WO2020017631A1 - Polymer particles and method for producing polymer particles - Google Patents

Polymer particles and method for producing polymer particles Download PDF

Info

Publication number
WO2020017631A1
WO2020017631A1 PCT/JP2019/028433 JP2019028433W WO2020017631A1 WO 2020017631 A1 WO2020017631 A1 WO 2020017631A1 JP 2019028433 W JP2019028433 W JP 2019028433W WO 2020017631 A1 WO2020017631 A1 WO 2020017631A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
repeating unit
unit represented
polymer particles
copolymer
Prior art date
Application number
PCT/JP2019/028433
Other languages
French (fr)
Japanese (ja)
Inventor
桃太郎 竹田
佐竹 庸一
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2020017631A1 publication Critical patent/WO2020017631A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation

Definitions

  • the present invention relates to a polymer particle and a method for producing the polymer particle.
  • Secondary batteries used in portable electronic devices such as notebook personal computers and mobile phones, and electric vehicles, etc. must have high energy density, be small, be able to carry large currents, have large capacities, and have high cycle capacity. There is a demand for high performance such as excellent characteristics.
  • a lithium secondary battery using lithium ions as a charge carrier and utilizing an electrochemical reaction accompanying charge transfer has attracted attention, and its use and development have been promoted.
  • lithium secondary batteries are charged and discharged by inserting and removing lithium ions from and to electrodes.
  • organic compounds having various functions have been developed as organic compounds such as polymers, and for example, materials that can be used for electrodes of lithium secondary batteries as described above have been developed.
  • Patent Literature 1 As a material that can be used for an electrode of a lithium secondary battery, for example, a material described in Patent Literature 1 is given. As a method for manufacturing a material that can be used for an electrode of a lithium secondary battery, for example, a manufacturing method described in Patent Literature 2 can be used.
  • Patent Literature 1 discloses a (meth) acrylic acid-based crosslinked copolymer obtained by polymerizing a specific (meth) acrylic acid imino compound and a (meth) acrylic acid ester in the presence of a crosslinking agent, and then nitroxidizing the polymer. Is described. According to Patent Literature 1, a (meth) acrylic acid-based crosslinked copolymer having excellent stability with respect to a solvent and substantially not generating cracks due to drying on the surface of the current collector coated with the solvent can be obtained. Is disclosed.
  • Patent Document 2 discloses a method for producing a crosslinked poly (meth) acrylic acid nitroxide compound obtained by crosslinking a specific poly (meth) acrylic acid nitroxide compound, wherein the specific (meth) acrylic acid imino compound is used as a crosslinking agent. Polymerization in the presence of a specific poly (meth) acrylic acid imino compound to form a crosslinked (meth) acrylic acid imino compound, and nitroxidation of the crosslinked (meth) acrylic acid imino compound A method for producing a crosslinked poly (meth) acrylic acid nitroxide compound including a nitroxidation step is described. According to Patent Document 2, it is disclosed that a crosslinked poly (meth) acrylic acid nitroxide compound which is excellent in solvent stability and has a high energy density and is used as an electrode material of a large capacity secondary battery can be produced. Have been.
  • the present invention has been made in view of such circumstances, and when included in an electrode provided in a lithium secondary battery, polymer particles that can produce an electrode suitable for a lithium secondary battery, and An object of the present invention is to provide a method for producing the polymer particles.
  • the polymer particle according to one aspect of the present invention includes a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3) as a molecule. And an average primary particle diameter of 0.01 to 20 ⁇ m.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom or a methyl group.
  • R 3 represents a hydrogen atom or a methyl group.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a configuration of a lithium secondary battery including an electrode including a polymer particle according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of the configuration of an electrode including polymer particles according to one embodiment of the present invention.
  • the (meth) acrylic acid-based cross-linked copolymer described in Patent Document 1 contains the (meth) acrylic acid imino compound and a (meth) acrylic ester similar to the (meth) acrylic acid imino compound.
  • the (meth) acrylic acid-based crosslinked copolymer polymerizes only the (meth) acrylic acid imino compound by copolymerizing the (meth) acrylic ester. It was found that the hydrophobicity was higher than that of the polymer obtained, and it was presumed that this was due to the increase in the hydrophobicity. As a result, a problem may occur when manufacturing an electrode or the like.
  • an electrode containing a crosslinked poly (meth) acrylic acid nitroxide compound produced by the production method described in Patent Document 2 does not sufficiently increase output.
  • the particle diameter for example, the average primary particle diameter becomes relatively large. This was presumed to be a cause of reducing the output of the electrode obtained using the (meth) acrylic acid-based crosslinked copolymer.
  • the electrode containing the (meth) acrylic acid-based crosslinked copolymer described in Patent Document 1 and the electrode containing the crosslinked poly (meth) acrylic acid nitroxide compound produced by the production method described in Patent Document 2 Inferred that the output did not increase sufficiently due to the above. That is, it was presumed that these conventional electrodes did not sufficiently increase the output due to high hydrophobicity and large particles.
  • the present inventors first studied the structure of the polymer particles so as to increase the affinity for water (hydrophilicity) and increase the affinity for lithium ions, and further included the structure in the electrode. In some cases, a study was made so that the particle diameter would increase the output of the electrode.
  • the present inventors have conducted various studies on the above, and as a result, when included in an electrode provided in a lithium secondary battery, provide polymer particles that can produce an electrode suitable for a lithium secondary battery.
  • the above object has been found to be achieved by the present invention described below.
  • the polymer particles according to one embodiment of the present invention include a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3) as a molecule. And the copolymer contained therein. Further, the polymer particles have an average primary particle diameter of 0.01 to 20 ⁇ m.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom or a methyl group.
  • R 3 represents a hydrogen atom or a methyl group.
  • an electrode suitable for a lithium secondary battery can be manufactured. That is, the obtained electrode is an electrode containing the polymer particles, and when used as an electrode of a lithium secondary battery, the polymer particles function as a high-output electrode active material, and high-capacity, high-speed charge / discharge is performed.
  • a possible lithium secondary battery can be manufactured. More specifically, a secondary battery having a high actual capacity and a high capacity retention rate after high-speed charge / discharge can be manufactured.
  • the electrode including the polymer particles is an electrode including an electrode active material including the polymer particles, and is an electrode having a high output.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a configuration of a lithium secondary battery including an electrode including polymer particles according to the present embodiment.
  • the lithium secondary battery 10 includes a positive electrode 20, a negative electrode 30, and an electrolyte layer 40 interposed between the positive electrode 20 and the negative electrode 30. That is, the positive electrode 20, the electrolyte layer 40, and the negative electrode 30 are stacked in this order.
  • the lithium secondary battery 10 can be discharged, for example, by electrically connecting the positive electrode 20 and the negative electrode 30 via a power meter 50 and the like.
  • the wattmeter 50 can measure the voltage and current of the electricity flowing by this discharge.
  • an electrode containing the above-described polymer particles can be used as the positive electrode 20, an electrode containing the above-described polymer particles can be used.
  • the electrode containing the polymer particles can be suitably used as an electrode for a lithium secondary battery.
  • a current collector 22 and a current collector 22 are provided on the current collector 22.
  • an electrode 20 including the polymer particles in the electrode layer 21 is provided on the current collector 22.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of the configuration of the electrode including the polymer particles according to the present embodiment.
  • the polymer particles can be used as an electrode material capable of producing an electrode suitable for a lithium secondary battery, specifically, as an electrode active material. This is thought to be due to the following.
  • the repeating unit represented by the formula (1) has an N-oxy radical in the repeating unit. That is, the copolymer contained in the polymer particles contains the repeating unit having the N-oxy radical. As described above, since the polymer particles include the copolymer having a radical in the molecule, the polymer particles are considered to act as an electrode active material. Further, since this radical is an N-oxy radical in which two quaternary carbons are bonded, the N-oxy radical easily causes an oxidation-reduction reaction, and is thermally and electrochemically stable.
  • the copolymer contained in the polymer particles contains the repeating unit represented by the formula (1) in the molecule together with the repeating unit represented by the formula (2), whereby the polymer It is believed that the particles can act as a high power electrode active material. Further, as described above, such polymer particles have a relatively small average primary particle diameter of 0.01 to 20 ⁇ m. From this, it is considered that the polymer particles have a relatively large specific surface area and function as a high-output electrode active material. That is, the polymer particles are considered to be suitable electrode active materials.
  • the copolymer contained in the polymer particles not only has an N-oxy radical in which two quaternary carbons are bonded as described above, but also has a repeating unit represented by the formula (1),
  • the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) are contained in a state of being bonded.
  • the polymer particles have an affinity for water (hydrophilicity). Sex) is considered to be higher. For this reason, it becomes easy to manufacture an electrode using the polymer particles. Also.
  • the copolymer contained in the polymer particles contains the repeating unit represented by the formula (3), when the polymer particles are used as an electrode, the affinity for the electrolytic solution which is a highly polar solvent is obtained. Therefore, it is considered that the movement of lithium ions in the electrode can be made smooth and the diffusion resistance of lithium ions in the electrode can be reduced. From this point, it is considered that a suitable electrode is obtained.
  • the polymer particles can produce an electrode suitable for a lithium secondary battery.
  • the electrode active material composed of the polymer particles is suitable as an electrode active material for an electrode provided in a lithium secondary battery.
  • the copolymer contained in the polymer particles includes a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a compound represented by the formula (3). And each of them is contained in a state of being bonded to the repeating unit represented by Therefore, it is considered that even when the polymer particles are used to form an electrode, the elution of the polymer particles into the solvent contained in the electrolytic solution in contact with the electrode can be suitably suppressed. That is, it is considered that the polymer particles are excellent in anti-elution property (elution resistance) to the solvent.
  • the polymer particles are suitable as an electrode active material for an electrode provided in a lithium secondary battery. That is, the electrode active material only needs to include the polymer particles, and preferably includes only the polymer particles.
  • the electrode active material composed of the polymer particles is suitable as an electrode active material for an electrode provided in a lithium secondary battery.
  • the repeating unit represented by the formula (1) is a repeating unit represented by the formula (1), wherein R 1 is a hydrogen atom or a methyl group.
  • the repeating unit represented by the formula (1) is specifically, a repeating unit represented by the formula (2), for example, 2,2,6,6-tetramethyl-4-piperidinyl acrylate or 2, Examples include a repeating unit obtained by polymerizing 2,6,6-tetramethyl-4-piperidinyl methacrylate into a nitroxide to obtain a repeating unit obtained by polymerizing 2,6,6-tetramethyl-4-piperidinyl methacrylate.
  • 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2,2,6,6-tetramethyl-4-piperidinyl Methacrylate may be used alone, or both may be used in combination.
  • the repeating unit represented by the formula (2) is a repeating unit represented by the formula (2), wherein R 2 is a hydrogen atom or a methyl group.
  • Specific examples of the repeating unit represented by the formula (2) include 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2,2,6,6-tetramethyl-4-piperidyl acrylate. And repeating units obtained by polymerizing nil methacrylate.
  • the repeating unit represented by the formula (2) is more specifically a repeating unit that is not nitroxidized even when nitroxidation is performed when obtaining the repeating unit represented by the formula (1). Is mentioned.
  • 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2 , 2,6,6-tetramethyl-4-piperidinyl methacrylate may be used alone, or both may be used in combination.
  • the repeating unit represented by the formula (3) is a repeating unit in which R 3 is a hydrogen atom or a methyl group.
  • Specific examples of the repeating unit represented by the formula (3) include a repeating unit obtained by polymerizing acrylic acid and methacrylic acid. When obtaining the repeating unit represented by the formula (3), acrylic acid and methacrylic acid may be used alone or in combination.
  • the content of the repeating unit [content of (3)] represented by the formula (3) is changed to the content of the repeating unit represented by the formula (1). 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the amount [content of (1)] and the content of (3) [total content of (1) and (3)]. Is preferably 0.03 to 3 parts by mass, more preferably 0.05 to 1 part by mass. If the content of the above (3) is too small relative to 100 parts by mass of the total content of the above (1) and (3), the effect of the repeating unit represented by the above formula (3) will be sufficiently exhibited. Tend not to be able to.
  • the effect of having the repeating unit represented by the formula (1) will be lost. There is a tendency not to be able to fully demonstrate. Therefore, when the content is within the above range, the effect of having the repeating unit represented by the formula (1) and the effect of having the repeating unit represented by the formula (3) are more preferably achieved. It is thought that we can show. Specifically, polymer particles capable of producing an electrode capable of producing a high-output lithium secondary battery can be obtained.
  • a chemical titration method according to an oxidation-reduction reaction and the like can be mentioned.
  • an aqueous solution of potassium iodide is added, and the released iodine can be quantified by back titration with an aqueous solution of sodium thiosulfate.
  • a chemical titration method according to a neutralization reaction and the like can be mentioned.
  • the amount can be determined by swelling with an appropriate solvent and then titrating with a potassium hydroxide solution.
  • the content of the repeating unit represented by the formula (2) [content of (2)] is equal to the content of (1) and the content of (2).
  • the method for measuring the content of (1) for example, a method of quantifying nitroxide free radicals using a chemical titration method based on a redox reaction (redox titration method), infrared spectroscopy (IR ), A method of quantifying the imino group remaining in the reaction product using a method, and a method of calculating the spin concentration in the reaction product using an electron spin resonance (ESR method). .
  • redox titration method infrared spectroscopy
  • ESR method electron spin resonance
  • a chemical titration method according to a neutralization reaction and the like can be mentioned.
  • the amount can be determined by swelling with an appropriate solvent and then titrating with a strong acid such as hydrochloric acid.
  • the polymer particles have an average primary particle size (average particle size of primary particles) of 0.01 to 20 ⁇ m, preferably 0.05 to 10 ⁇ m, and more preferably 0.1 to 5 ⁇ m. . It is considered that the smaller the primary particles of the polymer particles, the more suitable the electrode active material. If the primary particles of the polymer particles are too large, the polymer particles tend not to work favorably as an electrode active material. It is considered that this is because the polymer particles have few contacts with the conductive material and the current collecting property is reduced. On the other hand, there is a limit in reducing the size of the polymer particles. This is considered to be because if the primary particles of the polymer particles are too small, purification operations such as recovery during the production become complicated.
  • the primary particle size of the polymer particles is limited to an average particle size of about 0.01 ⁇ m. Therefore, the average primary particle diameter of the polymer particles is in the above range.
  • Polymer particles having such a size are considered to be suitable electrode active materials, and polymer particles capable of producing an electrode suitable for a lithium secondary battery can be obtained. Specifically, polymer particles capable of producing an electrode capable of producing a high-output lithium secondary battery can be obtained.
  • the average primary particle diameter here is, for example, a volume-based average particle diameter (MV: Mean Volume Diameter) of the primary particles.
  • MV volume-based average particle diameter
  • Specific examples include a volume average particle diameter (MV) determined from a particle size distribution measured by a general laser diffraction / scattering method or an image analysis method of an electron microscope image.
  • the copolymer contained in the polymer particles is preferably crosslinked. That is, in the copolymer contained in the polymer particles, it is preferable that the polymer chains containing the repeating units are crosslinked.
  • the crosslinking is not particularly limited as long as the polymer chains containing the repeating unit are crosslinked.
  • the copolymer preferably contains a repeating unit represented by the following formula (4).
  • the copolymer is preferably crosslinked by including such a repeating unit.
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group
  • Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
  • R 4 and R 5 are each independently a hydrogen atom or a methyl group
  • Z is an ethylene group, a propylene group, a butylene group, or —C 2 It is a repeating unit that is an H 4 OC 2 H 4 — group.
  • Specific examples of the repeating unit represented by the formula (4) include ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, 1,3-propanediol diacrylate, and 1,3-propane.
  • Diol dimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, 1,4-butanediol diacrylate, and 1,4-butanediol dimethacrylate are represented by the formulas (1) to (3).
  • the repeating unit obtained by polymerization at the time of polymerization for producing the repeating unit represented by the formula (1) Since the copolymer is crosslinked, the polymer particles are considered to be more excellent in anti-elution property (elution resistance) to a solvent.
  • the copolymer preferably contains the repeating unit represented by the formula (4).
  • the copolymer contains the repeating unit represented by the formula (4)
  • the copolymer has a content of the repeating unit represented by the formula (4) [content of (4)], It is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total of the content of 1) and the content of (3) [total content of (1) and (3)], and 0 to 5 parts by mass.
  • the amount is more preferably from 0.2 to 4.5 parts by mass, and even more preferably from 0.5 to 4 parts by mass.
  • the content of the above (4) is determined by determining the content of other repeating units (the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the formula (2) in the copolymer.
  • Each content of the repeating unit represented by 3) is measured by a chemical titration method or the like, and can be calculated from each content of the other repeating units. Specifically, it can be calculated from the difference between the amount of the copolymer and the total amount of each content of the other repeating units.
  • a repeating unit represented by the formula (1) a repeating unit represented by the formula (2), a repeating unit represented by the formula (3), and a compound represented by the formula (4)
  • the presence of each of the repeating units represented by the formula (1) indicates that the copolymer, the copolymer obtained by reducing the copolymer, and the copolymer before nitroxidation are subjected to 1 H-NMR or infrared spectroscopy (IR). And the like, or the copolymer can be measured by the above-mentioned chemical titration method, or can be confirmed by combining these measurements.
  • the polymer particles only need to contain the copolymer, and may contain other components.
  • an electrode material containing the polymer particles is used.
  • the electrode material only needs to contain the polymer particles, and may contain other components.
  • These other components include, for example, an auxiliary conductive material and an ion conductive auxiliary material.
  • the auxiliary conductive material include carbonaceous fine particles and a conductive polymer.
  • the carbonaceous fine particles include fine particles such as graphite, carbon black, and acetylene black.
  • Examples of the conductive polymer include polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene.
  • examples of the ion conduction auxiliary material include a polymer gel electrolyte and a polymer solid electrolyte.
  • the method for producing the polymer particles is not particularly limited as long as the polymer particles can be produced.
  • a method for producing the polymer particles specifically, a monomer composition containing an imino compound represented by the following formula (5) and (meth) acrylic acid represented by the following formula (6) is used.
  • a production method comprising a first step of polymerizing (polymerization step) and a second step of nitroxidation of the polymer obtained in the first step (nitroxidation step) is exemplified.
  • (meth) acrylic acid refers to acrylic acid or methacrylic acid.
  • R 6 represents a hydrogen atom or a methyl group.
  • R 7 represents a hydrogen atom or a methyl group.
  • a monomer containing the imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6) By polymerizing the composition, a copolymer containing the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) in a molecule can be obtained.
  • the copolymer (the polymer obtained in the first step) is nitroxidized, so that the imino group contained in the copolymer is nitroxidized.
  • a part of the repeating unit represented is a repeating unit represented by the formula (1). From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is can get.
  • the polymer obtained in the first step is obtained in the form of particles, and the particles containing the polymer are in the form of a particulate polymer obtained by polymerizing only the imino compound represented by the formula (5). Since particles smaller than the coalesced particles are obtained, the particles containing the copolymer obtained in the second step are also reduced. From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is used. Thus, polymer particles having an average primary particle diameter of 0.01 to 20 ⁇ m are obtained. Therefore, the manufacturing method can suitably manufacture polymer particles that become electrodes suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery.
  • Examples of the (meth) acrylic acid imino compound represented by the formula (5) include, for example, 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2,2,6,6-tetra Methyl-4-piperidinyl methacrylate and the like.
  • As the (meth) acrylic acid imino compound these may be used alone, or two or more kinds may be used in combination.
  • the (meth) acrylic acid represented by the formula (6) is acrylic acid or methacrylic acid. As the (meth) acrylic acid, these may be used alone or in combination of two types.
  • the method of polymerizing the (meth) acrylic acid imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6) includes: For example, a method of polymerizing by a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, and the like can be given.
  • a method of polymerizing by a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, and the like can be given.
  • a method of polymerizing by a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, and the like can be given.
  • a suspension polymerization method or an emulsion polymerization method is preferable. By doing so, the above-mentioned polymer particles can be suitably produced. Therefore, it is possible to produce polymer particles that can
  • the mixing ratio of the (meth) methacrylic acid is preferably from 0.0003 to 0.25 mol, more preferably from 0.0006 to 0.09 mol, per 1 mol of the (meth) acrylic acid imino compound. Is more preferably 0.0008 to 0.028 mol. That is, it is particularly preferable to use 0.08 to 2.8 mol parts of the (meth) acrylic acid with respect to 100 mol parts of the (meth) acrylic acid imino compound.
  • a suitable polymer particle can be produced.
  • the monomer composition not only the (meth) acrylic acid imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6), but also another monomer May contain body.
  • the monomer composition preferably contains a crosslinking agent as another monomer.
  • the crosslinking agent is not particularly limited as long as it is a compound having a plurality of polymerizable unsaturated groups in the molecule.
  • examples of the crosslinking agent include (meth) acrylic acid-based polyfunctional compounds, allyl ether-based polyfunctional compounds, and vinyl-based polyfunctional compounds.
  • examples of the (meth) acrylic acid-based polyfunctional compound include a crosslinking agent represented by the following formula (7).
  • the allyl ether polyfunctional compound include, for example, diethylene glycol diallyl ether and dibutylene glycol diallyl ether.
  • the vinyl polyfunctional compound include, for example, divinylbenzene.
  • the (meth) acrylic acid-based polyfunctional compound is preferable, and a crosslinking agent represented by the following formula (7) is more preferable, and ethylene glycol di (meth) acrylate and diethylene glycol (Meth) acrylate and 1,4-butanediol di (meth) acrylate are more preferred.
  • the crosslinking agent the compounds exemplified above may be used alone, or two or more of them may be used in combination.
  • R 8 and R 9 each independently represent a hydrogen atom or a methyl group
  • Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
  • the polymer particles are represented by the formula (4) among the polymer particles.
  • Polymer particles containing a copolymer further containing a repeating unit in the molecule can be suitably produced.
  • the mixing ratio of the crosslinking agent is preferably 0.00001 to 0.25 with respect to 1 mol of the (meth) acrylic acid imino compound in order to sufficiently exhibit the effect of crosslinking by the crosslinking agent when the crosslinking agent is included. Mole, more preferably 0.00005 to 0.1 mole, even more preferably 0.0001 to 0.05 mole.
  • the (meth) acrylic acid imino compound, the (meth) acrylic acid, the cross-linking are performed by using a reactor equipped with a stirrer, a thermometer, a nitrogen gas introducing pipe, and a cooling pipe. After mixing a predetermined amount of an agent and an oil-soluble radical polymerization initiator with an inert hydrocarbon-based solvent, respectively, and a surfactant, and mixing and dispersing the mixture with water that is inert to the reaction, nitrogen gas is used. And heating under stirring.
  • the oil-soluble radical polymerization initiator is not particularly limited.
  • the oil-soluble radical polymerization initiator include a peroxide-based polymerization initiator, an azo-based polymerization initiator, and a redox-based polymerization initiator.
  • the peroxide-based polymerization initiator include benzoyl peroxide, tert-butyl peroxide, diisopropylperoxydicarbonate, and dicyclohexylperoxydicarbonate.
  • azo polymerization initiator examples include ⁇ , ⁇ ′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, and dimethyl-2,2′-azobis Isobutyrate and the like.
  • redox polymerization initiator examples include benzoyl peroxide / dimethylaniline, di-tert-butyl peroxide / dimethylaniline, and lauroyl peroxide / dimethylaniline.
  • oil-soluble radical polymerization initiators azo-based polymerization initiators such as ⁇ , ⁇ ′-azobisisobutyronitrile, which are inexpensive and easy to handle, are suitably used.
  • the amount of the oil-soluble radical polymerization initiator to be used varies depending on the type of the oil-soluble radical polymerization initiator to be used and the reaction temperature, but is usually 0.005 to 5 based on 100 parts by mass of the (meth) acrylic acid imino compound. It is preferably in parts by mass.
  • the inert hydrocarbon solvent is not particularly limited.
  • the inert hydrocarbon solvents include aromatic hydrocarbon solvents, acyclic saturated hydrocarbon solvents, cyclic saturated hydrocarbon solvents, and halogenated hydrocarbon solvents.
  • the aromatic hydrocarbon-based solvent include benzene, toluene, xylene, and the like.
  • the acyclic saturated hydrocarbon solvent include n-hexane, n-heptane, and ligroin.
  • Examples of the cyclic saturated hydrocarbon solvent include cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane.
  • halogenated hydrocarbon solvent examples include dichloromethane, chloroform, dichloroethane, and the like.
  • an aromatic hydrocarbon-based solvent, and an acyclic solvent are commercially available, from the viewpoint of inexpensiveness and stable quality of the obtained polymerization reaction product.
  • Saturated hydrocarbon solvents are preferred, and among them, toluene and n-hexane are suitably used.
  • the inert hydrocarbon solvent the solvents exemplified above may be used alone, or two or more of them may be used in combination.
  • the amount of the inert hydrocarbon-based solvent used is from the viewpoint of dissolving the (meth) acrylic acid imino compound sufficiently to allow the polymerization reaction to proceed smoothly, and from the viewpoint of obtaining an effect commensurate with the used amount.
  • the amount is preferably from 50 to 300 parts by mass, more preferably from 100 to 200 parts by mass, per 100 parts by mass of the imino acrylate compound.
  • any of anionic surfactant, cationic surfactant, nonionic surfactant, and amphoteric surfactant can be used.
  • anionic surfactant examples include fatty acid sodium, fatty acid ammonium, fatty acid potassium, sodium alkyl sulfate, ammonium alkyl sulfate, sodium alkylbenzene sulfonate, sodium alkane sulfonate, ammonium alkane sulfonate, sodium alkyl phosphate, and acyloylmethyl.
