WO2020017694A1 - Cylindrical reverse electrodialysis generator - Google Patents

Cylindrical reverse electrodialysis generator Download PDF

Info

Publication number
WO2020017694A1
WO2020017694A1 PCT/KR2018/011682 KR2018011682W WO2020017694A1 WO 2020017694 A1 WO2020017694 A1 WO 2020017694A1 KR 2018011682 W KR2018011682 W KR 2018011682W WO 2020017694 A1 WO2020017694 A1 WO 2020017694A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
ion exchange
exchange membrane
electrode
flow path
Prior art date
Application number
PCT/KR2018/011682
Other languages
French (fr)
Korean (ko)
Inventor
황교식
정남조
남주연
김한기
김찬수
한지형
최지연
양승철
박철호
좌은진
정해준
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2020017694A1 publication Critical patent/WO2020017694A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to a cylindrical reverse electrodialysis generator.
  • Reverse electrodialysis refers to the recovery of salinity or concentration difference energy in the form of electrical energy from the mixing of two fluids of different concentrations, eg seawater and fresh water.
  • RED reverse electrodialysis
  • RED reverse electrodialysis
  • a reverse electrodialysis (RED) device is a stack in which a plurality of ion exchange membranes are alternately arranged between electrodes (positive electrodes and negative electrodes) at both ends, and in order to manufacture a stack, an ion exchange membrane, a spacer, and a gasket are used. Gaskets should be stacked continuously, and at least several hundred cells must be stacked to increase the capacity of the stack.
  • the reverse electrodialysis (RED) device has to stack a stack of hundreds of cells and fasten the stack at high pressure to prevent leakage of low and high concentrations of solution supplied into the stack. Is needed.
  • the stack manufacturing is easier, the automation process is easy, and the leakage manufacturing and easy maintenance of the stack manufacturing technology is required.
  • An object of the present invention is to provide a cylindrical reverse electrodialysis power generation device, which can prevent the above-mentioned problems occurring when operating the conventional reverse electrodialysis (RED) device.
  • the cylindrical housing having a hollow; An inner electrode disposed in the central portion of the hollow in the housing; An outer electrode disposed at an edge of the hollow in the housing; And a plurality of ion exchange membranes disposed between the inner electrode and the outer electrode and wound along the circumferential direction of the inner electrode to partition one or more first flow paths through which the high concentration solution flows and one or more second flow paths through which the low concentration solution flows; It provides a reverse electrodialysis generator comprising a.
  • the present invention the plurality of reverse electrodialysis generators described above; And a power converter having a plurality of mounting spaces to accommodate each of the reverse electrodialysis generators.
  • Each of the plurality of mounting spaces includes: first and second fluid supply pipes provided to supply a low concentration solution or a high concentration solution to each of the second fluid supply holes; First and second fluid discharge pipes configured to discharge fluid discharged from each of the second fluid discharge holes to the outside; A third fluid supply pipe provided to supply fluid to the first inflow port; A third fluid discharge pipe provided to discharge the fluid discharged from the second discharge port to the outside; And a plurality of support members provided to support the reverse electrodialysis generator. It provides a reverse electrodialysis power generation system comprising a.
  • the present invention provides an ion exchange membrane production apparatus comprising a.
  • the manufacturing process is simpler than the conventional reverse electrodialysis (RED) device, so that the stack can be manufactured quickly with less labor, and the automation process is possible, thereby increasing productivity.
  • RED reverse electrodialysis
  • FIG. 1 is an exploded perspective view of a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention.
  • FIG. 2 to 4 is a view showing a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention.
  • FIGS. 6 and 7 are views illustrating an ion exchange membrane according to an embodiment of the present invention.
  • FIG 8 and 9 are views illustrating an ion exchange membrane according to another embodiment of the present invention.
  • FIG. 10 is a view showing a state in which a spacer is disposed on the ion exchange membrane according to another embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an inner electrode according to an exemplary embodiment of the present invention.
  • FIG. 12 illustrates an inner electrode according to another exemplary embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating an ion exchange membrane wound on an inner electrode according to an embodiment of the present invention.
  • FIG. 14 is a view showing a state in which a pair of sealing gaskets are coupled to an ion exchange membrane according to an embodiment of the present invention.
  • 15 is a view showing a housing according to an embodiment of the present invention.
  • 16 and 17 illustrate a fluid distribution member according to an embodiment of the present invention.
  • 20 is a coupling diagram in which a fluid supply member and a fluid distribution member are coupled according to an embodiment of the present invention.
  • 21 is a view showing the fluid flow of the reverse electrodialysis apparatus according to an embodiment of the present invention.
  • FIG. 22 is a view showing the fluid flow of the reverse electrodialysis apparatus according to another embodiment of the present invention.
  • 23 and 24 are views shown to explain a reverse electrodialysis power generation system according to an embodiment of the present invention.
  • 25 and 26 are views for explaining a third supply unit according to an embodiment of the present invention.
  • 27 and 28 are schematic views showing an ion exchange membrane production apparatus according to an embodiment of the present invention.
  • 29 is a partially enlarged view illustrating a spacer according to an embodiment of the present invention.
  • the present invention relates to a cylindrical reverse electrodialysis (RED) device, and more particularly to a device for winding a cylindrical reverse electrodialysis device, a system using the same and an ion exchange membrane disposed in the reverse electrodialysis device.
  • RED cylindrical reverse electrodialysis
  • FIG. 1 is an exploded perspective view of a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention
  • Figures 2 to 4 is a view showing a cylindrical reverse electrodialysis apparatus 10 according to an embodiment of the present invention
  • Figure 5 is a present invention
  • the cylindrical reverse electrodialysis apparatus 10 of the present invention includes a cylindrical housing 100 having a hollow, an inner electrode 200 disposed in a central portion of the hollow in the housing, and an edge of the hollow in the housing.
  • the outer electrode 300 and the plurality of ion exchange membranes 400 wound along the circumferential direction of the inner electrode 200 are included.
  • the housing 100 may be provided in a cylindrical shape having a hollow with both ends open.
  • the plurality of ion exchange membranes 400 may be provided to partition one or more first flow passages 410 through which a high concentration solution flows and one or more second flow passages 420 through which a low concentration solution flows.
  • the plurality of ion exchange membranes 400 may include a cation exchange membrane C and an anion exchange membrane A, and may be stacked such that the cation exchange membrane C and the anion exchange membrane A are in contact with each other.
  • the plurality of ion exchange membranes 400 may each include at least one cation exchange membrane and an anion exchange membrane.
  • the cation exchange membrane and the anion exchange membrane may be alternately stacked.
  • the plurality of ion exchange membranes 400 may be wound on the inner electrode to be disposed between the inner electrode 200 and the outer electrode 300.
  • inner and outer electrodes 200 and 300 may be electrically connected.
  • electricity may be produced at the inner and outer electrodes by the concentration difference between the high concentration solution and the low concentration solution flowing through the first flow path 410 and the second flow path 420, respectively.
  • FIG. 6 and 7 illustrate an ion exchange membrane 400 according to an embodiment of the present invention.
  • the plurality of ion exchange membranes 400 of the present invention include a flow path guide for guiding the flow of the fluid so that the fluid flowing in the first flow path and the second flow path flows along the axial direction of the housing.
  • the flow path guide part includes a plurality of flow path members 450 for guiding the flow of fluid on the ion exchange membrane.
  • the plurality of flow path members 450 may be disposed to be spaced apart from each other by predetermined intervals on both end portions 401a and 401b in the axial direction of the ion exchange membrane.
  • the flow path member 450 is disposed along the circumferential direction on the side of the plurality of first flow path members 451 and the other end 401b which are disposed at predetermined intervals along the circumferential direction on one end 401a side of the ion exchange membrane 400.
  • the plurality of second flow path members 452 may be disposed to be spaced apart from each other, and the second flow path members 452 may be disposed between two adjacent first flow path members 451 along the circumferential direction.
  • both ends 401a and 401b along the axial direction of the ion exchange membrane mean one end 401a and the other end 401b based on the width direction W of the ion exchange membrane.
  • a spacer 453 may be provided between the ion exchange membrane 400 and the plurality of flow path members 450 to guide the flow of the fluid.
  • a spacer 453 may be stacked on the ion exchange membrane 400, and a plurality of flow path members 450 may be provided on the spacer 453.
  • the flow path member 450 may be provided to have the same height as the spacer 453.
  • the spacer 453 may be, for example, a spacer having a diamond structure, but is not limited thereto.
  • the flow path member 450 may be, for example, an adhesive, but is not limited thereto.
  • the first flow path member 451 of the cation exchange membrane and the first flow path member of the anion exchange membrane 451 ′ may be arranged to be staggered from each other.
  • the first flow path member 451 of the cation exchange membrane C is disposed to be positioned between two adjacent first flow path members 451 'of the anion exchange membrane A. It may be provided alternately along the longitudinal direction (L), that is, in the circumferential direction.
  • the circumferential direction means the same direction as the circumferential direction of the housing.
  • the second flow path member of the cation exchange membrane and the second flow path member of the anion exchange membrane may be provided to be alternated with each other.
  • the second flow path member of the cation exchange membrane is disposed to be positioned between two adjacent second flow path members of the anion exchange membrane, and may be alternately provided along the circumferential direction L of the ion exchange membrane.
  • the flow of the fluid can flow in an oblique direction on the ion exchange membrane, as shown by the arrow shown in FIG.
  • turbulence can be formed in the fluid while guiding the fluid in a diagonal direction.
  • each of the ion exchange membranes 400 wound along the inner electrode circumferential direction may be described.
  • the first flow path 410 and the second flow path 420 are partitioned.
  • first flow path members 451 and 451 'disposed in the cation exchange membrane and the anion exchange membrane are alternately alternately arranged along the circumferential direction of the inner electrode.
  • the second flow path members 452 and 452 'disposed in the cation exchange membrane and the anion exchange membrane are alternately alternately arranged along the circumferential direction of the inner electrode.
  • the low concentration solution may be blocked from flowing into the first flow path 410, and the high concentration solution may be blocked from flowing into the second flow path 420.
  • a low concentration solution is supplied to the second flow path 420 from the fluid distribution member 600 coupled to the one end 401a side of the wound ion exchange membrane 400, and coupled to the other end 401b side.
  • the high concentration solution is supplied from the fluid distribution member 600 to the first flow path 410, the low concentration solution flows out of the fluid in the first axial direction D1, and the high concentration solution flows in the second axial direction D2. And discharged.
  • electricity may be produced by the concentration difference between the fluid flowing through the first flow path 410 and the second flow path 420.
  • FIG 8 and 9 are views illustrating a flow path guide part provided on the ion exchange membrane 400 according to another exemplary embodiment of the present invention.
  • the flow path guide part includes a plurality of channel ribs 430 for guiding a flow of a fluid on an ion exchange membrane.
  • the channel ribs 430 may be provided to extend along the axial direction of the housing 100, and the plurality of channel ribs 430 may be spaced apart from each other along a circumferential direction of the housing.
  • the channel rib 430 may be formed to protrude to guide the flow of fluid on the ion exchange membrane 400, and may be formed to extend along the width direction W of the ion exchange membrane 400. .
  • the channel ribs 430 may be provided to be spaced apart from each other along the longitudinal direction L of the ion exchange membrane 400.
  • the channel rib 430 provided as described above forms a first channel 431 defined as a space between adjacent channel ribs, and passes through the first channel 431 to allow fluid to flow in the axial direction.
  • the axial direction of the ion exchange membrane means the width direction W of the ion exchange membrane, and also means the same direction as the axial direction of the housing 100.
  • the circumferential direction of an ion exchange membrane means the longitudinal direction L of an ion exchange membrane, and also means the same direction as the circumferential direction of a housing.
  • the ion exchange membrane according to another embodiment of the present invention has the effect of not using a spacer disposed between the ion exchange membranes by the plurality of formed first channels 431.
  • a plurality of gaskets 440 may be included between the plurality of ion exchange membranes 400.
  • the gasket 440 may be disposed between the plurality of ion exchange membranes so that the high concentration solution and the low concentration solution flowing through the first flow path 410 and the second flow path 420, respectively, do not flow out.
  • the gasket 440 is along the circumferential direction L at either end of both ends 401a and 401b along the axial direction W of the ion exchange membrane. Can be prepared.
  • the gasket 440 is provided at one end 401a of the anion exchange membrane A, the gasket 440 is provided at the other end 401b at the cation exchange membrane C stacked on the anion exchange membrane A. Can be prepared.
  • the gasket 440 may be alternately provided at one end and the other end of each ion exchange membrane adjacent to each other.
  • the ion exchange membrane 400 includes a first gasket 440a provided on the ion exchange membrane so that the fluid flowing through the first flow passage 410 does not flow out, and the second flow passage 420. And a second gasket 440b provided on the ion exchange membrane so that the fluid flowing through the ion exchange membrane does not flow out.
  • the first gasket 440a is provided at one end of the ion exchange membrane along the axial direction.
  • the second gasket 440b may be disposed at the other end of the ion exchange membrane along the axial direction.
  • a first gasket is disposed at one end of the cation exchange membrane (C), and the other anion exchange membrane (A)
  • the second gasket may be disposed at the end portion, and the first gasket may be disposed at one end of the cation exchange membrane C ′ and stacked.
  • first gasket 440a and the second gasket 440b may be disposed in opposite directions to each other according to the stacking direction of the ion exchange membrane.
  • the gasket 440 may be, for example, an adhesive, but is not limited thereto, and a gasket used in the related art may be used.
  • the flow of fluid by the first channel 431 and the gasket 440 prepared as described above is as follows.
  • the fluid When fluid is supplied to the first and second flow paths 410 and 420 partitioned by the ion exchange membrane 400, the fluid flows in the axial direction along the first channel formed in the ion exchange membrane, and a gasket provided in each ion exchange membrane. The flow is broken by 440 and then flows again along the first channel in the axial direction and is discharged from the ion exchange membrane.
  • electricity may be produced by the concentration difference between the fluid flowing through the first flow path 410 and the second flow path 420.
  • the present invention as described above, by forming a flow guide portion, that is, the flow path member 450 or the first channel 431 on the ion exchange membrane to flow the fluid in the axial direction of the housing 100, sea water and fresh water That is, the flow distance is adjusted, that is, the flow distance is shortened, so that the difference in concentration occurs until the end, there is an effect that can optimize the performance of the device.
  • FIG 10 is a view illustrating a state where spacers are disposed on an ion exchange membrane 400 according to another embodiment of the present invention.
  • the reverse electrodialysis generator 10 of the present invention when the reverse electrodialysis generator 10 of the present invention does not use an ion exchange membrane in which a first channel 431 is formed as described above, the reverse electrodialysis generator 10 is configured to guide the flow of a fluid between each ion exchange membrane. Spacer 800 may be disposed.
  • the spacer 800 is also the same spacer channel as the first channel 431 formed by the plurality of channel ribs 430a formed in the ion exchange membrane. 431a may be formed.
  • FIG 11 illustrates an inner electrode 200 according to an embodiment of the present invention.
  • the inner electrode 200 may include a first inflow port 240 through which an electrode solution is introduced, and a first discharge port 270 provided to flow in an axial direction to move to an outer electrode. ).
  • the inner electrode 200 is fluidly connected to the first inlet port 240, the first inlet (100) is provided so that the fluid flowing through the first inlet port 240 flows to the outer peripheral surface of the inner electrode ( 250 and a first outlet 260 fluidly connected to the first outlet port 270 such that the fluid axially flowing from the outer circumferential surface of the inner electrode flows to the first outlet port 270.
  • the inner electrode 200 may have a cylindrical shape and may be formed in a hollow shape, but both ends along the axial direction, that is, one end portion 201a and the other end portion 201b may be formed in a blocked structure.
  • the first inflow port 240 may be formed at one side of the lower end portion 201b of the inner electrode 200 so that the fluid is supplied into the inner electrode.
  • the inner electrode may have an inner flow path (not shown) capable of fluid movement.
  • the inner flow path (not shown) may be the entire inside of the inner electrode in which the inside of the inner electrode is hollow, but is not limited thereto.
  • the outer circumferential surface of the inner electrode 200 may include a plurality of second channels 210 and second channels 210 for guiding the flow of the introduced fluid to flow along the circumferential direction of the electrode 200. Guide the flows along the circumferential direction of the electrode 200 to the plurality of third channels 220 and the fluids flowed along the third channel 220 to guide the flow so that the flowed fluid flows along the axial direction of the electrode A plurality of fourth channels 230 to be included.
  • the second to fourth channels 210, 220, and 230 may be formed to protrude outwards on the outer circumferential surface of the inner electrode 200.
  • the second channel 210 may be provided at the other end side 201b of the inner electrode 200, and the fourth channel 230 may be provided at one end side 201a of the inner electrode 200, respectively. Can be.
  • the other end side of the inner electrode 200 may be the lower end side of the inner electrode, one end side may be the upper end side.
  • the third channel 220 may be disposed between the second channel 210 and the fourth channel 230.
  • the plurality of third channels 220 are provided to extend along the axial direction of the inner electrode 200 between the second channel 210 and the fourth channel 230, and are spaced apart by a predetermined interval along the circumferential direction. Can be.
  • the second and fourth channels 210 and 230 may include, for example, at least three channels 210a, 210b, 210c, 230a, 230b, and 230c along an axial direction, and may be spaced apart from each other. Each can be placed apart.
  • At least three channels formed along the axial direction may be provided in plural to be spaced apart from each other by a predetermined distance in the circumferential direction of the inner electrode.
  • the second channel 210, the third channel 220, and the fourth channel 230 may be disposed to be spaced apart from each other by the channels adjacent to each other in the axial direction.
  • each channel adjacent to each other along the circumferential direction may be disposed apart from each other by a predetermined distance.
  • the second channel 210 and the fourth channel 230 each including at least three channels on both end sides of the third channel 220a. This can be arranged.
  • the present invention is not limited thereto and may include at least two.
  • the second and fourth channels 210 and 230 may be formed to be shorter than the length of the third channel 220.
  • each of the second to fourth channels 210, 220, and 230 is disposed to be spaced apart from each other with a channel adjacent to each other, so that the introduced fluid may move in a space between the channels.
  • the fluid introduced by the second and fourth channels 210 and 230 may flow along the circumferential direction of the inner electrode 200.
  • first inlet 250 may be provided in an area where the second channel 210 is provided, and the first outlet 260 may be provided in an area where the fourth channel 230 is provided.
  • the first inlet port 240 and the first inlet 250 move the fluid so that the fluid flowing into the first inlet port 240 flows along the second channel 210 through the first inlet 250. Possibly connected.
  • the inner passage may connect the first inlet port 240 and the first inlet 250 to be fluidly movable.
  • the fluid passing through the first inlet 250 flows in the circumferential direction of the inner electrode along the second channel 210, and at this time, some of the fluid flows along the third channel 220. Will flow in the axial direction.
  • the fluid introduced by the second channel 210 can flow through the entire outer peripheral surface of the inner electrode.
  • the fluid flowing along the axial direction by the third channel 220 passes through the space between the fourth channels and flows along the fourth channel in the circumferential direction of the inner electrode, and passes through the first outlet 260 to allow the fluid to flow. It may be introduced into the inside and may be discharged to the outside of the inner electrode through the first discharge port 270.
  • first outlet 260 may be fluidly connected to the first outlet port 270, and the inner flow path (not shown) may fluidly connect the first outlet and the first outlet port.
  • the first discharge port 270 may be formed at one side of one end 201a of the inner electrode, and the fluid introduced into the inner electrode may be discharged to the outside through the first discharge port 270.
  • first inlet 250 and the first outlet 260 may be disposed to be opposite to each other.
  • the first outlet 260 is located on one end 201a side corresponding to the position where the first inlet 250 is rotated by an angle of 180 degrees with respect to the central axis, that is, on the region where the fourth channel 230 is provided. Can be arranged.
  • the entire outer peripheral surface of the inner electrode can flow.
  • the inner electrode 200 may be formed with a plurality of insertion holes 290 into which the partition wall 640 to be described later is inserted, respectively, at one end 201a and the other end 201b.
  • the plurality of insertion holes 290 are spaced apart by a predetermined interval along the circumferential direction of one end portion 201a and the other end portion 201b of the inner electrode, and the partition wall 640 of the fluid distribution member to be described later. Can be arranged correspondingly.
  • the inner electrode 200 may include coupling members 291 formed to protrude outwardly from one end 201a and the other end 201b.
  • the coupling member 291 may be formed in a cylindrical shape along the circumferential regions of the first inlet port 240 and the first outlet port 270, and the first through hole 610 of the fluid distribution member 600 to be described later. It may be provided to correspond to the first through-hole 610 to be inserted into the coupling.
  • the fluid distribution member 600 to be described later may be combined with the coupling member 291 and the plurality of insertion holes 290 of the inner electrode to seal the ion exchange membrane 400 wound around the inner electrode.
  • the inner electrode 200 may be formed of a conductive material as a whole, for example, a material of platinum (Pt) coating on titanium (Ti), or only a partial region where channels are formed. It is made of platinum (Pt) coating on Ti), and the remaining regions except for some regions may be formed of a non-conductive material, but is not limited thereto.
  • a conductive material for example, a material of platinum (Pt) coating on titanium (Ti), or only a partial region where channels are formed. It is made of platinum (Pt) coating on Ti), and the remaining regions except for some regions may be formed of a non-conductive material, but is not limited thereto.
  • the conductive material may be generally applied to any electrode that can be used in the reverse electrodialysis apparatus.
  • the fluid flowing into the inner electrode 200 may be an electrode solution.
  • FIG. 12 is a diagram illustrating an inner electrode 200 according to another exemplary embodiment of the present invention.
  • a portion of a channel (hereinafter, referred to as an 'inner electrode portion') in which the channels of the inner electrode 200 are formed may be formed of, for example, a mesh type electrode.
  • the fluid introduced through the first inlet port 240 flows to the first inlet port 250 and then the inner electrode part (by the electrode structure). After flowing 202, it may be discharged through the first outlet 260.
  • an electrode of a type corresponding to the channel may be provided to enable the fluid to move in the axial direction.
  • the first inlet port 240 may include an electrode fluid supply unit (not shown) provided to supply fluid into the inner electrode, and the fluid may be transferred from the electrode fluid supply unit to the first inlet port 240. It may include a first connecting member 901 for supplying.
  • the first connection member 901 may be a transport pipe capable of supplying a fluid, and any type may be applicable as long as it can supply fluid.
  • the inner electrode 200 has both end sides along the axial direction W of the ion exchange membrane 400 such that the plurality of ion exchange membranes 400 described above are wound along the outer circumferential direction of the inner electrode 200. It includes a junction 280 to be bonded.
  • the junction part 280 is a region between one end portion 201a of the inner electrode 200 and the fourth channel 230 and the other end portion 201b and the second channel 210 to wind up the plurality of ion exchange membranes 400. It can mean the area between.
  • it may mean a region between one end portion 201a and inner electrode portion 202 of the inner electrode 200 and a region between the other end portion 201b and the inner electrode portion 202.
  • first and second flow paths 410 and 420 of the present invention are bonded to each other along the axial direction of the plurality of ion exchange membranes 400 on the junction portion 280 by a predetermined length, and then inside It can be formed by winding an ion exchange membrane along the circumferential direction of the electrode.
  • the ion exchange membrane 400 may be wound a plurality of times along the circumferential direction of the inner electrode.
  • a plurality of spacers for guiding the flow of the fluid may be further wound together.
  • FIG. 13 is a cross-sectional view illustrating an ion exchange membrane wound on an inner electrode according to an embodiment of the present invention.
  • the ion exchange membrane 400 wound in the circumferential direction of the inner electrode 200 partitions the first flow passage 410 and the second flow passage 420, respectively.
  • the ion exchange membrane 400 wound around the inner electrode 200 is a pair of seals respectively coupled to at least some regions on both end sides along the axial direction of the ion exchange membrane so that fluid does not flow into the outer electrode 300. It may include a gasket 500.
  • the pair of sealing gaskets 500 may simultaneously serve to fix and seal the wound ion exchange membrane 400.
  • FIG. 14 is a view showing a state in which a pair of sealing gaskets are coupled to an ion exchange membrane according to an embodiment of the present invention.
  • a pair of sealing gaskets 500 may be formed on at least some regions of the ion exchange membrane at both ends along the axial direction of the ion exchange membrane, that is, at one end side and the other end side of the ion exchange membrane wound on the inner electrode. And can be combined.
  • the pair of sealing gaskets 500 may have a minute gap between the fluid distribution member 600 and the ion exchange membrane 200. It may occur, there is an effect that can prevent the flow of fluid to the outer electrode side by a minute gap.
  • FIG. 15 is a view showing a housing 100 according to an embodiment of the present invention.
  • the housing 100 is formed in a cylindrical shape having a hollow, and has a predetermined thickness T1, one end 101a, and the other end 101b.
  • the housing 100 may include a second inlet hole 110 through which the electrode solution flowing out of the first discharge port 270 flows, and an inner circumferential surface of the housing so that the introduced electrode solution flows toward the outer electrode 300. 103)
  • the second inlet port 120 provided on the other end side, the electrode solution passed through the second outlet 130 and the second outlet provided on one end side so that the electrode solution flows out along the axial direction to the outside
  • a second discharge hole 140 provided to be discharged.
  • the second inflow hole 110 and the second discharge hole 140 may be formed at one end 101a of the housing, respectively.
  • the second inlet hole 110 is provided to penetrate through the axial direction between the outer circumferential surface 102 and the inner circumferential surface 130 of the housing so as to be fluidly connected to the second inlet 120. Can be.
  • the second discharge hole 140 may be provided to pass through the axial direction between the outer circumferential surface 102 and the inner circumferential surface 103 of the housing so as to be fluidly connected to the second outlet 130.
  • the second inlet hole 110 and the second outlet hole 140 may be provided in opposite directions to each other, so that the second inlet 120 and the second outlet 130 also in the housing inner peripheral surface 103 It may be arranged in opposite directions to each other.
  • the introduced fluid flows from the other end portion 101b side to the one end portion 101a side and passes through the entire area of the outer electrode 300 to be described later.
  • the device can be made more compact .
  • the outer electrode 300 may be formed in a cylindrical shape having a hollow to surround the ion exchange membrane 400 wound on the above-described inner electrode.
  • the outer electrode 300 may be disposed at an edge in the housing 100 to be spaced apart from the housing 100 by a predetermined distance.
  • the outer electrode 300 is disposed to be spaced apart from the ion exchange membrane 400 to have a predetermined space S so that the electrode solution can flow, and the electrode solution introduced through the second inlet 120 is the outer electrode 300. It may be provided to flow between the outer electrode and the ion exchange membrane 400 through.
  • the outer electrode 300 may be spaced apart from the housing inner circumferential surface 103 by a predetermined distance so that the fluid introduced through the second inlet 120 of the housing 100 may flow.
  • the outer electrode 300 is disposed to have a predetermined space with the ion exchange membrane 400 to allow fluid to flow, and the fluid introduced through the second inlet 120 passes through the outer electrode 300 to allow the outer electrode and ions to flow. It may be provided to flow between the exchange membranes.
  • the outer electrode 300 may have a mesh type structure, but is not limited thereto, and any outer structure may be used as long as the fluid may pass therethrough.
  • 16 and 17 illustrate a fluid distribution member 600 in accordance with one embodiment of the present invention.
  • the reverse electrodialysis power generator 10 is coupled to both end portions 401a and 401b of the plurality of wound ion exchange membranes 400, respectively, and is connected to the first portion. And a pair of fluid distribution members 600 for supplying and discharging high and low concentration solutions, respectively, into the flow path 410 and the second flow path 420.
  • the fluid bonsai member 600 has a first surface 601a and a second surface 601b opposite the ion exchange membrane in a direction opposite to the first surface, and has a first surface 601a and a second surface 601b.
  • the first through hole 610 is formed through the central portion.
  • the inner circumferential surface of the first through hole 610 may be coupled to the outer circumferential surface of the coupling member 291 of the inner electrode, and the outer circumferential surface of the fluid distribution member 600 may be coupled to be in contact with the inner circumferential surface 103 of the housing 100. have.
  • the length h1 of the outer circumferential portion 602 is longer than the length h2 of the first through hole 610 based on the longitudinal section of the fluid distribution member 600. Can be formed.
  • the rapeseed distribution member 600 includes a plurality of first fluid supply holes 620 and respective first fluid supply holes 620 that are spaced apart at predetermined intervals along a circumferential region of the first through hole 610.
  • the first fluid is provided between the first fluid supply hole 620 and the first fluid discharge hole 630, respectively, in the plurality of first fluid discharge holes 630 and the second surface 601 b which are arranged between the first fluid discharge holes 630 and the second surface 601 b. It includes a plurality of partitions 640 for separating the flow of the fluid passing through the supply hole 620 and the first fluid discharge hole 630.
  • the insert-fit coupled to the fluid distribution member 600 fixes and supports the plurality of ion exchange membranes, and seals the ion exchange membranes.
  • one end portion 401a and the other end portion 401 of the wound ion exchange membrane are respectively coupled to abutment with the partition wall 640 formed on the second surface 601b of the fluid distribution member, and the fluid introduced from the fluid supply member to be described later. May flow into the ion exchange membrane, or may flow out after passing through the ion exchange membrane.
  • the length h1 of the outer circumferential portion 602 of the fluid distribution member 600 may be longer than the length h2 of the first through hole 610, it may be coupled to surround a portion of the ion exchange membrane. Will be.
  • the outer electrode 300 is disposed between the end portions 602a and 602b of each of the outer circumference portions 602 of the pair of fluid distribution members 600 with respect to the axial direction. Can be.
  • the outer circumferential portion 602 is formed to have a predetermined thickness T2 so that the outer space 300 may be disposed between the inner circumferential surface 103 of the housing 100 and the ion exchange membrane 200. This can be provided.
  • the outer electrode 300 may be spaced apart from the inner circumferential surface 103 of the housing 100 by a predetermined space, and spaced apart from the ion exchange membrane 400 on the outer electrode side.
  • a plurality of sealing grooves 605 formed along the circumferential direction may be provided on the outer circumferential surface of the fluid distribution member 600, that is, the outer circumferential portion 602.
  • a plurality of sealing grooves 605 ′ formed along the circumferential direction may also be provided on the inner circumferential surface of the first through hole 610 of the fluid distribution member 600.
  • the sealing grooves 605 and 605 ' may be provided so that rubber rings (not shown) may be inserted to prevent leakage of fluid.
  • FIG. 18 and 19 are views illustrating a fluid supply member 700 according to an embodiment of the present invention
  • FIG. 20 is a coupling diagram in which the fluid supply member 600 and the fluid distribution member 700 are coupled.
  • the reverse electrodialysis generator 10 is coupled to both end portions 101a and 101b of the housing, respectively, so that each of the first fluid supply holes 620 is provided. And a pair of fluid supply members 700 for supplying fluid to the furnace and for discharging fluid discharged from the first fluid discharge hole 630.
  • the fluid supply member 700 may fluidly move with the first discharge port 270 so that the electrode solution introduced into the inner electrode 200 is transferred to the outer electrode 300. It may include a second inlet port 780 connected, the second inlet port 780 is connected to the second inlet hole 110 so as to be fluidly movable, the first outlet port 270 and the second inlet And a second connecting member 902 for fluidly connecting the port 780.
  • the fluid discharged from the first discharge port 270 passes through the second inlet port 780 to allow the second fluid in the housing. It may be introduced into the inlet hole (110).
  • the second inflow port 780 may be positioned to correspond to each other to allow fluid movement with the second inflow hole (110).
  • the second discharge port 790 may be positioned to correspond to each other so that the second discharge hole 140 and the fluid movement.
  • the fluid supply member 700 may include a second connection member 902 connecting the first discharge port 270 and the second inflow port 780 so that the electrode solution introduced into the inner electrode is transferred to the outer electrode. Include.
  • first discharge port 270 and the second inlet port 780 may be connected to the fluid movement by the second connecting member 902.
  • the second discharge port 790 may include a third connection member 903 connected to the second discharge port 790 such that the electrode solution discharged from the housing is discharged to the outside through the fluid supply member.
  • the second and third connection members 902 and 903 may be transport pipes capable of supplying a fluid, and any type of the second and third connection members 902 and 903 may be applicable.
  • the pair of fluid supply members 700 have a first surface 701a and a second surface 701b facing the ion exchange membrane in a direction opposite to the first surface, and correspond to the first through hole 610. It includes a second through hole 710 penetrating the first surface and the second surface in the position.
  • the pair of fluid supply members 700 are positioned to correspond to one of the plurality of first fluid supply holes 620 and are formed through the first surface 701a and the second surface 701b.
  • the second fluid supply hole 720 is included.
  • the fluid supply passage 730 is connected to the fluid movement along the circumferential direction of the second through hole 710 of the second surface 701b to supply fluid to the plurality of first fluid supply holes 620. do.
  • a second fluid discharge hole 740 and a plurality of first fluids which are disposed to correspond to one of the plurality of first fluid discharge holes 630 and penetrate the first surface 701a and the second surface 701b. It includes a fluid discharge flow path 750 connected to the fluid movement along the circumferential direction of the fluid supply flow path 730 to discharge the fluid flowing out of the fluid discharge hole 630.
  • the fluid supply flow path 730 is a circumferential direction of the second through hole 710 based on the second through hole 710 to correspond to the plurality of first fluid supply holes 620 formed alternately. Accordingly, a plurality of convex portions 731 may be formed to have a substantially wavy pattern.
  • the plurality of convex portions 731 may be formed to correspond to the plurality of first fluid supply holes 620.
  • the fluid discharge flow path 750 is substantially waved along the circumferential direction of the fluid supply flow path 730 based on the second through hole 710 corresponding to the plurality of first fluid discharge holes 630 alternately formed.
  • a plurality of recesses 732 may be formed to have a shape pattern.
  • the plurality of recesses 732 may be formed to correspond to the plurality of first fluid discharge holes 630.
  • the fluid supply member 700 may be provided with a flow path partition wall 760 for partitioning the fluid supply flow path 730 and the fluid discharge flow path 750.
  • the flow path partition wall 760 may be provided to have a substantially wavy pattern so as to partition between the convex portion 731 and the concave portion 732 formed alternately.
  • the second fluid supply hole 720 may be provided in any one of the plurality of convex portions 731 of the fluid supply flow path 730, and the second fluid discharge hole 740 may be the fluid discharge flow path 750. It may be provided in any one of the plurality of recesses (732).
  • one of the low concentration solution or the high concentration solution is introduced into one of the pair of fluid supply members 700, and the other one of the low concentration solution or the high concentration solution is introduced to the other one of the pair of fluid supply members.
  • the other one of the low concentration solution or the high concentration solution is introduced to the other one of the pair of fluid supply members.
  • a low concentration solution flows into the fluid supply member 700 coupled with one end 101a of the housing 100
  • a high concentration solution flows into the fluid supply member 700 coupled with the other end 101b of the housing 100.
  • the reverse electrodialysis power generation apparatus 10 of the present invention has the above-described configuration in which the high concentration solution and the low concentration solution flow along the axial direction on the ion exchange membrane wound on the inner electrode, thereby reducing the flow distance between seawater and fresh water. It is possible to optimize the performance of the device by allowing adjustment and concentration differences to occur to the end.
  • the longer the flow length of the fluid the lower the difference in concentration between the high concentration solution and the low concentration solution is lowered the potential difference at the end of the flow path of the fluid can lower the overall electrical production efficiency, but the flow length of the fluid shorter Therefore, there is an effect that can produce electricity with higher efficiency.
  • the inner electrode 200 and the outer electrode 300 of the present invention include first and second electrode rods 801 and 802 for collecting electricity, respectively.
  • the first electrode 801 may be provided to protrude to the outside through the first and second through holes 610 and 710.
  • each of the fluid distribution member and the fluid supply member may include a through hole (not shown) through which the second electrode 802 passes.
  • first electrode 801 may be connected to the inner electrode
  • second electrode 802 may be connected to the outer electrode
  • first and second electrode 801 and 802 may be electrically connected to generate electricity.
  • an inner electrode 200 inside the housing of the present invention, an inner electrode 200, a plurality of ion exchange membranes 400 wound around the inner electrode, an ion exchange membrane, and a fluid distribution member are provided to seal the center portion of the housing.
  • a pair of sealing gaskets 500 and a pair of fluid distribution members 600 for supplying a fluid by sealing the wound ion exchange membrane may be coupled in turn.
  • fluid supply member may be coupled to both ends of the housing to complete the coupling of the device 10.
  • Figure 22 is a view showing the fluid flow of the reverse electrodialysis apparatus 10 according to another embodiment of the present invention Drawing.
  • FIG. 21 is a reverse electrodialysis apparatus 10 having an ion exchange membrane 400 including a plurality of flow path members 450
  • FIG. 22 is an ion exchange membrane including a plurality of first channels 430.
  • a reverse electrodialysis apparatus 10 equipped with 400 is shown.
  • the low concentration solution is supplied to the second fluid supply hole 720 provided at one end of the housing, the high concentration solution to the second fluid supply hole 720 provided at the other end of the housing To supply.
  • the fluid supplied to the second fluid supply hole 720 flows along the circumferential direction of the second through hole 710 while flowing through the fluid supply flow path 730, respectively.
  • the fluid flowing in the fluid supply passage 730 passes through each of the first fluid supply holes 620 connected thereto and flows into the first and second passages partitioned by the ion exchange membrane, respectively.
  • the flow of the fluid in the reverse electrodialysis apparatus 10 having the ion exchange membrane 400 including the plurality of flow path members 450 includes the flow of the fluid introduced into the first and second flow paths. Each flows in the axial direction by the spacer of the ion exchange membrane and is then discharged from the ion exchange membrane.
  • the fluid flowing through the first and second flow paths may be respectively flowed in a substantially diagonal direction in a direction having a predetermined angle with respect to the central axis by the spacer.
  • the low concentration solution introduced at one end flows into the second flow path and then is discharged through each of the first fluid discharge holes 630 provided at the other end, and flows through the fluid discharge flow path 750 and the second fluid discharge hole 740. Can be discharged to the outside of the housing.
  • the high concentration solution introduced from the other end is introduced into the first flow path and then discharged through each of the first fluid discharge holes 630 provided at one end, and flows through the fluid discharge flow path 750 and discharges the second fluid. It may be discharged to the outside of the housing through the hole 740.
  • ionic materials cationic materials and anionic materials contained in the high concentration solution selectively pass through the ion exchange membrane due to the difference in concentration between the low concentration solution and the high concentration solution flowing through the first and second flow paths. To generate electricity.
  • the flow of fluid in the reverse electrodialysis apparatus 10 having the ion exchange membrane 400 including the plurality of first channels 430 may include ions in the first and second flow paths. It flows in the axial direction along the first channel formed in the exchange membrane, and the flow is broken by the gasket provided in each ion exchange membrane, and then flows again in the axial direction along the first channel and discharged from the ion exchange membrane.
  • the low concentration solution introduced into one end may flow along the first channel and be discharged to one end again, and the high concentration solution introduced into the other end may be discharged back to the other end along the first channel.
  • ionic materials cationic materials and anionic materials contained in the high concentration solution selectively pass through the ion exchange membrane due to the difference in concentration between the low concentration solution and the high concentration solution flowing through the first and second flow paths. To generate electricity.
  • the fluid discharged from the ion exchange membrane flows through the first fluid discharge hole, and the flowed fluid flows along the fluid discharge flow path to be discharged to the outside through the second fluid discharge hole.
  • the low concentration solution may include, but is not limited to, fresh water, brackish water, and the like. It may include, but is not limited to.
  • the fluid in order to generate electricity by using the concentration difference between the low concentration solution and the high concentration solution, the fluid must also flow to the inner and outer electrodes while the low and high concentration solutions are flowing.
  • Fluid flowing through the inner electrode and the outer electrode for example, an electrode solution, is introduced into the inner electrode through the first connecting member and the first inlet port.
  • the electrode solution introduced into the inner electrode is discharged to the first inlet, moves to the inner circumferential surface of the inner electrode, flows along the second inner fourth channel, and is discharged to the outside of the inner electrode through the first outlet and the first outlet port. .
  • the electrode solution is transferred to the second inlet port by the second member connected to the first outlet port, passed through the second inlet hole connected to the second inlet port, and discharged to the second inlet port to flow into the housing.
  • the electrode solution flowed into the housing flows through the outer electrode and is discharged through the second outlet to the second discharge hole connected thereto.
  • the flow of the electrode solution is discharged to the outside by the third connection member through the second discharge port connected to the second discharge hole.
  • the fluid flowing into the inner electrode and the outer electrode may be an electrode solution
  • the electrode solution may include, for example, fresh water, seawater, potassium ferricyanide, and iron chloride.
  • the present invention is not limited thereto, and any electrode solution usable in the reverse electrodialysis apparatus may be applied.
  • the low concentration and high concentration solution flows into the ion exchange membrane 400 into the reverse electrodialysis power generation apparatus 10 of the present invention, and when the power is produced, the scale is concentrated on the ion exchange membrane on the inlet side where the low concentration and high concentration solution flows.
  • the fluid supply member and the fluid distribution member can be separated and repaired, thereby enabling more efficient device management.
  • the reverse electrodialysis apparatus 10 is manufactured by winding the inner electrode using only the cation exchange membrane and the anion exchange membrane, thereby making it easier to manufacture, easy to automate, easy to prevent leakage and maintenance.
  • the present invention also provides a reverse electrodialysis power generation system 20.
  • the reverse electrodialysis power generation system relates to a system using the reverse electrodialysis power generation device 10 described above.
  • 23 and 24 are views shown to explain a reverse electrodialysis power generation system according to an embodiment of the present invention.
  • the reverse electrodialysis power generation system 20 of the present invention includes a plurality of mounting spaces to accommodate the plurality of reverse electrodialysis power generation devices 10 and the reverse electrodialysis power generation device 10, respectively.
  • a first and second fluid provided to supply the low concentration solution or the high concentration solution to each of the second fluid supply holes 720.
  • Supply fluid to the first and second fluid discharge pipes 1301 and 1302 and the first inflow port 240 provided to discharge the fluid discharged from the supply pipes 1201 and 1202 and the second fluid discharge holes 740 to the outside.
  • a plurality of third fluid supply pipes 1401 provided to support the third fluid discharge pipes 1402 provided to discharge the fluid discharged from the second discharge port 790 to the outside, and a plurality of reverse electrodialysis generators 10.
  • a support member 1500 provided to support the third fluid discharge pipes 1402 provided to discharge the fluid discharged from the second discharge port 790 to the outside.
  • the third fluid supply pipe 1401 may be the first connection member 901 described above, or the third fluid supply pipe 1401 may be fluidly connected to the first connection member 901. .
  • third fluid discharge pipe 1402 may be the third connection member 903 described above, or the third fluid discharge pipe 1402 may be fluidly connected to the third connection member 903. .
  • first and second fluid supply pipes 1201 and 1202 and the first and second fluid discharge pipes 1301 and 1302 correspond to the second fluid supply hole 720 and the second fluid discharge hole 740, respectively.
  • the third fluid supply pipe 1401 and the third fluid discharge pipe 1402 are provided at positions corresponding to the first inflow port 240 and the second discharge port 790, respectively,
  • the member 1500 may be provided to have a length H corresponding to the first fluid supply pipe 1201 and the first fluid discharge pipe 1301.
  • the plurality of support members 1500 have a length H corresponding to the first fluid supply pipe 1201 and the first fluid discharge pipe 1301, and thus, the reverse electrodialysis power generation device 10 of the present invention. ) Can be more easily and easily seated in the mounting space.
  • the reverse electrodialysis power generation system 20 includes first and second supply units 1701 and 1702 and a third supply unit configured to supply a low concentration solution or a high concentration solution to the first and second fluid supply pipes 1201 and 1202, respectively. And a third supply part 1703 provided to supply fluid to the fluid supply pipe 1401.
  • each of the supply unit may each include a pump for supplying a fluid.
  • 25 and 26 are views for explaining a third supply unit according to an embodiment of the present invention.
  • the fluid supplied from the third supply unit 1703 passes through the reverse electrodialysis power generator 10 and then flows back into the third supply unit 1703 to be reused.
  • each of the fluid supply pipes and the fluid discharge pipes may be supplied to the reverse electrodialysis power generator 10 or may be provided with a flow control valve 1600 to adjust the flow rate discharged from the reverse electrodialysis power generator 10.
  • the present invention also provides an ion exchange membrane production apparatus 30.
  • the ion exchange membrane production apparatus relates to an apparatus for winding the plurality of ion exchange membranes described in the above-mentioned reverse electrodialysis power generation apparatus 10 on the inner electrode.
  • FIGS. 27 and 28 are schematic views showing an ion exchange membrane manufacturing apparatus according to an embodiment of the present invention
  • Figure 29 is a partially enlarged view for explaining a spacer according to an embodiment of the present invention.
  • the ion exchange membrane manufacturing apparatus 30 of the present invention includes a first roller 2001 on which an inner electrode 200, a first ion exchange membrane 400a is wound, and a first spacer 800a. ), The second roller 2002 wound around the third roller, the third roller 2003 wound around the second ion exchange membrane 400b, the fourth roller 2004 wound around the second spacer 800b, and the first to fourth rollers.
  • the first ion exchange membrane 400a, the first spacer 800a, the second ion exchange membrane 400b, and the second spacer 800b, which are respectively wound in (2001,2002,2003,2004), are stacked in order to form the inner electrode 200.
  • a fifth roller 2005 provided to be wound around.
  • the first and second ion exchange membrane may refer to the plurality of ion exchange membrane 400 described above, and thus, the first ion exchange membrane may be one of a cation exchange membrane (C) or an anion exchange membrane (A), The second ion exchange membrane may be the other of the cation exchange membrane (C) or the anion exchange membrane (A).
  • the second ion exchange membrane is a cation exchange membrane (C)
  • the first ion exchange membrane is a cation exchange membrane (C)
  • the second ion exchange membrane may be an anion exchange membrane (A).
  • the present invention may include a support structure 2100 for supporting the first to fifth rollers.
  • the support structure 2100 may be provided as a plurality of structures spaced apart from each other so as to roll each roller.
  • each of the two rollers may be provided to be arranged on both sides with respect to the fifth roller.
  • first and second spacers may be the spacers 453 and 800 described above.
  • the first to fourth rollers 2001, 2002, 2003, and 2004 may be provided to unwind respective ion exchange membranes and spacers toward the fifth roller 2005.
  • each of the ion exchange membrane and the spacer may be wound along the circumferential direction of the inner electrode 200.
  • the second and fourth rollers 2002 and 2004 have a first end 2000a and a second end 2000b opposite to the first end, and the first and second spacers 800a and 800b are formed.
  • the blocking spacer 820 is provided, and the first spacer 800a has a flow path spacer 810 disposed on the side of the first end 2000a and a blocking spacer 820 disposed on the side of the second end 2000b. Can be arranged.
  • the second spacer 800b may include a blocking spacer 820 disposed on the side of the first end 2000a and a flow path spacer 810 disposed on the side of the second end 2000b.
  • the fifth roller 2005 may include the first and second ion exchange membranes 400a and 400b and the first and second spacers 800a, at a position where the first and second spacers 800a and 800b are wound.
  • An adhesive device (not shown) may be further provided to discharge the adhesive to the first and second spacers 800a and 800b so that the 800b may be adhered to each other.
  • first and second spacers 800a and 800b each have a spacer channel 430a for guiding the movement of the fluid, and the spacer channels 430a of each of the flow path spacer and the blocking spacer are arranged to be orthogonal to each other. Can be.
  • each spacer includes a flow path spacer and a blocking spacer, and the blocking spacer serves as the aforementioned gasket.
  • the spacer having the channel formed as described above by arranging the channels of the flow path spacer and the blocking spacer to be orthogonal to each other, the effect of preventing leakage can be increased.

