WO2017003239A1 - Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor - Google Patents

Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor Download PDF

Info

Publication number
WO2017003239A1
WO2017003239A1 PCT/KR2016/007079 KR2016007079W WO2017003239A1 WO 2017003239 A1 WO2017003239 A1 WO 2017003239A1 KR 2016007079 W KR2016007079 W KR 2016007079W WO 2017003239 A1 WO2017003239 A1 WO 2017003239A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
geothermal
geothermal well
well
Prior art date
Application number
PCT/KR2016/007079
Other languages
French (fr)
Korean (ko)
Inventor
김영원
김호성
양동욱
김귀택
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150093306A external-priority patent/KR101795583B1/en
Priority claimed from KR1020150093301A external-priority patent/KR101714712B1/en
Priority claimed from KR1020150093291A external-priority patent/KR101822081B1/en
Priority claimed from KR1020150093284A external-priority patent/KR101636741B1/en
Priority claimed from KR1020150093297A external-priority patent/KR101714709B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201680038498.8A priority Critical patent/CN108027174A/en
Publication of WO2017003239A1 publication Critical patent/WO2017003239A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a geothermal well-insulated pipe, geothermal well pipe assembly, geothermal well heat exchange system and its construction method, and more particularly, to improve the efficiency of the system for recovering geothermal heat by circulating a heat transfer medium inside the geothermal well.
  • the present invention relates to a passion thermal insulation pipe, a geothermal well pipe assembly, a geothermal well heat exchange system and a construction method thereof.
  • Geothermal heat the heat retained inside the ground, is the heat source due to the convection of mantle inside the earth or the collapse of radioactive material in the earth's crust or the magma of volcanic regions.
  • geothermal energy In order to use this geothermal energy source, geothermal energy is used in more than 80 countries around the world, and geothermal utilization is classified as follows.
  • geothermal geothermal technology which is a technology that drills around 32 ⁇ 200m in depth and heats and heats using a heat pump.
  • it drills a small diameter of 300 ⁇ 500 m and circulates underground water directly and heat pump
  • Geothermal geothermal technology used in the third method which is used in the Hassan area, is a technology that drills more than 1000m in small diameter and directly draws hot water of 200 °C or more from the underground to the ground, and the fourth core has a long depth of 600m to 5,000m.
  • deep geothermal technology which is a technology that draws only heat to the ground and directly heats and generates geothermal heat without a heat pump.
  • the present invention corresponds to the last fourth technology mentioned above, which drills geothermal wells, inserts pipes or underground heat exchangers into the geothermal wells, and heat transfer medium flows along the geothermal wells so that heat of underground high temperature is lost to the ground. It is a technology for manufacturing large diameter deep geothermal ground heat exchanger with long depth / high efficiency which enables production without
  • the present invention is a non-volcanic zone, such as our country, rock is a very suitable technology for the granite zone is a technology that can accelerate the domestic geothermal industry and create a new geothermal energy business in the future development success.
  • one or more pipes are inserted into the geothermal well to partition the space inside the geothermal well, and heat transfer medium is injected into the well to supply geothermal heat through some of the compartments, and the geothermal well is recovered to the ground through other compartments. It is a structure using heat energy.
  • the heat transfer occurs largely due to the large temperature difference between the production well and the injection well at the upper part.
  • the temperature of the production wells may drop, reducing the production capacity of hot water.
  • the pipe inserted into the geothermal well is subjected to the pressure of the ground itself and the heat transfer medium flowing inside and outside the pipe, and is exposed to various temperature environments depending on the depth of the geothermal well. Deformation may occur, and furthermore, there is a problem that the pipe is broken.
  • the pipe inserted into the geothermal well is mainly connected to a plurality of pipes to insert the extended pipe assembly into the geothermal well.
  • geothermal heat that can be recovered inside the geothermal well has a problem that is limited by the area of the geothermal well and the flow rate of the heat transfer medium circulating in the geothermal well.
  • the inner surface of the geothermal hole may collapse during the flow of the heat transfer medium, in this case, the flow path of the heat transfer medium is blocked by the collapsed ground geothermal hole There is a problem that can be lost.
  • the technical problem of the present invention is to solve the problems mentioned in the background art, geothermal well insulation pipe, geothermal well pipe assembly and geothermal well to improve the efficiency of the system for recovering geothermal heat by circulating the heat transfer medium inside the geothermal well It is to provide a passion heat exchange system and its construction method.
  • the geothermal well-insulated pipe according to the present invention is inserted into the geothermal well is a pipe formed so that the heat transfer medium flows along the geothermal well, extending from the ground to the bottom of the geothermal well It is formed to a relatively small diameter compared to the geothermal well, the outer portion disposed spaced apart from the inner surface of the geothermal well, a length corresponding to the length of the outer portion and a relatively small diameter compared to the outer portion,
  • An inner tube part spaced apart from an inner surface of the outer part and at least one heat insulating material may include a heat insulating part provided in a space between the outer part and the inner tube part.
  • the geothermal well-insulated pipe may be formed with a heat resistance above the geothermal well-insulated pipe upper than the heat resistance of the geothermal well-insulated pipe lower.
  • the heat insulating part may have a thickness of the upper part of the heat insulating part relatively larger than the thickness of the lower part of the heat insulating part.
  • the heat transfer part may have a relatively low heat transfer rate of the upper heat insulating material of the heat insulating part than the heat transfer rate of the heat insulating material of the heat insulating lower part.
  • a plurality of pipes formed with different heat transfer rates of the heat insulating part may be connected in the longitudinal direction.
  • the geothermal well-insulated pipe according to the present invention is a pipe which is inserted into the geothermal well is formed so that the heat transfer medium flows along the geothermal well, the pipe portion and the outer tube and the inner tube spaced apart from each other, the inner peripheral surface of the outer And at least a portion of the inner tube in contact with an outer circumferential surface thereof, the plurality of supporting parts being spaced at predetermined intervals along the longitudinal direction of the pipe part, and the insulating part provided with an insulating material in a space between the outer tube and the inner tube. It may include.
  • the support portion may be formed to have a relatively small area compared to the space between the outer tube and the outer tube in the longitudinal section of the pipe.
  • the geothermal well-insulated pipe according to the present invention is inserted into the geothermal well in the pipe is formed so that the heat transfer medium flows along the geothermal well, the outer and inner pipes are spaced apart from each other, the pipe portion, the inner peripheral surface of the exterior And at least a portion of the inner tube in contact with the outer circumferential surface of the inner tube, the support portion extending along the longitudinal direction of the pipe portion, and a heat insulating portion provided with a heat insulating material in a space between the outer tube and the inner tube.
  • the support may be formed with a hole communicating with each other the space between the outer tube and the inner compartment partitioned by the support.
  • the geothermal well pipe assembly according to the present invention is inserted into the geothermal well in the pipe assembly is formed so that the heat transfer medium flows along the geothermal well, the first fastening portion is formed at one end, the first fastening at the other end
  • a plurality of unit pipe modules having a second coupling portion coupled to the first coupling portion in a form corresponding to the portion, and surrounding portions where the first coupling portion and the second coupling portion of each of the unit pipe modules adjacent to each other are coupled; It may include a connection ring module provided to.
  • the unit pipe module is formed of a double tube including an outer tube and an inner tube, a space between the outer tube and the inner tube is provided with a heat insulating material, the first fastening portion and the second fastening portion is formed on both ends of the inner tube Can be.
  • connection ring module may be formed to surround the appearance of the unit pipe module.
  • geothermal well heat exchange system geothermal well formed by excavating the ground, the pipe extending from the ground to the bottom of the geothermal well, the inner space of the geothermal well is spaced apart from the inner peripheral surface of the geothermal well and the pipe
  • the heat storage material may be provided in a space between the geothermal well and the pipe, and may include a heat storage portion through which a heat transfer medium for geothermal heat recovery is passed.
  • the heat storage unit may be provided with a heat storage material of a porous form, the heat transfer medium may be transmitted through the pores of the heat storage unit.
  • the heat storage portion may be formed by coupling a plurality of heat storage material in a form protruding to the outer peripheral surface of the pipe.
  • the heat storage material may be formed in a shape having a predetermined area on the upper surface of the heat storage material.
  • geothermal well heat exchange system construction method excavating the ground to form a geothermal well by excavating the ground to a predetermined diameter, into the inside of the geothermal well formed in the excavation step, including the heat insulation to the bottom of the geothermal well It may include an inserting step of extending and inserting the pipe and the filling step of filling the heat storage material in the space between the inner peripheral surface of the geothermal well and the pipe.
  • geothermal well heat exchange system geothermal well formed by excavating the ground, extends from the ground to the bottom of the geothermal well, the inside of the geothermal well is disposed outside the inner peripheral surface of the geothermal well spaced apart from each other
  • the inner pipe is formed to a length corresponding to the outer pipe, the inner pipe is spaced apart from the inner peripheral surface of the outer pipe and the heat storage material is provided in the space between the geothermal well and the outer pipe, It may include a heat storage for the heat transfer medium for the passage.
  • the heat storage unit may be formed by providing a plurality of heat storage materials having a predetermined volume in the space between the geothermal well and the outer pipe.
  • the geothermal well heat exchange system construction method excavating the ground to form a geothermal well by excavating the ground to a predetermined diameter, the inner pipe and the inner pipe to the lower portion of the geothermal well formed in the excavation step and It may include an insertion step of extending and inserting the porous outer pipe and the filling step of filling the heat storage material in the space between the inner peripheral surface of the geothermal well and the outer pipe.
  • geothermal well heat insulating pipe geothermal well pipe assembly, geothermal well heat exchange system and construction method thereof according to the present invention, the following effects can be obtained.
  • the geothermal heat recovery efficiency can be improved by lowering the heat transfer rate between the inside and the outside of the pipe inserted into the geothermal well.
  • turbulence may occur in the heat transfer medium flowing inside the geothermal well to improve heat recovery efficiency.
  • the geothermal recovery efficiency can be improved by increasing the area where the heat transfer medium receives heat from inside the geothermal well.
  • FIG. 1 is a view showing the configuration of a geothermal heat insulating pipe 1-1 embodiment according to the present invention.
  • FIGS. 2 and 3 are diagrams showing a first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
  • FIG. 4 is a view showing a state in which the flow velocity inside the production well is changed in the first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
  • FIG 5 is a view showing a state in which the flow velocity inside the injection well is changed in the first modification of the geothermal well-insulated pipe 1-1 embodiment according to the present invention.
  • FIGS. 6 and 7 are diagrams showing a second modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
  • FIG. 8 is a view showing the configuration of the geothermal heat insulating pipe 1-2 embodiment according to the present invention.
  • FIG. 9 is a view showing a first modification of the geothermal heat insulating pipe 1-2 embodiment according to the present invention.
  • FIG. 10 is a view showing a second modification of the geothermal heat insulating pipe 1-2 of the present invention.
  • FIG. 11 is a view showing the configuration of an embodiment of a geothermal heat insulating pipe second embodiment according to the present invention.
  • FIG. 12 is a view showing the configuration of the pipe portion and the support portion of the embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention.
  • FIG. 13 is a view showing a state of forming a heat insulating part in an embodiment of a geothermal heat insulating pipe according to the second embodiment of the present invention.
  • FIG 14 is a view showing a state in which the supporting portion is provided at both ends of the pipe portion in one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention.
  • FIG. 15 is a view illustrating a state in which a first fastening part and a second fastening part are formed in a supporting part in an embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention.
  • 17 is a view showing the configuration of a geothermal well pipe assembly first embodiment according to the present invention.
  • FIG. 18 is a view showing a state in which a stopper is provided in the first embodiment of the geothermal well pipe assembly according to the present invention.
  • 19 is a view showing a modification of the stopper of the geothermal well pipe assembly first embodiment according to the present invention.
  • 20 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the first embodiment of the geothermal well pipe assembly according to the present invention.
  • 21 is a view showing a first modified example of the geothermal well pipe assembly first embodiment according to the present invention.
  • FIG. 22 is a view showing a second modification of the geothermal well pipe assembly first embodiment according to the present invention.
  • FIG. 23 is a view showing the configuration of a geothermal well pipe assembly second embodiment according to the present invention.
  • FIG. 24 is a view showing a state in which a stopper is provided in the second embodiment of the geothermal well pipe assembly according to the present invention.
  • 25 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the second embodiment of the geothermal well pipe assembly according to the present invention.
  • 26 is a view showing the configuration of a geothermal well pipe assembly third embodiment according to the present invention.
  • FIG. 27 is a view showing a state in which a stopper is provided in the third embodiment of the geothermal well pipe assembly according to the present invention.
  • FIG. 28 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the third embodiment of the geothermal well pipe assembly according to the present invention.
  • 29 is a view showing a state in which the injection hole is provided in the third embodiment of the geothermal well pipe assembly according to the present invention.
  • FIG. 30 is a view showing the configuration of a geothermal well pipe assembly third embodiment of the present invention.
  • 31 is a view showing the configuration of the first-first embodiment of the geothermal heat exchange system according to the present invention.
  • FIG. 32 is a view showing a modification of the geothermal heat exchanger system embodiment 1-1 according to the present invention.
  • Example 33 is a diagram showing the configuration of Example 1-2 of the geothermal heat exchange system according to the present invention.
  • 35 is a view showing the first modified example of the geothermal heat exchange system 1-3 according to the present invention.
  • FIG. 36 is a view showing a second modified example of the geothermal heat exchange system according to the first embodiment of the present invention.
  • FIG. 37 is a view showing the configuration of Embodiments 1-4 of the geothermal heat exchange system according to the present invention.
  • Embodiment 1-1 of the geothermal heat exchange system construction method according to the present invention is a view showing Embodiment 1-1 of the geothermal heat exchange system construction method according to the present invention.
  • 39 is a view showing the embodiment 1-2 of the geothermal heat exchange system construction method according to the present invention.
  • Example 40 is a cross-sectional view showing the construction of Example 2-1 of the geothermal heat exchange system according to the present invention.
  • Fig. 41 is a plan view showing the construction of Example 2-1 of the geothermal heat exchange system according to the present invention.
  • FIG. 42 is a view showing a modification of the geothermal heat exchange system 2-1 embodiment according to the present invention.
  • Example 43 is a view showing the configuration of Example 2-2 of the geothermal heat exchange system according to the present invention.
  • Example 44 is a view showing the configuration of Example 2-3 of the geothermal heat exchange system according to the present invention.
  • FIG. 46 is a view showing a second modification of the geothermal heat exchange system according to the second embodiment of the present invention.
  • Fig. 47 is a view showing the construction of Example 2-4 of the geothermal well heat exchange system according to the present invention.
  • Embodiment 48 is a view showing Embodiment 2-1 of the geothermal heat exchange system construction method according to the present invention.
  • Embodiment 49 is a view showing Embodiment 2-2 of the geothermal heat exchange system construction method according to the present invention.
  • FIG. 1 is a view showing the configuration of the geothermal heat insulating pipe 1-1 embodiment according to the present invention
  • Figures 2 and 3 show a first modified example of the geothermal heat insulating pipe 1-1 embodiment according to the present invention
  • 4 is a view showing a state in which the flow velocity inside the production well is changed in the first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention
  • Figure 5 is a geothermal heat insulating pipe according to the present invention It is a figure which shows the state in which the flow velocity inside an injection well changes in the 1st modified example of the pipe 1-1 Example.
  • FIGS. 6 and 7 are diagrams showing a second modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
  • the geothermal heat insulating pipe may include an exterior portion a100, an inner tube portion a200, and a thermal insulation portion a300.
  • the exterior portion a100 is inserted into the geothermal well, and may be formed in the shape of a pipe having a relatively small diameter compared to the length and geothermal well extending from the ground to the bottom of the geothermal well.
  • the outside of the geothermal well heat insulating pipe according to the present invention can be configured to be an injection well in which the heat transfer medium is injected into the geothermal well.
  • the configuration of the exterior portion a100 may be advantageously formed of a material having a sufficient strength to maintain the shape of the pipe and to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
  • the inner tube portion a200 may be formed in the form of a pipe having a relatively small diameter compared to the length and the outer portion (a100) corresponding to the length of the outer portion (a100) described above.
  • the configuration of the inner tube portion a200 may also be advantageously formed of a material having a sufficient strength to maintain the shape of the pipe and to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
  • the configuration of the exterior portion (a100) and the inner tube portion (a200) described above are mutually coupled through a heat insulating portion (a300) or a separate connection member (not shown), which will be described later, may be configured in one piece, or selectively removable. It may be configured to assemble in place to install the geothermal heat insulating pipe according to the invention.
  • the shape and configuration may be various without limitation.
  • the heat insulating portion (a300) is a configuration in which at least one heat insulating material is provided in the space between the above-described outer portion (a100) and the inner tube portion (a200), the outer portion (a100) and inner tube portion (a200) described above. It may be a configuration that serves to lower the heat exchange efficiency generated between).
  • the heat insulating part (a300) is formed in a form filled with a foamable heat insulating material such as urethane foam, foam rubber, in this case, the foamed heat insulating material on one side of the outer portion (a100) the outer portion (a100) and the inner tube portion It may be advantageous to form an injection hole that can be injected into the space between the (a200).
  • a foamable heat insulating material such as urethane foam, foam rubber
  • the foamed insulating material injected through the injection hole expands and flows along the space between the exterior portion a100 and the inner tube portion a200 to be filled between the exterior portion a100 and the inner tube portion a200.
  • the configuration of the heat insulating part a300 is not limited to the above-described embodiment, and various materials and configurations may be used, such as various heat insulating materials such as air, styrofoam, and glass fiber.
  • the heat insulating part a300 is filled and fixed in the space between the exterior part a100 and the inner tube part a200, or in a form corresponding to the shape of the space between the exterior part a100 and the inner tube part a200. It may be processed and selectively detachably formed.
  • the heat insulating portion (a300) is provided between the outer portion (a100) and the inner tube portion (a200) if provided to reduce the heat transfer efficiency of the inside and outside of the geothermal heat insulating pipe according to the present invention, its shape and configuration Is not limited and may vary.
  • Geothermal well-insulated pipe according to the present invention including all the above-described configuration is inserted into the geothermal well formed in the ground, the heat transfer medium injected into the geothermal well can form a flow path that can be circulated along the geothermal well have.
  • a heat transfer medium is injected between the outer side of the geothermal well-insulated pipe according to the present invention and the inner surface of the geothermal well, and the heat transfer medium flows into the geothermal well-insulated pipe according to the present invention from the bottom of the geothermal well.
  • the geothermal heat insulating pipe according to the invention it is possible to recover the heat transfer medium to the ground.
  • a separate pump may be provided inside or on the ground of the geothermal heat insulating pipe according to the present invention.
  • the heat transfer medium injected into the geothermal well is heated by receiving geothermal heat through the inner surface of the geothermal well, and the heated heat transfer medium may be recovered through the geothermal well-insulated pipe according to the present invention.
  • the temperature difference between the outside and the inside of the geothermal well-insulated pipe according to the present invention can be very large.
  • the lower portion of the geothermal well is similar to the temperature of the heat transfer medium in which all of the injected heat transfer medium is recovered in a heated state, the temperature difference between the outside and the inside of the geothermal heat insulation pipe according to the present invention can be relatively small.
  • the first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention may include an outer portion (a100), the inner tube portion (a200) and the heat insulating portion (a300). Can be.
  • the exterior portion a100, the inner tube portion a200, and the thermal insulation portion a300 are basically the same as the configuration of the exterior portion a100, the inner tube portion a200, and the thermal insulation portion a300 of the first-first embodiment described above. The detailed description of the same configuration will be omitted.
  • the exterior part a100 may have a diameter L1-a of the upper part of the exterior part a100 relatively larger than the diameter L1-b of the lower part of the exterior part a100.
  • the inner tube portion a200 may have a diameter L2-a of the upper portion of the inner tube portion a200 relatively smaller than the diameter L2-b of the lower portion of the inner tube portion a200.
  • the distance between the outer portion (a100) and the inner tube portion (a200) as described above becomes larger, the outer portion (a100) and inner tube portion (a200)
  • the thickness of the heat insulating part (a300) provided in the space between the can be thickened.
  • the two configurations may be applied together, or only one configuration may be applied, such that the thickness of the heat insulation portion a300 at the upper portion is relatively lower than the lower portion. If configured to form thick, the form and configuration may be varied without limitation.
  • the exterior portion a100 and the inner tube portion a200 may be formed in an inclined shape, or may be formed in a stepped manner as illustrated in FIG. 3. .
  • the configuration of the present modification described above can reduce the amount of insulation required to reduce the unnecessary heat insulation performance, it is possible to obtain the effect of reducing the cost required for the production of geothermal heat insulation pipe according to the present invention.
  • the width of the flow path through which the heat transfer medium flows inside the geothermal well becomes wider toward the bottom of the geothermal well, which is wider when the heat transfer medium flows at the same pressure. As a result, the heat transfer medium can slow down.
  • the flow rate of the heat transfer medium recovered through the production well is faster toward the top of the production well, it is possible to reduce the amount of heat exchange between the inside and outside of the geothermal well-insulated pipe according to the present invention.
  • the flow rate of the heat transfer medium injected through the injection well is slowed toward the bottom of the injection well, so that the time for receiving geothermal heat from the bottom of the geothermal well may be longer.
  • the efficiency of the underground heat exchanger using the geothermal heat insulation pipe according to the present invention can be obtained.
  • the second modified example of the geothermal heat insulating pipe 1-1 embodiment according to the present invention is the outer portion (a100), inner tube portion (a200) and the thermal insulation portion (a300) It may include.
  • the exterior portion a100 and the inner tube portion a200 are basically the same as those of the exterior portion a100 and the inner tube portion a200 of the first-first embodiment described above, and thus detailed description thereof will be omitted.
  • the heat insulating part a300 may be formed of a plurality of types of heat insulating materials a310, a320, and a330 having different heat insulating performances.
  • the heat insulating parts a310, a320, and a330 may be configured by applying different heat insulating materials to a part requiring high heat insulating performance and a part requiring relatively low heat insulating performance.
  • Insulation performance of each part may be advantageously configured such that the upper portion has a relatively higher thermal insulation performance than the lower portion as in the first modification of the first-first embodiment described above.
  • the heat transfer rate of the upper heat insulating material a310 of the heat insulating part may be configured to be relatively low compared to the heat transfer rate of the lower heat insulating material a330 of the heat insulating part.
  • This configuration can obtain the effect of more efficiently concentrating the thermal insulation performance, it is also possible to obtain the effect of reducing the cost required to configure the thermal insulation (a310, a320, a330).
  • Geothermal heat insulation pipe according to the present modification can be configured by injecting different insulation material for each position in a single pipe.
  • the portion of the geothermal heat insulating pipe according to the present modification is inserted into the bottom end side of the geothermal well may not be provided with a heat insulating portion (a300).
  • a separate heat insulation portion a300 may not be provided in the space between the outer portion a100 and the inner tube portion a200, and as in the present modification, the pipe formed in the form of a double tube may have a single tube structure. Deformed, it may be formed so that the heat insulating portion (a300) is not provided.
  • the lower end of the geothermal heat insulating pipe according to the present invention may be advantageously composed of a single pipe is not provided with a heat insulating material.
  • such a configuration can also efficiently concentrate the thermal insulation performance, it is possible to obtain the effect of reducing the cost required for the configuration of the thermal insulation (a300).
  • a plurality of pipes having different heat transfer rates of the heat insulating parts a310, a320, and a330 may be connected in the longitudinal direction.
  • This configuration can obtain the effect of ensuring the convenience, such as transport and installation of the geothermal heat insulating pipe according to the present invention.
  • the configuration of connecting the plurality of pipes can also be applied to the first modification of the above-described first-first embodiment and the first-first embodiment.
  • the geothermal well-insulated pipe according to the present invention can be formed with a relatively large heat resistance of the geothermal well-insulated pipe upper than the heat resistance of the geothermal well-insulated pipe.
  • the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
  • the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
  • FIG. 8 is a view showing the configuration of the geothermal heat insulating pipe 1-2 embodiment according to the present invention
  • Figure 9 is a view showing a first modified example of the geothermal heat insulating pipe 1-2 embodiment according to the present invention
  • 10 is a view showing a second modified example of the geothermal heat insulating pipe 1-2 embodiment according to the present invention.
  • the geothermal heat insulating pipe according to the present invention may include a heat insulating pipe part a400.
  • the insulation pipe part a400 is inserted into the geothermal well, and may be formed in the shape of a pipe having a relatively smaller diameter than the length and geothermal well extending from the ground to the bottom of the geothermal well.
  • the outside of the geothermal well heat insulating pipe according to the present invention can be configured to be an injection well in which the heat transfer medium is injected into the geothermal well.
  • the heat insulation pipe part a400 may be formed of a heat insulation material having a low heat transfer rate, and may serve to reduce the amount of heat exchange generated between the inside and the outside of the heat insulation pipe part a400.
  • the insulation pipe portion a400 has a low heat transfer rate, so as to prevent heat exchange between the insulation pipe portion a400 and the outside, and to have a strength that can withstand a predetermined pressure. It can vary.
  • the geothermal well-insulated pipe according to the present invention including the above-described configuration may be inserted into the geothermal well formed in the ground, and may form a flow path through which the heat transfer medium injected into the geothermal well may circulate along the geothermal well. .
  • a heat transfer medium is injected between the outer side of the geothermal well-insulated pipe according to the present invention and the inner surface of the geothermal well, and the heat transfer medium flows into the geothermal well-insulated pipe according to the present invention from the bottom of the geothermal well.
  • the geothermal heat insulating pipe according to the invention it is possible to recover the heat transfer medium to the ground.
  • a separate pump may be provided inside or on the ground of the geothermal heat insulating pipe according to the present invention.
  • the heat transfer medium injected into the geothermal well is heated by receiving geothermal heat through the inner surface of the geothermal well, and the heated heat transfer medium may be recovered through the geothermal well-insulated pipe according to the present invention.
  • the temperature difference between the outside and the inside of the geothermal well-insulated pipe according to the present invention can be very large.
  • the lower portion of the geothermal well is similar to the temperature of the heat transfer medium in which all of the injected heat transfer medium is recovered in a heated state, the temperature difference between the outside and the inside of the geothermal heat insulation pipe according to the present invention can be relatively small.
  • the first modified example of the geothermal heat insulating pipe 1-2 according to the present invention may include a heat insulating pipe part a400.
  • the heat insulation pipe part a400 is basically the same as the structure of the heat insulation pipe part a400 of the above-described second embodiment, and detailed description thereof will be omitted.
  • the thickness L3-a of the upper portion of the insulation pipe part a400 may be formed to be relatively larger than the thickness L3-b of the lower portion of the insulation pipe part a400.
  • the thickness of the heat insulating pipe portion (a400) is thicker toward the top, it may be configured to have a thicker heat insulating layer on the top.
  • the insulation pipe portion a400 may have various shapes and configurations without being limited, provided that the thickness at the top is configured to be relatively thicker than the bottom.
  • the configuration of the present modification can reduce the amount of heat insulating material required by reducing unnecessary heat insulating performance, it is possible to obtain the effect of reducing the cost required for the production of geothermal heat insulating pipe according to the present invention.
  • the width of the flow path through which the heat transfer medium flows inside the geothermal well becomes wider toward the bottom of the geothermal well, which is wider when the heat transfer medium flows at the same pressure. As a result, the heat transfer medium can slow down.
  • the second modification of the geothermal heat insulating pipes 1-2 embodiment according to the present invention may include a heat insulating pipe (a410, a420, a430).
  • the heat insulation pipe parts a410, a420, and a430 may be formed of a plurality of types of heat insulation materials having different heat insulation performances.
  • the heat insulating pipe parts a410, a420, and a430 may be configured by applying different heat insulating materials to a part requiring high heat insulating performance and a part requiring relatively low heat insulating performance.
  • Insulation performance of each part may be advantageously configured such that the upper portion has a relatively higher thermal insulation performance than the lower portion, as in the first modification of the above-described embodiment 1-2.
  • the heat transfer rate of the upper heat insulating pipe part a410 of the heat insulating part may be configured to be relatively low compared to the heat transfer rate of the lower heat insulating pipe part a430 of the heat insulating part.
  • Such a configuration can obtain the effect of more efficiently concentrating the thermal insulation performance, and can also reduce the cost of constructing the thermal insulation pipe parts (a410, a420, a430).
  • the geothermal heat insulating pipe according to the present modification may be configured by selectively connecting a plurality of heat insulating pipe parts (a410, a420, a430) formed of heat insulating materials having different heat transfer rates in a longitudinal direction.
  • This configuration can obtain the effect of ensuring the convenience, such as transport and installation of the geothermal heat insulating pipe according to the present invention.
  • the geothermal well-insulated pipe according to the present invention can be formed relatively larger than the heat resistance of the geothermal well-insulated pipe upper heat resistance.
  • the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
  • the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
  • FIG 11 is a view showing the configuration of an embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention
  • Figure 12 is a configuration of the pipe portion and the support portion of one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention It is a figure which shows.
  • FIG. 13 is a view showing a state of forming a heat insulating part in one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention
  • Figure 14 is a view of a second embodiment of the geothermal heat insulating pipe according to the present invention
  • FIG. 15 is a view illustrating a state in which the support part is provided at both ends of the pipe part
  • FIG. 15 is a view illustrating a state in which the first fastening part and the second fastening part are formed in the supporting part in one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention. .
  • the geothermal heat insulating pipe according to the present invention may include a pipe part b100, a support part b200, and a heat insulating part b300.
  • the pipe part b100 is inserted into the geothermal well, and partitions the inner space of the geothermal well and injects a heat transfer medium between the outer circumferential surface of the pipe portion b100 and the inner circumferential surface of the geothermal well, and is heated at the bottom of the geothermal well.
  • the heat transfer medium may be recovered to the ground through the inside of the pipe part b100.
  • the pipe part b100 may be formed in a shape in which the exterior b110 and the inner tube b120 are spaced apart from each other.
  • the exterior b110 may be formed in the shape of a pipe having a smaller diameter than the length and the geothermal well extending from the ground to the bottom of the geothermal well.
  • the inner tube (b120) may be formed in the form of a pipe having a relatively small diameter compared to the length and the appearance (b110) corresponding to the length of the above-described appearance (b110).
  • the configuration of the pipe part b100 may be advantageously formed of a material that maintains the shape of the pipe and has sufficient strength to withstand the pressure inside the ground and the pressure of the heat transfer medium.
  • the support portion (b200) is configured to support the external appearance (b110) and the inner tube (b120) by connecting to each other, is formed so that at least a portion of the inner circumferential surface of the outer appearance (b110) and the outer circumferential surface of the inner tube (b120) contact, It may be provided in plurality to be spaced apart at a predetermined interval along the longitudinal direction of the portion (b100).
  • the support part b200 has a ring shape having a predetermined thickness with an area corresponding to the exterior b110 and the inner tube b120 on a longitudinal cross section of the pipe part b100. It can be configured as.
  • the configuration of the support part b200 is provided between the exterior b110 and the inner tube b120 of the pipe part b100 so as to maintain and maintain a gap between the exterior b110 and the inner tube b120. Is not limited and may vary.
  • the heat insulation portion (b300) is a configuration for reducing the efficiency of heat exchange between the inside and the outside of the pipe portion (b100), may be formed with a heat insulating material in the space between the exterior (b110) and the inner tube (b120). .
  • the geothermal well-insulated pipe according to the present invention is inserted into the geothermal well, a heat transfer medium for recovering geothermal heat is injected through the outside of the pipe is heated through geothermal heat at the bottom of the geothermal well, the heated heat transfer medium is It can be recovered to the ground through the interior.
  • a foamable insulating material such as urethane foam, foam rubber, etc.
  • foamable insulating material such as urethane foam, foam rubber, etc.
  • materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation. have.
  • the geothermal heat insulating pipe according to the present invention can obtain the effect of preventing deformation and breakage by structurally reinforcing the pipe while ensuring heat insulation inside and inside the pipe.
  • the support portion b200 may be advantageously formed of a material having a relatively low thermal conductivity compared to the pipe portion b100 in order to reduce the efficiency of the heat exchange between the exterior (b110) and the inner tube (b120) through the support (b200). .
  • the heat insulating part b300 is provided, but since the support part b200 is in contact with both the exterior b110 and the inner tube b120 of the pipe part b100. Heat may be transferred through the support part b200 to reduce adiabatic performance.
  • the support part b200 may be advantageous to form with a material having a relatively low thermal conductivity so as to perform the same function as the heat insulation part b300 of the support part b200.
  • the geothermal well heat insulating pipe according to the present invention can secure more improved heat insulating performance, and can obtain an effect of improving the efficiency of the geothermal heat recovery system to which the geothermal heat insulating heat pipe according to the present invention is applied.
  • the support portion b200 of the geothermal heat insulating pipe according to the present invention may be formed to have a relatively small area compared to the space between the outer surface (b110) and the inner tube (b120) in the longitudinal cross-section of the pipe portion (b100). .
  • the structure of the support part b200 may be formed so as not to completely close the space between the exterior b110 and the inner tube b120.
  • the support part b200 may have a through hole b210 formed to penetrate the support part b200 in the longitudinal direction of the pipe part b100.
  • the configuration of the through hole b210 is not limited to the present exemplary embodiment, and the support part b200 may be formed in a shape in which the surface contacting the exterior b110 and the inner tube b120 is partially recessed.
  • one side of the pipe part b100 includes a heat insulating material constituting the above-described heat insulating part b300 in a space between the exterior b110 and the inner tube b120 of the pipe part b100.
  • An injection hole b112 for injecting may be formed.
  • the pipe part b100 and the support part b200 are combined in the process of manufacturing the geothermal heat insulating pipe according to the present invention, and through the injection hole b112 formed in the appearance b110 of the pipe part b100.
  • the insulating material may be injected to form a heat insulating part b300 in a space between the exterior b110 and the inner tube b120.
  • the heat insulating material injected into the pipe part b100 moves along the longitudinal direction of the pipe part b100 and comes into contact with the support part b200.
  • the insulation material is moved and the insulation material can be filled in the entire pipe part b100.
  • the geothermal heat insulating pipe according to the present invention can more easily form a heat insulating layer inside the pipe, thereby reducing the time and effort required to manufacture the geothermal heat insulating pipe according to the present invention. You can get it.
  • the support portion (b200) of the geothermal heat insulating pipe according to the present invention may be provided at both ends of the longitudinal direction of the pipe portion (b100), as shown in FIG.
  • both ends in the longitudinal direction may be formed in an open shape, and the heat insulating part is disposed in the space between the exterior b110 and the inner pipe b120.
  • (b300) it may be advantageous to close both ends of the pipe portion (b100).
  • the structure of the support part b200 may be provided at both ends of the longitudinal direction of the pipe part b100 to close both open ends of the pipe part b100 through the support part b200.
  • the support part b200 does not have a through hole b210 for the heat insulating material to pass therethrough, and a support part b200 having a through hole b210 is additionally provided between both ends of the pipe part b100. May be
  • the geothermal well-insulated pipe according to the present invention can close both ends by using the configuration of the support part (b200) without processing the pipe separately, so that the geothermal well-insulated pipe can be easily produced. You can get it.
  • the pipe inserted into the geothermal well is difficult to form a single pipe to reach the bottom of the geothermal well, it may be advantageous to be formed so as to interconnect a plurality of unit pipes to extend their length.
  • the geothermal heat insulating pipe according to the present invention, at least both ends of the pipe part b100 are provided with support parts b200, and the support parts b200 provided at both ends of the pipe part b100 are as shown in FIG. 15.
  • the first fastening part b220 and the second fastening part b230 may be formed.
  • a first fastening part b220 is formed at the support part b200 provided at one end of the pipe part b100, and a first fastening part b220 is provided at the support part b200 provided at the other end of the pipe part b100.
  • the second fastening part b230 having a shape corresponding to the shape may be formed.
  • first fastening part b220 and the second fastening part b230 are formed in the form of a male screw and a female screw, and may be configured so that a plurality of geothermal heat insulating pipes according to the present invention rotate and couple with each other.
  • Such a configuration is not limited to the present embodiment, and the shape and configuration may be various without being limited if a plurality of geothermal heat insulating pipes are provided to be coupled through the configuration of the support part b200.
  • first fastening part b220 and the second fastening part b230 are processed to the support part b200, which can be easily processed, and then coupled to the pipe part b100, a plurality of geothermal heat insulating pipes may be used. The process of machining the pipes separately may not be necessary to connect them.
  • the support portion (b200) of the geothermal heat insulating pipe according to the present invention may be formed of an elastic material.
  • Such a configuration may have the effect of actively responding when the geothermal well-insulated pipe according to the present invention is deformed by various temperatures and pressures.
  • the geothermal well-insulated pipe according to the present invention by all the above-described configuration, by reinforcing the pipe structure is inserted into the geothermal well can prevent the pipe from being damaged or deformed, the heat transfer medium circulates inside the geothermal well At this time, the thermal conductivity can be improved by lowering the thermal conductivity between the inside and the outside of the pipe inserted into the geothermal well.
  • FIG. 16 is a figure which shows the structure of the modification of the geothermal heat insulating pipe 2nd Example which concerns on this invention.
  • the geothermal heat insulating pipe may include a pipe part b400, a support part b500, and a heat insulating part b600.
  • the configuration of the pipe portion b400 and the heat insulation portion b600 is the same as the configuration of the pipe portion b100 and the heat insulation portion b300 of the above-described embodiment, a detailed description thereof will be omitted.
  • the support part b500 may be in contact with at least a portion of the inner circumferential surface of the pipe portion b400 and the outer circumferential surface of the inner tube b420, and may be formed long along the longitudinal direction of the pipe portion b400. have.
  • the plurality of support parts b500 may divide the space between the exterior b410 and the inner tube b420 of the pipe part b400 in the longitudinal direction of the pipe part b400.
  • the plurality of support parts b500 may be advantageously provided radially with respect to the center of the pipe part b400 on the cross section in the longitudinal direction of the pipe part b400.
  • the plurality of support parts b500 may be advantageously provided to be spaced apart from each other at the same interval.
  • the above-described heat insulating part b600 may be provided in a space between the exterior b410 and the inner tube b420 of the pipe part b400 partitioned as described above.
  • the modified example of the geothermal well-insulated pipe according to the present invention can obtain the effect of preventing deformation and breakage by structurally reinforcing the pipe while ensuring the heat insulation inside and inside the pipe as in the above-described embodiment. have.
  • the support portion b500 may be formed with a hole b510 communicating with each other the space between the exterior (b410) and the inner tube (b420) partitioned by the support (b500).
  • the geothermal heat insulating pipe according to the present invention can more easily form a heat insulating layer inside the pipe, thereby reducing the time and effort required to manufacture the geothermal heat insulating pipe according to the present invention. You can get it.
  • the support part b500 may be formed in a spiral shape based on the center of the pipe part b400 along the longitudinal direction of the pipe part b400.
  • 17 is a view showing the configuration of the geothermal well pipe assembly first embodiment according to the present invention.
  • FIG. 18 is a view showing a state in which a stopper is provided in the first embodiment of the geothermal well pipe assembly according to the present invention
  • FIG. 19 is a view showing a modification of the stopper of the first embodiment of the geothermal well pipe assembly according to the present invention
  • 20 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the first embodiment of the geothermal heat pipe assembly according to the present invention.
  • FIG. 21 is a view showing a first modified example of the geothermal well pipe assembly according to the first embodiment of the present invention
  • FIG. 22 is a view showing a second modified example of the geothermal well pipe assembly according to the first embodiment of the present invention.
  • the first embodiment of the geothermal well pipe assembly according to the present invention may include a unit pipe module c100 and a connection ring module c200.
  • the unit pipe module c100 may be formed in a double tube shape including an inner tube c110 and an exterior c120, and may include an insulation material c130 provided in a space between the inner tube c110 and the exterior c120. .
  • Such a configuration may be a configuration for lowering the heat transfer efficiency between the heat transfer medium injected into the geothermal well and the heat transfer medium heated and recovered inside the geothermal well when the geothermal well pipe assembly according to the present invention is inserted into the geothermal well. have.
  • Such a configuration can obtain the effect of improving the efficiency of the geothermal heat recovery system using geothermal well pipe assembly.
  • the unit pipe module c100 has a first fastening part c112 formed at one end thereof and the other end thereof corresponding to the first fastening part c112 like the unit pipe module c400 of the second embodiment described above.
  • a second fastening part c114 coupled to the first fastening part c112 is formed, and a plurality of fastening parts c112 may be provided.
  • the plurality of unit pipe modules (c100) are connected to each other through the coupling of the first fastening portion (112) and the second fastening portion (c114) of each of the adjacent unit pipe module (c100), unit pipe module (c100)
  • the length can be increased in the longitudinal direction of.
  • each of the first fastening part c112 and the second fastening part c114 may be separately provided with each fastening part formed to be connected to each other, and may be formed to be welded to ends of different inner tubes c110.
  • first fastening part c112 and the second fastening part c114 may be formed in the form of a male screw and a female screw, respectively, so that adjacent unit pipe modules c100 rotate and are coupled to each other.
  • first fastening part c112 and the second fastening part c114 may be inserted into a space between the inner tube c110 and the outer part c120 to be fixed to the end of the unit pipe module c100. have.
  • the first fastening portion (c112) and the second fastening portion (c114) is inserted into the inside of the unit pipe module (c100) may be formed so that the diameter of the end is relatively small for easy insertion, interference fit method It may be fixed by, or may be fixed through a separate welding.
  • This configuration can also obtain the effect of preventing the insulating material (c130) provided between the inner tube (c110) and the outer (c120) from both ends of the unit pipe module (c100).
  • the configuration of the first fastening portion (c112) and the second fastening portion (c114) is not limited to the present embodiment, the position and the coupling method provided with the first fastening portion (c112) and the second fastening portion (c114) It can vary.
  • connection ring module (c200) is formed with a relatively larger diameter than the above-described unit pipe module (c100), it may be provided so as to surround the adjacent unit pipe module (c100) connected to each other.
  • connection ring module (c200) is coupled together in the process of connecting the adjacent unit pipe module (c100), the first coupling portion (112) and the second coupling portion (c114) of each of the unit pipe module (c100) connection ring It may be coupled inside the module c200.
  • connection ring module (c200) may be advantageously formed to be the same as the outer diameter of the outer pipe (c120) of the unit pipe module (c100), it may be advantageous to have a predetermined width in the longitudinal direction.
  • This configuration can obtain an effect that can more strongly support the coupling portion of the unit pipe module (c100).
  • a space is formed between the connection portion of the unit pipe module (c100) and the connection ring module (c200), the heat insulating material (c300) may be provided inside the space.
  • the unit pipe module c100 since the unit pipe module c100 includes a double pipe structure and a heat insulating material in order to reduce heat exchange between the inside and the outside, the inside of the outside and the outside of the connection portion of the unit pipe module c100 through the above-described configuration. The effect of reducing heat exchange can be obtained.
  • the configuration of the insulating material (c300) is to assemble the pre-processed insulating material (c300) or to inject a foamed insulating material to correspond to the shape of the space between the connection portion of the unit pipe module (c100) and the connection ring module (c200). Etc.
  • the material and configuration thereof may be various without limitation.
  • an injection hole c260 may be formed on one side of the connection ring module c200 to inject the insulating material c300 into a portion of the connection ring module c200.
  • the insulating material c300 may be easily injected into the space between the connection portion of the unit pipe module c100 and the connection ring module c200 through the injection hole c260.
  • the first embodiment of the geothermal well pipe assembly according to the present invention is provided with a stopper (c140) for fixing the position of the connection ring module (c200) to the unit pipe module (c100) Can be.
  • the stopper (c140) may be formed to protrude on the appearance of the unit pipe module (c100).
  • the stopper (c140) is provided to be spaced apart from the distance corresponding to the length of the connection ring module (c200) in the longitudinal direction centering on the connecting portion of the interconnected unit pipe module (c100), unit pipe module (c100)
  • a portion of the outer surface of the may be formed in a protruding shape.
  • the configuration of the stopper (c140) is not limited to the present embodiment, and may be variously applied, such as a form in which a separate fixing member is coupled to the fixing pin.
  • connection ring module (c200) is accurately positioned at the connection portion of the unit pipe module (c100) and does not move, thereby improving the performance of reinforcing the connection portion.
  • the first embodiment of the geothermal well pipe assembly according to the present invention may include a stopper (c140) of the modified form.
  • the stopper c140 may be formed such that both ends thereof include an inclined surface connecting the outer surface of the stopper c140 and the outer side of the unit pipe module c100.
  • stopper (c140) and the connection ring module (c200) protruding on the outer surface of the unit pipe module (c100) may not form a surface facing the longitudinal direction of the geothermal well pipe according to the present invention.
  • the heat transfer medium flowing along the outer surface of the geothermal well pipe according to the present invention may obtain an effect of reducing the resistance received by the stopper c140 and the connection ring module c200.
  • third coupling parts c150 are formed at both ends of the unit pipe module c100, and the connection ring module c200 is provided. At both ends of the fourth coupling part c250 coupled to the third coupling part c150 described above may be formed.
  • the third fastening part c150 may be formed on the outer circumferential surface of the unit pipe module c100.
  • the third fastening part c150 is spaced apart in the longitudinal direction with respect to the connection parts of the mutually connected unit pipe modules c100, and has a thickness of the connection ring module c200 coupled with the unit pipe module c100.
  • the third fastening part (c150) spaced apart from each other may be formed to partially overlap the connection ring module (c500).
  • the fourth fastening part c250 is formed in the form of a female screw corresponding to the third fastening part c150 described above at both ends of the connection ring module c200, and the third fastening part c150 and the third through rotation.
  • Four fastening parts c250 may be coupled to each other.
  • the unit pipe module c100 and the connection ring module c200 are also coupled to each other to more effectively reinforce the connection portion of the unit pipe module c100. Can be.
  • first fastening portion (c112), the second fastening portion (c114), the third fastening portion (c150) and the fourth fastening portion (c250) are all formed in the form of a screw, all the screws having the same pitch It may be advantageous to form it.
  • each unit pipe module (c100) and the connection ring module (c200) is rotated
  • the degree of mutual coupling may proceed the same.
  • the configuration of the third fastening portion (c150) and the fourth fastening portion (c250) is also not limited to the present embodiment, if the unit pipe module (c100) and the coupling ring module (c200) provided to be coupled to each other and the shape and The configuration can vary.
  • the first embodiment of the geothermal heat pipe assembly according to the present invention including the above-described configuration is connected to the plurality of unit pipe module (c100), at the same time more robust to the connection of the unit pipe module (c100),
  • the heat transfer medium flowing inside and outside the geothermal well pipe according to the present invention can obtain a sealing effect to prevent the communication between the plurality of unit pipe module (c100) to communicate with each other.
  • the first modification of the geothermal well pipe assembly according to the first embodiment of the present invention may include a unit pipe module (c100) and a coupling ring module (c200).
  • connection ring module (c200) is formed to surround a portion where the inner pipe (c110) of each unit pipe module (c100) is connected, the outer surface of the connection ring module (c200) of the appearance (c120) It may be formed at the same height as the outer surface.
  • connection ring module c200 may be formed to be the same as the outer diameter of the appearance c120.
  • connection ring module (c200) may be advantageously formed of a heat insulating material in order to block the heat exchange between the geothermal well pipe assembly according to the present invention and the outside.
  • connection ring module (c200) This configuration reinforces the connection part of the geothermal well pipe assembly according to the present invention and at the same time the protrusion by the connection ring module (c200) disappears, the pipe in the process of inserting the geothermal well pipe assembly according to the present invention into the geothermal well This can prevent the phenomenon.
  • the second modified example of the geothermal well pipe assembly according to the first embodiment of the present invention may include a unit pipe module (c100) and a connection ring module (c200).
  • connection ring module c200 may have an empty space formed therein, and an insulation material c300 may be provided therein.
  • This configuration can be obtained to reinforce the connection portion of the geothermal well pipe assembly according to the present invention and at the same time increase the insulation performance.
  • connection ring module c200 since the protrusion by the connection ring module c200 disappears, the phenomenon in which the pipe is caught in the process of inserting the geothermal well pipe assembly according to the present invention into the geothermal well can be prevented.
  • FIG. 23 is a view showing the configuration of a geothermal well pipe assembly according to a second embodiment of the present invention
  • Figure 24 is a view showing a state in which a stopper is provided in a second embodiment of the geothermal well pipe assembly according to the present invention
  • 25 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the second embodiment of the geothermal well pipe assembly according to the present invention.
  • the geothermal well pipe assembly may include a unit pipe module c400 and a connection ring module c500.
  • the unit pipe module (c400) is a pipe structure that is inserted into the geothermal well, the first fastening portion (c410) is formed at one end, the second fastening portion (c420) is formed at the other end, a plurality of Can be.
  • the first fastening part c410 and the second fastening part c420 may be formed to correspond to each other, and may be coupled to each other to connect adjacent unit pipe modules c400 to each other.
  • the plurality of unit pipe modules (c400) are connected to each other through the coupling of the first fastening portion (c410) and the second fastening portion (c420) of each of the adjacent unit pipe module (c400), unit pipe module (c400)
  • the length can be increased in the longitudinal direction of.
  • the first fastening part c410 and the second fastening part c420 are formed in the form of a male screw and a female screw, respectively, so that adjacent unit pipe modules c400 are rotated and coupled to each other, but are connected to each other. If the adjacent unit pipe module (c400) is provided to be coupled to each other the shape and configuration may be various without limitation.
  • connection ring module (c500) is formed with a relatively larger diameter than the above-described unit pipe module (c400), it may be provided so as to surround the adjacent unit pipe module (c400) connected to each other.
  • connection ring module (c500) is coupled together in the process of connecting the adjacent unit pipe module (c400), the first coupling portion (c410) and the second coupling portion (c420) of each of the unit pipe module (c400) connection ring It may be coupled inside the module (c500).
  • connection ring module (c500) may be advantageously formed to be the same as the outer diameter of the unit pipe module (c400), it may be advantageous to have a predetermined width in the longitudinal direction.
  • This configuration can obtain an effect that can more strongly support the coupling portion of the unit pipe module (c400).
  • the second embodiment of the geothermal well pipe assembly according to the present invention is provided with a stopper (c430) for fixing the position of the connection ring module (c500) to the unit pipe module (c400) Can be.
  • the stopper (c430) is provided spaced apart from the distance corresponding to the length of the connection ring module (c500) in the longitudinal direction centered on the connecting portion of the interconnected unit pipe module (c400), unit pipe module (c400) A portion of the outer surface of the may be formed in a protruding shape.
  • the configuration of the stopper (c430) is not limited to this embodiment, it can be applied in a variety of forms, such as a separate fixing member is coupled, such as a fixing pin.
  • connection ring module (c500) is accurately positioned at the connection portion of the unit pipe module (c400) and does not move, thereby improving the performance of reinforcing the connection portion.
  • third coupling parts c440 are formed at both ends of the unit pipe module c400, and the connection ring module c500 is provided. At both ends of the fourth fastening part c540 coupled to the third fastening part c440 described above may be formed.
  • the third fastening part c440 is spaced apart in the longitudinal direction with respect to the connection parts of the mutually connected unit pipe modules c400, and has a thickness of the connection ring module c500 coupled with the unit pipe module c400.
  • the third fastening part c440 spaced apart from each other may be formed to partially overlap the connection ring module c500.
  • the fourth fastening part c540 is formed in a female screw shape corresponding to the third fastening part c440 described above at both ends of the connection ring module c500, and the third fastening part c440 and the third fastening part are rotated.
  • Four fastening portions c540 may be coupled to each other.
  • first fastening portion (c410), the second fastening portion (c420), the third fastening portion (c440) and the fourth fastening portion (c540) are all formed in the form of a screw, all the screws having the same pitch It may be advantageous to form it.
  • each unit pipe module (c400) and the connection ring module (c500) is rotated
  • the degree of mutual coupling may proceed the same.
  • the configuration of the third fastening portion (c440) and the fourth fastening portion (c540) is also not limited to this embodiment, the shape and if provided to couple the unit pipe module (c400) and the connection ring module (c500) The configuration can vary.
  • 26 is a view showing the configuration of a geothermal well pipe assembly third embodiment according to the present invention.
  • Figure 27 is a view showing a stopper is provided in a third embodiment of the geothermal well pipe assembly according to the present invention
  • Figure 28 is a third fastening portion in a third embodiment of the geothermal well pipe assembly according to the present invention
  • a fourth fastening part is a view showing a state in which an injection hole is provided in a third embodiment of a geothermal well pipe assembly according to the present invention.
  • FIG. 30 is a diagram showing a configuration of a third embodiment of the geothermal well pipe assembly according to the present invention.
  • the third embodiment of the geothermal well pipe assembly according to the present invention may include a unit pipe module c600 and a connection ring module c700.
  • the unit pipe module c600 may be formed in a double tube shape including an inner tube c610 and an outer tube c620, and may include an insulation material c630 provided in a space between the inner tube c610 and the outer tube c620. .
  • Such a configuration may be a configuration for lowering the heat transfer efficiency between the heat transfer medium injected into the geothermal well and the heat transfer medium heated and recovered inside the geothermal well when the geothermal well pipe assembly according to the present invention is inserted into the geothermal well. have.
  • Such a configuration can obtain the effect of improving the efficiency of the geothermal heat recovery system using geothermal well pipe assembly.
  • the unit pipe module c600 has a first fastening portion c612 formed at one end thereof and the other end thereof corresponding to the first fastening portion c612 like the unit pipe module c400 of the second embodiment described above.
  • a second fastening part c614 coupled to the first fastening part c612 is formed, and a plurality of fastening parts c612 may be provided.
  • the plurality of unit pipe modules (c600) are connected to each other through the coupling of the first fastening portion (c612) and the second fastening portion (c614) of each of the adjacent unit pipe module (c600), unit pipe module (c600)
  • the length can be increased in the longitudinal direction of.
  • first fastening part c612 and the second fastening part c614 are formed at both ends of the inner tube c610, and are formed in the form of male and female screws, respectively, so that the adjacent unit pipe module c600 rotates. And may be configured to be coupled to each other.
  • Such a configuration can obtain the effect of maintaining the constant width of the heat transfer medium flowing in the unit pipe module (c600) by maintaining a constant width inside the unit pipe module (c600) to be connected.
  • the configuration of the first fastening portion (c612) and the second fastening portion (c614) is not limited to the present embodiment, the position and coupling method is provided with the first fastening portion (c612) and the second fastening portion (c614) It can vary.
  • connection ring module (c700) has a similar configuration to the connection ring module (c500) of the second embodiment, a detailed description thereof will be omitted.
  • connection ring module (c700) may be formed with a diameter surrounding the appearance (c620) of the unit pipe module (c600).
  • This configuration can obtain an effect that can more strongly support the coupling portion of the unit pipe module (c600).
  • a space is formed between the connection portion of the unit pipe module (c600) and the connection ring module (c700), the heat insulating material (c800) may be provided inside the space.
  • the unit pipe module (c600) since the unit pipe module (c600) includes a double pipe structure and a heat insulating material in order to reduce heat exchange between the inside and the outside, the inside of the outside and the connecting portion of the unit pipe module (c600) through the above-described configuration. The effect of reducing heat exchange can be obtained.
  • the configuration of the insulating material (c800) is to assemble a pre-processed insulating material (c800) or inject a foamed insulating material to correspond to the shape of the space between the connection portion of the unit pipe module (c600) and the connection ring module (c700). Etc.
  • the material and configuration thereof may be various without limitation.
  • the third embodiment of the geothermal well pipe assembly according to the present invention is provided with a stopper (c640) for fixing the position of the connection ring module (c700) to the unit pipe module (c600) Can be.
  • the stopper c640 may be formed to protrude on the exterior of the unit pipe module c600.
  • stopper c640 Since the structure of the stopper c640 is the same as that of the stopper c430 of the second embodiment, detailed description thereof will be omitted.
  • connection ring module (c700) is accurately positioned at the connection portion of the unit pipe module (c600) and does not move, thereby improving the performance of reinforcing the connection portion.
  • third coupling parts c650 are formed at both ends of the unit pipe module c600, and the connection ring module c700 is provided. At both ends of the fourth fastening part c750 coupled to the third fastening part c650 described above may be formed.
  • the third fastening part c650 may be formed on the outer circumferential surface of the unit pipe module c600.
  • first fastening portion c612 the second fastening portion c614, the third fastening portion c650, and the fourth fastening portion c750 are all formed in a screw shape, as in the above-described second embodiment, It may be advantageous to form all of the threads having the same pitch.
  • each unit pipe module (c600) and the connection ring module (c700) is rotated
  • the degree of mutual coupling may proceed the same.
  • connection ring module (c700) of the third embodiment of the geothermal well pipe assembly according to the present invention is a heat insulating material (c800) to the inside of the portion surrounding the connection ring module (c700) on one side
  • An injection hole c760 may be formed to inject.
  • the insulating material c800 may be easily injected into the space between the connection portion of the unit pipe module c600 and the connection ring module c700 through the injection hole c760.
  • the modified example of the geothermal pipe assembly according to the third embodiment of the present invention according to the present invention may include a unit pipe module (c600) and the connection ring module (c700).
  • the unit pipe module c600 since the unit pipe module c600 has the same configuration as the unit pipe module c600 of the third embodiment, detailed description thereof will be omitted.
  • connection ring module c700 of the present modification may be formed to directly contact the connection part of the unit pipe module c600 and surround the connection part.
  • connection ring module (c700) is formed to have a length corresponding to the length of the connection portion protruding from the inner pipe (c610) of the double pipe structure for the connection of the unit pipe module (c600), unit pipe module (c600) It may be advantageous to have a thickness corresponding to the thickness of the appearance (c620) and the heat insulating material (c630).
  • connection ring module (c700) may be formed to be the same as the outer diameter of the appearance (c620).
  • connection ring module (c700) of the present modification may be formed of a heat insulating material.
  • the present modification also includes a double pipe structure and a heat insulating material in order to reduce heat exchange between the inside and the outside of the unit pipe module (c600). The effect of reducing heat exchange can be obtained.
  • connection ring module (c700) may be advantageously formed of a material having a low heat transfer rate while having a strength that can withstand the pressure in the ground and the pressure of the flowing heat transfer medium.
  • the geothermal well pipe assembly according to the present invention can obtain the effect of increasing the strength of the plurality of pipe connection portions inserted into the geothermal well through the configuration of the first to third embodiments described above to improve the durability of the geothermal well pipe assembly.
  • Figure 32 is a view showing a modification of the first-first embodiment of the geothermal heat exchange system according to the present invention.
  • the geothermal well heat exchange system may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d300).
  • Geothermal well (d100) is a configuration of a hole formed by excavating the ground, it can be formed by excavating to the depth to generate geothermal heat of the temperature to be used.
  • the geothermal well (d100) may be advantageously formed in a width such that a sufficient amount of heat transfer medium can flow to recover the geothermal heat.
  • the pipe (d200) is configured to partition the internal space of the geothermal well (d100) described above, extends from the ground to the bottom of the geothermal well (d100), geothermal well (d100) inside the geothermal well (d100)
  • the inner peripheral surface may be spaced apart from each other.
  • the pipes d200 are spaced apart at predetermined intervals without contacting the inner bottom surface of the geothermal well d100.
  • the configuration of the pipe (d200) divides the space inside the geothermal well (d100) into the outer and inner space of the pipe (d200), the heat transfer medium for recovering geothermal heat between the geothermal well (d100) and the pipe (d200) It is injected into the space of the geothermal heat is heated by the geothermal well (d100) may be introduced into the inside of the pipe (d200) and recovered to the ground through the pipe (d200).
  • the configuration of the pipe (d200) may be advantageously formed with sufficient strength to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
  • the pipe d200 may be formed to include a heat insulating part for lowering the heat exchange efficiency between the inside and the outside of the pipe d200.
  • the heat insulating part may be formed with at least one heat insulating material along the surface of the pipe (d200), it may be advantageous to be provided in the space between the outer tube and the inner tube of the double-pipe type including the outer tube and the inner tube (200). .
  • the heat insulating part is formed in a form filled with a foamable heat insulating material such as urethane foam, foam rubber, etc., various materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation.
  • a foamable heat insulating material such as urethane foam, foam rubber, etc.
  • various materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation.
  • the heat insulation portion may be formed with a heat resistance of the upper portion of the heat insulation portion relatively larger than the heat resistance of the lower portion of the heat insulation portion.
  • the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
  • the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
  • the total heat transfer coefficient of the upper portion of the pipe (d200) may be higher through the heat insulation.
  • the heat storage unit (d300) is a configuration in which the heat storage material is provided in the space between the geothermal well (d100) and the pipe (d200), it is formed so that the heat transfer medium injected into the geothermal well (d100). Can be.
  • the heat storage material composed of the heat storage unit (d300) may be a material having a large heat capacity such as gravel, sand, rock fragments, concrete structures, concrete fragments, metal structures, metal grains, etc.
  • the heat transfer medium that has geothermal heat and flows around The arrangement may be varied without limitation if provided to transfer heat to the furnace.
  • the heat storage unit d300 may be provided with a plurality of heat storage materials having a predetermined volume in a space between the geothermal well d100 and the pipe d200.
  • the interval between each heat storage material is formed in the heat storage unit (d300), the heat transfer medium flows through the gap of the heat storage material can move to the bottom of the geothermal well (d100).
  • the heat storage unit d300 itself receives the geothermal heat from the inside of the geothermal well d100, the heat capacity inside the geothermal well d100 may be increased, and the thermal conductivity coefficient may be improved.
  • turbulence occurs during the flow of the heat transfer medium to the bottom of the geothermal well (d100), thereby maximizing the amount of heat that the heat transfer medium recovers from the geothermal well (d100).
  • the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well (d100) and at the same time can receive heat from the heat storage unit (d300) heated by geothermal heat, thereby improving the thermal conductivity inside the production well to improve geothermal heat. It can absorb effectively.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • heat storage unit (d300) may be advantageously provided in the space between the lower surface of the geothermal well (d100) and the pipe (d200).
  • the modified example of the geothermal well heat exchange system 1-1 may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d300) as shown in FIG.
  • geothermal well (d100) and the pipe (d200) is the same configuration as the geothermal well (d100) and the pipe (d200) of the first-first embodiment described above, a detailed description thereof will be omitted.
  • the heat storage unit d300 is also configured in the same manner as the heat storage unit d300 of the first-first embodiment described above, but in the present modification, the heat storage unit d300 is provided to a predetermined depth under the geothermal well d100. Can be.
  • the flow rate of the heat transfer medium is increased due to the heat storage unit (d300), so that even when a high temperature heat transfer medium is injected, the effect of not losing heat of the heat transfer medium to the rock of the geothermal well at the low depth portion of the geothermal well can be obtained. have.
  • Example 33 is a view showing the configuration of Example 1-2 of the geothermal heat exchange system according to the present invention.
  • the geothermal well heat exchange system may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d400).
  • the configuration of the geothermal well (d100) and the pipe (d200) is the same as the configuration of the geothermal well (d100) and the pipe (d200) of the first-first embodiment described above will be omitted.
  • the heat storage unit (d400) is provided in the space between the geothermal well (d100) and the pipe (d200) as in the first embodiment described above can pass through the heat transfer medium injected into the geothermal well (d100) It can be formed to be.
  • a material having a large heat capacity may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium that carries geothermal heat and flows around.
  • the heat storage unit (d400) is made of a heat storage material of the porous form, the heat transfer medium can be transmitted through the gap formed in the heat storage unit (d400).
  • the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well (d100) and at the same time can receive heat from the heat storage unit (d400) heated by geothermal heat, thereby increasing the area of the heat transfer medium to receive geothermal heat significantly. Can be.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the heat storage unit (d400) of the present embodiment may also be provided between the lower surface of the geothermal well (d100) and the lower end of the pipe (d200), as in the first-first embodiment described above, All may be provided to the bottom surface, or may be provided only to a predetermined depth of the lower portion of the geothermal well (d100).
  • Figure 34 is a view showing the configuration of the first to third embodiments of the geothermal heat exchange system according to the present invention
  • Figure 35 is a view showing a first modification of the geothermal heat exchange system to the first to third embodiments according to the present invention
  • 36 is a view showing the second modified example of the geothermal heat exchange system 1-3 according to the present invention.
  • the geothermal well heat exchange system may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d500).
  • the configuration of the geothermal well (d100) and the pipe (d200) is the same as the configuration of the geothermal well (d100) and the pipe (d200) of the first-first embodiment described above will be omitted.
  • the heat storage unit (d500) is provided in the space between the geothermal well (d100) and the pipe (d200) as in the first embodiment described above can pass through the heat transfer medium injected into the geothermal well (d100) It can be formed to be.
  • a material having a large heat capacity such as concrete may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium having geothermal heat flowing therein.
  • the heat storage unit d500 may be formed by combining a plurality of heat storage materials protruding to the outer circumferential surface of the pipe d200.
  • each heat storage material may be advantageously formed to have a predetermined area on the upper surface of the heat storage material in order to form a turbulence according to the flow resistance of the heat transfer medium.
  • the heat storage unit d510 is formed in a form corresponding to the shape of the plate and the geothermal well (d100) protruding to the outer portion around the pipe (d200), each heat storage unit (d510) is a heat transfer flow
  • a plurality of through holes d512 through which the medium can pass may be formed.
  • Such a configuration may cause turbulence in the process of flowing the heat transfer medium to the bottom of the geothermal well (d100), thereby maximizing the amount of heat that the heat transfer medium recovers from the geothermal well (d100).
  • the configuration of the heat storage unit (d510) also obtains the effect of serving as a centralizer (centralizer) to assist the pipe (d200) to be located in the center of the geothermal well (d100) inside the geothermal well (d100). Can be.
  • the configuration of the heat storage unit d510 serves as a fin for dissipating the heat of the geothermal well d100, thereby greatly increasing the average heat capacity and the heat transfer coefficient inside the geothermal well.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the modified example of the geothermal heat exchange system 1-3 according to the present invention may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d500) as shown in FIGS. 35 and 36. .
  • geothermal well (d100), the pipe (d200) and the heat storage unit (d500) is the same configuration as the configuration of the geothermal well (d100), pipe (d200) and the heat storage unit (d500) of the embodiment 1-3 described above in detail The description will be omitted.
  • the heat storage unit d520 is formed in a plate shape having a relatively smaller area than the heat storage unit d510 of the first to third embodiments, and is arranged spirally along the outer circumferential surface of the pipe d200. Can be.
  • the heat storage unit d530 may be formed in a plate shape spirally wound along the outer circumferential surface of the pipe d200.
  • the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal heat crystal (d100) and at the same time receive heat from the heat storage unit (d500) heated by geothermal heat, thereby reducing the heat capacity and heat transfer coefficient inside the geothermal heat crystal (d100). Can be increased significantly.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the configuration of the heat storage unit d500 is not limited to the present modification as long as it is provided to generate resistance to the heat transfer medium, such as a zigzag arrangement or a random arrangement, and the shape and arrangement may be various.
  • the heat storage unit d500 having a protruding shape may be formed to protrude to the same length from the pipe.
  • the length may be advantageously formed to a length corresponding to the distance between the geothermal well (d100) and the pipe (d200).
  • the configuration of the heat storage unit (d500) is a centralizer that can assist the pipe (d200) is located in the center of the geothermal well (d100) when the pipe (d200) is disposed inside the geothermal well (d100) It can act as a centralizer.
  • the injection well into which the heat transfer medium is injected into the geothermal well (d100) is formed evenly, so that the heat transfer medium can receive the geothermal heat evenly.
  • the temperature difference between the inside and the outside of the pipe d200 may be greatest at the upper portion of the geothermal well d100.
  • the pipe d200 includes a heat insulating part for lowering heat exchange efficiency between the inside and the outside of the pipe d200.
  • the pipe (d200) is formed in a double tube structure formed of the outer and inner tube, and is formed in the form of filling a heat insulating material between the outer and inner tube, the heat storage unit (d500) is coupled to the outer peripheral surface of the outer surface is heated It is possible to prevent the heat of the recovered heat transfer medium from being transferred to the outside of the pipe d200.
  • the heat storage unit (d500) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (d100).
  • FIG. 37 is a diagram showing the configuration of the first to fourth embodiments of the geothermal heat exchange system according to the present invention.
  • the geothermal well heat exchange system may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d300).
  • geothermal well (d100) and the heat storage unit (d300) have the same configuration as the geothermal well (d100) and the heat storage unit (d300) of the first-first embodiment described above, a detailed description thereof will be omitted.
  • the pipe d200 may have a diameter L4 of the upper outer circumferential surface of the pipe d200 relatively larger than the diameter L5 of the lower circumferential surface of the lower pipe d200.
  • Such a configuration may increase the space between the inner circumferential surface of the geothermal well (d100) and the pipe (d200) toward the lower portion of the geothermal well (d100).
  • the flow path of the heat transfer medium becomes wider toward the bottom of the geothermal well (d100), and when the heat transfer medium flows under the same pressure, the flow rate of the heat transfer medium decreases toward the bottom of the geothermal well (d100), and the heat transfer medium Time to flow in the geothermal well (d100) can be further increased.
  • the total amount of heat received by the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the heat storage unit (d300) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (d100).
  • FIG. 38 is a view showing the first-first embodiment of the geothermal heat exchange system construction method according to the present invention.
  • the geothermal heat exchange system construction method may include an excavation step (dS100), a charging and charging step (dS200), an insertion step (dS300), and a filling step (dS400).
  • Excavation step is a step of excavating the ground to a predetermined diameter to form a geothermal well, it is possible to excavate the ground to a depth that the geothermal heat of the temperature to be used and a sufficient amount of heat transfer medium can flow have.
  • This excavation step (dS100) can generally excavate geothermal well using a process and equipment for excavating the ground.
  • the temporary charging step (dS200) is a step of filling the heat storage material with a predetermined thickness in the lower end of the geothermal well formed in the above-mentioned excavation step (dS100), the thickness of the geothermal well and the insertion step (dS300) to be described later
  • the pipe inserted into the geothermal well may be filled with a thickness corresponding to the spaced interval.
  • the heat storage material is applied to a material having a large heat capacity such as concrete, formed so that the heat transfer medium can penetrate, and is provided to transfer heat to the heat transfer medium that carries geothermal heat and then flows around the configuration can be varied without limitation have.
  • the insertion step (dS300) is a step of extending and inserting the pipe from the ground to the bottom of the geothermal well inside the geothermal well, the outer peripheral surface of the pipe may be arranged to be spaced apart from the inner peripheral surface of the geothermal well.
  • the pipe may be inserted into the geothermal well while extending the length by connecting the plurality of unit pipes.
  • the heat storage material may support the pipe by contacting the upper end of the heat storage material filled in the above-described charging and charging step (dS200) and the lower end of the pipe.
  • the pipe inserted in the insertion step (dS300) may be advantageous to use a pipe including a heat insulating portion that can lower the heat exchange efficiency between the inside and the outside of the pipe.
  • the pipe is formed in the form of a double pipe structure, the insulation material is provided in the space between the outer tube and the inner tube of the pipe may be formed to form a heat insulating portion.
  • the filling step dS400 may be a step of filling the heat storage material in the space between the inner circumferential surface of the geothermal well and the outer circumferential surface of the pipe.
  • the heat storage material may be filled up to the ground of the space between the geothermal well and the pipe, or after filling the heat storage material to a predetermined depth below the geothermal well may end the charging step (dS400).
  • a heat storage material of a material having a relatively higher permeability of the heat transfer medium may be filled.
  • the geothermal well heat exchange system formed through this process may inject a heat transfer medium through the space between the geothermal well filled with the heat storage material and the pipe, and recover the heat transfer medium heated under the geothermal well through the inside of the pipe.
  • the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal heat crystal (d100) and at the same time receives heat from the heat storage unit (d510) heated by geothermal heat, thereby reducing the heat capacity and heat transfer coefficient inside the geothermal heat crystal (d100). Can be increased significantly.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • 39 is a view showing the embodiment 1-2 of the geothermal heat exchange system construction method according to the present invention.
  • the geothermal heat exchange system construction method may include a heat storage pipe manufacturing step (dS500), an excavation step (dS600), and an insertion step (dS700).
  • the heat storage pipe manufacturing step (dS500) may be a step of manufacturing the heat storage pipe by combining the pipe and the heat storage material in a form in which a plurality of heat storage materials protrude on the outer circumferential surface of the pipe.
  • the heat storage material is applied to a material having a large heat capacity, such as concrete, the heat transfer medium is formed so as to permeate, if the geothermal heat is provided to transfer heat to the heat transfer medium flowing around the configuration is not limited and varied can do.
  • the plurality of heat storage materials may be arranged in various ways such as spiral arrangement, zigzag arrangement, and random arrangement along the outer circumferential surface of the pipe.
  • each heat storage material is arranged and coupled so that a predetermined area is formed toward the upper side of the pipe.
  • the pipe used in the heat storage pipe may be advantageous to use a pipe containing a heat insulating material that can lower the heat exchange efficiency between the inside and the outside of the pipe.
  • the excavation step (dS600) is the same process as the excavation step (dS100) of the heat exchange system construction method embodiment 1-1 described above, the heat storage pipe manufactured in the above-described heat storage pipe manufacturing step (dS500) is inserted. Geothermal wells can be excavated to the extent possible.
  • the insertion step (dS700) may be a step of inserting the heat storage pipe to the inside of the geothermal well formed in the excavation step described above, to the bottom of the geothermal well.
  • the insertion step (dS700) may be inserted into the geothermal well while extending the length by connecting a plurality of heat storage pipe.
  • the heat storage pipe to be inserted may maintain a gap between the pipe and the geothermal well through a plurality of heat storage material coupled to the side of the pipe, the heat storage pipe may be provided in the center of the geothermal well.
  • the lower end of the heat storage pipe may be advantageously spaced apart from the lower surface of the geothermal well by a predetermined interval so that the heat transfer medium injected into the outside of the pipe may flow into the inside of the pipe.
  • the pipe may be extended to the ground of the geothermal well by connecting pipes to which the heat storage material is not coupled.
  • the heat storage pipe may be connected to a lower portion of the geothermal well, and the general pipe may be connected to the ground above the heat storage pipe.
  • the geothermal well heat exchange system formed through this process may inject a heat transfer medium through the space between the geothermal well filled with the heat storage material and the pipe, and recover the heat transfer medium heated under the geothermal well through the inside of the pipe.
  • the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal heat crystal (d100) and at the same time receives heat from the heat storage unit (d510) heated by geothermal heat, thereby reducing the heat capacity and heat transfer coefficient inside the geothermal heat crystal (d100). Can be increased significantly.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • FIG. 40 is a cross-sectional view showing the configuration of Embodiment 2-1 of the geothermal heat exchange system according to the present invention
  • FIG. 41 is a plan view showing the configuration of Embodiment 2-1 of the geothermal heat exchange system according to the present invention
  • 42 is a view showing a modification of the geothermal heat exchange system 2-1 embodiment according to the present invention.
  • the geothermal well heat exchange system may include a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e400).
  • a geothermal well e100
  • an outer pipe e200
  • an inner pipe e300
  • a heat storage unit e400
  • Geothermal well is a configuration of a hole formed by excavating the ground, it may be formed by excavating to the depth to generate geothermal heat of the temperature to be used.
  • the geothermal well e100 is formed to a width such that a sufficient amount of the heat transfer medium can flow to recover the geothermal heat.
  • the outer pipe (e200) is inserted into the interior of the geothermal well (e100) described above, extends from the ground to the bottom of the geothermal well (e100), the inner peripheral surface of the geothermal well (e100) inside the geothermal well (e100) And may be spaced apart from each other.
  • the outer pipe e200 is spaced apart at predetermined intervals without contacting the inner bottom surface of the geothermal well e100.
  • the outer pipe e200 may be formed in the form of a porous pipe in which a plurality of through-holes in which the inside and the outside of the outer pipe e200 communicate with each other are formed on a surface of the outer pipe e200.
  • the through hole facilitates the flow of the heat transfer medium injected into the geothermal well (e100) and facilitates heat transfer through convection from the inner surface of the geothermal well (e100) to the production well, thereby facilitating recovery of geothermal heat.
  • the configuration of the outer pipe (e200) may be advantageously formed to have sufficient strength to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
  • the inner pipe (e300) is inserted into the inside of the above-described outer pipe (e200), is formed with a length corresponding to the outer pipe (e200), it can be spaced apart from the inner peripheral surface of the outer pipe (e200). have.
  • the inner pipe e300 may also be advantageously formed with sufficient strength to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
  • the inner pipe e300 may be formed to include a heat insulating part for lowering the heat exchange efficiency between the inside and the outside of the inner pipe e300.
  • the heat insulation part may be formed with at least one heat insulating material along the surface of the inner pipe e300, and it may be advantageous to be provided in the space between the outer pipe and the inner pipe of the inner pipe e300 having a double pipe shape including an outer pipe and an inner pipe. Can be.
  • the insulation part is formed in a form filled with a foam insulation material such as urethane foam, foam rubber, etc., various materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation.
  • a foam insulation material such as urethane foam, foam rubber, etc.
  • various materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation.
  • the inner pipe e300 may have a heat resistance above the inner pipe e300 relatively greater than a heat resistance under the inner pipe e300.
  • the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
  • the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
  • the total heat transfer coefficient of the upper portion of the inner pipe (e300) may be higher, and such a configuration is such that in the process of circulating the heat transfer medium inside the geothermal well (e100), in the case of the upper portion of the geothermal well (e100), the inner pipe ( Since the temperature difference between the inside and outside of the e300 is larger than the lower portion, it may be advantageous to improve the efficiency of the geothermal recovery.
  • the geothermal well circulation system has an outer pipe e200 having a width smaller than that of the geothermal well e100, and the width of the outer pipe e200.
  • the inner pipe e300 may be formed in a relatively smaller width.
  • outer pipe e200 may be disposed to be spaced apart from each other inside the geothermal well e100, and the inner pipe e300 may be disposed to be spaced apart from each other inside the outer pipe e200.
  • the outer pipe e200 may have a first support for maintaining a distance from the inner pipe e300.
  • a second support part e220 may be included to maintain a distance between the e210 and the geothermal well e100.
  • the first support part e210 contacts the inner circumferential surface of the outer pipe e200 and the outer circumferential surface of the inner pipe e300 to maintain a gap between the outer pipe e200 and the inner pipe e300, and the outer pipe e200 and the inner pipe. It may be fixed to at least one of the (e300).
  • the second support part e220 may be formed to contact the outer circumferential surface of the outer pipe e200 and the inner wall of the geothermal well e100 to maintain a gap between the outer pipe e200 and the geothermal well e100.
  • the plurality of second support parts e220 are radially disposed on a horizontal cross section and protrude at the same distance so that the outer pipe e200 is disposed at the center of the geothermal well e100.
  • the second support part e220 may be formed to have a downward slope and protrude to the outside of the outer pipe e200 at an interval spaced apart from the geothermal well e100, and then bend in an inner direction of the outer pipe e200.
  • the second support part e220 supports the outer pipe e200 to some extent, when the outer pipe e200 is inserted into the geothermal well e100, the second support part e220 is geothermal well e100. ) Can be prevented.
  • the heat storage unit (e400) is a configuration in which the heat storage material is provided in the space between the geothermal well (e100) and the outer pipe (e200), it is formed so that the heat transfer medium injected into the geothermal well (e100). Can be.
  • the heat storage material composed of the heat storage unit (e400) may be applied to a material having a large heat capacity, such as gravel, sand or concrete, and in addition to the geothermal heat is provided if the heat transfer medium is provided to transfer the heat to the surrounding medium is not limited in configuration. It can be varied without.
  • the heat storage unit e400 may be provided with a plurality of heat storage materials having a predetermined volume in a space between the geothermal well e100 and the outer pipe e200.
  • the interval between each heat storage material is formed in the heat storage unit (e400), the heat transfer medium flows through the heat storage material can move to the bottom of the geothermal well (e100).
  • the heat transfer medium injected into the outer space of the inner pipe (e300) has a space between the geothermal well (e100) and the outer pipe (e200) and the outer pipe (e200) through a plurality of through holes formed in the outer pipe (e200).
  • the space between the inner pipe e300 may communicate with each other and be heated by geothermal heat.
  • the space between the geothermal well (e100) and the outer pipe (e200) serves as a flow path, it is possible to reduce the power required of the pump required to circulate the heat transfer medium.
  • the heated heat transfer medium may flow into the inner pipe e300 from the bottom of the geothermal well e100 and be recovered to the ground through the inner pipe e300.
  • the flow of the heat transfer medium increases in the process of flowing the heat transfer medium to the bottom of the geothermal well (e100), so that turbulence is formed, and such turbulence may promote heat transfer from the geothermal well (e100) to the production well. .
  • the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time can receive heat from the heat storage unit (e400) heated by geothermal heat, thereby improving the thermal conductivity inside the production well to improve geothermal heat. It can absorb effectively.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the geothermal well (e100) Since the space between the geothermal well (e100) and the outer pipe (e200) is filled with the heat storage unit (e400), even if the geothermal well (e100) is formed in a region of weak ground strength, the geothermal well (e100) The inner circumferential surface is collapsed and the geothermal heat exchange system can be prevented from being damaged.
  • the heat storage unit (e400) may be advantageously provided in the space between the lower surface of the geothermal well (e100) and the aforementioned two pipes.
  • the modified example of the geothermal heat exchange system 2-1 embodiment according to the present invention is a geothermal well (e100), outer pipe (e200), inner pipe (e300) and heat storage unit (e400) as shown in FIG. It may include.
  • the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) is the same configuration as the configuration of the geothermal well (e100), outer pipe (e200) and inner pipe (e300) of the above-described embodiment 2-1. Therefore, detailed description will be omitted.
  • the heat storage unit e400 also has the same structure as the heat storage unit e400 of the above-described embodiment 2-1, but in the present modification, the heat storage unit e400 is provided to a predetermined depth under the geothermal well e100. Can be.
  • the heat storage unit e400 when the heat storage unit e400 is provided in the space between the geothermal well e100 and the outer pipe e200, all of the heat storage unit e400 is not provided from the ground to the lower surface of the geothermal well e100 as in the above-described embodiment 2-1. Instead, it may be provided only up to a predetermined depth of the bottom of the geothermal well (e100).
  • geothermal heat of the temperature to be used inside the geothermal well (e100) is generated at the lower end of the geothermal well (e100), turbulence occurs in the flow of the heat transfer medium at the lower end of the geothermal well (e100), thereby improving geothermal recovery efficiency. A synergistic effect can be obtained.
  • Example 43 is a diagram showing the configuration of Example 2-2 of the geothermal heat exchange system according to the present invention.
  • the geothermal well heat exchange system may include a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e500).
  • a geothermal well e100
  • an outer pipe e200
  • an inner pipe e300
  • a heat storage unit e500
  • the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) is the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) of the above-described embodiment 2-1. Since the same configuration, detailed description thereof will be omitted.
  • the heat storage unit (e500) is provided in the space between the geothermal well (e100) and the inner pipe (e300) as in the above-described embodiment 2-1, the heat transfer medium is injected into the geothermal well (e100) It can be formed to be.
  • a material having a large heat capacity may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium that carries geothermal heat and flows around.
  • the heat storage unit e500 may be formed of a porous heat storage material, and the heat transfer medium may pass through the pores formed in the heat storage unit e500.
  • the flow of the heat transfer medium increases in the process of flowing the heat transfer medium to the bottom of the geothermal well (e100), so that turbulence is formed, and such turbulence may promote heat transfer from the geothermal well (e100) to the production well. .
  • the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time receives heat from the heat storage unit (e500) heated by geothermal heat, thereby improving the thermal conductivity coefficient inside the production well to improve geothermal heat. It can absorb effectively.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the heat storage unit (e500) of the present embodiment may also be provided between the lower surface of the geothermal well (e100) and the lower end of the two pipes described above, as in the embodiment 2-1 described above, from the ground of the geothermal well (e100) It may be provided up to the bottom surface, or may be provided only up to a predetermined depth of the bottom of the geothermal well (e100).
  • FIG. 44 is a view showing the configuration of the second embodiment of the geothermal heat exchange system according to the present invention
  • FIG. 45 is a view showing the first modified example of the second embodiment of the geothermal heat exchange system according to the present invention.
  • 46 is a view showing the second modified example of the geothermal heat exchange system according to the second embodiment of the present invention.
  • the geothermal well heat exchange system may include a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e600).
  • a geothermal well e100
  • an outer pipe e200
  • an inner pipe e300
  • a heat storage unit e600
  • the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) is the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) of the above-described embodiment 2-1. Since the same configuration, detailed description thereof will be omitted.
  • the heat storage unit (e600) is provided in the space between the geothermal well (e100) and the outer pipe (e200) as in the above-described embodiment 2-1, the heat transfer medium is injected into the geothermal well (e100) It can be formed to be.
  • a material having a large heat capacity such as concrete may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium having geothermal heat flowing therein.
  • the heat storage unit e600 may be formed by combining a plurality of heat storage materials protruding to the outer circumferential surface of the outer pipe e200.
  • each heat storage material may be advantageously formed to have a predetermined area on the upper surface of the heat storage material in order to generate a resistance to the flow of the heat transfer medium.
  • the heat storage unit e610 is formed in a form corresponding to the shape of the plate and the geothermal well (e100) protruding to the outside around the outer pipe (e200), each heat storage unit (e610) is flowing A plurality of through holes e612 through which the heat transfer medium can pass may be formed.
  • the flow of the heat transfer medium increases in the process of flowing the heat transfer medium to the bottom of the geothermal well (e100), so that turbulence is formed, and such turbulence may promote heat transfer from the geothermal well (e100) to the production well. .
  • the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time receives heat from the heat storage unit (e610) heated by geothermal heat, thereby improving the thermal conductivity coefficient inside the production well to improve geothermal heat. It can absorb effectively.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the modified example of the geothermal heat exchange system according to the embodiment 2-3 of the present invention is geothermal well (e100), the outer pipe (e200), the inner pipe (e300) and the heat storage ( e600).
  • the geothermal well (e100), the outer pipe (e200), the inner pipe (e300) and the heat storage unit (e600) is the geothermal well (e100), the outer pipe (e200), the inner pipe (e300) of the above-described embodiment 2-3 )
  • the heat storage unit (e600) is the same configuration and detailed description thereof will be omitted.
  • the heat storage unit e620 is formed in a plate shape having a relatively smaller area than the heat storage unit e610 in the second embodiment, and is disposed spirally along the outer circumferential surface of the outer pipe e200. Can be.
  • the heat storage unit e630 may be formed in a plate shape spirally wound along the outer circumferential surface of the outer pipe e200.
  • This configuration allows the heat transfer medium to flow relatively naturally and smoothly, and in the process of flowing the heat transfer medium to the lower portion of the geothermal well (e100), the flow rate of the heat transfer medium is accelerated to form turbulent flow, thereby facilitating heat transfer. .
  • the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time receives heat from the heat storage unit (e610) heated by geothermal heat, thereby improving the thermal conductivity coefficient inside the production well to improve geothermal heat. It can absorb effectively.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the configuration of the heat storage unit e620 is not limited to the present modification as long as it is provided to generate resistance in the heat transfer medium, such as a zigzag arrangement or a random arrangement, and the shape and arrangement may be various.
  • the heat storage unit (e600) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (e100).
  • Embodiments 2-4 of the geothermal heat exchange system according to the present invention are a view showing the configuration of Embodiments 2-4 of the geothermal heat exchange system according to the present invention.
  • the geothermal well heat exchange system may have a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e400). .
  • the configuration of the geothermal well (e100), the outer pipe (e200) and the heat storage unit (e400) is the configuration of the geothermal well (e100), the outer pipe (e200) and the heat storage unit (e400) of the above-described embodiment 2-1. Since the same configuration, detailed description thereof will be omitted.
  • the basic configuration of the inner pipe (e300) may also be the same configuration as the inner pipe (e300) of the above-described embodiment 2-1.
  • the diameter L6-a of the upper outer circumferential surface of the inner pipe e300 may be relatively larger than the diameter L6-b of the lower outer circumferential surface of the lower inner pipe e300.
  • Such a configuration may increase the space between the inner circumferential surface of the geothermal well (e100) and the inner pipe (e300) toward the lower portion of the geothermal well (e100).
  • the flow path of the heat transfer medium becomes wider toward the bottom of the geothermal well (e100), and when the heat transfer medium flows under the same pressure, the flow rate of the heat transfer medium decreases toward the bottom of the geothermal well (e100), and the heat transfer medium is supported. It is possible to further increase the flow time inside the passion (e100).
  • the heat storage layer (e400) layer becomes thicker toward the lower portion of the geothermal well (e100), so that the heat capacity of the geothermal well is lower, and more turbulence is formed in the flowing heat transfer medium, thereby improving heat transfer efficiency.
  • the total amount of heat received by the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • the heat storage unit (e400) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (e100).
  • the inner pipe e300 of the present embodiment may have a diameter L7-a of the upper inner circumferential surface of the inner pipe e300 relatively smaller than the diameter L7-b of the lower inner circumferential surface of the inner pipe e300.
  • the flow rate of the heat transfer medium recovered through the inside of the inner pipe (e300) becomes faster toward the top of the geothermal well (e100), and thus the inside and outside of the inner pipe (e300) above the geothermal well (e100). Heat exchange can be prevented from occurring.
  • Embodiment 48 is a view showing Embodiment 2-1 of the geothermal heat exchange system construction method according to the present invention.
  • the geothermal well heat exchange system construction method is a method for constructing a geothermal well heat exchange system according to the above-described configuration, and includes an excavation step (eS100), a charging step (eS200), and an insertion step. (eS300) and the charging step (eS400) may be included.
  • Excavation step is a step to form a geothermal well by excavating the ground to a predetermined diameter, it is possible to excavate the ground to the depth that the geothermal heat of the temperature to use and a sufficient amount of heat transfer medium can flow have.
  • This excavation step can generally excavate geothermal well using a process and equipment for excavating the ground.
  • the temporary charging step (eS200) is a step of filling the heat storage material with a predetermined thickness at the lower end of the geothermal well formed in the above-mentioned excavation step (eS100), the thickness of the inside of the geothermal well in the insertion step (eS300) to be described later
  • the two pipes may be filled with a thickness corresponding to a gap spaced apart from the bottom of the geothermal well.
  • the heat storage material is applied to a material having a large heat capacity such as concrete, formed so that the heat transfer medium can penetrate, and is provided to transfer heat to the heat transfer medium that carries geothermal heat and then flows around the configuration can be varied without limitation have.
  • the insertion step (eS300) is a step of extending and inserting the outer pipe and the inner pipe from the ground to the bottom of the geothermal well into the geothermal well, and the outer circumferential surface of the outer pipe is spaced apart from the inner circumferential surface of the geothermal well, and the outer circumferential surface of the inner pipe May be spaced apart from the inner circumferential surface of the outer pipe.
  • the two pipes may be inserted into the geothermal well while extending the length by connecting the plurality of unit pipes.
  • the heat storage material may support the pipe by contacting the upper portion of the heat storage material filled in the above-described charging and charging step (eS200) and the lower end portion of the outer pipe and the inner pipe.
  • the inner pipe inserted in the insertion step (eS300) may be advantageous to use a pipe including a heat insulating portion that can lower the heat exchange efficiency between the inside and the outside of the inner pipe.
  • the inner pipe may be formed in the form of a double pipe structure, and the heat insulating material may be provided in the space between the outer pipe and the inner pipe of the inner pipe to form a heat insulating part.
  • the filling step eS400 may be a step of filling the heat storage material in a space between the inner circumferential surface of the geothermal well and the outer circumferential surface of the outer pipe.
  • the heat storage material may be filled up to the ground of the space between the geothermal well and the outer pipe, or the charging step (eS400) may be terminated after filling the heat storage material to a predetermined depth under the geothermal well.
  • a heat storage material of a material having a relatively higher permeability of the heat transfer medium may be filled.
  • the geothermal well heat exchange system formed through this process can inject heat transfer medium through the space between the geothermal well filled with the heat storage material and the inner pipe, and recover the heat transfer medium heated at the bottom of the geothermal well through the inside of the inner pipe. have.
  • the heat transfer medium flows through the outer pipe in the process of flowing to the bottom of the geothermal well, and at this time, the flow rate of the heat transfer medium is accelerated in the process of flowing the heat transfer medium to the bottom of the geothermal well to promote heat transfer You can.
  • the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well and at the same time can receive heat from the heat storage portion heated by geothermal heat, thereby improving the heat conductivity inside the production well to absorb geothermal heat more effectively.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
  • Embodiment 49 is a view showing Embodiment 2-2 of the geothermal heat exchange system construction method according to the present invention.
  • the geothermal heat exchange system construction method according to the present invention is a method for constructing a geothermal heat exchange system according to the above configuration, the heat storage outer pipe manufacturing step (eS500), excavation step (eS600) and It may include an insertion step (eS700).
  • the heat storage outer pipe manufacturing step (eS500) may be a step of manufacturing the heat storage outer pipe by combining the outer pipe and the heat storage material in a form in which a plurality of heat storage materials protrude from the outer circumferential surface of the outer pipe.
  • the heat storage material is applied to a material having a large heat capacity, such as concrete, the heat transfer medium is formed so as to permeate, if the geothermal heat is provided to transfer heat to the heat transfer medium flowing around the configuration is not limited and varied can do.
  • the plurality of heat storage materials may be coupled to various arrangements such as spiral arrangement, zigzag arrangement, random arrangement along the outer circumferential surface of the pipe with respect to the outer pipe.
  • each heat storage material is arranged and coupled so that a predetermined area is formed toward the upper side of the pipe.
  • the excavation step (eS600) is the same process as the excavation step (eS100) of the heat exchange system construction method embodiment 2-1 according to the present invention described above, the heat storage pipe manufactured in the above-described heat storage pipe manufacturing step (eS500) is inserted. Geothermal wells can be excavated to the extent possible.
  • the insertion step (eS700) may be a step of inserting the heat storage outer pipe to the bottom of the geothermal well formed in the above-described excavation step, the inner pipe into the heat storage outer pipe.
  • the insertion step (eS700) can be inserted into the geothermal well while extending the length by connecting a plurality of heat storage outer pipe, the inner pipe can also be inserted into the geothermal well through the same method.
  • the inner pipe may be advantageous to use a pipe containing a heat insulating material that can lower the heat exchange efficiency between the inside and the outside of the inner pipe.
  • the lower end portions of the heat storage outer pipe and the inner pipe may be separated from the bottom surface of the geothermal well at predetermined intervals so that the heat transfer medium injected into the outside of the inner pipe may flow into the inner pipe.
  • the outer pipe may be extended to the ground of the geothermal well by connecting an external pipe to which the heat storage material is not bonded.
  • the heat storage outer pipe is connected to the lower part of the geothermal well, and the general outer pipe may be connected to the ground above the heat storage outer pipe.
  • the geothermal well heat exchange system formed through this process can inject heat transfer medium through the space between the geothermal well filled with the heat storage material and the inner pipe, and recover the heat transfer medium heated at the bottom of the geothermal well through the inside of the inner pipe. have.
  • the flow rate of the heat transfer medium is increased, so that turbulence may be formed to promote heat transfer.
  • the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well and at the same time can receive heat from the heat storage portion heated by geothermal heat, thereby improving the heat conductivity inside the production well to absorb geothermal heat more effectively.
  • the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.