  • Taurate sodium N-methyl-N-acylamidopropionate, sodium monoalkylbiphenyl ether disulfonate, sodium naphthalenesulfonate-formalin condensate, sodium acylglutamate, polyoxyethylene alkylphenyl ether alkylbenzenesulfonate sodium, polyoxyethylene Sodium alkyl ether sulfate, polyoxyethylene alkyl ether methyl carboxy Sodium, and sodium polyoxyethylene alkyl ether ethanesulfonic acid and the like.
  • cationic surfactant examples include monoalkyltrimethylammonium methosulfate, cationized cellulose, alkyltrimethylammonium chloride, distearyldimethylammonium chloride, dialkyldimethylammonium chloride, dialkyldimethylbenzylammonium chloride, and alkylpyridinium chloride. No.
  • nonionic surfactant examples include fatty acid monoglyceride, sorbitan fatty acid partial ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid monoglyceride, polyoxyethylene sorbitol fatty acid partial ester, polyoxyethylene sorbitan Fatty acid partial ester, polyoxyethylene lanolin alcohol ether, polyethylene glycol fatty acid monoester, polyethylene glycol fatty acid diester, polyoxyethylene fatty acid amine, polyglycerin fatty acid partial ester, bis (2-hydroxyethyl) alkylamine, alkyldimethylamine oxide, fatty acid Alkylolamide, ⁇ -methoxypolyoxyethylene- ⁇ -alkyl ether, Examples include polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene acetylene glycol, sugar fatty acid partial ester, polyvinyl alcohol, and partially sapon
  • amphoteric surfactant examples include N-acylamidopropyl-N, N-dimethylammoniobetaine, N-acylamidopropyl-N ′, N′-dimethyl-N′- ⁇ -hydroxypropylammoniosulfobetaine. , N-acylamidoethyl-N'-hydroxyethyl-N'-carboxymethylammoniobetaine, N-alkyl-N-dimethyl-N-carboxymethylammoniobetaine, alkyldiaminoethylglycine, and acylated polypeptides. No.
  • sodium alkylbenzene sulfonate, polyoxyethylene alkylphenyl Sodium ether alkylbenzene sulfonate, polyvinyl alcohol, and partially saponified polyvinyl alcohol are preferably used.
  • sodium alkylbenzenesulfonates sodium dodecylbenzenesulfonate is preferable, and among the sodium polyoxyethylenealkylphenyletheralkylbenzenesulfonates, sodium polyoxyethylenenonylphenyletherdodecylbenzenesulfonate is preferable.
  • the amount of the surfactant to be used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of water to be added, from the viewpoint of promoting the reaction smoothly and obtaining an effect commensurate with the amount used. More preferably, it is 0.1 to 5 parts by mass.
  • the amount of the water to be used is preferably 200 to 3000 parts by mass with respect to 100 parts by mass of the (meth) acrylic acid imino compound from the viewpoint of sufficiently removing the heat of polymerization and facilitating the control of the polymerization temperature. More preferably, it is 300 to 2,000 parts by mass.
  • the reaction conditions in the suspension polymerization method are not particularly limited as long as the (meth) acrylic acid imino compound and the (meth) acrylic acid can be polymerized.
  • the reaction temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C.
  • the reaction time varies depending on the reaction temperature and the like and cannot be unconditionally determined, but is usually preferably 0.5 to 10 hours.
  • the polymerization reaction product obtained by the above suspension polymerization method exists in the form of particles in the reaction solvent, it can be isolated by filtering this reaction solution. Further, it can be purified by removing unreacted substances and the like using water, methanol, hexane and the like, washing and drying. In this way, polymer particles before nitroxidation are obtained.
  • This polymer particle is a polymer particle containing the repeating unit represented by the formula (2).
  • Examples of the emulsion polymerization method include a general emulsion polymerization method.
  • a (meth) acrylic acid imino compound, the (meth) acrylic acid, the cross-linking agent are used by using a reactor equipped with a stirrer, a thermometer, a nitrogen gas inlet pipe, and a cooling pipe. And, after mixing and dispersing a predetermined amount of each of the surfactants in water as an inert solvent, deoxygenate with nitrogen gas, add a water-soluble radical polymerization initiator, and heat under stirring. Method.
  • the (meth) acrylic acid imino compound, the (meth) acrylic acid, and a mixture obtained by previously mixing the crosslinking agent (if necessary, an inert hydrocarbon solvent or a hydrophilic solvent such as methanol (aqueous solution) ) May be added to water containing the surfactant and the water-soluble radical polymerization initiator, and heated under stirring.
  • the aqueous solvent solution containing the monomer composition containing the (meth) acrylic acid imino compound, the (meth) acrylic acid, and the crosslinking agent is converted into an aqueous solution containing a surfactant and a polymerization initiator.
  • the monomer composition can be suitably polymerized, and the polymer particles can be more suitably produced.
  • the water-soluble solvent is not particularly limited as long as it is water-soluble and can dissolve the monomer composition.
  • Examples of the water-soluble solvent include methanol, ethanol, isopropyl alcohol, diglyme, tetrahydrofuran, acetone, acetonitrile, dimethylformamide, and dimethyl sulfoxide.
  • the water-soluble radical polymerization initiator is not particularly limited.
  • the water-soluble radical polymerization initiator include a peroxide-based polymerization initiator and a redox-based polymerization initiator.
  • the peroxide-based polymerization initiator include ammonium persulfate, sodium persulfate, and potassium persulfate.
  • the redox polymerization initiator include, for example, ammonium ferrous sulfate / ammonium persulfate, ethanolamine / potassium persulfate, and the like.
  • a peroxide polymerization initiator such as potassium persulfate, which is inexpensive and easy to handle, is preferably used as the water-soluble radical polymerization initiator.
  • the water-soluble radical polymerization initiator the initiators exemplified above may be used alone, or two or more of them may be used in combination.
  • the type and amount of the surfactant, the amount of the polymerization initiator used, the amount of water used as the inert solvent, the reaction temperature, and the reaction time are the same as those in the suspension polymerization method. Can be applied.
  • an inert hydrocarbon solvent similar to that used in the suspension polymerization method, or a hydrophilic solvent such as methanol may be appropriately added.
  • an additive such as a chain transfer agent such as isopropyl alcohol or a polymerization terminator may be appropriately added.
  • the polymerization reaction product obtained by the emulsion polymerization method can be isolated, for example, by mixing the reaction solution with a large amount of cold water, precipitating the polymerization reaction product, and then filtering. Further, it can be purified by removing unreacted substances and the like using water, hexane, methanol and the like, washing and drying. In this way, polymer particles before nitroxidation are obtained.
  • This polymer particle is a polymer particle containing the repeating unit represented by the formula (2).
  • dispersion polymerization method a general dispersion polymerization method and the like can be mentioned.
  • a (meth) acrylic acid imino compound, the (meth) acrylic acid, the cross-linking agent is used by using a reactor equipped with a stirrer, a thermometer, a nitrogen gas introducing pipe, and a cooling pipe. And a dispersion medium mixed and dispersed in an inert solvent, deoxygenated with nitrogen gas, a radical polymerization initiator is added, and the mixture is heated under stirring.
  • the radical polymerization initiator used in the dispersion polymerization method is not particularly limited, and for example, those which can be used in the suspension polymerization method or the emulsion polymerization method can be used.
  • the same amount as that in the suspension polymerization method can be applied to the amount of the polymerization initiator, the reaction temperature, and the reaction time.
  • the inert solvent used in the dispersion polymerization method is not particularly limited as long as the (meth) acrylic acid imino compound, the (meth) acrylic acid, the crosslinking agent, and the dispersion medium can be sufficiently dissolved. Not done.
  • the inert solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene; acyclic saturated hydrocarbon solvents such as n-hexane, n-heptane and ligroin; cyclopentane, methylcyclopentane, Cyclic saturated hydrocarbon solvents such as cyclohexane and methylcyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform and dichloroethane; methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl Alcohols such as alcohol, iso-butyl alcohol and tert-butyl alcohol;
  • the inert solvent among the solvents exemplified above, alcohols are preferred from the viewpoint of industrial availability, low cost, high solubility of the (meth) acrylic acid imino compound, and methanol. More preferred.
  • the solvents exemplified above may be used alone, or two or more of them may be used in combination.
  • the dispersion medium used in the dispersion polymerization method is not particularly limited, and examples thereof include polystyrene, polymethyl methacrylate, polyvinyl butadiene, poly (N-vinylpyrrolidone), polyacrylic acid, polymethacrylic acid, poly (dimethylsiloxane), Examples thereof include polyisobutylene, polyethylene glycol, polypropylene glycol, poly (ethyl vinyl ether), polyvinyl alcohol, partially saponified polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral.
  • the dispersant among the compounds exemplified above, poly (N-vinylpyrrolidone), polyvinyl alcohol, and the like are commercially available, inexpensive, and easily washed and removed from the polymerization reaction product. And partially saponified polyvinyl alcohol are preferred, and polyvinyl alcohol is more preferred. Further, as the dispersion medium, the above-described dispersion medium may be used alone, or two or more kinds may be used in combination.
  • the amount of the dispersion medium used in the dispersion polymerization method is not particularly limited as long as the polymerization reaction product fine particles can be dispersed in the reaction solvent.
  • the amount of the dispersion medium used is, for example, from the viewpoint of dispersing the fine particles of the polymerization reaction product in the reaction solvent and obtaining an effect commensurate with the amount used, to 100 parts by mass of the (meth) acrylic acid imino compound. On the other hand, it is preferably 1 to 100 parts by mass, more preferably 5 to 40 parts by mass.
  • the polymerization reaction product obtained by the dispersion polymerization method can be isolated, for example, by mixing the reaction solution with a large amount of cold water, precipitating the polymerization reaction product, and then filtering. Further, it can be purified by removing unreacted substances and the like using water, hexane, methanol and the like, washing and drying.
  • the second step is not particularly limited as long as the repeating unit represented by the formula (2) can be converted into a repeating unit represented by the formula (1) by nitroxidation.
  • the nitroxidation in the second step includes, for example, nitroxidation of 2,2,6,6-tetramethyl-4-piperidine and 2,2,6,6-tetramethyl-4-piperidinyl (meth) acrylate.
  • a well-known method that can be used is exemplified.
  • Examples of the nitroxidation include a known method for producing a compound having a corresponding nitroxide free radical (nitroxide radical group) by oxidizing a secondary amine having steric hindrance using an oxidizing agent. be able to.
  • Examples of the nitroxidation include a method in which a polymer particle containing the repeating unit represented by the formula (2) is mixed with an inert solvent, and the mixture is reacted with stirring while adding an oxidizing agent. Can be By such a method, the polymer particles containing the repeating unit represented by the formula (2) (the polymer particles before nitroxidation) are converted into the polymer containing the repeating unit represented by the formula (1). Into particles (polymer particles after nitroxidation).
  • Examples of the inert solvent include halogenated hydrocarbons, aliphatic nitriles, aromatic nitriles, alcohols, aromatic hydrocarbons, and water.
  • Examples of the halogenated hydrocarbons include dichloromethane, chloroform, dichloroethane, and the like.
  • Examples of the aliphatic nitriles include acetonitrile, propionitrile, and butyronitrile.
  • Examples of the aromatic nitriles include benzonitrile and tolunitrile.
  • Examples of the alcohol include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol and the like.
  • the aromatic hydrocarbons include benzene, toluene, and xylene.
  • the inert solvent among these, halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane, and alcohols such as methanol, ethanol and tert-butyl alcohol are preferably used.
  • the solvents exemplified above may be used alone, or two or more of them may be used in combination.
  • the polymer particles before the nitroxidation need not necessarily be dissolved in an inert solvent, and the nitroxidation reaction proceeds easily, for example, even in a swollen state.
  • the amount of the inert solvent to be used is from 50 to 5,000 parts by mass with respect to 100 parts by mass of the polymer particles before nitroxidation, from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used. And more preferably 100 to 3000 parts by mass.
  • the oxidizing agent is not particularly limited as long as it is an oxidizing agent capable of nitroxidation.
  • the oxidizing agent include peroxides such as hydrogen peroxide, formic acid, peracetic acid, perbenzoic acid, and perphthalic acid, halides thereof, and air.
  • the oxidizing agent is used in an amount of 1 mol of the (meth) acrylic acid imino compound used in the production of the polymer particles before nitroxidation, from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used. Is preferably from 1 to 100 mol, more preferably from 1.5 to 50 mol, even more preferably from 2 to 30 mol.
  • a catalyst can be used as necessary in the reaction.
  • the catalyst is not particularly limited, and a catalyst used in a usual nitroxidation reaction can be used.
  • the catalyst include compounds containing a metal element selected from Group 6 of the Periodic Table of the Group 18 elements, such as tungsten and molybdenum. More specifically, a tungsten compound, a molybdenum compound, and the like can be given.
  • the tungsten compound include tungstic acid, phosphotungstic acid, paratungstic acid, alkali metal salts (such as sodium salt and potassium salt) and ammonium salts thereof, tungsten oxide, and tungsten carbonyl.
  • the molybdenum compound examples include molybdic acid, phosphomolybdic acid, paramolybdic acid, and alkali metal salts (such as sodium salt and potassium salt) and ammonium salts thereof.
  • the catalyst among these, specifically, ammonium paratungstate, sodium tungstate, phosphotungstic acid, sodium molybdate, molybdenum trioxide, molybdenum hexacarbonyl and the like are preferably used.
  • the amount of the catalyst used is 0.001 to 20 parts by mass based on 100 parts by mass of the polymer particles before nitroxidation from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used. And more preferably 0.01 to 10 parts by mass.
  • the nitroxidation in the second step can be easily performed in a high yield as an operation, first, after mixing the polymer particles before the nitroxidation, the inert solvent, and the catalyst as necessary, It is preferable to carry out the reaction while adding the oxidizing agent.
  • water or the like may be added to dissolve the catalyst, and if necessary, a phase transfer catalyst such as a quaternary ammonium salt or a phosphonium salt may be appropriately added.
  • phase transfer catalyst specifically, tetrabutylammonium bromide, tetrabutylammonium chloride, trioctylmethylammonium chloride, phenyltrimethylammonium chloride, cetylpyridinium bromide, tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, and tributyldodecyl And phosphonium bromide.
  • the reaction conditions for the nitroxidation are not particularly limited as long as the nitroxidation occurs.
  • the reaction temperature is preferably from 0 to 100 ° C, more preferably from 20 to 80 ° C.
  • the time for the reaction while the oxidizing agent is added is not particularly limited, but is usually 1 to 10 hours, preferably 3 to 6 hours. Further, usually, after the addition of the oxidizing agent is completed, the reaction is completed by maintaining the temperature. After completion of the addition of the oxidizing agent, the time for completing the reaction while maintaining the temperature is preferably 2 to 24 hours, more preferably 4 to 16 hours.
  • the polymer particles obtained by the above reaction after nitroxidation can be isolated from the reaction solution by a combination of filtration, drying and the like.
  • the reaction product can be isolated, for example, by mixing the reaction solution with a large amount of cold water, precipitating the polymerization reaction product, and then filtering. Further, it can be purified by removing unreacted substances and the like using water, hexane, methanol and the like, washing and drying.
  • polymer particles capable of producing an electrode suitable for a lithium secondary battery can be suitably produced.
  • the polymer particles according to the embodiment of the present invention can be produced. That is, the copolymer contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3) in a molecule, Polymer particles having an average primary particle size of 0.01 to 20 ⁇ m can be produced.
  • the polymer particles according to this embodiment are preferably used for manufacturing an electrode for a lithium secondary battery. That is, an electrode for a lithium secondary battery according to another embodiment of the present invention includes a current collector and an electrode layer provided on the current collector, and the electrode layer includes the polymer particles. . Specifically, in the electrode 20 shown in FIG. 2, the electrode layer 21 includes an electrode containing the polymer particles. In addition, the electrode layer 21 only needs to include the polymer particles, and may include other components. Further, the electrode layer 21 may be a layer made of the polymer particles.
  • the current collector is not particularly limited as long as it is used as a current collector.
  • Examples of the current collector include a metal foil, a metal flat plate, a metal mesh, and a carbon rod.
  • Examples of the metal foil, the metal plate, and the metal mesh include those containing nickel, aluminum, copper, gold, silver, an aluminum alloy, stainless steel, and the like.
  • the method for manufacturing the electrode is not particularly limited as long as the electrode can be manufactured.
  • Examples of the method for producing the electrode include a method including a coating step of forming the polymer particles into a coating, and a coating step of coating the coating on a current collector.
  • the coating process and the coating process are not particularly limited, and can be performed using a known method or apparatus.
  • the coating process includes, for example, a method of mixing a binder with the polymer particles and adding a solvent to form a slurry.
  • the binder include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, polyimide, and various polyurethanes.
  • the solvent include dimethylformamide and N-methylpyrrolidone.
  • the application step is, for example, a step of applying the paint (slurry) obtained in the paint-forming step to the surface of the current collector. Specifically, the coating material (slurry) obtained in the coating process is dropped on the surface of the current collector, developed with a wire bar so as to have a uniform thickness, and then dried to remove the solvent. And the like.
  • the thickness of the coating film obtained by the coating step is preferably from 10 to 1000 ⁇ m, more preferably from 50 to 300 ⁇ m.
  • Such an electrode is an electrode more suitable for a lithium secondary battery. That is, by providing the electrode layer containing the polymer particles, an electrode more suitable for a lithium secondary battery can be obtained. Specifically, by using the electrode, a lithium secondary battery having a high actual capacity, a capacity deriving efficiency, and a high-speed discharge / charge capacity retention rate can be obtained.
  • the electrode according to the present embodiment is preferably used as an electrode for a lithium secondary battery. That is, a lithium secondary battery according to another embodiment of the present invention includes the electrode. Specifically, in the lithium secondary battery 10 shown in FIG. 1, as the positive electrode 20, a battery or the like including the electrode is used. Such a lithium secondary battery is a more suitable lithium secondary battery. Specifically, it is possible to obtain a lithium secondary battery having a high actual capacity, capacity display efficiency, and high retention rate of high-speed discharge / charge capacity.
  • the polymer particle according to one aspect of the present invention includes a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3) as a molecule. And an average primary particle diameter of 0.01 to 20 ⁇ m.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom or a methyl group.
  • R 3 represents a hydrogen atom or a methyl group.
  • the polymer particles capable of producing an electrode suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery. That is, when an electrode is manufactured using the polymer particles, an electrode suitable as an electrode of a lithium secondary battery can be obtained. Specifically, when the obtained electrode is used as an electrode of a lithium secondary battery, the polymer particles act as a high-output electrode active material to produce a lithium secondary battery capable of high capacity and high speed charge / discharge. can do. More specifically, it is possible to manufacture a lithium secondary battery having a high actual capacity and a high capacity retention rate after high-speed discharging and charging.
  • the repeating unit represented by the formula (1) has an N-oxy radical in the repeating unit. That is, the copolymer contained in the polymer particles contains the repeating unit having the N-oxy radical. As described above, since the polymer particles include the copolymer having a radical in the molecule, the polymer particles are considered to act as an electrode active material. Further, since this radical is an N-oxy radical in which two quaternary carbons are bonded, the N-oxy radical easily causes an oxidation-reduction reaction, and is thermally and electrochemically stable.
  • the copolymer contained in the polymer particles contains the repeating unit represented by the formula (1) in the molecule together with the repeating unit represented by the formula (2), whereby the polymer It is believed that the particles can act as a high power electrode active material. Further, as described above, such polymer particles have a relatively small average primary particle diameter of 0.01 to 20 ⁇ m. From this, it is considered that the polymer particles have a relatively large specific surface area and function as a high-output electrode active material. That is, the polymer particles are considered to be suitable electrode active materials.
  • the copolymer contained in the polymer particles not only has an N-oxy radical in which two quaternary carbons are bonded as described above, but also has a repeating unit represented by the formula (1),
  • the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) are contained in a state of being bonded.
  • the polymer particles have an affinity for water (hydrophilicity). Sex) is considered to be higher. For this reason, it becomes easy to manufacture an electrode using the polymer particles. Also.
  • the copolymer contained in the polymer particles contains the repeating unit represented by the formula (3), when the polymer particles are used as an electrode, the affinity for the electrolytic solution which is a highly polar solvent is obtained. Therefore, it is considered that the movement of lithium ions in the electrode can be made smooth and the diffusion resistance of lithium ions in the electrode can be reduced.
  • the copolymer contained in the polymer particles includes a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a compound represented by the formula (3). And each of them is contained in a state of being bonded to the repeating unit represented by Therefore, it is considered that even when the polymer particles are used to form an electrode, the elution of the polymer particles into the solvent contained in the electrolytic solution in contact with the electrode can be suitably suppressed. That is, it is considered that the polymer particles are excellent in anti-elution property (elution resistance) to the solvent.
  • this polymer particle is a polymer particle that becomes a suitable electrode for a lithium secondary battery when included in an electrode provided in the lithium secondary battery.
  • the electrode active material composed of the polymer particles is suitable as an electrode active material for an electrode provided in a lithium secondary battery.
  • the copolymer has a content of the repeating unit represented by the formula (3) and a content of the repeating unit represented by the formula (1) and the content of the formula (3). Is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass in total with the content of the repeating unit represented by
  • the copolymer preferably further contains a repeating unit represented by the following formula (4) in the molecule.
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group
  • Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
  • the copolymer contained in the polymer particles contains the repeating unit represented by the formula (4) in a state of being bonded to the repeating units represented by the formulas (1) to (3). Therefore, the copolymer is cross-linked. Due to such crosslinking, the polymer particles are considered to be excellent in anti-elution property (elution resistance) to a solvent. That is, it is considered that even when the polymer particles are used as an electrode, the elution of the polymer particles into the solvent contained in the electrolytic solution that comes into contact with the electrode can be more suitably suppressed.
  • the copolymer contained in the polymer particles is cross-linked by the repeating unit represented by the formula (4), the cross-linking is represented by the formulas (1) and (3). It is considered that each effect is less likely to be inhibited by having a repeating unit having the same structure.
  • polymer particles having more excellent elution resistance can be obtained while exhibiting the respective effects sufficiently by having the repeating units represented by the formulas (1) and (3).
  • a method for producing a polymer particle according to another aspect of the present invention is a method for producing the polymer particle, wherein the imino compound represented by the following formula (5) and the imino compound represented by the following formula (6) are provided.
  • R 6 represents a hydrogen atom or a methyl group.
  • R 7 represents a hydrogen atom or a methyl group.
  • the first step by polymerizing a monomer composition containing an imino compound represented by the formula (5) and (meth) acrylic acid represented by the formula (6), A copolymer containing the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) in the molecule is obtained.
  • the copolymer (the polymer obtained in the first step) is nitroxidized, so that the imino group contained in the copolymer is nitroxidized.
  • a part of the repeating unit represented is a repeating unit represented by the formula (1). From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is can get.
  • the polymer obtained in the first step is obtained in the form of particles, and the particles containing the polymer are in the form of a particulate polymer obtained by polymerizing only the imino compound represented by the formula (5). Since particles smaller than the coalesced particles are obtained, the particles containing the copolymer obtained in the second step are also reduced. From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is used. Thus, polymer particles having an average primary particle diameter of 0.01 to 20 ⁇ m are obtained.
  • the monomer composition preferably contains a crosslinking agent represented by the following formula (7).
  • R 8 and R 9 each independently represent a hydrogen atom or a methyl group
  • Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
  • polymer particles containing a copolymer further containing a repeating unit represented by the formula (4) in the molecule can be suitably produced.
  • the monomer composition to be polymerized in the first step contains the crosslinking agent represented by the formula (7), whereby the repeating unit represented by the formula (4) can be produced in the first step. It is considered that a copolymer crosslinked by the above is obtained.
  • the polymerization in the first step is suspension polymerization, emulsion polymerization, or dispersion polymerization.
  • the polymer particles can be produced more suitably. This is thought to be because the polymerization in the first step is suspension polymerization, emulsion polymerization, or dispersion polymerization, whereby a suitable particulate polymer is easily obtained in the first step.
  • the polymerization in the first step is suspension polymerization, emulsion polymerization, or dispersion polymerization, whereby a suitable particulate polymer is easily obtained in the first step.
  • the monomer composition is polymerized by adding a water-soluble solvent solution containing the monomer composition to an aqueous solution containing a surfactant and a polymerization initiator. Is preferred.
  • the polymer particles can be produced more suitably.
  • the unreacted monomer that is, the unreacted imino compound represented by the formula (5) or the like remaining in the particulate polymer obtained in the first step can be suppressed.
  • the imino compound represented by the formula (5) is hydrophobic.
  • the hydrophobic imino compound disperses as oil droplets in an aqueous solution containing a surfactant.
  • the unreacted imino compound represented by the formula (5) precipitates in the aqueous solution together with the polymer, and is surrounded by the obtained polymer.
  • the unreacted imino compound represented by the formula (5) remains.
  • the water-soluble solvent is water-soluble and can dissolve a monomer contained in the monomer composition, for example, an imino compound represented by the formula (5).
  • a monomer contained in the monomer composition for example, an imino compound represented by the formula (5).
  • the obtained polymer swells. Therefore, the polymer existing so as to surround the unreacted imino compound represented by the formula (5) also swells, and from the state surrounded by the polymer, the unreacted formula Since the imino compound represented by the formula (5) can be eluted, the unreacted monomer, that is, the unreacted imino represented by the formula (5) is added to the particulate polymer obtained in the first step. It is considered that the compound and the like can be prevented from remaining.