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The present invention provides a cylindrical reverse electrodialysis generator comprising: a hollow cylindrical housing; an inner electrode disposed in the central portion of the housing; an outer electrode disposed on an edge in the housing; and a plurality of ion exchange membranes disposed between the inner electrode and the outer electrode and wound along the circumferential direction of the inner electrode so as to separate one or more first flow paths through which a high concentration solution flows from one or more second flow paths through which a low concentration solution flows.

Description

원통형 역전기투석 발전장치Cylindrical Reverse Electrodialysis Generator
본 발명은 원통형의 역전기투석 발전장치에 관한 것이다.The present invention relates to a cylindrical reverse electrodialysis generator.
역전기투석(RED)은 농도가 다른 두 유체, 예를 들어 해수와 담수의 혼합 과정에서 발생한 염분차 또는 농도차 에너지를 전기 에너지 형태로 회수하는 것을 말한다.Reverse electrodialysis (RED) refers to the recovery of salinity or concentration difference energy in the form of electrical energy from the mixing of two fluids of different concentrations, eg seawater and fresh water.
보다 구체적으로, 역전기투석(RED)은 해수와 담수를 이용한 염분차로 발전하는 시스템으로서, 해수와 담수의 농도차로 인해 이온이 이온교환막(양이온교환막과 음이온교환막)을 통과하여 이동하게 되고, 복수개의 이온교환막이 번갈아 배열된 스택(Stack)의 양쪽 끝의 전극(양전극, 음전극)간의 전위차를 발생시키며, 전극상에서 산화환원반응을 통하여 전기에너지를 생성하는 장치이다.More specifically, reverse electrodialysis (RED) is a system for generating a salt difference using seawater and freshwater, and ions move through an ion exchange membrane (cation exchange membrane and anion exchange membrane) due to a difference in concentration between seawater and freshwater. It is a device that generates an electric potential difference between electrodes (positive electrode and negative electrode) at both ends of a stack in which ion exchange membranes are alternately arranged, and generates electric energy through a redox reaction on the electrode.
즉, 해수(염수)에 용해되어 있는 이온이 이온교환막을 통해 담수로 이동하면서 발생되는 화학적 에너지를 전기적 에너지로 직접 전환하는 발전방식이다.In other words, it is a power generation method that directly converts chemical energy generated as ions dissolved in seawater (salt water) into fresh water through an ion exchange membrane.
일반적으로 역전기투석(RED) 장치는, 양쪽 끝의 전극(양전극, 음전극) 사이에 복수 개의 이온교환막이 번갈아 배열된 스택(Stack)으로, 스택을 제작하기 위해서는 이온교환막, 스페이서(spacer), 가스켓(gasket)을 연속적으로 적층해야 하고, 스택의 용량을 대용량화 하기 위해서는 최소 수백셀의 스택을 쌓아야 한다. In general, a reverse electrodialysis (RED) device is a stack in which a plurality of ion exchange membranes are alternately arranged between electrodes (positive electrodes and negative electrodes) at both ends, and in order to manufacture a stack, an ion exchange membrane, a spacer, and a gasket are used. Gaskets should be stacked continuously, and at least several hundred cells must be stacked to increase the capacity of the stack.
하지만 위와 같은 적층형 스택은 수백에서 수천개의 이온교환막, 스페이서, 가스켓을 똑바로 정렬하여 쌓아야 하므로 스택을 제작하는데 있어서 오랜 시간이 필요하고, 많은 노동력이 필요로 하게 된다. 또한, 적층형 스택의 경우 자동화 공정으로 제작이 어려워 생산성이 떨어질 수 밖에 없다. However, such stacked stacks require hundreds to thousands of ion exchange membranes, spacers, and gaskets to be stacked in a straight line, which takes a long time and requires a lot of labor. In addition, in the case of a stack stack, it is difficult to manufacture by an automated process, which inevitably decreases productivity.
또한, 역전기투석(RED) 장치는 수백셀의 스택을 쌓은 후 스택 내부로 공급되는 저농도 및 고농도 용액의 누수(leak)를 방지하기 위해 고압으로 스택을 체결해야 하고, 이를 위해 일반적으로 다수의 볼트가 필요하다. In addition, the reverse electrodialysis (RED) device has to stack a stack of hundreds of cells and fasten the stack at high pressure to prevent leakage of low and high concentrations of solution supplied into the stack. Is needed.
하지만 볼트로 스택의 압력을 균일하게 체결하기에는 한계가 있어 미세한 누수 현상이 지속적으로 발생하여 공급된 용액의 누수에 의해 장치의 성능이 저하되는 문제점이 있고, 고압 상태에서 다수의 볼트 사용으로 인해 스택의 분해/조립이 힘들어 장치의 유지 보수 등을 어렵게 하는 문제점이 있었다.However, there is a limit to uniformly tighten the pressure of the stack with bolts, so there is a problem in that a fine leakage phenomenon occurs continuously and the performance of the device is degraded due to leakage of the supplied solution. Difficult to disassemble / assemble, there was a problem that makes it difficult to maintain the device.
따라서 스택 제작이 보다 용이하며, 자동화 공정이 쉽고, 누수 방지 및 유지 보수가 용이한 스택 제작 기술이 필요한 실정이다.Therefore, the stack manufacturing is easier, the automation process is easy, and the leakage manufacturing and easy maintenance of the stack manufacturing technology is required.
본 발명은 전술한 종래의 역전기투석(RED) 장치 운전 시 발생하는 문제점을 방지할 수 있는, 원통형 역전기투석 발전장치를 제공하는데 그 목적이 있다.An object of the present invention is to provide a cylindrical reverse electrodialysis power generation device, which can prevent the above-mentioned problems occurring when operating the conventional reverse electrodialysis (RED) device.
상기 목적을 달성하기 위하여, 본 발명은, 중공을 갖는 원통형의 하우징; 하우징 내 중공의 중앙부에 배치된 내측 전극; 하우징 내 중공의 가장자리에 배치된 외측 전극; 및 내측 전극과 외측 전극 사이에 배치되고, 고농도 용액이 유동하는 하나 이상의 제1 유로 및 저농도 용액이 유동하는 하나 이상의 제2 유로를 구획하도록 내측 전극의 둘레 방향을 따라 권취된 복수 개의 이온교환막; 을 포함하는 역전기투석 발전장치를 제공한다.In order to achieve the above object, the present invention, the cylindrical housing having a hollow; An inner electrode disposed in the central portion of the hollow in the housing; An outer electrode disposed at an edge of the hollow in the housing; And a plurality of ion exchange membranes disposed between the inner electrode and the outer electrode and wound along the circumferential direction of the inner electrode to partition one or more first flow paths through which the high concentration solution flows and one or more second flow paths through which the low concentration solution flows; It provides a reverse electrodialysis generator comprising a.
또한, 본 발명은, 전술한 복수 개의 역전기투석 발전장치; 및 역전기투석 발전장치 각각을 수용하도록 복수 개의 장착 공간을 갖는 전력 변환부; 를 포함하고, 복수 개의 장착 공간 각각은, 제2 유체 공급홀 각각에 저농도 용액 또는 고농도 용액을 공급하도록 마련된 제1 및 제2 유체 공급관; 제2 유체 배출홀 각각에서 토출되는 유체를 외부로 배출하도록 마련된 제1 및 제2 유체 배출관; 제1 유입포트로 유체를 공급하도록 마련된 제3 유체 공급관; 제2 배출 포트에서 토출되는 유체를 외부로 배출하도록 마련된 제3 유체 배출관; 및 역전기투석 발전장치를 지지하도록 마련된 복수 개의 지지부재; 를 포함하는 역전기투석 발전 시스템을 제공한다.In addition, the present invention, the plurality of reverse electrodialysis generators described above; And a power converter having a plurality of mounting spaces to accommodate each of the reverse electrodialysis generators. Each of the plurality of mounting spaces includes: first and second fluid supply pipes provided to supply a low concentration solution or a high concentration solution to each of the second fluid supply holes; First and second fluid discharge pipes configured to discharge fluid discharged from each of the second fluid discharge holes to the outside; A third fluid supply pipe provided to supply fluid to the first inflow port; A third fluid discharge pipe provided to discharge the fluid discharged from the second discharge port to the outside; And a plurality of support members provided to support the reverse electrodialysis generator. It provides a reverse electrodialysis power generation system comprising a.
또한, 본 발명은, 내측 전극; 제1 이온 교환막이 권취된 제1 롤러; 제1 스페이서가 권취된 제2 롤러; 제2 이온 교환막이 권취된 제3 롤러; 제2 스페이서가 권취된 제4 롤러; 및 제1 내지 제4 롤러에 각각 권취된 제1 이온 교환막, 제1 스페이서, 제2 이온 교환막 및 제2 스페이서가 차례로 적층되어 내측 전극에 권취되도록 마련된 제5 롤러; 를 포함하는 이온교환막 제조장치를 제공한다.In addition, the present invention, the inner electrode; A first roller on which the first ion exchange membrane is wound; A second roller on which the first spacer is wound; A third roller on which the second ion exchange membrane is wound; A fourth roller on which the second spacer is wound; And a fifth roller provided so that the first ion exchange membrane, the first spacer, the second ion exchange membrane, and the second spacer respectively wound on the first to fourth rollers are sequentially stacked and wound on the inner electrode. It provides an ion exchange membrane production apparatus comprising a.
본 발명에 따르면, 종래의 역전기투석(RED) 장치에 비해 제작 공정이 간단하여 적은 노동력으로 빠르게 스택을 제작할 수 있고, 자동화 공정이 가능하여 생산성을 높일 수 있는 효과가 있다.According to the present invention, the manufacturing process is simpler than the conventional reverse electrodialysis (RED) device, so that the stack can be manufactured quickly with less labor, and the automation process is possible, thereby increasing productivity.
또한, 역전기투석 장치 제작 시 고압으로 볼트 체결이 필요 없어 종래에 비해 장치의 유지 및 보수가 보다 용이한 효과가 있다.In addition, there is no need for fastening the bolt at high pressure when manufacturing the reverse electrodialysis apparatus, so that the maintenance and repair of the device is easier than in the related art.
도 1은 본 발명의 일 실시예에 따른 원통형 역전기투석 장치의 분해 사시도 이다.1 is an exploded perspective view of a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention.
도 2 내지 도 4는 본 발명의 일 실시예에 따른 원통형 역전기투석 장치를 나타낸 도면이다.2 to 4 is a view showing a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 원통형 역전기투석 장치의 단면도 이다.5 is a cross-sectional view of a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention.
도 6 및 도 7은 본 발명의 일 실시예에 따른 이온교환막을 나타낸 도면이다.6 and 7 are views illustrating an ion exchange membrane according to an embodiment of the present invention.
도 8 및 도 9는 본 발명의 다른 실시예에 따른 이온교환막을 나타낸 도면이다.8 and 9 are views illustrating an ion exchange membrane according to another embodiment of the present invention.
도 10은, 본 발명의 또 다른 일 실시예에 따라 이온교환막 상에 스페이서가 배치된 상태를 나타낸 도면이다.10 is a view showing a state in which a spacer is disposed on the ion exchange membrane according to another embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 내측 전극을 나타낸 도면이다.11 is a diagram illustrating an inner electrode according to an exemplary embodiment of the present invention.
도 12는 본 발명의 다른 실시예에 따른 내측 전극을 나타낸 도면이다.12 illustrates an inner electrode according to another exemplary embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따라 내측 전극에 권취된 이온교환막을 설명하기 위해 나타낸 단면도 이다. 13 is a cross-sectional view illustrating an ion exchange membrane wound on an inner electrode according to an embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따른 이온교환막에 한 쌍의 실링 가스켓이 결합된 상태를 나타낸 도면이다. 14 is a view showing a state in which a pair of sealing gaskets are coupled to an ion exchange membrane according to an embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 하우징을 나타낸 도면이다.15 is a view showing a housing according to an embodiment of the present invention.
도 16 및 도 17은 본 발명의 일 실시예에 따른 유체 분배 부재를 나타낸 도면이다.16 and 17 illustrate a fluid distribution member according to an embodiment of the present invention.
도 18 및 도 19는 본 발명의 일 실시예에 따른 유체 공급 부재를 나타낸 도면이다.18 and 19 illustrate a fluid supply member according to an embodiment of the present invention.
도 20은 본 발명의 일 실시예에 따른 유체 공급 부재와 유체 분배 부재가 결합된 결합도이다.20 is a coupling diagram in which a fluid supply member and a fluid distribution member are coupled according to an embodiment of the present invention.
도 21은 본 발명의 일 실시예에 따른 역전기투석 장치의 유체 흐름을 나타낸 도면이다.21 is a view showing the fluid flow of the reverse electrodialysis apparatus according to an embodiment of the present invention.
도 22는 본 발명의 다른 일 실시예에 따른 역전기투석 장치의 유체 흐름을 나타낸 도면이다.22 is a view showing the fluid flow of the reverse electrodialysis apparatus according to another embodiment of the present invention.
도 23 및 도 24는 본 발명의 일 실시예에 따른 역전기투석 발전 시스템을 설명하기 위해 나타낸 도면이다.23 and 24 are views shown to explain a reverse electrodialysis power generation system according to an embodiment of the present invention.
도 25 및 도 26은 본 발명의 일 실시예에 따른 제3 공급부를 설명하기 위해 나타낸 도면이다.25 and 26 are views for explaining a third supply unit according to an embodiment of the present invention.
도 27 및 도 28은 본 발명의 일 실시예에 따른 이온교환막 제조 장치를 나타낸 모식도이다.27 and 28 are schematic views showing an ion exchange membrane production apparatus according to an embodiment of the present invention.
도 29는 본 발명의 일 실시예에 따른 스페이서를 설명하기 위한 부분 확대도이다.29 is a partially enlarged view illustrating a spacer according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can be defined.
또한, 도면 부호에 관계없이 동일하거나 대응되는 구성요소는 동일 또는 유사한 참조번호를 부여하고 이에 대한 중복 설명은 생략하기로 하며, 설명의 편의를 위하여 도시된 각 구성 부재의 크기 및 형상은 과장되거나 축소될 수 있다.In addition, irrespective of the reference numerals, the same or corresponding components will be given the same or similar reference numerals, and redundant description thereof will be omitted. Can be.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
본 발명은 원통형 역전기투석(RED) 장치에 관한 것으로, 보다 구체적으로 원통형 역전기투석 장치, 이를 이용한 시스템 및 역전기투석 장치 내에 배치되는 이온교환막을 권취하는 장치에 관한 것이다.The present invention relates to a cylindrical reverse electrodialysis (RED) device, and more particularly to a device for winding a cylindrical reverse electrodialysis device, a system using the same and an ion exchange membrane disposed in the reverse electrodialysis device.
도 1은 본 발명의 일 실시예에 따른 원통형 역전기투석 장치의 분해 사시도 도 2 내지 도 4는 본 발명의 일 실시예에 따른 원통형 역전기투석 장치(10)를 나타낸 도면, 도 5는 본 발명의 일 실시예에 따른 원통형 역전기투석 장치(10)의 단면도 이다.1 is an exploded perspective view of a cylindrical reverse electrodialysis apparatus according to an embodiment of the present invention Figures 2 to 4 is a view showing a cylindrical reverse electrodialysis apparatus 10 according to an embodiment of the present invention, Figure 5 is a present invention A cross-sectional view of a cylindrical reverse electrodialysis apparatus 10 according to one embodiment of the present invention.
도 1 내지 도 5를 참조하면, 본 발명의 원통형 역전기투석 장치(10)는 중공을 갖는 원통형의 하우징(100), 하우징 내 중공의 중앙부에 배치된 내측 전극(200), 하우징 내 중공의 가장자리에 배치된 외측 전극(300), 내측 전극(200)의 둘레 방향을 따라 권취된 복수 개의 이온교환막(400)을 포함한다.1 to 5, the cylindrical reverse electrodialysis apparatus 10 of the present invention includes a cylindrical housing 100 having a hollow, an inner electrode 200 disposed in a central portion of the hollow in the housing, and an edge of the hollow in the housing. The outer electrode 300 and the plurality of ion exchange membranes 400 wound along the circumferential direction of the inner electrode 200 are included.
보다 구체적으로, 상기 하우징(100)은 양 말단이 개구된 중공을 갖는 원통형으로 마련될 수 있다.More specifically, the housing 100 may be provided in a cylindrical shape having a hollow with both ends open.
또한, 상기 복수 개의 이온교환막(400)은 고농도 용액이 유동하는 하나 이상의 제1 유로(410) 및 저농도 용액이 유동하는 하나 이상의 제2 유로(420)를 구획하도록 마련될 수 있다.In addition, the plurality of ion exchange membranes 400 may be provided to partition one or more first flow passages 410 through which a high concentration solution flows and one or more second flow passages 420 through which a low concentration solution flows.
상기 복수 개의 이온교환막(400)은, 양이온 교환막(C) 및 음이온 교환막(A)을 포함할 수 있으며, 양이온 교환막(C)과 음이온 교환막(A)이 서로 접촉되도록 적층될 수 있다.The plurality of ion exchange membranes 400 may include a cation exchange membrane C and an anion exchange membrane A, and may be stacked such that the cation exchange membrane C and the anion exchange membrane A are in contact with each other.
여기서, 복수 개의 이온교환막(400)은 각각 적어도 하나의 양이온 교환막과 음이온 교환막을 포함할 수 있다.Here, the plurality of ion exchange membranes 400 may each include at least one cation exchange membrane and an anion exchange membrane.
예를 들어, 상기 복수 개의 이온교환막(400)이 2개 이상인 경우 양이온 교환막과 음이온 교환막이 각각 교번하여 적층될 수 있다. For example, when the plurality of ion exchange membranes 400 are two or more, the cation exchange membrane and the anion exchange membrane may be alternately stacked.
또한, 상기 복수 개의 이온교환막(400)은 내측 전극(200)과 외측 전극(300) 사이에 배치되도록 내측 전극 상에 권취될 수 있다.In addition, the plurality of ion exchange membranes 400 may be wound on the inner electrode to be disposed between the inner electrode 200 and the outer electrode 300.
또한, 내측 및 외측 전극(200, 300)은 전기적으로 연결될 수 있다.In addition, the inner and outer electrodes 200 and 300 may be electrically connected.
따라서, 상기 제1 유로(410) 및 제2 유로(420)를 각각 유동하는 고농도 용액 및 저농도 용액의 농도차에 의해 내측 및 외측 전극에서 전기를 생산할 수 있다.Therefore, electricity may be produced at the inner and outer electrodes by the concentration difference between the high concentration solution and the low concentration solution flowing through the first flow path 410 and the second flow path 420, respectively.
도 6 및 도 7은 본 발명의 일 실시예에 따른 이온교환막(400)을 나타낸 도면이다.6 and 7 illustrate an ion exchange membrane 400 according to an embodiment of the present invention.
먼저, 본 발명의 복수 개의 이온교환막(400)은, 제1 유로 및 제2 유로를 유동하는 유체가 하우징의 축 방향을 따라 유동하도록 유체의 흐름을 안내하기 위한 유로 안내부를 포함한다.First, the plurality of ion exchange membranes 400 of the present invention include a flow path guide for guiding the flow of the fluid so that the fluid flowing in the first flow path and the second flow path flows along the axial direction of the housing.
보다 구체적으로, 도 6을 참조하면, 상기 유로 안내부는, 이온교환막 상에 유체의 흐름을 안내하기 위한 복수 개의 유로부재(450)를 포함한다.More specifically, referring to FIG. 6, the flow path guide part includes a plurality of flow path members 450 for guiding the flow of fluid on the ion exchange membrane.
상기 복수 개의 유로부재(450)는 이온 교환막의 축 방향에 따른 양 단부(401a, 401b)측 각각에 소정간격 떨어져 배치되도록 마련될 수 있다.The plurality of flow path members 450 may be disposed to be spaced apart from each other by predetermined intervals on both end portions 401a and 401b in the axial direction of the ion exchange membrane.
상기 유로부재(450)는 이온교환막(400)의 일단부(401a) 측에 둘레방향을 따라 소정간격 떨어져 배치되는 복수 개의 제1 유로부재(451) 및 타단부(401b) 측에 둘레방향을 따라 소정간격 떨어져 배치되는 복수 개의 제2 유로부재(452)를 포함하고, 제2 유로부재(452)는 둘레방향을 따라 인접하는 2개의 제1 유로부재(451) 사이에 위치하도록 배치될 수 있다.The flow path member 450 is disposed along the circumferential direction on the side of the plurality of first flow path members 451 and the other end 401b which are disposed at predetermined intervals along the circumferential direction on one end 401a side of the ion exchange membrane 400. The plurality of second flow path members 452 may be disposed to be spaced apart from each other, and the second flow path members 452 may be disposed between two adjacent first flow path members 451 along the circumferential direction.
여기서, 상기 이온 교환막의 축 방향에 따른 양 단부(401a, 401b)는 이온교환막의 폭 방향(W)을 기준으로, 일단부(401a)와 타단부(401b)를 의미한다.Here, both ends 401a and 401b along the axial direction of the ion exchange membrane mean one end 401a and the other end 401b based on the width direction W of the ion exchange membrane.
보다 구체적으로, 상기 이온교환막(400)과 복수 개의 유로부재(450) 사이에는 유체의 유동을 안내하도록 스페이서(453)가 마련될 수 있다.More specifically, a spacer 453 may be provided between the ion exchange membrane 400 and the plurality of flow path members 450 to guide the flow of the fluid.
즉, 상기 이온교환막(400)에 스페이서(453)가 적층되고, 스페이서(453) 상에 복수 개의 유로부재(450)가 마련될 수 있다.That is, a spacer 453 may be stacked on the ion exchange membrane 400, and a plurality of flow path members 450 may be provided on the spacer 453.
여기서, 상기 유로부재(450)는 스페이서(453)와 동일한 높이를 갖도록 마련될 수 있다.Here, the flow path member 450 may be provided to have the same height as the spacer 453.
상기 스페이서(453)는, 일 예로, 다이아몬드 구조를 갖는 스페이서일 수 있으나, 이에 한정되는 것은 아니다.The spacer 453 may be, for example, a spacer having a diamond structure, but is not limited thereto.
또한, 상기 유로부재(450)는, 일 예로, 접착제 일 수 있으나, 이에 한정되는 것은 아니다.In addition, the flow path member 450 may be, for example, an adhesive, but is not limited thereto.
이에 더하여, 도 6의 (c)를 참조하면, 상기 복수 개의 이온교환막(400)을 내측 전극에 권취하기 위해 적층 할 때, 양이온 교환막의 제1 유로부재(451)와 음이온 교환막의 제1 유로부재(451')는 서로 엇갈려 배치되도록 마련될 수 있다.In addition, referring to FIG. 6C, when the plurality of ion exchange membranes 400 are laminated to be wound on the inner electrode, the first flow path member 451 of the cation exchange membrane and the first flow path member of the anion exchange membrane 451 ′ may be arranged to be staggered from each other.
즉, 이온교환막이 적층 될 때, 양이온 교환막(C)의 제1 유로부재(451)는 음이온 교환막(A)의 인접하는 2개의 제1 유로부재(451') 사이에 위치하도록 배치되며 이온 교환막의 길이 방향(L) 즉, 둘레방향을 따라 서로 교번하여 마련될 수 있다.That is, when the ion exchange membranes are stacked, the first flow path member 451 of the cation exchange membrane C is disposed to be positioned between two adjacent first flow path members 451 'of the anion exchange membrane A. It may be provided alternately along the longitudinal direction (L), that is, in the circumferential direction.
여기서, 상기 둘레 방향은 하우징의 둘레 방향과 동일한 방향을 의미한다.Here, the circumferential direction means the same direction as the circumferential direction of the housing.
비록 도시하지는 않았지만, 복수 개의 이온교환막이 적층 될 때, 양이온 교환막의 제2 유로부재와 음이온 교환막의 제2 유로부재는 서로 엇갈려 배치되도록 마련될 수 있다.Although not shown, when the plurality of ion exchange membranes are stacked, the second flow path member of the cation exchange membrane and the second flow path member of the anion exchange membrane may be provided to be alternated with each other.
