터에서 방사된 광선이 공간상에 퍼져나가는 각도를 의미한다.The spread angle means the angle at which light emitted from the projector spreads out in space.
해상도는 영상을 표현할 수 있는 픽셀의 총 개수이다.Resolution is the total number of pixels that can represent an image.
Depth of field는 프로젝션 면이 선명하게 맺히는 물리적 간격을 나타낸다.Depth of field represents the physical distance at which the projection plane is clearly formed.
프로젝터의 위치와 기울기는 각각, 다수의 프로젝터의 기하학적 위치 와 미러 어레이와의 기울어진 정도를 의미한다.The position and inclination of the projectors mean the inclination of the geometric array of the plurality of projectors and the mirror array, respectively.
2. 프로젝터로부터 방사된 광선은 픽셀의 위치에 따라 서로 다른 기하학적 위치에 도달한다(S2). 2. The light rays emitted from the projector reach different geometric positions according to the position of the pixel (S 2 ).
도달하는 위치는 (수식 1)로 나타낸다.The position to reach is represented by (Formula 1).
Figure PCTKR2015001929-appb-I000002
---(수식 1)
Figure PCTKR2015001929-appb-I000002
--- (Equation 1)
xi, yi 는 프로젝터의 특정 픽셀이 도달하는 기하학적 좌표를 의미한다.x i and y i denote the geometric coordinates at which a particular pixel of the projector arrives.
Rx, Ry 는 프로젝터의 x, y 축 해상도를 의미한다. θ는 프로젝터와 x 축과 이루는 각도를 의미한다.R x and R y represent the x and y axis resolution of the projector. θ means the angle between the projector and the x-axis.
φ는 프로젝터와 z 축과 이루는 각도를 의미한다.φ means the angle between the projector and the z axis.
i, j 는 각각의 픽셀 인덱스를 의미한다.i and j mean each pixel index.
εx, εy는 연속된 두 픽셀 사이의 일정한 퍼짐각을 의미한다.ε x , ε y means a constant spread angle between two consecutive pixels.
xp, yp, zp 는 프로젝터의 공간 좌표를 의미한다.x p , y p , and z p refer to the spatial coordinates of the projector.
레퍼런스 프로젝터는 방사 방향이 미러 어레이 진열 방향과 수직인 프로젝터를 의미한다.Reference projector refers to a projector whose radiation direction is perpendicular to the mirror array display direction.
레퍼런스 프로젝터에서는 방사되는 요소 영상은 key stone artifact에 대한 보정 작업이 필요하지 않다.In the reference projector, the emitted element image does not need to be corrected for key stone artifacts.
이때, 사용되는 요소 영상을 레퍼런스 요소 영상이라고 명명한다.In this case, the element image to be used is referred to as a reference element image.
수식 1을 통해, 레퍼런스 프로젝터의 특정 픽셀에서 방사된 광선 1의 기하학적 위치를 계산한다.Through Equation 1, the geometric position of ray 1 emitted from a specific pixel of the reference projector is calculated.
3. 수식 1로 나타낸 공식을 이용하여 멀티 프로젝터에서 방사된 광선 2의 기하학적 위치를 계산한다(S3).3. Using the formula represented by Equation 1 to calculate the geometric position of the ray 2 emitted from the multi-projector (S 3 ).
이때, 계산된 광선2의 기하학적 위치는 추가되는 프로젝터의 특정 픽셀 위치에서 방사된 것이다.At this time, the calculated geometric position of ray 2 is emitted at a specific pixel position of the projector to be added.
4. 계산된 광선2의 기하학적 위치와 가장 가까운 위치로 방사된 광선 1의 기하학적 위치를 계산한다(S4).4. Calculate the geometric position of the emitted ray 1 to the position closest to the calculated position of the ray 2 (S 4 ).