  • the first step by polymerizing a monomer composition containing an imino compound represented by the formula (5) and (meth) acrylic acid represented by the formula (6), it is considered that a copolymer containing the repeating unit represented by formula (2) and the repeating unit represented by formula (3) in a molecule can be suitably obtained.
  • the unreacted imino compound represented by the formula (5) remains so as to be surrounded by the obtained polymer. In this state, if the water-soluble solvent does not exist, the imino compound represented by the formula (5) exists while being surrounded by the polymer, and the (meth) acrylic acid represented by the formula (6) is present.
  • the imino compound represented by the formula (5) is also eluted from the state surrounded by the polymer, such homopolymerization of the (meth) acrylic acid represented by the formula (6) is suppressed, and the imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6) are suppressed. It is considered that the polymerization of the copolymer containing the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) in the molecule is favorably polymerized.
  • the monomer composition can be suitably polymerized,
  • the united particles can be produced more suitably.
  • polymer particles capable of producing an electrode suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery. Further, a method for producing the polymer particles can be provided.
  • Example 1 (First step: polymerization step) First, a first step of polymerizing a monomer composition containing the (meth) acrylic acid imino compound, the (meth) acrylic acid, and the crosslinking agent was performed. Specifically, in a 200 mL Erlenmeyer flask, 22.50 g (100 mmol) of 2,2,6,6-tetramethyl-4-piperidinyl methacrylate and 0.198 g (1.0 mmol) of ethylene glycol dimethyl methacrylate were added.
  • the reaction solution was cooled to room temperature, filtered, washed with 500 mL of water and then with 500 mL of hexane, and dried under reduced pressure to obtain 21.2 g (yield: 93%) of a white powder.
  • the obtained white powder contains a repeating unit represented by the formula (2), a repeating unit represented by the formula (3), and a repeating unit represented by the formula (4) in a molecule.
  • red powder is represented by the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4). (Cross-linked polymethacrylic acid-based nitroxide copolymer) containing a repeating unit in the molecule.
  • the particle size distribution of the obtained red powder was observed with a scanning electron microscope (VE-8800 manufactured by Keyence Corporation) at a magnification of 1000 to 10,000 times and an acceleration voltage of 10 kV.
  • a region containing 50 or more polymer particles in the observation field of view is randomly selected, a dark contrast is observed in the observed image, and a site that is connected continuously and linearly is determined as the contour of the primary particle, and the scale and By comparison, the diameters of the 50 or more primary particles were measured, and a graph of the particle size distribution was obtained using the horizontal axis as the diameter and the vertical axis as the number. From the obtained particle size distribution, the volume average particle diameter of the primary particle diameter was determined. The volume average particle diameter (average primary particle diameter) of the obtained primary particle diameter was 0.80 ⁇ m.
  • the content of (1) in the copolymer was measured by a chemical titration method based on a redox reaction (redox titration method). Specifically, 100 mg of a sample (copolymer) was weighed, swollen with chloroform and acetic acid, and then added with a 0.2 N potassium iodide aqueous solution, and the released iodine was back titrated with a 0.050 N aqueous sodium thiosulfate solution. It calculated by doing. In the test, two samples were analyzed, and the average value was used as the analysis value.
  • the content of (3) in the copolymer was measured by a chemical titration method based on a neutralization reaction. Specifically, 1.0 g of a sample (copolymer) was weighed, swollen with toluene, and then titrated with an ethanol solution of 0.050 N potassium hydroxide. In the test, two samples were analyzed, and the average value was used as the analysis value.
  • the content of the repeating unit represented by the formula (2) was measured by a chemical titration method. Specifically, 1.0 g of a sample (copolymer) was weighed, swollen with methanol, and then titrated with 0.050N hydrochloric acid. In the test, two samples were analyzed, and the average value was used as the analysis value.
  • the content of (1) [(1) / (1) + (2)] with respect to 100 parts by mass of the total content of (1) and (2) in the copolymer was , 91 parts by mass.
  • the content of (4) is measured by subtracting the content of (1), the content of (2), and the content of (3) when the amount of the copolymer is 100 parts by mass. did.
  • Example 2 (First step) A step similar to the first step in Example 1 was performed, except that 0.5 g of polyoxyethylene nonylphenyl ether was used instead of 0.5 g of sodium dodecylbenzenesulfonate. By the first step, 21.0 g (yield 92%) of white powder was obtained.
  • Example 2 The second step in Example 1 was repeated except that 0.54 g (2.2 mmol) of sodium molybdate dihydrate was used instead of 0.73 g (2.2 mmol) of sodium tungstate dihydrate. Similar steps were performed.
  • red powder was obtained by the first step and the second step performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 4.6 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0.66 parts by mass.
  • the ratio of (1) / (1) + (2) was 94 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.85 parts by mass.
  • Example 3 (First step) A step similar to the first step in Example 1 was performed, except that ethylene glycol dimethyl methacrylate was not used. By the first step, 20.4 g (yield 90%) of white powder was obtained.
  • red powder was obtained by the first step and the second step (the second step similar to Example 1) performed after the first step.
  • the obtained red powder contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3) in a molecule.
  • the ratio (3) / (1) + (3) in the copolymer was 0.58 parts by mass.
  • the ratio of (1) / (1) + (2) was 94 parts by mass.
  • the ratio of (4) / (1) + (3) was 0 parts by mass.
  • Example 4 (First step) In a 200 mL Erlenmeyer flask, 22.50 g (100 mmol) of 2,2,6,6-tetramethyl-4-piperidinyl methacrylate, 0.198 g (1.0 mmol) of ethylene glycol dimethyl methacrylate, 8 methacrylic acid 0.6 mg (0.1 mmol) and methanol (30 mL) were charged and mixed to obtain a homogeneous solution.
  • reaction solution was cooled to room temperature, filtered, washed with 500 mL of water and then with 500 mL of hexane, and dried under reduced pressure to obtain 22.6 g (yield: 99%) of a white powder.
  • red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 1.8 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0.04 parts by mass.
  • the ratio of (1) / (1) + (2) was 95 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.70 parts by mass.
  • Example 5 (First step) A step similar to the first step in Example 4 was performed, except that 0.086 g (1.0 mmol) of methacrylic acid was used instead of 8.6 mg (0.1 mmol) of methacrylic acid. By this first step, 21.2 g (94% yield) of white powder was obtained.
  • red powder was obtained by the first step and the second step performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 0.53 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0.38 parts by mass.
  • the ratio (1) / (1) + (2) was 96 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.78 parts by mass.
  • Example 6 (First step) A step similar to the first step in Example 4 was performed, except that 0.516 g (6.0 mmol) of methacrylic acid was used instead of 8.6 mg (0.1 mmol) of methacrylic acid. By this first step, 21.6 g (yield 93%) of white powder was obtained.
  • red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 0.081 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 2.04 parts by mass.
  • the ratio of (1) / (1) + (2) was 97 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.76 parts by mass.
  • Example 7 (First step) A step similar to the first step in Example 4 was performed, except that 0.2 g of sodium dodecylbenzenesulfonate was used instead of 0.5 g of sodium dodecylbenzenesulfonate. By the first step, 20.9 g (yield 92%) of white powder was obtained.
  • red powder was obtained by the first step and the second step performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was measured by the same method as in Example 1 and found to be 7.1 ⁇ m.
  • the ratio (3) / (1) + (3) in the copolymer was 0.35 parts by mass.
  • the ratio of (1) / (1) + (2) was 90 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.77 parts by mass.
  • Example 8 (First step) Using 200 mL of toluene instead of 200 mL of water, not using sodium dodecylbenzenesulfonate, and using 0.258 g (3.0 mmol) of methacrylic acid instead of 0.172 g (2.0 mmol) of methacrylic acid Steps similar to the first step in Example 1 except that 0.594 g (3.0 mmol) of ethylene glycol dimethyl methacrylate was used instead of 0.198 g (1.0 mmol) of ethylene glycol dimethyl methacrylate Was done. By this first step, 20.6 g (90% yield) of white powder was obtained.
  • red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 5.9 ⁇ m as measured by the same method as in Example 1.
  • Example 9 (First step) A step similar to the first step in Example 4 was performed, except that 0.861 g (10.0 mmol) of methacrylic acid was used instead of 8.6 mg (0.1 mmol) of methacrylic acid. By this first step, 21.2 g (90% yield) of white powder was obtained.
  • red powder was obtained by the first step and the second step (the second step similar to Example 1) performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 0.047 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 6.40 parts by mass.
  • the ratio of (1) / (1) + (2) was 92 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.77 parts by mass.
  • red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step.
  • the obtained red powder contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (4) in a molecule.
  • the polymer particles were composed of a copolymer (crosslinked polymethacrylic acid-based nitroxide copolymer). The average primary particle diameter of the obtained red powder was 34 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0 parts by mass.
  • the ratio of (1) / (1) + (2) was 77 parts by mass.
  • the ratio of (4) / (1) + (3) was 1.05 parts by mass.
  • red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step.
  • the obtained red powder contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (4) in a molecule.
  • the polymer particles were composed of a copolymer (crosslinked polymethacrylic acid-based nitroxide copolymer). The average primary particle diameter of the obtained red powder was 38 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0 parts by mass.
  • the ratio (1) / (1) + (2) was 67 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.90 parts by mass.
  • red powder was obtained by the first step and the second step performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 23 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0 parts by mass.
  • the ratio of (1) / (1) + (2) was 64 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.94 parts by mass.
  • red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 41 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0.35 parts by mass.
  • the ratio (1) / (1) + (2) was 59 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.49 parts by mass.
  • red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step.
  • the obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4)
  • the polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule.
  • the average primary particle diameter of the obtained red powder was 29 ⁇ m as measured by the same method as in Example 1.
  • the ratio (3) / (1) + (3) in the copolymer was 0.33 parts by mass.
  • the ratio of (1) / (1) + (2) was 74 parts by mass.
  • the ratio of (4) / (1) + (3) was 0.76 parts by mass.
  • [Battery characteristics] 1 g of each of the particles according to Examples 1 to 8 and Comparative Examples 1 to 5, an aqueous binder composed of styrene butadiene fine particles (SBR) and sodium carboxymethyl cellulose (CMC-Na) (5% by mass based on each particle), A black slurry was obtained by mixing, pressing, kneading and stirring 1.0 g of carbon powder Super-P (manufactured by TIMCAL) and ion-exchanged water for adjusting the slurry viscosity.
  • SBR styrene butadiene fine particles
  • CMC-Na sodium carboxymethyl cellulose
  • This slurry was applied on the surface of an aluminum foil (current collector) having a thickness of 18 ⁇ m using a late stage and an applicator with an application clearance of 100 ⁇ m, and then dried under reduced pressure at 120 ° C. for 3 hours.
  • electrodes were obtained in which the composite films of the particles and the carbon powder according to Examples 1 to 8 and Comparative Examples 1 to 5 were bound to the current collector.
  • the obtained electrode was dried, and the dried electrode was subjected to a rolling treatment with a load of 4 tons using a roll press (manufactured by Hosen Co., Ltd.) and dried again.
  • This composite electrode was cut out in a circle having a diameter of 13 mm and used as a positive electrode of a coin cell.
  • a lithium metal foil (thickness 0.2 m, diameter 16 mm) is used for the counter electrode (negative electrode)
  • a polypropylene-based separator (Celgard # 2400 manufactured by Polypore) is used for the separator
  • an electrolyte is used for the electrolyte.
  • Lithium secondary was added to a mixed solution of ethylene carbonate and dimethyl carbonate (mass ratio 3: 7) using an electrolytic solution in which LiPF6 was dissolved at 1 mol / L in a glove box under an argon atmosphere. A battery (coin half cell) was produced.
  • charge / discharge evaluation was performed at a constant current (33 ⁇ A / cm 2 , 25 ° C.) using a charge / discharge test apparatus (TOSCAT3100 manufactured by Toyo System Corporation). Specifically, 1C discharge capacity, 10C discharge capacity, 10C charge capacity, and 10C discharge capacity retention rate (capacity retention rate at 10C discharge) were measured.
  • the 10C discharge capacity retention rate is a discharge capacity in 1/10 hour (6 minutes) from a fully charged state, and indicates a capacity retention rate after high-speed discharge charging.
  • the 10C discharge capacity retention rate is an index for a high-output secondary battery.
  • Table 1 “(3) / (1) + (3)” means the content (parts by mass) of (3) based on 100 parts by weight of the total content of (1) and (3). Show. “(1) / (1) + (2)” indicates the content (parts by mass) of (1) based on 100 parts by weight of the total content of (1) and (2). “(4) / (1) + (3)” indicates the content (parts by mass) of (4) relative to 100 parts by weight of the total content of (1) and (3).
  • the lithium secondary battery using the electrodes obtained using the particles according to Examples 1 to 9 has a 1 C discharge capacity, a 10 C discharge capacity, and a higher discharge capacity than the case using the particles according to Comparative Examples 1 to 5. It can be seen that both the 10C charge capacity and the 10C charge capacity maintenance rate are high. Specifically, the lithium secondary batteries using the electrodes obtained by using the particles according to Examples 1 to 9 showed a high actual capacity with respect to the theoretical charge capacity, and had high capacity efficiency.
  • a polymer particle capable of producing an electrode suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery. Further, according to the present invention, there is provided a method for producing the polymer particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

One aspect of the present invention provides polymer particles which contain a copolymer that comprises a repeating unit represented by formula (1), a repeating unit represented by formula (2) and a repeating unit represented by formula (3) in each molecule, and which have an average primary particle diameter of 0.01-20 μm. In formula (1), R1 represents a hydrogen atom or a methyl group. In formula (2), R2 represents a hydrogen atom or a methyl group. In formula (3), R3 represents a hydrogen atom or a methyl group.

Description

重合体粒子、及び重合体粒子の製造方法Polymer particles and method for producing polymer particles
 本発明は、重合体粒子、及び重合体粒子の製造方法に関する。 << The present invention relates to a polymer particle and a method for producing the polymer particle.
 ノート型パソコンや携帯電話機等の携帯型電子機器、及び電気自動車等に用いられる二次電池には、エネルギー密度が高いこと、小型であること、大きな電流を流せること、容量が大きいこと、及びサイクル特性に優れること等の高性能化が求められている。このような要求を満たす電池として、リチウムイオンを荷電担体として、その電荷授受に伴う電気化学反応を利用したリチウム二次電池が注目されており、その利用及び開発が進められている。また、リチウム二次電池は、電極へのリチウムイオンの挿入及び脱離によって、充放電を行っている。より好適なリチウム二次電池を開発するためには、このようなリチウムイオンの挿入及び脱離による充放電をより好適に行える等の性能を有する電極が必要である。このため、これを実現するための材料が求められている。 Secondary batteries used in portable electronic devices such as notebook personal computers and mobile phones, and electric vehicles, etc. must have high energy density, be small, be able to carry large currents, have large capacities, and have high cycle capacity. There is a demand for high performance such as excellent characteristics. As a battery that satisfies such demands, a lithium secondary battery using lithium ions as a charge carrier and utilizing an electrochemical reaction accompanying charge transfer has attracted attention, and its use and development have been promoted. In addition, lithium secondary batteries are charged and discharged by inserting and removing lithium ions from and to electrodes. In order to develop a more suitable lithium secondary battery, it is necessary to have an electrode having such a performance that charging and discharging can be more suitably performed by inserting and removing lithium ions. Therefore, a material for realizing this is required.
 また、重合体等の有機化合物として、多様な機能を有するものが開発され、例えば、上記のような、リチウム二次電池の電極に用いることができる材料も開発されている。 有機 In addition, organic compounds having various functions have been developed as organic compounds such as polymers, and for example, materials that can be used for electrodes of lithium secondary batteries as described above have been developed.
 リチウム二次電池の電極に用いることができる材料としては、例えば、特許文献1に記載の材料が挙げられる。また、リチウム二次電池の電極に用いることができる材料の製造方法としては、例えば、特許文献2に記載の製造方法が挙げられる。 材料 As a material that can be used for an electrode of a lithium secondary battery, for example, a material described in Patent Literature 1 is given. As a method for manufacturing a material that can be used for an electrode of a lithium secondary battery, for example, a manufacturing method described in Patent Literature 2 can be used.
 特許文献1には、特定の(メタ)アクリル酸イミノ化合物と、(メタ)アクリル酸エステルとを架橋剤の存在下で重合した後、ニトロキシド化して得られる(メタ)アクリル酸系架橋共重合体が記載されている。特許文献1によれば、対溶媒安定性に優れ、それを塗布した集電体の塗布表面に乾燥によるひび割れが実質的に発生することがない(メタ)アクリル酸系架橋共重合体が得られる旨が開示されている。 Patent Literature 1 discloses a (meth) acrylic acid-based crosslinked copolymer obtained by polymerizing a specific (meth) acrylic acid imino compound and a (meth) acrylic acid ester in the presence of a crosslinking agent, and then nitroxidizing the polymer. Is described. According to Patent Literature 1, a (meth) acrylic acid-based crosslinked copolymer having excellent stability with respect to a solvent and substantially not generating cracks due to drying on the surface of the current collector coated with the solvent can be obtained. Is disclosed.
 特許文献2には、特定のポリ(メタ)アクリル酸ニトロキシド化合物が架橋されてなる架橋ポリ(メタ)アクリル酸ニトロキシド化合物の製造方法であって、特定の(メタ)アクリル酸イミノ化合物を架橋剤の存在下に重合して、特定のポリ(メタ)アクリル酸イミノ化合物が架橋されてなる架橋(メタ)アクリル酸イミノ化合物を製造する重合工程、及び前記架橋(メタ)アクリル酸イミノ化合物をニトロキシド化するニトロキシド化工程を含む架橋ポリ(メタ)アクリル酸ニトロキシド化合物の製造方法が記載されている。特許文献2によれば、対溶媒安定性に優れており、エネルギー密度が高く大容量の二次電池の電極材料として用いられる架橋ポリ(メタ)アクリル酸ニトロキシド化合物を製造することができる旨が開示されている。 Patent Document 2 discloses a method for producing a crosslinked poly (meth) acrylic acid nitroxide compound obtained by crosslinking a specific poly (meth) acrylic acid nitroxide compound, wherein the specific (meth) acrylic acid imino compound is used as a crosslinking agent. Polymerization in the presence of a specific poly (meth) acrylic acid imino compound to form a crosslinked (meth) acrylic acid imino compound, and nitroxidation of the crosslinked (meth) acrylic acid imino compound A method for producing a crosslinked poly (meth) acrylic acid nitroxide compound including a nitroxidation step is described. According to Patent Document 2, it is disclosed that a crosslinked poly (meth) acrylic acid nitroxide compound which is excellent in solvent stability and has a high energy density and is used as an electrode material of a large capacity secondary battery can be produced. Have been.
 リチウム二次電池の電極に用いることができる材料が、上述したように、種々開発されている。また、リチウム二次電池は、上述したように、さらなる高性能化が求められており、リチウム二次電池に備えられる電極もさらなる高性能化が求められている。これらのことから、リチウム二次電池に備えられる電極のさらなる高性能化を実現できる材料が求められている。 材料 Various materials that can be used for electrodes of lithium secondary batteries have been developed as described above. Further, as described above, the lithium secondary battery is required to have higher performance, and the electrodes provided in the lithium secondary battery are also required to have higher performance. For these reasons, there is a demand for a material capable of realizing higher performance of an electrode provided in a lithium secondary battery.
特開2008-45096号公報JP 2008-45096 A 国際公開2005/116092号International Publication No. 2005/116092
 本発明は、かかる事情に鑑みてなされたものであって、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極を製造することができる重合体粒子、及び前記重合体粒子の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and when included in an electrode provided in a lithium secondary battery, polymer particles that can produce an electrode suitable for a lithium secondary battery, and An object of the present invention is to provide a method for producing the polymer particles.
 本発明の一局面に係る重合体粒子は、下記式(1)で表される繰り返し単位、下記式(2)で表される繰り返し単位、及び下記式(3)で表される繰り返し単位を分子内に含有する共重合体を含み、平均一次粒子径が、0.01~20μmであることを特徴とする。 The polymer particle according to one aspect of the present invention includes a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3) as a molecule. And an average primary particle diameter of 0.01 to 20 μm.
Figure JPOXMLDOC01-appb-C000008
 式(1)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000008
In the formula (1), R 1 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000009
 式(2)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000009
In the formula (2), R 2 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000010
 式(3)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000010
In the formula (3), R 3 represents a hydrogen atom or a methyl group.
図1は、本発明の一実施形態に係る重合体粒子を含む電極を備えるリチウム二次電池の構成の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an example of a configuration of a lithium secondary battery including an electrode including a polymer particle according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る重合体粒子を含む電極の構成の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating an example of the configuration of an electrode including polymer particles according to one embodiment of the present invention.
 本発明者等の検討によれば、例えば、特許文献1に記載の(メタ)アクリル酸系架橋共重合体を含む電極は、出力が充分に高まらないことを見出した。 According to the study of the present inventors, for example, it has been found that the output of the electrode containing the (meth) acrylic acid-based crosslinked copolymer described in Patent Document 1 does not sufficiently increase.
 このことは、特許文献1に記載の(メタ)アクリル酸系架橋共重合体が、前記(メタ)アクリル酸イミノ化合物と、前記(メタ)アクリル酸イミノ化合物に類似の(メタ)アクリル酸エステルとを共重合することにより得られた共重合体であることによると推察した。具体的には、前記(メタ)アクリル酸系架橋共重合体は、上述したように、前記(メタ)アクリル酸エステルを共重合化させることにより、前記(メタ)アクリル酸イミノ化合物のみを重合させた重合体より疎水性が高まることを見出し、この疎水性の高まることによると推察した。このことにより、電極を製造するとき等に不具合が生じる場合があった。例えば、前記(メタ)アクリル酸系架橋共重合体を含む電極を製造する際に、この(メタ)アクリル酸系架橋共重合体の疎水性が高いと、水系のバインダを用いることが困難になり、このことに基づく不具合が発生する場合があった。また、電極に含ませる材料の疎水性が高いと、電解液中のリチウムの移動が低下すると推察した。このため、前記(メタ)アクリル酸系架橋重合体を電極材料として用いた場合、電極の抵抗が高まる場合があった。 This means that the (meth) acrylic acid-based cross-linked copolymer described in Patent Document 1 contains the (meth) acrylic acid imino compound and a (meth) acrylic ester similar to the (meth) acrylic acid imino compound. Was presumed to be a copolymer obtained by copolymerizing Specifically, as described above, the (meth) acrylic acid-based crosslinked copolymer polymerizes only the (meth) acrylic acid imino compound by copolymerizing the (meth) acrylic ester. It was found that the hydrophobicity was higher than that of the polymer obtained, and it was presumed that this was due to the increase in the hydrophobicity. As a result, a problem may occur when manufacturing an electrode or the like. For example, when producing an electrode containing the (meth) acrylic acid-based crosslinked copolymer, if the (meth) acrylic acid-based crosslinked copolymer has high hydrophobicity, it becomes difficult to use an aqueous binder. However, a problem based on this may occur. In addition, it was presumed that when the hydrophobicity of the material contained in the electrode was high, the movement of lithium in the electrolytic solution was reduced. For this reason, when the (meth) acrylic acid-based crosslinked polymer was used as an electrode material, the resistance of the electrode was sometimes increased.
 また、本発明者等の検討によれば、特許文献2に記載の製造方法で製造された架橋ポリ(メタ)アクリル酸ニトロキシド化合物を含む電極も、出力が充分に高まらないことを見出した。特許文献2に記載の製造方法では、架橋ポリ(メタ)アクリル酸ニトロキシド化合物を粒子状で得ることができても、その粒子径、例えば、平均一次粒子径が比較的大きくなることを見出した。このことは、この(メタ)アクリル酸系架橋共重合体を用いて得られた電極の出力を減らす原因になると推察した。 According to the study by the present inventors, it has been found that an electrode containing a crosslinked poly (meth) acrylic acid nitroxide compound produced by the production method described in Patent Document 2 does not sufficiently increase output. In the production method described in Patent Document 2, it has been found that even if a crosslinked poly (meth) acrylic acid nitroxide compound can be obtained in the form of particles, the particle diameter, for example, the average primary particle diameter becomes relatively large. This was presumed to be a cause of reducing the output of the electrode obtained using the (meth) acrylic acid-based crosslinked copolymer.
 以上のことから、特許文献1に記載の(メタ)アクリル酸系架橋共重合体を含む電極や、特許文献2に記載の製造方法で製造された架橋ポリ(メタ)アクリル酸ニトロキシド化合物を含む電極では、上記のことを原因として、出力が充分に高まらなかったと推察した。すなわち、これらの従来の電極では、疎水性が高いことや粒子が大きいこと等が原因で、出力が充分に高まらなかったと推察した。 From the above, the electrode containing the (meth) acrylic acid-based crosslinked copolymer described in Patent Document 1 and the electrode containing the crosslinked poly (meth) acrylic acid nitroxide compound produced by the production method described in Patent Document 2 Inferred that the output did not increase sufficiently due to the above. That is, it was presumed that these conventional electrodes did not sufficiently increase the output due to high hydrophobicity and large particles.