즉, 이온교환막이 적층될 때, 양이온 교환막의 제2 유로부재는 음이온 교환막의 인접하는 2개의 제2 유로부재 사이에 위치하도록 배치되며 이온 교환막의 둘레방향(L)을 따라 서로 교번하여 마련될 수 있다.That is, when the ion exchange membrane is stacked, the second flow path member of the cation exchange membrane is disposed to be positioned between two adjacent second flow path members of the anion exchange membrane, and may be alternately provided along the circumferential direction L of the ion exchange membrane. have.
상기와 같이, 제1 유로부재(451)와 제2 유로부재(452)가 서로 엇갈리도록 배치함으로써, 유체의 흐름은 도 6에 나타낸 화살표와 같이, 이온교환막 상에서 사선 방향으로 유동될 수 있다.As described above, by arranging the first flow path member 451 and the second flow path member 452 to cross each other, the flow of the fluid can flow in an oblique direction on the ion exchange membrane, as shown by the arrow shown in FIG.
특히, 다이아몬드 구조의 스페이서를 사용함으로써, 유체를 사선 방향으로 안내함과 동시에, 유체에 난류(Turbulence)가 형성될 수 있다.In particular, by using a spacer of diamond structure, turbulence can be formed in the fluid while guiding the fluid in a diagonal direction.
도 7을 참조하여, 복수 개의 유로 부재(450)를 포함하는 이온교환막(400)이 내측 전극(200)에 권취된 상태를 설명하면, 내측 전극 둘레 방향을 따라 권취된 이온교환막(400)은 각각 제1 유로(410) 및 제2 유로(420)를 구획하게 된다.Referring to FIG. 7, when the ion exchange membrane 400 including the plurality of flow path members 450 is wound around the inner electrode 200, each of the ion exchange membranes 400 wound along the inner electrode circumferential direction may be described. The first flow path 410 and the second flow path 420 are partitioned.
특히, 양이온 교환막과 음이온 교환막에 배치된 각각의 제1 유로부재(451, 451')는 내측 전극의 둘레방향을 따라 서로 교번하여 엇갈리도록 배치된다.In particular, the first flow path members 451 and 451 'disposed in the cation exchange membrane and the anion exchange membrane are alternately alternately arranged along the circumferential direction of the inner electrode.
또한, 양이온 교환막과 음이온 교환막에 배치된 각각의 제2 유로부재(452, 452')는 내측 전극의 둘레방향을 따라 서로 교번하여 엇갈리도록 배치된다.In addition, the second flow path members 452 and 452 'disposed in the cation exchange membrane and the anion exchange membrane are alternately alternately arranged along the circumferential direction of the inner electrode.
상기와 같이 배치된, 복수 개의 유로 부재(450)에 의해 제1 유로(410)로 고농도 용액만 유입되고, 제2 유로(420)로 저농도 용액만 유입될 수 있게 된다.Only the high concentration solution flows into the first flow path 410 by the plurality of flow path members 450 disposed as described above, and only the low concentration solution flows into the second flow path 420.
즉, 제1 유로(410)로 저농도 용액이 유입되는 것을 차단하고, 제2 유로(420)로 고농도 용액이 유입되는 것을 차단할 수 있게 된다.That is, the low concentration solution may be blocked from flowing into the first flow path 410, and the high concentration solution may be blocked from flowing into the second flow path 420.
예를 들어, 권취된 이온교환막(400)의 일단부(401a) 측에 결합된 유체 분배 부재(600)로부터 저농도 용액이 제2 유로(420)로 공급되고, 타단부(401b) 측에 결합된 유체 분배 부재(600)로부터 고농도 용액이 제1 유로(410)로 공급되면, 저농도 용액은 제1 축방향(D1)으로 유체가 유동되어 토출되고, 고농도 용액은 제2 축방향(D2)으로 유동되어 토출된다.For example, a low concentration solution is supplied to the second flow path 420 from the fluid distribution member 600 coupled to the one end 401a side of the wound ion exchange membrane 400, and coupled to the other end 401b side. When the high concentration solution is supplied from the fluid distribution member 600 to the first flow path 410, the low concentration solution flows out of the fluid in the first axial direction D1, and the high concentration solution flows in the second axial direction D2. And discharged.
이 때, 제1 유로(410) 및 제2 유로(420)를 유동하는 유체의 농도차에 의해 전기가 생산될 수 있게 된다.At this time, electricity may be produced by the concentration difference between the fluid flowing through the first flow path 410 and the second flow path 420.
한편, 도 8 및 도 9는 본 발명의 다른 일 실시예에 따른 이온교환막(400) 상에 마련된 유로 안내부를 나타낸 도면이다. 8 and 9 are views illustrating a flow path guide part provided on the ion exchange membrane 400 according to another exemplary embodiment of the present invention.
도 8을 참조하면, 상기 유로 안내부는, 이온교환막 상에 유체의 흐름을 안내하기 위한 복수 개의 채널 리브(430)을 포함한다.Referring to FIG. 8, the flow path guide part includes a plurality of channel ribs 430 for guiding a flow of a fluid on an ion exchange membrane.
상기 채널 리브(430)는, 하우징(100)의 축 방향을 따라 연장하도록 마련되고, 복수 개의 채널 리브(430)는 하우징의 둘레방향을 따라 소정 간격 이격 되게 배치될 수 있다.The channel ribs 430 may be provided to extend along the axial direction of the housing 100, and the plurality of channel ribs 430 may be spaced apart from each other along a circumferential direction of the housing.
보다 구체적으로, 상기 채널 리브(430)는, 이온교환막(400) 상에서 유체의 흐름을 안내하도록 돌출되게 형성될 수 있으며, 이온교환막(400)의 폭 방향(W)을 따라 연장되게 형성될 수 있다.More specifically, the channel rib 430 may be formed to protrude to guide the flow of fluid on the ion exchange membrane 400, and may be formed to extend along the width direction W of the ion exchange membrane 400. .
이 때, 상기 채널 리브(430)는 이온교환막(400)의 길이 방향(L) 즉 둘레방향을 따라 소정 간격 이격되게 마련될 수 있다.In this case, the channel ribs 430 may be provided to be spaced apart from each other along the longitudinal direction L of the ion exchange membrane 400.
상기와 같이 마련된 채널 리브(430)는, 인접하는 채널 리브들의 사이 공간으로 정의 되는 제1 채널(431)을 형성하며, 제1 채널(431)을 통과하며 유체가 축 방향으로 유동될 수 있다. The channel rib 430 provided as described above forms a first channel 431 defined as a space between adjacent channel ribs, and passes through the first channel 431 to allow fluid to flow in the axial direction.
본 명세서에서, 이온교환막의 축 방향은, 이온교환막의 폭 방향(W)을 의미하며, 또한, 하우징(100)의 축 방향과 동일한 방향을 의미한다. 또한, 이온교환막의 둘레 방향은 이온교환막의 길이 방향(L)을 의미하며, 또한, 하우징의 둘레 방향과 동일한 방향을 의미한다.In the present specification, the axial direction of the ion exchange membrane means the width direction W of the ion exchange membrane, and also means the same direction as the axial direction of the housing 100. In addition, the circumferential direction of an ion exchange membrane means the longitudinal direction L of an ion exchange membrane, and also means the same direction as the circumferential direction of a housing.
상기와 같이 본 발명의 다른 일 실시예에 따른 이온교환막은, 형성된 복수 개의 제1 채널(431)에 의해 이온교환막 사이에 배치되는 스페이서를 사용하지 않아도 되는 효과가 있다.As described above, the ion exchange membrane according to another embodiment of the present invention has the effect of not using a spacer disposed between the ion exchange membranes by the plurality of formed first channels 431.
이에 더하여, 상기 복수 개의 이온교환막(400) 사이에 복수 개의 가스켓(440)을 포함할 수 있다.In addition, a plurality of gaskets 440 may be included between the plurality of ion exchange membranes 400.
상기 가스켓(440)은 제1 유로(410)와 제2 유로(420)를 각각 유동하는 고농도 용액과 저농도 용액이 유출되지 않도록 복수 개의 이온교환막 사이에 각각 배치될 수 있다.The gasket 440 may be disposed between the plurality of ion exchange membranes so that the high concentration solution and the low concentration solution flowing through the first flow path 410 and the second flow path 420, respectively, do not flow out.
보다 구체적으로, 도 8의 (c)에 나타낸 바와 같이, 상기 가스켓(440)은 이온교환막의 축 방향(W)에 따른 양 단부(401a, 401b) 중 어느 한 단부에 둘레 방향(L)을 따라 마련될 수 있다.More specifically, as shown in FIG. 8C, the gasket 440 is along the circumferential direction L at either end of both ends 401a and 401b along the axial direction W of the ion exchange membrane. Can be prepared.
예를 들어, 음이온 교환막(A)의 일단부(401a)에 가스켓(440)이 마련되면, 상기 음이온 교환막(A)에 적층 되는 양이온 교환막(C)에는 타단부(401b)에 가스켓(440)이 마련될 수 있다.For example, when the gasket 440 is provided at one end 401a of the anion exchange membrane A, the gasket 440 is provided at the other end 401b at the cation exchange membrane C stacked on the anion exchange membrane A. Can be prepared.
즉, 음이온 교환막(A)과 양이온 교환막(C)이 교번하여 적층 될 때, 가스켓(440)은 서로 인접하는 각각의 이온교환막의 일단부와 타단부에 교번하여 마련될 수 있다. That is, when the anion exchange membrane (A) and the cation exchange membrane (C) are alternately stacked, the gasket 440 may be alternately provided at one end and the other end of each ion exchange membrane adjacent to each other.
도 9를 참조하여 설명하면 상기 이온교환막(400)은, 상기 제1 유로(410)를 유동하는 유체가 유출되지 않도록 이온 교환막 상에 마련된 제1 가스켓(440a)을 포함하고, 제2 유로(420)를 유동하는 유체가 유출되지 않도록 이온 교환막 상에 마련된 제2 가스켓(440b)을 포함하고, 복수 개의 이온교환막이 적층 될 때, 제1 가스켓(440a)은 축 방향에 따른 이온교환막의 일단부에 배치되고, 제2 가스켓(440b)은 축 방향에 따른 이온교환막의 타단부에 배치될 수 있다.Referring to FIG. 9, the ion exchange membrane 400 includes a first gasket 440a provided on the ion exchange membrane so that the fluid flowing through the first flow passage 410 does not flow out, and the second flow passage 420. And a second gasket 440b provided on the ion exchange membrane so that the fluid flowing through the ion exchange membrane does not flow out. When the plurality of ion exchange membranes are stacked, the first gasket 440a is provided at one end of the ion exchange membrane along the axial direction. The second gasket 440b may be disposed at the other end of the ion exchange membrane along the axial direction.
예를 들어, 양이온 교환막(C), 음이온 교환막(A), 양이온 교환막(C')이 차례로 적층 될 때, 양이온 교환막(C)의 일단부에 제1 가스켓이 배치되고, 음이온 교환막(A) 타단부에 제2 가스켓이 배치되고, 다시 양이온교환막(C')의 일단부에 제1 가스켓이 배치되며 적층될 수 있다. For example, when a cation exchange membrane (C), an anion exchange membrane (A), and a cation exchange membrane (C ') are sequentially stacked, a first gasket is disposed at one end of the cation exchange membrane (C), and the other anion exchange membrane (A) The second gasket may be disposed at the end portion, and the first gasket may be disposed at one end of the cation exchange membrane C ′ and stacked.
즉, 제1 가스켓(440a)과 제2 가스켓(440b)은 이온교환막의 적층 방향에 따라, 서로 반대방향에 배치될 수 있다.That is, the first gasket 440a and the second gasket 440b may be disposed in opposite directions to each other according to the stacking direction of the ion exchange membrane.
여기서, 상기 가스켓(440)은 일 예로, 접착제 일 수 있으나 이에 한정되는 것은 아니며, 종래에 사용되는 가스켓을 이용할 수도 있다. 상기와 같이 마련된 제1 채널(431)과 가스켓(440)에 의한 유체의 흐름 과정은 다음과 같다.Here, the gasket 440 may be, for example, an adhesive, but is not limited thereto, and a gasket used in the related art may be used. The flow of fluid by the first channel 431 and the gasket 440 prepared as described above is as follows.
상기 이온교환막(400)에 의해 구획된 제1 및 제2 유로(410,420)에 유체가 공급되면, 유체는 이온교환막에 형성된 제1 채널을 따라 축 방향으로 유동하게 되고, 각각의 이온교환막에 마련된 가스켓(440)에 의해 유동이 꺽인 후 제1 채널을 따라 다시 축 방향으로 유동하여 이온교환막에서 토출 된다.When fluid is supplied to the first and second flow paths 410 and 420 partitioned by the ion exchange membrane 400, the fluid flows in the axial direction along the first channel formed in the ion exchange membrane, and a gasket provided in each ion exchange membrane. The flow is broken by 440 and then flows again along the first channel in the axial direction and is discharged from the ion exchange membrane.
이 때, 제1 유로(410) 및 제2 유로(420)를 유동하는 유체의 농도차에 의해 전기가 생산될 수 있게 된다.At this time, electricity may be produced by the concentration difference between the fluid flowing through the first flow path 410 and the second flow path 420.
종래에 역삼투막을 나선형으로 감아 사용하는 역삼투(RO, Reverse Osmosis)장치와 같은 방법으로, 유체의 흐름이 원주 방향을 따라 즉, 이온교환막의 길이 방향(L)으로 담수가 유동하고 하우징(100)의 축 방향으로 해수가 유동할 수 있도록 역전기투석 장치를 고안할 경우, 담수의 유동 거리가 해수에 비해 월등히 길어 해수와의 농도차가 없는 영역이 많아져 출력이 낮아지는 문제점이 있다.Conventionally, in the same way as a reverse osmosis (RO) apparatus using a spirally wound reverse osmosis membrane, fresh water flows along the circumferential direction, that is, in the longitudinal direction L of the ion exchange membrane, and the housing 100. When the reverse electrodialysis apparatus is designed to allow seawater to flow in the axial direction, the flow distance of freshwater is much longer than that of seawater, and thus there is a problem in that the output is lowered because there are more areas with no concentration difference with seawater.
반면, 본 발명은 전술한 바와 같이, 이온교환막 상에 유로 안내부 즉, 유로부재(450) 또는 제1 채널(431)을 형성함으로써 유체를 하우징(100) 축 방향으로 유동하도록 함으로써, 해수와 담수의 유동 거리를 조절하게 되어 즉, 유동 거리가 단축되어, 농도차가 끝까지 발생하도록 하여 장치의 성능을 최적화 시킬 수 있는 효과가 있다.On the other hand, the present invention, as described above, by forming a flow guide portion, that is, the flow path member 450 or the first channel 431 on the ion exchange membrane to flow the fluid in the axial direction of the housing 100, sea water and fresh water That is, the flow distance is adjusted, that is, the flow distance is shortened, so that the difference in concentration occurs until the end, there is an effect that can optimize the performance of the device.
도 10은 본 발명의 또 다른 일 실시예에 따라, 이온교환막(400) 상에 스페이서가 배치된 상태를 나타낸 도면이다.10 is a view illustrating a state where spacers are disposed on an ion exchange membrane 400 according to another embodiment of the present invention.
도 10을 참조하면, 본 발명의 역전기투석 발전장치(10)는 전술한 바와 같이 제1 채널(431)이 형성된 이온교환막을 사용하지 않는 경우, 각각의 이온교환막 사이에 유체의 흐름을 안내하는 스페이서(800)가 배치될 수 있다.Referring to FIG. 10, when the reverse electrodialysis generator 10 of the present invention does not use an ion exchange membrane in which a first channel 431 is formed as described above, the reverse electrodialysis generator 10 is configured to guide the flow of a fluid between each ion exchange membrane. Spacer 800 may be disposed.
이 때, 전술한 바와 같이 유체의 흐름을 하우징 축 방향으로 유동하도록 하기 위해, 스페이서(800)에도 상기 이온교환막에 형성된 복수 의 채널 리브(430a)에 의해 형성된 제1 채널(431)과 동일한 스페이서 채널(431a)이 형성될 수 있다.At this time, in order to flow the fluid in the housing axial direction as described above, the spacer 800 is also the same spacer channel as the first channel 431 formed by the plurality of channel ribs 430a formed in the ion exchange membrane. 431a may be formed.
도 11은 본 발명의 일 실시예에 따른 내측 전극(200)을 나타낸 도면이다.11 illustrates an inner electrode 200 according to an embodiment of the present invention.
도 11을 참조하면, 상기 내측 전극(200)은, 전극 용액이 유입되는 제1 유입포트(240), 유입된 전극 용액이 축 방향을 따라 유동하여 외측 전극으로 이동하도록 마련된 제1 배출포트(270)를 포함한다.Referring to FIG. 11, the inner electrode 200 may include a first inflow port 240 through which an electrode solution is introduced, and a first discharge port 270 provided to flow in an axial direction to move to an outer electrode. ).
보다 구체적으로, 내측 전극(200)은 제1 유입포트(240)와 유체 이동 가능하게 연결되어, 제1 유입포트(240)를 통해 유입된 유체가 내측 전극의 외주면으로 유동하도록 마련된 제1 유입구(250) 및 내측 전극의 외주면에서 축 방향으로 유동된 유체가 제1 배출포트(270)로 유동하도록 제1 배출포트(270)와 유체 이동 가능하게 연결된 제1 배출구(260)를 갖는다.More specifically, the inner electrode 200 is fluidly connected to the first inlet port 240, the first inlet (100) is provided so that the fluid flowing through the first inlet port 240 flows to the outer peripheral surface of the inner electrode ( 250 and a first outlet 260 fluidly connected to the first outlet port 270 such that the fluid axially flowing from the outer circumferential surface of the inner electrode flows to the first outlet port 270.
상기 내측 전극(200)은 원기둥 형상으로 내부는 중공으로 형성되되 축 방향을 따른 양 단부 즉, 일단부(201a) 및 타단부(201b)는 막힌 구조로 형성될 수 있다.The inner electrode 200 may have a cylindrical shape and may be formed in a hollow shape, but both ends along the axial direction, that is, one end portion 201a and the other end portion 201b may be formed in a blocked structure.
보다 구체적으로, 상기 제1 유입포트(240)는 내측 전극(200)의 하단부(201b) 일측에 형성되어 내측 전극의 내부로 유체가 공급되도록 형성될 수 있다.More specifically, the first inflow port 240 may be formed at one side of the lower end portion 201b of the inner electrode 200 so that the fluid is supplied into the inner electrode.
즉, 내측 전극 내 적어도 일부 영역은 유체 이동 가능한 내부 유로(미도시)가 형성될 수 있다. 일 예로, 내부 유로(미도시)는 내측 전극의 내부가 중공으로 형성된 내측 전극 내부 전체일 수 있으나, 이에 한정되는 것은 아니다.That is, at least a portion of the inner electrode may have an inner flow path (not shown) capable of fluid movement. For example, the inner flow path (not shown) may be the entire inside of the inner electrode in which the inside of the inner electrode is hollow, but is not limited thereto.
이에 더하여, 상기 내측 전극(200)의 외주면은, 유입된 유체가 전극(200)의 둘레 방향을 따라 유동하도록 유동을 안내하기 위한 복수 개의 제2 채널(210), 제2 채널(210)을 따라 유동된 유체가 전극의 축 방향을 따라 유동하도록 유동을 안내하기 위한 복수 개의 제3 채널(220) 및 제3 채널(220)을 따라 유동된 유체가 전극(200)의 둘레 방향을 따라 유동하도록 안내하기 위한 복수 개의 제4 채널(230)을 포함한다.In addition, the outer circumferential surface of the inner electrode 200 may include a plurality of second channels 210 and second channels 210 for guiding the flow of the introduced fluid to flow along the circumferential direction of the electrode 200. Guide the flows along the circumferential direction of the electrode 200 to the plurality of third channels 220 and the fluids flowed along the third channel 220 to guide the flow so that the flowed fluid flows along the axial direction of the electrode A plurality of fourth channels 230 to be included.
상기 제2 내지 제4 채널(210, 220, 230)은 내측 전극(200) 외주면 상에 외측으로 돌출되도록 각각 형성될 수 있다.The second to fourth channels 210, 220, and 230 may be formed to protrude outwards on the outer circumferential surface of the inner electrode 200.
보다 구체적으로, 상기 제2 채널(210)은 내측 전극(200)의 타단부 측(201b)에 마련될 수 있고, 제 4채널(230)은 내측 전극의 일단부 측(201a)에 각각 마련될 수 있다.More specifically, the second channel 210 may be provided at the other end side 201b of the inner electrode 200, and the fourth channel 230 may be provided at one end side 201a of the inner electrode 200, respectively. Can be.
여기서, 내측 전극(200)의 타단부 측은 내측 전극의 하단부 측일 수 있고, 일단부 측은 상단부 측일 수 있다.Here, the other end side of the inner electrode 200 may be the lower end side of the inner electrode, one end side may be the upper end side.
또한, 제3 채널(220)은, 제2 채널(210)과 제4 채널(230) 사이에 배치될 수 있다.In addition, the third channel 220 may be disposed between the second channel 210 and the fourth channel 230.
여기서, 상기 복수 개의 제3 채널(220)은 제2 채널(210)과 제4 채널(230) 사이에서 내측 전극(200)의 축 방향을 따라 확장되게 마련되어 둘레 방향을 따라 소정 간격 이격 되게 각각 배치될 수 있다.Here, the plurality of third channels 220 are provided to extend along the axial direction of the inner electrode 200 between the second channel 210 and the fourth channel 230, and are spaced apart by a predetermined interval along the circumferential direction. Can be.
또한, 상기 제2 및 제4 채널(210, 230)은 일 예로, 축 방향을 따라 적어도 3개의 채널들(210a, 210b, 210c, 230a, 230b, 230c)을 각각 포함할 수 있으며, 서로 소정 간격 떨어져 각각 배치될 수 있다.In addition, the second and fourth channels 210 and 230 may include, for example, at least three channels 210a, 210b, 210c, 230a, 230b, and 230c along an axial direction, and may be spaced apart from each other. Each can be placed apart.
또한, 축 방향을 따라 형성된 적어도 3개의 채널들은 각각 내측 전극의 둘레 방향을 따라 서로 소정간격 이격 되게 복수 개 마련될 수 있다. In addition, at least three channels formed along the axial direction may be provided in plural to be spaced apart from each other by a predetermined distance in the circumferential direction of the inner electrode.
특히, 상기 제2 채널(210), 제3 채널(220) 및 제4 채널(230)은 축 방향을 기준으로, 축 방향을 따라 차례로 인접하는 각각의 채널은 서로 소정 간격 떨어져 배치될 수 있다.In particular, the second channel 210, the third channel 220, and the fourth channel 230 may be disposed to be spaced apart from each other by the channels adjacent to each other in the axial direction.
또한, 둘레 방향을 따라 서로 인접하는 각각의 채널은 서로 소정 간격 떨어져 배치될 수 있다. In addition, each channel adjacent to each other along the circumferential direction may be disposed apart from each other by a predetermined distance.
예를 들면, 임의의 하나의 제3 채널(220a)을 기준으로, 제3 채널(220a)의 양 단부 측에 각각 적어도 3개의 채널들을 포함하는 제2 채널(210) 및 제4 채널(230)이 배열될 수 있다.For example, based on any one third channel 220a, the second channel 210 and the fourth channel 230 each including at least three channels on both end sides of the third channel 220a. This can be arranged.
여기서, 상기 제2 채널(210) 및 제4 채널(230)은 적어도 3개의 채널들을 예시하여 설명하였지만, 이에 한정되는 것이 아니며, 적어도 2개 이상을 포함할 수 있다.Here, although the second channel 210 and the fourth channel 230 have been described by illustrating at least three channels, the present invention is not limited thereto and may include at least two.
또한, 제2 및 제4 채널(210,230)은, 제3 채널(220)의 길이 보다 짧게 형성될 수 있다.In addition, the second and fourth channels 210 and 230 may be formed to be shorter than the length of the third channel 220.
전술한 바와 같이, 각각의 제2 내지 제4 채널(210,220,230)은 서로 인접하는 채널과 서로 소정 간격 떨어져 배치되므로, 유입된 유체가 채널들의 사이 공간을 유동하며 이동할 수 있게 된다.As described above, each of the second to fourth channels 210, 220, and 230 is disposed to be spaced apart from each other with a channel adjacent to each other, so that the introduced fluid may move in a space between the channels.
특히, 제2 및 제4 채널(210,230)에 의해 유입된 유체가 내측 전극(200)의 둘레 방향을 따라 유동할 수 있게 된다.In particular, the fluid introduced by the second and fourth channels 210 and 230 may flow along the circumferential direction of the inner electrode 200.
이에 더하여, 상기 제1 유입구(250)는, 제2 채널(210)이 마련된 영역에 마련되고, 제1 배출구(260)는, 제4 채널(230)이 마련된 영역에 마련될 수 있다.In addition, the first inlet 250 may be provided in an area where the second channel 210 is provided, and the first outlet 260 may be provided in an area where the fourth channel 230 is provided.