5. 계산된 2개의 광선 경로 상에 동일한 요소 미러가 있는지 확인한다(S5).5. Check whether the same element mirror exists on the two calculated ray paths (S 5 ).
6. 레퍼런스 프로젝터의 특정 픽셀에서 방사된 광선 1과 추가되는 프로젝터의 특정 픽셀 위치에서 방사된 광선 2가 동일한 요소 미러를 지나갈 경우 레퍼런스 프로젝터의 픽셀 밝기값을 추가된 프로젝터에서 광선 2를 방사한 픽셀에 할당한다.6. If light beam 1 emitted from a specific pixel of the reference projector and light beam 2 emitted from a particular pixel location of the additional projector pass the same element mirror, then the pixel brightness value of the reference projector is added to the pixel from which beam 2 is emitted from the added projector. Assign.
이 과정을 프로젝터의 모든 픽셀에 대해서 수행한다(S6).This process is performed for all pixels of the projector (S 6 ).
7. 최종 생성 요소 영상은 추가된 프로젝터의 요소 영상이 된다(S7). 7. The final generated element image becomes the element image of the added projector (S 7 ).
도 2는 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템 구성도이다.2 is a block diagram of a reflective integrated imaging system based on the present invention.
도 2에 도시된 바와 같이 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템은 기준이 되는 레퍼런스 프로젝터(100)와 다수의 프로젝터(200, 300), 미러 어레이 (400)와 각각의 프로젝터에 요소 영상을 보내주는 영상분배장치 (500)로 구성되어 있다. As shown in FIG. 2, the multi-projector-based reflective integrated imaging system of the present invention provides elementary images to the reference projector 100, the plurality of projectors 200 and 300, the mirror array 400, and each projector as a reference. Consists of a video distribution device 500 for sending.
레퍼런스 프로젝터 (100)에서 요소 영상을 미러 어레이로 방사한다. The reference projector 100 emits the element image to the mirror array.
이때, 나머지 프로젝터 (200, 300)는 레퍼런스 프로젝터와의 위치와 미러 어레이와 이루는 각도가 다르다. In this case, the remaining projectors 200 and 300 have different positions from the reference projector and the angle of the mirror array.
그래서 영상분배장치(500)에서 나머지 프로젝터(200, 300)를 위한 요소 영상을 생성한 후 입력으로 넣는다. Thus, the image distribution device 500 generates the element images for the remaining projectors 200 and 300 and puts them into the input.
따라서, 상술한 바와 같이 본 발명 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법에 의하면 기존의 MPII 시스템의 문제점인 키스톤 효과를 제거하고, 또한 기존의 MPII시스템에 비해 넓은 프로젝션 스크린 면을 사용할 수 있으며, 프로젝터의 위치에 상관없이 고해상도 정상적인 3차원 영상 획득 가능하다는 등의 현저한 효과가 있다.Therefore, as described above, according to the element image correction method for removing the keystone effect in the multi-projector based reflective integrated image system of the present invention, the keystone effect, which is a problem of the conventional MPII system, is eliminated, and compared with the conventional MPII system. The wide projection screen surface can be used, and the remarkable effect is that a high resolution normal three-dimensional image can be obtained regardless of the position of the projector.