 また、これらの従来の電極に含まれる共重合体では、電極に接触する電解液に含まれる溶媒への溶出を抑制できても、電極の出力が充分に高まらなかった原因として、リチウムイオンが粒子内を拡散するために必要なイオンを安定させる機能がないことにもよると推察した。また、このような共重合体は、上述したように、水との相溶性が低く、電極を構成する際に用いる基質としても疎水性のバインダを用いることになり、電極の出力に影響すると推察している粒子径を小さくすることが難しく、粒子径を小さくするためには、特殊な装置が必要であるという課題もあった。 In addition, in the copolymer contained in these conventional electrodes, even if the elution to the solvent contained in the electrolyte solution in contact with the electrode could be suppressed, the reason that the output of the electrode did not increase sufficiently was that lithium ions were particles. We speculated that this was due to the lack of a function to stabilize the ions needed to diffuse inside. In addition, as described above, such a copolymer has low compatibility with water, and a hydrophobic binder is used as a substrate for forming an electrode, which is presumed to affect the output of the electrode. There is also a problem that it is difficult to reduce the particle diameter, and a special device is required to reduce the particle diameter.
 そこで、本発明者等は、まず、重合体粒子の構造を、水への親和性(親水性)が高め、リチウムイオン親和性が高まる構造になるように検討し、さらに、電極に含ませたときに、電極の出力が高まる粒子径になるように検討した。 Therefore, the present inventors first studied the structure of the polymer particles so as to increase the affinity for water (hydrophilicity) and increase the affinity for lithium ions, and further included the structure in the electrode. In some cases, a study was made so that the particle diameter would increase the output of the electrode.
 本発明者等は、上記のことを種々検討した結果、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極を製造することができる重合体粒子を提供するといった上記目的は、以下の本発明により達成されることを見出した。 The present inventors have conducted various studies on the above, and as a result, when included in an electrode provided in a lithium secondary battery, provide polymer particles that can produce an electrode suitable for a lithium secondary battery. The above object has been found to be achieved by the present invention described below.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 本発明の一態様に係る重合体粒子は、下記式(1)で表される繰り返し単位、下記式(2)で表される繰り返し単位、及び下記式(3)で表される繰り返し単位を分子内に含有する共重合体を含む。また、前記重合体粒子は、その平均一次粒子径が、0.01~20μmである。 The polymer particles according to one embodiment of the present invention include a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3) as a molecule. And the copolymer contained therein. Further, the polymer particles have an average primary particle diameter of 0.01 to 20 μm.
Figure JPOXMLDOC01-appb-C000011
 式(1)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000011
In the formula (1), R 1 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000012
 式(2)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000012
In the formula (2), R 2 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000013
 式(3)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000013
In the formula (3), R 3 represents a hydrogen atom or a methyl group.
 前記重合体粒子を用いて電極を製造すると、リチウム二次電池に好適な電極を製造することができる。すなわち、この得られた電極は、前記重合体粒子を含む電極であり、リチウム二次電池の電極として用いると、この重合体粒子が高出力の電極活物質として働き、高容量で高速充放電が可能なリチウム二次電池を製造することができる。より具体的には、実容量、及び高速充放電後の容量維持率が高い二次電池を製造することができる。また、前記重合体粒子を含む電極は、前記重合体粒子からなる電極活物質を含む電極であり、出力の高い電極である。 電極 When an electrode is manufactured using the polymer particles, an electrode suitable for a lithium secondary battery can be manufactured. That is, the obtained electrode is an electrode containing the polymer particles, and when used as an electrode of a lithium secondary battery, the polymer particles function as a high-output electrode active material, and high-capacity, high-speed charge / discharge is performed. A possible lithium secondary battery can be manufactured. More specifically, a secondary battery having a high actual capacity and a high capacity retention rate after high-speed charge / discharge can be manufactured. Further, the electrode including the polymer particles is an electrode including an electrode active material including the polymer particles, and is an electrode having a high output.
 リチウム二次電池としては、例えば、図1に示すようなリチウム二次電池が挙げられる。なお、図1は、本実施形態に係る重合体粒子を含む電極を備えるリチウム二次電池の構成の一例を示す概略断面図である。リチウム二次電池10は、図1に示したように、正極20と、負極30と、正極20と負極30との間に介在した電解質層40とを備えている。すなわち、正極20、電解質層40、及び負極30の順に積層される。そして、このリチウム二次電池10は、例えば、正極20と負極30とを、電力計50等を介して、電気的に接続することによって、放電することができる。電力計50は、この放電によって流れた電気の電圧や電流を測定することができる。そして、この正極20として、上述した前記重合体粒子を含む電極を用いることができる。 (4) As the lithium secondary battery, for example, a lithium secondary battery as shown in FIG. FIG. 1 is a schematic cross-sectional view illustrating an example of a configuration of a lithium secondary battery including an electrode including polymer particles according to the present embodiment. As shown in FIG. 1, the lithium secondary battery 10 includes a positive electrode 20, a negative electrode 30, and an electrolyte layer 40 interposed between the positive electrode 20 and the negative electrode 30. That is, the positive electrode 20, the electrolyte layer 40, and the negative electrode 30 are stacked in this order. The lithium secondary battery 10 can be discharged, for example, by electrically connecting the positive electrode 20 and the negative electrode 30 via a power meter 50 and the like. The wattmeter 50 can measure the voltage and current of the electricity flowing by this discharge. Then, as the positive electrode 20, an electrode containing the above-described polymer particles can be used.
 また、前記重合体粒子を含む電極は、リチウム二次電池用電極として好適に用いることができ、例えば、図2に示すように、集電体22と、前記集電体22上に設けられた電極層21とを備え、前記電極層21に前記重合体粒子を含む電極20等が挙げられる。なお、図2は、本実施形態に係る重合体粒子を含む電極の構成の一例を示す概略断面図である。そして、この電極20は、前記電極層21が電解質層40側になるようにリチウム二次電池に備えることによって、好適なリチウム二次電池が得られる。具体的には、実容量、及び高速放充電後の容量維持率が高いリチウム二次電池が得られる。 The electrode containing the polymer particles can be suitably used as an electrode for a lithium secondary battery. For example, as shown in FIG. 2, a current collector 22 and a current collector 22 are provided on the current collector 22. And an electrode 20 including the polymer particles in the electrode layer 21. FIG. 2 is a schematic cross-sectional view illustrating an example of the configuration of the electrode including the polymer particles according to the present embodiment. By providing the electrode 20 in the lithium secondary battery such that the electrode layer 21 is on the electrolyte layer 40 side, a suitable lithium secondary battery is obtained. Specifically, a lithium secondary battery having a high actual capacity and a high capacity retention rate after high-speed discharging and charging can be obtained.
 以上のことから、この重合体粒子は、リチウム二次電池に好適な電極を製造することができる電極材料、具体的には、電極活物質として用いることができる。このことは、以下のことによると考えられる。 From the above, the polymer particles can be used as an electrode material capable of producing an electrode suitable for a lithium secondary battery, specifically, as an electrode active material. This is thought to be due to the following.
 まず、前記式(1)で表される繰り返し単位は、繰り返し単位内にN-オキシラジカルを有する。すなわち、前記重合体粒子に含まれる共重合体は、このN-オキシラジカルを有する繰り返し単位を含有する。このように、前記重合体粒子は、分子内にラジカルを有する共重合体を含むので、電極活物質として作用すると考えられる。さらに、このラジカルは、第4級炭素が2つ結合されたN-オキシラジカルであるので、このN-オキシラジカルが酸化還元反応を起こしやすく、熱的、電気化学的に安定である。よって、前記重合体粒子に含まれる共重合体は、前記式(2)で表される繰り返し単位とともに、前記式(1)で表される繰り返し単位を分子内に含有することによって、この重合体粒子が高出力の電極活物質として働きうると考えられる。また、このような重合体粒子は、上記のように、平均一次粒子径が、0.01~20μmと、比較的小さい。このことから、この重合体粒子は、比表面積が比較的大きく、高出力な電極活物質として働くと考えられる。すなわち、この重合体粒子は、好適な電極活物質になると考えられる。 First, the repeating unit represented by the formula (1) has an N-oxy radical in the repeating unit. That is, the copolymer contained in the polymer particles contains the repeating unit having the N-oxy radical. As described above, since the polymer particles include the copolymer having a radical in the molecule, the polymer particles are considered to act as an electrode active material. Further, since this radical is an N-oxy radical in which two quaternary carbons are bonded, the N-oxy radical easily causes an oxidation-reduction reaction, and is thermally and electrochemically stable. Accordingly, the copolymer contained in the polymer particles contains the repeating unit represented by the formula (1) in the molecule together with the repeating unit represented by the formula (2), whereby the polymer It is believed that the particles can act as a high power electrode active material. Further, as described above, such polymer particles have a relatively small average primary particle diameter of 0.01 to 20 μm. From this, it is considered that the polymer particles have a relatively large specific surface area and function as a high-output electrode active material. That is, the polymer particles are considered to be suitable electrode active materials.
 前記重合体粒子に含まれる共重合体は、上記のような第4級炭素が2つ結合されたN-オキシラジカルを単に有するだけではなく、前記式(1)で表される繰り返し単位と、前記式(2)で表される繰り返し単位と、前記式(3)で表される繰り返し単位とが結合された状態でそれぞれが含有される。このように、前記式(3)で表わされる繰り返し単位が、前記式(1)で表される繰り返し単位等と結合した状態で含有されるので、重合体粒子は、水への親和性(親水性)が高くなると考えられる。このため、この重合体粒子を用いて、電極を製造しやすくなる。また。前記重合体粒子に含まれる共重合体は、前記式(3)で表わされる繰り返し単位を含有するので、前記重合体粒子を用いて電極にした場合、高極性溶媒である電解液への親和性が高くなると考えられ、電極内でのリチウムイオンの移動を円滑にし、電極内のリチウムイオンの拡散抵抗を低下されることができると考えられる。この点からも、好適な電極が得られると考えられる。 The copolymer contained in the polymer particles not only has an N-oxy radical in which two quaternary carbons are bonded as described above, but also has a repeating unit represented by the formula (1), The repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) are contained in a state of being bonded. As described above, since the repeating unit represented by the formula (3) is contained in a state of being bonded to the repeating unit represented by the formula (1), the polymer particles have an affinity for water (hydrophilicity). Sex) is considered to be higher. For this reason, it becomes easy to manufacture an electrode using the polymer particles. Also. Since the copolymer contained in the polymer particles contains the repeating unit represented by the formula (3), when the polymer particles are used as an electrode, the affinity for the electrolytic solution which is a highly polar solvent is obtained. Therefore, it is considered that the movement of lithium ions in the electrode can be made smooth and the diffusion resistance of lithium ions in the electrode can be reduced. From this point, it is considered that a suitable electrode is obtained.
 以上のことから、この重合体粒子は、リチウム二次電池に好適な電極を製造することができると考えられる。また、この重合体粒子からなる電極活物質は、リチウム二次電池に備えられる電極用の電極活物質として好適である。 From the above, it is considered that the polymer particles can produce an electrode suitable for a lithium secondary battery. The electrode active material composed of the polymer particles is suitable as an electrode active material for an electrode provided in a lithium secondary battery.
 なお、前記重合体粒子に含まれる共重合体は、上述したように、前記式(1)で表される繰り返し単位と、前記式(2)で表される繰り返し単位と、前記式(3)で表される繰り返し単位とが結合された状態でそれぞれが含有される。このため、前記重合体粒子を用いて電極の状態にした場合であっても、その電極に接触する電解液に含まれる溶媒への、前記重合体粒子の溶出を好適に抑制できると考えられる。すなわち、この重合体粒子は、溶媒への溶出防止性(耐溶出性)に優れていると考えられる。 As described above, the copolymer contained in the polymer particles includes a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a compound represented by the formula (3). And each of them is contained in a state of being bonded to the repeating unit represented by Therefore, it is considered that even when the polymer particles are used to form an electrode, the elution of the polymer particles into the solvent contained in the electrolytic solution in contact with the electrode can be suitably suppressed. That is, it is considered that the polymer particles are excellent in anti-elution property (elution resistance) to the solvent.
 前記重合体粒子は、リチウム二次電池に備えられる電極用の電極活物質として好適である。すなわち、前記電極活物質は、前記重合体粒子を含んでいればよく、前記重合体粒子のみからなることが好ましい。この重合体粒子からなる電極活物質は、リチウム二次電池に備えられる電極用の電極活物質として好適である。 The polymer particles are suitable as an electrode active material for an electrode provided in a lithium secondary battery. That is, the electrode active material only needs to include the polymer particles, and preferably includes only the polymer particles. The electrode active material composed of the polymer particles is suitable as an electrode active material for an electrode provided in a lithium secondary battery.
 前記式(1)で表わされる繰り返し単位は、前記式(1)で表わされ、Rが水素原子又はメチル基である繰り返し単位である。前記式(1)で表わされる繰り返し単位は、具体的には、前記式(2)で表わされる繰り返し単位、例えば、2,2,6,6-テトラメチル-4-ピペリジニルアクリレートや2,2,6,6-テトラメチル-4―ピペリジニルメタクリレートを重合して得られる繰り返し単位をニトロキシド化して得られる繰り返し単位等が挙げられる。また、前記式(1)で表わされる繰り返し単位を得る際、2,2,6,6-テトラメチル-4-ピペリジニルアクリレートと2,2,6,6-テトラメチル-4-ピペリジニルメタクリレートとを単独で用いてもよいし、両者を組み合わせて用いてもよい。 The repeating unit represented by the formula (1) is a repeating unit represented by the formula (1), wherein R 1 is a hydrogen atom or a methyl group. The repeating unit represented by the formula (1) is specifically, a repeating unit represented by the formula (2), for example, 2,2,6,6-tetramethyl-4-piperidinyl acrylate or 2, Examples include a repeating unit obtained by polymerizing 2,6,6-tetramethyl-4-piperidinyl methacrylate into a nitroxide to obtain a repeating unit obtained by polymerizing 2,6,6-tetramethyl-4-piperidinyl methacrylate. When obtaining the repeating unit represented by the formula (1), 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2,2,6,6-tetramethyl-4-piperidinyl Methacrylate may be used alone, or both may be used in combination.
 前記式(2)で表わされる繰り返し単位は、前記式(2)で表わされ、Rが水素原子又はメチル基である繰り返し単位である。前記式(2)で表わされる繰り返し単位は、具体的には、2,2,6,6-テトラメチル-4-ピペリジニルアクリレートや2,2,6,6-テトラメチル-4―ピペリジニルメタクリレートを重合して得られる繰り返し単位等が挙げられる。また、前記式(2)で表わされる繰り返し単位は、より具体的には、前記式(1)で表される繰り返し単位を得る際のニトロキシド化を行っても、ニトロキシド化されなかった繰り返し単位等が挙げられる。また、前記式(2)で表わされる繰り返し単位を得る際、前記式(1)で表わされる繰り返し単位の場合と同様、2,2,6,6-テトラメチル-4-ピペリジニルアクリレートと2,2,6,6-テトラメチル-4-ピペリジニルメタクリレートとを単独で用いてもよいし、両者を組み合わせて用いてもよい。 The repeating unit represented by the formula (2) is a repeating unit represented by the formula (2), wherein R 2 is a hydrogen atom or a methyl group. Specific examples of the repeating unit represented by the formula (2) include 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2,2,6,6-tetramethyl-4-piperidyl acrylate. And repeating units obtained by polymerizing nil methacrylate. Further, the repeating unit represented by the formula (2) is more specifically a repeating unit that is not nitroxidized even when nitroxidation is performed when obtaining the repeating unit represented by the formula (1). Is mentioned. When obtaining the repeating unit represented by the formula (2), the same as in the case of the repeating unit represented by the formula (1), 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2 , 2,6,6-tetramethyl-4-piperidinyl methacrylate may be used alone, or both may be used in combination.
 前記式(3)で表される繰り返し単位は、Rが水素原子又はメチル基である繰り返し単位である。前記式(3)で表される繰り返し単位は、具体的には、アクリル酸、及びメタクリル酸を重合して得られる繰り返し単位等が挙げられる。また、前記式(3)で表わされる繰り返し単位を得る際、アクリル酸とメタクリル酸とを単独で用いてもよいし、両者を組み合わせて用いてもよい。 The repeating unit represented by the formula (3) is a repeating unit in which R 3 is a hydrogen atom or a methyl group. Specific examples of the repeating unit represented by the formula (3) include a repeating unit obtained by polymerizing acrylic acid and methacrylic acid. When obtaining the repeating unit represented by the formula (3), acrylic acid and methacrylic acid may be used alone or in combination.
 前記重合体粒子に含まれる前記共重合体は、前記式(3)で表される繰り返し単位の含有量[(3)の含有量]が、前記式(1)で表される繰り返し単位の含有量[(1)の含有量]と前記(3)の含有量との合計[(1)及び(3)の合計含有量]100質量部に対して、0.01~5質量部であることが好ましく、0.03~3質量部であることがより好ましく、0.05~1質量部であることがさらに好ましい。前記(3)の含有量は、前記(1)及び(3)の合計含有量100質量部に対して少なすぎると、前記式(3)で表される繰り返し単位による効果を充分に発揮することができない傾向がある。また、前記(3)の含有量が、前記(1)及び(3)の合計含有量100質量部に対して多すぎると、前記式(1)で表される繰り返し単位を有することによる効果を充分に発揮できない傾向がある。よって、前記含有量が上記範囲内であると、前記式(1)で表される繰り返し単位を有することによる効果及び前記式(3)で表される繰り返し単位を有することによる効果をより好適に発揮できると考えられる。具体的には、高出力のリチウム二次電池を製造可能な電極を製造することができる重合体粒子が得られる。 In the copolymer contained in the polymer particles, the content of the repeating unit [content of (3)] represented by the formula (3) is changed to the content of the repeating unit represented by the formula (1). 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the amount [content of (1)] and the content of (3) [total content of (1) and (3)]. Is preferably 0.03 to 3 parts by mass, more preferably 0.05 to 1 part by mass. If the content of the above (3) is too small relative to 100 parts by mass of the total content of the above (1) and (3), the effect of the repeating unit represented by the above formula (3) will be sufficiently exhibited. Tend not to be able to. If the content of (3) is too large with respect to 100 parts by mass of the total content of (1) and (3), the effect of having the repeating unit represented by the formula (1) will be lost. There is a tendency not to be able to fully demonstrate. Therefore, when the content is within the above range, the effect of having the repeating unit represented by the formula (1) and the effect of having the repeating unit represented by the formula (3) are more preferably achieved. It is thought that we can show. Specifically, polymer particles capable of producing an electrode capable of producing a high-output lithium secondary battery can be obtained.
 なお、ここでの(1)の含有量の測定方法としては、酸化還元反応に従う化学滴定法等が挙げられる。例えば、適当な溶媒で膨潤させた後、ヨウ化カリウム水溶液を添加し、遊離したヨウ素をチオ硫酸ナトリウム水溶液で逆滴定することにより定量できる。 Here, as a method for measuring the content of (1), a chemical titration method according to an oxidation-reduction reaction and the like can be mentioned. For example, after swelling with an appropriate solvent, an aqueous solution of potassium iodide is added, and the released iodine can be quantified by back titration with an aqueous solution of sodium thiosulfate.
 また、ここでの(3)の含有量の測定方法としては、中和反応に従う化学滴定法等が挙げられる。例えば、適当な溶媒で膨潤させた後、水酸化カリウム溶液で滴定することにより定量できる。 と し て As a method for measuring the content of (3), a chemical titration method according to a neutralization reaction and the like can be mentioned. For example, the amount can be determined by swelling with an appropriate solvent and then titrating with a potassium hydroxide solution.
 また、前記重合体粒子に含まれる前記共重合体において、前記式(2)で表される繰り返し単位の含有量[(2)の含有量]が、前記(1)の含有量と前記(2)の含有量との合計[(1)及び(2)の合計含有量]100質量部に対して、0.01~10質量部であることが好ましく、0.01~5質量部であることがより好ましく、0.01~2質量部であることがさらに好ましい。前記(2)の含有量が、前記(1)及び(2)の合計含有量100質量部に対して多すぎると、前記式(1)で表される繰り返し単位を有することによる効果を充分に発揮できない傾向がある。また、前記(2)の含有量は、少なくてもよいが、実際には、上記範囲の下限値以上には含有される。よって、前記含有量が上記範囲内であると、前記式(1)で表される繰り返し単位を有することによる効果をより好適に発揮できると考えられる。具体的には、高出力のリチウム二次電池を製造可能な電極を製造することができる重合体粒子が得られる。 In the copolymer contained in the polymer particles, the content of the repeating unit represented by the formula (2) [content of (2)] is equal to the content of (1) and the content of (2). ) Is preferably 0.01 to 10 parts by mass, and more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass with respect to the total of [1] and (2). Is more preferable, and the content is more preferably 0.01 to 2 parts by mass. If the content of the above (2) is too large relative to 100 parts by mass of the total content of the above (1) and (2), the effect of having the repeating unit represented by the above formula (1) will be sufficiently improved. There is a tendency not to show. Further, the content of the above (2) may be small, but in fact, it is contained above the lower limit of the above range. Therefore, it is considered that when the content is within the above range, the effect of having the repeating unit represented by the formula (1) can be more suitably exerted. Specifically, polymer particles capable of producing an electrode capable of producing a high-output lithium secondary battery can be obtained.
 なお、ここでの(1)の含有量の測定方法としては、例えば、酸化還元反応に基づく化学滴定法(酸化還元滴定法)を用いて、ニトロキシド遊離基を定量する方法、赤外分光(IR)法等を用いて反応生成物に残留するイミノ基を定量する方法、及び電子スピン共鳴(ESR法)を用いて反応生成物中のスピン濃度を定量する方法等により算出する方法等が挙げられる。 As the method for measuring the content of (1), for example, a method of quantifying nitroxide free radicals using a chemical titration method based on a redox reaction (redox titration method), infrared spectroscopy (IR ), A method of quantifying the imino group remaining in the reaction product using a method, and a method of calculating the spin concentration in the reaction product using an electron spin resonance (ESR method). .
 また、ここでの(2)の含有量の測定方法としては、中和反応に従う化学滴定法等が挙げられる。例えば、適当な溶媒で膨潤させた後、塩酸等の強酸で滴定することにより定量できる。 と し て As a method for measuring the content of (2), a chemical titration method according to a neutralization reaction and the like can be mentioned. For example, the amount can be determined by swelling with an appropriate solvent and then titrating with a strong acid such as hydrochloric acid.
 前記重合体粒子は、平均一次粒子径(一次粒子の平均粒子径)が、0.01~20μmであり、0.05~10μmであることが好ましく、0.1~5μmであることがより好ましい。この重合体粒子は、一次粒子が小さいほど、好適な電極活物質になると考えられる。また、前記重合体粒子の一次粒子が大きすぎると、電極活物質として好適に働きにくくなる傾向がある。これは、重合体粒子が導電材との接点が少なく、集電性が低下するためと考えられる。一方で、重合体粒子を小さくするにも限界がある。これは、重合体粒子の一次粒子を小さくしすぎると、製造時において回収等の精製操作が煩雑化すること等によると考えられる。このため、前記重合体粒子の一次粒子径は、平均粒子径で0.01μm程度であることが限界である。よって、前記重合体粒子の平均一次粒子径は、上記の範囲である。このような大きさの重合体粒子であれば、好適な電極活物質になると考えられ、リチウム二次電池に好適な電極を製造することができる重合体粒子が得られる。具体的には、高出力のリチウム二次電池を製造可能な電極を製造することができる重合体粒子が得られる。 The polymer particles have an average primary particle size (average particle size of primary particles) of 0.01 to 20 μm, preferably 0.05 to 10 μm, and more preferably 0.1 to 5 μm. . It is considered that the smaller the primary particles of the polymer particles, the more suitable the electrode active material. If the primary particles of the polymer particles are too large, the polymer particles tend not to work favorably as an electrode active material. It is considered that this is because the polymer particles have few contacts with the conductive material and the current collecting property is reduced. On the other hand, there is a limit in reducing the size of the polymer particles. This is considered to be because if the primary particles of the polymer particles are too small, purification operations such as recovery during the production become complicated. For this reason, the primary particle size of the polymer particles is limited to an average particle size of about 0.01 μm. Therefore, the average primary particle diameter of the polymer particles is in the above range. Polymer particles having such a size are considered to be suitable electrode active materials, and polymer particles capable of producing an electrode suitable for a lithium secondary battery can be obtained. Specifically, polymer particles capable of producing an electrode capable of producing a high-output lithium secondary battery can be obtained.
 なお、ここでの平均一次粒子径は、例えば、一次粒子の体積基準の平均粒子径(MV:Mean Volume Diameter)等が挙げられる。具体的には、一般的なレーザー回折・散乱法、又は電子顕微鏡像の画像解析法等により測定された粒度分布から求められる体積平均粒子径(MV)等が挙げられる。 The average primary particle diameter here is, for example, a volume-based average particle diameter (MV: Mean Volume Diameter) of the primary particles. Specific examples include a volume average particle diameter (MV) determined from a particle size distribution measured by a general laser diffraction / scattering method or an image analysis method of an electron microscope image.
 前記重合体粒子に含まれる共重合体は、架橋されていることが好ましい。すなわち、前記重合体粒子に含まれる共重合体は、前記繰り返し単位を含む高分子鎖同士が架橋されていることが好ましい。この架橋としては、前記繰り返し単位を含む高分子鎖同士が架橋されていれば、特に限定されない。例えば、前記共重合体は、下記式(4)で表される繰り返し単位を含有することが好ましい。前記共重合体は、このような繰り返し単位を含むことによって、架橋されていることが好ましい。 共 The copolymer contained in the polymer particles is preferably crosslinked. That is, in the copolymer contained in the polymer particles, it is preferable that the polymer chains containing the repeating units are crosslinked. The crosslinking is not particularly limited as long as the polymer chains containing the repeating unit are crosslinked. For example, the copolymer preferably contains a repeating unit represented by the following formula (4). The copolymer is preferably crosslinked by including such a repeating unit.