상기 제1 유입포트(240)로 유입된 유체가 제1 유입구(250)를 통과하여 제2 채널(210)을 따라 유동하도록, 제1 유입포트(240)와 제1 유입구(250)는 유체 이동 가능하게 연결될 수 있다.The first inlet port 240 and the first inlet 250 move the fluid so that the fluid flowing into the first inlet port 240 flows along the second channel 210 through the first inlet 250. Possibly connected.
즉, 상기 내부 유로는 제1 유입포트(240)와 제1 유입구(250)를 유체 이동 가능하게 연결할 수 있다. That is, the inner passage may connect the first inlet port 240 and the first inlet 250 to be fluidly movable.
이에 더하여, 제1 유입구(250)를 통과한 유체는, 제2 채널(210)을 따라 내측 전극의 둘레 방향으로 유동하게 되고, 이 때, 일부의 유체는 제3 채널(220)을 따라 내측 전극의 축 방향으로 유동하게 된다.In addition, the fluid passing through the first inlet 250 flows in the circumferential direction of the inner electrode along the second channel 210, and at this time, some of the fluid flows along the third channel 220. Will flow in the axial direction.
즉, 제2 채널(210)에 의해 유입된 유체는 내측 전극 외주면 전체를 유동할 수 있게 된다.That is, the fluid introduced by the second channel 210 can flow through the entire outer peripheral surface of the inner electrode.
제3 채널(220)에 의해 축 방향을 따라 유동된 유체는, 제4 채널 사이 공간을 통과하며 제4 채널을 따라 내측 전극 둘레 방향으로 유동하게 되어 제1 배출구(260)를 통과하여 내측 전극의 내부로 유입되고, 제1 배출포트(270)를 통해 내측 전극의 외부로 배출될 수 있다.The fluid flowing along the axial direction by the third channel 220 passes through the space between the fourth channels and flows along the fourth channel in the circumferential direction of the inner electrode, and passes through the first outlet 260 to allow the fluid to flow. It may be introduced into the inside and may be discharged to the outside of the inner electrode through the first discharge port 270.
즉, 제1 배출구(260)는 제1 배출포트(270)와 유체 이동 가능하게 연결될 수 있으며, 상기 내부 유로(미도시)는 제1 배출구와 제1 배출포트를 유체 이동 가능하게 연결할 수 있다. That is, the first outlet 260 may be fluidly connected to the first outlet port 270, and the inner flow path (not shown) may fluidly connect the first outlet and the first outlet port.
여기서, 상기 제1 배출포트(270)는 내측 전극의 일단부(201a) 일측에 형성되어 내측 전극 내부로 유입된 유체가 제1 배출포트(270)를 통하여 외부로 배출될 수 있다.Here, the first discharge port 270 may be formed at one side of one end 201a of the inner electrode, and the fluid introduced into the inner electrode may be discharged to the outside through the first discharge port 270.
또한, 상기 제1 유입구(250)와 제1 배출구(260)는 서로 반대 방향에 위치하도록 배치될 수 있다.In addition, the first inlet 250 and the first outlet 260 may be disposed to be opposite to each other.
즉, 제1 배출구(260)는, 중심축을 기준으로 제1 유입구(250)가 180도 각도만큼 회전된 위치에 대응되는 일단부(201a) 측 즉, 제4 채널(230)이 마련된 영역 상에 배치될 수 있다.That is, the first outlet 260 is located on one end 201a side corresponding to the position where the first inlet 250 is rotated by an angle of 180 degrees with respect to the central axis, that is, on the region where the fourth channel 230 is provided. Can be arranged.
상기와 같이 배치된 제1 유입구 및 제1 배출구에 의해 유체가 유동될 때 내측 전극의 외주면 전체를 유동할 수 있게 된다.When the fluid flows by the first inlet and the first outlet arranged as described above, the entire outer peripheral surface of the inner electrode can flow.
이에 더하여, 상기 내측 전극(200)은 일단부(201a) 및 타단부(201b)에 후술할 격벽(640)이 삽입되는 복수의 삽입홀(290)이 각각 형성될 수 있다.In addition, the inner electrode 200 may be formed with a plurality of insertion holes 290 into which the partition wall 640 to be described later is inserted, respectively, at one end 201a and the other end 201b.
보다 구체적으로, 상기 복수의 삽입홀(290)은, 내측 전극의 일단부(201a) 및 타단부(201b)의 둘레 방향을 따라 소정 간격 떨어져 배치되며, 후술할 유체 분배 부재의 격벽(640)과 대응하게 배치될 수 있다.More specifically, the plurality of insertion holes 290 are spaced apart by a predetermined interval along the circumferential direction of one end portion 201a and the other end portion 201b of the inner electrode, and the partition wall 640 of the fluid distribution member to be described later. Can be arranged correspondingly.
이에 더하여, 상기 내측 전극(200)은 일단부(201a) 및 타단부(201b)에서 외측으로 돌출되도록 각각 형성된 결합부재(291)를 포함할 수 있다.In addition, the inner electrode 200 may include coupling members 291 formed to protrude outwardly from one end 201a and the other end 201b.
상기 결합부재(291)는 제1 유입포트(240) 및 제1 배출포트(270)의 둘레 영역을 따라 원통형으로 형성될 수 있으며, 후술할 유체 분배 부재(600)의 제1 관통홀(610)에 삽입 결합되도록 제1 관통홀(610)과 대응하게 마련될 수 있다.The coupling member 291 may be formed in a cylindrical shape along the circumferential regions of the first inlet port 240 and the first outlet port 270, and the first through hole 610 of the fluid distribution member 600 to be described later. It may be provided to correspond to the first through-hole 610 to be inserted into the coupling.
즉, 후술할 유체 분배 부재(600)는, 상기 내측 전극의 결합 부재(291) 및 복수의 삽입홀(290)과 결합되어 내측 전극에 권취된 이온교환막(400)을 밀폐할 수 있다.That is, the fluid distribution member 600 to be described later may be combined with the coupling member 291 and the plurality of insertion holes 290 of the inner electrode to seal the ion exchange membrane 400 wound around the inner electrode.
여기서, 상기 내측 전극(200)은 전체가 전도성 재질 일 예로, 티타늄(Ti)에 백금(Pt) 코팅의 재질로 이루어지도록 형성될 수 있으며, 또는 채널들이 형성된 일부 영역만 전도성 재질 일 예로, 티타늄(Ti)에 백금(Pt) 코팅으로 이루어지고, 일부 영역을 뺀 나머지 영역은 부도체의 재질로 형성할 수 있으나 이에 한정되는 것은 아니다.Here, the inner electrode 200 may be formed of a conductive material as a whole, for example, a material of platinum (Pt) coating on titanium (Ti), or only a partial region where channels are formed. It is made of platinum (Pt) coating on Ti), and the remaining regions except for some regions may be formed of a non-conductive material, but is not limited thereto.
여기서, 상기 전도성 재질은 일반적으로 역전기투석 장치에서 사용가능 한 전극이라면 모두 적용될 수 있다. In this case, the conductive material may be generally applied to any electrode that can be used in the reverse electrodialysis apparatus.
또한, 상기 내측 전극(200)으로 유입되는 유체는 전극 용액일 수 있다.In addition, the fluid flowing into the inner electrode 200 may be an electrode solution.
도 12는 본 발명의 다른 실시예에 따른 내측 전극(200)을 나타낸 도면이다.12 is a diagram illustrating an inner electrode 200 according to another exemplary embodiment of the present invention.
도 12를 참조하면, 전술한 내측 전극(200)의 채널들이 형성된 일부 영역(이하, '내측 전극부'라 함)에 복수의 채널 대신 예를 들어, 메쉬 타입의 전극으로 이루어져 형성될 수 있다.Referring to FIG. 12, instead of a plurality of channels, a portion of a channel (hereinafter, referred to as an 'inner electrode portion') in which the channels of the inner electrode 200 are formed may be formed of, for example, a mesh type electrode.
보다 구체적으로, 상기 내측 전극부(202)를 메쉬 타입 전극으로 구비하면, 제1 유입포트(240)를 통해 유입된 유체가 제1 유입구(250)로 유동한 후 전극 구조에 의해 내측 전극부(202)를 유동한 후 제1 배출구(260)를 통해 배출될 수 있다.More specifically, when the inner electrode part 202 is provided as a mesh type electrode, the fluid introduced through the first inlet port 240 flows to the first inlet port 250 and then the inner electrode part (by the electrode structure). After flowing 202, it may be discharged through the first outlet 260.
전술한 바와 같이, 내측 전극(200) 상에 유체의 유동을 안내하는 채널을 형성하는 대신에, 유체가 축 방향으로 이동가능 하도록 채널과 상응하는 타입의 전극을 구비하여 사용할 수 있다.As described above, instead of forming a channel for guiding the flow of the fluid on the inner electrode 200, an electrode of a type corresponding to the channel may be provided to enable the fluid to move in the axial direction.
이에 더하여, 상기 제1 유입포트(240)는, 내측 전극 내부로 유체가 공급되도록 마련된 전극 유체 공급부(미도시)를 포함할 수 있으며, 상기 전극 유체 공급부에서 제1 유입포트(240)로 유체를 공급하기 위한 제1 연결부재(901)를 포함할 수 있다.In addition, the first inlet port 240 may include an electrode fluid supply unit (not shown) provided to supply fluid into the inner electrode, and the fluid may be transferred from the electrode fluid supply unit to the first inlet port 240. It may include a first connecting member 901 for supplying.
여기서, 제1 연결부재(901)는 유체를 공급할 수 있는 수송관일 수 있으며, 유체를 공급할 수 있는 형태라면, 모두 적용 가능하다.Here, the first connection member 901 may be a transport pipe capable of supplying a fluid, and any type may be applicable as long as it can supply fluid.
이에 더하여, 상기 내측 전극(200)은 전술한 복수 개의 이온교환막(400)이 내측 전극(200) 외주면 둘레 방향을 따라 권취 되도록 이온교환막(400)의 축 방향(W)에 따른 양 단부 측이 각각 접합되는 접합부(280)를 포함한다.In addition, the inner electrode 200 has both end sides along the axial direction W of the ion exchange membrane 400 such that the plurality of ion exchange membranes 400 described above are wound along the outer circumferential direction of the inner electrode 200. It includes a junction 280 to be bonded.
상기 접합부(280)는 복수 개의 이온교환막(400)을 권취 하도록 내측 전극(200)의 일단부(201a)와 제4 채널(230)의 사이 영역 및 타단부(201b)와 제2 채널(210)의 사이 영역을 의미할 수 있다.The junction part 280 is a region between one end portion 201a of the inner electrode 200 and the fourth channel 230 and the other end portion 201b and the second channel 210 to wind up the plurality of ion exchange membranes 400. It can mean the area between.
즉, 내측 전극(200)의 일단부(201a)와 내측 전극부(202)의 사이 영역 및 타단부(201b)와 내측 전극부(202)의 사이 영역을 의미할 수 있다.That is, it may mean a region between one end portion 201a and inner electrode portion 202 of the inner electrode 200 and a region between the other end portion 201b and the inner electrode portion 202.
보다 구체적으로, 본 발명의 제1 및 제2 유로(410,420)는, 접합부(280) 상에 복수 개의 이온교환막(400)의 축 방향에 따른 양 단부를 소정 길이 만큼 접합(본딩)한 후, 내측 전극의 둘레 방향을 따라 이온교환막을 권취함으로써 형성될 수 있다.More specifically, the first and second flow paths 410 and 420 of the present invention are bonded to each other along the axial direction of the plurality of ion exchange membranes 400 on the junction portion 280 by a predetermined length, and then inside It can be formed by winding an ion exchange membrane along the circumferential direction of the electrode.
여기서, 상기 이온교환막(400)은 내측 전극의 둘레 방향을 따라 복수 번 권취 될 수 있다.Here, the ion exchange membrane 400 may be wound a plurality of times along the circumferential direction of the inner electrode.
또한, 전술한 바와 같이, 상기 이온교환막 상에 제 1채널이 형성되지 않은 경우, 유체의 흐름을 안내하기 위한 복수의 스페이서가 추가로 함께 권취될 수 있다. In addition, as described above, when the first channel is not formed on the ion exchange membrane, a plurality of spacers for guiding the flow of the fluid may be further wound together.
도 13은 본 발명의 일 실시예에 따라 내측 전극에 권취된 이온교환막을 설명하기 위해 나타낸 단면도 이다. 13 is a cross-sectional view illustrating an ion exchange membrane wound on an inner electrode according to an embodiment of the present invention.
도 13을 참조하면, 내측 전극(200) 둘레 방향을 따라 권취된 이온교환막(400)은 각각 제1 유로(410) 및 제2 유로(420)를 구획하게 된다.Referring to FIG. 13, the ion exchange membrane 400 wound in the circumferential direction of the inner electrode 200 partitions the first flow passage 410 and the second flow passage 420, respectively.
상기와 같이 내측 전극(200)에 권취된 이온교환막(400)은, 외측 전극(300) 측으로 유체가 유입되지 않도록 이온교환막의 축 방향에 따른 양 단부 측 적어도 일부 영역에 각각 결합되는 한 쌍의 실링 가스켓(500)을 포함할 수 있다.As described above, the ion exchange membrane 400 wound around the inner electrode 200 is a pair of seals respectively coupled to at least some regions on both end sides along the axial direction of the ion exchange membrane so that fluid does not flow into the outer electrode 300. It may include a gasket 500.
상기 한 쌍의 실링 가스켓(500)은, 권취된 이온교환막(400)을 고정 및 실링하는 역할을 동시에 수행할 수 있다. The pair of sealing gaskets 500 may simultaneously serve to fix and seal the wound ion exchange membrane 400.
도 14는 본 발명의 일 실시예에 따른 이온교환막에 한 쌍의 실링 가스켓이 결합된 상태를 나타낸 도면이다. 14 is a view showing a state in which a pair of sealing gaskets are coupled to an ion exchange membrane according to an embodiment of the present invention.
도 14를 참조하면, 한 쌍의 실링 가스켓(500)은 이온교환막의 축 방향에 따른 양 단부 즉, 내측 전극에 권취된 이온교환막의 일단부 측 및 타단부 측 각각에, 이온교환막의 적어도 일부 영역과 끼움 결합될 수 있다.Referring to FIG. 14, a pair of sealing gaskets 500 may be formed on at least some regions of the ion exchange membrane at both ends along the axial direction of the ion exchange membrane, that is, at one end side and the other end side of the ion exchange membrane wound on the inner electrode. And can be combined.
상기 한 쌍의 실링 가스켓(500)은, 권취된 이온교환막(200) 양 종단부에 유체 분배 부재(600)가 결합될 때, 유체 분배 부재(600)와 이온교환막(200)사이에 미세한 틈이 발생할 수 있어, 미세한 틈에 의해 외측 전극 측으로 유체가 유입되는 것을 방지할 수 있는 효과가 있다.When the fluid distribution member 600 is coupled to both ends of the wound ion exchange membrane 200, the pair of sealing gaskets 500 may have a minute gap between the fluid distribution member 600 and the ion exchange membrane 200. It may occur, there is an effect that can prevent the flow of fluid to the outer electrode side by a minute gap.
또한, 복수의 이온교환막 사이에 유체가 유입되면, 이온교환막 내부에서 팽창(Swelling)현상이 일어나게 되므로 상기와 같이 실링 가스켓(500)을 이온교환막 양 단부에 각각 결합하여 이를 방지할 수 있는 효과가 있다.In addition, when fluid flows between the plurality of ion exchange membranes, swelling occurs in the ion exchange membrane, so that the sealing gasket 500 is coupled to both ends of the ion exchange membrane as described above, thereby preventing the same. .
도 15는 본 발명의 일 실시예에 따른 하우징(100)을 나타낸 도면이다. 15 is a view showing a housing 100 according to an embodiment of the present invention.
도 15를 참조하면, 상기 하우징(100)은, 중공을 갖는 원통형으로 형성되며, 소정 두께(T1), 일단부(101a) 및 타단부(101b)를 갖는다.Referring to FIG. 15, the housing 100 is formed in a cylindrical shape having a hollow, and has a predetermined thickness T1, one end 101a, and the other end 101b.
보다 구체적으로, 상기 하우징(100)은, 제1 배출포트(270)로부터 유출된 전극 용액이 유입되는 제2 유입홀(110), 유입된 전극 용액이 외측 전극(300) 측으로 유동하도록 하우징 내주면(103) 타단부 측에 마련된 제2 유입구(120), 전극 용액이 축 방향을 따라 유동하여 배출되도록 하우징 내주면 일단부 측에 마련된 제2 배출구(130) 및 제2 배출구를 통과한 전극 용액이 외부로 배출되도록 마련된 제2 배출홀(140)을 포함한다.More specifically, the housing 100 may include a second inlet hole 110 through which the electrode solution flowing out of the first discharge port 270 flows, and an inner circumferential surface of the housing so that the introduced electrode solution flows toward the outer electrode 300. 103) The second inlet port 120 provided on the other end side, the electrode solution passed through the second outlet 130 and the second outlet provided on one end side so that the electrode solution flows out along the axial direction to the outside And a second discharge hole 140 provided to be discharged.
상기 제2 유입홀(110) 및 제2 배출홀(140)은 하우징의 일단부(101a)에 각각 형성될 수 있다.The second inflow hole 110 and the second discharge hole 140 may be formed at one end 101a of the housing, respectively.
보다 구체적으로, 상기 제2 유입홀(110)은 제2 유입구(120)와 유체 이동 가능하게 연결되도록 하우징의 외주면(102)과 내주면(130) 사이에 축 방향을 따라 소정 길이만큼 관통되게 마련될 수 있다. More specifically, the second inlet hole 110 is provided to penetrate through the axial direction between the outer circumferential surface 102 and the inner circumferential surface 130 of the housing so as to be fluidly connected to the second inlet 120. Can be.
또한, 제2 배출홀(140)은 제2 배출구(130)와 유체 이동 가능하게 연결되도록 하우징의 외주면(102)과 내주면(103) 사이에 축 방향을 따라 소정 길이만큼 관통되게 마련될 수 있다.In addition, the second discharge hole 140 may be provided to pass through the axial direction between the outer circumferential surface 102 and the inner circumferential surface 103 of the housing so as to be fluidly connected to the second outlet 130.
여기서, 상기 제2 유입홀(110)와 제2 배출홀(140)는 서로 반대방향에 마련될 수 있으며, 이에 따라 제2 유입구(120) 및 제2 배출구(130)도 하우징 내주면(103)에서 서로 반대방향에 배치될 수 있다.Here, the second inlet hole 110 and the second outlet hole 140 may be provided in opposite directions to each other, so that the second inlet 120 and the second outlet 130 also in the housing inner peripheral surface 103 It may be arranged in opposite directions to each other.
상기와 같이 배치함으로써, 유입된 유체가 하우징 타단부(101b) 측에서 일단부(101a) 측으로 유동하게 되어 후술할 외측 전극(300)의 전체 면적을 통과하게 된다.By arranging as described above, the introduced fluid flows from the other end portion 101b side to the one end portion 101a side and passes through the entire area of the outer electrode 300 to be described later.
이에 더하여, 전술한 바와 같이, 상기와 같이 내측 전극(200)과 외측 전극(300)에 유입되는 전극 용액을 공유 함으로써, 각각의 전극 용액을 따로 공급하지 않아도 되므로 장치가 보다 컴팩트하게 제작 될 수 있다.In addition, as described above, by sharing the electrode solution flowing into the inner electrode 200 and the outer electrode 300 as described above, it is not necessary to supply each electrode solution separately, the device can be made more compact .
한편, 본 발명의 일 실시예에 따른 외측 전극(300)은 중공을 갖는 원통형으로 형성되어 전술한 내측 전극에 권취된 이온교환막(400)을 둘러싸도록 배치될 수 있다.On the other hand, the outer electrode 300 according to an embodiment of the present invention may be formed in a cylindrical shape having a hollow to surround the ion exchange membrane 400 wound on the above-described inner electrode.
보다 구체적으로, 상기 외측 전극(300)은 하우징(100) 내 가장자리에 배치되어 하우징(100)과 소정 간격 떨어져 배치될 수 있다. More specifically, the outer electrode 300 may be disposed at an edge in the housing 100 to be spaced apart from the housing 100 by a predetermined distance.
상기 외측 전극(300)은 전극 용액이 유동 가능하도록 이온교환막(400)과 소정 공간(S)을 갖도록 소정 간격 떨어져 배치되고, 제2 유입구(120)를 통해 유입된 전극 용액이 외측 전극(300)을 통과하여 외측 전극과 이온교환막(400) 사이를 유동하도록 마련될 수 있다.The outer electrode 300 is disposed to be spaced apart from the ion exchange membrane 400 to have a predetermined space S so that the electrode solution can flow, and the electrode solution introduced through the second inlet 120 is the outer electrode 300. It may be provided to flow between the outer electrode and the ion exchange membrane 400 through.
보다 구체적으로, 상기 외측 전극(300)은 하우징(100)의 제2 유입구(120)를 통해 유입된 유체가 유동 가능 하도록 하우징 내주면(103)과 소정 간격 떨어져 배치될 수 있다.More specifically, the outer electrode 300 may be spaced apart from the housing inner circumferential surface 103 by a predetermined distance so that the fluid introduced through the second inlet 120 of the housing 100 may flow.
즉, 외측 전극(300)은 유체가 유동 가능하도록 이온교환막(400)과 소정 공간을 갖도록 배치되고, 제2 유입구(120)를 통해 유입된 유체가 외측 전극(300)을 통과하여 외측 전극과 이온교환막 사이를 유동하도록 마련될 수 있다.That is, the outer electrode 300 is disposed to have a predetermined space with the ion exchange membrane 400 to allow fluid to flow, and the fluid introduced through the second inlet 120 passes through the outer electrode 300 to allow the outer electrode and ions to flow. It may be provided to flow between the exchange membranes.
여기서, 상기 외측 전극(300)은 메쉬 타입 구조를 갖을 수 있으나, 이에 한정되는 것은 아니며, 유체가 통과할 수 있는 구조라면 모두 적용 가능하다.Here, the outer electrode 300 may have a mesh type structure, but is not limited thereto, and any outer structure may be used as long as the fluid may pass therethrough.
도 16 및 도 17은 본 발명의 일 실시예에 따른 유체 분배 부재(600)를 나타낸 도면이다.16 and 17 illustrate a fluid distribution member 600 in accordance with one embodiment of the present invention.
도 16 및 도 17을 참조하면, 본 발명의 일 실시예에 따른 역전기투석 발전 장치(10)는 권취된 복수 개의 이온교환막(400)의 양 종단부(401a, 401b)에 각각 결합되어 제1 유로(410) 및 제2 유로(420)로 고농도 및 저농도 용액을 각각 공급 및 배출하기 위한 한 쌍의 유체 분배 부재(600)를 포함한다.16 and 17, the reverse electrodialysis power generator 10 according to an embodiment of the present invention is coupled to both end portions 401a and 401b of the plurality of wound ion exchange membranes 400, respectively, and is connected to the first portion. And a pair of fluid distribution members 600 for supplying and discharging high and low concentration solutions, respectively, into the flow path 410 and the second flow path 420.
상기 유체 분재 부재(600)는 제1면(601a) 및 제1면의 반대방향에 이온교환막과 마주하는 제2면(601b)을 갖고, 제1면(601a)과 제2면(601b)의 중앙부를 관통하여 형성되는 제1 관통홀(610)을 포함한다.The fluid bonsai member 600 has a first surface 601a and a second surface 601b opposite the ion exchange membrane in a direction opposite to the first surface, and has a first surface 601a and a second surface 601b. The first through hole 610 is formed through the central portion.
특히, 제1 관통홀(610)의 내주면은 내측 전극의 결합 부재(291)의 외주면과 결합되고, 유체 분배 부재(600)의 외주면은 하우징(100)의 내주면(103)과 맞닿게 결합될 수 있다.In particular, the inner circumferential surface of the first through hole 610 may be coupled to the outer circumferential surface of the coupling member 291 of the inner electrode, and the outer circumferential surface of the fluid distribution member 600 may be coupled to be in contact with the inner circumferential surface 103 of the housing 100. have.
여기서, 도 16의 (c)를 참조하면, 유체 분배 부재(600)의 종단면을 기준으로, 외둘레부(602) 길이(h1)는, 제1 관통홀(610)의 길이(h2) 보다 길게 형성될 수 있다.Here, referring to FIG. 16C, the length h1 of the outer circumferential portion 602 is longer than the length h2 of the first through hole 610 based on the longitudinal section of the fluid distribution member 600. Can be formed.