Abstract

The present invention relates to a geothermal well insulating pipe, a geothermal well pipe assembly, a geothermal well heat exchange system, and a construction method therefor. The geothermal well insulating pipe according to the present invention is formed so as to be inserted into a geothermal well such that a heat transfer medium flows along the geothermal well, and comprises: an outer pipe part extended to the lower part of the geothermal well from the ground, and formed with a diameter, which is relatively smaller than that of the geothermal well, such that the outer pipe part is disposed to be spaced from the inner surface of the geothermal well; an inner pipe part having a length corresponding to the length of the outer pipe part and a comparatively smaller diameter than same, such that the inner pipe part is disposed to be spaced from the inner surface of the outer pipe part; and an insulating part formed by providing at least one insulating material in a space between the outer pipe part and the inner pipe part.

Description

지열정 단열 파이프, 지열정 파이프 어셈블리 및 지열정 열교환시스템과 그의 시공방법Geothermal well-insulated pipe, geothermal well pipe assembly, geothermal well heat exchange system and construction method
본 발명은 지열정 단열 파이프, 지열정 파이프 어셈블리 및 지열정 열교환시스템과 그의 시공방법에 관한 것으로, 더욱 상세하게는 지열정의 내부에 열전달매체를 순환시켜 지열을 회수하는 시스템의 효율을 향상시키는 지열정 단열 파이프, 지열정 파이프 어셈블리 및 지열정 열교환시스템과 그의 시공방법에 관한 것이다.The present invention relates to a geothermal well-insulated pipe, geothermal well pipe assembly, geothermal well heat exchange system and its construction method, and more particularly, to improve the efficiency of the system for recovering geothermal heat by circulating a heat transfer medium inside the geothermal well. The present invention relates to a passion thermal insulation pipe, a geothermal well pipe assembly, a geothermal well heat exchange system and a construction method thereof.
지반의 내부에 보유되어 있는 열인 지열은 지구 내부 맨틀의 대류 또는 지각 속의 방사성 물질의 붕괴 또는 화산지역의 마그마 등에 의한 열을 그 열원으로 한다.Geothermal heat, the heat retained inside the ground, is the heat source due to the convection of mantle inside the earth or the collapse of radioactive material in the earth's crust or the magma of volcanic regions.
이러한 지열을 에너지원으로 이용하기 위하여 전 세계 약 80개국 이상에서 지열에너지를 활용하고 있으며, 지열활용을 기술별로 분류하면 다음과 같다. In order to use this geothermal energy source, geothermal energy is used in more than 80 countries around the world, and geothermal utilization is classified as follows.
첫째, 심도 32~200m 내외를 천공하고 히트펌를 사용하여 냉난방하는 기술인 소구경의 수직밀폐형 천부지열 기술이 있고, 둘째, 소구경 300~500 m 가령을 시추하고 지하의 지하수를 직접 순환하고 히트펌프를 이용하는 관정형 천부지열 기술, 셋째 하산지대에서 사용하는 방식으로써 소구경 1000m이상을 시추하고 지하에서 200℃이상의 고온수를 직접 지상으로 끌어 올려 지열 발전하는 기술, 넷째 심도 600m~5,000m의 장심도 대구경을 시추하여 지열순환매체를 순환시키는 방식을 통해 열만 지상으로 끌어 올리고 히트펌프 없이 지열직접 난방 및 발전하는 기술인 심부지열 기술로 크게 분류할 수 있다. First, there is a small diameter vertical sealed type geothermal heat technology, which is a technology that drills around 32 ~ 200m in depth and heats and heats using a heat pump. Second, it drills a small diameter of 300 ~ 500 m and circulates underground water directly and heat pump Geothermal geothermal technology used in the third method, which is used in the Hassan area, is a technology that drills more than 1000m in small diameter and directly draws hot water of 200 ℃ or more from the underground to the ground, and the fourth core has a long depth of 600m to 5,000m. By drilling the geothermal circulation medium to circulate geothermal circulating medium, it can be classified into deep geothermal technology, which is a technology that draws only heat to the ground and directly heats and generates geothermal heat without a heat pump.
본 발명은 마지막 네 번째 언급한 기술에 해당되는 것으로써 지열정을 시추하고, 지열정의 내부에 파이프 또는 지중열교환기를 삽입하여 지열정을 따라 열전달매체가 유동하여 지하 고온의 열을 지상으로 열손실 없이 생산이 가능케 하는 장심도/고효율의 대구경 심부지열 지중열교환기 제조에 관한 기술이다.The present invention corresponds to the last fourth technology mentioned above, which drills geothermal wells, inserts pipes or underground heat exchangers into the geothermal wells, and heat transfer medium flows along the geothermal wells so that heat of underground high temperature is lost to the ground. It is a technology for manufacturing large diameter deep geothermal ground heat exchanger with long depth / high efficiency which enables production without
특히, 전 세계 지열산업은 기존의 천부지열에서 고효율 형태인 심부지열 형태로 산업 패러다임이 전환되고 있어 본 발명에서 제안하는 대구경/심부지열 기술은 전세계적으로 최근 많은 관심을 끌고 있는 실정이다. In particular, the global geothermal industry has been shifting the industrial paradigm from the existing geothermal geothermal to deep geothermal geometries of high efficiency, the large diameter / deep geothermal technology proposed in the present invention has attracted a lot of attention in the world recently.
또한, 본 발명은 우리나라와 같은 비화산지대이면서, 암반이 단단한 화강암 지대에 매우 적합한 기술로써 향후 개발 성공시 국내 지열산업의 가속화와 새로운 지열에너지 사업 창출이 가능한 기술이라 하겠다.In addition, the present invention is a non-volcanic zone, such as our country, rock is a very suitable technology for the granite zone is a technology that can accelerate the domestic geothermal industry and create a new geothermal energy business in the future development success.
즉, 지열정에 하나 이상의 파이프를 삽입하여 지열정 내부의 공간을 구획하고, 구획된 공간의 일부를 통하여 열전달매체가 주입정 내부로 주입되어 지열을 공급받고, 다른 구획된 공간을 통하여 지상으로 회수되어 열 에너지를 이용하는 구성이다.That is, one or more pipes are inserted into the geothermal well to partition the space inside the geothermal well, and heat transfer medium is injected into the well to supply geothermal heat through some of the compartments, and the geothermal well is recovered to the ground through other compartments. It is a structure using heat energy.
본 기술에서 제안하는 장심도 지중열교환기 구동 특성을 살펴보게 되면, 지열정 상부에서는 생산온도와 주입온도 간의 온도차이가 크기 때문에 상부에서는 생산정 및 주입정이 상호간의 큰 온도차이에 의하여 열전달이 크게 일어나기 때문에 생산정의 온도가 하강하여 고온수 생산 능력이 감소할 수 있다.Looking at the operation characteristics of the long-depth underground heat exchanger proposed by the present technology, since the temperature difference between the production temperature and the injection temperature is large at the upper part of the geothermal well, the heat transfer occurs largely due to the large temperature difference between the production well and the injection well at the upper part. As a result, the temperature of the production wells may drop, reducing the production capacity of hot water.
즉, 지열정의 내부로 주입되는 열전달매체의 온도는 지열정 하부의 온도에 비해 상대적으로 낮은 온도를 가지고 있고, 지열정의 하부에서 열전달매체가 가열된 상태로 회수되므로, 지열정의 상부측에서 파이프로 인해 구획된 공간 간의 온도차가 커지게 되는 문제점이 있다.That is, since the temperature of the heat transfer medium injected into the geothermal well has a lower temperature than the temperature of the geothermal well, and the heat transfer medium is recovered in a heated state at the bottom of the geothermal well, There is a problem that the temperature difference between the partitioned space is large due to the pipe.
이러한 경우, 지열정의 내부에 삽입된 파이프를 통하여 열전달이 발생하게 되고, 따라서 가열된 열전달매체의 열이 새로 주입되는 열전달매체로 전달되면서 회수되는 열전달매체의 온도가 낮아지게 된다.In this case, heat transfer is generated through the pipe inserted into the geothermal well, and thus the temperature of the heat transfer medium recovered as the heat of the heated heat transfer medium is transferred to the newly injected heat transfer medium is lowered.
따라서, 전체적인 지열 회수 순환시스템의 효율이 낮아질 수 밖에 없고, 이는 지열 회수 순환시스템의 시공 및 운영에 있어서 경제성이 낮아지는 문제점이 있다.Therefore, the efficiency of the overall geothermal recovery circulation system is inevitably lowered, which has a problem in that the economic efficiency in the construction and operation of the geothermal recovery circulation system.
또한, 지열정의 내부에 삽입되는 파이프에는 지반 내부 자체의 압력 및 파이프의 내부와 외부에서 유동하는 열전달매체의 압력 등이 가해지고, 지열정 내부의 깊이에 따라 다양한 온도환경에 노출되기 때문에, 파이프에 변형이 발생할 수 있고, 나아가 파이프가 파손되는 문제점이 있다.In addition, the pipe inserted into the geothermal well is subjected to the pressure of the ground itself and the heat transfer medium flowing inside and outside the pipe, and is exposed to various temperature environments depending on the depth of the geothermal well. Deformation may occur, and furthermore, there is a problem that the pipe is broken.
그리고, 파이프의 구조가 상대적으로 복잡해지면서 파이프의 제조에 소요되는 시간, 노력 및 비용이 증가하는 문제점도 있다.In addition, as the structure of the pipe becomes relatively complicated, there is a problem in that time, effort, and cost required for manufacturing the pipe increase.
한편, 지열정에 삽입되는 파이프를 단일파이프로 지열정의 하부까지 도달하기는 어려우므로, 주로 복수개의 파이프를 연결하여 연장된 파이프 어셈블리를 지열정의 내부로 삽입한다.On the other hand, since it is difficult to reach the bottom of the geothermal well with a single pipe, the pipe inserted into the geothermal well is mainly connected to a plurality of pipes to insert the extended pipe assembly into the geothermal well.
이와 같이, 서로 연결되어 연장된 파이프 어셈블리는 파이프간에 연결되는 부위가 상대적으로 취약할 수 밖에 없고, 따라서 다양한 원인에 의하여 연결부위가 파손되는 문제점이 있다.As such, the pipe assemblies connected to each other extend inevitably be weak in areas connected between pipes, and thus, connection parts are broken due to various causes.
지열정의 내부로 삽입된 파이프가 파손되는 경우, 전체 파이프 어셈블리를 모두 회수하여 파손된 파이프를 교체하고 다시 지열정에 삽입하는 과정을 거쳐야 하므로, 파이프 어셈블리의 관리 및 유지보수에 소요되는 시간 및 비용이 크게 증가하는 문제점이 있다.If the pipe inserted into the geothermal well is damaged, the entire pipe assembly must be recovered, replaced with the broken pipe, and then reinserted into the geothermal well, thus the time and cost required to manage and maintain the pipe assembly. This greatly increases the problem.
또한, 지열정의 내부에서 회수할 수 있는 지열은 지열정 내부의 면적 및 지열정 내부를 순환하는 열전달매체의 유속 등에 의해 한계가 있는 문제점이 있다.In addition, the geothermal heat that can be recovered inside the geothermal well has a problem that is limited by the area of the geothermal well and the flow rate of the heat transfer medium circulating in the geothermal well.
따라서, 전체적인 지열정 열교환시스템의 지열회수 효율이 향상되기 어려운 문제점이 있다.Therefore, there is a problem that the geothermal recovery efficiency of the overall geothermal well heat exchange system is difficult to improve.
한편, 지열을 회수하기 위하여 지열공을 형성하는 지역의 지반이 약한 경우, 열전달매체가 유동하는 과정에서 지열공의 내면이 무너질 수 있으며, 이러한 경우 무너진 지반에 의해 열전달매체의 유로가 차단되어 지열공의 기능을 상실할 수 있는 문제점이 있다.On the other hand, if the ground in the region forming the geothermal hole to recover the geothermal heat is weak, the inner surface of the geothermal hole may collapse during the flow of the heat transfer medium, in this case, the flow path of the heat transfer medium is blocked by the collapsed ground geothermal hole There is a problem that can be lost.
본 발명의 기술적 과제는, 배경기술에서 언급한 문제점을 해결하기 위한 것으로, 지열정의 내부에 열전달매체를 순환시켜 지열을 회수하는 시스템의 효율을 향상시키는 지열정 단열 파이프, 지열정 파이프 어셈블리 및 지열정 열교환시스템과 그의 시공방법을 제공하는 것이다.The technical problem of the present invention is to solve the problems mentioned in the background art, geothermal well insulation pipe, geothermal well pipe assembly and geothermal well to improve the efficiency of the system for recovering geothermal heat by circulating the heat transfer medium inside the geothermal well It is to provide a passion heat exchange system and its construction method.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
기술적 과제를 해결하기 위해 안출된 본 발명에 따른 지열정 단열 파이프는 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프에 있어서, 지상으로부터 상기 지열정의 하부까지 연장되고 상기 지열정에 비하여 상대적으로 작은 직경으로 형성되어, 상기 지열정의 내측면과 이격되어 배치되는 외관부, 상기 외관부의 길이와 대응되는 길이와 상기 외관부에 비하여 상대적으로 작은 직경으로 형성되어, 상기 외관부의 내측면과 이격되어 배치되는 내관부 및 적어도 하나 이상의 단열소재가 상기 외관부 및 상기 내관부의 사이 공간에 구비되어 형성되는 단열부를 포함할 수 있다.In order to solve the technical problem, the geothermal well-insulated pipe according to the present invention is inserted into the geothermal well is a pipe formed so that the heat transfer medium flows along the geothermal well, extending from the ground to the bottom of the geothermal well It is formed to a relatively small diameter compared to the geothermal well, the outer portion disposed spaced apart from the inner surface of the geothermal well, a length corresponding to the length of the outer portion and a relatively small diameter compared to the outer portion, An inner tube part spaced apart from an inner surface of the outer part and at least one heat insulating material may include a heat insulating part provided in a space between the outer part and the inner tube part.
여기서, 상기 지열정 단열 파이프는 상기 지열정 단열 파이프 상부의 열저항이 상기 지열정 단열 파이프 하부의 열저항보다 상대적으로 크게 형성될 수 있다.Here, the geothermal well-insulated pipe may be formed with a heat resistance above the geothermal well-insulated pipe upper than the heat resistance of the geothermal well-insulated pipe lower.
또한, 상기 단열부는 상기 단열부 상부의 두께가 상기 단열부 하부의 두께보다 상대적으로 크게 형성될 수 있다.In addition, the heat insulating part may have a thickness of the upper part of the heat insulating part relatively larger than the thickness of the lower part of the heat insulating part.
그리고, 상기 단열부는 상기 단열부 상부 단열소재의 열전달율이 상기 단열부 하부 단열소재의 열전달율에 비하여 상대적으로 낮을 수 있다.In addition, the heat transfer part may have a relatively low heat transfer rate of the upper heat insulating material of the heat insulating part than the heat transfer rate of the heat insulating material of the heat insulating lower part.
이때, 상기 단열부의 열전달율이 서로 상이하게 형성되는 복수개의 파이프가 길이방향으로 연결될 수 있다.In this case, a plurality of pipes formed with different heat transfer rates of the heat insulating part may be connected in the longitudinal direction.
또한, 본 발명에 따른 지열정 단열 파이프는 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프에 있어서, 외관 및 내관이 서로 이격되어 배치되는 파이프부, 상기 외관의 내주면 및 상기 내관의 외주면과 적어도 일부가 접촉하도록 형성되고, 상기 파이프부의 길이 방향을 따라 소정의 간격으로 이격되도록 복수 구비되는 지지부 및 상기 외관 및 상기 내관 사이의 공간에 단열소재가 구비되어 형성되는 단열부를 포함할 수 있다.In addition, the geothermal well-insulated pipe according to the present invention is a pipe which is inserted into the geothermal well is formed so that the heat transfer medium flows along the geothermal well, the pipe portion and the outer tube and the inner tube spaced apart from each other, the inner peripheral surface of the outer And at least a portion of the inner tube in contact with an outer circumferential surface thereof, the plurality of supporting parts being spaced at predetermined intervals along the longitudinal direction of the pipe part, and the insulating part provided with an insulating material in a space between the outer tube and the inner tube. It may include.
여기서, 상기 지지부는 상기 파이프부의 길이방향 단면상 상기 외관 및 상기 내관 사이의 공간에 비하여 상대적으로 작은 면적을 가지도록 형성될 수 있다.Here, the support portion may be formed to have a relatively small area compared to the space between the outer tube and the outer tube in the longitudinal section of the pipe.
한편, 본 발명에 따른 지열정 단열 파이프는 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프에 있어서, 외관 및 내관이 서로 이격되어 배치되는 파이프부, 상기 외관의 내주면 및 상기 내관의 외주면과 적어도 일부가 접촉하도록 형성되고, 상기 파이프부의 길이 방향을 따라 길게 형성되는 지지부 및 상기 외관 및 상기 내관 사이의 공간에 단열소재가 구비되어 형성되는 단열부를 포함할 수 있다.On the other hand, the geothermal well-insulated pipe according to the present invention is inserted into the geothermal well in the pipe is formed so that the heat transfer medium flows along the geothermal well, the outer and inner pipes are spaced apart from each other, the pipe portion, the inner peripheral surface of the exterior And at least a portion of the inner tube in contact with the outer circumferential surface of the inner tube, the support portion extending along the longitudinal direction of the pipe portion, and a heat insulating portion provided with a heat insulating material in a space between the outer tube and the inner tube.
여기서, 상기 지지부는 상기 지지부에 의해 구획되는 상기 외관 및 내관 사이의 공간을 상호 연통하는 홀이 형성될 수 있다.Here, the support may be formed with a hole communicating with each other the space between the outer tube and the inner compartment partitioned by the support.
한편, 본 발명에 따른 지열정 파이프 어셈블리는 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프 어셈블리에 있어서, 일단에 제1 체결부가 형성되고, 타단에 상기 제1 체결부와 대응되는 형태로 상기 제1 체결부와 결합되는 제2 체결부가 형성되는 복수개의 단위파이프모듈 및 서로 인접한 상기 단위파이프모듈 각각의 상기 제1 체결부 및 상기 제2 체결부가 결합되는 부위를 감싸도록 구비되는 연결링모듈을 포함할 수 있다.On the other hand, the geothermal well pipe assembly according to the present invention is inserted into the geothermal well in the pipe assembly is formed so that the heat transfer medium flows along the geothermal well, the first fastening portion is formed at one end, the first fastening at the other end A plurality of unit pipe modules having a second coupling portion coupled to the first coupling portion in a form corresponding to the portion, and surrounding portions where the first coupling portion and the second coupling portion of each of the unit pipe modules adjacent to each other are coupled; It may include a connection ring module provided to.
여기서, 상기 단위파이프모듈은 외관 및 내관을 포함하는 이중관으로 형성되고, 상기 외관 및 내관의 사이 공간에는 단열소재가 구비되며, 상기 제1 체결부 및 상기 제2 체결부는 상기 내관의 양단에 형성될 수 있다.Here, the unit pipe module is formed of a double tube including an outer tube and an inner tube, a space between the outer tube and the inner tube is provided with a heat insulating material, the first fastening portion and the second fastening portion is formed on both ends of the inner tube Can be.
이때, 상기 연결링모듈은 상기 단위파이프모듈의 상기 외관을 둘러싸도록 형성될 수 있다.In this case, the connection ring module may be formed to surround the appearance of the unit pipe module.
한편, 본 발명에 따른 지열정 열교환시스템은 지반을 굴착하여 형성된 지열정, 지상에서 상기 지열정의 하부까지 연장되고, 상기 지열정의 내부에 상기 지열정의 내주면과 서로 이격되어 배치되는 파이프 및 상기 지열정 및 상기 파이프 사이의 공간에 축열재가 구비되고, 지열 회수를 위한 열전달매체가 통과하는 축열부를 포함할 수 있다.On the other hand, geothermal well heat exchange system according to the present invention geothermal well formed by excavating the ground, the pipe extending from the ground to the bottom of the geothermal well, the inner space of the geothermal well is spaced apart from the inner peripheral surface of the geothermal well and the pipe The heat storage material may be provided in a space between the geothermal well and the pipe, and may include a heat storage portion through which a heat transfer medium for geothermal heat recovery is passed.
여기서, 상기 축열부는 다공성 형태의 축열재가 구비되고, 상기 열전달매체가 상기 축열부의 공극을 통해 투과될 수 있다.Here, the heat storage unit may be provided with a heat storage material of a porous form, the heat transfer medium may be transmitted through the pores of the heat storage unit.
또한, 상기 축열부는 복수개의 축열재가 상기 파이프의 외주면에 돌출되는 형태로 결합되어 형성될 수 있다.In addition, the heat storage portion may be formed by coupling a plurality of heat storage material in a form protruding to the outer peripheral surface of the pipe.
이때, 상기 축열재는 상기 축열재의 상면에 소정의 면적을 가지는 형태로 형성될 수 있다.In this case, the heat storage material may be formed in a shape having a predetermined area on the upper surface of the heat storage material.
한편, 본 발명에 따른 지열정 열교환시스템 시공방법은 지반을 소정의 직경으로 굴착하여 지열정을 형성하는 굴착단계, 상기 굴착단계에서 형성된 상기 지열정의 내부로, 상기 지열정의 하부까지 단열부를 포함하는 파이프를 연장하여 삽입하는 삽입단계 및 상기 지열정의 내주면 및 상기 파이프 사이의 공간에 축열재를 충전하는 충전단계를 포함할 수 있다.On the other hand, geothermal well heat exchange system construction method according to the invention excavating the ground to form a geothermal well by excavating the ground to a predetermined diameter, into the inside of the geothermal well formed in the excavation step, including the heat insulation to the bottom of the geothermal well It may include an inserting step of extending and inserting the pipe and the filling step of filling the heat storage material in the space between the inner peripheral surface of the geothermal well and the pipe.
한편, 본 발명에 따른 지열정 열교환시스템은 지반을 굴착하여 형성된 지열정, 지상에서 상기 지열정의 하부까지 연장되고, 상기 지열정의 내부에 상기 지열정의 내주면과 서로 이격되어 배치되는 다공성의 외측파이프, 상기 외측파이프와 대응되는 길이로 형성되어 상기 외측파이프의 내부에 상기 외측파이프의 내주면과 서로 이격되어 배치되는 내측파이프 및 상기 지열정 및 상기 외측파이프 사이의 공간에 축열재가 구비되고, 지열 회수를 위한 열전달매체가 통과하는 축열부를 포함할 수 있다.On the other hand, geothermal well heat exchange system according to the present invention geothermal well formed by excavating the ground, extends from the ground to the bottom of the geothermal well, the inside of the geothermal well is disposed outside the inner peripheral surface of the geothermal well spaced apart from each other The inner pipe is formed to a length corresponding to the outer pipe, the inner pipe is spaced apart from the inner peripheral surface of the outer pipe and the heat storage material is provided in the space between the geothermal well and the outer pipe, It may include a heat storage for the heat transfer medium for the passage.
여기서, 상기 축열부는 소정의 부피를 가지는 복수개의 축열재가 상기 지열정 및 상기 외측파이프 사이의 공간에 구비되어 형성될 수 있다.Here, the heat storage unit may be formed by providing a plurality of heat storage materials having a predetermined volume in the space between the geothermal well and the outer pipe.
한편, 본 발명에 따른 지열정 열교환시스템 시공방법은 지반을 소정의 직경으로 굴착하여 지열정을 형성하는 굴착단계, 상기 굴착단계에서 형성된 상기 지열정의 내부로, 상기 지열정의 하부까지 내측파이프 및 다공성의 외측파이프를 연장하여 삽입하는 삽입단계 및 상기 지열정의 내주면 및 상기 외측파이프 사이의 공간에 축열재를 충전하는 충전단계를 포함할 수 있다.On the other hand, the geothermal well heat exchange system construction method according to the invention excavating the ground to form a geothermal well by excavating the ground to a predetermined diameter, the inner pipe and the inner pipe to the lower portion of the geothermal well formed in the excavation step and It may include an insertion step of extending and inserting the porous outer pipe and the filling step of filling the heat storage material in the space between the inner peripheral surface of the geothermal well and the outer pipe.
본 발명에 따른 지열정 단열 파이프, 지열정 파이프 어셈블리 및 지열정 열교환시스템과 그의 시공방법에 의하면 다음과 같은 효과를 얻을 수 있다.According to the geothermal well heat insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system and construction method thereof according to the present invention, the following effects can be obtained.
첫째, 지열정의 내부로 열전달매체가 순환할 때, 지열정 내부에 삽입되는 파이프의 내부 및 외부간에 열전달율을 낮춰 지열 회수 효율을 향상시킬 수 있다.First, when the heat transfer medium circulates inside the geothermal well, the geothermal heat recovery efficiency can be improved by lowering the heat transfer rate between the inside and the outside of the pipe inserted into the geothermal well.
둘째, 지열 회수를 위하여 지열정에 삽입하는 단열 파이프를 제조하는데 소요되는 시간, 노력 및 비용을 절감할 수 있다.Second, it is possible to reduce the time, effort and cost required to manufacture a heat insulation pipe inserted into the geothermal well for the recovery of geothermal heat.
셋째, 지열정의 내부로 삽입되는 파이프 구조를 보강하여 파이프가 파손되거나 변형되는 것을 방지할 수 있다.Third, it is possible to prevent the pipe from being broken or deformed by reinforcing the pipe structure inserted into the geothermal well.
넷째, 지열정 내부로 삽입되는 복수개의 파이프 연결 부위 강도를 높여 지열정 파이프 어셈블리의 내구성을 향상시킬 수 있다.Fourth, it is possible to improve the durability of the geothermal well pipe assembly by increasing the strength of the plurality of pipe connection portions inserted into the geothermal well.
다섯째, 지열정의 내부에서 지열을 회수하기 위해 지열정의 내부에 파이프 어셈블리를 삽입할 때, 보다 용이하게 파이프 어셈블리를 시공할 수 있다.Fifth, when the pipe assembly is inserted into the geothermal well to recover the geothermal heat inside the geothermal well, it is possible to construct the pipe assembly more easily.
여섯째, 지열정의 내부의 열용량 및 열전도계수를 증가시킬 수 있다.Sixth, it is possible to increase the heat capacity and the thermal conductivity coefficient inside the geothermal well.
일곱째, 지열정 내부에서 유동하는 열전달매체에 난류가 발생하여 열회수 효율을 향상시킬 수 있다.Seventh, turbulence may occur in the heat transfer medium flowing inside the geothermal well to improve heat recovery efficiency.
여덟째, 지열정의 내부에서 열전달매체가 열을 전달받는 면적을 늘려 지열회수 효율을 향상시킬 수 있다.Eighth, the geothermal recovery efficiency can be improved by increasing the area where the heat transfer medium receives heat from inside the geothermal well.
이러한 본 발명에 의한 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Such effects by the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 구성을 나타내는 도면이다.1 is a view showing the configuration of a geothermal heat insulating pipe 1-1 embodiment according to the present invention.
도 2 및 도 3은 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제1 변형예를 나타내는 도면이다.2 and 3 are diagrams showing a first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
도 4는 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제1 변형예에서 생산정 내부의 유속이 변화하는 상태를 나타내는 도면이다.4 is a view showing a state in which the flow velocity inside the production well is changed in the first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
도 5는 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제1 변형예에서 주입정 내부의 유속이 변화하는 상태를 나타내는 도면이다.5 is a view showing a state in which the flow velocity inside the injection well is changed in the first modification of the geothermal well-insulated pipe 1-1 embodiment according to the present invention.
도 6 및 도 7은 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제2 변형예를 나타내는 도면이다.6 and 7 are diagrams showing a second modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
도 8은 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 구성을 나타내는 도면이다.8 is a view showing the configuration of the geothermal heat insulating pipe 1-2 embodiment according to the present invention.
도 9는 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 제1 변형예를 나타내는 도면이다.9 is a view showing a first modification of the geothermal heat insulating pipe 1-2 embodiment according to the present invention.
도 10은 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 제2 변형예를 나타내는 도면이다.10 is a view showing a second modification of the geothermal heat insulating pipe 1-2 of the present invention.
도 11은 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예의 구성을 나타내는 도면이다.11 is a view showing the configuration of an embodiment of a geothermal heat insulating pipe second embodiment according to the present invention.
도 12는 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예의 파이프부 및 지지부 구성을 나타내는 도면이다.12 is a view showing the configuration of the pipe portion and the support portion of the embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention.
도 13은 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예에서 단열부를 형성하는 상태를 나타내는 도면이다.13 is a view showing a state of forming a heat insulating part in an embodiment of a geothermal heat insulating pipe according to the second embodiment of the present invention.
도 14는 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예에서 지지부가 파이프부의 양단부에 구비된 상태를 나타내는 도면이다.14 is a view showing a state in which the supporting portion is provided at both ends of the pipe portion in one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention.
도 15는 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예에서 지지부에 제1 체결부 및 제2 체결부가 형성된 상태를 나타내는 도면이다.FIG. 15 is a view illustrating a state in which a first fastening part and a second fastening part are formed in a supporting part in an embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention.
도 16은 본 발명에 따른 지열정 단열 파이프 제2 실시예의 변형예의 구성을 나타내는 도면이다.It is a figure which shows the structure of the modification of the geothermal heat insulating pipe 2nd Example which concerns on this invention.
도 17은 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 구성을 나타내는 도면이다.17 is a view showing the configuration of a geothermal well pipe assembly first embodiment according to the present invention.
도 18은 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예에 스톱퍼가 구비되는 상태를 나타내는 도면이다.18 is a view showing a state in which a stopper is provided in the first embodiment of the geothermal well pipe assembly according to the present invention.
도 19는 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 스톱퍼의 변형예를 나타내는 도면이다.19 is a view showing a modification of the stopper of the geothermal well pipe assembly first embodiment according to the present invention.
도 20은 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예에 제3 체결부 및 제4 체결부가 구비되는 상태를 나타내는 도면이다.20 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the first embodiment of the geothermal well pipe assembly according to the present invention.
도 21은 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 제1 변형예를 나타내는 도면이다.21 is a view showing a first modified example of the geothermal well pipe assembly first embodiment according to the present invention.
도 22는 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 제2 변형예를 나타내는 도면이다.22 is a view showing a second modification of the geothermal well pipe assembly first embodiment according to the present invention.
도 23은 본 발명에 따른 지열정 파이프 어셈블리 제2 실시예의 구성을 나타내는 도면이다.23 is a view showing the configuration of a geothermal well pipe assembly second embodiment according to the present invention.
도 24는 본 발명에 따른 지열정 파이프 어셈블리의 제2 실시예에 스톱퍼가 구비되는 상태를 나타내는 도면이다.24 is a view showing a state in which a stopper is provided in the second embodiment of the geothermal well pipe assembly according to the present invention.
도 25는 본 발명에 따른 지열정 파이프 어셈블리의 제2 실시예에 제3 체결부 및 제4 체결부가 구비되는 상태를 나타내는 도면이다.25 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the second embodiment of the geothermal well pipe assembly according to the present invention.
도 26은 본 발명에 따른 지열정 파이프 어셈블리 제3 실시예의 구성을 나타내는 도면이다.26 is a view showing the configuration of a geothermal well pipe assembly third embodiment according to the present invention.
도 27은 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예에 스톱퍼가 구비되는 상태를 나타내는 도면이다.27 is a view showing a state in which a stopper is provided in the third embodiment of the geothermal well pipe assembly according to the present invention.
도 28은 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예에 제3 체결부 및 제4 체결부가 구비되는 상태를 나타내는 도면이다.28 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the third embodiment of the geothermal well pipe assembly according to the present invention.
도 29는 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예에 주입구가 구비되는 상태를 나타내는 도면이다.29 is a view showing a state in which the injection hole is provided in the third embodiment of the geothermal well pipe assembly according to the present invention.
도 30은 본 발명에 따른 지열정 파이프 어셈블리 제3 실시예 변형예의 구성을 나타내는 도면이다.30 is a view showing the configuration of a geothermal well pipe assembly third embodiment of the present invention.
도 31은 본 발명에 따른 지열정 열교환시스템의 제1-1 실시예의 구성을 나타내는 도면이다.31 is a view showing the configuration of the first-first embodiment of the geothermal heat exchange system according to the present invention.
도 32는 본 발명에 따른 지열정 열교환시스템 제1-1 실시예의 변형예를 나타내는 도면이다.32 is a view showing a modification of the geothermal heat exchanger system embodiment 1-1 according to the present invention.
도 33은 본 발명에 따른 지열정 열교환시스템의 제1-2 실시예의 구성을 나타내는 도면이다.33 is a diagram showing the configuration of Example 1-2 of the geothermal heat exchange system according to the present invention.
도 34는 본 발명에 따른 지열정 열교환시스템의 제1-3 실시예의 구성을 나타내는 도면이다.34 is a diagram showing the configuration of Embodiments 1-3 of the geothermal heat exchange system according to the present invention.
도 35는 본 발명에 따른 지열정 열교환시스템 제1-3 실시예의 제1 변형예를 나타내는 도면이다.35 is a view showing the first modified example of the geothermal heat exchange system 1-3 according to the present invention.
도 36은 본 발명에 따른 지열정 열교환시스템 제1-3 실시예의 제2 변형예를 나타내는 도면이다.36 is a view showing a second modified example of the geothermal heat exchange system according to the first embodiment of the present invention.
도 37은 본 발명에 따른 지열정 열교환시스템의 제1-4 실시예의 구성을 나타내는 도면이다.37 is a view showing the configuration of Embodiments 1-4 of the geothermal heat exchange system according to the present invention.
도 38은 본 발명에 따른 지열정 열교환시스템 시공방법의 제1-1 실시예를 나타내는 도면이다.38 is a view showing Embodiment 1-1 of the geothermal heat exchange system construction method according to the present invention.
도 39은 본 발명에 따른 지열정 열교환시스템 시공방법의 제1-2 실시예를 나타내는 도면이다.39 is a view showing the embodiment 1-2 of the geothermal heat exchange system construction method according to the present invention.
도 40은 본 발명에 따른 지열정 열교환시스템의 제2-1 실시예의 구성을 나타내는 단면도이다.40 is a cross-sectional view showing the construction of Example 2-1 of the geothermal heat exchange system according to the present invention.
도 41은 본 발명에 따른 지열정 열교환시스템의 제2-1 실시예의 구성을 나타내는 평면도이다.Fig. 41 is a plan view showing the construction of Example 2-1 of the geothermal heat exchange system according to the present invention.
도 42는 본 발명에 따른 지열정 열교환시스템 제2-1 실시예의 변형예를 나타내는 도면이다.42 is a view showing a modification of the geothermal heat exchange system 2-1 embodiment according to the present invention.
도 43은 본 발명에 따른 지열정 열교환시스템의 제2-2 실시예의 구성을 나타내는 도면이다.43 is a view showing the configuration of Example 2-2 of the geothermal heat exchange system according to the present invention.
도 44는 본 발명에 따른 지열정 열교환시스템의 제2-3 실시예의 구성을 나타내는 도면이다.44 is a view showing the configuration of Example 2-3 of the geothermal heat exchange system according to the present invention.
도 45는 본 발명에 따른 지열정 열교환시스템 제2-3 실시예의 제1 변형예를 나타내는 도면이다.45 is a view showing the first modified example of the geothermal heat exchange system according to the second embodiment of the present invention.
도 46은 본 발명에 따른 지열정 열교환시스템 제2-3 실시예의 제2 변형예를 나타내는 도면이다.46 is a view showing a second modification of the geothermal heat exchange system according to the second embodiment of the present invention.
도 47은 본 발명에 따른 지열정 열교환시스템의 제2-4 실시예의 구성을 나타내는 도면이다.Fig. 47 is a view showing the construction of Example 2-4 of the geothermal well heat exchange system according to the present invention.
도 48은 본 발명에 따른 지열정 열교환시스템 시공방법의 제2-1 실시예를 나타내는 도면이다.48 is a view showing Embodiment 2-1 of the geothermal heat exchange system construction method according to the present invention.
도 49는 본 발명에 따른 지열정 열교환시스템 시공방법의 제2-2 실시예를 나타내는 도면이다.49 is a view showing Embodiment 2-2 of the geothermal heat exchange system construction method according to the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing the present invention, descriptions of already known functions or configurations will be omitted to clarify the gist of the present invention.
아울러, 본 발명을 설명하는데 있어서, 전방/후방 또는 상측/하측과 같이 방향을 지시하는 용어들은 당업자가 본 발명을 명확하게 이해할 수 있도록 기재된 것들로서, 상대적인 방향을 지시하는 것이므로, 이로 인해 권리범위가 제한되지는 않는다고 할 것이다.In addition, in describing the present invention, terms indicating directions such as forward / backward or upward / lower are described so that those skilled in the art can clearly understand the present invention, and thus indicate relative directions. It will not be limited.
<< 지열정Geothermal 단열 파이프의 제1  First of the insulation pipe 실시예Example >>
제1-1 Article 1-1 실시예Example
먼저, 도 1 내지 도 7을 참조하여, 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.First, referring to Figures 1 to 7, the configuration and effects of the geothermal heat insulating pipe 1-1 embodiment according to the present invention will be described in detail.
여기서, 도 1은 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 구성을 나타내는 도면이고, 도 2 및 도 3은 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제1 변형예를 나타내는 도면이며, 도 4는 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제1 변형예에서 생산정 내부의 유속이 변화하는 상태를 나타내는 도면이고, 도 5는 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제1 변형예에서 주입정 내부의 유속이 변화하는 상태를 나타내는 도면이다.1 is a view showing the configuration of the geothermal heat insulating pipe 1-1 embodiment according to the present invention, Figures 2 and 3 show a first modified example of the geothermal heat insulating pipe 1-1 embodiment according to the present invention 4 is a view showing a state in which the flow velocity inside the production well is changed in the first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention, Figure 5 is a geothermal heat insulating pipe according to the present invention It is a figure which shows the state in which the flow velocity inside an injection well changes in the 1st modified example of the pipe 1-1 Example.
또한, 도 6 및 도 7은 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제2 변형예를 나타내는 도면이다.6 and 7 are diagrams showing a second modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프는 외관부(a100), 내관부(a200) 및 단열부(a300)를 포함할 수 있다. 외관부(a100)는 지열정의 내부로 삽입되는 구성으로, 지상으로부터 지열정의 하부까지 연장되는 길이와 지열정에 비하여 상대적으로 작은 직경의 파이프 형태로 형성될 수 있다.As shown in FIG. 1, the geothermal heat insulating pipe according to the present invention may include an exterior portion a100, an inner tube portion a200, and a thermal insulation portion a300. The exterior portion a100 is inserted into the geothermal well, and may be formed in the shape of a pipe having a relatively small diameter compared to the length and geothermal well extending from the ground to the bottom of the geothermal well.
또한, 지열정의 내부에 삽입될 때 지열정의 내측면과 이격되어 삽입되어 배치되어, 본 발명에 따른 지열정 단열 파이프의 외부가 열전달매체가 지열정의 내부로 주입되는 주입정이 되도록 구성될 수 있다.In addition, when inserted into the geothermal well is inserted and disposed spaced apart from the inner surface of the geothermal well, the outside of the geothermal well heat insulating pipe according to the present invention can be configured to be an injection well in which the heat transfer medium is injected into the geothermal well. have.
이러한 외관부(a100)의 구성은 파이프의 형태를 유지하고, 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 충분한 강도를 가지는 소재로 형성되는 것이 유리할 수 있다.The configuration of the exterior portion a100 may be advantageously formed of a material having a sufficient strength to maintain the shape of the pipe and to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
한편, 내관부(a200)는 전술한 외관부(a100)의 길이와 대응되는 길이 및 외관부(a100)에 비하여 상대적으로 작은 직경을 가지는 파이프의 형태로 형성될 수 있다.On the other hand, the inner tube portion a200 may be formed in the form of a pipe having a relatively small diameter compared to the length and the outer portion (a100) corresponding to the length of the outer portion (a100) described above.
또한, 전술한 외관부(a100)의 내부에 구비되며, 외관부(a100)의 내측면과 이격되어 외관부(a100) 및 내관부(a200)의 사이에 공간이 형성되도록 구비되는 것이 유리할 수 있다.In addition, it may be advantageous to be provided inside the exterior portion a100 and spaced apart from the inner surface of the exterior portion a100 so that a space is formed between the exterior portion a100 and the inner tube portion a200. .
이러한 내관부(a200)의 구성 역시, 파이프의 형태를 유지하고, 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 충분한 강도를 가지는 소재로 형성되는 것이 유리할 수 있다.The configuration of the inner tube portion a200 may also be advantageously formed of a material having a sufficient strength to maintain the shape of the pipe and to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
전술한 외관부(a100) 및 내관부(a200)의 구성은 후술하는 단열부(a300) 또는 별도의 연결부재(미도시)를 통하여 상호 결합되어, 일체형으로 구성될 수도 있고, 또는 선택적으로 착탈 가능하게 구성되어 본 발명에 따른 지열정 단열 파이프를 설치하는 곳에서 조립하도록 구성될 수도 있다.The configuration of the exterior portion (a100) and the inner tube portion (a200) described above are mutually coupled through a heat insulating portion (a300) or a separate connection member (not shown), which will be described later, may be configured in one piece, or selectively removable. It may be configured to assemble in place to install the geothermal heat insulating pipe according to the invention.
즉, 외관부(a100) 및 내관부(a200)를 포함하는 이중관 형태의 파이프로 구성된다면 그 형상 및 구성은 제한되지 않고 다양할 수 있다.That is, if it is composed of a pipe of the form of a double pipe including the outer portion (a100) and the inner tube portion (a200), the shape and configuration may be various without limitation.
한편, 단열부(a300)는 적어도 하나 이상의 단열소재가 전술한 외관부(a100) 및 내관부(a200)의 사이 공간에 구비되어 형성되는 구성으로, 전술한 외관부(a100) 및 내관부(a200) 간에 발생하는 열교환 효율을 낮추는 역할을 수행하는 구성일 수 있다.On the other hand, the heat insulating portion (a300) is a configuration in which at least one heat insulating material is provided in the space between the above-described outer portion (a100) and the inner tube portion (a200), the outer portion (a100) and inner tube portion (a200) described above. It may be a configuration that serves to lower the heat exchange efficiency generated between).
본 실시예에서 단열부(a300)는 발포 우레탄, 발포 고무 등과 같은 발포성 단열소재가 충진된 형태로 구성되며, 이러한 경우 외관부(a100)의 일측에 발포성 단열소재가 외관부(a100) 및 내관부(a200) 사이의 공간에 주입될 수 있는 주입구가 형성되는 것이 유리할 수 있다.In this embodiment, the heat insulating part (a300) is formed in a form filled with a foamable heat insulating material such as urethane foam, foam rubber, in this case, the foamed heat insulating material on one side of the outer portion (a100) the outer portion (a100) and the inner tube portion It may be advantageous to form an injection hole that can be injected into the space between the (a200).
주입구를 통해 주입된 발포성 단열소재는 팽창하며, 외관부(a100) 및 내관부(a200) 사이의 공간을 따라 유동하여 외관부(a100) 및 내관부(a200)의 사이에 충진될 수 있다.The foamed insulating material injected through the injection hole expands and flows along the space between the exterior portion a100 and the inner tube portion a200 to be filled between the exterior portion a100 and the inner tube portion a200.
이러한 단열부(a300)의 구성은 전술한 실시예에 제한되지 않고, 공기, 스티로폼, 유리섬유 등의 다양한 단열소재가 적용되는 등 그 소재 및 구성은 다양할 수 있다.The configuration of the heat insulating part a300 is not limited to the above-described embodiment, and various materials and configurations may be used, such as various heat insulating materials such as air, styrofoam, and glass fiber.
또한, 단열부(a300)는 전술한 외관부(a100) 및 내관부(a200) 사이의 공간에 충진되어 고정되거나, 외관부(a100) 및 내관부(a200) 사이의 공간 형태와 대응되는 형태로 가공되어 선택적으로 착탈가능하게 형성될 수도 있다.In addition, the heat insulating part a300 is filled and fixed in the space between the exterior part a100 and the inner tube part a200, or in a form corresponding to the shape of the space between the exterior part a100 and the inner tube part a200. It may be processed and selectively detachably formed.
즉, 단열부(a300)는 외관부(a100) 및 내관부(a200)의 사이에 구비되어 본 발명에 따른 지열정 단열 파이프의 내부와 외부의 열전달 효율을 떨어뜨리도록 마련된다면, 그 형태 및 구성은 제한되지 않고 다양할 수 있다.That is, the heat insulating portion (a300) is provided between the outer portion (a100) and the inner tube portion (a200) if provided to reduce the heat transfer efficiency of the inside and outside of the geothermal heat insulating pipe according to the present invention, its shape and configuration Is not limited and may vary.
전술한 모든 구성을 포함하는 본 발명에 따른 지열정 단열 파이프는 지반에 형성된 지열정의 내부에 삽입되고, 지열정의 내부로 주입되는 열전달매체가 지열정을 따라 순환할 수 있는 유로를 형성할 수 있다.Geothermal well-insulated pipe according to the present invention including all the above-described configuration is inserted into the geothermal well formed in the ground, the heat transfer medium injected into the geothermal well can form a flow path that can be circulated along the geothermal well have.
본 실시예에서는 본 발명에 따른 지열정 단열 파이프의 외측과 지열정의 내측면 사이에 열전달매체가 주입되고, 지열정의 하부에서 본 발명에 따른 지열정 단열 파이프의 내부로 열전달매체가 유입되어 본 발명에 따른 지열정 단열 파이프의 내부를 통하여 열전달매체를 지상으로 회수할 수 있다.In this embodiment, a heat transfer medium is injected between the outer side of the geothermal well-insulated pipe according to the present invention and the inner surface of the geothermal well, and the heat transfer medium flows into the geothermal well-insulated pipe according to the present invention from the bottom of the geothermal well. Through the interior of the geothermal heat insulating pipe according to the invention it is possible to recover the heat transfer medium to the ground.
이러한 열전달매체의 유동을 위한 동력을 제공하기 위하여 본 발명에 따른 지열정 단열 파이프의 내부 또는 지상에 별도의 펌프가 구비될 수도 있다.In order to provide power for the flow of the heat transfer medium, a separate pump may be provided inside or on the ground of the geothermal heat insulating pipe according to the present invention.
즉, 지열정의 내부로 주입된 열전달매체는 지열정의 내측면을 통해 지열을 전달받아 가열되고, 가열된 열전달매체가 본 발명에 따른 지열정 단열 파이프 내부를 통해 회수될 수 있다.That is, the heat transfer medium injected into the geothermal well is heated by receiving geothermal heat through the inner surface of the geothermal well, and the heated heat transfer medium may be recovered through the geothermal well-insulated pipe according to the present invention.
이때, 전술한 모든 구성을 통하여, 생산정에서 열전달매체를 통해 회수되는 지열이 본 발명에 따른 지열정 단열 파이프를 통해 주입정으로 수평이동하는 것을 방지하여 열손실을 최소화하는 효과를 얻을 수 있다.At this time, through all the above-described configuration, it is possible to prevent the ground heat recovered through the heat transfer medium in the production wells to horizontally move to the injection well through the geothermal well insulation pipe according to the present invention to minimize the heat loss.
한편, 지열정의 상부에서 주입되는 열전달매체는 가열되어 회수되는 열전달매체에 비하여 상대적으로 온도가 낮기 때문에, 본 발명에 따른 지열정 단열 파이프의 외부와 내부의 온도차가 매우 커질 수 있다.On the other hand, since the heat transfer medium injected from the top of the geothermal well is relatively low compared to the heat transfer medium that is heated and recovered, the temperature difference between the outside and the inside of the geothermal well-insulated pipe according to the present invention can be very large.
반면에, 지열정의 하부에서는 주입되는 열전달매체가 모두 가열된 상태로 회수되는 열전달매체의 온도와 유사하므로, 본 발명에 따른 지열정 단열 파이프의 외부와 내부의 온도차가 상대적으로 적을 수 있다.On the other hand, the lower portion of the geothermal well is similar to the temperature of the heat transfer medium in which all of the injected heat transfer medium is recovered in a heated state, the temperature difference between the outside and the inside of the geothermal heat insulation pipe according to the present invention can be relatively small.
따라서, 다음과 같은 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 변형예가 적용될 수 있다.Therefore, the following modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention can be applied.
도 2 및 도 3에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제1 변형예는 외관부(a100), 내관부(a200) 및 단열부(a300)를 포함할 수 있다.As shown in Figures 2 and 3, the first modification of the geothermal heat insulating pipe 1-1 embodiment according to the present invention may include an outer portion (a100), the inner tube portion (a200) and the heat insulating portion (a300). Can be.
여기서, 외관부(a100), 내관부(a200) 및 단열부(a300)는 전술한 제1-1 실시예의 외관부(a100), 내관부(a200) 및 단열부(a300)의 구성과 기본적으로는 동일한 구성으로 상세한 설명은 생략하기로 한다.Here, the exterior portion a100, the inner tube portion a200, and the thermal insulation portion a300 are basically the same as the configuration of the exterior portion a100, the inner tube portion a200, and the thermal insulation portion a300 of the first-first embodiment described above. The detailed description of the same configuration will be omitted.
다만, 본 변형예에서 외관부(a100)는 외관부(a100) 상부의 직경(L1-a)이 외관부(a100) 하부의 직경(L1-b)보다 상대적으로 크게 형성될 수 있다.However, in the present modified example, the exterior part a100 may have a diameter L1-a of the upper part of the exterior part a100 relatively larger than the diameter L1-b of the lower part of the exterior part a100.
또한, 본 변형예에서 내관부(a200)는 내관부(a200) 상부의 직경(L2-a)이 내관부(a200) 하부의 직경(L2-b)보다 상대적으로 작게 형성될 수 있다.In addition, in the present modification, the inner tube portion a200 may have a diameter L2-a of the upper portion of the inner tube portion a200 relatively smaller than the diameter L2-b of the lower portion of the inner tube portion a200.