Figure JPOXMLDOC01-appb-C000014
 式(4)中、R及びRは、それぞれ独立に、水素原子又はメチル基を示し、Zは、エチレン基、プロピレン基、ブチレン基、又は、-COC-基を示す。
Figure JPOXMLDOC01-appb-C000014
In the formula (4), R 4 and R 5 each independently represent a hydrogen atom or a methyl group, and Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
 前記式(4)で表される繰り返し単位は、R及びRが、それぞれ独立して、水素原子又はメチル基であり、Zは、エチレン基、プロピレン基、ブチレン基、又は、-COC-基である繰り返し単位である。前記式(4)で表される繰り返し単位は、具体的には、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、1,3-プロパンジオールジアクリレート、1,3-プロパンジオールジメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、1,4-ブタンジオールジアクリレート、及び1,4-ブタンジオールジメタクリレートが、前記式(1)~(3)で表される繰り返し単位等を生成する重合の際に重合して得られる繰り返し単位等が挙げられる。前記共重合体が架橋されていることにより、前記重合体粒子は、溶媒への溶出防止性(耐溶出性)により優れていると考えられる。すなわち、この重合体粒子を用いて電極の状態にした場合であっても、その電極に接触する電解液に含まれる溶媒への、前記重合体粒子の溶出をより好適に抑制できると考えられる。また、架橋しているだけなので、この架橋が、前記式(1)及び前記式(3)で表される繰り返し単位を有することによる、それぞれの効果の阻害をしにくいと考えられる。よって、前記式(1)及び前記式(3)で表される繰り返し単位を有することによる、それぞれの効果を充分に発揮しつつ、耐溶出性により優れた重合体粒子が得られると考えられる。 In the repeating unit represented by the formula (4), R 4 and R 5 are each independently a hydrogen atom or a methyl group, and Z is an ethylene group, a propylene group, a butylene group, or —C 2 It is a repeating unit that is an H 4 OC 2 H 4 — group. Specific examples of the repeating unit represented by the formula (4) include ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, 1,3-propanediol diacrylate, and 1,3-propane. Diol dimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, 1,4-butanediol diacrylate, and 1,4-butanediol dimethacrylate are represented by the formulas (1) to (3). And the repeating unit obtained by polymerization at the time of polymerization for producing the repeating unit represented by the formula (1). Since the copolymer is crosslinked, the polymer particles are considered to be more excellent in anti-elution property (elution resistance) to a solvent. That is, it is considered that even when the polymer particles are used as an electrode, the elution of the polymer particles into the solvent contained in the electrolytic solution that comes into contact with the electrode can be more suitably suppressed. In addition, since it is only cross-linked, it is considered that the effects of the cross-linking having the repeating units represented by the formulas (1) and (3) are not likely to be inhibited. Therefore, it is considered that a polymer particle having more excellent elution resistance can be obtained while exhibiting the respective effects sufficiently by having the repeating units represented by the formulas (1) and (3).
 前記共重合体は、上述したように、前記式(4)で表される繰り返し単位を含むことが好ましい。このように前記式(4)で表される繰り返し単位を含む場合、前記共重合体は、前記式(4)で表される繰り返し単位の含有量[(4)の含有量]が、前記(1)の含有量と前記(3)の含有量との合計[(1)及び(3)の合計含有量]100質量部に対して、0.1~5質量部であることが好ましく、0.2~4.5質量部であることがより好ましく、0.5~4質量部であることがさらに好ましい。前記(4)の含有量が、前記(1)及び(3)の合計含有量100質量部に対して少なすぎると、前記式(4)で表される繰り返し単位による架橋の効果を充分に発揮することができない傾向がある。また、前記(4)の含有量が、前記(1)及び(3)の合計含有量100質量部に対して多すぎると、前記式(1)で表される繰り返し単位及び前記式(3)で表される繰り返し単位を有することによる効果を充分に発揮できない傾向がある。よって、前記含有量が上記範囲内であると、前記式(1)で表される繰り返し単位及び前記式(3)で表される繰り返し単位を有することによる効果を充分に発揮、耐溶出性により好適に発揮できると考えられる。 As described above, the copolymer preferably contains the repeating unit represented by the formula (4). When the copolymer contains the repeating unit represented by the formula (4), the copolymer has a content of the repeating unit represented by the formula (4) [content of (4)], It is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total of the content of 1) and the content of (3) [total content of (1) and (3)], and 0 to 5 parts by mass. The amount is more preferably from 0.2 to 4.5 parts by mass, and even more preferably from 0.5 to 4 parts by mass. When the content of (4) is too small relative to 100 parts by mass of the total content of (1) and (3), the effect of crosslinking by the repeating unit represented by the formula (4) is sufficiently exhibited. Tend not to be able to. If the content of (4) is too large relative to 100 parts by mass of the total content of (1) and (3), the repeating unit represented by the formula (1) and the formula (3) The effect of having the repeating unit represented by the formula (1) tends to be insufficient. Therefore, when the content is within the above range, the effect of having the repeating unit represented by the formula (1) and the repeating unit represented by the formula (3) is sufficiently exhibited, and the elution resistance is improved. It is considered that it can be suitably used.
 なお、前記(4)の含有量は、共重合体中の、他の繰り返し単位(前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位)の各含有量を化学滴定法等により測定し、他の繰り返し単位の各含有量から算出できる。具体的には、共重合体の量と他の繰り返し単位の各含有量の総量との差分から算出できる。 The content of the above (4) is determined by determining the content of other repeating units (the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the formula (2) in the copolymer. Each content of the repeating unit represented by 3) is measured by a chemical titration method or the like, and can be calculated from each content of the other repeating units. Specifically, it can be calculated from the difference between the amount of the copolymer and the total amount of each content of the other repeating units.
 また、前記共重合体中に、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位がそれぞれ存在することは、前記共重合体、前記共重合体を還元したもの、及びニトロキシド化前の共重合体を、H-NMRや赤外分光(IR)法等により測定したり、共重合体を前記化学滴定法により測定したり、これらの測定を組み合わせたりすることで確認できる。 In the copolymer, a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), a repeating unit represented by the formula (3), and a compound represented by the formula (4) The presence of each of the repeating units represented by the formula (1) indicates that the copolymer, the copolymer obtained by reducing the copolymer, and the copolymer before nitroxidation are subjected to 1 H-NMR or infrared spectroscopy (IR). And the like, or the copolymer can be measured by the above-mentioned chemical titration method, or can be confirmed by combining these measurements.
 前記重合体粒子は、前記共重合体を含んでいればよく、他の成分を含んでいてもよい。また、重合体粒子を用いて電極を製造する際、この重合体粒子を含ませた電極材料を用いる。この電極材料には、前記重合体粒子を含んでいればよく、他の成分を含んでいてもよい。これらの他の成分としては、例えば、補助導電材及びイオン伝導補助材等が挙げられる。前記補助導電材としては、例えば、炭素質微粒子及び導電性高分子等が挙げられる。前記炭素質微粒子としては、例えば、グラファイト、カーボンブラック、及びアセチレンブラック等の微粒子等が挙げられる。また、前記導電性高分子としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、及びポリアセン等が挙げられる。また、前記イオン伝導補助材としては、例えば、高分子ゲル電解質及び高分子固体電解質等が挙げられる。 The polymer particles only need to contain the copolymer, and may contain other components. When an electrode is manufactured using polymer particles, an electrode material containing the polymer particles is used. The electrode material only needs to contain the polymer particles, and may contain other components. These other components include, for example, an auxiliary conductive material and an ion conductive auxiliary material. Examples of the auxiliary conductive material include carbonaceous fine particles and a conductive polymer. Examples of the carbonaceous fine particles include fine particles such as graphite, carbon black, and acetylene black. Examples of the conductive polymer include polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene. In addition, examples of the ion conduction auxiliary material include a polymer gel electrolyte and a polymer solid electrolyte.
 前記重合体粒子の製造方法は、前記重合体粒子を製造することができれば、特に限定されない。前記重合体粒子の製造方法としては、具体的には、下記式(5)で表されるイミノ化合物と下記式(6)で表される(メタ)アクリル酸とを含む単量体組成物を重合する第1工程(重合工程)と、前記第1工程で得られた重合体をニトロキシド化する第2工程(ニトロキシド化工程)とを備える製造方法等が挙げられる。なお、ここで、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸を示す。 製造 The method for producing the polymer particles is not particularly limited as long as the polymer particles can be produced. As a method for producing the polymer particles, specifically, a monomer composition containing an imino compound represented by the following formula (5) and (meth) acrylic acid represented by the following formula (6) is used. A production method comprising a first step of polymerizing (polymerization step) and a second step of nitroxidation of the polymer obtained in the first step (nitroxidation step) is exemplified. Here, (meth) acrylic acid refers to acrylic acid or methacrylic acid.
Figure JPOXMLDOC01-appb-C000015
 式(5)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000015
In the formula (5), R 6 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000016
 式(6)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000016
In the formula (6), R 7 represents a hydrogen atom or a methyl group.
 上記のような製造方法によれば、まず、前記第1工程において、前記式(5)で表されるイミノ化合物と前記式(6)で表される(メタ)アクリル酸とを含む単量体組成物を重合することによって、前記式(2)で表される繰り返し単位と前記式(3)で表される繰り返し単位とを分子内に含有する共重合体が得られる。前記第2工程において、この共重合体(前記第1工程で得られた重合体)をニトロキシド化することによって、前記共重合体に含まれるイミノ基がニトロキシド化されて、前記式(2)で表される繰り返し単位の一部が前記式(1)で表される繰り返し単位になる。このことから、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位を分子内に含有する共重合体が得られる。 According to the production method as described above, first, in the first step, a monomer containing the imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6) By polymerizing the composition, a copolymer containing the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) in a molecule can be obtained. In the second step, the copolymer (the polymer obtained in the first step) is nitroxidized, so that the imino group contained in the copolymer is nitroxidized. A part of the repeating unit represented is a repeating unit represented by the formula (1). From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is can get.
 そして、前記第1工程で得られた重合体は、粒子状で得られ、この重合体を含む粒子は、前記式(5)で表されるイミノ化合物のみを重合して得られる粒子状の重合体より小さい粒子が得られるので、前記第2工程で得られた共重合体を含む粒子も小さくなる。このことから、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位を分子内に含有する共重合体を含み、平均一次粒子径が、0.01~20μmである重合体粒子が得られる。よって、前記製造方法は、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極になる重合体粒子を好適に製造することができる。 The polymer obtained in the first step is obtained in the form of particles, and the particles containing the polymer are in the form of a particulate polymer obtained by polymerizing only the imino compound represented by the formula (5). Since particles smaller than the coalesced particles are obtained, the particles containing the copolymer obtained in the second step are also reduced. From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is used. Thus, polymer particles having an average primary particle diameter of 0.01 to 20 μm are obtained. Therefore, the manufacturing method can suitably manufacture polymer particles that become electrodes suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery.
 前記式(5)で表される前記(メタ)アクリル酸イミノ化合物としては、例えば、2,2,6,6-テトラメチル-4-ピペリジニルアクリレート、及び2,2,6,6-テトラメチル-4-ピペリジニルメタクリレート等が挙げられる。前記(メタ)アクリル酸イミノ化合物としては、これらを単独で用いてもよいし、2種を組み合わせて用いてもよい。 Examples of the (meth) acrylic acid imino compound represented by the formula (5) include, for example, 2,2,6,6-tetramethyl-4-piperidinyl acrylate and 2,2,6,6-tetra Methyl-4-piperidinyl methacrylate and the like. As the (meth) acrylic acid imino compound, these may be used alone, or two or more kinds may be used in combination.
 前記式(6)で表される前記(メタ)アクリル酸は、アクリル酸又はメタクリル酸である。また、前記(メタ)アクリル酸としては、これらを単独で用いてもよいし、2種を組み合わせて用いてもよい。 前 記 The (meth) acrylic acid represented by the formula (6) is acrylic acid or methacrylic acid. As the (meth) acrylic acid, these may be used alone or in combination of two types.
 前記式(5)で表される(メタ)アクリル酸イミノ化合物と、前記式(6)で表される(メタ)アクリル酸とを重合する方法(前記第1工程における重合の方法)としては、例えば、溶液重合法、懸濁重合法、乳化重合法、及び分散重合法により重合する方法等が挙げられる。また、前記第1工程における重合工程としては、架橋剤の存在下で重合することが好ましく、具体的には、懸濁重合法又は乳化重合法が好ましい。そうすることによって、上述した、重合体粒子を好適に製造することができる。よって、リチウム二次電池により好適な電極を製造することができる重合体粒子を製造することができる。 The method of polymerizing the (meth) acrylic acid imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6) (the method of polymerization in the first step) includes: For example, a method of polymerizing by a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, and the like can be given. In addition, as the polymerization step in the first step, it is preferable to carry out the polymerization in the presence of a crosslinking agent, and specifically, a suspension polymerization method or an emulsion polymerization method is preferable. By doing so, the above-mentioned polymer particles can be suitably produced. Therefore, it is possible to produce polymer particles that can produce a more suitable electrode with a lithium secondary battery.
 前記(メタ)メタクリル酸の配合割合は、前記(メタ)アクリル酸イミノ化合物1モルに対して、0.0003~0.25モルであることが好ましく、0.0006~0.09モルであることがより好ましく、0.0008~0.028モルであることがさらに好ましい。すなわち、前記(メタ)アクリル酸は、前記(メタ)アクリル酸イミノ化合物100モル部に対して、0.08~2.8モル部を用いることが特に好ましい。前記(メタ)アクリル酸が上記範囲内であれば、前記重合体粒子として好適なものを製造できる。 The mixing ratio of the (meth) methacrylic acid is preferably from 0.0003 to 0.25 mol, more preferably from 0.0006 to 0.09 mol, per 1 mol of the (meth) acrylic acid imino compound. Is more preferably 0.0008 to 0.028 mol. That is, it is particularly preferable to use 0.08 to 2.8 mol parts of the (meth) acrylic acid with respect to 100 mol parts of the (meth) acrylic acid imino compound. When the (meth) acrylic acid is within the above range, a suitable polymer particle can be produced.
 前記単量体組成物には、前記式(5)で表される(メタ)アクリル酸イミノ化合物と、前記式(6)で表される(メタ)アクリル酸とだけではなく、他の単量体を含んでいてもよい。前記単量体組成物には、この他の単量体として、架橋剤を含有させることが好ましい。 In the monomer composition, not only the (meth) acrylic acid imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6), but also another monomer May contain body. The monomer composition preferably contains a crosslinking agent as another monomer.
 前記架橋剤としては、分子内に複数個に重合性不飽和基を有する化合物であれば、特に限定されない。前記架橋剤としては、例えば、(メタ)アクリル酸系多官能化合物、アリルエーテル系多官能化合物、及びビニル系多官能化合物等が挙げられる。前記(メタ)アクリル酸系多官能化合物としては、例えば、下記式(7)で表される架橋剤等が挙げられ、具体的には、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、1,3-プロパンジオールジアクリレート、1,3-プロパンジオールジメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、1,4-ブタンジオールジアクリレート、及び1,4-ブタンジオールジメタクリレート等が挙げられる。また、前記アリルエーテル系多官能化合物としては、例えば、ジエチレングリコールジアリルエーテル、及びジブチレングリコールジアリルエーテル等が挙げられる。また、前記ビニル系多官能化合物としては、例えば、ジビニルベンゼン等が挙げられる。これらの中でも、高い重合反応性を有する観点から、前記(メタ)アクリル酸系多官能化合物が好ましく、下記式(7)で表される架橋剤がより好ましく、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレートがさらに好ましい。また、前記架橋剤は、上記例示した化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The crosslinking agent is not particularly limited as long as it is a compound having a plurality of polymerizable unsaturated groups in the molecule. Examples of the crosslinking agent include (meth) acrylic acid-based polyfunctional compounds, allyl ether-based polyfunctional compounds, and vinyl-based polyfunctional compounds. Examples of the (meth) acrylic acid-based polyfunctional compound include a crosslinking agent represented by the following formula (7). Specifically, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, Diethylene glycol dimethacrylate, 1,3-propanediol diacrylate, 1,3-propanediol dimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, 1,4-butanediol diacrylate, and 1,4-butanediol dimethacrylate and the like. Examples of the allyl ether polyfunctional compound include, for example, diethylene glycol diallyl ether and dibutylene glycol diallyl ether. Examples of the vinyl polyfunctional compound include, for example, divinylbenzene. Among these, from the viewpoint of having high polymerization reactivity, the (meth) acrylic acid-based polyfunctional compound is preferable, and a crosslinking agent represented by the following formula (7) is more preferable, and ethylene glycol di (meth) acrylate and diethylene glycol (Meth) acrylate and 1,4-butanediol di (meth) acrylate are more preferred. As the crosslinking agent, the compounds exemplified above may be used alone, or two or more of them may be used in combination.
Figure JPOXMLDOC01-appb-C000017
 式(7)中、R及びRは、それぞれ独立に、水素原子又はメチル基を示し、Zは、エチレン基、プロピレン基、ブチレン基、又は、-COC-基を示す。
Figure JPOXMLDOC01-appb-C000017
In the formula (7), R 8 and R 9 each independently represent a hydrogen atom or a methyl group, and Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
 前記第1工程において、前記単量体組成物として、前記式(7)で表される架橋剤を含む組成物を重合させると、前記重合体粒子の中でも、前記式(4)で表される繰り返し単位を分子内にさらに含有する共重合体を含む重合体粒子を好適に製造することができる。 In the first step, when a composition containing the crosslinking agent represented by the formula (7) is polymerized as the monomer composition, the polymer particles are represented by the formula (4) among the polymer particles. Polymer particles containing a copolymer further containing a repeating unit in the molecule can be suitably produced.
 前記架橋剤の配合割合は、前記架橋剤を含む場合、前記架橋剤による架橋の効果を充分に奏するために、前記(メタ)アクリル酸イミノ化合物1モルに対して、0.00001~0.25モルであることが好ましく、0.00005~0.1モルであることがより好ましく、0.0001~0.05モルであることがさらに好ましい。 The mixing ratio of the crosslinking agent is preferably 0.00001 to 0.25 with respect to 1 mol of the (meth) acrylic acid imino compound in order to sufficiently exhibit the effect of crosslinking by the crosslinking agent when the crosslinking agent is included. Mole, more preferably 0.00005 to 0.1 mole, even more preferably 0.0001 to 0.05 mole.
 前記懸濁重合法としては、例えば、攪拌機、温度計、窒素ガス導入管、及び冷却管を備えた反応器を用いて、前記(メタ)アクリル酸イミノ化合物、前記(メタ)アクリル酸、前記架橋剤、及び油溶性ラジカル重合開始剤を、不活性炭化水素系溶媒に、それぞれ所定量混合したものと、界面活性剤とを、反応不活性である水に混合して分散させた後、窒素ガスにより脱酸素し、攪拌下で加熱する方法が挙げられる。 As the suspension polymerization method, for example, the (meth) acrylic acid imino compound, the (meth) acrylic acid, the cross-linking are performed by using a reactor equipped with a stirrer, a thermometer, a nitrogen gas introducing pipe, and a cooling pipe. After mixing a predetermined amount of an agent and an oil-soluble radical polymerization initiator with an inert hydrocarbon-based solvent, respectively, and a surfactant, and mixing and dispersing the mixture with water that is inert to the reaction, nitrogen gas is used. And heating under stirring.
 前記油溶性ラジカル重合開始剤としては、特に限定されない。前記油溶性ラジカル重合開始剤としては、例えば、過酸化物系重合開始剤、アゾ系重合開始剤、及びレドックス系重合開始剤等が挙げられる。前記過酸化物系重合開始剤としては、例えば、過酸化ベンゾイル、過酸化-tert-ブチル、ジイソプロピルペルオキシジカルボナート、及びジシクロヘキシルペルオキシジカルボナート等が挙げられる。また、前記アゾ系重合開始剤としては、例えば、α、α’-アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル、及びジメチル-2,2’-アゾビスイソブチレート等が挙げられる。また、前記レドックス系重合開始剤としては、例えば、過酸化ベンゾイル/ジメチルアニリン、過酸化ジ-tert-ブチル/ジメチルアニリン、ラウロイルパーオキシド/ジメチルアニリン等が挙げられる。前記油溶性ラジカル重合開始剤としては、これらの中でも、安価であり取扱いが簡便なα、α’-アゾビスイソブチロニトリル等のアゾ系重合開始剤が好適に用いられる。 と し て The oil-soluble radical polymerization initiator is not particularly limited. Examples of the oil-soluble radical polymerization initiator include a peroxide-based polymerization initiator, an azo-based polymerization initiator, and a redox-based polymerization initiator. Examples of the peroxide-based polymerization initiator include benzoyl peroxide, tert-butyl peroxide, diisopropylperoxydicarbonate, and dicyclohexylperoxydicarbonate. Examples of the azo polymerization initiator include α, α′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, and dimethyl-2,2′-azobis Isobutyrate and the like. Examples of the redox polymerization initiator include benzoyl peroxide / dimethylaniline, di-tert-butyl peroxide / dimethylaniline, and lauroyl peroxide / dimethylaniline. Among these oil-soluble radical polymerization initiators, azo-based polymerization initiators such as α, α′-azobisisobutyronitrile, which are inexpensive and easy to handle, are suitably used.
 前記油溶性ラジカル重合開始剤の使用量は、使用する油溶性ラジカル重合開始剤の種類や反応温度により異なるが、通常、前記(メタ)アクリル酸イミノ化合物100質量部に対して0.005~5質量部であることが好ましい。 The amount of the oil-soluble radical polymerization initiator to be used varies depending on the type of the oil-soluble radical polymerization initiator to be used and the reaction temperature, but is usually 0.005 to 5 based on 100 parts by mass of the (meth) acrylic acid imino compound. It is preferably in parts by mass.
 前記不活性炭化水素系溶媒としては、特に限定されない。前記不活性炭化水素系溶媒としては、例えば、芳香族炭化水素系溶媒、非環式飽和炭化水素系溶媒、環式飽和炭化水素系溶媒、及びハロゲン化炭化水素系溶媒等が挙げられる。前記芳香族炭化水素系溶媒としては、例えば、ベンゼン、トルエン、及びキシレン等が挙げられる。また、前記非環式飽和炭化水素系溶媒としては、例えば、n-ヘキサン、n-ヘプタン、リグロイン等が挙げられる。また、前記環式飽和炭化水素系溶媒としては、例えば、シクロペンタン、メチルシクロペンタン、シクロヘキサン、及びメチルシクロヘキサン等が挙げられる。また、前記ハロゲン化炭化水素系溶媒としては、例えば、ジクロロメタン、クロロホルム、及びジクロロエタン等が挙げられる。前記不活性炭化水素系溶媒としては、この中でも、工業的に入手が容易で、安価であり、得られる重合反応生成物の品質が安定する観点から、芳香族炭化水素系溶媒、及び非環式飽和炭化水素系溶媒が好ましく、中でも、トルエン、及びn-ヘキサンが好適に用いられる。また、前記不活性炭化水素系溶媒は、例示した溶媒を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The inert hydrocarbon solvent is not particularly limited. Examples of the inert hydrocarbon solvents include aromatic hydrocarbon solvents, acyclic saturated hydrocarbon solvents, cyclic saturated hydrocarbon solvents, and halogenated hydrocarbon solvents. Examples of the aromatic hydrocarbon-based solvent include benzene, toluene, xylene, and the like. Examples of the acyclic saturated hydrocarbon solvent include n-hexane, n-heptane, and ligroin. Examples of the cyclic saturated hydrocarbon solvent include cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane. Examples of the halogenated hydrocarbon solvent include dichloromethane, chloroform, dichloroethane, and the like. As the inert hydrocarbon-based solvent, among them, an aromatic hydrocarbon-based solvent, and an acyclic solvent are commercially available, from the viewpoint of inexpensiveness and stable quality of the obtained polymerization reaction product. Saturated hydrocarbon solvents are preferred, and among them, toluene and n-hexane are suitably used. As the inert hydrocarbon solvent, the solvents exemplified above may be used alone, or two or more of them may be used in combination.
 前記不活性炭化水素系溶媒の使用量は、前記(メタ)アクリル酸イミノ化合物を充分に溶解させて重合反応を円滑に進行させる観点及び使用量に見合うだけの効果を得る観点から、前記(メタ)アクリル酸イミノ化合物100質量部に対して、50~300質量部であることが好ましく、100~200質量部であることがより好ましい。 The amount of the inert hydrocarbon-based solvent used is from the viewpoint of dissolving the (meth) acrylic acid imino compound sufficiently to allow the polymerization reaction to proceed smoothly, and from the viewpoint of obtaining an effect commensurate with the used amount. ) The amount is preferably from 50 to 300 parts by mass, more preferably from 100 to 200 parts by mass, per 100 parts by mass of the imino acrylate compound.
 前記界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、及び両性界面活性剤のいずれであっても用いることができる。 と し て As the surfactant, any of anionic surfactant, cationic surfactant, nonionic surfactant, and amphoteric surfactant can be used.