이에 더하여, 상기 유채 분배 부재(600)는 제1 관통홀(610)의 둘레 영역을 따라 소정 간격으로 떨어져 배열된 복수 개의 제1 유체 공급홀(620), 각각의 제1 유체 공급홀(620) 사이에 각각 배열되는 복수 개의 제1 유체 배출홀(630) 및 제 2면(601b)에, 각각의 제1 유체 공급홀(620) 및 제1 유체 배출홀(630) 사이에 각각 마련되어 제1 유체 공급홀(620)과 제1 유체 배출홀(630)을 통과하는 유체의 유동을 분리하기 위한 복수 개의 격벽(640) 을 포함한다.In addition, the rapeseed distribution member 600 includes a plurality of first fluid supply holes 620 and respective first fluid supply holes 620 that are spaced apart at predetermined intervals along a circumferential region of the first through hole 610. The first fluid is provided between the first fluid supply hole 620 and the first fluid discharge hole 630, respectively, in the plurality of first fluid discharge holes 630 and the second surface 601 b which are arranged between the first fluid discharge holes 630 and the second surface 601 b. It includes a plurality of partitions 640 for separating the flow of the fluid passing through the supply hole 620 and the first fluid discharge hole 630.
보다 구체적으로, 내측 전극(200)에 권취된 이온교환막(400)의 양 종단부 즉, 이온교환막(400)의 일단부(401a) 측 및 타단부(401b) 측의 축 방향을 따른 일부 영역이 유체 분배 부재(600)에 삽입 끼움 결합되어 상기 복수 개의 이온교환막을 고정 및 지지하며, 이온교환막을 밀폐할 수 있게 된다.More specifically, some regions along the axial direction of both ends of the ion exchange membrane 400 wound around the inner electrode 200, that is, the one end portion 401a side and the other end portion 401b side of the ion exchange membrane 400 are formed. The insert-fit coupled to the fluid distribution member 600 fixes and supports the plurality of ion exchange membranes, and seals the ion exchange membranes.
특히, 권취된 이온교환막의 일단부(401a) 및 타단부(401)는 유체 분배 부재의 제2면(601b)에 형성된 격벽(640)과 맞닿게 각각 결합되어 후술할 유체 공급 부재로부터 유입된 유체가 이온교환막으로 유입되거나, 이온교환막을 통과한 후 유출될 수 있다.In particular, one end portion 401a and the other end portion 401 of the wound ion exchange membrane are respectively coupled to abutment with the partition wall 640 formed on the second surface 601b of the fluid distribution member, and the fluid introduced from the fluid supply member to be described later. May flow into the ion exchange membrane, or may flow out after passing through the ion exchange membrane.
즉, 유체 분배 부재(600)의 외둘레부(602) 길이(h1)를 제1 관통홀(610)의 길이(h2)의 길이보다 길게 형성함으로써, 이온교환막의 일부 영역을 감싸도록 결합될 수 있게 된다.That is, by forming the length h1 of the outer circumferential portion 602 of the fluid distribution member 600 to be longer than the length h2 of the first through hole 610, it may be coupled to surround a portion of the ion exchange membrane. Will be.
도 5를 참조하면, 상기 외측 전극(300)은 축 방향을 기준으로, 양 종단부가 한 쌍의 유체 분배 부재(600)의 외둘레부(602) 각각의 종단부(602a. 602b) 사이에 배치될 수 있다.Referring to FIG. 5, the outer electrode 300 is disposed between the end portions 602a and 602b of each of the outer circumference portions 602 of the pair of fluid distribution members 600 with respect to the axial direction. Can be.
특히, 상기 외둘레부(602)는 소정 두께(T2)를 갖도록 형성하여 하우징(100) 내주면(103)과 이온교환막(200) 사이에 외측 전극(300)이 배치될 수 있는 소정 공간(S)이 마련될 수 있게 된다.In particular, the outer circumferential portion 602 is formed to have a predetermined thickness T2 so that the outer space 300 may be disposed between the inner circumferential surface 103 of the housing 100 and the ion exchange membrane 200. This can be provided.
따라서, 그 공간에 의해 외측 전극(300)은 하우징(100)의 내주면(103)과 소정 간격 이격됨과 동시에, 외측 전극 측의 이온교환막(400)과 소정간격 이격될 수 있게 된다.Accordingly, the outer electrode 300 may be spaced apart from the inner circumferential surface 103 of the housing 100 by a predetermined space, and spaced apart from the ion exchange membrane 400 on the outer electrode side.
이에 더하여, 상기 유체 분배 부재(600)의 외주면 즉, 외둘레부(602)에는 둘레 방향을 따라 형성된 복수 개의 실링 홈(605)이 마련될 수 있다. In addition, a plurality of sealing grooves 605 formed along the circumferential direction may be provided on the outer circumferential surface of the fluid distribution member 600, that is, the outer circumferential portion 602.
또한, 상기 유체 분배 부재(600)의 제1 관통홀(610)의 내주면에도 둘레 방향을 따라 형성된 복수 개의 실링 홈(605')이 마련될 수 있다.In addition, a plurality of sealing grooves 605 ′ formed along the circumferential direction may also be provided on the inner circumferential surface of the first through hole 610 of the fluid distribution member 600.
상기의 실링 홈(605, 605')에는 유체의 누수를 방지하기 위한 고무링(미도시)이 각각 삽입되도록 마련될 수 있다.The sealing grooves 605 and 605 'may be provided so that rubber rings (not shown) may be inserted to prevent leakage of fluid.
도 18 및 도 19는 본 발명의 일 실시예에 따른 유체 공급 부재(700)를 나타낸 도면이고, 도 20은 유체 공급 부재(600)와 유체 분배 부재(700)가 결합된 결합도이다.18 and 19 are views illustrating a fluid supply member 700 according to an embodiment of the present invention, and FIG. 20 is a coupling diagram in which the fluid supply member 600 and the fluid distribution member 700 are coupled.
도 18 내지 도 20을 참조하면, 본 발명의 일 실시예에 따른 역전기투석 발전 장치(10)는 하우징의 양 종단부(101a, 101b)에 각각 결합되어 각각의 제1 유체 공급홀(620)로 유체를 각각 공급하고, 제1 유체 배출홀(630)로부터 토출되는 유체를 배출하기 위한 한 쌍의 유체 공급 부재(700)를 포함한다.18 to 20, the reverse electrodialysis generator 10 according to an embodiment of the present invention is coupled to both end portions 101a and 101b of the housing, respectively, so that each of the first fluid supply holes 620 is provided. And a pair of fluid supply members 700 for supplying fluid to the furnace and for discharging fluid discharged from the first fluid discharge hole 630.
여기서, 도 2 내지 도 5를 참조하면, 상기 유체 공급 부재(700)는 내측 전극(200)으로 유입된 전극 용액이 외측 전극(300)으로 이송되도록 제1 배출포트(270)와 유체 이동 가능하게 연결되는 제2 유입포트(780)를 포함할 수 있고, 제2 유입포트(780)는, 제2 유입홀(110)과 유체 이동 가능하게 연결되며, 제1 배출 포트(270)와 제2 유입포트(780)를 유체 이동 가능하게 연결하는 제2 연결부재(902)를 포함한다. 2 to 5, the fluid supply member 700 may fluidly move with the first discharge port 270 so that the electrode solution introduced into the inner electrode 200 is transferred to the outer electrode 300. It may include a second inlet port 780 connected, the second inlet port 780 is connected to the second inlet hole 110 so as to be fluidly movable, the first outlet port 270 and the second inlet And a second connecting member 902 for fluidly connecting the port 780.
즉, 하우징(100)의 일단부(101a)에 결합된 유체 공급 부재(700)는, 상기 제1 배출포트(270)에서 토출된 유체가 제2 유입포트(780)를 통과하여 하우징의 제2 유입홀(110)로 유입될 수 있다.That is, in the fluid supply member 700 coupled to the one end 101a of the housing 100, the fluid discharged from the first discharge port 270 passes through the second inlet port 780 to allow the second fluid in the housing. It may be introduced into the inlet hole (110).
따라서, 상기 제2 유입포트(780)는 제2 유입홀(110)과 유체이동 가능하도록 서로 대응하게 위치될 수 있다.Accordingly, the second inflow port 780 may be positioned to correspond to each other to allow fluid movement with the second inflow hole (110).
또한, 상기 제2 배출 포트(790)는 제2 배출홀(140)과 유체이동 가능하도록 서로 대응하게 위치될 수 있다.In addition, the second discharge port 790 may be positioned to correspond to each other so that the second discharge hole 140 and the fluid movement.
여기서, 상기 유체 공급 부재(700)는, 내측 전극으로 유입된 전극 용액이 외측 전극으로 이송되도록 제1 배출포트(270)와 제2 유입포트(780)를 연결하는 제2 연결부재(902)를 포함한다.The fluid supply member 700 may include a second connection member 902 connecting the first discharge port 270 and the second inflow port 780 so that the electrode solution introduced into the inner electrode is transferred to the outer electrode. Include.
즉, 제1 배출포트(270)와 제2 유입포트(780)는 제2 연결부재(902)에 의해 유체 이동 가능하게 연결될 수 있다.That is, the first discharge port 270 and the second inlet port 780 may be connected to the fluid movement by the second connecting member 902.
또한, 상기 제2 배출포트(790)는 하우징에서 토출된 전극 용액이 유체 공급 부재를 통과하여 외부로 배출되도록 제2 배출포트(790)에 연결된 제3 연결부재(903)를 포함할 수 있다.In addition, the second discharge port 790 may include a third connection member 903 connected to the second discharge port 790 such that the electrode solution discharged from the housing is discharged to the outside through the fluid supply member.
상기 제2 및 제3 연결부재(902, 903)는 유체를 공급할 수 있는 수송관일 수 있으며, 유체를 공급할 수 있는 형태라면, 모두 적용 가능하다.The second and third connection members 902 and 903 may be transport pipes capable of supplying a fluid, and any type of the second and third connection members 902 and 903 may be applicable.
상기 한 쌍의 유체 공급 부재(700)는, 제1면(701a) 및 제1면의 반대 방향에 이온교환막과 마주하는 제2면(701b)을 갖고, 제1 관통홀(610)과 대응하는 위치에 제1면과 제2면을 관통하는 제2 관통홀(710)을 포함한다.The pair of fluid supply members 700 have a first surface 701a and a second surface 701b facing the ion exchange membrane in a direction opposite to the first surface, and correspond to the first through hole 610. It includes a second through hole 710 penetrating the first surface and the second surface in the position.
보다 구체적으로, 한 쌍의 유체 공급 부재(700)는, 복수 개의 제1 유체 공급홀(620) 중 하나와 대응하게 위치하고, 제1면(701a)과 제2면(701b)을 관통하여 형성되는 제2 유체 공급홀(720)을 포함한다.More specifically, the pair of fluid supply members 700 are positioned to correspond to one of the plurality of first fluid supply holes 620 and are formed through the first surface 701a and the second surface 701b. The second fluid supply hole 720 is included.
또한, 복수 개의 제1 유체 공급홀(620)로 유체를 공급하기 위해 제2면(701b)의 제2 관통홀(710)의 둘레방향을 따라 유체 이동 가능하게 연결된 유체 공급 유로(730)를 포함한다.In addition, the fluid supply passage 730 is connected to the fluid movement along the circumferential direction of the second through hole 710 of the second surface 701b to supply fluid to the plurality of first fluid supply holes 620. do.
또한, 복수 개의 제1 유체 배출홀(630) 중 하나와 대응하게 위치하고, 제1면(701a)과 제2면(701b)을 관통하여 형성되는 제2 유체 배출홀(740) 및 복수 개의 제1 유체 배출홀(630)로부터 유출된 유체를 배출하기 위해 유체 공급 유로(730) 둘레 방향을 따라 유체 이동 가능하게 연결된 유체 배출 유로(750)를 포함한다.In addition, a second fluid discharge hole 740 and a plurality of first fluids which are disposed to correspond to one of the plurality of first fluid discharge holes 630 and penetrate the first surface 701a and the second surface 701b. It includes a fluid discharge flow path 750 connected to the fluid movement along the circumferential direction of the fluid supply flow path 730 to discharge the fluid flowing out of the fluid discharge hole 630.
보다 구체적으로, 상기 유체 공급 유로(730)는 교번하여 형성된 복수 개의 제1 유체 공급홀(620)과 대응하게 제2 관통홀(710)을 기준으로, 제2 관통홀(710)의 둘레 방향을 따라 대략 물결 형상의 패턴을 갖도록 복수 개의 볼록부(731)가 형성될 수 있다.More specifically, the fluid supply flow path 730 is a circumferential direction of the second through hole 710 based on the second through hole 710 to correspond to the plurality of first fluid supply holes 620 formed alternately. Accordingly, a plurality of convex portions 731 may be formed to have a substantially wavy pattern.
즉, 상기 복수 개의 볼록부(731)는 복수 개의 제1 유체 공급홀(620)과 대응하게 위치하여 형성될 수 있다.That is, the plurality of convex portions 731 may be formed to correspond to the plurality of first fluid supply holes 620.
또한, 상기 유체 배출 유로(750)는 교번하여 형성된 복수 개의 제1 유체 배출홀(630)과 대응하게 제2 관통홀(710)을 기준으로, 유체 공급 유로(730)의 둘레 방향을 따라 대략 물결 형상의 패턴을 갖도록 복수 개의 오목부(732)가 형성될 수 있다.In addition, the fluid discharge flow path 750 is substantially waved along the circumferential direction of the fluid supply flow path 730 based on the second through hole 710 corresponding to the plurality of first fluid discharge holes 630 alternately formed. A plurality of recesses 732 may be formed to have a shape pattern.
즉, 상기 복수 개의 오목부(732)는 복수 개의 제1 유체 배출홀(630)과 대응하게 위치하여 형성될 수 있다.That is, the plurality of recesses 732 may be formed to correspond to the plurality of first fluid discharge holes 630.
이에 더하여, 상기 유체 공급 부재(700)는, 유체 공급 유로(730)와 유체 배출 유로(750)를 구획하기 위한 유로 격벽(760)이 마련될 수 있다.In addition, the fluid supply member 700 may be provided with a flow path partition wall 760 for partitioning the fluid supply flow path 730 and the fluid discharge flow path 750.
상기 유로 격벽(760)은, 교번하여 형성된 볼록부(731)와 오목부(732) 사이를 구획하도록 대략 물결 형상의 패턴을 갖도록 마련될 수 있다.The flow path partition wall 760 may be provided to have a substantially wavy pattern so as to partition between the convex portion 731 and the concave portion 732 formed alternately.
또한, 상기 제2 유체 공급홀(720)은 유체 공급 유로(730)의 복수 개의 볼록부(731) 중 어느 하나에 마련될 수 있고, 제2 유체 배출홀(740)은 유체 배출 유로(750)의 복수 개의 오목부(732) 중 어느 하나에 마련될 수 있다.In addition, the second fluid supply hole 720 may be provided in any one of the plurality of convex portions 731 of the fluid supply flow path 730, and the second fluid discharge hole 740 may be the fluid discharge flow path 750. It may be provided in any one of the plurality of recesses (732).
이에 더하여, 상기 한 쌍의 유체 공급 부재(700) 중 하나에 저농도 용액 또는 고농도 용액 중 하나가 유입되고, 한 쌍의 유체 공급 부재 중 나머지 하나에 저농도 용액 또는 고농도 용액 중 나머지 하나가 유입되도록 마련될 수 있다.In addition, one of the low concentration solution or the high concentration solution is introduced into one of the pair of fluid supply members 700, and the other one of the low concentration solution or the high concentration solution is introduced to the other one of the pair of fluid supply members. Can be.
예를 들면, 하우징(100)의 일단부(101a)와 결합한 유체 공급 부재(700)로 저농도 용액이 유입되면, 하우징의 타단부(101b)와 결합한 유체 공급 부재(700)로는 고농도 용액이 유입된다.For example, when a low concentration solution flows into the fluid supply member 700 coupled with one end 101a of the housing 100, a high concentration solution flows into the fluid supply member 700 coupled with the other end 101b of the housing 100. .
이와 반대로, 하우징(100)의 일단부(101a)과 결합한 유체 공급 부재(700)로 고농도 용액이 유입되면, 하우징의 타단부(101b)와 결합한 유체 공급 부재(700)로는 저농도 용액이 유입된다.On the contrary, when a high concentration solution flows into the fluid supply member 700 coupled to one end 101a of the housing 100, a low concentration solution flows into the fluid supply member 700 coupled with the other end 101b of the housing 100.
전술한 바와 같이, 본 발명의 역전기투석 발전 장치(10)는 상기와 같은 구성에 의해 고농도 용액과 저농도 용액이 내측 전극에 권취된 이온교환막 상에서 축 방향을 따라 유동되어 해수와 담수의 유동 거리를 조절, 농도차가 끝까지 발생하도록 하여 장치의 성능을 최적화 시킬 수 있게 된다.As described above, the reverse electrodialysis power generation apparatus 10 of the present invention has the above-described configuration in which the high concentration solution and the low concentration solution flow along the axial direction on the ion exchange membrane wound on the inner electrode, thereby reducing the flow distance between seawater and fresh water. It is possible to optimize the performance of the device by allowing adjustment and concentration differences to occur to the end.
일반적으로, 유체의 유동 길이가 길어질수록 고농도 용액과 저농도 용액의 농도차가 낮아 지게 되어 유체의 유로 말단에서 전위차가 낮아 지게 되어 전체적인 전기 생산 효율이 낮아질 수 있으나, 본 발명과 같이 유체의 유동 길이를 짧게 하여 보다 높은 효율로 전기를 생산할 수 있는 효과가 있다.In general, the longer the flow length of the fluid, the lower the difference in concentration between the high concentration solution and the low concentration solution is lowered the potential difference at the end of the flow path of the fluid can lower the overall electrical production efficiency, but the flow length of the fluid shorter Therefore, there is an effect that can produce electricity with higher efficiency.
한편, 상기와 같이 전기를 생산하기 위해 본 발명의 상기 내측 전극(200) 및 외측 전극(300)은, 각각 전기를 집진하기 위한 제1 및 제2 전극봉(801, 802)을 각각 포함하고, 제1 전극봉(801)은, 제1 및 제2 관통홀(610, 710)을 통과하여 외부로 돌출되도록 마련될 수 있다.Meanwhile, in order to produce electricity as described above, the inner electrode 200 and the outer electrode 300 of the present invention include first and second electrode rods 801 and 802 for collecting electricity, respectively. The first electrode 801 may be provided to protrude to the outside through the first and second through holes 610 and 710.
또한, 상기 유체 분배 부재 및 유체 공급 부재 각각은 제2 전극봉(802)이 통과하는 관통홀(미도시)을 포함할 수 있다. In addition, each of the fluid distribution member and the fluid supply member may include a through hole (not shown) through which the second electrode 802 passes.
또한, 상기 제1 전극봉(801)은 내측 전극과 연결되고, 제2 전극봉(802)은 외측 전극과 연결되며, 제1 및 제2 전극봉(801,802)은 전기적으로 연결되어 전기가 생산될 수 있다.In addition, the first electrode 801 may be connected to the inner electrode, the second electrode 802 may be connected to the outer electrode, and the first and second electrode 801 and 802 may be electrically connected to generate electricity.
도 5를 참조하면, 본 발명의 하우징 내부에는, 하우징 내 중앙부를 기준으로, 내측 전극(200), 내측 전극에 권취된 복수 개의 이온교환막(400), 이온교환막과 유체 분배 부재 사이를 실링하도록 마련된 한 쌍의 실링 가스켓(500), 권취된 이온교환막을 밀폐하여 유체를 공급하기 위한 한 쌍의 유체 분배 부재(600)가 각각 차례로 결합될 수 있다.Referring to FIG. 5, inside the housing of the present invention, an inner electrode 200, a plurality of ion exchange membranes 400 wound around the inner electrode, an ion exchange membrane, and a fluid distribution member are provided to seal the center portion of the housing. A pair of sealing gaskets 500 and a pair of fluid distribution members 600 for supplying a fluid by sealing the wound ion exchange membrane may be coupled in turn.
또한, 하우징 양 종단부에 각각 유체 공급 부재를 결합하여 장치(10)의 결합을 완료할 수 있다.In addition, the fluid supply member may be coupled to both ends of the housing to complete the coupling of the device 10.
도 21은 본 발명의 일 실시예에 따른 역전기투석 장치(10)의 유체 흐름을 나타낸 도면이고, 도 22는 본 발명의 다른 일 실시예에 따른 역전기투석 장치(10)의 유체 흐름을 나타낸 도면이다.21 is a view showing the fluid flow of the reverse electrodialysis apparatus 10 according to an embodiment of the present invention, Figure 22 is a view showing the fluid flow of the reverse electrodialysis apparatus 10 according to another embodiment of the present invention Drawing.
보다 구체적으로, 도 21은 복수 개의 유로 부재(450)를 포함하는 이온교환막 (400)이 구비된 역전기투석 장치(10)이고, 도 22는 복수 개의 제1 채널(430)을 포함하는 이온교환막(400)이 구비된 역전기투석 장치(10)를 나타낸다.More specifically, FIG. 21 is a reverse electrodialysis apparatus 10 having an ion exchange membrane 400 including a plurality of flow path members 450, and FIG. 22 is an ion exchange membrane including a plurality of first channels 430. A reverse electrodialysis apparatus 10 equipped with 400 is shown.
도 21 및 도 22를 참조하여 본 발명의 유체의 흐름 과정을 설명하면 다음과 같다. 여기서, 하우징의 일단부에 마련된 유체 공급 부재(700)로 저농도 용액을 공급하고, 하우징의 타단부에 마련된 유체 공급 부재(700)로 고농도 용액을 공급하는 것을 일 예로 설명한다.Referring to Figures 21 and 22 will be described the flow of the fluid of the present invention. Here, an example will be described in which a low concentration solution is supplied to the fluid supply member 700 provided at one end of the housing, and a high concentration solution is supplied to the fluid supply member 700 provided at the other end of the housing.
저농도 용액과 고농도 용액의 흐름 과정을 설명하면, 하우징의 일단부에 마련된 제2 유체 공급홀(720)로 저농도 용액을 공급하고, 하우징의 타단부에 마련된 제2 유체 공급홀(720)로 고농도 용액을 공급한다.Referring to the flow of the low concentration solution and the high concentration solution, the low concentration solution is supplied to the second fluid supply hole 720 provided at one end of the housing, the high concentration solution to the second fluid supply hole 720 provided at the other end of the housing To supply.
제2 유체 공급홀(720)로 공급된 유체는 각각 유체 공급 유로(730)를 유동하며 제2 관통홀(710)의 둘레 방향을 따라 유동하게 된다.The fluid supplied to the second fluid supply hole 720 flows along the circumferential direction of the second through hole 710 while flowing through the fluid supply flow path 730, respectively.
상기와 같이 유체 공급 유로(730)를 유동하는 유체는 이와 연결된 각각의 제1 유체 공급홀(620)을 통과하여 이온교환막에 의해 구획된 제1 및 제2 유로에 각각 유입된다.As described above, the fluid flowing in the fluid supply passage 730 passes through each of the first fluid supply holes 620 connected thereto and flows into the first and second passages partitioned by the ion exchange membrane, respectively.
먼저, 도 21을 참조하여 복수 개의 유로 부재(450)를 포함하는 이온교환막 (400)이 구비된 역전기투석 장치(10)에서의 유체의 흐름은, 제1 및 제2 유로에 유입된 유체는 이온교환막의 스페이서에 의해 각각 축 방향으로 유동한 후 이온교환막에서 토출된다.First, referring to FIG. 21, the flow of the fluid in the reverse electrodialysis apparatus 10 having the ion exchange membrane 400 including the plurality of flow path members 450 includes the flow of the fluid introduced into the first and second flow paths. Each flows in the axial direction by the spacer of the ion exchange membrane and is then discharged from the ion exchange membrane.
여기서, 제1 및 제2 유로를 유동하는 유체는 각각 스페이서에 의해 중심축을 기준으로 소정각도를 갖는 방향으로, 대략 사선방향으로 유동될 수 있다.Here, the fluid flowing through the first and second flow paths may be respectively flowed in a substantially diagonal direction in a direction having a predetermined angle with respect to the central axis by the spacer.
일단부에서 유입된 저농도 용액은 제2 유로로 유입된 후 타단부에 마련된 각각의 제1 유체 배출홀(630)을 통해 토출되어, 유체 배출 유로(750)를 유동하며 제2 유체 배출홀(740)을 통해 하우징의 외부로 배출될 수 있다.The low concentration solution introduced at one end flows into the second flow path and then is discharged through each of the first fluid discharge holes 630 provided at the other end, and flows through the fluid discharge flow path 750 and the second fluid discharge hole 740. Can be discharged to the outside of the housing.
이 때, 타단부에서 유입된 고농도 용액은 제1 유로로 유입된 후 일단부에 마련된 각각의 제1 유체 배출홀(630)을 통해 토출되어, 유체 배출 유로(750)를 유동하며 제2 유체 배출홀(740)을 통해 하우징의 외부로 배출될 수 있다.At this time, the high concentration solution introduced from the other end is introduced into the first flow path and then discharged through each of the first fluid discharge holes 630 provided at one end, and flows through the fluid discharge flow path 750 and discharges the second fluid. It may be discharged to the outside of the housing through the hole 740.