이러한 구성은, 본 발명에 따른 지열정 단열 파이프에 있어서, 상부로 갈수록 전술한 외관부(a100) 및 내관부(a200) 사이의 간격이 커지게 되어, 외관부(a100) 및 내관부(a200)의 사이 공간에 구비되는 단열부(a300)의 두께가 두꺼워질 수 있다.In this configuration, in the geothermal heat insulating pipe according to the present invention, the distance between the outer portion (a100) and the inner tube portion (a200) as described above becomes larger, the outer portion (a100) and inner tube portion (a200) The thickness of the heat insulating part (a300) provided in the space between the can be thickened.
따라서, 본 발명에 따른 지열정 단열 파이프의 내부 및 외부의 온도차가 상대적으로 높은 상부에서는 높은 단열 성능을 확보하고, 내부 및 외부의 온도차가 상대적으로 낮은 하부에서는 낮은 단열 성능을 확보할 수 있다.Therefore, it is possible to secure a high heat insulation performance in the upper portion where the temperature difference between the inside and the outside of the geothermal heat insulating pipe according to the present invention is relatively high, and a low heat insulation performance in the lower portion where the temperature difference between the inside and the outside is relatively low.
전술한 외관부(a100) 및 내관부(a200)의 구성은 두 구성이 함께 적용될 수도 있고, 또는 어느 하나의 구성만 적용될 수도 있는 등, 상부에서의 단열부(a300) 두께가 하부에 비해 상대적으로 두껍게 형성되도록 구성된다면 그 형태 및 구성은 제한되지 않고 다양할 수 있다.In the above-described exterior portion a100 and the inner tube portion a200, the two configurations may be applied together, or only one configuration may be applied, such that the thickness of the heat insulation portion a300 at the upper portion is relatively lower than the lower portion. If configured to form thick, the form and configuration may be varied without limitation.
이러한 본 변형예의 구성은, 도 2에 도시된 바와 같이, 외관부(a100) 및 내관부(a200)가 경사진 형태로 형성될 수도 있고, 도 3에 도시된 바와 같이, 계단식으로 구성될 수도 있다.2, the exterior portion a100 and the inner tube portion a200 may be formed in an inclined shape, or may be formed in a stepped manner as illustrated in FIG. 3. .
계단식으로 구성되는 경우, 외관부(100) 및 내관부(200)를 제조하기가 보다 용이하기 때문에, 본 발명에 따른 지열정 단열 파이프를 제조하는데 소요되는 비용 및 노력을 절감할 수 있는 효과를 얻을 수 있다.When the casing is constructed, since it is easier to manufacture the exterior portion 100 and the inner tube portion 200, it is possible to obtain the effect of reducing the cost and effort required to manufacture the geothermal heat insulating pipe according to the present invention. Can be.
또한, 전술한 본 변형예의 구성은 불필요한 단열 성능을 줄여 소요되는 단열재의 양을 줄여, 본 발명에 따른 지열정 단열 파이프의 제조 등에 소요되는 비용을 줄일 수 있는 효과를 얻을 수 있다.In addition, the configuration of the present modification described above can reduce the amount of insulation required to reduce the unnecessary heat insulation performance, it is possible to obtain the effect of reducing the cost required for the production of geothermal heat insulation pipe according to the present invention.
또한, 같은 양의 단열재를 사용하더라도 보다 효율적으로 단열성능을 집중시킬 수 있는 효과를 얻을 수 있다.In addition, even if the same amount of heat insulator is used, it is possible to obtain the effect that can concentrate the heat insulation performance more efficiently.
한편, 본 변형예의 구성에 따른 형태로 인하여 열전달매체가 지열정 내부를 유동하는 유로의 폭이 지열정의 하부로 갈수록 넓어지게 형성되는데, 이는 같은 압력으로 열전달매체가 유동할 때 유로의 폭이 넓어지면서 열전달매체의 유속이 느려질 수 있다.On the other hand, due to the configuration according to the configuration of the present modification, the width of the flow path through which the heat transfer medium flows inside the geothermal well becomes wider toward the bottom of the geothermal well, which is wider when the heat transfer medium flows at the same pressure. As a result, the heat transfer medium can slow down.
따라서, 열전달매체가 지열정의 하부에서 지열을 회수하는 효율이 향상되는 효과를 얻을 수도 있다.Therefore, it is possible to obtain the effect of improving the efficiency of the heat transfer medium to recover the geothermal heat in the lower portion of the geothermal well.
이러한 효과에 대하여 보다 상세히 설명하면, 도 4에 도시된 바와 같이 내관부(a200)의 상부 직경이 하부 직경에 비해 상대적으로 작게 형성되는 경우 지열을 회수하는 생산정의 유로 폭이 변동될 수 있다.Referring to this effect in more detail, as shown in Figure 4, when the upper diameter of the inner tube portion (a200) is formed relatively smaller than the lower diameter, the width of the flow path of the production well to recover the geothermal heat can be varied.
따라서, 생산정을 통해 회수되는 열전달매체의 유속이 생산정의 상부로 갈수록 빨라지게 되어, 본 발명에 따른 지열정 단열 파이프의 내부 및 외부 간의 열교환양을 줄일 수 있다.Therefore, the flow rate of the heat transfer medium recovered through the production well is faster toward the top of the production well, it is possible to reduce the amount of heat exchange between the inside and outside of the geothermal well-insulated pipe according to the present invention.
따라서, 본 발명에 따른 지열정 단열 파이프를 이용한 지중열효관기의 효율이 크게 향상되는 효과를 얻을 수 있다.Therefore, it is possible to obtain an effect of greatly improving the efficiency of the geothermal heat pipe using the geothermal heat insulating pipe according to the present invention.
또한, 도 5에 도시된 바와 같이, 외관부(a100)의 상부 직경이 하부 직경에 비해 상대적으로 크게 형성되는 경우 지열정의 내부로 열전달매체를 주입하는 주입정의 유로 폭이 변동될 수 있다.In addition, as shown in Figure 5, when the upper diameter of the outer portion (a100) is formed relatively larger than the lower diameter, the width of the flow path of the injection well for injecting the heat transfer medium into the geothermal well.
따라서, 주입정을 통해 주입되는 열전달매체의 유속이 주입정의 하부로 갈수록 느려지게되어, 지열정의 하부에서 지열을 전달받을 수 있는 시간이 길어질 수 있다.Therefore, the flow rate of the heat transfer medium injected through the injection well is slowed toward the bottom of the injection well, so that the time for receiving geothermal heat from the bottom of the geothermal well may be longer.
즉, 지하의 암반으로부터 열을 최대한 많이 전달받아 본 발명에 따른 지열정 단열 파이프를 이용한 지중열교환기의 효율이 크게 향상되는 효과를 얻을 수 있다.That is, by receiving as much heat as possible from the underground rock, the efficiency of the underground heat exchanger using the geothermal heat insulation pipe according to the present invention can be obtained.
한편, 도 6 및 도 7에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프 제1-1 실시예의 제2 변형예는 외관부(a100), 내관부(a200) 및 단열부(a300)를 포함할 수 있다.On the other hand, as shown in Figure 6 and 7, the second modified example of the geothermal heat insulating pipe 1-1 embodiment according to the present invention is the outer portion (a100), inner tube portion (a200) and the thermal insulation portion (a300) It may include.
여기서, 외관부(a100) 및 내관부(a200) 전술한 제1-1 실시예의 외관부(a100) 및 내관부(a200)의 구성과 기본적으로는 동일한 구성으로 상세한 설명은 생략하기로 한다.Here, the exterior portion a100 and the inner tube portion a200 are basically the same as those of the exterior portion a100 and the inner tube portion a200 of the first-first embodiment described above, and thus detailed description thereof will be omitted.
다만, 도 6에 도시된 바와 같이, 본 변형예에서 단열부(a300)는 서로 다른 단열 성능을 가지는 복수개 종류의 단열소재(a310, a320, a330)로 형성될 수 있다.However, as shown in FIG. 6, in the present modification, the heat insulating part a300 may be formed of a plurality of types of heat insulating materials a310, a320, and a330 having different heat insulating performances.
즉, 높은 단열성능이 필요한 부분과 상대적으로 낮은 단열성능이 요구되는 부분에 서로 다른 단열소재를 적용하여 단열부(a310, a320, a330)를 구성할 수 있다.That is, the heat insulating parts a310, a320, and a330 may be configured by applying different heat insulating materials to a part requiring high heat insulating performance and a part requiring relatively low heat insulating performance.
이러한 서로 다른 단열 성능을 가지는 단열소재의 선택은, 단열소재의 가격, 시공의 용이성, 내구성 등을 종합적으로 판단하여 적합한 소재를 선택하는 것이 유리할 수 있다.In the selection of insulation materials having different thermal insulation performance, it may be advantageous to select a suitable material by comprehensively determining the price, ease of construction, and durability of the insulation material.
각 부위별 단열 성능은 전술한 제1-1 실시예의 제1 변형예에서와 마찬가지로 상부가 하부에 비하여 상대적으로 높은 단열성능을 갖도록 구성하는 것이 유리할 수 있다.Insulation performance of each part may be advantageously configured such that the upper portion has a relatively higher thermal insulation performance than the lower portion as in the first modification of the first-first embodiment described above.
즉, 단열부 상부 단열소재(a310)의 열전달율이 단열부 하부 단열소재(a330)의 열전달율에 비하여 상대적으로 낮게 구성될 수 있다.That is, the heat transfer rate of the upper heat insulating material a310 of the heat insulating part may be configured to be relatively low compared to the heat transfer rate of the lower heat insulating material a330 of the heat insulating part.
이러한 구성은 보다 효율적으로 단열성능을 집중시킬 수 있는 효과를 얻을 수 있으며, 단열부(a310, a320, a330)를 구성하는데 소요되는 비용을 절감할 수 있는 효과도 얻을 수 있다.This configuration can obtain the effect of more efficiently concentrating the thermal insulation performance, it is also possible to obtain the effect of reducing the cost required to configure the thermal insulation (a310, a320, a330).
본 변형예에 따른 지열정 단열 파이프는 단일 파이프에 위치별로 다른 단열소재를 주입하여 구성할 수 있다.Geothermal heat insulation pipe according to the present modification can be configured by injecting different insulation material for each position in a single pipe.
한편, 도 7에 도시된 바와 같이, 본 변형예에 따른 지열정 단열 파이프 중 지열정의 최하단부 측에 삽입되는 부위에는 단열부(a300)가 구비되지 않을 수도 있다.On the other hand, as shown in Figure 7, the portion of the geothermal heat insulating pipe according to the present modification is inserted into the bottom end side of the geothermal well may not be provided with a heat insulating portion (a300).
이러한 경우, 외관부(a100) 및 내관부(a200) 사이의 공간에 별도의 단열부(a300)가 구비되지 않을 수도 있고, 본 변형예에서와 같이, 이중관 형태로 형성되는 파이프가 단일관 구조로 변형되며, 단열부(a300)가 구비되지 않도록 형성될 수도 있다.In this case, a separate heat insulation portion a300 may not be provided in the space between the outer portion a100 and the inner tube portion a200, and as in the present modification, the pipe formed in the form of a double tube may have a single tube structure. Deformed, it may be formed so that the heat insulating portion (a300) is not provided.
일례로, 본 발명에 따른 지열정 단열 파이프의 하단부는 단열재가 구비되지 않은 단일 배관으로 구성되는 것이 유리할 수 있다.As an example, the lower end of the geothermal heat insulating pipe according to the present invention may be advantageously composed of a single pipe is not provided with a heat insulating material.
위와 같은 단일 배관을 구성할 때에는 저렴한 비용이 장점인 플라스틱 배관을 사용할 수도 있고, 강성이 높은 강관을 이용하여 지열정 내부에서 전체적인 지열정 단열 파이프를 지지할 수도 있다.When constructing a single pipe as described above, it is possible to use plastic pipes having low cost advantages, and support the entire geothermal well-insulated pipe inside the geothermal well by using a rigid steel pipe.
또한, 이러한 구성 역시 효율적으로 단열성능을 집중시키고, 단열부(a300)의 구성에 소요되는 비용을 절감할 수 있는 효과를 얻을 수 있다.In addition, such a configuration can also efficiently concentrate the thermal insulation performance, it is possible to obtain the effect of reducing the cost required for the configuration of the thermal insulation (a300).
또한, 소정의 길이로 형성되는 복수개의 파이프에 서로 다른 소재의 단열소재를 주입하여 복수개의 본 발명에 따른 지열정 단열 파이프를 선택적으로 연결하여 구성할 수도 있다.In addition, by injecting a heat insulating material of a different material into a plurality of pipes formed to a predetermined length may be configured by selectively connecting a plurality of geothermal heat insulating pipes according to the present invention.
본 변형예에서는 단열부(a310, a320, a330)의 열전달율이 서로 상이하게 형성되는 복수개의 파이프가 길이방향으로 연결되도록 구성될 수 있다.In the present modification, a plurality of pipes having different heat transfer rates of the heat insulating parts a310, a320, and a330 may be connected in the longitudinal direction.
이러한 구성은 본 발명에 따른 지열정 단열 파이프의 운반 및 설치 등의 편의성을 확보할 수 있는 효과를 얻을 수 있다.This configuration can obtain the effect of ensuring the convenience, such as transport and installation of the geothermal heat insulating pipe according to the present invention.
또한, 복수개의 파이프를 연결하는 구성은 전술한 제1-1 실시예 및 제1-1 실시예의 제1 변형예에도 적용될 수 있다.In addition, the configuration of connecting the plurality of pipes can also be applied to the first modification of the above-described first-first embodiment and the first-first embodiment.
전술한 구성을 통해, 본 발명에 따른 지열정 단열 파이프는 지열정 단열 파이프 상부의 열저항이 지열정 단열 파이프 하부의 열저항보다 상대적으로 크게 형성될 수 있다.Through the above-described configuration, the geothermal well-insulated pipe according to the present invention can be formed with a relatively large heat resistance of the geothermal well-insulated pipe upper than the heat resistance of the geothermal well-insulated pipe.
푸리에 법칙을 적용하여, 열전달율은 일종의 흐름이라 하고 열전도계수, 물질의 두께 및 단면적의 조합은 이 흐름에 대한 저항이라 하며, 온도는 열유동을 위한 구동함수가 되기 때문에 열유동은 열 포텐셜의 차이와 비례하고, 열저항과 반비례하다고 정리할 수 있다.By applying Fourier's law, the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
따라서, 열저항이 높게 형성되는 경우에는 열유동이 반비례로 작아지게 되고, 본 발명에 따른 지열정 단열 파이프의 상부가 하부에 비해 열유동이 적게 일어날 수 있다.Therefore, when the heat resistance is formed high, the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
제1-2 1-2 실시예Example
이어서, 도 8 내지 도 10을 참조하여 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, the configuration and the effects of the geothermal heat insulating pipes 1-2 of the present invention will be described in detail with reference to FIGS. 8 to 10.
여기서, 도 8은 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 구성을 나타내는 도면이고, 도 9는 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 제1 변형예를 나타내는 도면이며, 도 10은 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 제2 변형예를 나타내는 도면이다.8 is a view showing the configuration of the geothermal heat insulating pipe 1-2 embodiment according to the present invention, Figure 9 is a view showing a first modified example of the geothermal heat insulating pipe 1-2 embodiment according to the present invention. 10 is a view showing a second modified example of the geothermal heat insulating pipe 1-2 embodiment according to the present invention.
먼저, 도 8에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프는 단열파이프부(a400)를 포함할 수 있다.First, as shown in FIG. 8, the geothermal heat insulating pipe according to the present invention may include a heat insulating pipe part a400.
단열파이프부(a400)는 지열정의 내부로 삽입되는 구성으로, 지상으로부터 지열정의 하부까지 연장되는 길이와 지열정에 비하여 상대적으로 작은 직경의 파이프 형태로 형성될 수 있다.The insulation pipe part a400 is inserted into the geothermal well, and may be formed in the shape of a pipe having a relatively smaller diameter than the length and geothermal well extending from the ground to the bottom of the geothermal well.
또한, 지열정의 내부에 삽입될 때 지열정의 내측면과 이격되어 삽입되어 배치되어, 본 발명에 따른 지열정 단열 파이프의 외부가 열전달매체가 지열정의 내부로 주입되는 주입정이 되도록 구성될 수 있다.In addition, when inserted into the geothermal well is inserted and disposed spaced apart from the inner surface of the geothermal well, the outside of the geothermal well heat insulating pipe according to the present invention can be configured to be an injection well in which the heat transfer medium is injected into the geothermal well. have.
그리고, 단열파이프부(a400)는 열전달율이 낮은 단열소재로 형성되어, 단열파이프부(a400)의 내부 및 외부 간에 발생하는 열교환 양을 낮추는 역할을 수행하는 구성일 수 있다.In addition, the heat insulation pipe part a400 may be formed of a heat insulation material having a low heat transfer rate, and may serve to reduce the amount of heat exchange generated between the inside and the outside of the heat insulation pipe part a400.
또한, 파이프의 형태를 유지하고, 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 충분한 강도로 형성되는 것이 유리할 수 있다.In addition, it may be advantageous to maintain the shape of the pipe and be formed with sufficient strength to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
이러한 단열파이프부(a400)의 구성은 열전달율이 낮아 단열파이프부(a400) 내부 및 외부 간의 열교환을 방지하고, 소정의 압력을 견딜 수 있는 강도를 가지도록 마련된다면, 그 소재 및 구성은 제한되지 않고 다양할 수 있다.The insulation pipe portion a400 has a low heat transfer rate, so as to prevent heat exchange between the insulation pipe portion a400 and the outside, and to have a strength that can withstand a predetermined pressure. It can vary.
전술한 구성을 포함하는 본 발명에 따른 지열정 단열 파이프는 지반에 형성된 지열정의 내부에 삽입되고, 지열정의 내부로 주입되는 열전달매체가 지열정을 따라 순환할 수 있는 유로를 형성할 수 있다.The geothermal well-insulated pipe according to the present invention including the above-described configuration may be inserted into the geothermal well formed in the ground, and may form a flow path through which the heat transfer medium injected into the geothermal well may circulate along the geothermal well. .
본 실시예에서는 본 발명에 따른 지열정 단열 파이프의 외측과 지열정의 내측면 사이에 열전달매체가 주입되고, 지열정의 하부에서 본 발명에 따른 지열정 단열 파이프의 내부로 열전달매체가 유입되어 본 발명에 따른 지열정 단열 파이프의 내부를 통하여 열전달매체를 지상으로 회수할 수 있다.In this embodiment, a heat transfer medium is injected between the outer side of the geothermal well-insulated pipe according to the present invention and the inner surface of the geothermal well, and the heat transfer medium flows into the geothermal well-insulated pipe according to the present invention from the bottom of the geothermal well. Through the interior of the geothermal heat insulating pipe according to the invention it is possible to recover the heat transfer medium to the ground.
이러한 열전달매체의 유동을 위한 동력을 제공하기 위하여 본 발명에 따른 지열정 단열 파이프의 내부 또는 지상에 별도의 펌프가 구비될 수도 있다.In order to provide power for the flow of the heat transfer medium, a separate pump may be provided inside or on the ground of the geothermal heat insulating pipe according to the present invention.
즉, 지열정의 내부로 주입된 열전달매체는 지열정의 내측면을 통해 지열을 전달받아 가열되고, 가열된 열전달매체가 본 발명에 따른 지열정 단열 파이프 내부를 통해 회수될 수 있다.That is, the heat transfer medium injected into the geothermal well is heated by receiving geothermal heat through the inner surface of the geothermal well, and the heated heat transfer medium may be recovered through the geothermal well-insulated pipe according to the present invention.
이때, 전술한 모든 구성을 통하여, 생산정에서 열전달매체를 통해 회수되는 지열이 본 발명에 따른 지열정 단열 파이프를 통해 주입정으로 수평이동하는 것을 방지하여 열손실을 최소화하는 효과를 얻을 수 있다.At this time, through all the above-described configuration, it is possible to prevent the ground heat recovered through the heat transfer medium in the production wells to horizontally move to the injection well through the geothermal well insulation pipe according to the present invention to minimize the heat loss.
한편, 지열정의 상부에서 주입되는 열전달매체는 가열되어 회수되는 열전달매체에 비하여 상대적으로 온도가 낮기 때문에, 본 발명에 따른 지열정 단열 파이프의 외부와 내부의 온도차가 매우 커질 수 있다.On the other hand, since the heat transfer medium injected from the top of the geothermal well is relatively low compared to the heat transfer medium that is heated and recovered, the temperature difference between the outside and the inside of the geothermal well-insulated pipe according to the present invention can be very large.
반면에, 지열정의 하부에서는 주입되는 열전달매체가 모두 가열된 상태로 회수되는 열전달매체의 온도와 유사하므로, 본 발명에 따른 지열정 단열 파이프의 외부와 내부의 온도차가 상대적으로 적을 수 있다.On the other hand, the lower portion of the geothermal well is similar to the temperature of the heat transfer medium in which all of the injected heat transfer medium is recovered in a heated state, the temperature difference between the outside and the inside of the geothermal heat insulation pipe according to the present invention can be relatively small.
따라서, 다음과 같은 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 변형예가 적용될 수 있다.Therefore, the following modification of the geothermal heat insulating pipe 1-2 embodiment according to the present invention can be applied.
도 9에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 제1 변형예는 단열파이프부(a400)를 포함할 수 있다.As shown in FIG. 9, the first modified example of the geothermal heat insulating pipe 1-2 according to the present invention may include a heat insulating pipe part a400.
여기서, 단열파이프부(a400)는 전술한 제2 실시예의 단열파이프부(a400)의 구성과 기본적으로는 동일한 구성으로 상세한 설명은 생략하기로 한다.Here, the heat insulation pipe part a400 is basically the same as the structure of the heat insulation pipe part a400 of the above-described second embodiment, and detailed description thereof will be omitted.
다만, 본 변형예에서 단열파이프부(a400) 상부의 두께(L3-a)가 단열파이프부(a400) 하부의 두께(L3-b)보다 상대적으로 크게 형성될 수 있다.However, in the present modified example, the thickness L3-a of the upper portion of the insulation pipe part a400 may be formed to be relatively larger than the thickness L3-b of the lower portion of the insulation pipe part a400.
즉, 본 발명에 따른 지열정 단열 파이프에 있어서, 상부로 갈수록 단열파이프부(a400)의 두께가 두꺼워지며, 상부에 보다 두꺼운 단열층이 구비되는 구성일 수 있다.That is, in the geothermal heat insulating pipe according to the present invention, the thickness of the heat insulating pipe portion (a400) is thicker toward the top, it may be configured to have a thicker heat insulating layer on the top.
따라서, 본 발명에 따른 지열정 단열 파이프의 내부 및 외부의 온도차가 상대적으로 높은 상부에서는 높은 단열 성능을 확보하고, 내부 및 외부의 온도차가 상대적으로 낮은 하부에서는 낮은 단열 성능을 확보할 수 있다.Therefore, it is possible to secure a high heat insulation performance in the upper portion where the temperature difference between the inside and the outside of the geothermal heat insulating pipe according to the present invention is relatively high, and a low heat insulation performance in the lower portion where the temperature difference between the inside and the outside is relatively low.
이러한 단열파이프부(a400)의 구성은 상부에서의 두께가 하부에 비해 상대적으로 두껍게 형성되도록 구성된다면 그 형태 및 구성은 제한되지 않고 다양할 수 있다.The insulation pipe portion a400 may have various shapes and configurations without being limited, provided that the thickness at the top is configured to be relatively thicker than the bottom.
본 변형예의 구성은 불필요한 단열 성능을 줄여 소요되는 단열재의 양을 줄여, 본 발명에 따른 지열정 단열 파이프의 제조 등에 소요되는 비용을 줄일 수 있는 효과를 얻을 수 있다.The configuration of the present modification can reduce the amount of heat insulating material required by reducing unnecessary heat insulating performance, it is possible to obtain the effect of reducing the cost required for the production of geothermal heat insulating pipe according to the present invention.
또한, 같은 양의 단열재를 사용하더라도 보다 효율적으로 단열성능을 집중시킬 수 있는 효과를 얻을 수 있다.In addition, even if the same amount of heat insulator is used, it is possible to obtain the effect that can concentrate the heat insulation performance more efficiently.
한편, 본 변형예의 구성에 따른 형태로 인하여 열전달매체가 지열정 내부를 유동하는 유로의 폭이 지열정의 하부로 갈수록 넓어지게 형성되는데, 이는 같은 압력으로 열전달매체가 유동할 때 유로의 폭이 넓어지면서 열전달매체의 유속이 느려질 수 있다.On the other hand, due to the configuration according to the configuration of the present modification, the width of the flow path through which the heat transfer medium flows inside the geothermal well becomes wider toward the bottom of the geothermal well, which is wider when the heat transfer medium flows at the same pressure. As a result, the heat transfer medium can slow down.
따라서, 열전달매체가 지열정의 하부에서 지열을 회수하는 효율이 향상되는 효과를 얻을 수도 있다.Therefore, it is possible to obtain the effect of improving the efficiency of the heat transfer medium to recover the geothermal heat in the lower portion of the geothermal well.
한편, 도 10에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프 제1-2 실시예의 제2 변형예는 단열파이프부(a410, a420, a430)를 포함할 수 있다.On the other hand, as shown in Figure 10, the second modification of the geothermal heat insulating pipes 1-2 embodiment according to the present invention may include a heat insulating pipe (a410, a420, a430).
여기서, 단열파이프부(a410, a420, a430)는 서로 다른 단열 성능을 가지는 복수개 종류의 단열소재로 형성될 수 있다.Here, the heat insulation pipe parts a410, a420, and a430 may be formed of a plurality of types of heat insulation materials having different heat insulation performances.
즉, 높은 단열성능이 필요한 부분과 상대적으로 낮은 단열성능이 요구되는 부분에 서로 다른 단열소재를 적용하여 단열파이프부(a410, a420, a430)를 구성할 수 있다.That is, the heat insulating pipe parts a410, a420, and a430 may be configured by applying different heat insulating materials to a part requiring high heat insulating performance and a part requiring relatively low heat insulating performance.
이러한 서로 다른 단열 성능을 가지는 단열소재의 선택은, 단열소재의 가격, 시공의 용이성, 내구성 등을 종합적으로 판단하여 적합한 소재를 선택하는 것이 유리할 수 있다.In the selection of insulation materials having different thermal insulation performance, it may be advantageous to select a suitable material by comprehensively determining the price, ease of construction, and durability of the insulation material.
각 부위별 단열 성능은 전술한 제1-2 실시예의 제1 변형예에서와 마찬가지로 상부가 하부에 비하여 상대적으로 높은 단열성능을 갖도록 구성하는 것이 유리할 수 있다.Insulation performance of each part may be advantageously configured such that the upper portion has a relatively higher thermal insulation performance than the lower portion, as in the first modification of the above-described embodiment 1-2.
즉, 단열부 상부 단열파이프부(a410)의 열전달율이 단열부 하부 단열파이프부(a430)의 열전달율에 비하여 상대적으로 낮게 구성될 수 있다.That is, the heat transfer rate of the upper heat insulating pipe part a410 of the heat insulating part may be configured to be relatively low compared to the heat transfer rate of the lower heat insulating pipe part a430 of the heat insulating part.
이러한 구성은 보다 효율적으로 단열성능을 집중시킬 수 있는 효과를 얻을 수 있으며, 단열파이프부(a410, a420, a430)를 구성하는데 소요되는 비용을 절감할 수 있는 효과도 얻을 수 있다.Such a configuration can obtain the effect of more efficiently concentrating the thermal insulation performance, and can also reduce the cost of constructing the thermal insulation pipe parts (a410, a420, a430).
본 변형예에 따른 지열정 단열 파이프는 열전달율이 서로 상이한 단열소재로 형성된 복수개의 단열파이프부(a410, a420, a430)를 선택적으로 길이방향으로 연결하여 구성할 수도 있다.The geothermal heat insulating pipe according to the present modification may be configured by selectively connecting a plurality of heat insulating pipe parts (a410, a420, a430) formed of heat insulating materials having different heat transfer rates in a longitudinal direction.
이러한 구성은 본 발명에 따른 지열정 단열 파이프의 운반 및 설치 등의 편의성을 확보할 수 있는 효과를 얻을 수 있다.This configuration can obtain the effect of ensuring the convenience, such as transport and installation of the geothermal heat insulating pipe according to the present invention.
또한, 복수개의 파이프를 연결하는 구성은 전술한 제1-2 실시예 및 제1-2 실시예의 제1 변형예에도 적용될 수 있다.In addition, the configuration of connecting the plurality of pipes can also be applied to the first modification of the above-described embodiments 1-2 and 1-2.
본 실시예의 전술한 구성을 통해, 본 발명에 따른 지열정 단열 파이프는 지열정 단열 파이프 상부의 열저항이 지열정 단열 파이프 하부의 열저항보다 상대적으로 크게 형성될 수 있다.Through the above-described configuration of the present embodiment, the geothermal well-insulated pipe according to the present invention can be formed relatively larger than the heat resistance of the geothermal well-insulated pipe upper heat resistance.
푸리에 법칙을 적용하여, 열전달율은 일종의 흐름이라 하고 열전도계수, 물질의 두께 및 단면적의 조합은 이 흐름에 대한 저항이라 하며, 온도는 열유동을 위한 구동함수가 되기 때문에 열유동은 열 포텐셜의 차이와 비례하고, 열저항과 반비례하다고 정리할 수 있다.By applying Fourier's law, the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
따라서, 열저항이 높게 형성되는 경우에는 열유동이 반비례로 작아지게 되고, 본 발명에 따른 지열정 단열 파이프의 상부가 하부에 비해 열유동이 적게 일어날 수 있다.Therefore, when the heat resistance is formed high, the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
본 발명에 따른 지열정 단열 파이프의 모든 실시예에서 기재한 구성을 통하여 지열정의 내부에 열전달매체를 순환시켜 지열을 회수하는 시스템의 효율을 향상시키는 효과를 얻을 수 있다.Through the configuration described in all embodiments of the geothermal heat insulating pipe according to the present invention it is possible to obtain the effect of improving the efficiency of the system for recovering geothermal heat by circulating the heat transfer medium in the geothermal well.
<< 지열정Geothermal 단열 파이프의 제2  2nd insulated pipe 실시예Example >>
Work 실시예Example
이어서, 도 11 내지 도 15를 참조하여, 본 발명에 따른 지열정 단열 파이프 일 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, referring to Figures 11 to 15, the configuration and effects of one embodiment of the geothermal heat insulating pipe according to the present invention will be described in detail.
여기서, 도 11은 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예의 구성을 나타내는 도면이고, 도 12는 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예의 파이프부 및 지지부 구성을 나타내는 도면이다.11 is a view showing the configuration of an embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention, Figure 12 is a configuration of the pipe portion and the support portion of one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention It is a figure which shows.
또한, 도 13은 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예에서 단열부를 형성하는 상태를 나타내는 도면이고, 도 14는 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예에서 지지부가 파이프부의 양단부에 구비된 상태를 나타내는 도면이며, 도 15는 본 발명에 따른 지열정 단열 파이프 제2 실시예의 일 실시예에서 지지부에 제1 체결부 및 제2 체결부가 형성된 상태를 나타내는 도면이다.13 is a view showing a state of forming a heat insulating part in one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention, Figure 14 is a view of a second embodiment of the geothermal heat insulating pipe according to the present invention FIG. 15 is a view illustrating a state in which the support part is provided at both ends of the pipe part, and FIG. 15 is a view illustrating a state in which the first fastening part and the second fastening part are formed in the supporting part in one embodiment of the geothermal heat insulating pipe according to the second embodiment of the present invention. .
도 11 및 도 12에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프는 파이프부(b100), 지지부(b200) 및 단열부(b300)를 포함할 수 있다.As illustrated in FIGS. 11 and 12, the geothermal heat insulating pipe according to the present invention may include a pipe part b100, a support part b200, and a heat insulating part b300.
파이프부(b100)는 지열정의 내부로 삽입되는 구성으로, 지열정의 내부 공간을 구획하여 파이프부(b100)의 외주면과 지열정의 내주면 사이로 열전달매체가 주입되고, 지열정의 하부에서 가열된 열전달매체가 파이프부(b100)의 내부를 통해 지상으로 회수될 수 있다.The pipe part b100 is inserted into the geothermal well, and partitions the inner space of the geothermal well and injects a heat transfer medium between the outer circumferential surface of the pipe portion b100 and the inner circumferential surface of the geothermal well, and is heated at the bottom of the geothermal well. The heat transfer medium may be recovered to the ground through the inside of the pipe part b100.
본 실시예에서 파이프부(b100)는 외관(b110) 및 내관(b120)이 서로 이격되어 배치되는 형태로 형성될 수 있다.In the present embodiment, the pipe part b100 may be formed in a shape in which the exterior b110 and the inner tube b120 are spaced apart from each other.
외관(b110)은 지상으로부터 지열정의 하부까지 연장되는 길이와 지열정에 비하여 상대적으로 작은 직경의 파이프 형태로 형성될 수 있다.The exterior b110 may be formed in the shape of a pipe having a smaller diameter than the length and the geothermal well extending from the ground to the bottom of the geothermal well.
또한, 내관(b120)은 전술한 외관(b110)의 길이와 대응되는 길이 및 외관(b110)에 비하여 상대적으로 작은 직경을 가지는 파이프의 형태로 형성될 수 있다.In addition, the inner tube (b120) may be formed in the form of a pipe having a relatively small diameter compared to the length and the appearance (b110) corresponding to the length of the above-described appearance (b110).
이러한 파이프부(b100)의 구성은 파이프의 형태를 유지하고, 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 충분한 강도를 가지는 소재로 형성되는 것이 유리할 수 있다.The configuration of the pipe part b100 may be advantageously formed of a material that maintains the shape of the pipe and has sufficient strength to withstand the pressure inside the ground and the pressure of the heat transfer medium.
한편, 지지부(b200)는 전술한 외관(b110) 및 내관(b120)을 상호 연결하여 지지하는 구성으로, 외관(b110)의 내주면 및 내관(b120)의 외주면과 적어도 일부가 접촉하도록 형성되고, 파이프부(b100)의 길이방향을 따라 소정의 간격으로 이격되도록 복수 구비될 수 있다.On the other hand, the support portion (b200) is configured to support the external appearance (b110) and the inner tube (b120) by connecting to each other, is formed so that at least a portion of the inner circumferential surface of the outer appearance (b110) and the outer circumferential surface of the inner tube (b120) contact, It may be provided in plurality to be spaced apart at a predetermined interval along the longitudinal direction of the portion (b100).
본 실시예에서 지지부(b200)는 도 12에 도시된 바와 같이, 파이프부(b100)의 길이방향의 단면상에서 외관(b110) 및 내관(b120) 사이와 대응되는 면적으로 소정의 두께를 가지는 링 형태로 구성될 수 있다.In this embodiment, as shown in FIG. 12, the support part b200 has a ring shape having a predetermined thickness with an area corresponding to the exterior b110 and the inner tube b120 on a longitudinal cross section of the pipe part b100. It can be configured as.
이러한 지지부(b200)의 구성은 파이프부(b100)의 외관(b110) 및 내관(b120)의 사이에 구비되어 외관(b110) 및 내관(b120)의 간격을 유지하며 지지하도록 마련된다면 그 형태 및 구성은 제한되지 않고 다양할 수 있다.The configuration of the support part b200 is provided between the exterior b110 and the inner tube b120 of the pipe part b100 so as to maintain and maintain a gap between the exterior b110 and the inner tube b120. Is not limited and may vary.
지지부(b200)에 적용될 수 있는 보다 다양한 구성에 대한 상세한 설명은 후술하기로 한다.Detailed description of the various configurations that can be applied to the support (b200) will be described later.
한편, 단열부(b300)는 파이프부(b100)의 내부와 외부간에 열교환이 이루어지는 효율을 낮추기 위한 구성으로, 외관(b110) 및 내관(b120) 사이의 공간에 단열소재가 구비되어 형성될 수 있다.On the other hand, the heat insulation portion (b300) is a configuration for reducing the efficiency of heat exchange between the inside and the outside of the pipe portion (b100), may be formed with a heat insulating material in the space between the exterior (b110) and the inner tube (b120). .
본 발명에 따른 지열정 단열 파이프는 지열정의 내부에 삽입되고, 지열을 회수하기 위한 열전달매체가 파이프의 외부를 통해 주입되어 지열정의 하부에서 지열을 통해 가열되며, 가열된 열전달매체는 파이프의 내부를 통해 지상으로 회수될 수 있다.The geothermal well-insulated pipe according to the present invention is inserted into the geothermal well, a heat transfer medium for recovering geothermal heat is injected through the outside of the pipe is heated through geothermal heat at the bottom of the geothermal well, the heated heat transfer medium is It can be recovered to the ground through the interior.
이때, 파이프의 내부 및 외부 열전달매체의 온도차이가 발생하며, 파이프 내부의 가열된 열전달매체의 열이 파이프를 통해 외부로 빠져나가는 경우 전체적인 지열 회수시스템의 효율이 떨어질 수 있으므로, 전술한 단열부(b300)의 구성을 통하여 본 발명에 따른 지열정 단열 파이프 내부 및 외부의 열교환을 방지할 수 있다.At this time, the temperature difference between the internal and external heat transfer medium of the pipe occurs, and when the heat of the heated heat transfer medium in the pipe escapes to the outside through the pipe, the efficiency of the overall geothermal recovery system may be lowered, and thus, the above-described heat insulation unit ( Through the configuration of b300) it is possible to prevent heat exchange inside and outside the geothermal heat insulating pipe according to the present invention.
본 실시예에서는 발포 우레탄, 발포 고무 등과 같은 발포성 단열소재가 충전된 형태로 구성될 수 있으나, 공기, 스티로폼, 유리섬유 등의 다양한 단열소재가 적용되는 등 그 소재 및 구성은 제한되지 않고 다양할 수 있다.In the present embodiment, but may be configured in a form filled with a foamable insulating material such as urethane foam, foam rubber, etc. Various materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation. have.
전술한 구성을 통하여 본 발명에 따른 지열정 단열 파이프는, 파이프 내부 와 내부의 단열성을 확보하면서, 파이프를 구조적으로 보강하여 변형 및 파손을 방지하는 효과를 얻을 수 있다.Through the above-described configuration, the geothermal heat insulating pipe according to the present invention can obtain the effect of preventing deformation and breakage by structurally reinforcing the pipe while ensuring heat insulation inside and inside the pipe.
한편, 지지부(b200)는 외관(b110) 및 내관(b120)이 지지부(b200)를 통하여 상호 열교환하는 효율을 낮추기 위하여 파이프부(b100)에 비하여 상대적으로 열전도율이 낮은 소재로 형성되는 것이 유리할 수 있다.On the other hand, the support portion b200 may be advantageously formed of a material having a relatively low thermal conductivity compared to the pipe portion b100 in order to reduce the efficiency of the heat exchange between the exterior (b110) and the inner tube (b120) through the support (b200). .
파이프부(b100) 내부 및 외부간의 열교환을 방지하기 위해 단열부(b300)가 구비되어 있지만, 지지부(b200)는 파이프부(b100)의 외관(b110) 및 내관(b120)과 모두 접촉하고 있기 때문에 지지부(b200)를 통해 열이 전달되어 단열 성능이 떨어질 수 있다.In order to prevent heat exchange between the inside and the outside of the pipe part b100, the heat insulating part b300 is provided, but since the support part b200 is in contact with both the exterior b110 and the inner tube b120 of the pipe part b100. Heat may be transferred through the support part b200 to reduce adiabatic performance.
따라서, 지지부(b200)를 상대적으로 열전도율이 낮을 소재로 형성하여 지지부(b200)의 구성도 단열부(b300)와 같은 기능을 수행하도록 구성하는 것이 유리할 수 있다.Therefore, it may be advantageous to form the support part b200 with a material having a relatively low thermal conductivity so as to perform the same function as the heat insulation part b300 of the support part b200.
전술한 구성을 통하여 본 발명에 따른 지열정 단열 파이프는, 더욱 향상된 단열 성능을 확보할 수 있으며, 본 발명에 따른 지열정 단열 파이프가 적용되는 지열 회수시스템의 효율을 향상시키는 효과를 얻을 수 있다.Through the above-described configuration, the geothermal well heat insulating pipe according to the present invention can secure more improved heat insulating performance, and can obtain an effect of improving the efficiency of the geothermal heat recovery system to which the geothermal heat insulating heat pipe according to the present invention is applied.
한편, 본 발명에 따른 지열정 단열 파이프의 지지부(b200)는 파이프부(b100)의 길이방향 단면상 외관(b110) 및 내관(b120) 사이의 공간에 비하여 상대적으로 작은 면적을 가지도록 형성될 수 있다.On the other hand, the support portion b200 of the geothermal heat insulating pipe according to the present invention may be formed to have a relatively small area compared to the space between the outer surface (b110) and the inner tube (b120) in the longitudinal cross-section of the pipe portion (b100). .
즉, 지지부(b200)의 구성이 외관(b110) 및 내관(b120) 사이의 공간을 완전히 밀폐하지 않도록 형성될 수 있다.That is, the structure of the support part b200 may be formed so as not to completely close the space between the exterior b110 and the inner tube b120.
본 실시예에서 지지부(b200)는 도 12에 도시된 바와 같이, 파이프부(b100)의 길이방향을 따라 지지부(b200)를 관통하도록 형성되는 관통홀(b210)이 형성될 수 있다.As shown in FIG. 12, the support part b200 may have a through hole b210 formed to penetrate the support part b200 in the longitudinal direction of the pipe part b100.
이러한 관통홀(b210)의 구성은 본 실시예에 제한되지 않고, 지지부(b200)가 외관(b110)과 내관(b120)에 접촉하는 면이 일부 함몰되는 형태로 형성되는 등 다양할 수 있다.The configuration of the through hole b210 is not limited to the present exemplary embodiment, and the support part b200 may be formed in a shape in which the surface contacting the exterior b110 and the inner tube b120 is partially recessed.
이때, 도 13에 도시된 바와 같이 파이프부(b100)의 일측에는 파이프부(b100)의 외관(b110) 및 내관(b120) 사이의 공간 내부에 전술한 단열부(b300)를 구성하는 단열소재를 주입하기 위한 주입구(b112)가 형성될 수 있다.At this time, as shown in FIG. 13, one side of the pipe part b100 includes a heat insulating material constituting the above-described heat insulating part b300 in a space between the exterior b110 and the inner tube b120 of the pipe part b100. An injection hole b112 for injecting may be formed.
이러한 구성을 통해, 본 발명에 따른 지열정 단열 파이프를 제조하는 과정에서 파이프부(b100) 및 지지부(b200)를 결합하고, 파이프부(b100)의 외관(b110)에 형성된 주입구(b112)를 통하여 단열소재를 주입하여 외관(b110) 및 내관(b120) 사이의 공간에 단열부(b300)를 형성할 수 있다.Through such a configuration, the pipe part b100 and the support part b200 are combined in the process of manufacturing the geothermal heat insulating pipe according to the present invention, and through the injection hole b112 formed in the appearance b110 of the pipe part b100. The insulating material may be injected to form a heat insulating part b300 in a space between the exterior b110 and the inner tube b120.
또한, 파이프부(b100)의 내부로 주입된 단열소재는 파이프부(b100)의 길이방향을 따라 이동하며 지지부(b200)와 접촉하게 되고, 이때 지지부(b200)에 형성된 관통홀(b210)을 통하여 단열소재가 이동하며 전체 파이프부(b100)의 내부에 단열소재를 충전할 수 있다.In addition, the heat insulating material injected into the pipe part b100 moves along the longitudinal direction of the pipe part b100 and comes into contact with the support part b200. The insulation material is moved and the insulation material can be filled in the entire pipe part b100.
전술한 구성을 통하여 본 발명에 따른 지열정 단열 파이프는 보다 간편하게 파이프의 내부에 단열층을 형성할 수 있어, 본 발명에 따른 지열정 단열 파이프를 제조하는데 소요되는 시간 및 노력을 절감할 수 있는 효과를 얻을 수 있다.Through the above-described configuration, the geothermal heat insulating pipe according to the present invention can more easily form a heat insulating layer inside the pipe, thereby reducing the time and effort required to manufacture the geothermal heat insulating pipe according to the present invention. You can get it.
한편, 본 발명에 따른 지열정 단열 파이프의 지지부(b200)는 도 14에 도시된 바와 같이, 적어도 파이프부(b100)의 길이방향 양단부에 구비될 수 있다.On the other hand, the support portion (b200) of the geothermal heat insulating pipe according to the present invention may be provided at both ends of the longitudinal direction of the pipe portion (b100), as shown in FIG.
파이프부(b100)는 외관(b110) 및 내관(b120)이 서로 이격되어 배치되므로, 길이방향 양단부는 개방된 형태로 형성될 수 있으며, 외관(b110) 및 내관(b120) 사이의 공간에 단열부(b300)가 구비되면 파이프부(b100)의 양단부는 폐쇄하는 것이 유리할 수 있다.Since the pipe part b100 is disposed so that the exterior b110 and the inner pipe b120 are spaced apart from each other, both ends in the longitudinal direction may be formed in an open shape, and the heat insulating part is disposed in the space between the exterior b110 and the inner pipe b120. When (b300) is provided it may be advantageous to close both ends of the pipe portion (b100).
이때, 지지부(b200)의 구성을 파이프부(b100)의 길이방향 양단부에 구비하여 지지부(b200)를 통해 파이프부(b100)의 개방된 양단부를 폐쇄할 수 있다.In this case, the structure of the support part b200 may be provided at both ends of the longitudinal direction of the pipe part b100 to close both open ends of the pipe part b100 through the support part b200.
이러한 경우 지지부(b200)는 단열소재가 통과하기 위한 관통홀(b210)이 형성되지 않는 것이 유리할 수 있으며, 파이프부(b100)의 양단부 사이에는 관통홀(b210)이 형성된 지지부(b200)가 추가적으로 구비될 수도 있다.In this case, it may be advantageous that the support part b200 does not have a through hole b210 for the heat insulating material to pass therethrough, and a support part b200 having a through hole b210 is additionally provided between both ends of the pipe part b100. May be
전술한 구성을 통하여 본 발명에 따른 지열정 단열 파이프는 파이프를 별도로 가공하지 않고 지지부(b200)의 구성을 이용하여 양단부를 폐쇄할 수 있어, 보다 용이하게 지열정 단열 파이프를 제조할 수 있는 효과를 얻을 수 있다.Through the above-described configuration, the geothermal well-insulated pipe according to the present invention can close both ends by using the configuration of the support part (b200) without processing the pipe separately, so that the geothermal well-insulated pipe can be easily produced. You can get it.
한편, 지열정에 삽입되는 파이프는 단일 파이프가 지열정의 하부까지 도달하도록 형성하기 어렵기 때문에, 복수개의 단위 파이프를 상호 연결하여 그 길이를 연장하도록 형성되는 것이 유리할 수 있다.On the other hand, since the pipe inserted into the geothermal well is difficult to form a single pipe to reach the bottom of the geothermal well, it may be advantageous to be formed so as to interconnect a plurality of unit pipes to extend their length.
따라서, 본 발명에 따른 지열정 단열 파이프는 적어도 파이프부(b100)의 양단부에는 지지부(b200)가 구비되고, 파이프부(b100)의 양단부에 구비된 지지부(b200)는 도 15에 도시된 바와 같이, 제1 체결부(b220) 및 제2 체결부(b230)가 형성될 수 있다.Accordingly, in the geothermal heat insulating pipe according to the present invention, at least both ends of the pipe part b100 are provided with support parts b200, and the support parts b200 provided at both ends of the pipe part b100 are as shown in FIG. 15. The first fastening part b220 and the second fastening part b230 may be formed.
파이프부(b100)의 일단부에 구비되는 지지부(b200)에는 제1 체결부(b220)가 형성되고, 파이프부(b100)의 타단부에 구비되는 지지부(b200)에는 제1 체결부(b220)와 대응되는 형태의 제2 체결부(b230)가 형성될 수 있다.A first fastening part b220 is formed at the support part b200 provided at one end of the pipe part b100, and a first fastening part b220 is provided at the support part b200 provided at the other end of the pipe part b100. The second fastening part b230 having a shape corresponding to the shape may be formed.
본 실시예에서 제1 체결부(b220) 및 제2 체결부(b230)는 수나사 및 암나사의 형태로 형성되어, 본 발명에 따른 지열정 단열 파이프 복수개가 상호 회전하며 결합하도록 구성될 수 있다.In the present embodiment, the first fastening part b220 and the second fastening part b230 are formed in the form of a male screw and a female screw, and may be configured so that a plurality of geothermal heat insulating pipes according to the present invention rotate and couple with each other.
이러한 구성은 본 실시예에 제한되지 않고, 복수개의 지열정 단열 파이프가 지지부(b200)의 구성을 통하여 결합되도록 마련된다면 그 형태 및 구성은 제한되지 않고 다양할 수 있다.Such a configuration is not limited to the present embodiment, and the shape and configuration may be various without being limited if a plurality of geothermal heat insulating pipes are provided to be coupled through the configuration of the support part b200.
전술한 구성은 보다 용이하게 가공할 수 있는 지지부(b200)에 제1 체결부(b220) 및 제2 체결부(b230)를 가공하여 파이프부(b100)와 결합하므로, 복수개의 지열정 단열 파이프를 연결하기 위하여 파이프를 별도로 가공하는 공정이 소요되지 않을 수 있다.In the above-described configuration, since the first fastening part b220 and the second fastening part b230 are processed to the support part b200, which can be easily processed, and then coupled to the pipe part b100, a plurality of geothermal heat insulating pipes may be used. The process of machining the pipes separately may not be necessary to connect them.
따라서, 본 발명에 따른 지열정 단열 파이프의 제조에 소요되는 시간, 노력 및 비용을 절감할 수 있는 효과를 얻을 수 있다.Therefore, it is possible to obtain the effect of reducing the time, effort and cost required for the production of geothermal heat insulating pipe according to the present invention.
한편, 본 발명에 따른 지열정 단열 파이프의 지지부(b200)는 탄력소재로 형성될 수 있다.On the other hand, the support portion (b200) of the geothermal heat insulating pipe according to the present invention may be formed of an elastic material.
이러한 구성은 본 발명에 따른 지열정 단열 파이프가 다양한 온도 및 압력에 의해 변형되는 경우에 능동적으로 대응할 수 있는 효과를 가질 수 있다.Such a configuration may have the effect of actively responding when the geothermal well-insulated pipe according to the present invention is deformed by various temperatures and pressures.
즉, 주변 상황에 따라 약간의 변형을 허용하여, 변형에 의한 파이프 자체의 파손을 방지하여 내구성을 높이는 효과를 얻을 수 있다.That is, by allowing a slight deformation in accordance with the surrounding situation, it is possible to obtain the effect of preventing durability of the pipe itself due to the deformation to increase the durability.
전술한 모든 구성에 의한 본 발명에 따른 지열정 단열 파이프는, 지열정의 내부로 삽입되는 파이프 구조를 보강하여 파이프가 파손되거나 변형되는 것을 방지할 수 있으며, 지열정의 내부로 열전달매체가 순환할 때, 지열정 내부에 삽입되는 파이프의 내부 및 외부간에 열전도율을 낮춰 지열 회수 효율을 향상시킬 수 있다.The geothermal well-insulated pipe according to the present invention by all the above-described configuration, by reinforcing the pipe structure is inserted into the geothermal well can prevent the pipe from being damaged or deformed, the heat transfer medium circulates inside the geothermal well At this time, the thermal conductivity can be improved by lowering the thermal conductivity between the inside and the outside of the pipe inserted into the geothermal well.
변형예Variant
이어서, 도 16을 참조하여, 본 발명에 따른 지열정 단열 파이프 변형예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, with reference to FIG. 16, the structure and effect of the geothermal heat insulating pipe modified example which concerns on this invention are demonstrated in detail.
여기서, 도 16은 본 발명에 따른 지열정 단열 파이프 제2 실시예의 변형예의 구성을 나타내는 도면이다.Here, FIG. 16 is a figure which shows the structure of the modification of the geothermal heat insulating pipe 2nd Example which concerns on this invention.
도 16에 도시된 바와 같이, 본 발명에 따른 지열정 단열 파이프는 파이프부(b400), 지지부(b500) 및 단열부(b600)를 포함할 수 있다.As shown in FIG. 16, the geothermal heat insulating pipe according to the present invention may include a pipe part b400, a support part b500, and a heat insulating part b600.
이때, 파이프부(b400) 및 단열부(b600)의 구성은 전술한 일 실시예의 파이프부(b100) 및 단열부(b300)의 구성과 동일하므로, 상세한 설명은 생략하기로 한다.At this time, the configuration of the pipe portion b400 and the heat insulation portion b600 is the same as the configuration of the pipe portion b100 and the heat insulation portion b300 of the above-described embodiment, a detailed description thereof will be omitted.