 前記アニオン性界面活性剤としては、例えば、脂肪酸ナトリウム、脂肪酸アンモニウム、脂肪酸カリウム、アルキル硫酸ナトリウム、アルキル硫酸アンモニウム、アルキルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、アルカンスルホン酸アンモニウム、アルキルリン酸ナトリウム、アシロイルメチルタウレート、N-メチル-N-アシルアミドプロピオン酸ナトリウム、モノアルキルビフェニルエーテルジスルホン酸ナトリウム、ナフタリンスルホン酸ナトリウム-ホルマリン縮合物、アシルグルタミン酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテルアルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテルメチルカルボン酸ナトリウム、及びポリオキシエチレンアルキルエーテルエタンスルホン酸ナトリウム等が挙げられる。 Examples of the anionic surfactant include fatty acid sodium, fatty acid ammonium, fatty acid potassium, sodium alkyl sulfate, ammonium alkyl sulfate, sodium alkylbenzene sulfonate, sodium alkane sulfonate, ammonium alkane sulfonate, sodium alkyl phosphate, and acyloylmethyl. Taurate, sodium N-methyl-N-acylamidopropionate, sodium monoalkylbiphenyl ether disulfonate, sodium naphthalenesulfonate-formalin condensate, sodium acylglutamate, polyoxyethylene alkylphenyl ether alkylbenzenesulfonate sodium, polyoxyethylene Sodium alkyl ether sulfate, polyoxyethylene alkyl ether methyl carboxy Sodium, and sodium polyoxyethylene alkyl ether ethanesulfonic acid and the like.
 前記カチオン性界面活性剤としては、例えば、モノアルキルトリメチルアンモニウムメトサルフェート、カチオン化セルロース、アルキルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、ジアルキルジメチルアンモニウムクロライド、ジアルキルジメチルベンジルアンモニウムクロライド、及びアルキルピリジニウムクロライド等が挙げられる。 Examples of the cationic surfactant include monoalkyltrimethylammonium methosulfate, cationized cellulose, alkyltrimethylammonium chloride, distearyldimethylammonium chloride, dialkyldimethylammonium chloride, dialkyldimethylbenzylammonium chloride, and alkylpyridinium chloride. No.
 前記ノニオン性界面活性剤としては、例えば、脂肪酸モノグリセライド、ソルビタン脂肪酸部分エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸モノグリセライド、ポリオキシエチレンソルビトール脂肪酸部分エステル、ポリオキシエチレンソルビタン脂肪酸部分エステル、ポリオキシエチレンラノリンアルコールエーテル、ポリエチレングリコール脂肪酸モノエステル、ポリエチレングリコール脂肪酸ジエステル、ポリオキシエチレン脂肪酸アミン、ポリグリセリン脂肪酸部分エステル、ビス(2-ヒドロキシエチル)アルキルアミン、アルキルジメチルアミンオキシド、脂肪酸アルキロールアミド、ω-メトキシポリオキシエチレン-α-アルキルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアセチレングリコール、シュガー脂肪酸部分エステル、ポリビニルアルコール、及び部分ケン化ポリビニルアルコール等が挙げられる。 Examples of the nonionic surfactant include fatty acid monoglyceride, sorbitan fatty acid partial ester, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid monoglyceride, polyoxyethylene sorbitol fatty acid partial ester, polyoxyethylene sorbitan Fatty acid partial ester, polyoxyethylene lanolin alcohol ether, polyethylene glycol fatty acid monoester, polyethylene glycol fatty acid diester, polyoxyethylene fatty acid amine, polyglycerin fatty acid partial ester, bis (2-hydroxyethyl) alkylamine, alkyldimethylamine oxide, fatty acid Alkylolamide, ω-methoxypolyoxyethylene-α-alkyl ether, Examples include polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene acetylene glycol, sugar fatty acid partial ester, polyvinyl alcohol, and partially saponified polyvinyl alcohol.
 前記両性界面活性剤としては、例えば、N-アシルアミドプロピル-N,N-ジメチルアンモニオベタイン、N-アシルアミドプロピル-N’,N’-ジメチル-N’-β-ヒドロキシプロピルアンモニオスルホベタイン、N-アシルアミドエチル-N’-ヒドロキシエチル-N’-カルボキシメチルアンモニオベタイン、N-アルキル-N-ジメチル-N-カルボキシメチルアンモニオベタイン、アルキルジアミノエチルグリシン、及びアシル化ポリペプタイド等が挙げられる。 Examples of the amphoteric surfactant include N-acylamidopropyl-N, N-dimethylammoniobetaine, N-acylamidopropyl-N ′, N′-dimethyl-N′-β-hydroxypropylammoniosulfobetaine. , N-acylamidoethyl-N'-hydroxyethyl-N'-carboxymethylammoniobetaine, N-alkyl-N-dimethyl-N-carboxymethylammoniobetaine, alkyldiaminoethylglycine, and acylated polypeptides. No.
 前記界面活性剤としては、上記界面活性剤の中でも、工業的に入手が容易で、安価であり、得られる重合反応生成物の品質が安定する観点から、アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルフェニルエーテルアルキルベンゼンスルホン酸ナトリウム、ポリビニルアルコール、及び部分ケン化ポリビニルアルコールが好適に用いられる。また、前記アルキルベンゼンスルホン酸ナトリウムの中でも、ドデシルベンゼンスルホン酸ナトリウムが好ましく、前記ポリオキシエチレンアルキルフェニルエーテルアルキルベンゼンスルホン酸ナトリウムの中でも、ポリオキシエチレンノニルフェニルエーテルドデシルベンゼンスルホン酸ナトリウムが好ましい。 As the surfactant, among the above-mentioned surfactants, from the viewpoint of being easily available industrially, inexpensive, and stabilizing the quality of the obtained polymerization reaction product, sodium alkylbenzene sulfonate, polyoxyethylene alkylphenyl Sodium ether alkylbenzene sulfonate, polyvinyl alcohol, and partially saponified polyvinyl alcohol are preferably used. Also, among the sodium alkylbenzenesulfonates, sodium dodecylbenzenesulfonate is preferable, and among the sodium polyoxyethylenealkylphenyletheralkylbenzenesulfonates, sodium polyoxyethylenenonylphenyletherdodecylbenzenesulfonate is preferable.
 前記界面活性剤の使用量は、反応を円滑に進行させる観点、及び使用量に見合うだけの効果を得る観点から、添加する水100質量部に対して0.05~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。 The amount of the surfactant to be used is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of water to be added, from the viewpoint of promoting the reaction smoothly and obtaining an effect commensurate with the amount used. More preferably, it is 0.1 to 5 parts by mass.
 前記水の使用量は、重合熱を十分除去できる観点、及び重合温度を制御しやすくする観点から、前記(メタ)アクリル酸イミノ化合物100質量部に対して、200~3000質量部であることが好ましく、300~2000質量部であることがより好ましい。 The amount of the water to be used is preferably 200 to 3000 parts by mass with respect to 100 parts by mass of the (meth) acrylic acid imino compound from the viewpoint of sufficiently removing the heat of polymerization and facilitating the control of the polymerization temperature. More preferably, it is 300 to 2,000 parts by mass.
 前記懸濁重合法における反応条件は、前記(メタ)アクリル酸イミノ化合物と、前記(メタ)アクリル酸とを重合することができれば、特に限定されない。具体的には、反応温度としては、30~100℃が好ましく、40~80℃がより好ましい。反応時間は、前記反応温度等により異なるため一概には言えないが、通常、0.5~10時間であることが好ましい。 The reaction conditions in the suspension polymerization method are not particularly limited as long as the (meth) acrylic acid imino compound and the (meth) acrylic acid can be polymerized. Specifically, the reaction temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C. The reaction time varies depending on the reaction temperature and the like and cannot be unconditionally determined, but is usually preferably 0.5 to 10 hours.
 前記懸濁重合法により得られた重合反応生成物は、反応溶媒中に粒子状態で存在するため、この反応液をろ過することにより単離することができる。さらに、水、メタノール、及びヘキサン等を用いて、未反応物等を除去、洗浄し、乾燥することにより精製することができる。このようにして、ニトロキシド化する前の重合体粒子が得られる。この重合体粒子は、前記式(2)で表される繰り返し単位を含有する重合体粒子である。 重合 Since the polymerization reaction product obtained by the above suspension polymerization method exists in the form of particles in the reaction solvent, it can be isolated by filtering this reaction solution. Further, it can be purified by removing unreacted substances and the like using water, methanol, hexane and the like, washing and drying. In this way, polymer particles before nitroxidation are obtained. This polymer particle is a polymer particle containing the repeating unit represented by the formula (2).
 前記乳化重合法としては、一般的な乳化重合法等が挙げられる。前記乳化重合法としては、例えば、攪拌機、温度計、窒素ガス導入管、及び冷却管を備えた反応器を用いて、前記(メタ)アクリル酸イミノ化合物、前記(メタ)アクリル酸、前記架橋剤、及び前記界面活性剤を、不活性溶媒である水に、それぞれ所定量混合して分散させた後、窒素ガスにより脱酸素し、水溶性ラジカル重合開始剤を添加して、攪拌下で加熱する方法が挙げられる。前記方法において、前記(メタ)アクリル酸イミノ化合物、前記(メタ)アクリル酸、前記架橋剤を予め混合したもの(必要に応じて、不活性炭化水素系溶媒、又はメタノール等の親水性溶剤(水溶性溶媒)をさらに混合したもの)を、前記界面活性剤及び前記水溶性ラジカル重合開始剤を含有する水に添加して、攪拌下で加熱してもよい。このように、前記(メタ)アクリル酸イミノ化合物、前記(メタ)アクリル酸、前記架橋剤を含む単量体組成物を含む水溶性溶媒溶液を、界面活性剤と重合開始剤とを含む水溶液に添加することによって、前記単量体組成物を好適に重合でき、前記重合体粒子をより好適に製造することができる。前記水溶性溶媒は、水溶性、かつ、前記単量体組成物を溶解させることができる溶媒であれば、特に限定されない。前記水溶性溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ジグリム、テトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、及びジメチルスルホキシド等が挙げられる。 乳化 Examples of the emulsion polymerization method include a general emulsion polymerization method. As the emulsion polymerization method, for example, a (meth) acrylic acid imino compound, the (meth) acrylic acid, the cross-linking agent are used by using a reactor equipped with a stirrer, a thermometer, a nitrogen gas inlet pipe, and a cooling pipe. And, after mixing and dispersing a predetermined amount of each of the surfactants in water as an inert solvent, deoxygenate with nitrogen gas, add a water-soluble radical polymerization initiator, and heat under stirring. Method. In the above method, the (meth) acrylic acid imino compound, the (meth) acrylic acid, and a mixture obtained by previously mixing the crosslinking agent (if necessary, an inert hydrocarbon solvent or a hydrophilic solvent such as methanol (aqueous solution) ) May be added to water containing the surfactant and the water-soluble radical polymerization initiator, and heated under stirring. Thus, the aqueous solvent solution containing the monomer composition containing the (meth) acrylic acid imino compound, the (meth) acrylic acid, and the crosslinking agent is converted into an aqueous solution containing a surfactant and a polymerization initiator. By the addition, the monomer composition can be suitably polymerized, and the polymer particles can be more suitably produced. The water-soluble solvent is not particularly limited as long as it is water-soluble and can dissolve the monomer composition. Examples of the water-soluble solvent include methanol, ethanol, isopropyl alcohol, diglyme, tetrahydrofuran, acetone, acetonitrile, dimethylformamide, and dimethyl sulfoxide.
 前記水溶性ラジカル重合開始剤としては、特に限定されない。前記水溶性ラジカル重合開始剤としては、例えば、過酸化物系重合開始剤、及びレドックス系重合開始剤等が挙げられる。前記過酸化物系重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、及び過硫酸カリウム等が挙げられる。また、前記レドックス系重合開始剤としては、例えば、硫酸第一鉄アンモニウム/過硫酸アンモニウム、及びエタノールアミン/過硫酸カリウム等の等が挙げられる。前記水溶性ラジカル重合開始剤としては、これらの中でも、安価であり取扱いが簡便な過硫酸カリウム等の過酸化物系重合開始剤が好適に用いられる。また、前記水溶性ラジカル重合開始剤は、例示した開始剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 と し て The water-soluble radical polymerization initiator is not particularly limited. Examples of the water-soluble radical polymerization initiator include a peroxide-based polymerization initiator and a redox-based polymerization initiator. Examples of the peroxide-based polymerization initiator include ammonium persulfate, sodium persulfate, and potassium persulfate. Examples of the redox polymerization initiator include, for example, ammonium ferrous sulfate / ammonium persulfate, ethanolamine / potassium persulfate, and the like. Among these, a peroxide polymerization initiator such as potassium persulfate, which is inexpensive and easy to handle, is preferably used as the water-soluble radical polymerization initiator. As the water-soluble radical polymerization initiator, the initiators exemplified above may be used alone, or two or more of them may be used in combination.
 乳化重合法における、界面活性剤の種類や使用量、重合開始剤の使用量、不活性溶媒としての水の使用量、反応温度、及び反応時間は、前記懸濁重合法におけるそれらと同様のものを適用することができる。 In the emulsion polymerization method, the type and amount of the surfactant, the amount of the polymerization initiator used, the amount of water used as the inert solvent, the reaction temperature, and the reaction time are the same as those in the suspension polymerization method. Can be applied.
 前記乳化重合法は、前記(メタ)アクリル酸イミノ化合物を溶解するために、懸濁重合法で用いるものと同様の不活性炭化水素系溶媒、又はメタノール等の親水性溶剤を適宜加えてもよく、さらに、必要に応じて、イソプロピルアルコール等の連鎖移動剤や重合停止剤等の添加剤を適宜加えてもよい。 In the emulsion polymerization method, in order to dissolve the (meth) acrylic acid imino compound, an inert hydrocarbon solvent similar to that used in the suspension polymerization method, or a hydrophilic solvent such as methanol may be appropriately added. Further, if necessary, an additive such as a chain transfer agent such as isopropyl alcohol or a polymerization terminator may be appropriately added.
 前記乳化重合法により得られた重合反応生成物は、例えば、反応液を大量の冷水と混合し、当該重合反応生成物を沈澱させた後、ろ過する等して単離することができる。さらに、水、ヘキサン、及びメタノール等を用いて、未反応物等を除去、洗浄した後、乾燥することにより精製することができる。このようにして、ニトロキシド化する前の重合体粒子が得られる。この重合体粒子は、前記式(2)で表される繰り返し単位を含有する重合体粒子である。 重合 The polymerization reaction product obtained by the emulsion polymerization method can be isolated, for example, by mixing the reaction solution with a large amount of cold water, precipitating the polymerization reaction product, and then filtering. Further, it can be purified by removing unreacted substances and the like using water, hexane, methanol and the like, washing and drying. In this way, polymer particles before nitroxidation are obtained. This polymer particle is a polymer particle containing the repeating unit represented by the formula (2).
 前記分散重合法としては、一般的な分散重合法等が挙げられる。前記分散重合法としては、例えば、攪拌機、温度計、窒素ガス導入管、及び冷却管を備えた反応器を用いて、前記(メタ)アクリル酸イミノ化合物、前記(メタ)アクリル酸、前記架橋剤、及び分散媒を、不活性溶媒に混合して分散させた後、窒素ガスにより脱酸素し、ラジカル重合開始剤を添加して、攪拌下で加熱する方法が挙げられる。 分散 As the dispersion polymerization method, a general dispersion polymerization method and the like can be mentioned. As the dispersion polymerization method, for example, a (meth) acrylic acid imino compound, the (meth) acrylic acid, the cross-linking agent is used by using a reactor equipped with a stirrer, a thermometer, a nitrogen gas introducing pipe, and a cooling pipe. And a dispersion medium mixed and dispersed in an inert solvent, deoxygenated with nitrogen gas, a radical polymerization initiator is added, and the mixture is heated under stirring.
 前記分散重合法に用いられるラジカル重合開始剤としては、特に限定されず、例えば、前記懸濁重合法や前記乳化重合法に用いることができるものを用いることができる。 ラ ジ カ ル The radical polymerization initiator used in the dispersion polymerization method is not particularly limited, and for example, those which can be used in the suspension polymerization method or the emulsion polymerization method can be used.
 前記分散重合法における、重合開始剤の使用量、反応温度、及び反応時間は、前記懸濁重合法におけるそれらと同様のものを適用することができる。 使用 In the dispersion polymerization method, the same amount as that in the suspension polymerization method can be applied to the amount of the polymerization initiator, the reaction temperature, and the reaction time.
 前記分散重合法に用いられる不活性溶媒としては、前記(メタ)アクリル酸イミノ化合物、前記(メタ)アクリル酸、架橋剤、及び分散媒を充分に溶解させることができるものであれば、特に限定されない。前記不活性溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ヘキサン、n-ヘプタン、リグロイン等の非環式飽和炭化水素系溶媒;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の環式飽和炭化水素系溶媒;ジクロロメタン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素系溶媒;メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、iso-ブチルアルコール、tert-ブチルアルコール等のアルコール類;水等が挙げられる。前記不活性溶媒としては、前記例示した溶媒の中でも、工業的に入手が容易で、安価であり、(メタ)アクリル酸イミノ化合物の溶解性が高い等の観点から、アルコール類が好ましく、メタノールがさらに好ましい。また、前記不活性溶媒は、上記例示した溶媒を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The inert solvent used in the dispersion polymerization method is not particularly limited as long as the (meth) acrylic acid imino compound, the (meth) acrylic acid, the crosslinking agent, and the dispersion medium can be sufficiently dissolved. Not done. Examples of the inert solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene; acyclic saturated hydrocarbon solvents such as n-hexane, n-heptane and ligroin; cyclopentane, methylcyclopentane, Cyclic saturated hydrocarbon solvents such as cyclohexane and methylcyclohexane; halogenated hydrocarbon solvents such as dichloromethane, chloroform and dichloroethane; methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl Alcohols such as alcohol, iso-butyl alcohol and tert-butyl alcohol; and water. As the inert solvent, among the solvents exemplified above, alcohols are preferred from the viewpoint of industrial availability, low cost, high solubility of the (meth) acrylic acid imino compound, and methanol. More preferred. As the inert solvent, the solvents exemplified above may be used alone, or two or more of them may be used in combination.
 前記分散重合法に用いられる分散媒としては、特に限定されず、例えば、ポリスチレン、ポリメチルメタクリレート、ポリビニルブタジエン、ポリ(N-ビニルピロリドン)、ポリアクリル酸、ポリメタクリル酸、ポリ(ジメチルシロキサン)、ポリイソブチレン、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチルビニルエーテル)、ポリビニルアルコール、部分ケン化ポリビニルアルコール、ポリ酢酸ビニル、及びポリビニルブチラール等が挙げられる。前記分散剤としては、前記例示した化合物の中でも、工業的に入手が容易で、安価であり、重合反応生成物からの洗浄除去の容易性の観点から、ポリ(N-ビニルピロリドン)、ポリビニルアルコール、及び部分ケン化ポリビニルアルコールが好ましく、ポリビニルアルコールがより好ましい。また、前記分散媒は、上記例示した分散媒を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The dispersion medium used in the dispersion polymerization method is not particularly limited, and examples thereof include polystyrene, polymethyl methacrylate, polyvinyl butadiene, poly (N-vinylpyrrolidone), polyacrylic acid, polymethacrylic acid, poly (dimethylsiloxane), Examples thereof include polyisobutylene, polyethylene glycol, polypropylene glycol, poly (ethyl vinyl ether), polyvinyl alcohol, partially saponified polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral. As the dispersant, among the compounds exemplified above, poly (N-vinylpyrrolidone), polyvinyl alcohol, and the like are commercially available, inexpensive, and easily washed and removed from the polymerization reaction product. And partially saponified polyvinyl alcohol are preferred, and polyvinyl alcohol is more preferred. Further, as the dispersion medium, the above-described dispersion medium may be used alone, or two or more kinds may be used in combination.
 前記分散重合法に用いられる分散媒の使用量は、重合反応生成物の微粒子を反応溶媒中に分散させることができればよく、特に限定されない。また、前記分散媒の使用量は、例えば、重合反応生成物の微粒子を反応溶媒中に分散させる観点及び使用量に見合うだけの効果を得る観点から、(メタ)アクリル酸イミノ化合物100質量部に対して、1~100質量部であることが好ましく、5~40質量部であることがより好ましい。 使用 The amount of the dispersion medium used in the dispersion polymerization method is not particularly limited as long as the polymerization reaction product fine particles can be dispersed in the reaction solvent. The amount of the dispersion medium used is, for example, from the viewpoint of dispersing the fine particles of the polymerization reaction product in the reaction solvent and obtaining an effect commensurate with the amount used, to 100 parts by mass of the (meth) acrylic acid imino compound. On the other hand, it is preferably 1 to 100 parts by mass, more preferably 5 to 40 parts by mass.
 前記分散重合法により得られた重合反応生成物は、例えば、反応液を大量の冷水と混合し、当該重合反応生成物を沈澱させた後、ろ過する等して単離することができる。さらに、水、ヘキサン、メタノール等を用いて、未反応物等を除去、洗浄した後、乾燥することにより精製することができる。 重合 The polymerization reaction product obtained by the dispersion polymerization method can be isolated, for example, by mixing the reaction solution with a large amount of cold water, precipitating the polymerization reaction product, and then filtering. Further, it can be purified by removing unreacted substances and the like using water, hexane, methanol and the like, washing and drying.
 前記第2工程は、前記式(2)で表される繰り返し単位をニトロキシド化して、前記式(1)で表される繰り返し単位にすることができれば、特に限定されない。前記第2工程におけるニトロキシド化としては、例えば、2,2,6,6-テトラメチル-4-ピペリジン、及び2,2,6,6-テトラメチル-4-ピペリジニル(メタ)アクリレート等をニトロキシド化させることができる公知の方法等が挙げられる。前記ニトロキシド化としては、例えば、立体障害を有する第2級アミンを、酸化剤を用いて酸化することにより、対応するニトロキシド遊離基(ニトロキシドラジカル基)を有する化合物を製造する公知の方法等を挙げることができる。前記ニトロキシド化としては、例えば、前記式(2)で表される繰り返し単位を含有する重合体粒子と不活性溶媒とを混合した後、攪拌下、酸化剤を添加しながら反応させる方法等が挙げられる。このような方法により、前記式(2)で表される繰り返し単位を含有する重合体粒子(ニトロキシド化前の重合体粒子)を、前記式(1)で表される繰り返し単位を含有する重合体粒子(ニトロキシド化後の重合体粒子)にすることができる。 The second step is not particularly limited as long as the repeating unit represented by the formula (2) can be converted into a repeating unit represented by the formula (1) by nitroxidation. The nitroxidation in the second step includes, for example, nitroxidation of 2,2,6,6-tetramethyl-4-piperidine and 2,2,6,6-tetramethyl-4-piperidinyl (meth) acrylate. A well-known method that can be used is exemplified. Examples of the nitroxidation include a known method for producing a compound having a corresponding nitroxide free radical (nitroxide radical group) by oxidizing a secondary amine having steric hindrance using an oxidizing agent. be able to. Examples of the nitroxidation include a method in which a polymer particle containing the repeating unit represented by the formula (2) is mixed with an inert solvent, and the mixture is reacted with stirring while adding an oxidizing agent. Can be By such a method, the polymer particles containing the repeating unit represented by the formula (2) (the polymer particles before nitroxidation) are converted into the polymer containing the repeating unit represented by the formula (1). Into particles (polymer particles after nitroxidation).
 前記不活性溶媒としては、例えば、ハロゲン化炭化水素類、脂肪族ニトリル類、芳香族ニトリル類、アルコール類、芳香族炭化水素類、及び水等が挙げられる。前記ハロゲン化炭化水素類としては、例えば、ジクロロメタン、クロロホルム、及びジクロロエタン等が挙げられる。また、前記脂肪族ニトリル類としては、例えば、アセトニトリル、プロピオニトリル、及びブチロニトリル等が挙げられる。また、前記芳香族ニトリル類としては、例えば、ベンゾニトリル、及びトルニトリル等が挙げられる。また、前記アルコール類は、メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、iso-ブチルアルコール、tert-ブチルアルコール等が挙げられる。また、前記芳香族炭化水素類としては、ベンゼン、トルエン、及びキシレン等が挙げられる。前記不活性溶媒としては、これらの中でも、ジクロロメタン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素類、及びメタノール、エタノール、tert-ブチルアルコール等のアルコール類が好適に用いられる。また、前記不活性溶媒は、例示した溶媒を単独で用いてもよいし、2種以上組み合わせて用いてもよい。また、前記ニトロキシド化反応において、前記ニトロキシド化前の重合体粒子は、必ずしも不活性溶媒に溶解させる必要はなく、例えば膨潤した状態であっても、前記ニトロキシド化反応は容易に進行する。 Examples of the inert solvent include halogenated hydrocarbons, aliphatic nitriles, aromatic nitriles, alcohols, aromatic hydrocarbons, and water. Examples of the halogenated hydrocarbons include dichloromethane, chloroform, dichloroethane, and the like. Examples of the aliphatic nitriles include acetonitrile, propionitrile, and butyronitrile. Examples of the aromatic nitriles include benzonitrile and tolunitrile. Examples of the alcohol include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol and the like. Examples of the aromatic hydrocarbons include benzene, toluene, and xylene. As the inert solvent, among these, halogenated hydrocarbons such as dichloromethane, chloroform and dichloroethane, and alcohols such as methanol, ethanol and tert-butyl alcohol are preferably used. As the inert solvent, the solvents exemplified above may be used alone, or two or more of them may be used in combination. In addition, in the nitroxidation reaction, the polymer particles before the nitroxidation need not necessarily be dissolved in an inert solvent, and the nitroxidation reaction proceeds easily, for example, even in a swollen state.
 前記不活性溶媒の使用量は、反応を円滑に進行させる観点、及び使用量に見合うだけの効果を得る観点から、前記ニトロキシド化前の重合体粒子100質量部に対して、50~5000質量部であることが好ましく、100~3000質量部であることがより好ましい。 The amount of the inert solvent to be used is from 50 to 5,000 parts by mass with respect to 100 parts by mass of the polymer particles before nitroxidation, from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used. And more preferably 100 to 3000 parts by mass.