이러한 과정에서, 제1 및 제2 유로를 유동하는 저농도 용액과 고농도 용액의 농도차에 의해 고농도 용액에 포함된 이온성 물질(양이온성 물질 및 음이온성 물질)이 이온교환막을 선택적으로 통과하여 전위차가 발생되어 전기를 생산할 수 있게 된다. In this process, ionic materials (cationic materials and anionic materials) contained in the high concentration solution selectively pass through the ion exchange membrane due to the difference in concentration between the low concentration solution and the high concentration solution flowing through the first and second flow paths. To generate electricity.
도 22를 참조하여 복수 개의 제1 채널(430)을 포함하는 이온교환막(400)이 구비된 역전기투석 장치(10)에서의 유체의 흐름은, 제1 및 제2 유로에 유입된 유체는 이온교환막에 형성된 제1 채널을 따라 축 방향으로 유동하게 되고, 각각의 이온교환막에 마련된 가스켓에 의해 유동이 꺽인 후 제1 채널을 따라 다시 축 방향으로 유동하여 이온교환막에서 토출 된다.Referring to FIG. 22, the flow of fluid in the reverse electrodialysis apparatus 10 having the ion exchange membrane 400 including the plurality of first channels 430 may include ions in the first and second flow paths. It flows in the axial direction along the first channel formed in the exchange membrane, and the flow is broken by the gasket provided in each ion exchange membrane, and then flows again in the axial direction along the first channel and discharged from the ion exchange membrane.
즉, 일단부로 유입된 저농도 용액은 제1 채널을 따라 유동하여 다시 일단부로 토출되고, 타단부로 유입된 고농도 용액은 제1 채널을 따라 다시 타단부로 토출될 수 있다.That is, the low concentration solution introduced into one end may flow along the first channel and be discharged to one end again, and the high concentration solution introduced into the other end may be discharged back to the other end along the first channel.
이러한 과정에서, 제1 및 제2 유로를 유동하는 저농도 용액과 고농도 용액의 농도차에 의해 고농도 용액에 포함된 이온성 물질(양이온성 물질 및 음이온성 물질)이 이온교환막을 선택적으로 통과하여 전위차가 발생되어 전기를 생산할 수 있게 된다. In this process, ionic materials (cationic materials and anionic materials) contained in the high concentration solution selectively pass through the ion exchange membrane due to the difference in concentration between the low concentration solution and the high concentration solution flowing through the first and second flow paths. To generate electricity.
상기와 같이 이온교환막에서 배출된 유체는 제1 유체 배출홀을 통과하여 유동하고 유동된 유체는 유체 배출 유로를 따라 유동하여 제2 유체 배출홀을 통해 외부로 배출되게 된다.As described above, the fluid discharged from the ion exchange membrane flows through the first fluid discharge hole, and the flowed fluid flows along the fluid discharge flow path to be discharged to the outside through the second fluid discharge hole.
본 명세서에서, 저농도 용액은 담수, 기수 등을 포함할 수 있으나 이에 한정되는 것은 아니며, 상기 고농도 용액은 염수, 해수, 나트륨아세테이트 (CH3NaCO2), 칼슘불화물 (CaF2), 황산마그네슘 (MgSO4) 수용액 등을 포함할 수 있으나 이에 한정되는 것은 아니다.In the present specification, the low concentration solution may include, but is not limited to, fresh water, brackish water, and the like. It may include, but is not limited to.
전술한 바와 같이, 저농도 용액과 고농도 용액의 농도차를 이용하여 전기를 생산하기 위해서는 저농도 및 고농도 용액이 유동하는 동안, 상기 내측 전극 및 외측 전극에도 유체가 유동되어야 한다.As described above, in order to generate electricity by using the concentration difference between the low concentration solution and the high concentration solution, the fluid must also flow to the inner and outer electrodes while the low and high concentration solutions are flowing.
상기 내측 전극과 외측 전극을 유동하는 유체 예를 들어, 전극 용액은 제1 연결부재 및 제1 유입 포트를 통해 내측 전극 내부로 유입된다.Fluid flowing through the inner electrode and the outer electrode, for example, an electrode solution, is introduced into the inner electrode through the first connecting member and the first inlet port.
내측 전극 내부로 유입된 전극 용액은 제1 유입구로 토출되어 내측 전극 외주면으로 이동하고, 제2 내치 제4 채널을 따라 유동한 후 제1 배출구 및 제1 배출 포트를 통과하여 내측 전극 외부로 배출된다.The electrode solution introduced into the inner electrode is discharged to the first inlet, moves to the inner circumferential surface of the inner electrode, flows along the second inner fourth channel, and is discharged to the outside of the inner electrode through the first outlet and the first outlet port. .
그 후, 전극 용액은 제1 배출포트와 연결된 제2 부재에 의해 제2 유입포트로 이송되고, 제2 유입포트과 연결된 제2 유입홀을 통과하여 제2 유입구로 토출되어 하우징 내부로 유동된다.Thereafter, the electrode solution is transferred to the second inlet port by the second member connected to the first outlet port, passed through the second inlet hole connected to the second inlet port, and discharged to the second inlet port to flow into the housing.
하우징 내부로 유동된 전극 용액은 외측 전극을 통과하여 유동하고 제2 배출구를 통해 배출되어 이와 연결된 제2 배출홀로 유동된다.The electrode solution flowed into the housing flows through the outer electrode and is discharged through the second outlet to the second discharge hole connected thereto.
유동된 전극 용액은 제2 배출홀과 연결된 제2 배출포트를 통과하여 제3 연결부재에 의해 외부로 배출된다.The flow of the electrode solution is discharged to the outside by the third connection member through the second discharge port connected to the second discharge hole.
본 명세서에서, 내측 전극과 외측 전극으로 유입되는 유체는 전극 용액일 수 있고, 상기 전극 용액은 일 예로, 담수, 해수, 페리시안화칼륨(potassium ferricyanide) 및 염화철(Iron chloride)을 포함할 수 있으나 이에 한정되는 것은 아니며, 일반적으로 역전기투석 장치에서 사용가능 한 전극 용액이라면 모두 적용될 수 있다.In the present specification, the fluid flowing into the inner electrode and the outer electrode may be an electrode solution, and the electrode solution may include, for example, fresh water, seawater, potassium ferricyanide, and iron chloride. Generally, the present invention is not limited thereto, and any electrode solution usable in the reverse electrodialysis apparatus may be applied.
한편, 전술한 바와 같이 본 발명의 역전기투석 발전 장치(10)로 저농도 및 고농도 용액이 이온교환막(400)으로 유입되어 전력 생산 시, 저농도 및 고농도 용액이 유입되는 유입부 측의 이온교환막에 스케일이 생성될 수 있는데, 이 때, 유체 공급 부재와 유체 분배 부재를 분리하여 보수 할 수 있어 보다 효율적인 장치 관리를 할 수 있게 된다. Meanwhile, as described above, the low concentration and high concentration solution flows into the ion exchange membrane 400 into the reverse electrodialysis power generation apparatus 10 of the present invention, and when the power is produced, the scale is concentrated on the ion exchange membrane on the inlet side where the low concentration and high concentration solution flows. In this case, the fluid supply member and the fluid distribution member can be separated and repaired, thereby enabling more efficient device management.
이에 더하여, 본 발명에 따른 역전기투석 장치(10)는 양이온 교환막과 음이온 교환막 만을 이용하여 내측전극에 권취하여 제작함으로써, 제작이 보다 용이하며, 자동화 공정이 쉽고 누수 방지 및 유지 보수가 용이하다.In addition, the reverse electrodialysis apparatus 10 according to the present invention is manufactured by winding the inner electrode using only the cation exchange membrane and the anion exchange membrane, thereby making it easier to manufacture, easy to automate, easy to prevent leakage and maintenance.
본 발명은, 또한, 역전기투석 발전 시스템(20)을 제공한다.The present invention also provides a reverse electrodialysis power generation system 20.
예를 들어, 상기 역전기투석 발전 시스템은, 전술한 역전기투석 발전 장치(10)를 이용한 시스템에 관한 것이다.For example, the reverse electrodialysis power generation system relates to a system using the reverse electrodialysis power generation device 10 described above.
따라서, 후술하는 역전기투석 발전 장치에 대한 구체적인 사항은 역전기투석 발전 장치(10)에서 기술한 내용이 동일하게 적용될 수 있다.Therefore, the details described in the reverse electrodialysis power generation device to be described later may be equally applied.
도 23 및 도 24는 본 발명의 일 실시예에 따른 역전기투석 발전 시스템을 설명하기 위해 나타낸 도면이다.23 and 24 are views shown to explain a reverse electrodialysis power generation system according to an embodiment of the present invention.
도 23 및 도 24를 참조하면, 본 발명의 역전기투석 발전 시스템(20)은 전술한 복수 개의 역전기투석 발전장치(10) 및 역전기투석 발전장치(10) 각각을 수용하도록 복수 개의 장착 공간(1100)을 갖는 전력 변환부(1000)를 포함하고, 복수 개의 장착 공간(1100) 각각은, 제2 유체 공급홀(720) 각각에 저농도 용액 또는 고농도 용액을 공급하도록 마련된 제1 및 제2 유체 공급관(1201,1202), 제2 유체 배출홀(740) 각각에서 토출되는 유체를 외부로 배출하도록 마련된 제1 및 제2 유체 배출관(1301,1302), 제1 유입포트(240)로 유체를 공급하도록 마련된 제3 유체 공급관(1401), 제2 배출 포트(790)에서 토출되는 유체를 외부로 배출하도록 마련된 제3 유체 배출관(1402), 및 역전기투석 발전 장치(10)를 지지하도록 마련된 복수 개의 지지부재(1500)를 포함한다.Referring to FIGS. 23 and 24, the reverse electrodialysis power generation system 20 of the present invention includes a plurality of mounting spaces to accommodate the plurality of reverse electrodialysis power generation devices 10 and the reverse electrodialysis power generation device 10, respectively. A first and second fluid provided to supply the low concentration solution or the high concentration solution to each of the second fluid supply holes 720. Supply fluid to the first and second fluid discharge pipes 1301 and 1302 and the first inflow port 240 provided to discharge the fluid discharged from the supply pipes 1201 and 1202 and the second fluid discharge holes 740 to the outside. A plurality of third fluid supply pipes 1401 provided to support the third fluid discharge pipes 1402 provided to discharge the fluid discharged from the second discharge port 790 to the outside, and a plurality of reverse electrodialysis generators 10. And a support member 1500.
여기서, 상기 제3 유체 공급관(1401)은, 전술한 제1 연결부재(901)일 수 있으며, 또는 상기 제3 유체 공급관(1401)은 제1 연결부재(901)와 유체 이동 가능하게 연결될 수 있다.Here, the third fluid supply pipe 1401 may be the first connection member 901 described above, or the third fluid supply pipe 1401 may be fluidly connected to the first connection member 901. .
또한, 상기 제3 유체 배출관(1402)은, 전술한 제3 연결부재(903)일 수 있으며, 또는 상기 제3 유체 배출관(1402)은 제3 연결부재(903)와 유체 이동 가능하게 연결될 수 있다.In addition, the third fluid discharge pipe 1402 may be the third connection member 903 described above, or the third fluid discharge pipe 1402 may be fluidly connected to the third connection member 903. .
이에 더하여, 제1 및 제2 유체 공급관(1201,1202)과 제1 및 제2 유체 배출관(1301,1302)은, 각각 제2 유체 공급홀(720) 및 제2 유체 배출홀(740)과 대응하는 위치에 마련되고, 제3 유체 공급관(1401) 및 제3 유체 배출관(1402)은, 각각 제1 유입포트(240) 및 제2 배출 포트(790)와 대응하는 위치에 마련되며, 복수 개의 지지부재는(1500), 제1 유체 공급관(1201) 및 제1 유체 배출관(1301)에 대응하는 길이(H)를 갖도록 마련될 수 있다.In addition, the first and second fluid supply pipes 1201 and 1202 and the first and second fluid discharge pipes 1301 and 1302 correspond to the second fluid supply hole 720 and the second fluid discharge hole 740, respectively. The third fluid supply pipe 1401 and the third fluid discharge pipe 1402 are provided at positions corresponding to the first inflow port 240 and the second discharge port 790, respectively, The member 1500 may be provided to have a length H corresponding to the first fluid supply pipe 1201 and the first fluid discharge pipe 1301.
상기와 같이 복수 개의 지지부재는(1500), 제1 유체 공급관(1201) 및 제1 유체 배출관(1301)에 대응하는 길이(H)를 갖도록 마련된 구성에 의해 본 발명의 역전기투석 발전 장치(10)는 보다 쉽고 용이하게 장착 공간에 안착할 수 있게 된다.As described above, the plurality of support members 1500 have a length H corresponding to the first fluid supply pipe 1201 and the first fluid discharge pipe 1301, and thus, the reverse electrodialysis power generation device 10 of the present invention. ) Can be more easily and easily seated in the mounting space.
또한, 복수 개의 역전기투석 발전 장치(10)로 구성된 시스템에서, 각각의 역전기투석 발전 장치(10)의 유지 보수가 보다 용이하다. In addition, in a system composed of a plurality of reverse electrodialysis power generation apparatuses 10, maintenance of each reverse electrodialysis power generation apparatus 10 is easier.
또한, 상기 역전기투석 발전 시스템(20)은, 제1 및 제2 유체 공급관(1201,1202)으로 저농도 용액 또는 고농도 용액을 각각 공급하도록 마련된 제1 및 제2 공급부(1701,1702) 및 제3 유체 공급관(1401)으로 유체를 공급하도록 마련된 제3 공급부(1703)를 포함한다.In addition, the reverse electrodialysis power generation system 20 includes first and second supply units 1701 and 1702 and a third supply unit configured to supply a low concentration solution or a high concentration solution to the first and second fluid supply pipes 1201 and 1202, respectively. And a third supply part 1703 provided to supply fluid to the fluid supply pipe 1401.
여기서, 상기 각각의 공급부는 유체를 공급하기 위한 펌프를 각각 포함할 수 있다.Here, each of the supply unit may each include a pump for supplying a fluid.
도 25 및 도 26은 본 발명의 일 실시예에 따른 제3 공급부를 설명하기 위해 나타낸 도면이다.25 and 26 are views for explaining a third supply unit according to an embodiment of the present invention.
도 25 및 도 26을 참조하면, 상기 제3 공급부(1703)에서 공급된 유체가 역전기투석 발전 장치(10)를 통과한 후 다시 제3 공급부(1703)으로 유입되어 이를 재 사용할 수 있다.25 and 26, the fluid supplied from the third supply unit 1703 passes through the reverse electrodialysis power generator 10 and then flows back into the third supply unit 1703 to be reused.
여기서, 각각의 유체 공급관 및 유체 배출관들은 역전기투석 발전 장치(10)로 공급되거나, 역전기투석 발전 장치(10)에서 배출되는 유량을 조절하도록 유량 조절 밸브(1600)가 각각 마련될 수 있다.Here, each of the fluid supply pipes and the fluid discharge pipes may be supplied to the reverse electrodialysis power generator 10 or may be provided with a flow control valve 1600 to adjust the flow rate discharged from the reverse electrodialysis power generator 10.
본 발명은, 또한, 이온교환막 제조 장치(30)를 제공한다.The present invention also provides an ion exchange membrane production apparatus 30.
예를 들어, 상기 이온교환막 제조 장치는, 전술한 역전기투석 발전 장치(10)에 기술된 복수 개의 이온교환막을 내측 전극에 권취 하기 위한 장치에 관한 것이다.For example, the ion exchange membrane production apparatus relates to an apparatus for winding the plurality of ion exchange membranes described in the above-mentioned reverse electrodialysis power generation apparatus 10 on the inner electrode.
따라서, 후술하는 이온교환막 제조 장치(30)에 대한 구체적인 사항은 역전기투석 발전 장치(10)에서 기술한 내용이 동일하게 적용될 수 있다.Therefore, the details described in the ion exchange membrane manufacturing apparatus 30 to be described later may be equally applicable to the contents described in the reverse electrodialysis power generator 10.
도 27 및 도 28은 본 발명의 일 실시예에 따른 이온교환막 제조 장치를 나타낸 모식도, 도 29는 본 발명의 일 실시예에 따른 스페이서를 설명하기 위한 부분 확대도이다.27 and 28 are schematic views showing an ion exchange membrane manufacturing apparatus according to an embodiment of the present invention, Figure 29 is a partially enlarged view for explaining a spacer according to an embodiment of the present invention.
도 27 내지 도 29를을 참조하면, 본 발명의 이온교환막 제조 장치(30)는, 내측 전극(200), 제1 이온 교환막(400a)이 권취된 제1 롤러(2001), 제1 스페이서(800a)가 권취된 제2 롤러(2002), 제2 이온 교환막(400b)이 권취된 제3 롤러(2003), 제2 스페이서(800b)가 권취된 제4 롤러(2004) 및 제1 내지 제4 롤러(2001,2002,2003,2004)에 각각 권취된 제1 이온 교환막(400a), 제1 스페이서(800a), 제2 이온 교환막(400b) 및 제2 스페이서(800b)가 차례로 적층 되어 내측 전극(200)에 권취되도록 마련된 제5 롤러(2005)를 포함한다.Referring to FIGS. 27 to 29, the ion exchange membrane manufacturing apparatus 30 of the present invention includes a first roller 2001 on which an inner electrode 200, a first ion exchange membrane 400a is wound, and a first spacer 800a. ), The second roller 2002 wound around the third roller, the third roller 2003 wound around the second ion exchange membrane 400b, the fourth roller 2004 wound around the second spacer 800b, and the first to fourth rollers. The first ion exchange membrane 400a, the first spacer 800a, the second ion exchange membrane 400b, and the second spacer 800b, which are respectively wound in (2001,2002,2003,2004), are stacked in order to form the inner electrode 200. ), A fifth roller 2005 provided to be wound around.
여기서, 상기 제1 및 제2 이온교환막은 전술한 복수 개의 이온교환막(400)을 의미할 수 있으며, 따라서, 제1 이온교환막은 양이온 교환막(C) 또는 음이온 교환막(A) 중 하나 일 수 있고, 제2 이온교환막은 양이온 교환막(C) 또는 음이온 교환막(A) 중 나머지 하나 일 수 있다.Here, the first and second ion exchange membrane may refer to the plurality of ion exchange membrane 400 described above, and thus, the first ion exchange membrane may be one of a cation exchange membrane (C) or an anion exchange membrane (A), The second ion exchange membrane may be the other of the cation exchange membrane (C) or the anion exchange membrane (A).
즉, 제1 이온교환막이 음이온 교환막(A)이면, 제2 이온교환막은 양이온 교환막(C)이며, 제1 이온교환막이 양이온 교환막(C)이면, 제2 이온교환막은 음이온 교환막(A) 일 수 있다.That is, if the first ion exchange membrane is an anion exchange membrane (A), the second ion exchange membrane is a cation exchange membrane (C), and if the first ion exchange membrane is a cation exchange membrane (C), the second ion exchange membrane may be an anion exchange membrane (A). have.
이에 더하여, 본 발명은, 상기 제1 내지 제 5롤러를 지지하기 위한 지지구조체(2100)를 포함할 수 있다.In addition, the present invention may include a support structure 2100 for supporting the first to fifth rollers.
여기서 상기 지지구조체(2100)는, 각각의 롤러를 롤링할 수 있도록 소정 간격 떨어진 다수의 구조체로 마련될 수 있다.The support structure 2100 may be provided as a plurality of structures spaced apart from each other so as to roll each roller.
도면상에는, 제1 내지 제4 롤러가 수직하게 일렬로 배치되는 것을 도시 하였으나, 각각 2개의 롤러가 제5 롤러를 중심으로 양 측에 배치되도록 마련될 수 있다.In the drawing, although the first to fourth rollers are arranged in a vertical line, each of the two rollers may be provided to be arranged on both sides with respect to the fifth roller.
또한, 상기 제1 및 제2 스페이서는, 전술한 스페이서(453, 800)일 수 있다.In addition, the first and second spacers may be the spacers 453 and 800 described above.
상기 제1 내지 제4 롤러(2001,2002,2003,2004)는, 제5 롤러(2005)를 향하여 각각의 이온교환막 및 스페이서를 권출 하도록 마련될 수 있다.The first to fourth rollers 2001, 2002, 2003, and 2004 may be provided to unwind respective ion exchange membranes and spacers toward the fifth roller 2005.
여기서, 상기 각각의 이온교환막 및 스페이서는, 내측 전극(200) 둘레 방향을 따라 권취될 수 있다.Here, each of the ion exchange membrane and the spacer may be wound along the circumferential direction of the inner electrode 200.
또한, 상기 제2 및 제4 롤러(2002,2004)는 제1 단부(2000a) 및 제1 단부의 반대방향의 제2 단부(2000b)를 갖고, 제1 및 제2 스페이서(800a,800b)는, 제1 이온교환막(400a)과 제2 이온교환막(400b) 사이에 유체가 유동하는 제1 및 제2 유로(410, 420)를 각각 구획하도록 마련된 유로 스페이서(810) 및 유체의 유출을 차단하도록 마련된 차단 스페이서(820)를 포함하며, 제1 스페이서(800a)는, 제1 단부(2000a) 측에 유로 스페이서(810)가 배치되고, 제2 단부(2000b) 측에 차단 스페이서(820)가 각각 배치될 수 있다.In addition, the second and fourth rollers 2002 and 2004 have a first end 2000a and a second end 2000b opposite to the first end, and the first and second spacers 800a and 800b are formed. In order to block the flow of the fluid and the flow path spacer 810 provided to partition the first and second flow paths (410, 420) between the first ion exchange membrane (400a) and the second ion exchange membrane (400b), respectively. The blocking spacer 820 is provided, and the first spacer 800a has a flow path spacer 810 disposed on the side of the first end 2000a and a blocking spacer 820 disposed on the side of the second end 2000b. Can be arranged.
특히, 상기 제2 스페이서(800b)는, 제1 단부(2000a) 측에 차단 스페이서(820)가 배치되고, 제2 단부(2000b) 측에 유로 스페이서(810)가 각각 배치될 수 있다.In particular, the second spacer 800b may include a blocking spacer 820 disposed on the side of the first end 2000a and a flow path spacer 810 disposed on the side of the second end 2000b.
이에 더하여, 상기 제 5롤러(2005)는, 제1 및 제2 스페이서(800a,800b)가 권취되는 위치에 제1 및 제2 이온교환막(400a,400b)과 제1 및 제2 스페이서(800a,800b)가 서로 접착 되도록 제1 및 제2 스페이서(800a,800b)에 접착제를을 토출하도록 마련된 접착 장치(미도시)를 추가로 포함할 수 있다.In addition, the fifth roller 2005 may include the first and second ion exchange membranes 400a and 400b and the first and second spacers 800a, at a position where the first and second spacers 800a and 800b are wound. An adhesive device (not shown) may be further provided to discharge the adhesive to the first and second spacers 800a and 800b so that the 800b may be adhered to each other.
또한, 상기 제1 및 제2 스페이서(800a, 800b)는, 각각 유체의 이동을 안내하기 위한 스페이서 채널(430a)을 갖고, 유로 스페이서와 차단 스페이서 각각의 스페이서 채널(430a)은 서로 직교하도록 배치할 수 있다.In addition, the first and second spacers 800a and 800b each have a spacer channel 430a for guiding the movement of the fluid, and the spacer channels 430a of each of the flow path spacer and the blocking spacer are arranged to be orthogonal to each other. Can be.
전술한 바와 같이, 상기 각각의 스페이서는 유로 스페이서와 차단 스페이서를 포함하며, 상기 차단 스페이서는 전술한 가스켓의 역할을 하게 된다.As described above, each spacer includes a flow path spacer and a blocking spacer, and the blocking spacer serves as the aforementioned gasket.
종래에는, 가스켓 사용 시 가스켓 두께와 스페이서 두께가 동일하지 않은 경우, 그 틈으로 누수가 발생할 가능성이 있지만, 본 발명과 같이, 가스켓을 사용하지 않고 가스켓 대신 스페이서를 이용하여 이온교환막과 적층 시 두께가 동일함으로써 누수를 미연에 방지할 수 있는 효과가 있다.Conventionally, when the gasket thickness and the spacer thickness are not the same when the gasket is used, there is a possibility that water leakage occurs in the gap, but, as in the present invention, when the gasket thickness and the ion exchange membrane are laminated with the spacer instead of the gasket, By the same, there is an effect that can prevent the leakage in advance.
또한, 상기와 같이 채널을 형성한 스페이서를 이용하여, 유로 스페이서와 차단 스페이서의 채널이 서로 직교하도록 배치함으로써, 누수 방지의 효과가 보다 높아질 수 있게 된다.In addition, by using the spacer having the channel formed as described above, by arranging the channels of the flow path spacer and the blocking spacer to be orthogonal to each other, the effect of preventing leakage can be increased.