Claims (5)

  1. 멀티 프로젝터 기반의 반사형 집적 영상 시스템을 이용한 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법에 있어서,In the element image correction method for removing a keystone effect in a multi-projector-based reflective integrated imaging system using a multi-projector-based reflective integrated imaging system,
    프로젝터 내부 파라미터를 설정하는 S1단계;Step S1 of setting internal projector parameters;
    레퍼런스 프로젝터 픽셀에서 방사된 광선의 기하학적 위치를 계산하는 S2단계;Calculating a geometric position of a ray emitted from the reference projector pixel;
    멀터 프로젝터 픽셀에서 방사된 광선의 기하학적 위치를 계산하는 S3단계;Calculating a geometric position of a ray emitted from the multi-projector pixel;
    멀터 프로젝터의 특정 픽셀에서 나온 광선에 가장 가까운 레퍼런스 프로젝터 광선을 계산하는 S4단계;Step S4 of calculating a reference projector beam closest to a beam from a specific pixel of the multer projector;
    두 개의 광선이 동일한 요소렌즈에 있는지 맵핑여부를 확인하는 S5단계;Step S5 of checking whether two light rays are in the same element lens;
    멀티 프로젝터의 특정 픽셀에 계산된 레퍼런스 픽셀 값을 할당하는 S6단계;Step S6 of allocating the calculated reference pixel values to specific pixels of the multi-projector;
    멀티 프로젝터용 켈리브레이션 요소영상을 획득하는 S7단계;Step S7 of acquiring a calibration element image for the multi-projector;
    의 과정을 통해 멀티 프로젝터용으로 보정된 요소영상을 획득하는 것이 특징인 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법.Element image correction method for removing the keystone effect in a multi-projector based reflective integrated imaging system characterized by obtaining a corrected element image for a multi-projector through the process of.
  2. 제1항에 있어서,The method of claim 1,
    S2단계에서 레퍼런스 프로젝터 픽셀에서 방사된 광선의 기하학적 위치는 프로젝터로부터 방사된 광선은 픽셀의 위치에 따라 서로 다른 기하학적 위치에 도달하며, 도달하는 위치는In the step S2, the geometric position of the light beam emitted from the reference projector pixel reaches a different geometric position according to the position of the pixel.
    Figure PCTKR2015001929-appb-I000003
    으로 나타내는 것이 특징인 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법.
    Figure PCTKR2015001929-appb-I000003
    An element image correction method for removing a keystone effect in a multi-projector based reflective integrated imaging system characterized by
    (xi, yi ; 프로젝터의 특정 픽셀이 도달하는 기하학적 좌표(x i , y i ; Geometric coordinates at which a specific pixel in the projector arrives
    Rx, Ry ; 프로젝터의 x, y 축 해상도R x , R y ; X- and y-axis resolution of the projector
    θ ; 프로젝터와 x 축과 이루는 각도θ; Angle between projector and x axis
    φ ; 프로젝터와 z 축과 이루는 각도φ; Angle between projector and z axis
    i, j ; 각각의 픽셀 인덱스i, j; Each pixel index
    εx, εy ; 연속된 두 픽셀 사이의 퍼짐각ε x , ε y ; Spread angle between two consecutive pixels
    xp, yp, zp ; 프로젝터의 공간 좌표)x p , y p , z p ; Spatial coordinates of the projector)
  3. 제1항에 있어서,The method of claim 1,
    상기 S1단계와 S2단계는 기본 설정과정으로서 세팅시 설정되며, S3단계로부터 S6단계는 켈리브레이션 과정으로서 모든 프로젝터(200, 300)의 픽셀에 대해 계산이 반복적으로 진행되는 것이 특징인 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법.Steps S1 and S2 are set at the time of setting as a basic setting process, and steps S3 to S6 are calibration processes and calculations are repeatedly performed for pixels of all the projectors 200 and 300. Element Image Correction Method for Eliminating Keystone Effect in Integrated Integrated Image System.
  4. 제1항에 있어서,The method of claim 1,
    상기 멀티 프로젝터 기반의 반사형 집적 영상 시스템은 볼록거울의 집합으로 이루어진 미러 어레이(400)와, 상기 미러 어레이(400)에 요소영상을 방사하는 기준이 되는 레퍼런스 프로젝터(100)와, 상기 레퍼런스 프로젝터(100)의 주변에 설치되는 다수의 프로젝터(200, 300)와, 상기 레퍼런스 프로젝터(100) 및 다수의 프로젝터(200, 300)에 요소영상을 보내주는 영상분배장치(500)로 구성되는 것이 특징인 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법.The multi-projector based reflective integrated imaging system includes a mirror array 400 including a set of convex mirrors, a reference projector 100 as a reference for radiating element images to the mirror array 400, and the reference projector ( Characterized in that it consists of a plurality of projectors (200, 300) installed in the vicinity of the 100, and the image distribution device 500 for sending the element image to the reference projector (100) and a plurality of projectors (200, 300) Element image correction method for removing keystone effect in multi projector based reflective integrated image system.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 프로젝터(100, 200, 300)에서 주사된 프로젝터 면의 크기는 프로젝션 스크린과 프로젝터간 거리에 비례하여 커지게 되는 것이 특징인 멀티 프로젝터 기반의 반사형 집적 영상 시스템에서 키스톤 효과를 제거하기 위한 요소영상 보정방법.The size of the projector surface scanned by the projectors (100, 200, 300) is increased in proportion to the distance between the projection screen and the projector element image for removing the keystone effect in the multi-projector-based reflective integrated imaging system Correction method.
PCT/KR2015/001929 2014-12-23 2015-02-27 Image element calibration method for eliminating keystone effect in multi-projector-based reflective integrated imaging system WO2016104868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140187567A KR101649051B1 (en) 2014-12-23 2014-12-23 Calibration method of elemental image for elimination of keystone effect in reflective integral imaging system based on multiple projectors
KR10-2014-0187567 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016104868A1 true WO2016104868A1 (en) 2016-06-30

Family

ID=56150868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001929 WO2016104868A1 (en) 2014-12-23 2015-02-27 Image element calibration method for eliminating keystone effect in multi-projector-based reflective integrated imaging system

Country Status (2)