 前記酸化剤としては、前記ニトロキシド化することができる酸化剤であれば、特に限定されない。前記酸化剤としては、例えば、過酸化水素、過ギ酸、過酢酸、過安息香酸、及び過フタル酸等の過酸化物やこれらのハロゲン化物、並びに空気等が挙げられる。 The oxidizing agent is not particularly limited as long as it is an oxidizing agent capable of nitroxidation. Examples of the oxidizing agent include peroxides such as hydrogen peroxide, formic acid, peracetic acid, perbenzoic acid, and perphthalic acid, halides thereof, and air.
 酸化剤の使用割合は、反応を円滑に進行させる観点、及び使用量に見合うだけの効果を得る観点から、前記ニトロキシド化前の重合体粒子の製造に用いた(メタ)アクリル酸イミノ化合物1モルに対して1~100モルであることが好ましく、1.5~50モルであることがより好ましく、2~30モルであることがさらに好ましい。 The oxidizing agent is used in an amount of 1 mol of the (meth) acrylic acid imino compound used in the production of the polymer particles before nitroxidation, from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used. Is preferably from 1 to 100 mol, more preferably from 1.5 to 50 mol, even more preferably from 2 to 30 mol.
 前記ニトロキシド化工程は、その反応において、必要に応じて触媒を使用することができる。前記触媒としては、特に限定されず、通常のニトロキシド化反応に使用されている触媒を用いることができる。前記触媒としては、タングステン及びモリブデン等の18族型元素周期律表第6族から選ばれる金属元素を含む化合物が挙げられる。より具体的には、タングステン化合物及びモリブデン化合物等が挙げられる。前記タングステン化合物としては、例えば、タングステン酸、リンタングステン酸、パラタングステン酸、これらのアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩、酸化タングステン、及びタングステンカルボニル等が挙げられる。また、前記モリブデン化合物としては、例えば、モリブデン酸、リンモリブデン酸、パラモリブデン酸、及びこれらのアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。前記触媒としては、これらの中でも、具体的には、パラタングステン酸アンモニウム、タングステン酸ナトリウム、リンタングステン酸、モリブデン酸ナトリウム、三酸化モリブデン、及びモリブデンヘキサカルボニル等が好ましく用いられる。 触媒 In the nitroxidation step, a catalyst can be used as necessary in the reaction. The catalyst is not particularly limited, and a catalyst used in a usual nitroxidation reaction can be used. Examples of the catalyst include compounds containing a metal element selected from Group 6 of the Periodic Table of the Group 18 elements, such as tungsten and molybdenum. More specifically, a tungsten compound, a molybdenum compound, and the like can be given. Examples of the tungsten compound include tungstic acid, phosphotungstic acid, paratungstic acid, alkali metal salts (such as sodium salt and potassium salt) and ammonium salts thereof, tungsten oxide, and tungsten carbonyl. Examples of the molybdenum compound include molybdic acid, phosphomolybdic acid, paramolybdic acid, and alkali metal salts (such as sodium salt and potassium salt) and ammonium salts thereof. As the catalyst, among these, specifically, ammonium paratungstate, sodium tungstate, phosphotungstic acid, sodium molybdate, molybdenum trioxide, molybdenum hexacarbonyl and the like are preferably used.
 前記触媒の使用量は、反応を円滑に進行させる観点、及び使用量に見合うだけの効果を得る観点から、前記ニトロキシド化前の重合体粒子100質量部に対して、0.001~20質量部であることが好ましく、0.01~10質量部であることがより好ましい。 The amount of the catalyst used is 0.001 to 20 parts by mass based on 100 parts by mass of the polymer particles before nitroxidation from the viewpoint of smoothly proceeding the reaction and obtaining an effect commensurate with the amount used. And more preferably 0.01 to 10 parts by mass.
 前記第2工程におけるニトロキシド化は、その操作として、容易に収率よく反応できることから、まず、前記ニトロキシド化前の重合体粒子、前記不活性溶媒、及び必要に応じて前記触媒を混合した後、前記酸化剤を添加しながら反応させるのが好ましい。また、このニトロキシド化は、前記触媒を溶解させるために水等を加えてもよく、さらに必要に応じて、第四級アンモニウム塩やホスホニウム塩等の相間移動触媒を適宜加えてもよい。前記相間移動触媒としては、具体的には、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、フェニルトリメチルアンモニウムクロリド、セチルピリジニウムブロミド、テトラブチルホスホニウムブロミド、テトラブチルホスホニウムクロリド、及びトリブチルドデシルホスホニウムブロミド等が挙げられる。 Since the nitroxidation in the second step can be easily performed in a high yield as an operation, first, after mixing the polymer particles before the nitroxidation, the inert solvent, and the catalyst as necessary, It is preferable to carry out the reaction while adding the oxidizing agent. In this nitroxidation, water or the like may be added to dissolve the catalyst, and if necessary, a phase transfer catalyst such as a quaternary ammonium salt or a phosphonium salt may be appropriately added. As the phase transfer catalyst, specifically, tetrabutylammonium bromide, tetrabutylammonium chloride, trioctylmethylammonium chloride, phenyltrimethylammonium chloride, cetylpyridinium bromide, tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, and tributyldodecyl And phosphonium bromide.
 前記ニトロキシド化の反応条件は、ニトロキシド化が起こる条件であれば、特に限定されない。具体的には、反応温度としては、0~100℃が好ましく、20~80℃がより好ましい。また、前記酸化剤を添加しながら反応させる時間は、特に制限はないが、通常、1~10時間であり、3~6時間であることが好ましい。さらに、通常、前記酸化剤の添加終了後、前記温度を保持して反応を完結させる。前記酸化剤の添加終了後、前記温度を保持して反応を完結させる時間は、2~24時間が好ましく、4~16時間がより好ましい。 反 応 The reaction conditions for the nitroxidation are not particularly limited as long as the nitroxidation occurs. Specifically, the reaction temperature is preferably from 0 to 100 ° C, more preferably from 20 to 80 ° C. The time for the reaction while the oxidizing agent is added is not particularly limited, but is usually 1 to 10 hours, preferably 3 to 6 hours. Further, usually, after the addition of the oxidizing agent is completed, the reaction is completed by maintaining the temperature. After completion of the addition of the oxidizing agent, the time for completing the reaction while maintaining the temperature is preferably 2 to 24 hours, more preferably 4 to 16 hours.
 前記反応により得られたニトロキシド化後の重合体粒子は、ろ過や乾燥等を組み合わせて、前記反応液から単離することができる。前記反応生成物は、例えば、反応液を大量の冷水と混合し、当該重合反応生成物を沈澱させた後、ろ過する等して単離することができる。さらに、水、ヘキサン、メタノール等を用いて、未反応物等を除去、洗浄した後、乾燥することにより精製することができる。 ニ ト ロ The polymer particles obtained by the above reaction after nitroxidation can be isolated from the reaction solution by a combination of filtration, drying and the like. The reaction product can be isolated, for example, by mixing the reaction solution with a large amount of cold water, precipitating the polymerization reaction product, and then filtering. Further, it can be purified by removing unreacted substances and the like using water, hexane, methanol and the like, washing and drying.
 上記のような重合体粒子の製造方法によれば、リチウム二次電池に好適な電極を製造することができる重合体粒子を好適に製造することができる。具体的には、このような製造方法によれば、本発明の実施形態に係る重合体粒子を製造することができる。すなわち、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位を分子内に含有する共重合体を含み、平均一次粒子径が0.01~20μmである重合体粒子を製造することができる。 According to the method for producing polymer particles described above, polymer particles capable of producing an electrode suitable for a lithium secondary battery can be suitably produced. Specifically, according to such a production method, the polymer particles according to the embodiment of the present invention can be produced. That is, the copolymer contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3) in a molecule, Polymer particles having an average primary particle size of 0.01 to 20 μm can be produced.
 本実施形態に係る重合体粒子は、上述したように、リチウム二次電池用電極の製造に用いることが好ましい。すなわち、本発明の他の実施形態に係るリチウム二次電池用電極は、集電体と、前記集電体上に設けられた電極層とを備え、前記電極層が、前記重合体粒子を含む。具体的には、図2に示す電極20において、前記電極層21が、前記重合体粒子を含む電極等が挙げられる。また、前記電極層21は、前記重合体粒子を含んでいればよく、他の成分を含んでいてもよい。また、前記電極層21は、前記重合体粒子からなる層であってもよい。 重合 As described above, the polymer particles according to this embodiment are preferably used for manufacturing an electrode for a lithium secondary battery. That is, an electrode for a lithium secondary battery according to another embodiment of the present invention includes a current collector and an electrode layer provided on the current collector, and the electrode layer includes the polymer particles. . Specifically, in the electrode 20 shown in FIG. 2, the electrode layer 21 includes an electrode containing the polymer particles. In addition, the electrode layer 21 only needs to include the polymer particles, and may include other components. Further, the electrode layer 21 may be a layer made of the polymer particles.
 前記集電体としては、集電体として用いられるものであれば特に限定されない。前記集電体としては、例えば、金属箔、金属平板、金属メッシュ、及び炭素棒等が挙げられる。また、金属箔、金属平板、及び金属メッシュは、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、及びステンレス等を含むものが挙げられる。 The current collector is not particularly limited as long as it is used as a current collector. Examples of the current collector include a metal foil, a metal flat plate, a metal mesh, and a carbon rod. Examples of the metal foil, the metal plate, and the metal mesh include those containing nickel, aluminum, copper, gold, silver, an aluminum alloy, stainless steel, and the like.
 前記電極の製造方法としては、前記電極を製造することができれば、特に限定されない。前記電極の製造方法としては、例えば、前記重合体粒子を塗料化する塗料化工程と、前記塗料を集電体に塗布する塗布工程とを備える方法等が挙げられる。 製造 The method for manufacturing the electrode is not particularly limited as long as the electrode can be manufactured. Examples of the method for producing the electrode include a method including a coating step of forming the polymer particles into a coating, and a coating step of coating the coating on a current collector.
 前記塗料化工程及び前記塗布工程は、特に限定されず、公知の方法や装置を用いて行うことができる。 塗料 The coating process and the coating process are not particularly limited, and can be performed using a known method or apparatus.
 前記塗料化工程としては、例えば、前記重合体粒子にバインダを混合した後、溶媒を加えてスラリー状にする方法等が挙げられる。前記バインダとしては、例えば、ポリフッ化ビニリデン、ビニリデンフロライド-ヘキサフルオロプロピレン共重合体、ビニリデンフロライド-テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、及び各種ポリウレタン等の樹脂バインダが挙げられる。また、前記溶媒としては、例えば、ジメチルホルムアミド、及びN-メチルピロリドン等が挙げられる。 塗料 The coating process includes, for example, a method of mixing a binder with the polymer particles and adding a solvent to form a slurry. Examples of the binder include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, polyimide, and various polyurethanes. Resin binder. Examples of the solvent include dimethylformamide and N-methylpyrrolidone.
 また、前記塗布工程としては、例えば、前記塗料化工程により得られた塗料(スラリー)を集電体の表面に塗布する工程である。具体的には、前記塗料化工程により得られた塗料(スラリー)を集電体の表面に滴下し、ワイヤーバーで全体が均一な厚さとなるように展開させた後、乾燥させて溶媒を除去する方法等が挙げられる。 The application step is, for example, a step of applying the paint (slurry) obtained in the paint-forming step to the surface of the current collector. Specifically, the coating material (slurry) obtained in the coating process is dropped on the surface of the current collector, developed with a wire bar so as to have a uniform thickness, and then dried to remove the solvent. And the like.
 前記塗布工程により得られる塗膜の膜厚は、10~1000μmであることが好ましく、50~300μmであることがより好ましい。 膜厚 The thickness of the coating film obtained by the coating step is preferably from 10 to 1000 μm, more preferably from 50 to 300 μm.
 このような電極は、リチウム二次電池により好適な電極である。すなわち、前記重合体粒子を含む電極層を備えることによって、リチウム二次電池により好適な電極が得られる。具体的には、前記電極を用いることによって、実容量、容量発揮効率、及び高速放充電容量維持率が高いリチウム二次電池が得られる。 電極 Such an electrode is an electrode more suitable for a lithium secondary battery. That is, by providing the electrode layer containing the polymer particles, an electrode more suitable for a lithium secondary battery can be obtained. Specifically, by using the electrode, a lithium secondary battery having a high actual capacity, a capacity deriving efficiency, and a high-speed discharge / charge capacity retention rate can be obtained.
 また、本実施形態に係る電極は、上述したように、リチウム二次電池用電極として用いることが好ましい。すなわち、本発明の他の実施形態に係るリチウム二次電池は、前記電極を備える。具体的には、図1に示すリチウム二次電池10において、前記正極20として、前記電極を備えた電池等が挙げられる。このようなリチウム二次電池は、より好適なリチウム二次電池である。具体的には、実容量、容量発揮効率、及び高速放充電容量維持率が高いリチウム二次電池が得られる。 As described above, the electrode according to the present embodiment is preferably used as an electrode for a lithium secondary battery. That is, a lithium secondary battery according to another embodiment of the present invention includes the electrode. Specifically, in the lithium secondary battery 10 shown in FIG. 1, as the positive electrode 20, a battery or the like including the electrode is used. Such a lithium secondary battery is a more suitable lithium secondary battery. Specifically, it is possible to obtain a lithium secondary battery having a high actual capacity, capacity display efficiency, and high retention rate of high-speed discharge / charge capacity.
 本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 As described above, this specification discloses various aspects of the technology, and the main technologies are summarized below.
 本発明の一局面に係る重合体粒子は、下記式(1)で表される繰り返し単位、下記式(2)で表される繰り返し単位、及び下記式(3)で表される繰り返し単位を分子内に含有する共重合体を含み、平均一次粒子径が、0.01~20μmであることを特徴とする。 The polymer particle according to one aspect of the present invention includes a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a repeating unit represented by the following formula (3) as a molecule. And an average primary particle diameter of 0.01 to 20 μm.
Figure JPOXMLDOC01-appb-C000018
 式(1)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000018
In the formula (1), R 1 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000019
 式(2)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000019
In the formula (2), R 2 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000020
 式(3)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000020
In the formula (3), R 3 represents a hydrogen atom or a methyl group.
 このような構成によれば、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極を製造することができる重合体粒子を提供することができる。すなわち、この重合体粒子を用いて電極を製造すると、リチウム二次電池の電極として、好適な電極が得られる。具体的には、この得られた電極をリチウム二次電池の電極として用いると、この重合体粒子が高出力の電極活物質として働き、高容量で高速充放電が可能なリチウム二次電池を製造することができる。より具体的には、実容量、及び高速放充電後の容量維持率が高いリチウム二次電池を製造することができる。 According to such a configuration, it is possible to provide polymer particles capable of producing an electrode suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery. That is, when an electrode is manufactured using the polymer particles, an electrode suitable as an electrode of a lithium secondary battery can be obtained. Specifically, when the obtained electrode is used as an electrode of a lithium secondary battery, the polymer particles act as a high-output electrode active material to produce a lithium secondary battery capable of high capacity and high speed charge / discharge. can do. More specifically, it is possible to manufacture a lithium secondary battery having a high actual capacity and a high capacity retention rate after high-speed discharging and charging.
 このことは、以下のことによると考えられる。 This is thought to be due to the following.
 まず、前記式(1)で表される繰り返し単位は、繰り返し単位内にN-オキシラジカルを有する。すなわち、前記重合体粒子に含まれる共重合体は、このN-オキシラジカルを有する繰り返し単位を含有する。このように、前記重合体粒子は、分子内にラジカルを有する共重合体を含むので、電極活物質として作用すると考えられる。さらに、このラジカルは、第4級炭素が2つ結合されたN-オキシラジカルであるので、このN-オキシラジカルが酸化還元反応を起こしやすく、熱的、電気化学的に安定である。よって、前記重合体粒子に含まれる共重合体は、前記式(2)で表される繰り返し単位とともに、前記式(1)で表される繰り返し単位を分子内に含有することによって、この重合体粒子が高出力の電極活物質として働きうると考えられる。また、このような重合体粒子は、上記のように、平均一次粒子径が、0.01~20μmと、比較的小さい。このことから、この重合体粒子は、比表面積が比較的大きく、高出力な電極活物質として働くと考えられる。すなわち、この重合体粒子は、好適な電極活物質になると考えられる。 First, the repeating unit represented by the formula (1) has an N-oxy radical in the repeating unit. That is, the copolymer contained in the polymer particles contains the repeating unit having the N-oxy radical. As described above, since the polymer particles include the copolymer having a radical in the molecule, the polymer particles are considered to act as an electrode active material. Further, since this radical is an N-oxy radical in which two quaternary carbons are bonded, the N-oxy radical easily causes an oxidation-reduction reaction, and is thermally and electrochemically stable. Accordingly, the copolymer contained in the polymer particles contains the repeating unit represented by the formula (1) in the molecule together with the repeating unit represented by the formula (2), whereby the polymer It is believed that the particles can act as a high power electrode active material. Further, as described above, such polymer particles have a relatively small average primary particle diameter of 0.01 to 20 μm. From this, it is considered that the polymer particles have a relatively large specific surface area and function as a high-output electrode active material. That is, the polymer particles are considered to be suitable electrode active materials.
 前記重合体粒子に含まれる共重合体は、上記のような第4級炭素が2つ結合されたN-オキシラジカルを単に有するだけではなく、前記式(1)で表される繰り返し単位と、前記式(2)で表される繰り返し単位と、前記式(3)で表される繰り返し単位とが結合された状態でそれぞれが含有される。このように、前記式(3)で表わされる繰り返し単位が、前記式(1)で表される繰り返し単位等と結合した状態で含有されるので、重合体粒子は、水への親和性(親水性)が高くなると考えられる。このため、この重合体粒子を用いて、電極を製造しやすくなる。また。前記重合体粒子に含まれる共重合体は、前記式(3)で表わされる繰り返し単位を含有するので、前記重合体粒子を用いて電極にした場合、高極性溶媒である電解液への親和性が高くなると考えられ、電極内でのリチウムイオンの移動を円滑にし、電極内のリチウムイオンの拡散抵抗を低下されることができると考えられる。 The copolymer contained in the polymer particles not only has an N-oxy radical in which two quaternary carbons are bonded as described above, but also has a repeating unit represented by the formula (1), The repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) are contained in a state of being bonded. As described above, since the repeating unit represented by the formula (3) is contained in a state of being bonded to the repeating unit represented by the formula (1), the polymer particles have an affinity for water (hydrophilicity). Sex) is considered to be higher. For this reason, it becomes easy to manufacture an electrode using the polymer particles. Also. Since the copolymer contained in the polymer particles contains the repeating unit represented by the formula (3), when the polymer particles are used as an electrode, the affinity for the electrolytic solution which is a highly polar solvent is obtained. Therefore, it is considered that the movement of lithium ions in the electrode can be made smooth and the diffusion resistance of lithium ions in the electrode can be reduced.
 なお、前記重合体粒子に含まれる共重合体は、上述したように、前記式(1)で表される繰り返し単位と、前記式(2)で表される繰り返し単位と、前記式(3)で表される繰り返し単位とが結合された状態でそれぞれが含有される。このため、前記重合体粒子を用いて電極の状態にした場合であっても、その電極に接触する電解液に含まれる溶媒への、前記重合体粒子の溶出を好適に抑制できると考えられる。すなわち、この重合体粒子は、溶媒への溶出防止性(耐溶出性)に優れていると考えられる。 As described above, the copolymer contained in the polymer particles includes a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a compound represented by the formula (3). And each of them is contained in a state of being bonded to the repeating unit represented by Therefore, it is considered that even when the polymer particles are used to form an electrode, the elution of the polymer particles into the solvent contained in the electrolytic solution in contact with the electrode can be suitably suppressed. That is, it is considered that the polymer particles are excellent in anti-elution property (elution resistance) to the solvent.
 以上のことから、この重合体粒子は、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極になる重合体粒子であると考えられる。また、この重合体粒子からなる電極活物質は、リチウム二次電池に備えられる電極用の電極活物質として好適である。 From the above, it is considered that this polymer particle is a polymer particle that becomes a suitable electrode for a lithium secondary battery when included in an electrode provided in the lithium secondary battery. The electrode active material composed of the polymer particles is suitable as an electrode active material for an electrode provided in a lithium secondary battery.
 また、前記重合体粒子において、前記共重合体は、前記式(3)で表される繰り返し単位の含有量が、前記式(1)で表される繰り返し単位の含有量と前記式(3)で表される繰り返し単位の含有量との合計100質量部に対して、0.01~5質量部であることが好ましい。 In the polymer particles, the copolymer has a content of the repeating unit represented by the formula (3) and a content of the repeating unit represented by the formula (1) and the content of the formula (3). Is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass in total with the content of the repeating unit represented by
 このような構成によれば、リチウム二次電池により好適な電極を製造することができる重合体粒子を提供することができる。 According to such a configuration, it is possible to provide polymer particles from which a more suitable electrode can be manufactured by a lithium secondary battery.
 このことは、上述した、前記式(1)で表される繰り返し単位を有することによる効果も、前記式(3)で表される繰り返し単位を有することによる効果も、ともに好適に発揮できることによると考えられる。 This is because both the effect of having the repeating unit represented by the formula (1) and the effect of having the repeating unit represented by the formula (3) can be suitably exhibited. Conceivable.
 また、前記重合体粒子において、前記共重合体は、下記式(4)で表される繰り返し単位を分子内にさらに含有することが好ましい。 に お い て In the polymer particles, the copolymer preferably further contains a repeating unit represented by the following formula (4) in the molecule.
Figure JPOXMLDOC01-appb-C000021
 式(4)中、R及びRは、それぞれ独立に、水素原子又はメチル基を示し、Zは、エチレン基、プロピレン基、ブチレン基、又は、-COC-基を示す。
Figure JPOXMLDOC01-appb-C000021
In the formula (4), R 4 and R 5 each independently represent a hydrogen atom or a methyl group, and Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
 このような構成によれば、リチウム二次電池により好適な電極を製造することができる重合体粒子を提供することができる。 According to such a configuration, it is possible to provide polymer particles from which a more suitable electrode can be manufactured by a lithium secondary battery.
 このことは、以下のことによると考えられる。 This is thought to be due to the following.
 まず、前記重合体粒子に含まれる共重合体には、前記式(4)で表される繰り返し単位が、前記式(1)~(3)で表される繰り返し単位と結合された状態で含有されるので、前記共重合体は、架橋されていることになる。このような架橋により、この重合体粒子は、溶媒への溶出防止性(耐溶出性)により優れていると考えられる。すなわち、この重合体粒子を用いて電極の状態にした場合であっても、その電極に接触する電解液に含まれる溶媒への、前記重合体粒子の溶出をより好適に抑制できると考えられる。 First, the copolymer contained in the polymer particles contains the repeating unit represented by the formula (4) in a state of being bonded to the repeating units represented by the formulas (1) to (3). Therefore, the copolymer is cross-linked. Due to such crosslinking, the polymer particles are considered to be excellent in anti-elution property (elution resistance) to a solvent. That is, it is considered that even when the polymer particles are used as an electrode, the elution of the polymer particles into the solvent contained in the electrolytic solution that comes into contact with the electrode can be more suitably suppressed.
 また、前記重合体粒子に含まれる共重合体が、前記式(4)で表される繰り返し単位で架橋されているので、この架橋が、前記式(1)及び前記式(3)で表される繰り返し単位を有することによる、それぞれの効果の阻害をしにくいと考えられる。 Further, since the copolymer contained in the polymer particles is cross-linked by the repeating unit represented by the formula (4), the cross-linking is represented by the formulas (1) and (3). It is considered that each effect is less likely to be inhibited by having a repeating unit having the same structure.
 よって、前記式(1)及び前記式(3)で表される繰り返し単位を有することによる、それぞれの効果を充分に発揮しつつ、耐溶出性により優れた重合体粒子が得られると考えられる。 Accordingly, it is considered that polymer particles having more excellent elution resistance can be obtained while exhibiting the respective effects sufficiently by having the repeating units represented by the formulas (1) and (3).
 また、本発明の他の一局面に係る重合体粒子の製造方法は、前記重合体粒子の製造方法であって、下記式(5)で表されるイミノ化合物と下記式(6)で表される(メタ)アクリル酸とを含む単量体組成物を重合する第1工程と、前記第1工程で得られた重合体をニトロキシド化する第2工程とを備えることを特徴とする。 Further, a method for producing a polymer particle according to another aspect of the present invention is a method for producing the polymer particle, wherein the imino compound represented by the following formula (5) and the imino compound represented by the following formula (6) are provided. A first step of polymerizing a monomer composition containing (meth) acrylic acid and a second step of nitroxidizing the polymer obtained in the first step.
Figure JPOXMLDOC01-appb-C000022
 式(5)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000022
In the formula (5), R 6 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000023
 式(6)中、Rは、水素原子又はメチル基を示す。
Figure JPOXMLDOC01-appb-C000023
In the formula (6), R 7 represents a hydrogen atom or a methyl group.
 このような構成によれば、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極になる重合体粒子を好適に製造することができる。 According to such a configuration, it is possible to suitably produce polymer particles that become electrodes suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery.
 このことは、以下のことによると考えられる。 This is thought to be due to the following.