Claims (32)

  1. 중공을 갖는 원통형의 하우징;A cylindrical housing having a hollow;
    하우징 내 중공의 중앙부에 배치된 내측 전극;An inner electrode disposed in the central portion of the hollow in the housing;
    하우징 내 중공의 가장자리에 배치된 외측 전극; 및An outer electrode disposed at an edge of the hollow in the housing; And
    내측 전극과 외측 전극 사이에 배치되고, 고농도 용액이 유동하는 하나 이상의 제1 유로 및 저농도 용액이 유동하는 하나 이상의 제2 유로를 구획하도록 내측 전극의 둘레 방향을 따라 권취된 복수 개의 이온교환막; 을 포함하는 역전기투석 발전장치.A plurality of ion exchange membranes disposed between the inner electrode and the outer electrode and wound along the circumferential direction of the inner electrode to partition one or more first flow paths through which the high concentration solution flows and one or more second flow paths through which the low concentration solution flows; Reverse electrodialysis generator comprising a.
  2. 제 1항에 있어서, The method of claim 1,
    복수 개의 이온교환막은, 양이온 교환막 및 음이온 교환막을 포함하는 역전기투석 발전장치.The plurality of ion exchange membrane, the reverse electrodialysis generator comprising a cation exchange membrane and an anion exchange membrane.
  3. 제 1항에 있어서,The method of claim 1,
    제1 유로 및 제2 유로를 각각 유동하는 고농도 용액 및 저농도 용액의 농도차에 의해 내측 및 외측 전극에서 전기를 생산하는 역전기투석 발전장치.Reverse electrodialysis power generation apparatus for producing electricity at the inner and outer electrodes by the concentration difference between the high concentration solution and the low concentration solution flowing through the first flow path and the second flow path, respectively.
  4. 제 1항에 있어서,The method of claim 1,
    복수 개의 이온교환막은, 제1 유로 및 제2 유로를 유동하는 유체가 하우징의 축 방향을 따라 유동하도록 유체의 흐름을 안내하기 위한 유로 안내부; 를 포함하는 역전기투석 발전장치.The plurality of ion exchange membranes include a flow path guide for guiding the flow of the fluid such that the fluid flowing in the first flow path and the second flow path flows along the axial direction of the housing; Reverse electrodialysis generator comprising a.
  5. 제 4항에 있어서,The method of claim 4, wherein
    유로 안내부는, Euro guide part,
    이온교환막 상에 유체의 흐름을 안내하기 위한 복수 개의 유로부재를 포함하고,A plurality of flow path members for guiding the flow of the fluid on the ion exchange membrane,
    복수 개의 유로부재는, 이온교환막의 축 방향에 따른 양 단부측 각각에 소정간격 떨어져 배치되도록 마련된 역전기투석 발전장치.A plurality of flow path members, reverse electrodialysis generators are provided so as to be spaced apart from each other at a predetermined interval in the axial direction of the ion exchange membrane.
  6. 제 5항에 있어서,The method of claim 5,
    유로부재는, 이온교환막의 일단부 측에 둘레방향을 따라 소정간격 떨어져 배치되는 복수 개의 제1 유로부재 및 타단부 측에 둘레방향을 따라 소정간격 떨어져 배치되는 복수 개의 제2 유로부재를 포함하고,The flow path member includes a plurality of first flow path members disposed on the one end side of the ion exchange membrane at predetermined intervals along the circumferential direction, and a plurality of second flow path members disposed on the other end side at a predetermined interval along the circumferential direction,
    제2 유로부재는, 둘레방향을 따라 인접하는 2개의 제1 유로부재 사이에 위치하도록 배치된 역전기투석 발전장치.The second flow path member is disposed so as to be positioned between two adjacent first flow path members along the circumferential direction.
  7. 제 4항에 있어서,The method of claim 4, wherein
    유로 안내부는, 이온교환막 상에 유체의 흐름을 안내하기 위한 복수 개의 채널 리브를 포함하며,The flow path guide includes a plurality of channel ribs for guiding the flow of the fluid on the ion exchange membrane,
    각각의 채널 리브는, 하우징의 축 방향을 따라 연장하도록 마련되고, 복수 개의 채널 리브는 하우징의 둘레 방향을 따라 소정 간격 이격 되게 배치된 역전기투석 발전장치.Each channel rib is provided to extend along the axial direction of the housing, the plurality of channel ribs are arranged spaced apart a predetermined interval along the circumferential direction of the housing.
  8. 제 1항에 있어서,The method of claim 1,
    내측 전극은, 전극 용액이 유입되는 제1 유입포트;The inner electrode may include a first inlet port through which an electrode solution is introduced;
    유입된 전극 용액이 축 방향을 따라 유동하여 외측 전극으로 이동하도록 마련된 제1 배출포트; 를 포함하는 역전기투석 발전장치.A first discharge port provided to flow the axial direction of the introduced electrode solution into the outer electrode; Reverse electrodialysis generator comprising a.
  9. 제 8항에 있어서,The method of claim 8,
    내측 전극은, 제1 유입포트와 유체 이동 가능하게 연결되어, 제1 유입포트를 통해 유입된 유체가 내측 전극의 외주면으로 유동하도록 마련된 제1 유입구; 및The inner electrode may include: a first inlet port fluidly connected to the first inlet port and configured to allow fluid introduced through the first inlet port to flow to an outer circumferential surface of the inner electrode; And
    내측 전극의 외주면에서 축 방향을 따라 유동된 유체가 제1 배출포트로 유동하도록 제1 배출포트와 유체 이동 가능하게 연결된 제1 배출구; 를 갖는 역전기투석 발전장치.A first outlet configured to fluidly move with the first outlet port such that the fluid flowing along the axial direction at the outer circumferential surface of the inner electrode flows to the first outlet port; Reverse electrodialysis generator having a.
  10. 제 9항에 있어서,The method of claim 9,
    내측 전극의 외주면은, The outer circumferential surface of the inner electrode is
    유입된 유체가 전극의 둘레 방향을 따라 유동하도록 안내하기 위한 복수 개의 제2 채널;A plurality of second channels for guiding the introduced fluid to flow along the circumferential direction of the electrode;
    제2 채널을 따라 유동된 유체가 전극의 축 방향을 따라 유동하도록 안내하기 위한 복수 개의 제3 채널; 및A plurality of third channels for guiding fluid flowing along the second channel to flow along the axial direction of the electrode; And
    제3 채널을 따라 유동된 유체가 전극의 둘레 방향을 따라 유동하도록 안내하기 위한 복수 개의 제4 채널; 을 추가로 포함하는 역전기투석 발전장치.A plurality of fourth channels for guiding fluid flowing along the third channel to flow along the circumferential direction of the electrode; Reverse electrodialysis generator further comprising a.
  11. 제 10항에 있어서,The method of claim 10,
    제1 유입구는 제2 채널이 마련된 영역에 마련되고,The first inlet is provided in the region where the second channel is provided,
    제1 배출구는 제4 채널이 마련된 영역에 마련되는, 역전기투석 발전장치.The first outlet is provided in the region provided with the fourth channel, the reverse electrodialysis generator.
  12. 제 8항에 있어서,The method of claim 8,
    하우징은, The housing is
    제1 배출포트로부터 유출된 전극 용액이 유입되는 제2 유입홀; A second inflow hole into which the electrode solution flowing out of the first discharge port is introduced;
    유입된 전극 용액이 외측 전극 측으로 유동하도록 하우징 내주면 타단부 측에 마련된 제2 유입구; A second inlet provided at the other end side of the inner circumferential surface of the housing such that the introduced electrode solution flows toward the outer electrode;
    전극 용액이 축 방향을 따라 유동하여 배출되도록 하우징 내주면 일단부 측에 마련된 제2 배출구; 및A second outlet provided at one end of the housing circumferential surface such that the electrode solution flows along the axial direction and is discharged; And
    제2 배출구를 통과한 전극 용액이 외부로 배출되도록 마련된 제2 배출홀; 을 포함하는 역전기투석 발전장치.A second discharge hole provided to discharge the electrode solution passing through the second discharge port to the outside; Reverse electrodialysis generator comprising a.
  13. 제 12항에 있어서,The method of claim 12,
    외측 전극은 전극 용액이 유동 가능하도록 이온교환막과 소정 공간을 갖도록 소정 간격 떨어져 배치되고,The outer electrode is disposed apart from the predetermined interval so as to have a predetermined space with the ion exchange membrane to allow the electrode solution to flow,
    제2 유입구를 통해 유입된 전극 용액이 외측 전극을 통과하여 외측 전극과 이온교환막 사이를 유동하도록 마련된 역전기투석 발전장치.The reverse electrodialysis power generation device provided to allow the electrode solution introduced through the second inlet to flow between the outer electrode and the ion exchange membrane through the outer electrode.
  14. 제 12항에 있어서,The method of claim 12,
    하우징은, 소정 두께를 갖고,The housing has a predetermined thickness,
    제2 유입홀은, 제2 유입구와 유체 이동 가능하게 연결되도록 하우징의 외주면과 내주면 사이에 축 방향을 따라 소정 길이만큼 관통되게 마련되고,The second inflow hole is provided to penetrate a predetermined length along the axial direction between the outer circumferential surface and the inner circumferential surface of the housing so as to be in fluid communication with the second inlet,
    제2 배출홀은, 제2 배출구와 유체 이동 가능하게 연결되도록 하우징의 외주면과 내주면 사이에 축 방향을 따라 소정 길이만큼 관통되게 마련되는 역전기투석 발전장치.The second discharge hole, the reverse electrodialysis generator is provided to penetrate by a predetermined length along the axial direction between the outer peripheral surface and the inner peripheral surface of the housing so as to be fluidly connected to the second outlet.
  15. 제 1항에 있어서,The method of claim 1,
    외측 전극 측으로 유체가 유입되지 않도록 권취 된 이온교환막의 양 단부 측 적어도 일부 영역에 각각 결합되는 한 쌍의 실링 가스켓; 을 포함하는 역전기투석 발전장치.A pair of sealing gaskets respectively coupled to at least some regions on both end sides of the ion exchange membrane wound to prevent fluid from flowing into the outer electrode side; Reverse electrodialysis generator comprising a.
  16. 제 7항에 있어서,The method of claim 7, wherein
    제1 유로를 유동하는 유체가 유출되지 않도록 이온 교환막 상에 마련된 제1 가스켓; 을 포함하고,A first gasket provided on the ion exchange membrane such that the fluid flowing through the first flow path does not flow out; Including,
    제2 유로를 유동하는 유체가 유출되지 않도록 이온 교환막 상에 마련된 제2 가스켓; 을 포함하고,A second gasket provided on the ion exchange membrane such that the fluid flowing through the second flow path does not flow out; Including,
    복수 개의 이온교환막이 적층 될 때, 제1 가스켓은 축 방향에 따른 이온교환막의 일단부에 배치되고, 제2 가스켓은 축 방향에 따른 이온교환막의 타단부에 배치되는 역전기투석 발전장치.When the plurality of ion exchange membranes are stacked, the first gasket is disposed at one end of the ion exchange membrane in the axial direction, the second gasket is disposed at the other end of the ion exchange membrane in the axial direction.
  17. 제 1항에 있어서,The method of claim 1,
    권취된 복수 개의 이온교환막의 양 종단부에 각각 결합되어 제1 유로 및 제2 유로로 고농도 및 저농도 용액을 각각 공급 및 배출하기 위한 한 쌍의 유체 분배 부재를 포함하고,A pair of fluid distribution members coupled to both end portions of the plurality of wound ion exchange membranes, respectively, for supplying and discharging high and low concentration solutions to the first flow path and the second flow path, respectively;
    유체 분배 부재는, 제1면 및 제1면의 반대방향에 이온교환막과 마주하는 제2면을 갖고,The fluid distribution member has a first surface and a second surface facing the ion exchange membrane in a direction opposite to the first surface,
    제1면과 제2면의 중앙부를 관통하여 형성되는 제1 관통홀; 을 포함하는 역전기투석 발전장치.A first through hole formed through the central portion of the first and second surfaces; Reverse electrodialysis generator comprising a.
  18. 제 17항에 있어서,The method of claim 17,
    유체 분배 부재는, Fluid distribution member,
    제1 관통홀의 둘레 영역을 따라 소정 간격으로 떨어져 배열된 복수 개의 제1 유체 공급홀;A plurality of first fluid supply holes spaced apart at predetermined intervals along a circumferential region of the first through hole;
    각각의 제1 유체 공급홀 사이에 각각 배열되는 복수 개의 제1 유체 배출홀; 및A plurality of first fluid outlet holes respectively arranged between each first fluid supply hole; And
    제2면에, 각각의 제1 유체 공급홀 및 제1 유체 배출홀 사이에 각각 마련되어 제1 유체 공급홀과 제1 유체 배출홀을 통과하는 유체의 유동을 분리하기 위한 복수 개의 격벽; 을 포함하는 역전기투석 발전장치.A plurality of partition walls provided on the second surface, respectively, between the first fluid supply hole and the first fluid discharge hole to separate a flow of the fluid passing through the first fluid supply hole and the first fluid discharge hole; Reverse electrodialysis generator comprising a.
  19. 제 18항에 있어서,The method of claim 18,
    하우징의 양 종단부에 각각 결합되어 각각의 제1 유체 공급홀 및 제1 유체 배출홀로 고농도 및 저농도 용액을 각각 공급 및 배출하기 위한 한 쌍의 유체 공급 부재를 포함하고,A pair of fluid supply members coupled to both end portions of the housing, respectively, for supplying and discharging high and low concentration solutions to respective first fluid supply holes and first fluid discharge holes, respectively;
    한 쌍의 유체 공급 부재는, 제1면 및 제1면의 반대 방향에 이온교환막과 마주하는 제2면을 갖고,The pair of fluid supply members have a first surface and a second surface facing the ion exchange membrane in a direction opposite to the first surface,
    제1 관통홀과 대응하는 위치에 제1면과 제2면을 관통하는 제2 관통홀; 을 포함하는 역전기투석 발전장치.A second through hole penetrating the first and second surfaces at a position corresponding to the first through hole; Reverse electrodialysis generator comprising a.
  20. 제 18항에 있어서,The method of claim 18,
    한 쌍의 유체 공급 부재는, 제1 유체 공급홀 중 하나와 대응하게 위치하고, 제1면과 제2면을 관통하여 형성되는 제2 유체 공급홀;The pair of fluid supply members may include: a second fluid supply hole positioned corresponding to one of the first fluid supply holes and formed through the first and second surfaces;
    복수 개의 제1 유체 공급홀로 유체를 공급하기 위해 제2면의 제2 관통홀의 둘레방향을 따라 유체 이동 가능하게 연결된 유체 공급 유로;A fluid supply passage connected to fluidly move along a circumferential direction of the second through hole of the second surface to supply fluid to the plurality of first fluid supply holes;
    제1 유체 배출홀 중 하나와 대응하게 위치하고, 제1면과 제2면을 관통하여 형성되는 제2 유체 배출홀; 및A second fluid discharge hole positioned corresponding to one of the first fluid discharge holes and formed through the first and second surfaces; And
    복수 개의 제1 유체 배출홀로부터 유출된 유체를 배출하기 위해 유체 공급 유로 둘레방향을 따라 유체 이동 가능하게 연결된 유체 배출 유로; 를 포함하는 역전기투석 발전장치.A fluid discharge flow path connected to be fluidly movable along a circumferential direction of the fluid supply flow path for discharging fluid discharged from the plurality of first fluid discharge holes; Reverse electrodialysis generator comprising a.
  21. 제 1항에 있어서,The method of claim 1,
    내측 전극은 전기를 집진하기 위한 제1 전극봉; 을 포함하고,The inner electrode includes a first electrode rod for collecting electricity; Including,
    외측 전극은, 전기를 집진하기 위한 제2 전극봉; 을 포함하며,The outer electrode includes a second electrode rod for collecting electricity; Including;
    제1 전극봉과 제2 전극봉은 서로 전기적으로 연결된 역전기투석 발전장치.The first electrode and the second electrode is a reverse electrodialysis generator device electrically connected to each other.
  22. 제 20항에 있어서,The method of claim 20,
    유체 공급 부재 중 하나는, One of the fluid supply members is
    내측 전극으로 유입된 전극 용액이 외측 전극으로 이송되도록 제1 배출포트와 유체 이동 가능하게 연결되는 제2 유입포트를 포함하고,A second inflow port fluidly connected to the first discharge port so that the electrode solution introduced into the inner electrode is transferred to the outer electrode,
    제2 유입포트는, 제2 유입홀과 유체이동 가능하게 연결되며,The second inflow port is connected to the second inflow hole so that the fluid can move,
    제1 배출포트와 제2 유입포트를 유체 이동 가능하게 연결하는 제2 연결부재; 를 추가로 포함하는 역전기투석 발전장치.A second connecting member for fluidly connecting the first discharge port and the second inlet port; Reverse electrodialysis generator comprising a further.
  23. 제 21항에 있어서,The method of claim 21,
    한 쌍의 유체 공급 부재 중 하나에 저농도 용액 또는 고농도 용액 중 하나가 유입되고, 한 쌍의 유체 공급 부재 중 나머지 하나에 저농도 용액 또는 고농도 용액 중 나머지 하나가 유입되도록 마련된 역전기투석 발전장치.The reverse electrodialysis power generation device is provided such that one of a low concentration solution or a high concentration solution flows into one of the pair of fluid supply members, and the other of the low concentration solution and the high concentration solution flows into the other one of the pair of fluid supply members.
  24. 복수 개의 제1 항에 따른 역전기투석 발전장치; 및Reverse electrodialysis power generation apparatus according to claim 1; And
    역전기투석 발전장치 각각을 수용하도록 복수 개의 장착 공간을 갖는 전력 변환부; 를 포함하고,A power converter having a plurality of mounting spaces to accommodate each of the reverse electrodialysis generators; Including,
    복수 개의 장착 공간 각각은, 제2 유체 공급홀 각각에 저농도 용액 또는 고농도 용액을 공급하도록 마련된 제1 및 제2 유체 공급관;Each of the plurality of mounting spaces may include: first and second fluid supply pipes configured to supply a low concentration solution or a high concentration solution to each of the second fluid supply holes;
    제2 유체 배출홀 각각에서 토출되는 유체를 외부로 배출하도록 마련된 제1 및 제2 유체 배출관;First and second fluid discharge pipes configured to discharge fluid discharged from each of the second fluid discharge holes to the outside;
    제1 유입포트로 유체를 공급하도록 마련된 제3 유체 공급관; A third fluid supply pipe provided to supply fluid to the first inflow port;
    제2 배출 포트에서 토출되는 유체를 외부로 배출하도록 마련된 제3 유체 배출관; 및A third fluid discharge pipe provided to discharge the fluid discharged from the second discharge port to the outside; And
    역전기투석 발전장치를 지지하도록 마련된 복수 개의 지지부재; 를 포함하는 역전기투석 발전 시스템.A plurality of support members provided to support the reverse electrodialysis generator; Reverse electrodialysis power generation system comprising a.
  25. 제 24항에 있어서,The method of claim 24,
    제1 및 제2 유체 공급관과 제1 및 제2 유체 배출관은, 각각 제2 유체 공급홀 및 제2 유체 배출홀과 대응하는 위치에 마련되고, The first and second fluid supply pipes and the first and second fluid discharge pipes are provided at positions corresponding to the second fluid supply hole and the second fluid discharge hole, respectively,
    제3 유체 공급관 및 제3 유체 배출관은, 각각 제1 유입포트 및 제2 배출 포트와 대응하는 위치에 마련되며,The third fluid supply pipe and the third fluid discharge pipe are respectively provided at positions corresponding to the first inflow port and the second discharge port,
    복수 개의 지지부재는, 제1 유체 공급관 및 제1 유체 배출관에 대응하는 길이를 갖도록 마련된 역전기투석 발전 시스템.The plurality of support members, the reverse electrodialysis power generation system provided to have a length corresponding to the first fluid supply pipe and the first fluid discharge pipe.
  26. 제 24항에 있어서,The method of claim 24,
    역전기투석 발전 시스템은, Reverse electrodialysis power system,
    제1 및 제2 유체 공급관으로 저농도 용액 또는 고농도 용액을 각각 공급하도록 마련된 제1 및 제2 공급부; 및First and second supply parts arranged to supply a low concentration solution or a high concentration solution to the first and second fluid supply pipes, respectively; And
    제3 유체 공급관으로 유체를 공급하도록 마련된 제3 공급부; 를 추가로 포함하는 역전기투석 발전 시스템.A third supply part provided to supply fluid to the third fluid supply pipe; Reverse electrodialysis power generation system further comprising a.
  27. 내측 전극;An inner electrode;
    제1 이온 교환막이 권취된 제1 롤러;A first roller on which the first ion exchange membrane is wound;
    제1 스페이서가 권취된 제2 롤러;A second roller on which the first spacer is wound;
    제2 이온 교환막이 권취된 제3 롤러; A third roller on which the second ion exchange membrane is wound;
    제2 스페이서가 권취된 제4 롤러; 및A fourth roller on which the second spacer is wound; And
    제1 내지 제4 롤러에 각각 권취된 제1 이온 교환막, 제1 스페이서, 제2 이온 교환막 및 제2 스페이서가 차례로 적층되어 내측 전극에 권취되도록 마련된 제5 롤러; 를 포함하는 이온교환막 제조장치.A fifth roller provided such that the first ion exchange membrane, the first spacer, the second ion exchange membrane, and the second spacer respectively wound on the first to fourth rollers are sequentially stacked and wound on the inner electrode; Ion exchange membrane production apparatus comprising a.
  28. 제 27항에 있어서,The method of claim 27,
    제1 내지 제4 롤러는, 제5 롤러를 향하여 각각의 이온교환막 및 스페이서를 권출 하도록 마련된 이온교환막 제조장치.The first to fourth rollers, the ion exchange membrane production apparatus provided to unwind the respective ion exchange membrane and the spacer toward the fifth roller.
  29. 제 27항에 있어서,The method of claim 27,
    제2 및 제4 롤러는 제1 단부 및 제1 단부의 반대방향의 제2 단부를 갖고,The second and fourth rollers have a first end and a second end opposite in the first end,
    제1 및 제2 스페이서는, 제1 이온교환막과 제2 이온교환막 사이에 유체가 유동하는 제1 및 제2 유로를 구획하도록 마련된 유로 스페이서; 및The first and second spacers may include flow path spacers provided to partition first and second flow paths through which fluid flows between the first ion exchange membrane and the second ion exchange membrane; And
    유체의 유출을 차단하도록 마련된 차단 스페이서; 를 포함하며,A blocking spacer provided to block the outflow of the fluid; Including;
    제1 스페이서는, 제1 단부 측에 유로 스페이서가 배치되고, 제2 단부 측에 차단 스페이서가 각각 배치되는 이온교환막 제조장치.The ion spacer membrane manufacturing apparatus of which a flow path spacer is arrange | positioned at the 1st end side, and a blocking spacer is arrange | positioned at the 2nd end side, respectively, for a 1st spacer.
  30. 제 29항에 있어서,The method of claim 29,
    제2 스페이서는, 제1 단부 측에 차단 스페이서가 배치되고, 제2 단부 측에 유로 스페이서가 각각 배치되는 이온교환막 제조장치.In the second spacer, the blocking spacer is disposed on the first end side, and the flow path spacer is disposed on the second end side, respectively.
  31. 제 27항에 있어서,The method of claim 27,
    제 5롤러는, 제1 및 제2 스페이서가 권취되는 위치에 제1 및 제2 이온교환막과 제1 및 제2 스페이서가 서로 접착 되도록 제1 및 제2 스페이서에 접착제를 토출하도록 마련된 접착 장치를 추가로 포함하는 이온교환막 제조장치.The fifth roller further includes an adhesion device provided to discharge the adhesive to the first and second spacers such that the first and second ion exchange membranes and the first and second spacers are bonded to each other at a position where the first and second spacers are wound. Ion exchange membrane production apparatus comprising a.
  32. 제 29항에 있어서,The method of claim 29,
    제1 및 제2 스페이서는, 각각 유체의 이동을 안내하기 위한 스페이서 채널을 갖고,The first and second spacers each have a spacer channel for guiding the movement of the fluid,
    유로 스페이서와 차단 스페이서 각각의 스페이서 채널은 서로 직교하도록 배치된 이온교환막 제조장치.The spacer channel of each of the flow path spacer and the blocking spacer is disposed orthogonal to each other.
PCT/KR2018/011682 2018-07-16 2018-10-02 Cylindrical reverse electrodialysis generator WO2020017694A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180082224A KR102074257B1 (en) 2018-07-16 2018-07-16 Cylindrical reverse electrodialysis device
KR10-2018-0082224 2018-07-16