다만, 본 변형예에서 지지부(b500)는 파이프부(b400) 외관(b410)의 내주면 및 내관(b420)의 외주면과 적어도 일부가 접촉하고, 파이프부(b400)의 길이방향을 따라 길게 형성될 수 있다.However, in the present modified example, the support part b500 may be in contact with at least a portion of the inner circumferential surface of the pipe portion b400 and the outer circumferential surface of the inner tube b420, and may be formed long along the longitudinal direction of the pipe portion b400. have.
즉, 복수개의 지지부(b500)가 파이프부(b400)의 외관(b410) 및 내관(b420) 사이의 공간을 파이프부(b400)의 길이방향으로 길게 구획할 수 있다.That is, the plurality of support parts b500 may divide the space between the exterior b410 and the inner tube b420 of the pipe part b400 in the longitudinal direction of the pipe part b400.
이때, 복수개의 지지부(b500)는 파이프부(b400) 길이방향의 단면상에서 파이프부(b400)의 중심을 기준으로 방사형으로 구비되는 것이 유리할 수 있다.In this case, the plurality of support parts b500 may be advantageously provided radially with respect to the center of the pipe part b400 on the cross section in the longitudinal direction of the pipe part b400.
또한, 복수개의 지지부(b500)는 서로 같은 간격으로 이격되어 구비되는 것이 유리할 수 있다.In addition, the plurality of support parts b500 may be advantageously provided to be spaced apart from each other at the same interval.
위와 같이 구획된 파이프부(b400)의 외관(b410) 및 내관(b420) 사이의 공간에 전술한 단열부(b600)가 구비될 수 있다.The above-described heat insulating part b600 may be provided in a space between the exterior b410 and the inner tube b420 of the pipe part b400 partitioned as described above.
이러한 구성을 통하여 본 발명에 따른 지열정 단열 파이프의 변형예는, 전술한 일 실시예와 마찬가지로 파이프 내부 와 내부의 단열성을 확보하면서, 파이프를 구조적으로 보강하여 변형 및 파손을 방지하는 효과를 얻을 수 있다.Through such a configuration, the modified example of the geothermal well-insulated pipe according to the present invention can obtain the effect of preventing deformation and breakage by structurally reinforcing the pipe while ensuring the heat insulation inside and inside the pipe as in the above-described embodiment. have.
한편, 지지부(b500)는 지지부(b500)에 의해 구획되는 외관(b410) 및 내관(b420) 사이의 공간을 상호 연통하는 홀(b510)이 형성될 수 있다.On the other hand, the support portion b500 may be formed with a hole b510 communicating with each other the space between the exterior (b410) and the inner tube (b420) partitioned by the support (b500).
파이프부(b400)의 일측을 통하여 단열소재를 주입하여 외관(b410) 및 내관(b420) 사이의 공간에 단열부(b600)를 형성하는 과정에서, 파이프부(b400)의 내부로 주입된 단열소재는 지지부(b500)에 의해 구획된 공간의 내부를 채우면서 지지부(b500)와 접촉하게 되고, 이때 지지부(b500)에 형성된 관통홀(b510)을 통하여 단열소재가 인접한 다른 구획으로 이동하며 전체 파이프부(b400)의 내부에 단열소재를 충전할 수 있다.Insulating the insulating material injected into the inside of the pipe portion b400 in the process of forming the insulating portion b600 in the space between the exterior (b410) and the inner tube (b420) by injecting the insulating material through one side of the pipe portion (b400). Is filled with the interior of the space partitioned by the support (b500) is in contact with the support (b500), at this time through the through-hole (b510) formed in the support (b500) the heat insulating material is moved to the other compartment adjacent to the entire pipe portion (b400) may be filled with the insulating material.
전술한 구성을 통하여 본 발명에 따른 지열정 단열 파이프는 보다 간편하게 파이프의 내부에 단열층을 형성할 수 있어, 본 발명에 따른 지열정 단열 파이프를 제조하는데 소요되는 시간 및 노력을 절감할 수 있는 효과를 얻을 수 있다.Through the above-described configuration, the geothermal heat insulating pipe according to the present invention can more easily form a heat insulating layer inside the pipe, thereby reducing the time and effort required to manufacture the geothermal heat insulating pipe according to the present invention. You can get it.
또한, 지지부(b500)는 파이프부(b400)의 길이방향을 따라 파이프부(b400)의 중심을 기준으로 하는 나선형태로 형성될 수도 있다.In addition, the support part b500 may be formed in a spiral shape based on the center of the pipe part b400 along the longitudinal direction of the pipe part b400.
이러한 경우, 지지부(b400)가 보다 복합적으로 파이프부(b400)의 외관(b410) 및 내관(b420)과 접촉하기 때문에, 전체 파이프부(b400)의 형태를 유지하고, 지지하는 효과가 향상될 수 있다.In this case, since the support part b400 more complexly comes into contact with the exterior b410 and the inner tube b420 of the pipe part b400, the effect of maintaining and supporting the shape of the entire pipe part b400 can be improved. have.
<< 지열정Geothermal 파이프 어셈블리의  Of pipe assembly 실시예Example >>
제1 First 실시예Example
이어서, 도 17 내지 도 22를 참조하여 본 발명에 따른 지열정 단열 파이프 어셈블리 제1 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, the configuration and effects of the first embodiment of the geothermal heat insulating pipe assembly according to the present invention will be described in detail with reference to FIGS. 17 to 22.
여기서, 도 17은 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 구성을 나타내는 도면이다.17 is a view showing the configuration of the geothermal well pipe assembly first embodiment according to the present invention.
또한, 도 18은 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예에 스톱퍼가 구비되는 상태를 나타내는 도면이고, 도 19는 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 스톱퍼의 변형예를 나타내는 도면이며, 도 20은 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예에 제3 체결부 및 제4 체결부가 구비되는 상태를 나타내는 도면이다.FIG. 18 is a view showing a state in which a stopper is provided in the first embodiment of the geothermal well pipe assembly according to the present invention, and FIG. 19 is a view showing a modification of the stopper of the first embodiment of the geothermal well pipe assembly according to the present invention. 20 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the first embodiment of the geothermal heat pipe assembly according to the present invention.
그리고, 도 21은 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 제1 변형예를 나타내는 도면이고, 도 22는 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 제2 변형예를 나타내는 도면이다.21 is a view showing a first modified example of the geothermal well pipe assembly according to the first embodiment of the present invention, and FIG. 22 is a view showing a second modified example of the geothermal well pipe assembly according to the first embodiment of the present invention.
먼저, 도 17에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예는 단위파이프모듈(c100) 및 연결링모듈(c200)을 포함할 수 있다.First, as shown in FIG. 17, the first embodiment of the geothermal well pipe assembly according to the present invention may include a unit pipe module c100 and a connection ring module c200.
단위파이프모듈(c100)은 내관(c110) 및 외관(c120)을 포함하는 이중관 형태로 형성되며, 내관(c110) 및 외관(c120)의 사이 공간에 구비되는 단열소재(c130)를 포함할 수 있다.The unit pipe module c100 may be formed in a double tube shape including an inner tube c110 and an exterior c120, and may include an insulation material c130 provided in a space between the inner tube c110 and the exterior c120. .
이러한 구성은 본 발명에 따른 지열정 파이프 어셈블리를 지열정 내부에 삽입했을 때, 지열정의 내부로 주입되는 열전달매체와 지열정의 내부에서 가열되어 회수되는 열전달매체간의 열전달 효율을 낮추기 위한 구성일 수 있다.Such a configuration may be a configuration for lowering the heat transfer efficiency between the heat transfer medium injected into the geothermal well and the heat transfer medium heated and recovered inside the geothermal well when the geothermal well pipe assembly according to the present invention is inserted into the geothermal well. have.
이러한 구성은 지열정 파이프 어셈블리를 이용한 지열 회수 시스템의 효율을 향상시키는 효과를 얻을 수 있다.Such a configuration can obtain the effect of improving the efficiency of the geothermal heat recovery system using geothermal well pipe assembly.
또한, 단위파이프모듈(c100)은 전술한 제2 실시예의 단위파이프모듈(c400)과 같이 일단에 제1 체결부(c112)가 형성되고, 타단에는 제1 체결부(c112)와 대응되는 형태로 제1 체결부(c112)와 결합되는 제2 체결부(c114)가 형성되며, 복수개가 구비될 수 있다.In addition, the unit pipe module c100 has a first fastening part c112 formed at one end thereof and the other end thereof corresponding to the first fastening part c112 like the unit pipe module c400 of the second embodiment described above. A second fastening part c114 coupled to the first fastening part c112 is formed, and a plurality of fastening parts c112 may be provided.
즉, 복수개의 단위파이프모듈(c100)은 서로 인접한 단위파이프모듈(c100) 각각의 제1 체결부(c112)와 제2 체결부(c114)의 결합을 통하여 서로 연결되어, 단위파이프모듈(c100)의 길이방향으로 길이를 늘릴 수 있다.That is, the plurality of unit pipe modules (c100) are connected to each other through the coupling of the first fastening portion (112) and the second fastening portion (c114) of each of the adjacent unit pipe module (c100), unit pipe module (c100) The length can be increased in the longitudinal direction of.
이때, 제1 체결부(c112) 및 제2 체결부(c114)는 상호 연결될 수 있도록 형성된 각각의 체결부가 별도로 구비되어, 각각 서로 다른 내관(c110)의 끝단에 용접되는 형태로 형성될 수 있다.In this case, each of the first fastening part c112 and the second fastening part c114 may be separately provided with each fastening part formed to be connected to each other, and may be formed to be welded to ends of different inner tubes c110.
또한, 본 실시예에서 제1 체결부(c112) 및 제2 체결부(c114)는 각각 수나사 및 암나사의 형태로 형성되어 인접한 단위파이프모듈(c100)이 회전하며 서로 결합되도록 구성될 수 있다.In addition, in the present embodiment, the first fastening part c112 and the second fastening part c114 may be formed in the form of a male screw and a female screw, respectively, so that adjacent unit pipe modules c100 rotate and are coupled to each other.
복수개의 단위파이프모듈(c100)을 연결하기 위하여 내관(c110)을 직접 가공하여 제1 체결부(c112) 및 제2 체결부(c114)를 가공하는 것은 매우 어렵기 때문에, 전술한 구성은 보다 용이하게 복수개의 단위파이프모듈(c100)을 연결할 수 있는 효과를 얻을 수 있다.Since it is very difficult to process the first fastening part c112 and the second fastening part c114 by directly processing the inner tube c110 in order to connect the plurality of unit pipe modules c100, the above-described configuration is easier. It is possible to obtain the effect that can be connected to a plurality of unit pipe module (c100).
그리고, 본 실시예에서 제1 체결부(c112) 및 제2 체결부(c114)는 내관(c110) 및 외관(c120)의 사이 공간에 삽입되어 단위파이프모듈(c100)의 끝단부에 고정될 수 있다.In addition, in the present embodiment, the first fastening part c112 and the second fastening part c114 may be inserted into a space between the inner tube c110 and the outer part c120 to be fixed to the end of the unit pipe module c100. have.
이때, 제1 체결부(c112) 및 제2 체결부(c114)가 단위파이프모듈(c100) 내부에 삽입되는 부위는 삽입이 용이하도록 끝단의 직경이 상대적으로 작아지도록 형성될 수 있으며, 억지끼움 방식으로 고정되거나, 별도의 용접을 통해 고정될 수도 있다.At this time, the first fastening portion (c112) and the second fastening portion (c114) is inserted into the inside of the unit pipe module (c100) may be formed so that the diameter of the end is relatively small for easy insertion, interference fit method It may be fixed by, or may be fixed through a separate welding.
이러한 구성은 단위파이프모듈(c100)의 양단부에서 내관(c110) 및 외관(c120)의 사이에 구비되는 단열소재(c130)가 유출되는 것을 방지하는 효과도 얻을 수 있다.This configuration can also obtain the effect of preventing the insulating material (c130) provided between the inner tube (c110) and the outer (c120) from both ends of the unit pipe module (c100).
이러한 제1 체결부(c112) 및 제2 체결부(c114)의 구성은 본 실시예에 제한되지 않으며, 제1 체결부(c112) 및 제2 체결부(c114)가 구비되는 위치 및 결합방식은 다양할 수 있다.The configuration of the first fastening portion (c112) and the second fastening portion (c114) is not limited to the present embodiment, the position and the coupling method provided with the first fastening portion (c112) and the second fastening portion (c114) It can vary.
한편, 연결링모듈(c200)은 전술한 단위파이프모듈(c100)에 비하여 상대적으로 큰 직경으로 형성되어, 인접한 단위파이프모듈(c100)이 서로 연결된 부위를 감싸도록 구비될 수 있다.On the other hand, the connection ring module (c200) is formed with a relatively larger diameter than the above-described unit pipe module (c100), it may be provided so as to surround the adjacent unit pipe module (c100) connected to each other.
이러한 연결링모듈(c200)은 인접한 단위파이프모듈(c100)을 연결하는 과정에서 함께 결합되어, 단위파이프모듈(c100) 각각의 제1 체결부(c112)와 제2 체결부(c114)가 연결링모듈(c200)의 내부에서 결합될 수 있다.The connection ring module (c200) is coupled together in the process of connecting the adjacent unit pipe module (c100), the first coupling portion (112) and the second coupling portion (c114) of each of the unit pipe module (c100) connection ring It may be coupled inside the module c200.
이때, 연결링모듈(c200)의 내경은 단위파이프모듈(c100) 외관(c120)의 외경과 동일하게 형성되는 것이 유리할 수 있으며, 길이방향으로 소정의 폭을 가지도록 형성되는 것이 유리할 수 있다.At this time, the inner diameter of the connection ring module (c200) may be advantageously formed to be the same as the outer diameter of the outer pipe (c120) of the unit pipe module (c100), it may be advantageous to have a predetermined width in the longitudinal direction.
이러한 구성은 단위파이프모듈(c100)의 결합부위를 보다 강하게 지지할 수 있는 효과를 얻을 수 있다.This configuration can obtain an effect that can more strongly support the coupling portion of the unit pipe module (c100).
또한, 본 실시예에서는 단위파이프모듈(c100)의 연결부위와 연결링모듈(c200) 사이에 공간이 형성되고, 이 공간의 내부에는 단열소재(c300)가 구비될 수 있다.In addition, in the present embodiment, a space is formed between the connection portion of the unit pipe module (c100) and the connection ring module (c200), the heat insulating material (c300) may be provided inside the space.
본 실시예는 단위파이프모듈(c100)이 내부 및 외부간의 열교환을 저하시키기 위하여 이중관 구조 및 단열소재를 포함하는 구성이므로, 전술한 구성을 통하여 단위파이프모듈(c100)의 연결부위에서도 내부 및 외부간의 열교환을 저하시키는 효과를 얻을 수 있다.In this embodiment, since the unit pipe module c100 includes a double pipe structure and a heat insulating material in order to reduce heat exchange between the inside and the outside, the inside of the outside and the outside of the connection portion of the unit pipe module c100 through the above-described configuration. The effect of reducing heat exchange can be obtained.
이러한 단열소재(c300)의 구성은 단위파이프모듈(c100)의 연결부위와 연결링모듈(c200) 사이 공간의 형태에 대응되도록 미리 가공된 단열소재(c300)를 조립하거나, 발포성 단열소재를 주입하는 등 그 소재 및 구성은 제한되지 않고 다양할 수 있다.The configuration of the insulating material (c300) is to assemble the pre-processed insulating material (c300) or to inject a foamed insulating material to correspond to the shape of the space between the connection portion of the unit pipe module (c100) and the connection ring module (c200). Etc. The material and configuration thereof may be various without limitation.
본 실시예에서는 연결링모듈(c200)의 일측에 연결링모듈(c200)이 감싸는 부위의 내부로 단열소재(c300)를 주입하기 위한 주입구(c260)가 형성될 수 있다.In the present embodiment, an injection hole c260 may be formed on one side of the connection ring module c200 to inject the insulating material c300 into a portion of the connection ring module c200.
즉, 주입구(c260)를 통하여 단위파이프모듈(c100)의 연결부위와 연결링모듈(c200) 사이의 공간에 단열소재(c300)를 용이하게 주입할 수 있다.That is, the insulating material c300 may be easily injected into the space between the connection portion of the unit pipe module c100 and the connection ring module c200 through the injection hole c260.
한편, 도 18에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예는 단위파이프모듈(c100)에 연결링모듈(c200)의 위치를 고정하기 위한 스톱퍼(c140)가 구비될 수 있다.On the other hand, as shown in Figure 18, the first embodiment of the geothermal well pipe assembly according to the present invention is provided with a stopper (c140) for fixing the position of the connection ring module (c200) to the unit pipe module (c100) Can be.
본 실시예에서 스톱퍼(c140)는 단위파이프모듈(c100)의 외관에 돌출되는 형태로 형성될 수 있다.In this embodiment, the stopper (c140) may be formed to protrude on the appearance of the unit pipe module (c100).
본 실시예에서 스톱퍼(c140)는 상호 연결된 단위파이프모듈(c100)의 연결부위를 중심으로 길이방향으로 연결링모듈(c200)의 길이와 대응되는 거리로 이격되어 구비되며, 단위파이프모듈(c100)의 외측면 일부가 돌출된 형태로 형성될 수 있다.In this embodiment, the stopper (c140) is provided to be spaced apart from the distance corresponding to the length of the connection ring module (c200) in the longitudinal direction centering on the connecting portion of the interconnected unit pipe module (c100), unit pipe module (c100) A portion of the outer surface of the may be formed in a protruding shape.
이러한 스톱퍼(c140)의 구성은 본 실시예에 제한되지 않고, 고정핀과 같이 별도의 고정부재가 결합되는 형태 등 다양하게 적용될 수 있다.The configuration of the stopper (c140) is not limited to the present embodiment, and may be variously applied, such as a form in which a separate fixing member is coupled to the fixing pin.
전술한 구성을 통하여 연결링모듈(c200)이 단위파이프모듈(c100)의 연결부위에 정확하게 위치하며 이동하지 않게 되어 연결부위를 보강하는 성능을 향상시키는 효과를 얻을 수 있다.Through the above-described configuration, the connection ring module (c200) is accurately positioned at the connection portion of the unit pipe module (c100) and does not move, thereby improving the performance of reinforcing the connection portion.
한편, 도 19에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예는 변형된 형태의 스톱퍼(c140)를 포함할 수 있다.On the other hand, as shown in Figure 19, the first embodiment of the geothermal well pipe assembly according to the present invention may include a stopper (c140) of the modified form.
본 변형예에서 스톱퍼(c140)는 양단부가 스톱퍼(c140)의 외측면과 단위파이프모듈(c100)의 외측을 연결하는 경사진 면을 포함하도록 형성될 수 있다.In the present modification, the stopper c140 may be formed such that both ends thereof include an inclined surface connecting the outer surface of the stopper c140 and the outer side of the unit pipe module c100.
즉, 단위파이프모듈(c100)의 외측면에 돌출되는 스톱퍼(c140) 및 연결링모듈(c200)이 본 발명에 따른 지열정 파이프의 길이방향을 마주보는 면을 형성하지 않을 수 있다.That is, the stopper (c140) and the connection ring module (c200) protruding on the outer surface of the unit pipe module (c100) may not form a surface facing the longitudinal direction of the geothermal well pipe according to the present invention.
이러한 구성을 통해 본 발명에 따른 지열정 파이프의 외측면을 따라 유동하는 열전달매체가 스톱퍼(c140) 및 연결링모듈(c200)에 받는 저항을 감소시키는 효과를 얻을 수 있다.Through such a configuration, the heat transfer medium flowing along the outer surface of the geothermal well pipe according to the present invention may obtain an effect of reducing the resistance received by the stopper c140 and the connection ring module c200.
한편, 도 20에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예는 단위파이프모듈(c100)의 양단부에 제3 체결부(c150)가 형성되고, 연결링모듈(c200)의 양단부에는 전술한 제3 체결부(c150)와 결합되는 제4 체결부(c250)가 형성될 수 있다.Meanwhile, as shown in FIG. 20, in the first embodiment of the geothermal well pipe assembly according to the present invention, third coupling parts c150 are formed at both ends of the unit pipe module c100, and the connection ring module c200 is provided. At both ends of the fourth coupling part c250 coupled to the third coupling part c150 described above may be formed.
본 실시예에서 제3 체결부(c150)는 단위파이프모듈(c100)의 외관 외주면에 형성될 수 있다.In this embodiment, the third fastening part c150 may be formed on the outer circumferential surface of the unit pipe module c100.
본 실시예에서 제3 체결부(c150)는 상호 연결된 단위파이프모듈(c100)의 연결부위를 중심으로 길이방향으로 이격되고, 단위파이프모듈(c100)과 결합되는 연결링모듈(c200)의 두께에 비해 상대적으로 작은 두께의 수나사 형태로 형성되며, 서로 이격된 제3 체결부(c150)는 연결링모듈(c500)과 일부 중첩되도록 구비될 수 있다.In the present embodiment, the third fastening part c150 is spaced apart in the longitudinal direction with respect to the connection parts of the mutually connected unit pipe modules c100, and has a thickness of the connection ring module c200 coupled with the unit pipe module c100. The third fastening part (c150) spaced apart from each other may be formed to partially overlap the connection ring module (c500).
또한, 제4 체결부(c250)는 연결링모듈(c200)의 양단부에 전술한 제3 체결부(c150)와 대응되는 형태의 암나사 형태로 형성되어 회전을 통해 제3 체결부(c150) 및 제4 체결부(c250)가 상호 결합될 수 있다.In addition, the fourth fastening part c250 is formed in the form of a female screw corresponding to the third fastening part c150 described above at both ends of the connection ring module c200, and the third fastening part c150 and the third through rotation. Four fastening parts c250 may be coupled to each other.
이러한 구성을 통하여 복수개의 단위파이프모듈(c100)이 연결되면서, 단위파이프모듈(c100) 및 연결링모듈(c200)도 상호 결합되어 단위파이프모듈(c100)의 연결부위를 보다 효과적으로 보강하는 효과를 얻을 수 있다.Through such a configuration, as the plurality of unit pipe modules c100 are connected, the unit pipe module c100 and the connection ring module c200 are also coupled to each other to more effectively reinforce the connection portion of the unit pipe module c100. Can be.
또한, 전술한 제1 체결부(c112), 제2 체결부(c114), 제3 체결부(c150) 및 제4 체결부(c250)가 모두 나사 형태로 형성될 때, 모두 같은 피치를 가지는 나사형태로 형성되는 것이 유리할 수 있다.In addition, when the first fastening portion (c112), the second fastening portion (c114), the third fastening portion (c150) and the fourth fastening portion (c250) are all formed in the form of a screw, all the screws having the same pitch It may be advantageous to form it.
이러한 경우, 인접한 단위파이프모듈(c100)간의 결합 및 단위파이프모듈(c100)과 연결링모듈(c200)의 결합이 동시에 진행될 때, 각 단위파이프모듈(c100) 및 연결링모듈(c200)이 회전하며 상호 결합되는 정도가 동일하게 진행될 수 있다.In this case, when the coupling between the adjacent unit pipe module (c100) and the combination of the unit pipe module (c100) and the connection ring module (c200) at the same time, each unit pipe module (c100) and the connection ring module (c200) is rotated The degree of mutual coupling may proceed the same.
따라서, 각 구성의 결합 공정에 소요되는 노력 및 시간을 절감할 수 있는 효과를 얻을 수 있다.Therefore, it is possible to obtain the effect of reducing the effort and time required for the bonding process of each component.
또한, 제3 체결부(c150) 및 제4 체결부(c250)의 구성 역시 본 실시예에 제한되지 않고, 단위파이프모듈(c100) 및 연결링모듈(c200)을 상호 결합하도록 마련된다면 그 형태 및 구성은 다양할 수 있다.In addition, the configuration of the third fastening portion (c150) and the fourth fastening portion (c250) is also not limited to the present embodiment, if the unit pipe module (c100) and the coupling ring module (c200) provided to be coupled to each other and the shape and The configuration can vary.
전술한 구성을 포함하는 본 발명에 따른 지열정 파이프 어셈블리의 제1 실시예는 복수개의 단위파이프모듈(c100)을 연결하는 동시에, 단위파이프모듈(c100)의 연결을 보다 견고하게 하고, 본 발명에 따른 지열정 파이프의 내부 및 외부를 유동하는 열전달매체가 복수개의 단위파이프모듈(c100)의 연결부위를 통해 서로 연통되는 것을 방지하는 씰링 효과를 얻을 수 있다.The first embodiment of the geothermal heat pipe assembly according to the present invention including the above-described configuration is connected to the plurality of unit pipe module (c100), at the same time more robust to the connection of the unit pipe module (c100), The heat transfer medium flowing inside and outside the geothermal well pipe according to the present invention can obtain a sealing effect to prevent the communication between the plurality of unit pipe module (c100) to communicate with each other.
한편, 도 21에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 제1 변형예는 단위파이프모듈(c100) 및 연결링모듈(c200)를 포함할 수 있다.On the other hand, as shown in Figure 21, the first modification of the geothermal well pipe assembly according to the first embodiment of the present invention may include a unit pipe module (c100) and a coupling ring module (c200).
여기서, 단위파이프모듈(c100) 및 연결링모듈(c200) 구성의 기본적인 특징은 전술한 제1 실시예와 동일하므로, 상세한 설명은 생략하기로 한다.Here, since the basic features of the unit pipe module (c100) and the connection ring module (c200) configuration is the same as the first embodiment described above, a detailed description thereof will be omitted.
다만, 본 변형예에서 연결링모듈(c200)은 각 단위파이프모듈(c100)의 내관(c110)이 연결되는 부위를 감싸도록 형성되며, 연결링모듈(c200)의 외측면은 외관(c120)의 외측면과 같은 높이로 형성될 수 있다.However, in the present modified example, the connection ring module (c200) is formed to surround a portion where the inner pipe (c110) of each unit pipe module (c100) is connected, the outer surface of the connection ring module (c200) of the appearance (c120) It may be formed at the same height as the outer surface.
즉, 연결링모듈(c200)의 외경이 외관(c120)의 외경과 동일하게 형성될 수 있다.That is, the outer diameter of the connection ring module c200 may be formed to be the same as the outer diameter of the appearance c120.
또한, 이때 연결링모듈(c200)은 본 발명에 따른 지열정 파이프 어셈블리 내부 및 외부간의 열교환을 차단하기 위하여 단열소재로 형성되는 것이 유리할 수 있다.In addition, the connection ring module (c200) may be advantageously formed of a heat insulating material in order to block the heat exchange between the geothermal well pipe assembly according to the present invention and the outside.
이러한 구성은 본 발명에 따른 지열정 파이프 어셈블리의 연결부위를 보강하는 동시에 연결링모듈(c200)에 의한 돌출부가 사라지게 되므로, 본 발명에 따른 지열정 파이프 어셈블리를 지열정의 내부로 삽입하는 과정에서 파이프가 걸리는 현상을 방지할 수 있다.This configuration reinforces the connection part of the geothermal well pipe assembly according to the present invention and at the same time the protrusion by the connection ring module (c200) disappears, the pipe in the process of inserting the geothermal well pipe assembly according to the present invention into the geothermal well This can prevent the phenomenon.
또한, 본 발명에 따른 지열정 파이프 어셈블리의 외주면을 따라 유동하는 열전달매체에 저항이 걸리는 것을 방지하는 동시에 지열정 파이프 어셈블리의 단열성능을 향상시키는 효과도 얻을 수 있다.In addition, it is possible to prevent the resistance of the heat transfer medium flowing along the outer circumferential surface of the geothermal well pipe assembly according to the present invention and at the same time improve the thermal insulation performance of the geothermal well pipe assembly.
한편, 도 22에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리 제1 실시예의 제2 변형예는 단위파이프모듈(c100) 및 연결링모듈(c200)를 포함할 수 있다.On the other hand, as shown in Figure 22, the second modified example of the geothermal well pipe assembly according to the first embodiment of the present invention may include a unit pipe module (c100) and a connection ring module (c200).
여기서, 단위파이프모듈(c100) 및 연결링모듈(c200) 구성의 기본적인 특징은 전술한 제1 실시예의 제1 변형예와 동일하므로, 상세한 설명은 생략하기로 한다.Here, since the basic features of the unit pipe module (c100) and the connection ring module (c200) configuration is the same as the first modification of the above-described first embodiment, a detailed description thereof will be omitted.
다만, 본 변형예에서 연결링모듈(c200)은 내부에 빈 공간이 형성되고, 내부에는 단열소재(c300)가 구비될 수 있다.However, in the present modification, the connection ring module c200 may have an empty space formed therein, and an insulation material c300 may be provided therein.
이러한 구성은 본 발명에 따른 지열정 파이프 어셈블리의 연결부위를 보강하는 동시에 단열 성능도 함께 높이는 효과를 얻을 수 있다.This configuration can be obtained to reinforce the connection portion of the geothermal well pipe assembly according to the present invention and at the same time increase the insulation performance.
또한, 전술한 제1 변형예과 마찬가지로, 연결링모듈(c200)에 의한 돌출부가 사라지게 되므로 본 발명에 따른 지열정 파이프 어셈블리를 지열정의 내부로 삽입하는 과정에서 파이프가 걸리는 현상을 방지할 수 있다.In addition, as in the first modification described above, since the protrusion by the connection ring module c200 disappears, the phenomenon in which the pipe is caught in the process of inserting the geothermal well pipe assembly according to the present invention into the geothermal well can be prevented.
또한, 본 발명에 따른 지열정 파이프 어셈블리의 외주면을 따라 유동하는 열전달매체에 저항이 걸리는 것을 방지하는 효과도 얻을 수 있다.In addition, the effect of preventing the resistance to the heat transfer medium flowing along the outer peripheral surface of the geothermal well pipe assembly according to the present invention can be obtained.
제2 2nd 실시예Example
이어서, 도 23 내지 도 25를 참조하여, 본 발명에 따른 지열정 파이프 어셈블리 제2 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, referring to Figures 23 to 25, the configuration and effects of the geothermal well pipe assembly second embodiment according to the present invention will be described in detail.
여기서, 도 23은 본 발명에 따른 지열정 파이프 어셈블리 제2 실시예의 구성을 나타내는 도면이고, 도 24는 본 발명에 따른 지열정 파이프 어셈블리의 제2 실시예에 스톱퍼가 구비되는 상태를 나타내는 도면이며, 도 25는 본 발명에 따른 지열정 파이프 어셈블리의 제2 실시예에 제3 체결부 및 제4 체결부가 구비되는 상태를 나타내는 도면이다.23 is a view showing the configuration of a geothermal well pipe assembly according to a second embodiment of the present invention, Figure 24 is a view showing a state in which a stopper is provided in a second embodiment of the geothermal well pipe assembly according to the present invention, 25 is a view showing a state in which the third fastening portion and the fourth fastening portion are provided in the second embodiment of the geothermal well pipe assembly according to the present invention.
도 23에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리는 단위파이프모듈(c400) 및 연결링모듈(c500)을 포함할 수 있다.As shown in FIG. 23, the geothermal well pipe assembly according to the present invention may include a unit pipe module c400 and a connection ring module c500.
단위파이프모듈(c400)은 지열정의 내부로 삽입되는 파이프 구조의 구성으로, 일단에는 제1 체결부(c410)가 형성되고, 타단에는 제2 체결부(c420)가 형성되며, 복수개가 구비될 수 있다.The unit pipe module (c400) is a pipe structure that is inserted into the geothermal well, the first fastening portion (c410) is formed at one end, the second fastening portion (c420) is formed at the other end, a plurality of Can be.
제1 체결부(c410) 및 제2 체결부(c420)는 상호 대응되는 형태로 형성되어, 상호 결합하여 인접한 각각의 단위파이프모듈(c400)을 서로 연결시킬 수 있다.The first fastening part c410 and the second fastening part c420 may be formed to correspond to each other, and may be coupled to each other to connect adjacent unit pipe modules c400 to each other.
즉, 복수개의 단위파이프모듈(c400)은 서로 인접한 단위파이프모듈(c400) 각각의 제1 체결부(c410)와 제2 체결부(c420)의 결합을 통하여 서로 연결되어, 단위파이프모듈(c400)의 길이방향으로 길이를 늘릴 수 있다.That is, the plurality of unit pipe modules (c400) are connected to each other through the coupling of the first fastening portion (c410) and the second fastening portion (c420) of each of the adjacent unit pipe module (c400), unit pipe module (c400) The length can be increased in the longitudinal direction of.
본 실시예에서 제1 체결부(c410) 및 제2 체결부(c420)는 각각 수나사 및 암나사의 형태로 형성되어 인접한 단위파이프모듈(c400)이 회전하며 서로 결합되도록 구성되어 있지만, 연결고리 형태 등 인접한 단위파이프모듈(c400)이 서로 결합되도록 마련된다면 그 형태 및 구성은 제한되지 않고 다양할 수 있다.In the present embodiment, the first fastening part c410 and the second fastening part c420 are formed in the form of a male screw and a female screw, respectively, so that adjacent unit pipe modules c400 are rotated and coupled to each other, but are connected to each other. If the adjacent unit pipe module (c400) is provided to be coupled to each other the shape and configuration may be various without limitation.
한편, 연결링모듈(c500)은 전술한 단위파이프모듈(c400)에 비하여 상대적으로 큰 직경으로 형성되어, 인접한 단위파이프모듈(c400)이 서로 연결된 부위를 감싸도록 구비될 수 있다.On the other hand, the connection ring module (c500) is formed with a relatively larger diameter than the above-described unit pipe module (c400), it may be provided so as to surround the adjacent unit pipe module (c400) connected to each other.
이러한 연결링모듈(c500)은 인접한 단위파이프모듈(c400)을 연결하는 과정에서 함께 결합되어, 단위파이프모듈(c400) 각각의 제1 체결부(c410)와 제2 체결부(c420)가 연결링모듈(c500)의 내부에서 결합될 수 있다.The connection ring module (c500) is coupled together in the process of connecting the adjacent unit pipe module (c400), the first coupling portion (c410) and the second coupling portion (c420) of each of the unit pipe module (c400) connection ring It may be coupled inside the module (c500).
이때, 연결링모듈(c500)의 내경은 단위파이프모듈(c400)의 외경과 동일하게 형성되는 것이 유리할 수 있으며, 길이방향으로 소정의 폭을 가지도록 형성되는 것이 유리할 수 있다.At this time, the inner diameter of the connection ring module (c500) may be advantageously formed to be the same as the outer diameter of the unit pipe module (c400), it may be advantageous to have a predetermined width in the longitudinal direction.
이러한 구성은 단위파이프모듈(c400)의 결합부위를 보다 강하게 지지할 수 있는 효과를 얻을 수 있다.This configuration can obtain an effect that can more strongly support the coupling portion of the unit pipe module (c400).
한편, 도 24에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제2 실시예는 단위파이프모듈(c400)에 연결링모듈(c500)의 위치를 고정하기 위한 스톱퍼(c430)가 구비될 수 있다.On the other hand, as shown in Figure 24, the second embodiment of the geothermal well pipe assembly according to the present invention is provided with a stopper (c430) for fixing the position of the connection ring module (c500) to the unit pipe module (c400) Can be.
본 실시예에서 스톱퍼(c430)는 상호 연결된 단위파이프모듈(c400)의 연결부위를 중심으로 길이방향으로 연결링모듈(c500)의 길이와 대응되는 거리로 이격되어 구비되며, 단위파이프모듈(c400)의 외측면 일부가 돌출된 형태로 형성될 수 있다.In this embodiment, the stopper (c430) is provided spaced apart from the distance corresponding to the length of the connection ring module (c500) in the longitudinal direction centered on the connecting portion of the interconnected unit pipe module (c400), unit pipe module (c400) A portion of the outer surface of the may be formed in a protruding shape.
이러한 스톱퍼(c430)의 구성은 본 실시예에 제한되지 않고, 고정핀과 같이 별도의 고정부재가 결합되는 형태 등 다양하게 적용될 수 있다.The configuration of the stopper (c430) is not limited to this embodiment, it can be applied in a variety of forms, such as a separate fixing member is coupled, such as a fixing pin.
전술한 구성을 통하여 연결링모듈(c500)이 단위파이프모듈(c400)의 연결부위에 정확하게 위치하며 이동하지 않게 되어 연결부위를 보강하는 성능을 향상시키는 효과를 얻을 수 있다.Through the above-described configuration, the connection ring module (c500) is accurately positioned at the connection portion of the unit pipe module (c400) and does not move, thereby improving the performance of reinforcing the connection portion.
한편, 도 25에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제2 실시예는 단위파이프모듈(c400)의 양단부에 제3 체결부(c440)가 형성되고, 연결링모듈(c500)의 양단부에는 전술한 제3 체결부(c440)와 결합되는 제4 체결부(c540)가 형성될 수 있다.Meanwhile, as shown in FIG. 25, in the second embodiment of the geothermal well pipe assembly according to the present invention, third coupling parts c440 are formed at both ends of the unit pipe module c400, and the connection ring module c500 is provided. At both ends of the fourth fastening part c540 coupled to the third fastening part c440 described above may be formed.
본 실시예에서 제3 체결부(c440)는 상호 연결된 단위파이프모듈(c400)의 연결부위를 중심으로 길이방향으로 이격되고, 단위파이프모듈(c400)과 결합되는 연결링모듈(c500)의 두께에 비해 상대적으로 작은 두께의 수나사 형태로 형성되며, 서로 이격된 제3 체결부(c440)는 연결링모듈(c500)과 일부 중첩되도록 구비될 수 있다.In the present embodiment, the third fastening part c440 is spaced apart in the longitudinal direction with respect to the connection parts of the mutually connected unit pipe modules c400, and has a thickness of the connection ring module c500 coupled with the unit pipe module c400. The third fastening part c440 spaced apart from each other may be formed to partially overlap the connection ring module c500.
또한, 제4 체결부(c540)는 연결링모듈(c500)의 양단부에 전술한 제3 체결부(c440)와 대응되는 형태의 암나사 형태로 형성되어 회전을 통해 제3 체결부(c440) 및 제4 체결부(c540)가 상호 결합될 수 있다.In addition, the fourth fastening part c540 is formed in a female screw shape corresponding to the third fastening part c440 described above at both ends of the connection ring module c500, and the third fastening part c440 and the third fastening part are rotated. Four fastening portions c540 may be coupled to each other.
이러한 구성을 통하여 복수개의 단위파이프모듈(c400)이 연결되면서, 단위파이프모듈(c400) 및 연결링모듈(c500)도 상호 결합되어 단위파이프모듈(c400)의 연결부위를 보다 효과적으로 보강하는 효과를 얻을 수 있다.Through this configuration, a plurality of unit pipe modules (c400) are connected, the unit pipe module (c400) and the coupling ring module (c500) is also coupled to each other to obtain the effect of more effectively reinforcing the connection portion of the unit pipe module (c400). Can be.
또한, 전술한 제1 체결부(c410), 제2 체결부(c420), 제3 체결부(c440) 및 제4 체결부(c540)가 모두 나사 형태로 형성될 때, 모두 같은 피치를 가지는 나사형태로 형성되는 것이 유리할 수 있다.In addition, when the first fastening portion (c410), the second fastening portion (c420), the third fastening portion (c440) and the fourth fastening portion (c540) are all formed in the form of a screw, all the screws having the same pitch It may be advantageous to form it.
이러한 경우, 인접한 단위파이프모듈(c400)간의 결합 및 단위파이프모듈(c400)과 연결링모듈(c500)의 결합이 동시에 진행될 때, 각 단위파이프모듈(c400) 및 연결링모듈(c500)이 회전하며 상호 결합되는 정도가 동일하게 진행될 수 있다.In this case, when the coupling between the adjacent unit pipe module (c400) and the combination of the unit pipe module (c400) and the connection ring module (c500) proceeds at the same time, each unit pipe module (c400) and the connection ring module (c500) is rotated The degree of mutual coupling may proceed the same.
따라서, 각 구성의 결합 공정에 소요되는 노력 및 시간을 절감할 수 있는 효과를 얻을 수 있다.Therefore, it is possible to obtain the effect of reducing the effort and time required for the bonding process of each component.
또한, 제3 체결부(c440) 및 제4 체결부(c540)의 구성 역시 본 실시예에 제한되지 않고, 단위파이프모듈(c400) 및 연결링모듈(c500)을 상호 결합하도록 마련된다면 그 형태 및 구성은 다양할 수 있다.In addition, the configuration of the third fastening portion (c440) and the fourth fastening portion (c540) is also not limited to this embodiment, the shape and if provided to couple the unit pipe module (c400) and the connection ring module (c500) The configuration can vary.
제3 The third 실시예Example
이어서, 도 26 내지 도 30을 참조하여 본 발명에 따른 지열정 단열 파이프 어셈블리 제3 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, the configuration and effects of the third embodiment of the geothermal heat insulating pipe assembly according to the present invention will be described in detail with reference to FIGS. 26 to 30.
여기서, 도 26은 본 발명에 따른 지열정 파이프 어셈블리 제3 실시예의 구성을 나타내는 도면이다.26 is a view showing the configuration of a geothermal well pipe assembly third embodiment according to the present invention.
또한, 도 27은 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예에 스톱퍼가 구비되는 상태를 나타내는 도면이고, 도 28은 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예에 제3 체결부 및 제4 체결부가 구비되는 상태를 나타내는 도면이며, 도 29는 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예에 주입구가 구비되는 상태를 나타내는 도면이다.In addition, Figure 27 is a view showing a stopper is provided in a third embodiment of the geothermal well pipe assembly according to the present invention, Figure 28 is a third fastening portion in a third embodiment of the geothermal well pipe assembly according to the present invention And a fourth fastening part, and FIG. 29 is a view showing a state in which an injection hole is provided in a third embodiment of a geothermal well pipe assembly according to the present invention.
그리고, 도 30은 본 발명에 따른 지열정 파이프 어셈블리 제3 실시예 변형예의 구성을 나타내는 도면이다.30 is a diagram showing a configuration of a third embodiment of the geothermal well pipe assembly according to the present invention.
먼저, 도 26에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예는 단위파이프모듈(c600) 및 연결링모듈(c700)을 포함할 수 있다.First, as shown in FIG. 26, the third embodiment of the geothermal well pipe assembly according to the present invention may include a unit pipe module c600 and a connection ring module c700.
단위파이프모듈(c600)은 내관(c610) 및 외관(c620)을 포함하는 이중관 형태로 형성되며, 내관(c610) 및 외관(c620)의 사이 공간에 구비되는 단열소재(c630)를 포함할 수 있다.The unit pipe module c600 may be formed in a double tube shape including an inner tube c610 and an outer tube c620, and may include an insulation material c630 provided in a space between the inner tube c610 and the outer tube c620. .
이러한 구성은 본 발명에 따른 지열정 파이프 어셈블리를 지열정 내부에 삽입했을 때, 지열정의 내부로 주입되는 열전달매체와 지열정의 내부에서 가열되어 회수되는 열전달매체간의 열전달 효율을 낮추기 위한 구성일 수 있다.Such a configuration may be a configuration for lowering the heat transfer efficiency between the heat transfer medium injected into the geothermal well and the heat transfer medium heated and recovered inside the geothermal well when the geothermal well pipe assembly according to the present invention is inserted into the geothermal well. have.
이러한 구성은 지열정 파이프 어셈블리를 이용한 지열 회수 시스템의 효율을 향상시키는 효과를 얻을 수 있다.Such a configuration can obtain the effect of improving the efficiency of the geothermal heat recovery system using geothermal well pipe assembly.
또한, 단위파이프모듈(c600)은 전술한 제2 실시예의 단위파이프모듈(c400)과 같이 일단에 제1 체결부(c612)가 형성되고, 타단에는 제1 체결부(c612)와 대응되는 형태로 제1 체결부(c612)와 결합되는 제2 체결부(c614)가 형성되며, 복수개가 구비될 수 있다.In addition, the unit pipe module c600 has a first fastening portion c612 formed at one end thereof and the other end thereof corresponding to the first fastening portion c612 like the unit pipe module c400 of the second embodiment described above. A second fastening part c614 coupled to the first fastening part c612 is formed, and a plurality of fastening parts c612 may be provided.
즉, 복수개의 단위파이프모듈(c600)은 서로 인접한 단위파이프모듈(c600) 각각의 제1 체결부(c612)와 제2 체결부(c614)의 결합을 통하여 서로 연결되어, 단위파이프모듈(c600)의 길이방향으로 길이를 늘릴 수 있다.That is, the plurality of unit pipe modules (c600) are connected to each other through the coupling of the first fastening portion (c612) and the second fastening portion (c614) of each of the adjacent unit pipe module (c600), unit pipe module (c600) The length can be increased in the longitudinal direction of.
또한, 본 실시예에서 제1 체결부(c612) 및 제2 체결부(c614)는 내관(c610)의 양단부에 형성되며, 각각 수나사 및 암나사의 형태로 형성되어 인접한 단위파이프모듈(c600)이 회전하며 서로 결합되도록 구성될 수 있다.In addition, in the present embodiment, the first fastening part c612 and the second fastening part c614 are formed at both ends of the inner tube c610, and are formed in the form of male and female screws, respectively, so that the adjacent unit pipe module c600 rotates. And may be configured to be coupled to each other.
이러한 구성은 연결되는 단위파이프모듈(c600) 내부의 폭을 일정하게 유지하여 단위파이프모듈(c600) 내부를 유동하는 열전달매체의 압력을 일정하게 유지할 수 있는 효과를 얻을 수 있다.Such a configuration can obtain the effect of maintaining the constant width of the heat transfer medium flowing in the unit pipe module (c600) by maintaining a constant width inside the unit pipe module (c600) to be connected.
이러한 제1 체결부(c612) 및 제2 체결부(c614)의 구성은 본 실시예에 제한되지 않으며, 제1 체결부(c612) 및 제2 체결부(c614)가 구비되는 위치 및 결합방식은 다양할 수 있다.The configuration of the first fastening portion (c612) and the second fastening portion (c614) is not limited to the present embodiment, the position and coupling method is provided with the first fastening portion (c612) and the second fastening portion (c614) It can vary.
한편, 연결링모듈(c700)은 전술한 제2 실시예의 연결링모듈(c500)과 유사한 구성으로, 상세한 설명은 생략하기로 한다.On the other hand, the connection ring module (c700) has a similar configuration to the connection ring module (c500) of the second embodiment, a detailed description thereof will be omitted.
다만, 본 실시예에서는 단위파이프모듈(c600)가 이중관 형태로 형성되므로, 연결링모듈(c700)이 단위파이프모듈(c600)의 외관(c620)을 감싸는 직경으로 형성될 수 있다.However, in the present embodiment, since the unit pipe module (c600) is formed in a double tube shape, the connection ring module (c700) may be formed with a diameter surrounding the appearance (c620) of the unit pipe module (c600).
이러한 구성은 단위파이프모듈(c600)의 결합부위를 보다 강하게 지지할 수 있는 효과를 얻을 수 있다.This configuration can obtain an effect that can more strongly support the coupling portion of the unit pipe module (c600).
또한, 본 실시예에서는 단위파이프모듈(c600)의 연결부위와 연결링모듈(c700) 사이에 공간이 형성되고, 이 공간의 내부에는 단열소재(c800)가 구비될 수 있다.In addition, in the present embodiment, a space is formed between the connection portion of the unit pipe module (c600) and the connection ring module (c700), the heat insulating material (c800) may be provided inside the space.
본 실시예는 단위파이프모듈(c600)이 내부 및 외부간의 열교환을 저하시키기 위하여 이중관 구조 및 단열소재를 포함하는 구성이므로, 전술한 구성을 통하여 단위파이프모듈(c600)의 연결부위에서도 내부 및 외부간의 열교환을 저하시키는 효과를 얻을 수 있다.In this embodiment, since the unit pipe module (c600) includes a double pipe structure and a heat insulating material in order to reduce heat exchange between the inside and the outside, the inside of the outside and the connecting portion of the unit pipe module (c600) through the above-described configuration. The effect of reducing heat exchange can be obtained.
이러한 단열소재(c800)의 구성은 단위파이프모듈(c600)의 연결부위와 연결링모듈(c700) 사이 공간의 형태에 대응되도록 미리 가공된 단열소재(c800)를 조립하거나, 발포성 단열소재를 주입하는 등 그 소재 및 구성은 제한되지 않고 다양할 수 있다.The configuration of the insulating material (c800) is to assemble a pre-processed insulating material (c800) or inject a foamed insulating material to correspond to the shape of the space between the connection portion of the unit pipe module (c600) and the connection ring module (c700). Etc. The material and configuration thereof may be various without limitation.
한편, 도 27에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예는 단위파이프모듈(c600)에 연결링모듈(c700)의 위치를 고정하기 위한 스톱퍼(c640)가 구비될 수 있다.On the other hand, as shown in Figure 27, the third embodiment of the geothermal well pipe assembly according to the present invention is provided with a stopper (c640) for fixing the position of the connection ring module (c700) to the unit pipe module (c600) Can be.
본 실시예에서 스톱퍼(c640)는 단위파이프모듈(c600)의 외관에 돌출되는 형태로 형성될 수 있다.In this embodiment, the stopper c640 may be formed to protrude on the exterior of the unit pipe module c600.
스톱퍼(c640)의 구성은 전술한 제2 실시예의 스톱퍼(c430) 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Since the structure of the stopper c640 is the same as that of the stopper c430 of the second embodiment, detailed description thereof will be omitted.
이러한 구성을 통하여 연결링모듈(c700)이 단위파이프모듈(c600)의 연결부위에 정확하게 위치하며 이동하지 않게 되어 연결부위를 보강하는 성능을 향상시키는 효과를 얻을 수 있다.Through this configuration, the connection ring module (c700) is accurately positioned at the connection portion of the unit pipe module (c600) and does not move, thereby improving the performance of reinforcing the connection portion.
한편, 도 28에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예는 단위파이프모듈(c600)의 양단부에 제3 체결부(c650)가 형성되고, 연결링모듈(c700)의 양단부에는 전술한 제3 체결부(c650)와 결합되는 제4 체결부(c750)가 형성될 수 있다.Meanwhile, as shown in FIG. 28, in the third embodiment of the geothermal well pipe assembly according to the present invention, third coupling parts c650 are formed at both ends of the unit pipe module c600, and the connection ring module c700 is provided. At both ends of the fourth fastening part c750 coupled to the third fastening part c650 described above may be formed.
본 실시예에서 제3 체결부(c650)는 단위파이프모듈(c600)의 외관 외주면에 형성될 수 있다.In this embodiment, the third fastening part c650 may be formed on the outer circumferential surface of the unit pipe module c600.
제3 체결부(c650) 및 제4 체결부(c750)의 구성은 전술한 제2 실시예의 제3 체결부(c440) 및 제4 체결부(c540)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Since the configuration of the third fastening part c650 and the fourth fastening part c750 is the same as that of the third fastening part c440 and the fourth fastening part c540 of the above-described second embodiment, a detailed description thereof will be omitted. Shall be.
이러한 구성을 통하여 복수개의 단위파이프모듈(c600)이 연결되면서, 단위파이프모듈(c600) 및 연결링모듈(c700)도 상호 결합되어 단위파이프모듈(c600)의 연결부위를 보다 효과적으로 보강하는 효과를 얻을 수 있다.Through this configuration, a plurality of unit pipe modules (c600) are connected, the unit pipe module (c600) and the connection ring module (c700) is also coupled to each other to obtain the effect of more effectively reinforcing the connection portion of the unit pipe module (c600). Can be.
또한, 전술한 제2 실시예와 마찬가지로 제1 체결부(c612), 제2 체결부(c614), 제3 체결부(c650) 및 제4 체결부(c750)가 모두 나사 형태로 형성될 때, 모두 같은 피치를 가지는 나사형태로 형성되는 것이 유리할 수 있다.In addition, when the first fastening portion c612, the second fastening portion c614, the third fastening portion c650, and the fourth fastening portion c750 are all formed in a screw shape, as in the above-described second embodiment, It may be advantageous to form all of the threads having the same pitch.
이러한 경우, 인접한 단위파이프모듈(c600)간의 결합 및 단위파이프모듈(c600)과 연결링모듈(c700)의 결합이 동시에 진행될 때, 각 단위파이프모듈(c600) 및 연결링모듈(c700)이 회전하며 상호 결합되는 정도가 동일하게 진행될 수 있다.In this case, when the coupling between the adjacent unit pipe module (c600) and the combination of the unit pipe module (c600) and the connection ring module (c700) proceeds at the same time, each unit pipe module (c600) and the connection ring module (c700) is rotated The degree of mutual coupling may proceed the same.
따라서, 각 구성의 결합 공정에 소요되는 노력 및 시간을 절감할 수 있는 효과를 얻을 수 있다.Therefore, it is possible to obtain the effect of reducing the effort and time required for the bonding process of each component.