Country Link
KR (1) KR101649051B1 (en)
WO (1) WO2016104868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951721A (en) * 2017-12-20 2019-06-28 Cj Cgv 株式会社 More projection theater monitoring systems and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230020889A (en) * 2021-08-04 2023-02-13 삼성전자주식회사 Apparatus for processing image and methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284363A (en) * 1999-03-30 2000-10-13 Telecommunication Advancement Organization Of Japan Image projecting device and method
KR100812997B1 (en) * 2007-03-07 2008-03-13 삼성전기주식회사 Keystone compensating method and display apparatus
KR20080050286A (en) * 2006-12-02 2008-06-05 한국전자통신연구원 Apparatus for alining curved-screen type and system and method for controlling as the same
KR20100100058A (en) * 2009-03-05 2010-09-15 동서대학교산학협력단 A projector-camera system for real-time geometric correction of deformable surface
KR20140085779A (en) * 2012-12-27 2014-07-08 삼성전자주식회사 Method and apparatus for calibration of light field display using multi-projectors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100251039B1 (en) * 1998-03-07 2000-04-15 윤종용 Calibration device for robot
KR100546639B1 (en) * 2003-01-09 2006-01-26 엘지전자 주식회사 Apparatus for correcting image distortion
JP6164820B2 (en) * 2012-10-11 2017-07-19 キヤノン株式会社 Projector, control method therefor, and image projection system
KR102124475B1 (en) * 2013-02-05 2020-06-19 엘지전자 주식회사 Projector and controlling method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284363A (en) * 1999-03-30 2000-10-13 Telecommunication Advancement Organization Of Japan Image projecting device and method
KR20080050286A (en) * 2006-12-02 2008-06-05 한국전자통신연구원 Apparatus for alining curved-screen type and system and method for controlling as the same
KR100812997B1 (en) * 2007-03-07 2008-03-13 삼성전기주식회사 Keystone compensating method and display apparatus
KR20100100058A (en) * 2009-03-05 2010-09-15 동서대학교산학협력단 A projector-camera system for real-time geometric correction of deformable surface
KR20140085779A (en) * 2012-12-27 2014-07-08 삼성전자주식회사 Method and apparatus for calibration of light field display using multi-projectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109951721A (en) * 2017-12-20 2019-06-28 Cj Cgv 株式会社 More projection theater monitoring systems and method

Also Published As

Publication number Publication date
KR101649051B1 (en) 2016-08-18
KR20160077551A (en) 2016-07-04

Similar Documents

Publication Publication Date Title
TWI253006B (en) Image processing system, projector, information storage medium, and image processing method
US7252387B2 (en) System and method for mechanically adjusting projector pose with six degrees of freedom for image alignment
TWI249351B (en) Image processing system, projector, and image processing method
KR100591708B1 (en) Image processing system, projector, and image processing method
US8866902B2 (en) Correction information calculating device, image processing apparatus, image display system, and image correcting method
CN1215707C (en) Method and system for correcting keystoning in a projector arbitrarily oriented with respect to a display surface
JP4495041B2 (en) A method for determining projector pixels associated with laser points on a display surface by pinhole projection
WO2011087337A2 (en) Substrate-inspecting device
JP2010050542A (en) Projection display apparatus, and display method
US8449121B2 (en) Image processing system, projector, method and computer program product
JP5239611B2 (en) Projection display apparatus and image correction method
TW200933134A (en) Inspection method and inspection apparatus of display panel
WO2017183915A2 (en) Image acquisition apparatus and method therefor
WO2022247419A1 (en) Laser projection device and image correction system
JP6809477B2 (en) Projection type display device and image correction method
WO2017195984A1 (en) 3d scanning device and method
WO2022242306A1 (en) Laser projection system, image correction method, and laser projection device
US7110022B2 (en) Image output calibrating system for cameras
JP2008251026A (en) Image processing system, projector, program, information storage medium, and image processing method
WO2016104868A1 (en) Image element calibration method for eliminating keystone effect in multi-projector-based reflective integrated imaging system
WO2012148025A1 (en) Device and method for detecting a three-dimensional object using a plurality of cameras
WO2020045770A1 (en) Method and device for obtaining 3d images
Hereld et al. Dottytoto: a measurement engine for aligning multiprojector display systems
WO2010047523A2 (en) Apparatus and method for three-dimensional scanning using a plurality of line patterns
JP2011090166A (en) Stereo imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873396

Country of ref document: EP

Kind code of ref document: A1