Publications (1)

Publication Number Publication Date
WO2020017694A1 true WO2020017694A1 (en) 2020-01-23

Family

ID=69164507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011682 WO2020017694A1 (en) 2018-07-16 2018-10-02 Cylindrical reverse electrodialysis generator

Country Status (2)

Country Link
KR (1) KR102074257B1 (en)
WO (1) WO2020017694A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2023-05-09 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102495282B1 (en) * 2020-02-11 2023-02-06 한국에너지기술연구원 Power generating apparatus using the salinity gradient
KR102495991B1 (en) * 2020-02-11 2023-02-06 한국에너지기술연구원 Power generating apparatus using the salinity gradient

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591933B2 (en) * 2003-10-20 2009-09-22 Ge Ionics, Inc. Spiral electrodeionization device with segregated ionic flows
KR20120085717A (en) * 2009-07-08 2012-08-01 채플, 챈탈 System for converting energy with an enhanced electric field
US9112217B2 (en) * 2011-05-17 2015-08-18 The Penn State University Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
KR20160012534A (en) * 2014-07-24 2016-02-03 주식회사 엘지화학 Winding apparatus of electrode assembly
CN104587835B (en) * 2015-01-12 2016-04-13 太原理工大学 A kind of continuous synchronization Selective Separation reclaims the device and method of anions and canons in weak solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591933B2 (en) * 2003-10-20 2009-09-22 Ge Ionics, Inc. Spiral electrodeionization device with segregated ionic flows
KR20120085717A (en) * 2009-07-08 2012-08-01 채플, 챈탈 System for converting energy with an enhanced electric field
US9112217B2 (en) * 2011-05-17 2015-08-18 The Penn State University Reverse electrodialysis supported microbial fuel cells and microbial electrolysis cells
KR20160012534A (en) * 2014-07-24 2016-02-03 주식회사 엘지화학 Winding apparatus of electrode assembly
CN104587835B (en) * 2015-01-12 2016-04-13 太原理工大学 A kind of continuous synchronization Selective Separation reclaims the device and method of anions and canons in weak solution

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US12040517B2 (en) 2023-05-09 2024-07-16 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell and methods of use thereof

Also Published As

Publication number Publication date
KR20200008282A (en) 2020-01-28
KR102074257B1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2020017694A1 (en) Cylindrical reverse electrodialysis generator
WO2017111451A1 (en) Wafer accommodation container
WO2020251218A1 (en) Biomimetic reverse electrodialysis apparatus
WO2012134199A2 (en) Plasma-generating apparatus and substrate-treating apparatus
WO2019203391A1 (en) Electrode boiler system
WO2016204522A1 (en) Plasma-catalyst type scrubber
WO2019240521A1 (en) Electric motor
WO2017003239A1 (en) Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor
WO2017022874A1 (en) Thermoelectric power-generating apparatus, heating apparatus for fuel storage tank, and waste heat recovery system
WO2019117532A2 (en) Salinity gradient/solar energy hybrid power generation apparatus and desalination system using same
WO2018024000A1 (en) Light emitting device and projection system
WO2021157873A1 (en) Cooling plate and manufacturing method therefor
WO2019088782A1 (en) Hybrid power generation apparatus and method capable of electricity production and deionization simultaneously
WO2019017530A1 (en) Electrolytic cell and method for controlling same
WO2017115966A1 (en) Integrated system of heat exchange device and thermoelectric power generation device, and operating method therefor
WO2020076096A1 (en) Electric heating pot
WO2020159033A1 (en) Fluid transfer apparatus
EP3014006A1 (en) Power generating device and apparatus having the same
WO2020009474A1 (en) Fluid transfer apparatus
WO2023121009A1 (en) Filter member and filter structure including same
WO2018105815A1 (en) Gas sensor
WO2021080370A2 (en) Desalination device using solvent extraction method, and desalination method using same
WO2024112130A1 (en) Lamination device and electrode assembly manufacturing method
WO2020145628A1 (en) Vacuum pump and vacuum separator comprising same
WO2022265443A1 (en) Water purifier having composite filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927056

Country of ref document: EP

Kind code of ref document: A1