한편, 도 29에 도시된 바와 같이, 본 발명에 따른 지열정 파이프 어셈블리의 제3 실시예의 연결링모듈(c700)은 일측에 연결링모듈(c700)이 감싸는 부위의 내부로 단열소재(c800)를 주입하기 위한 주입구(c760)가 형성될 수 있다.On the other hand, as shown in Figure 29, the connection ring module (c700) of the third embodiment of the geothermal well pipe assembly according to the present invention is a heat insulating material (c800) to the inside of the portion surrounding the connection ring module (c700) on one side An injection hole c760 may be formed to inject.
즉, 주입구(c760)를 통하여 단위파이프모듈(c600)의 연결부위와 연결링모듈(c700) 사이의 공간에 단열소재(c800)를 용이하게 주입할 수 있다.That is, the insulating material c800 may be easily injected into the space between the connection portion of the unit pipe module c600 and the connection ring module c700 through the injection hole c760.
한편, 도 30에 도시된 바와 같이, 본 발명에 따른 본 발명에 따른 지열정 파이프 어셈블리 제3 실시예의 변형예는 단위파이프모듈(c600) 및 연결링모듈(c700)을 포함할 수 있다.On the other hand, as shown in Figure 30, the modified example of the geothermal pipe assembly according to the third embodiment of the present invention according to the present invention may include a unit pipe module (c600) and the connection ring module (c700).
본 실시예에서 단위파이프모듈(c600)은 전술한 제3 실시예의 단위파이프모듈(c600)과 동일한 구성이므로 상세한 설명은 생략하기로 한다.In the present embodiment, since the unit pipe module c600 has the same configuration as the unit pipe module c600 of the third embodiment, detailed description thereof will be omitted.
다만, 본 변형예의 연결링모듈(c700)은 전술한 제3 실시예와는 달리 단위파이프모듈(c600)의 연결부위와 직접 접촉하며 연결부위를 감싸도록 형성될 수 있다.However, unlike the third embodiment described above, the connection ring module c700 of the present modification may be formed to directly contact the connection part of the unit pipe module c600 and surround the connection part.
본 변형예에서 연결링모듈(c700)은 단위파이프모듈(c600)의 연결을 위하여 이중관 구조의 내관(c610)에서 돌출된 형태의 연결부위의 길이와 대응되는 길이로 형성되고, 단위파이프모듈(c600)의 외관(c620) 및 단열소재(c630)의 두께와 대응되는 두께로 형성되는 것이 유리할 수 있다.In the present modification, the connection ring module (c700) is formed to have a length corresponding to the length of the connection portion protruding from the inner pipe (c610) of the double pipe structure for the connection of the unit pipe module (c600), unit pipe module (c600) It may be advantageous to have a thickness corresponding to the thickness of the appearance (c620) and the heat insulating material (c630).
즉, 연결링모듈(c700)의 외경이 외관(c620)의 외경과 동일하게 형성될 수 있다.That is, the outer diameter of the connection ring module (c700) may be formed to be the same as the outer diameter of the appearance (c620).
이러한 구성은 단위파이프모듈(c600) 및 연결링모듈(c700)가 모두 결합된 지열정 파이프의 전체적인 형태가 일정하게 유지되므로, 본 발명에 따른 지열정 파이프 어셈블리 내부 및 외부의 열전달매체가 안정적으로 유동하는 효과를 얻을 수 있다.In this configuration, since the overall shape of the geothermal well pipe combined with both the unit pipe module (c600) and the connection ring module (c700) is kept constant, the heat transfer medium inside and outside the geothermal well pipe assembly according to the present invention stably flows. You can get the effect.
또한, 본 변형예의 연결링모듈(c700)은 단열소재로 형성될 수 있다.In addition, the connection ring module (c700) of the present modification may be formed of a heat insulating material.
본 변형예 역시 단위파이프모듈(c600)이 내부 및 외부간의 열교환을 저하시키기 위하여 이중관 구조 및 단열소재를 포함하는 구성이므로, 전술한 구성을 통하여 단위파이프모듈(c600)의 연결부위에서도 내부 및 외부간의 열교환을 저하시키는 효과를 얻을 수 있다.The present modification also includes a double pipe structure and a heat insulating material in order to reduce heat exchange between the inside and the outside of the unit pipe module (c600). The effect of reducing heat exchange can be obtained.
이러한 경우, 연결링모듈(c700)은 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 강도를 가지면서 열전달율이 낮은 소재로 형성되는 것이 유리할 수 있다.In this case, the connection ring module (c700) may be advantageously formed of a material having a low heat transfer rate while having a strength that can withstand the pressure in the ground and the pressure of the flowing heat transfer medium.
본 발명에 따른 지열정 파이프 어셈블리는 전술한 제1 실시예 내지 제3 실시예의 구성을 통하여 지열정 내부로 삽입되는 복수개의 파이프 연결 부위 강도를 높여 지열정 파이프 어셈블리의 내구성이 향상되는 효과를 얻을 수 있다The geothermal well pipe assembly according to the present invention can obtain the effect of increasing the strength of the plurality of pipe connection portions inserted into the geothermal well through the configuration of the first to third embodiments described above to improve the durability of the geothermal well pipe assembly. have
그리고, 파이프의 파손 등에 의해 지열정 파이프 어셈블리의 관리 및 유지보수에 소요되는 시간 및 비용을 절감하는 효과를 얻을 수 있다.In addition, it is possible to obtain an effect of reducing the time and cost required for the management and maintenance of the geothermal well pipe assembly due to breakage of the pipe.
<< 지열정Geothermal 열교환시스템 및 그의 시공방법의 제1  First heat exchange system and construction method thereof 실시예Example >>
지열정Geothermal 열교환시스템의 제1-1  Heat exchange system 1-1 실시예Example
이어서, 도 31 및 도 32를 참조하여, 본 발명에 따른 지열정 열교환시스템 제1-1 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, referring to Figures 31 and 32, the configuration and effects of the first-first embodiment of the geothermal heat exchange system according to the present invention will be described in detail.
여기서, 도 31은 본 발명에 따른 지열정 열교환시스템의 제1-1 실시예의 구성을 나타내는 도면이고, 도 32는 본 발명에 따른 지열정 열교환시스템 제1-1 실시예의 변형예를 나타내는 도면이다.31 is a view showing the configuration of the first-first embodiment of the geothermal heat exchange system according to the present invention, Figure 32 is a view showing a modification of the first-first embodiment of the geothermal heat exchange system according to the present invention.
도 31에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템은 지열정(d100), 파이프(d200) 및 축열부(d300)를 포함할 수 있다.As shown in FIG. 31, the geothermal well heat exchange system according to the present invention may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d300).
지열정(d100)은 지반을 굴착하여 형성되는 홀의 구성으로, 이용하고자 하는 온도의 지열이 발생되는 깊이까지 굴착하여 형성될 수 있다.Geothermal well (d100) is a configuration of a hole formed by excavating the ground, it can be formed by excavating to the depth to generate geothermal heat of the temperature to be used.
또한, 지열정(d100)은 지열을 회수하기 위해 충분한 양의 열전달매체가 유동할 수 있는 폭으로 형성되는 것이 유리할 수 있다.In addition, the geothermal well (d100) may be advantageously formed in a width such that a sufficient amount of heat transfer medium can flow to recover the geothermal heat.
한편, 파이프(d200)는 전술한 지열정(d100)의 내부공간을 구획하기 위한 구성으로, 지상에서 지열정(d100)의 하부까지 연장되고, 지열정(d100)의 내부에 지열정(d100) 내주면과 서로 이격되어 배치될 수 있다.On the other hand, the pipe (d200) is configured to partition the internal space of the geothermal well (d100) described above, extends from the ground to the bottom of the geothermal well (d100), geothermal well (d100) inside the geothermal well (d100) The inner peripheral surface may be spaced apart from each other.
또한, 파이프(d200)는 지열정(d100)의 내부 하면에 접촉하지 않고 소정의 간격으로 이격되어 배치되는 것이 유리할 수 있다.In addition, it may be advantageous that the pipes d200 are spaced apart at predetermined intervals without contacting the inner bottom surface of the geothermal well d100.
즉, 파이프(d200)의 구성은 지열정(d100) 내부의 공간을 파이프(d200)의 외부 및 내부 공간으로 구획하여, 지열을 회수하기 위한 열전달매체는 지열정(d100) 및 파이프(d200) 사이의 공간으로 주입되어 지열에 의해 가열되고, 지열정(d100)의 하부에서 파이프(d200)의 내부로 유입되어 파이프(d200)를 통하여 지상으로 회수될 수 있다.That is, the configuration of the pipe (d200) divides the space inside the geothermal well (d100) into the outer and inner space of the pipe (d200), the heat transfer medium for recovering geothermal heat between the geothermal well (d100) and the pipe (d200) It is injected into the space of the geothermal heat is heated by the geothermal well (d100) may be introduced into the inside of the pipe (d200) and recovered to the ground through the pipe (d200).
이러한 파이프(d200)의 구성은 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 충분한 강도로 형성되는 것이 유리할 수 있다.The configuration of the pipe (d200) may be advantageously formed with sufficient strength to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
그리고, 파이프(d200)는 파이프(d200)의 내부 및 외부간의 열교환 효율을 낮추기 위한 단열부를 포함하여 형성될 수 있다.In addition, the pipe d200 may be formed to include a heat insulating part for lowering the heat exchange efficiency between the inside and the outside of the pipe d200.
단열부는 적어도 하나 이상의 단열소재가 파이프(d200)의 면을 따라 구비되어 형성될 수 있으며, 외관 및 내관을 포함하는 이중관 형태의 파이프(d200)의 외관 및 내관 사이의 공간에 구비되는 것이 유리할 수 있다.The heat insulating part may be formed with at least one heat insulating material along the surface of the pipe (d200), it may be advantageous to be provided in the space between the outer tube and the inner tube of the double-pipe type including the outer tube and the inner tube (200). .
이러한 단열부는 발포 우레탄, 발포 고무 등과 같은 발포성 단열소재가 충전된 형태로 구성되어 있으나, 공기, 스티로폼, 유리섬유 등의 다양한 단열소재가 적용되는 등 그 소재 및 구성은 제한되지 않고 다양할 수 있다.The heat insulating part is formed in a form filled with a foamable heat insulating material such as urethane foam, foam rubber, etc., various materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation.
또한, 상기 단열부는 상기 단열부 상부의 열저항이 상기 단열부 하부의 열저항보다 상대적으로 크게 형성될 수 있다.In addition, the heat insulation portion may be formed with a heat resistance of the upper portion of the heat insulation portion relatively larger than the heat resistance of the lower portion of the heat insulation portion.
푸리에 법칙을 적용하여, 열전달율은 일종의 흐름이라 하고 열전도계수, 물질의 두께 및 단면적의 조합은 이 흐름에 대한 저항이라 하며, 온도는 열유동을 위한 구동함수가 되기 때문에 열유동은 열 포텐셜의 차이와 비례하고, 열저항과 반비례하다고 정리할 수 있다.By applying Fourier's law, the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
따라서, 열저항이 높게 형성되는 경우에는 열유동이 반비례로 작아지게 되고, 본 발명에 따른 지열정 단열 파이프의 상부가 하부에 비해 열유동이 적게 일어날 수 있다.Therefore, when the heat resistance is formed high, the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
즉, 위와 같은 단열부의 구성을 통해, 파이프(d200) 상부의 총합열전달계수가 더 높게 나타날 수 있다.That is, the total heat transfer coefficient of the upper portion of the pipe (d200) may be higher through the heat insulation.
이러한 구성은 지열정(d100)의 내부에서 열전달매체가 순환하는 과정에서, 지열정(d100)의 상부의 경우 파이프(d200)의 내부 및 외부의 온도차가 하부에 비해 더 크기 때문에, 지열 회수의 효율을 향상시키는데 유리할 수 있다.In this configuration, in the process of circulating the heat transfer medium in the geothermal well (d100), since the temperature difference between the inside and the outside of the pipe (d200) is larger than that of the bottom of the geothermal well (d100), the efficiency of geothermal recovery It may be advantageous to improve the
한편, 축열부(d300)는 전술한 지열정(d100) 및 파이프(d200)의 사이 공간에 축열재가 구비되는 구성으로, 지열정(d100)의 내부로 주입되는 열전달매체가 통과할 수 있도록 형성될 수 있다.On the other hand, the heat storage unit (d300) is a configuration in which the heat storage material is provided in the space between the geothermal well (d100) and the pipe (d200), it is formed so that the heat transfer medium injected into the geothermal well (d100). Can be.
축열부(d300)로 구성되는 축열재는 자갈, 모래, 암편, 콘크리트 구조체, 콘크리트 파편, 금속 구조체, 금속 알갱이 등 큰 열용량을 가지는 소재가 적용될 수 있으며, 이외에도 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.The heat storage material composed of the heat storage unit (d300) may be a material having a large heat capacity such as gravel, sand, rock fragments, concrete structures, concrete fragments, metal structures, metal grains, etc. In addition, the heat transfer medium that has geothermal heat and flows around The arrangement may be varied without limitation if provided to transfer heat to the furnace.
본 실시예에서 축열부(d300)는 소정의 부피를 가지는 복수개의 축열재가 지열정(d100) 및 파이프(d200) 사이의 공간에 구비되어 형성될 수 있다.In the present embodiment, the heat storage unit d300 may be provided with a plurality of heat storage materials having a predetermined volume in a space between the geothermal well d100 and the pipe d200.
이때, 축열부(d300)의 내부에는 각 축열재 사이 간격이 형성되고, 이러한 축열재의 간격을 통하여 열전달매체가 유동하며 지열정(d100)의 하부로 이동할 수 있다.At this time, the interval between each heat storage material is formed in the heat storage unit (d300), the heat transfer medium flows through the gap of the heat storage material can move to the bottom of the geothermal well (d100).
이러한 구성은 축열부(d300) 자체가 지열정(d100)의 내부에서 지열을 전달받기 때문에, 지열정(d100) 내부의 열용량을 증가시키고, 열전도계수를 향상시키는 효과를 얻을 수 있다.In this configuration, since the heat storage unit d300 itself receives the geothermal heat from the inside of the geothermal well d100, the heat capacity inside the geothermal well d100 may be increased, and the thermal conductivity coefficient may be improved.
또한, 열전달매체가 지열정(d100)의 하부까지 유동하는 과정에서 난류가 발생하여, 열전달매체가 지열정(d100)의 내부에서 회수하는 열의 양을 극대화 할 수 있다.In addition, turbulence occurs during the flow of the heat transfer medium to the bottom of the geothermal well (d100), thereby maximizing the amount of heat that the heat transfer medium recovers from the geothermal well (d100).
또한, 열전달매체가 지열정(d100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(d300)의 열을 전달받을 수 있어, 생산정 내부의 열전도계수를 향상시켜 지열을 보다 효과적으로 흡수할 수 있다.In addition, the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well (d100) and at the same time can receive heat from the heat storage unit (d300) heated by geothermal heat, thereby improving the thermal conductivity inside the production well to improve geothermal heat. It can absorb effectively.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
그리고, 지열정(d100) 및 파이프(d200) 사이의 공간이 축열부(d300)로 채워지기 때문에 지반의 강도가 약한 지역에 지열정(d100)이 형성되는 경우에도, 지열정(d100)의 내주면이 붕괴되며 지열정 열교환시스템이 파손되는 현상을 방지할 수 있는 효과를 얻을 수 있다.Since the space between the geothermal well (d100) and the pipe (d200) is filled with the heat storage unit (d300), even when the geothermal well (d100) is formed in a region where the strength of the ground is weak, the inner circumferential surface of the geothermal well (d100) This breakdown and the geothermal heat exchanger system can be prevented from being damaged.
또한, 축열부(d300)는 지열정(d100)의 하면과 파이프(d200)의 사이 공간에 구비되는 것이 유리할 수 있다.In addition, the heat storage unit (d300) may be advantageously provided in the space between the lower surface of the geothermal well (d100) and the pipe (d200).
이러한 구성은, 축열부(d300)가 지열정(d100)의 하면에서 지열정(d100)의 내부로 삽입되는 파이프(d200)의 하부를 지지하게 되므로, 별도의 지지수단 없이 지열정(d100)의 하면과 파이프(d200)의 하단부가 직접적으로 접촉하는 것을 방지하는 효과를 얻을 수 있다.This configuration, since the heat storage unit (d300) is to support the lower portion of the pipe (d200) is inserted into the geothermal well (d100) from the bottom of the geothermal well (d100), the geothermal well (d100) The lower surface and the lower end of the pipe (d200) can be obtained to prevent the direct contact.
한편, 본 발명에 따른 지열정 열교환시스템 제1-1 실시예의 변형예는 도 32에 도시된 바와 같이 지열정(d100), 파이프(d200) 및 축열부(d300)를 포함할 수 있다.Meanwhile, the modified example of the geothermal well heat exchange system 1-1 according to the present invention may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d300) as shown in FIG.
여기서, 지열정(d100) 및 파이프(d200)는 전술한 제1-1 실시예의 지열정(d100) 및 파이프(d200)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, since the geothermal well (d100) and the pipe (d200) is the same configuration as the geothermal well (d100) and the pipe (d200) of the first-first embodiment described above, a detailed description thereof will be omitted.
축열부(d300)의 구성 역시 전술한 제1-1 실시예의 축열부(d300) 구성과 동일한 구성이나, 본 변형예에서 축열부(d300)는 지열정(d100)의 하부 소정의 깊이까지 구비될 수 있다.The heat storage unit d300 is also configured in the same manner as the heat storage unit d300 of the first-first embodiment described above, but in the present modification, the heat storage unit d300 is provided to a predetermined depth under the geothermal well d100. Can be.
즉, 축열부(d300)가 지열정(d100) 및 파이프(d200) 사이의 공간에 구비될 때, 전술한 제1-1 실시예와 같이 지상에서부터 지열정(d100)의 하면까지 모두 구비되지 않고, 지열정(d100)의 하부 소정의 깊이까지만 구비될 수 있다.That is, when the heat storage unit (d300) is provided in the space between the geothermal well (d100) and the pipe (d200), as in the first-first embodiment described above, not all of the ground surface from the bottom of the geothermal well (d100) It may be provided only to a predetermined depth below the geothermal well (d100).
이러한 구성은 지열정(d100)의 내부로 주입되는 열전달매체가 지열정을 따라 하부로 이동하다가 축열부(d300)가 구비된 지역에서 난류가 발생하고, 열교환 면적이 증가될 수 있다.In this configuration, while the heat transfer medium injected into the geothermal well d100 moves downward along the geothermal well, turbulence may occur in an area where the heat storage unit d300 is provided, and the heat exchange area may increase.
지열정(d100)의 내부에서 이용하고자 하는 온도의 지열은 지열정(d100)의 하단부에서 발생하기 때문에, 지열정(d100)의 하단부에서 집중적으로 지열 회수 효율을 상승시키는 효과를 얻을 수 있다.Since the geothermal heat of the temperature to be used inside the geothermal well (d100) is generated at the lower end of the geothermal well (d100), it is possible to obtain the effect of intensively increasing the geothermal recovery efficiency at the lower end of the geothermal well (d100).
또한, 축열부(d300)로 인하여 열전달매체의 유속은 빨라지기 때문에, 고온의 열전달매체를 주입하는 경우에도 지열정의 저심도 부위에서 열전달매체의 열을 지열정의 암반으로 뺏기지 않는 효과도 얻을 수 있다.In addition, the flow rate of the heat transfer medium is increased due to the heat storage unit (d300), so that even when a high temperature heat transfer medium is injected, the effect of not losing heat of the heat transfer medium to the rock of the geothermal well at the low depth portion of the geothermal well can be obtained. have.
지열정Geothermal 열교환시스템의 제1-2  1-2 of heat exchange system 실시예Example
이어서, 도 33을 참조하여, 본 발명에 따른 지열정 열교환시스템 제1-2 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, referring to Figure 33, the configuration and effects of the geothermal heat exchange system according to the embodiment 1-2 of the present invention will be described in detail.
여기서, 도 33은 본 발명에 따른 지열정 열교환시스템의 제1-2 실시예의 구성을 나타내는 도면이다.33 is a view showing the configuration of Example 1-2 of the geothermal heat exchange system according to the present invention.
도 33에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템은 지열정(d100), 파이프(d200) 및 축열부(d400)를 포함할 수 있다.As shown in FIG. 33, the geothermal well heat exchange system according to the present invention may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d400).
여기서, 지열정(d100) 및 파이프(d200)의 구성은 전술한 제1-1 실시예의 지열정(d100) 및 파이프(d200)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, the configuration of the geothermal well (d100) and the pipe (d200) is the same as the configuration of the geothermal well (d100) and the pipe (d200) of the first-first embodiment described above will be omitted.
한편, 축열부(d400)는 전술한 제1-1 실시예와 마찬가지로 지열정(d100) 및 파이프(d200)의 사이 공간에 구비되어 지열정(d100)의 내부로 주입되는 열전달매체가 통과할 수 있도록 형성될 수 있다.On the other hand, the heat storage unit (d400) is provided in the space between the geothermal well (d100) and the pipe (d200) as in the first embodiment described above can pass through the heat transfer medium injected into the geothermal well (d100) It can be formed to be.
또한, 큰 열용량을 가지는 소재가 적용될 수 있으며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.In addition, a material having a large heat capacity may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium that carries geothermal heat and flows around.
다만, 본 실시예에서 축열부(d400)는 다공성 형태의 축열재로 구성되어, 축열부(d400) 내부에 형성된 공극을 통하여 열전달매체가 투과될 수 있다.However, in the present embodiment, the heat storage unit (d400) is made of a heat storage material of the porous form, the heat transfer medium can be transmitted through the gap formed in the heat storage unit (d400).
이러한 구성은 열전달매체가 지열정(d100)의 하부까지 유동하는 과정에서 난류가 형성되어, 열전달매체가 회수하는 지열의 양을 극대화 시킬 수 있다.In this configuration, turbulence is formed in the process of flowing the heat transfer medium to the bottom of the geothermal well (d100), thereby maximizing the amount of geothermal heat that the heat transfer medium recovers.
또한, 열전달매체가 지열정(d100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(d400)의 열을 전달받을 수 있어, 열전달매체가 지열을 전달받는 면적이 크게 증가될 수 있다.In addition, the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well (d100) and at the same time can receive heat from the heat storage unit (d400) heated by geothermal heat, thereby increasing the area of the heat transfer medium to receive geothermal heat significantly. Can be.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
한편, 본 실시예의 축열부(d400) 역시 전술한 제1-1 실시예와 같이 지열정(d100)의 하면과 파이프(d200)의 하단부 사이에 구비될 수도 있고, 지상에서부터 지열정(d100)의 하면까지 모두 구비되거나, 지열정(d100)의 하부 소정의 깊이까지만 구비될 수도 있다.On the other hand, the heat storage unit (d400) of the present embodiment may also be provided between the lower surface of the geothermal well (d100) and the lower end of the pipe (d200), as in the first-first embodiment described above, All may be provided to the bottom surface, or may be provided only to a predetermined depth of the lower portion of the geothermal well (d100).
이러한 구성을 통하여 제1-1 실시예의 상세한 설명에 기재된 효과와 같은 효과를 얻을 수 있다.Through such a configuration, the same effects as those described in the detailed description of the first-first embodiment can be obtained.
지열정Geothermal 열교환시스템의 제1-3  1-3 of heat exchange system 실시예Example
이어서, 도 34 내지 도 36을 참조하여, 본 발명에 따른 지열정 열교환시스템 제1-3 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, with reference to FIGS. 34 to 36, the configuration and effect of the geothermal heat exchange system 1-3 embodiments according to the present invention will be described in detail.
여기서, 도 34는 본 발명에 따른 지열정 열교환시스템의 제1-3 실시예의 구성을 나타내는 도면이고, 도 35는 본 발명에 따른 지열정 열교환시스템 제1-3 실시예의 제1 변형예를 나타내는 도면이며, 도 36은 본 발명에 따른 지열정 열교환시스템 제1-3 실시예의 제2 변형예를 나타내는 도면이다.34 is a view showing the configuration of the first to third embodiments of the geothermal heat exchange system according to the present invention, Figure 35 is a view showing a first modification of the geothermal heat exchange system to the first to third embodiments according to the present invention 36 is a view showing the second modified example of the geothermal heat exchange system 1-3 according to the present invention.
도 34에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템은 지열정(d100), 파이프(d200) 및 축열부(d500)를 포함할 수 있다.As shown in FIG. 34, the geothermal well heat exchange system according to the present invention may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d500).
여기서, 지열정(d100) 및 파이프(d200)의 구성은 전술한 제1-1 실시예의 지열정(d100) 및 파이프(d200)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, the configuration of the geothermal well (d100) and the pipe (d200) is the same as the configuration of the geothermal well (d100) and the pipe (d200) of the first-first embodiment described above will be omitted.
한편, 축열부(d500)는 전술한 제1-1 실시예와 마찬가지로 지열정(d100) 및 파이프(d200)의 사이 공간에 구비되어 지열정(d100)의 내부로 주입되는 열전달매체가 통과할 수 있도록 형성될 수 있다.On the other hand, the heat storage unit (d500) is provided in the space between the geothermal well (d100) and the pipe (d200) as in the first embodiment described above can pass through the heat transfer medium injected into the geothermal well (d100) It can be formed to be.
또한, 콘크리트 등 큰 열용량을 가지는 소재가 적용될 수 있으며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.In addition, a material having a large heat capacity such as concrete may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium having geothermal heat flowing therein.
다만, 축열부(d500)는 복수개의 축열재가 파이프(d200)의 외주면에 돌출되는 형태로 결합되어 형성될 수 있다.However, the heat storage unit d500 may be formed by combining a plurality of heat storage materials protruding to the outer circumferential surface of the pipe d200.
이때, 각각의 축열재는 열전달매체의 유동저항에 따른 난류를 형성하기 위하여 축열재의 상면에 소정의 면적을 가지는 형태로 형성되는 것이 유리할 수 있다.At this time, each heat storage material may be advantageously formed to have a predetermined area on the upper surface of the heat storage material in order to form a turbulence according to the flow resistance of the heat transfer medium.
본 실시예에서 축열부(d510)는 파이프(d200)를 중심으로 외측부로 돌출되는 플레이트 형태 및 지열정(d100)의 형태와 대응되는 형태로 형성되며, 각각의 축열부(d510)는 유동하는 열전달매체가 통과할 수 있는 관통홀(d512)이 복수개 형성될 수 있다.In the present embodiment, the heat storage unit d510 is formed in a form corresponding to the shape of the plate and the geothermal well (d100) protruding to the outer portion around the pipe (d200), each heat storage unit (d510) is a heat transfer flow A plurality of through holes d512 through which the medium can pass may be formed.
이러한 구성은 열전달매체가 지열정(d100)의 하부까지 유동하는 과정에서 난류가 발생하여, 열전달매체가 지열정(d100)의 내부에서 회수하는 열의 양을 극대화 할 수 있다.Such a configuration may cause turbulence in the process of flowing the heat transfer medium to the bottom of the geothermal well (d100), thereby maximizing the amount of heat that the heat transfer medium recovers from the geothermal well (d100).
또한, 축열부(d510)의 구성은 파이프(d200)가 지열정(d100)의 내부에서 지열정(d100)의 중심에 위치할 수 있도록 보조하는 센트럴라이저(centralizer)의 역할을 수행하는 효과도 얻을 수 있다.In addition, the configuration of the heat storage unit (d510) also obtains the effect of serving as a centralizer (centralizer) to assist the pipe (d200) to be located in the center of the geothermal well (d100) inside the geothermal well (d100). Can be.
그리고, 축열부(d510)의 구성이 지열정(d100)의 열을 방출하는 핀(fin)의 역할을 수행하게 되어, 지열정 내부의 평균 열용량 및 열전달계수를 크게 증가시킬 수 있다.In addition, the configuration of the heat storage unit d510 serves as a fin for dissipating the heat of the geothermal well d100, thereby greatly increasing the average heat capacity and the heat transfer coefficient inside the geothermal well.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
한편, 본 발명에 따른 지열정 열교환시스템 제1-3 실시예의 변형예는 도 35 및 도 36에 도시된 바와 같이 지열정(d100), 파이프(d200) 및 축열부(d500)를 포함할 수 있다.Meanwhile, the modified example of the geothermal heat exchange system 1-3 according to the present invention may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d500) as shown in FIGS. 35 and 36. .
여기서, 지열정(d100), 파이프(d200) 및 축열부(d500)는 전술한 제1-3 실시예의 지열정(d100), 파이프(d200) 및 축열부(d500)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, since the geothermal well (d100), the pipe (d200) and the heat storage unit (d500) is the same configuration as the configuration of the geothermal well (d100), pipe (d200) and the heat storage unit (d500) of the embodiment 1-3 described above in detail The description will be omitted.
다만, 제1 변형예에서 축열부(d520)는 제1-3 실시예의 축열부(d510)에 비해 상대적으로 작은 면적을 가지는 플레이트 형태로 형성되어, 파이프(d200)의 외주면을 따라 나선형으로 배치될 수 있다.However, in the first modification, the heat storage unit d520 is formed in a plate shape having a relatively smaller area than the heat storage unit d510 of the first to third embodiments, and is arranged spirally along the outer circumferential surface of the pipe d200. Can be.
또한, 제2 변형예에서 축열부(d530)는 파이프(d200)의 외주면을 따라 나선형으로 감겨 내려가는 플레이트 형태로 형성될 수 있다.In addition, in the second modification, the heat storage unit d530 may be formed in a plate shape spirally wound along the outer circumferential surface of the pipe d200.
이러한 구성은, 상대적으로 자연스럽고 원활하게 열전달매체가 유동하면서도, 열전달매체가 지열정(d100)의 하부까지 유동하는 과정에서 난류가 발생하여, 열전달매체가 지열정(d100)의 내부에서 회수하는 열의 양을 극대화 할 수 있다.In this configuration, while the heat transfer medium flows relatively naturally and smoothly, turbulence occurs during the flow of the heat transfer medium to the bottom of the geothermal well (d100), so that the heat transfer medium recovers heat inside the geothermal well (d100). The amount can be maximized.
또한, 열전달매체가 지열정(d100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(d500)의 열을 전달받을 수 있어, 지열정(d100) 내부의 열용량 및 열전달계수를 크게 증가시킬 수 있다.In addition, the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal heat crystal (d100) and at the same time receive heat from the heat storage unit (d500) heated by geothermal heat, thereby reducing the heat capacity and heat transfer coefficient inside the geothermal heat crystal (d100). Can be increased significantly.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
이러한 축열부(d500)의 구성은 지그재그 배치, 무작위 배치 등 유동하는 열전달매체에 저항을 발생시키도록 마련된다면 본 변형예에 제한되지 않고 그 형태 및 배치는 다양할 수 있다.The configuration of the heat storage unit d500 is not limited to the present modification as long as it is provided to generate resistance to the heat transfer medium, such as a zigzag arrangement or a random arrangement, and the shape and arrangement may be various.
한편, 본 실시예에서 돌출된 형태의 축열부(d500)는 파이프로부터 동일한 길이로 돌출되도록 형성될 수 있다.Meanwhile, in the present embodiment, the heat storage unit d500 having a protruding shape may be formed to protrude to the same length from the pipe.
또한, 그 길이는 지열정(d100)과 파이프(d200) 사이의 거리와 대응되는 길이로 형성되는 것이 유리할 수 있다.In addition, the length may be advantageously formed to a length corresponding to the distance between the geothermal well (d100) and the pipe (d200).
이러한 경우, 축열부(d500)의 구성은 파이프(d200)가 지열정(d100)의 내부에 배치될 때, 파이프(d200)가 지열정(d100)의 중앙에 위치하는 것을 보조할 수 있는 센트럴라이저(centralizer)의 역할을 수행할 수 있다.In this case, the configuration of the heat storage unit (d500) is a centralizer that can assist the pipe (d200) is located in the center of the geothermal well (d100) when the pipe (d200) is disposed inside the geothermal well (d100) It can act as a centralizer.
따라서, 지열정(d100)의 내부로 열전달매체가 주입되는 주입정이 고르게 형성되어, 열전달매체가 고르게 지열을 전달받을 수 있는 효과를 얻을 수 있다.Thus, the injection well into which the heat transfer medium is injected into the geothermal well (d100) is formed evenly, so that the heat transfer medium can receive the geothermal heat evenly.
그리고, 열전달매체가 지열정(d100)의 내부에서 순환하며 지열을 회수하는 과정에서, 지열정(d100)의 상부에서는 파이프(d200)의 내부 및 외부의 온도차가 가장 커질 수 있다.In the process of circulating the heat transfer medium in the geothermal well d100 and recovering the geothermal heat, the temperature difference between the inside and the outside of the pipe d200 may be greatest at the upper portion of the geothermal well d100.
따라서, 파이프(d200)는 파이프(d200)의 내부 및 외부간의 열교환 효율을 낮추기 위한 단열부를 포함하는 것이 유리할 수 있다.Therefore, it may be advantageous that the pipe d200 includes a heat insulating part for lowering heat exchange efficiency between the inside and the outside of the pipe d200.
이러한 경우, 파이프(d200)를 외관 및 내관으로 형성되는 이중관 구조로 형성하고, 외관 및 내관의 사이에는 단열소재를 충전하는 형태로 형성되고, 축열부(d500)는 외관의 외주면에 결합하여 가열되어 회수되는 열전달매체의 열이 파이프(d200)의 외부로 전달되는 것을 방지할 수 있다.In this case, the pipe (d200) is formed in a double tube structure formed of the outer and inner tube, and is formed in the form of filling a heat insulating material between the outer and inner tube, the heat storage unit (d500) is coupled to the outer peripheral surface of the outer surface is heated It is possible to prevent the heat of the recovered heat transfer medium from being transferred to the outside of the pipe d200.
한편, 본 실시예의 축열부(d500) 역시 지열정(d100)의 하부 소정의 깊이까지만 구비될 수도 있다.On the other hand, the heat storage unit (d500) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (d100).
이러한 구성을 통하여 제1-1 실시예의 상세한 설명에 기재된 효과와 같은 효과를 얻을 수 있다.Through such a configuration, the same effects as those described in the detailed description of the first-first embodiment can be obtained.
지열정Geothermal 열교환시스템의 제1-4  1-4 of Heat Exchange System 실시예Example
이어서, 도 37을 참조하여, 본 발명에 따른 지열정 열교환시스템 제1-4 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, referring to Figure 37, the configuration and effects of the geothermal heat exchange system according to the embodiment 1-4 of the present invention will be described in detail.
여기서, 도 37은 본 발명에 따른 지열정 열교환시스템의 제1-4 실시예의 구성을 나타내는 도면이다.37 is a diagram showing the configuration of the first to fourth embodiments of the geothermal heat exchange system according to the present invention.
도 37에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템은 지열정(d100), 파이프(d200) 및 축열부(d300)를 포함할 수 있다.As shown in FIG. 37, the geothermal well heat exchange system according to the present invention may include a geothermal well (d100), a pipe (d200), and a heat storage unit (d300).
여기서, 지열정(d100) 및 축열부(d300)의 구성은 전술한 제1-1 실시예의 지열정(d100) 및 축열부(d300)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, since the geothermal well (d100) and the heat storage unit (d300) have the same configuration as the geothermal well (d100) and the heat storage unit (d300) of the first-first embodiment described above, a detailed description thereof will be omitted.
한편, 파이프(d200)는 파이프(d200) 상부 외주면의 직경(L4)이 파이프(d200) 하부 외주면의 직경(L5)보다 상대적으로 크게 형성될 수 있다.Meanwhile, the pipe d200 may have a diameter L4 of the upper outer circumferential surface of the pipe d200 relatively larger than the diameter L5 of the lower circumferential surface of the lower pipe d200.
이러한 구성은 지열정(d100)의 내주면 및 파이프(d200)의 사이 공간이 지열정(d100)의 하부로 갈 수록 넓어질 수 있다.Such a configuration may increase the space between the inner circumferential surface of the geothermal well (d100) and the pipe (d200) toward the lower portion of the geothermal well (d100).
따라서, 지열정(d100)의 하부로 갈 수록 열전달매체의 유로가 넓어지게 되어 동일한 압력에 의해 열전달매체가 유동하는 경우 지열정(d100)의 하부로 갈 수록 열전달매체의 유속이 느려지고, 열전달매체가 지열정(d100)의 내부에서 유동하는 시간을 더욱 늘릴 수 있다.Therefore, the flow path of the heat transfer medium becomes wider toward the bottom of the geothermal well (d100), and when the heat transfer medium flows under the same pressure, the flow rate of the heat transfer medium decreases toward the bottom of the geothermal well (d100), and the heat transfer medium Time to flow in the geothermal well (d100) can be further increased.
이를 통하여, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Through this, the total amount of heat received by the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
한편, 본 실시예의 축열부(d300) 역시 지열정(d100)의 하부 소정의 깊이까지만 구비될 수도 있다.On the other hand, the heat storage unit (d300) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (d100).
이러한 구성을 통하여 제1-1 실시예의 상세한 설명에 기재된 효과와 같은 효과를 얻을 수 있다.Through such a configuration, the same effects as those described in the detailed description of the first-first embodiment can be obtained.
지열정Geothermal 열교환시스템 시공방법의 제1-1  Heat exchange system construction method 1-1 실시예Example
다음으로, 도 38을 참조하여, 본 발명에 따른 지열정 열교환시스템 시공방법의 제1-1 실시예에 대하여 상세히 설명하기로 한다.Next, with reference to FIG. 38, the first-first embodiment of the geothermal heat exchange system construction method according to the present invention will be described in detail.
여기서, 도 38은 본 발명에 따른 지열정 열교환시스템 시공방법의 제1-1 실시예를 나타내는 도면이다.38 is a view showing the first-first embodiment of the geothermal heat exchange system construction method according to the present invention.
도 38에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템 시공방법은 굴착단계(dS100), 가충전단계(dS200), 삽입단계(dS300) 및 충전단계(dS400)를 포함할 수 있다.As shown in FIG. 38, the geothermal heat exchange system construction method according to the present invention may include an excavation step (dS100), a charging and charging step (dS200), an insertion step (dS300), and a filling step (dS400).
굴착단계(dS100)는 지반을 소정의 직경으로 굴착하여 지열정을 형성하는 단계로, 이용하고자 하는 온도의 지열이 발생하는 깊이와 충분한 양의 열전달매체가 유동할 수 있는 폭으로 지반을 굴착할 수 있다.Excavation step (dS100) is a step of excavating the ground to a predetermined diameter to form a geothermal well, it is possible to excavate the ground to a depth that the geothermal heat of the temperature to be used and a sufficient amount of heat transfer medium can flow have.
이러한 굴착단계(dS100)는 일반적으로 지반을 굴착하는 공정 및 장비 등을 이용하여 지열정을 굴착할 수 있다.This excavation step (dS100) can generally excavate geothermal well using a process and equipment for excavating the ground.
한편, 가충전단계(dS200)는 전술한 굴착단계(dS100)에서 형성된 지열정의 하단부에 소정의 두께로 축열재를 충전하는 단계로, 그 두께는 지열정의 하면과 후술하는 삽입단계(dS300)에서 지열정의 내부로 삽입되는 파이프가 이격되는 간격과 대응되는 두께로 충전될 수 있다.On the other hand, the temporary charging step (dS200) is a step of filling the heat storage material with a predetermined thickness in the lower end of the geothermal well formed in the above-mentioned excavation step (dS100), the thickness of the geothermal well and the insertion step (dS300) to be described later In, the pipe inserted into the geothermal well may be filled with a thickness corresponding to the spaced interval.
축열재는 콘크리트 등 큰 열용량을 가지는 소재가 적용되고, 열전달매체가 투과될 수 있도록 형성되며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.The heat storage material is applied to a material having a large heat capacity such as concrete, formed so that the heat transfer medium can penetrate, and is provided to transfer heat to the heat transfer medium that carries geothermal heat and then flows around the configuration can be varied without limitation have.
한편, 삽입단계(dS300)는 지열정의 내부로 지상에서부터 지열정의 하부까지 파이프를 연장하여 삽입하는 단계로 파이프의 외주면은 지열정의 내주면과 서로 이격되도록 배치될 수 있다.On the other hand, the insertion step (dS300) is a step of extending and inserting the pipe from the ground to the bottom of the geothermal well inside the geothermal well, the outer peripheral surface of the pipe may be arranged to be spaced apart from the inner peripheral surface of the geothermal well.
이때, 파이프는 복수개의 단위파이프를 연결하여 길이를 연장하면서 지열정의 내부로 삽입될 수 있다.In this case, the pipe may be inserted into the geothermal well while extending the length by connecting the plurality of unit pipes.
또한, 전술한 가충전단계(dS200)에서 충전된 축열재의 상부와 파이프의 하단부를 접촉시켜, 축열재가 파이프를 지지할 수 있다.In addition, the heat storage material may support the pipe by contacting the upper end of the heat storage material filled in the above-described charging and charging step (dS200) and the lower end of the pipe.
또한, 삽입단계(dS300)에서 삽입되는 파이프는 파이프의 내부 및 외부간에 열교환 효율을 낮출 수 있는 단열부가 포함된 파이프를 이용하는 것이 유리할 수 있다.In addition, the pipe inserted in the insertion step (dS300) may be advantageous to use a pipe including a heat insulating portion that can lower the heat exchange efficiency between the inside and the outside of the pipe.
이러한 파이프는 이중관 구조의 형태로 형성되어, 파이프의 외관 및 내관 사이 공간에 단열소재가 구비되어 단열부를 구성하도록 형성될 수 있다.The pipe is formed in the form of a double pipe structure, the insulation material is provided in the space between the outer tube and the inner tube of the pipe may be formed to form a heat insulating portion.
한편, 충전단계(dS400)는 지열정의 내주면 및 파이프의 외주면 사이의 공간에 축열재를 충전하는 단계일 수 있다.Meanwhile, the filling step dS400 may be a step of filling the heat storage material in the space between the inner circumferential surface of the geothermal well and the outer circumferential surface of the pipe.
이때, 축열재가 지열정 및 파이프 사이의 공간의 지상까지 모두 충전될 수도 있고, 지열정의 하부 소정의 깊이까지 축열재를 충전한 뒤 충전단계(dS400)를 종료할 수도 있다.At this time, the heat storage material may be filled up to the ground of the space between the geothermal well and the pipe, or after filling the heat storage material to a predetermined depth below the geothermal well may end the charging step (dS400).
또한, 축열재를 일부 충전한 후, 이후에는 상대적으로 열전달매체의 투과성이 보다 높은 소재의 축열재를 충전할 수도 있다.In addition, after partially filling the heat storage material, a heat storage material of a material having a relatively higher permeability of the heat transfer medium may be filled.
이러한 공정을 통하여 형성되는 지열정 열교환시스템은 축열재가 충전된 지열정 및 파이프 사이의 공간을 통하여 열전달매체를 주입하고, 지열정의 하부에서 가열된 열전달매체를 파이프의 내부를 통해 회수할 수 있다.The geothermal well heat exchange system formed through this process may inject a heat transfer medium through the space between the geothermal well filled with the heat storage material and the pipe, and recover the heat transfer medium heated under the geothermal well through the inside of the pipe.
이때, 열전달매체가 지열정(d100)의 하부까지 유동하는 과정에서 난류가 발생하여, 열전달매체가 지열정(d100)의 내부에서 회수하는 열의 양을 극대화 할 수 있다.In this case, turbulence occurs during the flow of the heat transfer medium to the bottom of the geothermal well (d100), thereby maximizing the amount of heat that the heat transfer medium recovers from the geothermal well (d100).
또한, 열전달매체가 지열정(d100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(d510)의 열을 전달받을 수 있어, 지열정(d100) 내부의 열용량 및 열전달계수를 크게 증가시킬 수 있다.In addition, the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal heat crystal (d100) and at the same time receives heat from the heat storage unit (d510) heated by geothermal heat, thereby reducing the heat capacity and heat transfer coefficient inside the geothermal heat crystal (d100). Can be increased significantly.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
지열정Geothermal 열교환시스템 시공방법의 제1-2  1-2 of Construction Method of Heat Exchange System 실시예Example
이어서, 도 39를 참조하여, 본 발명에 따른 지열정 열교환시스템 시공방법의 제1-2 실시예에 대하여 상세히 설명하기로 한다.Next, with reference to FIG. 39, the first embodiment of the geothermal heat exchange system construction method according to the present invention will be described in detail.
여기서, 도 39는 본 발명에 따른 지열정 열교환시스템 시공방법의 제1-2 실시예를 나타내는 도면이다.39 is a view showing the embodiment 1-2 of the geothermal heat exchange system construction method according to the present invention.
도 39에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템 시공방법은 축열파이프 제조단계(dS500), 굴착단계(dS600) 및 삽입단계(dS700)를 포함할 수 있다.As shown in FIG. 39, the geothermal heat exchange system construction method according to the present invention may include a heat storage pipe manufacturing step (dS500), an excavation step (dS600), and an insertion step (dS700).
축열파이프 제조단계(dS500)는 파이프의 외주면에 복수개의 축열재가 돌출되는 형태로 파이프와 축열재를 결합하여 축열파이프를 제조하는 단계일 수 있다.The heat storage pipe manufacturing step (dS500) may be a step of manufacturing the heat storage pipe by combining the pipe and the heat storage material in a form in which a plurality of heat storage materials protrude on the outer circumferential surface of the pipe.
이때, 축열재는 콘크리트 등 큰 열용량을 가지는 소재가 적용되고, 열전달매체가 투과될 수 있도록 형성되며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.At this time, the heat storage material is applied to a material having a large heat capacity, such as concrete, the heat transfer medium is formed so as to permeate, if the geothermal heat is provided to transfer heat to the heat transfer medium flowing around the configuration is not limited and varied can do.
또한, 복수개의 축열재는 파이프를 중심으로 파이프의 외주면을 따라 나선 배치, 지그재그 배치, 무작위 배치 등 다양하게 배치되어 결합될 수 있다.In addition, the plurality of heat storage materials may be arranged in various ways such as spiral arrangement, zigzag arrangement, and random arrangement along the outer circumferential surface of the pipe.
그리고, 각각의 축열재는 파이프의 상부 측을 향해 소정의 면적이 형성되도록 배치되어 결합되는 것이 유리할 수 있다.And, it may be advantageous that each heat storage material is arranged and coupled so that a predetermined area is formed toward the upper side of the pipe.
또한, 축열파이프에 이용되는 파이프는 파이프의 내부 및 외부간에 열교환 효율을 낮출 수 있는 단열소재가 포함된 파이프를 이용하는 것이 유리할 수 있다.In addition, the pipe used in the heat storage pipe may be advantageous to use a pipe containing a heat insulating material that can lower the heat exchange efficiency between the inside and the outside of the pipe.
한편, 굴착단계(dS600)는 전술한 본 발명에 따른 열교환시스템 시공방법 제1-1 실시예의 굴착단계(dS100)와 동일한 공정이며, 전술한 축열파이프 제조단계(dS500)에서 제조된 축열파이프가 삽입될 수 있는 폭으로 지열정을 굴착할 수 있다.On the other hand, the excavation step (dS600) is the same process as the excavation step (dS100) of the heat exchange system construction method embodiment 1-1 described above, the heat storage pipe manufactured in the above-described heat storage pipe manufacturing step (dS500) is inserted. Geothermal wells can be excavated to the extent possible.
한편, 삽입단계(dS700)는 전술한 굴착단계에서 형성된 지열정의 내부로, 지열정의 하부까지 축열파이프를 삽입하는 단계일 수 있다.On the other hand, the insertion step (dS700) may be a step of inserting the heat storage pipe to the inside of the geothermal well formed in the excavation step described above, to the bottom of the geothermal well.
이때, 삽입단계(dS700)는 복수개의 축열파이프를 연결하여 길이를 연장하면서 지열정의 내부로 삽입할 수 있다.At this time, the insertion step (dS700) may be inserted into the geothermal well while extending the length by connecting a plurality of heat storage pipe.
또한, 삽입되는 축열파이프는 파이프의 측면에 결합된 복수개의 축열재를 통해 파이프 및 지열정 간의 간격을 유지하여, 축열파이프가 지열정의 중심에 구비될 수 있다.In addition, the heat storage pipe to be inserted may maintain a gap between the pipe and the geothermal well through a plurality of heat storage material coupled to the side of the pipe, the heat storage pipe may be provided in the center of the geothermal well.
그리고, 파이프의 외부로 주입된 열전달매체가 파이프의 내부로 유동할 수 있도록, 축열파이프의 하단부는 지열정의 하면과 소정의 간격으로 이격되는 것이 유리할 수 있다.In addition, the lower end of the heat storage pipe may be advantageously spaced apart from the lower surface of the geothermal well by a predetermined interval so that the heat transfer medium injected into the outside of the pipe may flow into the inside of the pipe.
또한, 지열정의 하부 소정의 깊이까지 축열파이프를 삽입한 뒤에는 축열재가 결합되지 않은 파이프를 연결하여 지열정의 지상까지 파이프를 연장할 수도 있다.In addition, after the heat storage pipe is inserted to a predetermined depth under the geothermal well, the pipe may be extended to the ground of the geothermal well by connecting pipes to which the heat storage material is not coupled.
즉, 지열정의 하부 일부에는 축열파이프가 연결되어 구비되고, 축열파이프의 상부에는 일반 파이프가 지상까지 연결될 수 있다.That is, the heat storage pipe may be connected to a lower portion of the geothermal well, and the general pipe may be connected to the ground above the heat storage pipe.
이러한 공정을 통하여 형성되는 지열정 열교환시스템은 축열재가 충전된 지열정 및 파이프 사이의 공간을 통하여 열전달매체를 주입하고, 지열정의 하부에서 가열된 열전달매체를 파이프의 내부를 통해 회수할 수 있다.The geothermal well heat exchange system formed through this process may inject a heat transfer medium through the space between the geothermal well filled with the heat storage material and the pipe, and recover the heat transfer medium heated under the geothermal well through the inside of the pipe.
이때, 열전달매체가 지열정(d100)의 하부까지 유동하는 과정에서 난류가 발생하여, 열전달매체가 지열정(d100)의 내부에서 회수하는 열의 양을 극대화 할 수 있다.In this case, turbulence occurs during the flow of the heat transfer medium to the bottom of the geothermal well (d100), thereby maximizing the amount of heat that the heat transfer medium recovers from the geothermal well (d100).
또한, 열전달매체가 지열정(d100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(d510)의 열을 전달받을 수 있어, 지열정(d100) 내부의 열용량 및 열전달계수를 크게 증가시킬 수 있다.In addition, the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal heat crystal (d100) and at the same time receives heat from the heat storage unit (d510) heated by geothermal heat, thereby reducing the heat capacity and heat transfer coefficient inside the geothermal heat crystal (d100). Can be increased significantly.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
<< 지열정Geothermal 열교환시스템 및 그의 시공방법의 제2  Second heat exchange system and construction method thereof 실시예Example >>
지열정Geothermal 열교환시스템의 제2-1  2-1 of heat exchange system 실시예Example
먼저, 도 40 내지 도 42를 참조하여, 본 발명에 따른 지열정 열교환시스템 제2-1 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.First, referring to Figures 40 to 42, the configuration and effects of the geothermal heat exchange system according to the embodiment 2-1 of the present invention will be described in detail.
여기서, 도 40은 본 발명에 따른 지열정 열교환시스템의 제2-1 실시예의 구성을 나타내는 단면도이고, 도 41은 본 발명에 따른 지열정 열교환시스템의 제2-1 실시예의 구성을 나타내는 평면도이며, 도 42는 본 발명에 따른 지열정 열교환시스템 제2-1 실시예의 변형예를 나타내는 도면이다.40 is a cross-sectional view showing the configuration of Embodiment 2-1 of the geothermal heat exchange system according to the present invention, and FIG. 41 is a plan view showing the configuration of Embodiment 2-1 of the geothermal heat exchange system according to the present invention. 42 is a view showing a modification of the geothermal heat exchange system 2-1 embodiment according to the present invention.
도 40에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템은 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e400)를 포함할 수 있다.As shown in FIG. 40, the geothermal well heat exchange system according to the present invention may include a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e400).
지열정(e100)은 지반을 굴착하여 형성되는 홀의 구성으로, 이용하고자 하는 온도의 지열이 발생되는 깊이까지 굴착하여 형성될 수 있다.Geothermal well (e100) is a configuration of a hole formed by excavating the ground, it may be formed by excavating to the depth to generate geothermal heat of the temperature to be used.
또한, 지열정(e100)은 지열을 회수하기 위해 충분한 양의 열전달매체가 유동할 수 있는 폭으로 형성되는 것이 유리할 수 있다.In addition, it may be advantageous that the geothermal well e100 is formed to a width such that a sufficient amount of the heat transfer medium can flow to recover the geothermal heat.
한편, 외측파이프(e200)는 전술한 지열정(e100)의 내부에 삽입되는 구성으로, 지상에서 지열정(e100)의 하부까지 연장되고, 지열정(e100)의 내부에서 지열정(e100) 내주면과 서로 이격되어 배치될 수 있다.On the other hand, the outer pipe (e200) is inserted into the interior of the geothermal well (e100) described above, extends from the ground to the bottom of the geothermal well (e100), the inner peripheral surface of the geothermal well (e100) inside the geothermal well (e100) And may be spaced apart from each other.
또한, 외측파이프(e200)는 지열정(e100)의 내부 하면에 접촉하지 않고 소정의 간격으로 이격되어 배치되는 것이 유리할 수 있다.In addition, it may be advantageous that the outer pipe e200 is spaced apart at predetermined intervals without contacting the inner bottom surface of the geothermal well e100.
그리고, 외측파이프(e200)는 외측파이프(e200)의 표면에 외측파이프(e200)의 내부와 외부가 연통된 형태의 관통홀이 복수 형성된 다공성 파이프의 형태로 형성될 수 있다.In addition, the outer pipe e200 may be formed in the form of a porous pipe in which a plurality of through-holes in which the inside and the outside of the outer pipe e200 communicate with each other are formed on a surface of the outer pipe e200.
관통홀은 지열정(e100)의 내부로 주입되는 열전달매체의 유동을 원활하게 하고, 지열정(e100) 내면으로부터 생산정 부근으로 대류를 통한 열전달을 촉진시켜 지열의 회수를 원활하게 할 수 있다.The through hole facilitates the flow of the heat transfer medium injected into the geothermal well (e100) and facilitates heat transfer through convection from the inner surface of the geothermal well (e100) to the production well, thereby facilitating recovery of geothermal heat.
이러한 외측파이프(e200)의 구성은 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 충분한 강도로 형성되는 것이 유리할 수 있다.The configuration of the outer pipe (e200) may be advantageously formed to have sufficient strength to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
한편, 내측파이프(e300)는 전술한 외측파이프(e200)의 내부에 삽입되는 구성으로, 외측파이프(e200)와 대응되는 길이로 형성되고, 외측파이프(e200)의 내주면과 서로 이격되어 배치될 수 있다.On the other hand, the inner pipe (e300) is inserted into the inside of the above-described outer pipe (e200), is formed with a length corresponding to the outer pipe (e200), it can be spaced apart from the inner peripheral surface of the outer pipe (e200). have.
이러한 내측파이프(e300)의 구성 역시 지반 내부의 압력 및 유동하는 열전달매체의 압력을 견딜 수 있는 충분한 강도로 형성되는 것이 유리할 수 있다.The inner pipe e300 may also be advantageously formed with sufficient strength to withstand the pressure inside the ground and the pressure of the flowing heat transfer medium.
그리고, 내측파이프(e300)는 내측파이프(e300)의 내부 및 외부간의 열교환 효율을 낮추기 위한 단열부를 포함하여 형성될 수 있다.In addition, the inner pipe e300 may be formed to include a heat insulating part for lowering the heat exchange efficiency between the inside and the outside of the inner pipe e300.
단열부는 적어도 하나 이상의 단열소재가 내측파이프(e300)의 면을 따라 구비되어 형성될 수 있으며, 외관 및 내관을 포함하는 이중관 형태의 내측파이프(e300)의 외관 및 내관 사이의 공간에 구비되는 것이 유리할 수 있다.The heat insulation part may be formed with at least one heat insulating material along the surface of the inner pipe e300, and it may be advantageous to be provided in the space between the outer pipe and the inner pipe of the inner pipe e300 having a double pipe shape including an outer pipe and an inner pipe. Can be.
이러한 단열부는 발포 우레탄, 발포 고무 등과 같은 발포성 단열소재가 충진된 형태로 구성되어 있으나, 공기, 스티로폼, 유리섬유 등의 다양한 단열소재가 적용되는 등 그 소재 및 구성은 제한되지 않고 다양할 수 있다.The insulation part is formed in a form filled with a foam insulation material such as urethane foam, foam rubber, etc., various materials such as air, styrofoam, glass fiber is applied, and the like and materials may be varied without limitation.
또한, 내측파이프(e300)는 내측파이프(e300) 상부의 열저항이 내측파이프(e300) 하부의 열저항보다 상대적으로 크게 형성될 수 있다.In addition, the inner pipe e300 may have a heat resistance above the inner pipe e300 relatively greater than a heat resistance under the inner pipe e300.
푸리에 법칙을 적용하여, 열전달율은 일종의 흐름이라 하고 열전도계수, 물질의 두께 및 단면적의 조합은 이 흐름에 대한 저항이라 하며, 온도는 열유동을 위한 구동함수가 되기 때문에 열유동은 열 포텐셜의 차이와 비례하고, 열저항과 반비례하다고 정리할 수 있다.By applying Fourier's law, the heat transfer rate is a kind of flow, and the combination of the thermal conductivity, the thickness of the material and the cross-sectional area is called the resistance to this flow. Since the temperature is the driving function for the heat flow, the heat flow is different from the difference of the thermal potential. It can be said to be proportional and inversely proportional to thermal resistance.
따라서, 열저항이 높게 형성되는 경우에는 열유동이 반비례로 작아지게 되고, 본 발명에 따른 지열정 단열 파이프의 상부가 하부에 비해 열유동이 적게 일어날 수 있다.Therefore, when the heat resistance is formed high, the heat flow becomes inversely small, and the upper portion of the geothermal heat insulating pipe according to the present invention may have less heat flow than the lower portion.
즉, 내측파이프(e300) 상부의 총합열전달계수가 더 높게 나타날 수 있으며, 이러한 구성은 지열정(e100)의 내부에서 열전달매체가 순환하는 과정에서, 지열정(e100)의 상부의 경우 내측파이프(e300)의 내부 및 외부의 온도차가 하부에 비해 더 크기 때문에, 지열 회수의 효율을 향상시키는데 유리할 수 있다.That is, the total heat transfer coefficient of the upper portion of the inner pipe (e300) may be higher, and such a configuration is such that in the process of circulating the heat transfer medium inside the geothermal well (e100), in the case of the upper portion of the geothermal well (e100), the inner pipe ( Since the temperature difference between the inside and outside of the e300 is larger than the lower portion, it may be advantageous to improve the efficiency of the geothermal recovery.
전술한 본 발명에 따른 지열정 순환시스템의 구성들은 도 41에 도시된 바와 같이, 지열정(e100)의 폭 보다 상대적으로 작은 폭으로 외측파이프(e200)가 형성되고, 외측파이프(e200)의 폭 보다 상대적으로 작은 폭으로 내측파이프(e300)가 형성될 수 있다.As shown in FIG. 41, the geothermal well circulation system according to the present invention has an outer pipe e200 having a width smaller than that of the geothermal well e100, and the width of the outer pipe e200. The inner pipe e300 may be formed in a relatively smaller width.
또한, 외측파이프(e200)는 지열정(e100)의 내부에 서로 이격되도록 배치되고, 내측파이프(e300)는 외측파이프(e200)의 내부에 서로 이격되도록 배치될 수 있다.In addition, the outer pipe e200 may be disposed to be spaced apart from each other inside the geothermal well e100, and the inner pipe e300 may be disposed to be spaced apart from each other inside the outer pipe e200.
위와 같이, 외측파이프(e200) 및 내측파이프(e300)가 지열정(e100)의 내부에서 서로 이격되어 배치되기 위하여, 외측파이프(e200)는 내측파이프(e300)와의 간격을 유지하기 위한 제1 지지부(e210) 및 지열정(e100)과의 간격을 유지하기 위한 제2 지지부(e220)를 포함할 수 있다.As described above, in order for the outer pipe e200 and the inner pipe e300 to be spaced apart from each other in the geothermal well e100, the outer pipe e200 may have a first support for maintaining a distance from the inner pipe e300. A second support part e220 may be included to maintain a distance between the e210 and the geothermal well e100.
제1 지지부(e210)는 외측파이프(e200)의 내주면 및 내측파이프(e300)의 외주면과 맞닿아 외측파이프(e200) 및 내측파이프(e300) 간의 간격을 유지하며, 외측파이프(e200)와 내측파이프(e300) 중 적어도 하나에 고정되어 형성될 수 있다.The first support part e210 contacts the inner circumferential surface of the outer pipe e200 and the outer circumferential surface of the inner pipe e300 to maintain a gap between the outer pipe e200 and the inner pipe e300, and the outer pipe e200 and the inner pipe. It may be fixed to at least one of the (e300).
또한, 제2 지지부(e220)는 외측파이프(e200)의 외주면 및 지열정(e100)의 내벽과 맞닿아 외측파이프(e200) 및 지열정(e100) 간의 간격을 유지하도록 형성될 수 있다.In addition, the second support part e220 may be formed to contact the outer circumferential surface of the outer pipe e200 and the inner wall of the geothermal well e100 to maintain a gap between the outer pipe e200 and the geothermal well e100.
이때, 제2 지지부(e220)는 수평 단면상 복수개가 방사형으로 배치되고, 외측파이프(e200)가 지열정(e100) 내부의 중심에 배치되도록 동일한 거리로 돌출되는 것이 유리할 수 있다.In this case, it may be advantageous that the plurality of second support parts e220 are radially disposed on a horizontal cross section and protrude at the same distance so that the outer pipe e200 is disposed at the center of the geothermal well e100.
또한, 제2 지지부(e220)는 하방경사를 가지며 외측파이프(e200)의 외측으로 지열정(e100)과 이격되는 간격만큼 돌출되다가 다시 외측파이프(e200)의 내측 방향으로 휘어지도록 형성될 수 있다.In addition, the second support part e220 may be formed to have a downward slope and protrude to the outside of the outer pipe e200 at an interval spaced apart from the geothermal well e100, and then bend in an inner direction of the outer pipe e200.
이러한 구성은, 제2 지지부(e220)가 외측파이프(e200)를 어느정도 지지하면서도, 외측파이프(e200)를 지열정(e100)의 내부에 삽입할 때, 제2 지지부(e220)가 지열정(e100)에 걸리는 것을 방지할 수 있다.In this configuration, while the second support part e220 supports the outer pipe e200 to some extent, when the outer pipe e200 is inserted into the geothermal well e100, the second support part e220 is geothermal well e100. ) Can be prevented.
한편, 축열부(e400)는 전술한 지열정(e100) 및 외측파이프(e200)의 사이 공간에 축열재가 구비되는 구성으로, 지열정(e100)의 내부로 주입되는 열전달매체가 통과할 수 있도록 형성될 수 있다.On the other hand, the heat storage unit (e400) is a configuration in which the heat storage material is provided in the space between the geothermal well (e100) and the outer pipe (e200), it is formed so that the heat transfer medium injected into the geothermal well (e100). Can be.
축열부(e400)로 구성되는 축열재는 자갈, 모래 또는 콘크리트 등 큰 열용량을 가지는 소재가 적용될 수 있으며, 이외에도 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.The heat storage material composed of the heat storage unit (e400) may be applied to a material having a large heat capacity, such as gravel, sand or concrete, and in addition to the geothermal heat is provided if the heat transfer medium is provided to transfer the heat to the surrounding medium is not limited in configuration. It can be varied without.
본 실시예에서 축열부(e400)는 소정의 부피를 가지는 복수개의 축열재가 지열정(e100) 및 외측파이프(e200) 사이의 공간에 구비되어 형성될 수 있다.In the present embodiment, the heat storage unit e400 may be provided with a plurality of heat storage materials having a predetermined volume in a space between the geothermal well e100 and the outer pipe e200.
이때, 축열부(e400)의 내부에는 각 축열재 사이 간격이 형성되고, 이러한 축열재의 간격을 통하여 열전달매체가 유동하며 지열정(e100)의 하부로 이동할 수 있다.At this time, the interval between each heat storage material is formed in the heat storage unit (e400), the heat transfer medium flows through the heat storage material can move to the bottom of the geothermal well (e100).
즉, 내측파이프(e300)의 외부 공간으로 주입된 열전달매체는 외측파이프(e200)에 형성된 복수개의 관통홀을 통해 지열정(e100)과 외측파이프(e200) 사이의 공간 및 외측파이프(e200)와 내측파이프(e300) 사이의 공간을 연통하며 지열에 의해 가열될 수 있다.That is, the heat transfer medium injected into the outer space of the inner pipe (e300) has a space between the geothermal well (e100) and the outer pipe (e200) and the outer pipe (e200) through a plurality of through holes formed in the outer pipe (e200). The space between the inner pipe e300 may communicate with each other and be heated by geothermal heat.
또한, 지열정(e100)과 외측파이프(e200) 사이의 공간이 유로의 역할을 수행하게 되어, 열전달매체가 순환하는데 필요한 펌프의 소요동력을 절감할 수 있다.In addition, the space between the geothermal well (e100) and the outer pipe (e200) serves as a flow path, it is possible to reduce the power required of the pump required to circulate the heat transfer medium.
이후, 가열된 열전달매체는 지열정(e100)의 하부에서 내측파이프(e300)의 내부로 유입되어 내측파이프(e300)를 통하여 지상으로 회수될 수 있다.Thereafter, the heated heat transfer medium may flow into the inner pipe e300 from the bottom of the geothermal well e100 and be recovered to the ground through the inner pipe e300.
이러한 구성은 열전달매체가 지열정(e100)의 하부까지 유동하는 과정에서 열전달매체의 유속이 빨라지게 되어 난류가 형성되고, 이러한 난류는 지열정(e100)으로부터 생산정으로의 열전달을 촉진시킬 수 있다.In this configuration, the flow of the heat transfer medium increases in the process of flowing the heat transfer medium to the bottom of the geothermal well (e100), so that turbulence is formed, and such turbulence may promote heat transfer from the geothermal well (e100) to the production well. .
또한, 열전달매체가 지열정(e100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(e400)의 열을 전달받을 수 있어, 생산정 내부의 열전도계수를 향상시켜 지열을 보다 효과적으로 흡수할 수 있다.In addition, the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time can receive heat from the heat storage unit (e400) heated by geothermal heat, thereby improving the thermal conductivity inside the production well to improve geothermal heat. It can absorb effectively.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
그리고, 지열정(e100) 및 외측파이프(e200) 사이의 공간이 축열부(e400)로 채워지기 때문에 지반의 강도가 약한 지역에 지열정(e100)이 형성되는 경우에도, 지열정(e100)의 내주면이 붕괴되며 지열정 열교환시스템이 파손되는 현상을 방지할 수 있는 효과를 얻을 수 있다.Since the space between the geothermal well (e100) and the outer pipe (e200) is filled with the heat storage unit (e400), even if the geothermal well (e100) is formed in a region of weak ground strength, the geothermal well (e100) The inner circumferential surface is collapsed and the geothermal heat exchange system can be prevented from being damaged.
또한, 축열부(e400)는 지열정(e100)의 하면과 전술한 두 파이프의 사이 공간에 구비되는 것이 유리할 수 있다.In addition, the heat storage unit (e400) may be advantageously provided in the space between the lower surface of the geothermal well (e100) and the aforementioned two pipes.
이러한 구성은, 축열부(e400)가 지열정(e100)의 하면에서 지열정(e100)의 내부로 삽입되는 외측파이프(e200) 및 내측파이프(e300)의 하부를 지지하게 되므로, 별도의 지지수단 없이 지열정(e100)의 하면과 전술한 두 파이프의 하단부가 직접적으로 접촉하는 것을 방지하는 효과를 얻을 수 있다.This configuration, since the heat storage unit (e400) supports the lower portion of the outer pipe (e200) and the inner pipe (e300) that is inserted into the geothermal column (e100) from the lower surface of the geothermal column (e100), separate support means Without the bottom of the geothermal well (e100) and the lower end of the two pipes can be obtained to prevent the direct contact.
한편, 본 발명에 따른 지열정 열교환시스템 제2-1 실시예의 변형예는 도 42에 도시된 바와 같이 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e400)를 포함할 수 있다.On the other hand, the modified example of the geothermal heat exchange system 2-1 embodiment according to the present invention is a geothermal well (e100), outer pipe (e200), inner pipe (e300) and heat storage unit (e400) as shown in FIG. It may include.
여기서, 지열정(e100), 외측파이프(e200) 및 내측파이프(e300)는 전술한 제2-1 실시예의 지열정(e100), 외측파이프(e200) 및 내측파이프(e300)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) is the same configuration as the configuration of the geothermal well (e100), outer pipe (e200) and inner pipe (e300) of the above-described embodiment 2-1. Therefore, detailed description will be omitted.
축열부(e400)의 구성 역시 전술한 제2-1 실시예의 축열부(e400) 구성과 동일한 구성이나, 본 변형예에서 축열부(e400)는 지열정(e100)의 하부 소정의 깊이까지 구비될 수 있다.The heat storage unit e400 also has the same structure as the heat storage unit e400 of the above-described embodiment 2-1, but in the present modification, the heat storage unit e400 is provided to a predetermined depth under the geothermal well e100. Can be.
즉, 축열부(e400)가 지열정(e100) 및 외측파이프(e200) 사이의 공간에 구비될 때, 전술한 제2-1 실시예와 같이 지상에서부터 지열정(e100)의 하면까지 모두 구비되지 않고, 지열정(e100)의 하부 소정의 깊이까지만 구비될 수 있다.That is, when the heat storage unit e400 is provided in the space between the geothermal well e100 and the outer pipe e200, all of the heat storage unit e400 is not provided from the ground to the lower surface of the geothermal well e100 as in the above-described embodiment 2-1. Instead, it may be provided only up to a predetermined depth of the bottom of the geothermal well (e100).
지열정(e100)의 내부에서 이용하고자 하는 온도의 지열은 지열정(e100)의 하단부에서 발생하기 때문에, 지열정(e100)의 하단부에서 집중적으로 열전달매체의 유동에 난류가 발생하여 지열 회수 효율을 상승시키는 효과를 얻을 수 있다.Since the geothermal heat of the temperature to be used inside the geothermal well (e100) is generated at the lower end of the geothermal well (e100), turbulence occurs in the flow of the heat transfer medium at the lower end of the geothermal well (e100), thereby improving geothermal recovery efficiency. A synergistic effect can be obtained.
지열정Geothermal 열교환시스템의 제2-2  2-2 of heat exchange system 실시예Example
이어서, 도 43을 참조하여, 본 발명에 따른 지열정 열교환시스템 제2-2 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, referring to Figure 43, the configuration and effects of the geothermal heat exchange system according to the embodiment 2-2 of the present invention will be described in detail.
여기서, 도 43은 본 발명에 따른 지열정 열교환시스템의 제2-2 실시예의 구성을 나타내는 도면이다.43 is a diagram showing the configuration of Example 2-2 of the geothermal heat exchange system according to the present invention.
도 43에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템은 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e500)를 포함할 수 있다.As shown in FIG. 43, the geothermal well heat exchange system according to the present invention may include a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e500).
여기서, 지열정(e100), 외측파이프(e200) 및 내측파이프(e300)의 구성은 전술한 제2-1 실시예의 지열정(e100), 외측파이프(e200) 및 내측파이프(e300)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) is the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) of the above-described embodiment 2-1. Since the same configuration, detailed description thereof will be omitted.
한편, 축열부(e500)는 전술한 제2-1 실시예와 마찬가지로 지열정(e100) 및 내측파이프(e300)의 사이 공간에 구비되어 지열정(e100)의 내부로 주입되는 열전달매체가 통과할 수 있도록 형성될 수 있다.On the other hand, the heat storage unit (e500) is provided in the space between the geothermal well (e100) and the inner pipe (e300) as in the above-described embodiment 2-1, the heat transfer medium is injected into the geothermal well (e100) It can be formed to be.
또한, 큰 열용량을 가지는 소재가 적용될 수 있으며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.In addition, a material having a large heat capacity may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium that carries geothermal heat and flows around.
다만, 본 실시예에서 축열부(e500)는 다공성 형태의 축열재로 구성되어, 축열부(e500) 내부에 형성된 공극을 통하여 열전달매체가 투과될 수 있다.However, in the present embodiment, the heat storage unit e500 may be formed of a porous heat storage material, and the heat transfer medium may pass through the pores formed in the heat storage unit e500.
이러한 구성은 열전달매체가 지열정(e100)의 하부까지 유동하는 과정에서 열전달매체의 유속이 빨라지게 되어 난류가 형성되고, 이러한 난류는 지열정(e100)으로부터 생산정으로의 열전달을 촉진시킬 수 있다.In this configuration, the flow of the heat transfer medium increases in the process of flowing the heat transfer medium to the bottom of the geothermal well (e100), so that turbulence is formed, and such turbulence may promote heat transfer from the geothermal well (e100) to the production well. .
또한, 열전달매체가 지열정(e100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(e500)의 열을 전달받을 수 있어, 생산정 내부의 열전도계수를 향상시켜 지열을 보다 효과적으로 흡수할 수 있다.In addition, the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time receives heat from the heat storage unit (e500) heated by geothermal heat, thereby improving the thermal conductivity coefficient inside the production well to improve geothermal heat. It can absorb effectively.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
한편, 본 실시예의 축열부(e500) 역시 전술한 제2-1 실시예와 같이 지열정(e100)의 하면과 전술한 두 파이프의 하단부 사이에 구비될 수도 있고, 지상에서부터 지열정(e100)의 하면까지 모두 구비되거나, 지열정(e100)의 하부 소정의 깊이까지만 구비될 수도 있다.On the other hand, the heat storage unit (e500) of the present embodiment may also be provided between the lower surface of the geothermal well (e100) and the lower end of the two pipes described above, as in the embodiment 2-1 described above, from the ground of the geothermal well (e100) It may be provided up to the bottom surface, or may be provided only up to a predetermined depth of the bottom of the geothermal well (e100).
이러한 구성을 통하여 제2-1 실시예의 상세한 설명에 기재된 효과와 같은 효과를 얻을 수 있다.Through this configuration, the same effects as those described in the detailed description of the embodiment 2-1 can be obtained.
지열정Geothermal 열교환시스템의 제2-3  2-3 of heat exchange system 실시예Example
이어서, 도 44 내지 도 46을 참조하여, 본 발명에 따른 지열정 열교환시스템 제2-3 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, with reference to Figures 44 to 46, the configuration and effect of the geothermal heat exchange system according to the embodiment 2-3 of the present invention will be described in detail.
여기서, 도 44는 본 발명에 따른 지열정 열교환시스템의 제2-3 실시예의 구성을 나타내는 도면이고, 도 45는 본 발명에 따른 지열정 열교환시스템 제2-3 실시예의 제1 변형예를 나타내는 도면이며, 도 46은 본 발명에 따른 지열정 열교환시스템 제2-3 실시예의 제2 변형예를 나타내는 도면이다.44 is a view showing the configuration of the second embodiment of the geothermal heat exchange system according to the present invention, and FIG. 45 is a view showing the first modified example of the second embodiment of the geothermal heat exchange system according to the present invention. 46 is a view showing the second modified example of the geothermal heat exchange system according to the second embodiment of the present invention.
도 44에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템은 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e600)를 포함할 수 있다.As shown in FIG. 44, the geothermal well heat exchange system according to the present invention may include a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e600).
여기서, 지열정(e100), 외측파이프(e200) 및 내측파이프(e300)의 구성은 전술한 제2-1 실시예의 지열정(e100), 외측파이프(e200) 및 내측파이프(e300)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) is the configuration of the geothermal well (e100), the outer pipe (e200) and the inner pipe (e300) of the above-described embodiment 2-1. Since the same configuration, detailed description thereof will be omitted.
한편, 축열부(e600)는 전술한 제2-1 실시예와 마찬가지로 지열정(e100) 및 외측파이프(e200)의 사이 공간에 구비되어 지열정(e100)의 내부로 주입되는 열전달매체가 통과할 수 있도록 형성될 수 있다.On the other hand, the heat storage unit (e600) is provided in the space between the geothermal well (e100) and the outer pipe (e200) as in the above-described embodiment 2-1, the heat transfer medium is injected into the geothermal well (e100) It can be formed to be.
또한, 콘크리트 등 큰 열용량을 가지는 소재가 적용될 수 있으며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.In addition, a material having a large heat capacity such as concrete may be applied, and the configuration may be various without being limited if it is provided to transfer heat to a heat transfer medium having geothermal heat flowing therein.
다만, 축열부(e600)는 복수개의 축열재가 외측파이프(e200)의 외주면에 돌출되는 형태로 결합되어 형성될 수 있다.However, the heat storage unit e600 may be formed by combining a plurality of heat storage materials protruding to the outer circumferential surface of the outer pipe e200.
이때, 각각의 축열재는 열전달매체의 유동에 저항을 발생시키기 위하여 축열재의 상면에 소정의 면적을 가지는 형태로 형성되는 것이 유리할 수 있다.At this time, each heat storage material may be advantageously formed to have a predetermined area on the upper surface of the heat storage material in order to generate a resistance to the flow of the heat transfer medium.
본 실시예에서 축열부(e610)는 외측파이프(e200)를 중심으로 외측부로 돌출되는 플레이트 형태 및 지열정(e100)의 형태와 대응되는 형태로 형성되며, 각각의 축열부(e610)는 유동하는 열전달매체가 통과할 수 있는 관통홀(e612)이 복수개 형성될 수 있다.In the present embodiment, the heat storage unit e610 is formed in a form corresponding to the shape of the plate and the geothermal well (e100) protruding to the outside around the outer pipe (e200), each heat storage unit (e610) is flowing A plurality of through holes e612 through which the heat transfer medium can pass may be formed.
이러한 구성은 열전달매체가 지열정(e100)의 하부까지 유동하는 과정에서 열전달매체의 유속이 빨라지게 되어 난류가 형성되고, 이러한 난류는 지열정(e100)으로부터 생산정으로의 열전달을 촉진시킬 수 있다.In this configuration, the flow of the heat transfer medium increases in the process of flowing the heat transfer medium to the bottom of the geothermal well (e100), so that turbulence is formed, and such turbulence may promote heat transfer from the geothermal well (e100) to the production well. .
또한, 열전달매체가 지열정(e100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(e610)의 열을 전달받을 수 있어, 생산정 내부의 열전도계수를 향상시켜 지열을 보다 효과적으로 흡수할 수 있다.In addition, the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time receives heat from the heat storage unit (e610) heated by geothermal heat, thereby improving the thermal conductivity coefficient inside the production well to improve geothermal heat. It can absorb effectively.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
한편, 본 발명에 따른 지열정 열교환시스템 제2-3 실시예의 변형예는 도 45 및 도 46에 도시된 바와 같이 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e600)를 포함할 수 있다.On the other hand, the modified example of the geothermal heat exchange system according to the embodiment 2-3 of the present invention is geothermal well (e100), the outer pipe (e200), the inner pipe (e300) and the heat storage ( e600).
여기서, 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e600)는 전술한 제2-3 실시예의 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e600)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, the geothermal well (e100), the outer pipe (e200), the inner pipe (e300) and the heat storage unit (e600) is the geothermal well (e100), the outer pipe (e200), the inner pipe (e300) of the above-described embodiment 2-3 ) And the heat storage unit (e600) is the same configuration and detailed description thereof will be omitted.
다만, 제1 변형예에서 축열부(e620)는 제2-3 실시예의 축열부(e610)에 비해 상대적으로 작은 면적을 가지는 플레이트 형태로 형성되어, 외측파이프(e200)의 외주면을 따라 나선형으로 배치될 수 있다.However, in the first modified example, the heat storage unit e620 is formed in a plate shape having a relatively smaller area than the heat storage unit e610 in the second embodiment, and is disposed spirally along the outer circumferential surface of the outer pipe e200. Can be.
또한, 제2 변형예에서 축열부(e630)는 외측파이프(e200)의 외주면을 따라 나선형으로 감겨 내려가는 플레이트 형태로 형성될 수 있다.In addition, in the second modification, the heat storage unit e630 may be formed in a plate shape spirally wound along the outer circumferential surface of the outer pipe e200.
이러한 구성은, 상대적으로 자연스럽고 원활하게 열전달매체가 유동하게되고, 열전달매체가 지열정(e100)의 하부까지 유동하는 과정에서 열전달매체의 유속이 빨라지게 되어 난류가 형성되어 열전달을 촉진시킬 수 있다.This configuration allows the heat transfer medium to flow relatively naturally and smoothly, and in the process of flowing the heat transfer medium to the lower portion of the geothermal well (e100), the flow rate of the heat transfer medium is accelerated to form turbulent flow, thereby facilitating heat transfer. .
또한, 열전달매체가 지열정(e100)의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부(e610)의 열을 전달받을 수 있어, 생산정 내부의 열전도계수를 향상시켜 지열을 보다 효과적으로 흡수할 수 있다.In addition, the heat transfer medium receives geothermal heat through the inner circumferential surface of the geothermal well (e100) and at the same time receives heat from the heat storage unit (e610) heated by geothermal heat, thereby improving the thermal conductivity coefficient inside the production well to improve geothermal heat. It can absorb effectively.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
이러한 축열부(e620)의 구성은 지그재그 배치, 무작위 배치 등 유동하는 열전달매체에 저항을 발생시키도록 마련된다면 본 변형예에 제한되지 않고 그 형태 및 배치는 다양할 수 있다.The configuration of the heat storage unit e620 is not limited to the present modification as long as it is provided to generate resistance in the heat transfer medium, such as a zigzag arrangement or a random arrangement, and the shape and arrangement may be various.
한편, 본 실시예의 축열부(e600) 역시 지열정(e100)의 하부 소정의 깊이까지만 구비될 수도 있다.On the other hand, the heat storage unit (e600) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (e100).
이러한 구성을 통하여 제2-1 실시예의 상세한 설명에 기재된 효과와 같은 효과를 얻을 수 있다.Through this configuration, the same effects as those described in the detailed description of the embodiment 2-1 can be obtained.
지열정Geothermal 열교환시스템의 제2-4  2-4 of heat exchange system 실시예Example
이어서, 도 47을 참조하여, 본 발명에 따른 지열정 열교환시스템 제2-4 실시예의 구성 및 효과에 대하여 상세히 설명하기로 한다.Next, referring to Figure 47, the configuration and effects of the geothermal heat exchange system according to the embodiment 2-4 according to the present invention will be described in detail.
여기서, 도 47은 본 발명에 따른 지열정 열교환시스템의 제2-4 실시예의 구성을 나타내는 도면이다.47 is a view showing the configuration of Embodiments 2-4 of the geothermal heat exchange system according to the present invention.
도 47에 도시된 바와 같이 본 발명에 따른 지열정 열교환시스템 제2-4 실시예는 지열정(e100), 외측파이프(e200), 내측파이프(e300) 및 축열부(e400)를 포함할 수 있다.As shown in FIG. 47, the geothermal well heat exchange system according to the present invention may have a geothermal well (e100), an outer pipe (e200), an inner pipe (e300), and a heat storage unit (e400). .
여기서, 지열정(e100), 외측파이프(e200) 및 축열부(e400)의 구성은 전술한 제2-1 실시예의 지열정(e100), 외측파이프(e200) 및 축열부(e400)의 구성과 동일한 구성이므로 상세한 설명은 생략하기로 한다.Here, the configuration of the geothermal well (e100), the outer pipe (e200) and the heat storage unit (e400) is the configuration of the geothermal well (e100), the outer pipe (e200) and the heat storage unit (e400) of the above-described embodiment 2-1. Since the same configuration, detailed description thereof will be omitted.
또한, 내측파이프(e300)의 기본적인 구성 역시 전술한 제2-1 실시예의 내측파이프(e300)와 동일한 구성일 수 있다.In addition, the basic configuration of the inner pipe (e300) may also be the same configuration as the inner pipe (e300) of the above-described embodiment 2-1.
다만, 본 실시예의 내측파이프(e300)는 내측파이프(e300) 상부 외주면의 직경(L6-a)이 내측파이프(e300) 하부 외주면의 직경(L6-b)보다 상대적으로 크게 형성될 수 있다.However, in the inner pipe e300 of the present embodiment, the diameter L6-a of the upper outer circumferential surface of the inner pipe e300 may be relatively larger than the diameter L6-b of the lower outer circumferential surface of the lower inner pipe e300.
이러한 구성은 지열정(e100)의 내주면 및 내측파이프(e300)의 사이 공간이 지열정(e100)의 하부로 갈 수록 넓어질 수 있다.Such a configuration may increase the space between the inner circumferential surface of the geothermal well (e100) and the inner pipe (e300) toward the lower portion of the geothermal well (e100).
따라서, 지열정(e100)의 하부로 갈수록 열전달매체의 유로가 넓어지게 되어 동일한 압력에 의해 열전달매체가 유동하는 경우 지열정(e100)의 하부로 갈 수록 열전달매체의 유속이 느려지고, 열전달매체가 지열정(e100)의 내부에서 유동하는 시간을 더욱 늘릴 수 있다.Therefore, the flow path of the heat transfer medium becomes wider toward the bottom of the geothermal well (e100), and when the heat transfer medium flows under the same pressure, the flow rate of the heat transfer medium decreases toward the bottom of the geothermal well (e100), and the heat transfer medium is supported. It is possible to further increase the flow time inside the passion (e100).
또한, 지열정(e100)의 하부로 갈수록 축열부(e400)층이 두꺼워져 지열정 하부의 열용량이 보다 증가하고, 유동하는 열전달매체에 보다 많은 난류를 형성하여 열전달 효율을 향상시킬 수 있다.In addition, the heat storage layer (e400) layer becomes thicker toward the lower portion of the geothermal well (e100), so that the heat capacity of the geothermal well is lower, and more turbulence is formed in the flowing heat transfer medium, thereby improving heat transfer efficiency.
이를 통하여, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Through this, the total amount of heat received by the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
한편, 본 실시예의 축열부(e400) 역시 지열정(e100)의 하부 소정의 깊이까지만 구비될 수도 있다.On the other hand, the heat storage unit (e400) of the present embodiment may also be provided only up to a predetermined depth of the geothermal well (e100).
이러한 구성을 통하여 제2-1 실시예의 상세한 설명에 기재된 효과와 같은 효과를 얻을 수 있다.Through this configuration, the same effects as those described in the detailed description of the embodiment 2-1 can be obtained.
그리고, 본 실시예의 내측파이프(e300)는 내측파이프(e300) 상부 내주면의 직경(L7-a)이 내측파이프(e300) 하부 내주면의 직경(L7-b)보다 상대적으로 작게 형성될 수 있다.In addition, the inner pipe e300 of the present embodiment may have a diameter L7-a of the upper inner circumferential surface of the inner pipe e300 relatively smaller than the diameter L7-b of the lower inner circumferential surface of the inner pipe e300.
이러한 경우, 내측파이프(e300)의 내부를 통해 회수되는 열전달매체의 유동속도가 지열정(e100)의 상부로 갈수록 빨라지게 되고, 따라서 지열정(e100) 상부에서 내측파이프(e300)의 내부 및 외부간에 열교환이 발생하는 것을 방지할 수 있다.In this case, the flow rate of the heat transfer medium recovered through the inside of the inner pipe (e300) becomes faster toward the top of the geothermal well (e100), and thus the inside and outside of the inner pipe (e300) above the geothermal well (e100). Heat exchange can be prevented from occurring.
즉, 회수하는 지열을 빼앗기지 않기 때문에 보다 열회수 효율을 향상시키는 효과를 얻을 수 있다.That is, since the ground heat to be recovered is not lost, the effect of improving the heat recovery efficiency can be obtained.
지열정Geothermal 열교환시스템 시공방법의 제2-1  Article 2-1 of Construction Method of Heat Exchange System 실시예Example
다음으로, 도 48을 참조하여, 본 발명에 따른 지열정 열교환시스템 시공방법의 제2-1 실시예에 대하여 상세히 설명하기로 한다.Next, with reference to FIG. 48, embodiment 2-1 of the geothermal heat exchange system construction method according to the present invention will be described in detail.
여기서, 도 48은 본 발명에 따른 지열정 열교환시스템 시공방법의 제2-1 실시예를 나타내는 도면이다.48 is a view showing Embodiment 2-1 of the geothermal heat exchange system construction method according to the present invention.
도 48에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템 시공방법은 전술한 구성에 의한 지열정 열교환시스템을 시공하기 위한 방법으로, 굴착단계(eS100), 가충전단계(eS200), 삽입단계(eS300) 및 충전단계(eS400)를 포함할 수 있다.As shown in FIG. 48, the geothermal well heat exchange system construction method according to the present invention is a method for constructing a geothermal well heat exchange system according to the above-described configuration, and includes an excavation step (eS100), a charging step (eS200), and an insertion step. (eS300) and the charging step (eS400) may be included.
굴착단계(eS100)는 지반을 소정의 직경으로 굴착하여 지열정을 형성하는 단계로, 이용하고자 하는 온도의 지열이 발생하는 깊이와 충분한 양의 열전달매체가 유동할 수 있는 폭으로 지반을 굴착할 수 있다.Excavation step (eS100) is a step to form a geothermal well by excavating the ground to a predetermined diameter, it is possible to excavate the ground to the depth that the geothermal heat of the temperature to use and a sufficient amount of heat transfer medium can flow have.
이러한 굴착단계(eS100)는 일반적으로 지반을 굴착하는 공정 및 장비 등을 이용하여 지열정을 굴착할 수 있다.This excavation step (eS100) can generally excavate geothermal well using a process and equipment for excavating the ground.
한편, 가충전단계(eS200)는 전술한 굴착단계(eS100)에서 형성된 지열정의 하단부에 소정의 두께로 축열재를 충전하는 단계로, 그 두께는 후술하는 삽입단계(eS300)에서 지열정의 내부로 삽입되는 두 파이프가 지열정의 하면과 이격되는 간격과 대응되는 두께로 충전될 수 있다.On the other hand, the temporary charging step (eS200) is a step of filling the heat storage material with a predetermined thickness at the lower end of the geothermal well formed in the above-mentioned excavation step (eS100), the thickness of the inside of the geothermal well in the insertion step (eS300) to be described later The two pipes may be filled with a thickness corresponding to a gap spaced apart from the bottom of the geothermal well.
축열재는 콘크리트 등 큰 열용량을 가지는 소재가 적용되고, 열전달매체가 투과될 수 있도록 형성되며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.The heat storage material is applied to a material having a large heat capacity such as concrete, formed so that the heat transfer medium can penetrate, and is provided to transfer heat to the heat transfer medium that carries geothermal heat and then flows around the configuration can be varied without limitation have.
한편, 삽입단계(eS300)는 지열정의 내부로 지상에서부터 지열정의 하부까지 외측파이프 및 내측파이프를 연장하여 삽입하는 단계로 외측파이프의 외주면은 지열정의 내주면과 서로 이격되고, 내측파이프의 외주면은 외측파이프의 내주면과 서로 이격되도록 배치될 수 있다.Meanwhile, the insertion step (eS300) is a step of extending and inserting the outer pipe and the inner pipe from the ground to the bottom of the geothermal well into the geothermal well, and the outer circumferential surface of the outer pipe is spaced apart from the inner circumferential surface of the geothermal well, and the outer circumferential surface of the inner pipe May be spaced apart from the inner circumferential surface of the outer pipe.
이때, 두 파이프는 복수개의 단위파이프를 연결하여 길이를 연장하면서 지열정의 내부로 삽입될 수 있다.In this case, the two pipes may be inserted into the geothermal well while extending the length by connecting the plurality of unit pipes.
또한, 전술한 가충전단계(eS200)에서 충전된 축열재의 상부와 외측파이프 및 내측파이프의 하단부를 접촉시켜, 축열재가 파이프를 지지할 수 있다.In addition, the heat storage material may support the pipe by contacting the upper portion of the heat storage material filled in the above-described charging and charging step (eS200) and the lower end portion of the outer pipe and the inner pipe.
또한, 삽입단계(eS300)에서 삽입되는 내측파이프는 내측파이프의 내부 및 외부간에 열교환 효율을 낮출 수 있는 단열부가 포함된 파이프를 이용하는 것이 유리할 수 있다.In addition, the inner pipe inserted in the insertion step (eS300) may be advantageous to use a pipe including a heat insulating portion that can lower the heat exchange efficiency between the inside and the outside of the inner pipe.
이러한 내측파이프는 이중관 구조의 형태로 형성되어, 내측파이프의 외관 및 내관 사이 공간에 단열소재가 구비되어 단열부를 구성하도록 형성될 수 있다.The inner pipe may be formed in the form of a double pipe structure, and the heat insulating material may be provided in the space between the outer pipe and the inner pipe of the inner pipe to form a heat insulating part.
한편, 충전단계(eS400)는 지열정의 내주면 및 외측파이프의 외주면 사이의 공간에 축열재를 충전하는 단계일 수 있다.Meanwhile, the filling step eS400 may be a step of filling the heat storage material in a space between the inner circumferential surface of the geothermal well and the outer circumferential surface of the outer pipe.
이때, 축열재가 지열정 및 외측파이프 사이의 공간의 지상까지 모두 충전될 수도 있고, 지열정의 하부 소정의 깊이까지 축열재를 충전한 뒤 충전단계(eS400)를 종료할 수도 있다.At this time, the heat storage material may be filled up to the ground of the space between the geothermal well and the outer pipe, or the charging step (eS400) may be terminated after filling the heat storage material to a predetermined depth under the geothermal well.
또한, 축열재를 일부 충전한 후, 이후에는 상대적으로 열전달매체의 투과성이 보다 높은 소재의 축열재를 충전할 수도 있다.In addition, after partially filling the heat storage material, a heat storage material of a material having a relatively higher permeability of the heat transfer medium may be filled.
이러한 공정을 통하여 형성되는 지열정 열교환시스템은 축열재가 충전된 지열정 및 내측파이프 사이의 공간을 통하여 열전달매체를 주입하고, 지열정의 하부에서 가열된 열전달매체를 내측파이프의 내부를 통해 회수할 수 있다.The geothermal well heat exchange system formed through this process can inject heat transfer medium through the space between the geothermal well filled with the heat storage material and the inner pipe, and recover the heat transfer medium heated at the bottom of the geothermal well through the inside of the inner pipe. have.
이때, 열전달매체가 지열정의 하부까지 유동하는 과정에서 외측파이프를 연통하며 유동하고, 이때 열전달매체가 지열정의 하부까지 유동하는 과정에서 열전달매체의 유속이 빨라지게 되어 난류가 형성되어 열전달을 촉진시킬 수 있다.At this time, the heat transfer medium flows through the outer pipe in the process of flowing to the bottom of the geothermal well, and at this time, the flow rate of the heat transfer medium is accelerated in the process of flowing the heat transfer medium to the bottom of the geothermal well to promote heat transfer You can.
또한, 열전달매체가 지열정의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부의 열을 전달받을 수 있어, 생산정 내부의 열전도계수를 향상시켜 지열을 보다 효과적으로 흡수할 수 있다.In addition, the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well and at the same time can receive heat from the heat storage portion heated by geothermal heat, thereby improving the heat conductivity inside the production well to absorb geothermal heat more effectively.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
지열정Geothermal 열교환시스템 시공방법의 제2-2  Article 2-2 of the heat exchange system construction method 실시예Example
이어서, 도 49를 참조하여, 본 발명에 따른 지열정 열교환시스템 시공방법의 제2-2 실시예에 대하여 상세히 설명하기로 한다.Next, with reference to FIG. 49, the second embodiment of the geothermal heat exchange system construction method according to the present invention will be described in detail.
여기서, 도 49는 본 발명에 따른 지열정 열교환시스템 시공방법의 제2-2 실시예를 나타내는 도면이다.49 is a view showing Embodiment 2-2 of the geothermal heat exchange system construction method according to the present invention.
도 49에 도시된 바와 같이, 본 발명에 따른 지열정 열교환시스템 시공방법은 전술한 구성에 의한 지열정 열교환시스템을 시공하기 위한 방법으로, 축열외측파이프 제조단계(eS500), 굴착단계(eS600) 및 삽입단계(eS700)를 포함할 수 있다.49, the geothermal heat exchange system construction method according to the present invention is a method for constructing a geothermal heat exchange system according to the above configuration, the heat storage outer pipe manufacturing step (eS500), excavation step (eS600) and It may include an insertion step (eS700).
축열외측파이프 제조단계(eS500)는 외측파이프의 외주면에 복수개의 축열재가 돌출되는 형태로 외측파이프와 축열재를 결합하여 축열외측파이프를 제조하는 단계일 수 있다.The heat storage outer pipe manufacturing step (eS500) may be a step of manufacturing the heat storage outer pipe by combining the outer pipe and the heat storage material in a form in which a plurality of heat storage materials protrude from the outer circumferential surface of the outer pipe.
이때, 축열재는 콘크리트 등 큰 열용량을 가지는 소재가 적용되고, 열전달매체가 투과될 수 있도록 형성되며, 지열을 품고 있다가 주변을 유동하는 열전달매체로 열을 전달하도록 마련된다면 그 구성은 제한되지 않고 다양할 수 있다.At this time, the heat storage material is applied to a material having a large heat capacity, such as concrete, the heat transfer medium is formed so as to permeate, if the geothermal heat is provided to transfer heat to the heat transfer medium flowing around the configuration is not limited and varied can do.
또한, 복수개의 축열재는 외측파이프를 중심으로 파이프의 외주면을 따라 나선 배치, 지그재그 배치, 무작위 배치 등 다양하게 배치되어 결합될 수 있다.In addition, the plurality of heat storage materials may be coupled to various arrangements such as spiral arrangement, zigzag arrangement, random arrangement along the outer circumferential surface of the pipe with respect to the outer pipe.
그리고, 각각의 축열재는 파이프의 상부 측을 향해 소정의 면적이 형성되도록 배치되어 결합되는 것이 유리할 수 있다.And, it may be advantageous that each heat storage material is arranged and coupled so that a predetermined area is formed toward the upper side of the pipe.
한편, 굴착단계(eS600)는 전술한 본 발명에 따른 열교환시스템 시공방법 제2-1 실시예의 굴착단계(eS100)와 동일한 공정이며, 전술한 축열파이프 제조단계(eS500)에서 제조된 축열파이프가 삽입될 수 있는 폭으로 지열정을 굴착할 수 있다.On the other hand, the excavation step (eS600) is the same process as the excavation step (eS100) of the heat exchange system construction method embodiment 2-1 according to the present invention described above, the heat storage pipe manufactured in the above-described heat storage pipe manufacturing step (eS500) is inserted. Geothermal wells can be excavated to the extent possible.
한편, 삽입단계(eS700)는 전술한 굴착단계에서 형성된 지열정의 내부로, 지열정의 하부까지 축열외측파이프를 삽입하고, 축열외측파이프의 내부로 내측파이프를 삽입하는 단계일 수 있다.On the other hand, the insertion step (eS700) may be a step of inserting the heat storage outer pipe to the bottom of the geothermal well formed in the above-described excavation step, the inner pipe into the heat storage outer pipe.
이때, 삽입단계(eS700)는 복수개의 축열외측파이프를 연결하여 길이를 연장하면서 지열정의 내부로 삽입할 수 있으며, 내측파이프도 같은 방법을 통해 지열정의 내부로 삽입할 수 있다.At this time, the insertion step (eS700) can be inserted into the geothermal well while extending the length by connecting a plurality of heat storage outer pipe, the inner pipe can also be inserted into the geothermal well through the same method.
이때, 내측파이프는 내측파이프의 내부 및 외부간에 열교환 효율을 낮출 수 있는 단열소재가 포함된 파이프를 이용하는 것이 유리할 수 있다.In this case, the inner pipe may be advantageous to use a pipe containing a heat insulating material that can lower the heat exchange efficiency between the inside and the outside of the inner pipe.
그리고, 내측파이프의 외부로 주입된 열전달매체가 내측파이프의 내부로 유동할 수 있도록, 축열외측파이프 및 내측파이프의 하단부는 지열정의 하면과 소정의 간격으로 이격되는 것이 유리할 수 있다.In addition, the lower end portions of the heat storage outer pipe and the inner pipe may be separated from the bottom surface of the geothermal well at predetermined intervals so that the heat transfer medium injected into the outside of the inner pipe may flow into the inner pipe.
또한, 지열정의 하부 소정의 깊이까지 축열외측파이프를 삽입한 뒤에는 축열재가 결합되지 않은 외측파이프를 연결하여 지열정의 지상까지 외측파이프를 연장할 수도 있다.In addition, after the heat storage outer pipe is inserted to a predetermined depth under the geothermal well, the outer pipe may be extended to the ground of the geothermal well by connecting an external pipe to which the heat storage material is not bonded.
즉, 지열정의 하부 일부에는 축열외측파이프가 연결되어 구비되고, 축열외측파이프의 상부에는 일반 외측파이프가 지상까지 연결될 수 있다.That is, the heat storage outer pipe is connected to the lower part of the geothermal well, and the general outer pipe may be connected to the ground above the heat storage outer pipe.
이러한 공정을 통하여 형성되는 지열정 열교환시스템은 축열재가 충전된 지열정 및 내측파이프 사이의 공간을 통하여 열전달매체를 주입하고, 지열정의 하부에서 가열된 열전달매체를 내측파이프의 내부를 통해 회수할 수 있다.The geothermal well heat exchange system formed through this process can inject heat transfer medium through the space between the geothermal well filled with the heat storage material and the inner pipe, and recover the heat transfer medium heated at the bottom of the geothermal well through the inside of the inner pipe. have.
이때, 열전달매체가 지열정의 하부까지 유동하는 과정에서 열전달매체의 유속이 빨라지게 되어 난류가 형성되어 열전달을 촉진시킬 수 있다.At this time, in the process of flowing the heat transfer medium to the lower portion of the geothermal well, the flow rate of the heat transfer medium is increased, so that turbulence may be formed to promote heat transfer.
또한, 열전달매체가 지열정의 내주면을 통하여 지열을 전달받는 것과 동시에 지열에 의해 가열된 축열부의 열을 전달받을 수 있어, 생산정 내부의 열전도계수를 향상시켜 지열을 보다 효과적으로 흡수할 수 있다.In addition, the heat transfer medium can receive geothermal heat through the inner circumferential surface of the geothermal well and at the same time can receive heat from the heat storage portion heated by geothermal heat, thereby improving the heat conductivity inside the production well to absorb geothermal heat more effectively.
따라서, 열전달매체가 전달받게 되는 총 열량이 크게 증가하게 되어 보다 많은 지열을 회수할 수 있으며, 지열정 열교환시스템의 효율이 향상되는 효과를 얻을 수 있다.Therefore, the total amount of heat delivered to the heat transfer medium is greatly increased to recover more geothermal heat, and the efficiency of the geothermal heat exchange system can be improved.
또한, 이상 설명한 바와 같이 본 발명의 특정한 실시예가 설명되고 도시되었지만, 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.In addition, while specific embodiments of the present invention have been described and illustrated as described above, the present invention is not limited to the described embodiments, and various modifications and variations can be made without departing from the spirit and scope of the present invention. It is obvious to those of ordinary skill in the field. Therefore, such modifications or variations are not to be understood individually from the technical spirit or point of view of the present invention, the modified embodiments will belong to the claims of the present invention.

Claims (20)

  1. 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프에 있어서,In the pipe is inserted into the geothermal well is formed so that the heat transfer medium flows along the geothermal well,
    지상으로부터 상기 지열정의 하부까지 연장되고 상기 지열정에 비하여 상대적으로 작은 직경으로 형성되어, 상기 지열정의 내측면과 이격되어 배치되는 외관부;An exterior portion extending from the ground to a lower portion of the geothermal well and formed with a relatively smaller diameter than the geothermal well, and spaced apart from an inner surface of the geothermal well;
    상기 외관부의 길이와 대응되는 길이와 상기 외관부에 비하여 상대적으로 작은 직경으로 형성되어, 상기 외관부의 내측면과 이격되어 배치되는 내관부; 및An inner tube portion formed to have a length corresponding to the length of the outer portion and a relatively smaller diameter than the outer portion, and spaced apart from an inner side of the outer portion; And
    적어도 하나 이상의 단열소재가 상기 외관부 및 상기 내관부의 사이 공간에 구비되어 형성되는 단열부;A heat insulating part having at least one heat insulating material provided in a space between the outer part and the inner tube part;
    를 포함하는 지열정 단열 파이프.Geothermal heat insulation pipe comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 지열정 단열 파이프는,The geothermal heat insulation pipe,
    상기 지열정 단열 파이프 상부의 열저항이 상기 지열정 단열 파이프 하부의 열저항보다 상대적으로 크게 형성되는 지열정 단열 파이프.And a heat resistance of the upper part of the geothermal heat insulating pipe is greater than a heat resistance of the bottom of the geothermal heat insulating pipe.
  3. 제1항에 있어서,The method of claim 1,
    상기 단열부는,The heat insulation unit,
    상기 단열부 상부의 두께가 상기 단열부 하부의 두께보다 상대적으로 크게 형성되는 지열정 단열 파이프.Geothermal heat insulation pipe is formed that the thickness of the upper portion of the heat insulating portion relatively larger than the thickness of the lower portion of the heat insulating portion.
  4. 제1항에 있어서,The method of claim 1,
    상기 단열부는,The heat insulation unit,
    상기 단열부 상부 단열소재의 열전달율이 상기 단열부 하부 단열소재의 열전달율에 비하여 상대적으로 낮은 지열정 단열 파이프.The geothermal heat insulation pipe of the heat insulation of the upper insulation material of the upper insulation portion is relatively lower than the heat transfer rate of the heat insulation material of the lower insulation portion.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 단열부의 열전달율이 서로 상이하게 형성되는 복수개의 파이프가 길이방향으로 연결되는 지열정 단열 파이프.Geothermal heat insulation pipe is a plurality of pipes are formed in which the heat transfer rate of the heat insulating part is different from each other connected in the longitudinal direction.
  6. 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프에 있어서,In the pipe is inserted into the geothermal well is formed so that the heat transfer medium flows along the geothermal well,
    외관 및 내관이 서로 이격되어 배치되는 파이프부;Pipe parts in which the exterior and the inner tube are spaced apart from each other;
    상기 외관의 내주면 및 상기 내관의 외주면과 적어도 일부가 접촉하도록 형성되고, 상기 파이프부의 길이 방향을 따라 소정의 간격으로 이격되도록 복수 구비되는 지지부; 및A support part formed to be in contact with at least a portion of the inner circumferential surface of the outer surface and the outer circumferential surface of the inner tube and spaced apart at predetermined intervals along a longitudinal direction of the pipe part; And
    상기 외관 및 상기 내관 사이의 공간에 단열소재가 구비되어 형성되는 단열부;A heat insulating part provided with a heat insulating material in a space between the exterior and the inner tube;
    를 포함하는 지열정 단열 파이프.Geothermal heat insulation pipe comprising a.
  7. 제6항에 있어서,The method of claim 6,
    상기 지지부는,The support portion,
    상기 파이프부의 길이방향 단면상 상기 외관 및 상기 내관 사이의 공간에 비하여 상대적으로 작은 면적을 가지도록 형성되는 지열정 단열 파이프.Geothermal heat insulating pipe is formed to have a relatively small area in the longitudinal cross-section of the pipe portion compared to the space between the outer tube and the inner tube.
  8. 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프에 있어서,In the pipe is inserted into the geothermal well is formed so that the heat transfer medium flows along the geothermal well,
    외관 및 내관이 서로 이격되어 배치되는 파이프부;Pipe parts in which the exterior and the inner tube are spaced apart from each other;
    상기 외관의 내주면 및 상기 내관의 외주면과 적어도 일부가 접촉하도록 형성되고, 상기 파이프부의 길이 방향을 따라 길게 형성되는 지지부; 및A support part formed to be in contact with at least a portion of the inner circumferential surface of the outer surface and the outer circumferential surface of the inner tube and extending along the length of the pipe part; And
    상기 외관 및 상기 내관 사이의 공간에 단열소재가 구비되어 형성되는 단열부;A heat insulating part provided with a heat insulating material in a space between the exterior and the inner tube;
    를 포함하는 지열정 단열 파이프.Geothermal heat insulation pipe comprising a.
  9. 제8항에 있어서,The method of claim 8,
    상기 지지부는,The support portion,
    상기 지지부에 의해 구획되는 상기 외관 및 내관 사이의 공간을 상호 연통하는 홀이 형성되는 지열정 단열 파이프.And a hole communicating with the space between the outer tube and the inner tube partitioned by the support unit.
  10. 지열정의 내부에 삽입하여 상기 지열정을 따라 열전달매체가 유동하도록 형성되는 파이프 어셈블리에 있어서,In the pipe assembly is inserted into the geothermal well is formed so that the heat transfer medium flows along the geothermal well,
    일단에 제1 체결부가 형성되고, 타단에 상기 제1 체결부와 대응되는 형태로 상기 제1 체결부와 결합되는 제2 체결부가 형성되는 복수개의 단위파이프모듈; 및A plurality of unit pipe modules having a first fastening portion formed at one end thereof and a second fastening portion coupled to the first fastening portion in a form corresponding to the first fastening portion at the other end thereof; And
    서로 인접한 상기 단위파이프모듈 각각의 상기 제1 체결부 및 상기 제2 체결부가 결합되는 부위를 감싸도록 구비되는 연결링모듈;A connection ring module provided to surround a portion where the first fastening portion and the second fastening portion of each of the unit pipe modules adjacent to each other are coupled;
    을 포함하는 지열정 파이프 어셈블리.Geothermal well pipe assembly comprising a.
  11. 제10항에 있어서,The method of claim 10,
    상기 단위파이프모듈은,The unit pipe module,
    외관 및 내관을 포함하는 이중관으로 형성되고, 상기 외관 및 내관의 사이 공간에는 단열소재가 구비되며, 상기 제1 체결부 및 상기 제2 체결부는 상기 내관의 양단에 형성되는 지열정 파이프 어셈블리.And a double tube including an outer tube and an inner tube, wherein a space between the outer tube and the inner tube is provided with a heat insulating material, and the first and second fastening portions are formed at both ends of the inner tube.
  12. 제11항에 있어서,The method of claim 11,
    상기 연결링모듈은,The connection ring module,
    상기 단위파이프모듈의 상기 외관을 둘러싸도록 형성되는 지열정 파이프 어셈블리.Geothermal well pipe assembly formed so as to surround the exterior of the unit pipe module.
  13. 지반을 굴착하여 형성된 지열정;Geothermal well formed by excavating the ground;
    지상에서 상기 지열정의 하부까지 연장되고, 상기 지열정의 내부에 상기 지열정의 내주면과 서로 이격되어 배치되는 파이프; 및A pipe extending from the ground to a lower portion of the geothermal well and disposed spaced apart from the inner circumferential surface of the geothermal well within the geothermal well; And
    상기 지열정 및 상기 파이프 사이의 공간에 축열재가 구비되고, 지열 회수를 위한 열전달매체가 통과하는 축열부;A heat storage material provided in the space between the geothermal well and the pipe, and a heat transfer medium through which a heat transfer medium for geothermal heat recovery passes;
    를 포함하는 지열정 열교환시스템.Geothermal heat exchanger system comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 축열부는,The heat storage unit,
    다공성 형태의 축열재가 구비되고, 상기 열전달매체가 상기 축열부의 공극을 통해 투과되는 지열정 열교환시스템.A heat storage material having a porous form of heat storage material, wherein the heat transfer medium is transmitted through the pores of the heat storage portion.
  15. 제13항에 있어서,The method of claim 13,
    상기 축열부는,The heat storage unit,
    복수개의 축열재가 상기 파이프의 외주면에 돌출되는 형태로 결합되어 형성되는 지열정 열교환시스템.Geothermal heat exchange system is formed by combining a plurality of heat storage material in the form of protruding to the outer peripheral surface of the pipe.
  16. 제15항에 있어서,The method of claim 15,
    상기 축열재는,The heat storage material,
    상기 축열재의 상면에 소정의 면적을 가지는 형태로 형성되는 지열정 열교환시스템.Geothermal well heat exchange system is formed in the form having a predetermined area on the upper surface of the heat storage material.
  17. 지반을 소정의 직경으로 굴착하여 지열정을 형성하는 굴착단계;Excavating the ground to form a geothermal well by excavating the ground to a predetermined diameter;
    상기 굴착단계에서 형성된 상기 지열정의 내부로, 상기 지열정의 하부까지 단열부를 포함하는 파이프를 연장하여 삽입하는 삽입단계; 및An insertion step of extending and inserting a pipe including a heat insulating part to a lower portion of the geothermal well in the geothermal well formed in the excavating step; And
    상기 지열정의 내주면 및 상기 파이프 사이의 공간에 축열재를 충전하는 충전단계;A filling step of filling a heat storage material in a space between the inner circumferential surface of the geothermal well and the pipe;
    를 포함하는 지열정 열교환시스템 시공방법.Geothermal heat exchanger system construction method comprising a.
  18. 지반을 굴착하여 형성된 지열정;Geothermal well formed by excavating the ground;
    지상에서 상기 지열정의 하부까지 연장되고, 상기 지열정의 내부에 상기 지열정의 내주면과 서로 이격되어 배치되는 다공성의 외측파이프;A porous outer pipe extending from the ground to the bottom of the geothermal well and disposed in the geothermal well and spaced apart from the inner circumferential surface of the geothermal well;
    상기 외측파이프와 대응되는 길이로 형성되어 상기 외측파이프의 내부에 상기 외측파이프의 내주면과 서로 이격되어 배치되는 내측파이프; 및An inner pipe formed to a length corresponding to the outer pipe and spaced apart from the inner circumferential surface of the outer pipe inside the outer pipe; And
    상기 지열정 및 상기 외측파이프 사이의 공간에 축열재가 구비되고, 지열 회수를 위한 열전달매체가 통과하는 축열부;A heat storage material provided in a space between the geothermal well and the outer pipe and through which a heat transfer medium for geothermal heat recovery is passed;
    를 포함하는 지열정 열교환시스템.Geothermal heat exchanger system comprising a.
  19. 제18항에 있어서,The method of claim 18,
    상기 축열부는,The heat storage unit,
    소정의 부피를 가지는 복수개의 축열재가 상기 지열정 및 상기 외측파이프 사이의 공간에 구비되어 형성되는 지열정 열교환시스템.And a plurality of heat storage materials having a predetermined volume are provided in the space between the geothermal well and the outer pipe.
  20. 지반을 소정의 직경으로 굴착하여 지열정을 형성하는 굴착단계;Excavating the ground to form a geothermal well by excavating the ground to a predetermined diameter;
    상기 굴착단계에서 형성된 상기 지열정의 내부로, 상기 지열정의 하부까지 내측파이프 및 다공성의 외측파이프를 연장하여 삽입하는 삽입단계; 및An insertion step of extending and inserting an inner pipe and an outer outer pipe of the geothermal well formed in the excavation step to the lower portion of the geothermal well; And
    상기 지열정의 내주면 및 상기 외측파이프 사이의 공간에 축열재를 충전하는 충전단계;A filling step of filling a heat storage material in a space between an inner circumferential surface of the geothermal well and the outer pipe;
    를 포함하는 지열정 열교환시스템 시공방법.Geothermal heat exchanger system construction method comprising a.
PCT/KR2016/007079 2015-06-30 2016-06-30 Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor WO2017003239A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680038498.8A CN108027174A (en) 2015-06-30 2016-06-30 Geothermal well instlated tubular, geothermal well-pipe assembly and geothermal well heat-exchange system and its construction method

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2015-0093301 2015-06-30
KR1020150093306A KR101795583B1 (en) 2015-06-30 2015-06-30 Heat exchange system for geothermal borehole
KR1020150093301A KR101714712B1 (en) 2015-06-30 2015-06-30 Insulation pipe for geothermal borehole with multi-supporting members
KR1020150093291A KR101822081B1 (en) 2015-06-30 2015-06-30 Pipe assembly with coupling module for geothermal borehole
KR10-2015-0093291 2015-06-30
KR10-2015-0093306 2015-06-30
KR1020150093284A KR101636741B1 (en) 2015-06-30 2015-06-30 Insulation pipe for geothermal borehole
KR10-2015-0093297 2015-06-30
KR10-2015-0093284 2015-06-30
KR1020150093297A KR101714709B1 (en) 2015-06-30 2015-06-30 Heat exchange system for geothermal borehole and constructing method for the same

Publications (1)

Publication Number Publication Date
WO2017003239A1 true WO2017003239A1 (en) 2017-01-05

Family

ID=57608677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007079 WO2017003239A1 (en) 2015-06-30 2016-06-30 Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor

Country Status (2)

Country Link
CN (1) CN108027174A (en)
WO (1) WO2017003239A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114232591A (en) * 2021-12-31 2022-03-25 核工业北京地质研究院 Wellhead foundation reinforcement treatment method for high-temperature geothermal well
EP3961122A4 (en) * 2019-04-23 2022-06-08 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences Geothermal energy mining system using stepped gravity-assisted heat pipe having no accumulated liquid effect
US11906205B2 (en) * 2018-02-12 2024-02-20 Quantitative Heat Oy Geothermal heat exchanger, geothermal heat arrangement and method for charging thermal energy into ground

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110319476A (en) * 2019-04-30 2019-10-11 韩金井 A kind of efficient well pattern to be heated using geothermal energy
CN110185401A (en) * 2019-04-30 2019-08-30 韩金井 A kind of heating heating well construction
CN110319478A (en) * 2019-04-30 2019-10-11 韩金井 A kind of efficient high/low temperature combined heated well to be heated using geothermal energy
CN114960685B (en) * 2022-07-12 2024-04-12 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Pile anchor type supporting structure shallow layer ground temperature energy utilization transformation device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200269746Y1 (en) * 2001-11-21 2002-03-25 여상혁 Resin pipe
JP2007139370A (en) * 2005-11-22 2007-06-07 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
KR100824419B1 (en) * 2007-02-08 2008-04-22 홍성술 Structure for establishment in-case of heating exchange system using the geothermal
JP2009097831A (en) * 2007-10-18 2009-05-07 Sankei Kikaku:Kk Geothermy collecting block, pile, and geothermy utilizing system
JP2010261633A (en) * 2009-05-01 2010-11-18 Nemoto Kikaku Kogyo Kk Multiple-tube for heat exchanger and geothermal air conditioning system using the same
KR101045835B1 (en) * 2010-07-13 2011-07-01 광일케미스틸(주) Pre-insulated pipe
KR101167987B1 (en) * 2012-02-24 2012-07-23 주식회사 지지케이 Monolithic of geothermal hole fluid circulation pipes and the process of method
US20130232973A1 (en) * 2012-02-17 2013-09-12 David Alan McBay Geothermal energy collection system
JP2014009497A (en) * 2012-06-29 2014-01-20 Panahome Corp Foundation insulation structure
KR101483114B1 (en) * 2013-10-01 2015-01-15 대림산업 주식회사 Open type Underground Heat Exchanger having Supply Pipe with Screw Pin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009072364A1 (en) * 2007-12-06 2011-04-21 八洋エンジニアリング株式会社 Geothermal equipment
CN101349450B (en) * 2008-06-27 2010-10-27 赵铭 Deep layer terrestrial heat renewable energy source winter heating method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200269746Y1 (en) * 2001-11-21 2002-03-25 여상혁 Resin pipe
JP2007139370A (en) * 2005-11-22 2007-06-07 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
KR100824419B1 (en) * 2007-02-08 2008-04-22 홍성술 Structure for establishment in-case of heating exchange system using the geothermal
JP2009097831A (en) * 2007-10-18 2009-05-07 Sankei Kikaku:Kk Geothermy collecting block, pile, and geothermy utilizing system
JP2010261633A (en) * 2009-05-01 2010-11-18 Nemoto Kikaku Kogyo Kk Multiple-tube for heat exchanger and geothermal air conditioning system using the same
KR101045835B1 (en) * 2010-07-13 2011-07-01 광일케미스틸(주) Pre-insulated pipe
US20130232973A1 (en) * 2012-02-17 2013-09-12 David Alan McBay Geothermal energy collection system
KR101167987B1 (en) * 2012-02-24 2012-07-23 주식회사 지지케이 Monolithic of geothermal hole fluid circulation pipes and the process of method
JP2014009497A (en) * 2012-06-29 2014-01-20 Panahome Corp Foundation insulation structure
KR101483114B1 (en) * 2013-10-01 2015-01-15 대림산업 주식회사 Open type Underground Heat Exchanger having Supply Pipe with Screw Pin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11906205B2 (en) * 2018-02-12 2024-02-20 Quantitative Heat Oy Geothermal heat exchanger, geothermal heat arrangement and method for charging thermal energy into ground
EP3961122A4 (en) * 2019-04-23 2022-06-08 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences Geothermal energy mining system using stepped gravity-assisted heat pipe having no accumulated liquid effect
CN114232591A (en) * 2021-12-31 2022-03-25 核工业北京地质研究院 Wellhead foundation reinforcement treatment method for high-temperature geothermal well
CN114232591B (en) * 2021-12-31 2023-08-15 核工业北京地质研究院 Wellhead foundation reinforcement treatment method for high-temperature geothermal well

Also Published As

Publication number Publication date
CN108027174A (en) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2017003239A1 (en) Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor
WO2019203391A1 (en) Electrode boiler system
WO2015115817A1 (en) Method and apparatus for performing handover of user equipment in wireless communication system supporting dual connectivity
WO2013085302A1 (en) Wall-mounted drum type washing machine
WO2013085297A1 (en) Wall-mounted drum-type washing machine
WO2012043967A1 (en) Integrated structure of an interior/exterior material and a heat insulating material having a fixed shape in an open joint system, and open joint system using same
WO2013085299A1 (en) Wall-mounted drum type washing machine
WO2013085294A1 (en) Wall-mounted drum type washing machine
WO2021150014A1 (en) Self-optimization method and device
WO2018182117A1 (en) Motor
WO2019240521A1 (en) Electric motor
CN104067662A (en) Carrier allocation method, user equipment and base station
WO2018147493A1 (en) Breaker, long bolt loosening monitoring system and long bolt loosening monitoring method
WO2017131444A1 (en) Driving unit for washing machine, washing machine or twin washing machine including same, and control method therefor
WO2020130221A1 (en) Building exterior panel and assembly structure thereof
WO2019240516A2 (en) Gate valve system and control method therefor
WO2018147490A1 (en) Hydraulic breaker, scratch monitoring system and scratch monitoring method
WO2013109063A1 (en) Method for establishing user plane after relay node moves
WO2018062838A1 (en) Flat-plate filter for water treatment and flat-plate filter module comprising same
WO2023167409A1 (en) Vibration reducing unit and transformer comprising same
WO2022182044A1 (en) Floatable concrete block structure and method for manufacturing same
WO2023167423A1 (en) Vibration reduction unit and transformer comprising same
WO2022270974A1 (en) Heating device of ionized water arrangement structure surrounding fluid and heat exchange region
WO2014116050A1 (en) Method for cell discovery
WO2023191288A1 (en) Mold for mold transformer, and method for manufacturing mold transformer by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818272

Country of ref document: EP

Kind code of ref document: A1