 まず、前記第1工程において、前記式(5)で表されるイミノ化合物と前記式(6)で表される(メタ)アクリル酸とを含む単量体組成物を重合することによって、前記式(2)で表される繰り返し単位と前記式(3)で表される繰り返し単位とを分子内に含有する共重合体が得られる。前記第2工程において、この共重合体(前記第1工程で得られた重合体)をニトロキシド化することによって、前記共重合体に含まれるイミノ基がニトロキシド化されて、前記式(2)で表される繰り返し単位の一部が前記式(1)で表される繰り返し単位になる。このことから、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位を分子内に含有する共重合体が得られる。 First, in the first step, by polymerizing a monomer composition containing an imino compound represented by the formula (5) and (meth) acrylic acid represented by the formula (6), A copolymer containing the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) in the molecule is obtained. In the second step, the copolymer (the polymer obtained in the first step) is nitroxidized, so that the imino group contained in the copolymer is nitroxidized. A part of the repeating unit represented is a repeating unit represented by the formula (1). From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is can get.
 そして、前記第1工程で得られた重合体は、粒子状で得られ、この重合体を含む粒子は、前記式(5)で表されるイミノ化合物のみを重合して得られる粒子状の重合体より小さい粒子が得られるので、前記第2工程で得られた共重合体を含む粒子も小さくなる。このことから、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位を分子内に含有する共重合体を含み、平均一次粒子径が、0.01~20μmである重合体粒子が得られる。 The polymer obtained in the first step is obtained in the form of particles, and the particles containing the polymer are in the form of a particulate polymer obtained by polymerizing only the imino compound represented by the formula (5). Since particles smaller than the coalesced particles are obtained, the particles containing the copolymer obtained in the second step are also reduced. From this, a copolymer containing the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), and the repeating unit represented by the formula (3) in a molecule is used. Thus, polymer particles having an average primary particle diameter of 0.01 to 20 μm are obtained.
 また、前記重合体粒子の製造方法において、前記単量体組成物は、下記式(7)で表される架橋剤を含むことが好ましい。 In the method for producing polymer particles, the monomer composition preferably contains a crosslinking agent represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000024
 式(7)中、R及びRは、それぞれ独立に、水素原子又はメチル基を示し、Zは、エチレン基、プロピレン基、ブチレン基、又は、-COC-基を示す。
Figure JPOXMLDOC01-appb-C000024
In the formula (7), R 8 and R 9 each independently represent a hydrogen atom or a methyl group, and Z represents an ethylene group, a propylene group, a butylene group, or a —C 2 H 4 OC 2 H 4 — group. Is shown.
 このような構成によれば、前記重合体粒子の中でも、前記式(4)で表される繰り返し単位を分子内にさらに含有する共重合体を含む重合体粒子を好適に製造することができる。このことは、第1工程で重合する単量体組成物に、前記式(7)で表される架橋剤を含むことによって、前記第1工程で、前記式(4)で表される繰り返し単位で架橋された共重合体が得られることによると考えられる。 According to such a configuration, among the polymer particles, polymer particles containing a copolymer further containing a repeating unit represented by the formula (4) in the molecule can be suitably produced. This is because the monomer composition to be polymerized in the first step contains the crosslinking agent represented by the formula (7), whereby the repeating unit represented by the formula (4) can be produced in the first step. It is considered that a copolymer crosslinked by the above is obtained.
 また、前記重合体粒子の製造方法において、前記第1工程における前記重合が、懸濁重合、乳化重合、又は分散重合であることが好ましい。 In the method for producing polymer particles, it is preferable that the polymerization in the first step is suspension polymerization, emulsion polymerization, or dispersion polymerization.
 このような構成によれば、前記重合体粒子をより好適に製造することができる。このことは、前記第1工程における前記重合として、懸濁重合、乳化重合、又は分散重合であることによって、前記第1工程で、好適な粒子状の重合体が容易に得られることによると考えられる。 According to such a configuration, the polymer particles can be produced more suitably. This is thought to be because the polymerization in the first step is suspension polymerization, emulsion polymerization, or dispersion polymerization, whereby a suitable particulate polymer is easily obtained in the first step. Can be
 また、前記重合体粒子の製造方法において、前記単量体組成物を含む水溶性溶媒溶液を、界面活性剤と重合開始剤とを含む水溶液に添加することによって、前記単量体組成物を重合することが好ましい。 Further, in the method for producing polymer particles, the monomer composition is polymerized by adding a water-soluble solvent solution containing the monomer composition to an aqueous solution containing a surfactant and a polymerization initiator. Is preferred.
 このような構成によれば、前記重合体粒子をより好適に製造することができる。 According to such a configuration, the polymer particles can be produced more suitably.
 このことは、以下のことによると考えられる。 This is thought to be due to the following.
 まず、前記第1工程で得られる粒子状の重合体に、未反応の単量体、すなわち、未反応の前記式(5)で表されるイミノ化合物等が残留することを抑制できると考えられる。具体的には、前記式(5)で表されるイミノ化合物は疎水性である。この疎水性の前記イミノ化合物は、界面活性剤を含む水溶液中では油滴として分散する。この状態で、前記単量体組成物を重合させると、水溶液中に、重合体とともに、未反応の前記式(5)で表されるイミノ化合物も析出して、得られた重合体に囲まれるようにして、未反応の前記式(5)で表されるイミノ化合物が残留することになると考えられる。前記水溶性溶媒は、水溶性であり、かつ、単量体組成物に含まれる単量体、例えば、前記式(5)で表されるイミノ化合物等を溶解させることができる。この水溶性溶媒が含まれることによって、この得られた重合体が膨潤される。よって、未反応の前記式(5)で表されるイミノ化合物を囲むように存在する重合体も膨潤されることになるので、その重合体に囲まれた状態のところから、未反応の前記式(5)で表されるイミノ化合物が溶出できるため、前記第1工程で得られる粒子状の重合体に、未反応の単量体、すなわち、未反応の前記式(5)で表されるイミノ化合物等が残留することを抑制できると考えられる。 First, it is considered that the unreacted monomer, that is, the unreacted imino compound represented by the formula (5) or the like remaining in the particulate polymer obtained in the first step can be suppressed. . Specifically, the imino compound represented by the formula (5) is hydrophobic. The hydrophobic imino compound disperses as oil droplets in an aqueous solution containing a surfactant. When the monomer composition is polymerized in this state, the unreacted imino compound represented by the formula (5) precipitates in the aqueous solution together with the polymer, and is surrounded by the obtained polymer. Thus, it is considered that the unreacted imino compound represented by the formula (5) remains. The water-soluble solvent is water-soluble and can dissolve a monomer contained in the monomer composition, for example, an imino compound represented by the formula (5). By containing the water-soluble solvent, the obtained polymer swells. Therefore, the polymer existing so as to surround the unreacted imino compound represented by the formula (5) also swells, and from the state surrounded by the polymer, the unreacted formula Since the imino compound represented by the formula (5) can be eluted, the unreacted monomer, that is, the unreacted imino represented by the formula (5) is added to the particulate polymer obtained in the first step. It is considered that the compound and the like can be prevented from remaining.
 さらに、前記第1工程で、前記式(5)で表されるイミノ化合物と前記式(6)で表される(メタ)アクリル酸とを含む単量体組成物を重合することによって、前記式(2)で表される繰り返し単位と前記式(3)で表される繰り返し単位とを分子内に含有する共重合体を好適に得ることができると考えられる。具体的には、上述したように、得られた重合体に囲まれるようにして、未反応の前記式(5)で表されるイミノ化合物が残留する。この状態で、前記水溶性溶媒が存在しないと、前記式(5)で表されるイミノ化合物は、重合体に囲まれたまま存在し、前記式(6)で表される(メタ)アクリル酸が前記式(5)で表されるイミノ化合物より優先的に水溶液中に拡散すると考えられる。そうなると、前記式(6)で表される(メタ)アクリル酸のみの重合が優先し、前記式(2)で表される繰り返し単位と前記式(3)で表される繰り返し単位とを分子内に含有する共重合体が得られにくくなると考えられる。これに対して、上記のように、水溶性溶媒を含む場合、上述したように、重合体に囲まれた状態のところから、前記式(5)で表されるイミノ化合物も溶出されるので、このような前記式(6)で表される(メタ)アクリル酸の単独重合が抑制され、前記式(5)で表されるイミノ化合物と前記式(6)で表される(メタ)アクリル酸との重合が進行し、前記式(2)で表される繰り返し単位と前記式(3)で表される繰り返し単位とを分子内に含有する共重合体が好適に重合されると考えられる。 Further, in the first step, by polymerizing a monomer composition containing an imino compound represented by the formula (5) and (meth) acrylic acid represented by the formula (6), It is considered that a copolymer containing the repeating unit represented by formula (2) and the repeating unit represented by formula (3) in a molecule can be suitably obtained. Specifically, as described above, the unreacted imino compound represented by the formula (5) remains so as to be surrounded by the obtained polymer. In this state, if the water-soluble solvent does not exist, the imino compound represented by the formula (5) exists while being surrounded by the polymer, and the (meth) acrylic acid represented by the formula (6) is present. Is thought to diffuse into an aqueous solution preferentially over the imino compound represented by the formula (5). In such a case, the polymerization of only the (meth) acrylic acid represented by the formula (6) takes precedence, and the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) are intramolecularly combined. It is thought that it becomes difficult to obtain a copolymer containing. On the other hand, as described above, when a water-soluble solvent is contained, as described above, the imino compound represented by the formula (5) is also eluted from the state surrounded by the polymer, Such homopolymerization of the (meth) acrylic acid represented by the formula (6) is suppressed, and the imino compound represented by the formula (5) and the (meth) acrylic acid represented by the formula (6) are suppressed. It is considered that the polymerization of the copolymer containing the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) in the molecule is favorably polymerized.
 以上のことから、前記単量体組成物を含む水溶性溶媒溶液を、界面活性剤と重合開始剤とを含む水溶液に添加することによって、前記単量体組成物を好適に重合でき、前記重合体粒子をより好適に製造することができる。 From the above, by adding a water-soluble solvent solution containing the monomer composition to an aqueous solution containing a surfactant and a polymerization initiator, the monomer composition can be suitably polymerized, The united particles can be produced more suitably.
 本発明によれば、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極を製造することができる重合体粒子を提供することができる。また、前記重合体粒子の製造方法を提供することができる。 According to the present invention, it is possible to provide polymer particles capable of producing an electrode suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery. Further, a method for producing the polymer particles can be provided.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 本 Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited thereto.
 [実施例1]
 (第1工程:重合工程)
 まず、前記(メタ)アクリル酸イミノ化合物と、前記(メタ)アクリル酸と、前記架橋剤とを含む単量体組成物を重合する第1工程を行った。具体的には、内容積200mLの三角フラスコに、2,2,6,6-テトラメチル-4-ピペリジニルメタクリレート22.50g(100ミリモル)、エチレングリコールジメチルメタクリレート0.198g(1.0ミリモル)、メタクリル酸0.172g(2.0ミリモル)、重合開始剤としてのα,α’-アゾビスイソブチロニトリル0.16g(1.0ミリモル)、及びトルエン30mLを仕込み、混合して均一溶液を得た。
[Example 1]
(First step: polymerization step)
First, a first step of polymerizing a monomer composition containing the (meth) acrylic acid imino compound, the (meth) acrylic acid, and the crosslinking agent was performed. Specifically, in a 200 mL Erlenmeyer flask, 22.50 g (100 mmol) of 2,2,6,6-tetramethyl-4-piperidinyl methacrylate and 0.198 g (1.0 mmol) of ethylene glycol dimethyl methacrylate were added. ), 0.172 g (2.0 mmol) of methacrylic acid, 0.16 g (1.0 mmol) of α, α'-azobisisobutyronitrile as a polymerization initiator, and 30 mL of toluene, and mixed to obtain a uniform mixture. A solution was obtained.
 次に、攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた500mL容の4つ口フラスコに、水200mL、及び界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム0.5gを仕込み、混合し、この溶液を25℃に保ちながら、攪拌下、前記均一溶液を加えて分散させた。引き続き、窒素ガスを通じて反応系内の酸素を除去した後、攪拌下、60℃にて6時間反応させた。反応終了後、反応液を室温まで冷却し、ろ過した後、水500mL、次いでヘキサン500mLでそれぞれ洗浄し、減圧乾燥して白色粉体21.2g(収率93%)を得た。得られた白色粉体は、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系イミノ共重合体)からなる重合体粒子であった。 Next, 200 mL of water and 0.5 g of sodium dodecylbenzenesulfonate as a surfactant were charged into a 500 mL four-necked flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser, and mixed. While maintaining the solution at 25 ° C., the homogeneous solution was added and dispersed with stirring. Subsequently, after oxygen in the reaction system was removed through nitrogen gas, the mixture was reacted at 60 ° C. for 6 hours with stirring. After completion of the reaction, the reaction solution was cooled to room temperature, filtered, washed with 500 mL of water and then with 500 mL of hexane, and dried under reduced pressure to obtain 21.2 g (yield: 93%) of a white powder. The obtained white powder contains a repeating unit represented by the formula (2), a repeating unit represented by the formula (3), and a repeating unit represented by the formula (4) in a molecule. Polymer particles composed of a copolymer (crosslinked polymethacrylic acid-based imino copolymer).
 (第2工程:ニトロキシド化)
 次に、前記重合工程により得られた重合体をニトロキシド化させる第2工程を行った。具体的には、前記重合工程により得られた白色粉体10g、触媒としてタングステン酸ナトリウム二水和物0.73g(2.2ミリモル)、及びメタノール300mLを、攪拌機、窒素ガス導入管、温度計、還流冷却管、及び滴下ロートを備えた500mL容の4つ口フラスコに仕込み、30℃に保ちながら窒素ガスを通じて反応系内の酸素を除去した後、30%の過酸化水素水50.40g(445ミリモル)を3時間かけて滴下した。引き続き8時間30℃に保持した後、反応液をろ過し、メタノール500mL、次いで水500mLでそれぞれ洗浄し、減圧乾燥して赤色粉体9.8gを得た。この赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の粒度分布を、走査型電子顕微鏡(株式会社キーエンス製のVE-8800)を用いて、撮影倍率:1000~10000倍、加速電圧:10kVで粒子状態を観察した。観察視野内に50個以上の重合体粒子が含まれる領域を無作為に選択し、観察像において暗コントラストを呈し、線上かつ連続的につながりを示す部位を一次粒子の輪郭と判断し、スケールと比較しながら、該50個以上の一次粒子の直径を測定し、横軸を直径、縦軸を個数として粒度分布のグラフを得た。得られた粒度分布から、一次粒子径の体積平均粒子径を求めた。この求めた一次粒子径の体積平均粒子径(平均一次粒子径)は0.80μmであった。
(Second step: nitroxidation)
Next, a second step of nitroxidation of the polymer obtained in the polymerization step was performed. Specifically, 10 g of the white powder obtained in the polymerization step, 0.73 g (2.2 mmol) of sodium tungstate dihydrate as a catalyst, and 300 mL of methanol were mixed with a stirrer, a nitrogen gas inlet tube, and a thermometer. , A reflux condenser, and a dropping funnel into a 500 mL four-necked flask. After removing oxygen in the reaction system through nitrogen gas while maintaining the temperature at 30 ° C., 50.40 g of 30% hydrogen peroxide solution ( (445 mmol) was added dropwise over 3 hours. After maintaining the temperature at 30 ° C. for 8 hours, the reaction solution was filtered, washed with 500 mL of methanol and then with 500 mL of water, and dried under reduced pressure to obtain 9.8 g of a red powder. This red powder is represented by the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4). (Cross-linked polymethacrylic acid-based nitroxide copolymer) containing a repeating unit in the molecule. The particle size distribution of the obtained red powder was observed with a scanning electron microscope (VE-8800 manufactured by Keyence Corporation) at a magnification of 1000 to 10,000 times and an acceleration voltage of 10 kV. A region containing 50 or more polymer particles in the observation field of view is randomly selected, a dark contrast is observed in the observed image, and a site that is connected continuously and linearly is determined as the contour of the primary particle, and the scale and By comparison, the diameters of the 50 or more primary particles were measured, and a graph of the particle size distribution was obtained using the horizontal axis as the diameter and the vertical axis as the number. From the obtained particle size distribution, the volume average particle diameter of the primary particle diameter was determined. The volume average particle diameter (average primary particle diameter) of the obtained primary particle diameter was 0.80 μm.
 (化学滴定法による前記(1)の含有量の測定)
 酸化還元反応に基づく化学滴定法(酸化還元滴定法)によって、前記共重合体における前記(1)の含有量を測定した。具体的には、試料(共重合体)100mgを量り取り、クロロホルム及び酢酸で膨潤させた後、0.2Nヨウ化カリウム水溶液を添加し、遊離したヨウ素を0.050Nチオ硫酸ナトリウム水溶液で逆滴定することにより算出した。試験は、2検体で分析し、その平均値を分析値とした。
(Measurement of the content of the above (1) by a chemical titration method)
The content of (1) in the copolymer was measured by a chemical titration method based on a redox reaction (redox titration method). Specifically, 100 mg of a sample (copolymer) was weighed, swollen with chloroform and acetic acid, and then added with a 0.2 N potassium iodide aqueous solution, and the released iodine was back titrated with a 0.050 N aqueous sodium thiosulfate solution. It calculated by doing. In the test, two samples were analyzed, and the average value was used as the analysis value.
 (化学滴定法による前記(3)の含有量の測定)
 中和反応に基づく化学滴定法によって、前記共重合体における前記(3)の含有量を測定した。具体的には、試料(共重合体)1.0gを量り取り、トルエンで膨潤させた後、0.050N水酸化カリウムのエタノール溶液で滴定することにより算出した。試験は、2検体で分析し、その平均値を分析値とした。
(Measurement of the content of (3) by the chemical titration method)
The content of (3) in the copolymer was measured by a chemical titration method based on a neutralization reaction. Specifically, 1.0 g of a sample (copolymer) was weighed, swollen with toluene, and then titrated with an ethanol solution of 0.050 N potassium hydroxide. In the test, two samples were analyzed, and the average value was used as the analysis value.
 前記測定の結果、前記共重合体における、前記(1)と(3)との合計含有量100質量部に対する、前記(3)の含有量[(3)/(1)+(3)]は、0.65質量部であった。 As a result of the measurement, the content of (3) [(3) / (1) + (3)] with respect to 100 parts by mass of the total content of (1) and (3) in the copolymer was , 0.65 parts by mass.
 (前記(2)の含有量の測定)
 前記式(2)で表される繰り返し単位の含有量は、化学滴定法によって測定した。具体的には、試料(共重合体)1.0gを量り取り、メタノールで膨潤させた後、0.050N塩酸で滴定することにより算出した。試験は、2検体で分析し、その平均値を分析値とした。
(Measurement of the content of the above (2))
The content of the repeating unit represented by the formula (2) was measured by a chemical titration method. Specifically, 1.0 g of a sample (copolymer) was weighed, swollen with methanol, and then titrated with 0.050N hydrochloric acid. In the test, two samples were analyzed, and the average value was used as the analysis value.
 前記測定の結果、前記共重合体における、前記(1)と(2)との合計含有量100質量部に対する、前記(1)の含有量[(1)/(1)+(2)]は、91質量部であった。 As a result of the measurement, the content of (1) [(1) / (1) + (2)] with respect to 100 parts by mass of the total content of (1) and (2) in the copolymer was , 91 parts by mass.
 (前記(4)の含有量の測定)
 共重合体を100質量部とした場合の、前記(1)の含有量、前記(2)の含有量、及び前記(3)の含有量を差し引くことで、前記(4)の含有量を測定した。
(Measurement of the content of the above (4))
The content of (4) is measured by subtracting the content of (1), the content of (2), and the content of (3) when the amount of the copolymer is 100 parts by mass. did.
 前記測定の結果、前記共重合体における、前記(1)と(3)との合計含有量100質量部に対する、前記(4)の含有量[(4)/(1)+(3)]は、0.89質量部であった。 As a result of the measurement, the content of (4) [(4) / (1) + (3)] with respect to 100 parts by mass of the total content of (1) and (3) in the copolymer was , 0.89 parts by mass.
 [実施例2]
 (第1工程)
 ドデシルベンゼンスルホン酸ナトリウム0.5gの代わりに、ポリオキシエチレンノニルフェニルエーテル0.5gを用いたこと以外、実施例1における第1工程と同様の工程を行った。この第1工程により、白色粉体21.0g(収率92%)を得た。
[Example 2]
(First step)
A step similar to the first step in Example 1 was performed, except that 0.5 g of polyoxyethylene nonylphenyl ether was used instead of 0.5 g of sodium dodecylbenzenesulfonate. By the first step, 21.0 g (yield 92%) of white powder was obtained.
 (第2工程)
 タングステン酸ナトリウム二水和物0.73g(2.2ミリモル)の代わりに、モリブデン酸ナトリウム二水和物0.54g(2.2ミリモル)を用いたこと以外、実施例1における第2工程と同様の工程を行った。
(2nd process)
The second step in Example 1 was repeated except that 0.54 g (2.2 mmol) of sodium molybdate dihydrate was used instead of 0.73 g (2.2 mmol) of sodium tungstate dihydrate. Similar steps were performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程によって、赤色粉体9.8gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、4.6μmであった。 に よ っ て 9.8 g of red powder was obtained by the first step and the second step performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 4.6 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.66質量部であった。また、前記(1)/(1)+(2)は、94質量部であった。また、前記(4)/(1)+(3)は、0.85質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0.66 parts by mass. The ratio of (1) / (1) + (2) was 94 parts by mass. The ratio of (4) / (1) + (3) was 0.85 parts by mass.
 [実施例3]
 (第1工程)
 エチレングリコールジメチルメタクリレートを用いないこと以外、実施例1における第1工程と同様の工程を行った。この第1工程により、白色粉体20.4g(収率90%)を得た。
[Example 3]
(First step)
A step similar to the first step in Example 1 was performed, except that ethylene glycol dimethyl methacrylate was not used. By the first step, 20.4 g (yield 90%) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体9.7gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位を分子内に含有する共重合体(ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、17μmであった。 に よ っ て 9.7 g of red powder was obtained by the first step and the second step (the second step similar to Example 1) performed after the first step. The obtained red powder contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3) in a molecule. Polymer particles composed of a copolymer (polymethacrylic acid-based nitroxide copolymer). The average primary particle size of the obtained red powder was 17 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.58質量部であった。また、前記(1)/(1)+(2)は、94質量部であった。また、前記(4)/(1)+(3)は、0質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0.58 parts by mass. The ratio of (1) / (1) + (2) was 94 parts by mass. The ratio of (4) / (1) + (3) was 0 parts by mass.
 [実施例4]
 (第1工程)
 内容積200mLの三角フラスコに、2,2,6,6-テトラメチル-4-ピペリジニルメタクリレート22.50g(100ミリモル)、エチレングリコールジメチルメタクリレート0.198g(1.0ミリモル)、メタクリル酸8.6mg(0.1ミリモル)、メタノール(30mL)を仕込み、混合して均一溶液を得た。
[Example 4]
(First step)
In a 200 mL Erlenmeyer flask, 22.50 g (100 mmol) of 2,2,6,6-tetramethyl-4-piperidinyl methacrylate, 0.198 g (1.0 mmol) of ethylene glycol dimethyl methacrylate, 8 methacrylic acid 0.6 mg (0.1 mmol) and methanol (30 mL) were charged and mixed to obtain a homogeneous solution.
 次に、攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた500mL容の4つ口フラスコに、水200mL、重合開始剤としてのペルオキソ二硫酸カリウム0.27g(1.0ミリモル)、及び界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム0.5gを仕込み、混合した。この溶液を25℃に保ちながら、攪拌下、前記均一溶液を加えて分散させた。引き続き、窒素ガスを通じて反応系内の酸素を除去した後、攪拌下、60℃にて6時間反応させた。反応終了後、反応液を室温まで冷却し、ろ過した後、水500mL、次いでヘキサン500mLでそれぞれ洗浄し、減圧乾燥して白色粉体22.6g(収率99%)を得た。 Next, 200 mL of water, 0.27 g (1.0 mmol) of potassium peroxodisulfate as a polymerization initiator were placed in a 500 mL four-necked flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser. And 0.5 g of sodium dodecylbenzenesulfonate as a surfactant was charged and mixed. While maintaining this solution at 25 ° C., the homogeneous solution was added and dispersed with stirring. Subsequently, after oxygen in the reaction system was removed through nitrogen gas, the mixture was reacted at 60 ° C. for 6 hours with stirring. After completion of the reaction, the reaction solution was cooled to room temperature, filtered, washed with 500 mL of water and then with 500 mL of hexane, and dried under reduced pressure to obtain 22.6 g (yield: 99%) of a white powder.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体9.9gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、1.8μmであった。 に よ っ て 9.9 g of red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 1.8 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.04質量部であった。また、前記(1)/(1)+(2)は、95質量部であった。また、前記(4)/(1)+(3)は、0.70質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0.04 parts by mass. The ratio of (1) / (1) + (2) was 95 parts by mass. The ratio of (4) / (1) + (3) was 0.70 parts by mass.
 [実施例5]
 (第1工程)
 メタクリル酸8.6mg(0.1ミリモル)の代わりにメタクリル酸0.086g(1.0ミリモル)を用いたこと以外、実施例4における第1工程と同様の工程を行った。この第1工程により、白色粉体21.2g(収率94%)を得た。
[Example 5]
(First step)
A step similar to the first step in Example 4 was performed, except that 0.086 g (1.0 mmol) of methacrylic acid was used instead of 8.6 mg (0.1 mmol) of methacrylic acid. By this first step, 21.2 g (94% yield) of white powder was obtained.
 (第2工程)
 メタノール300mLの代わりにトルエン300mL、水30mL、トリオクチルメチルアンモニウムクロリド1.0gを用いたこと以外、実施例1における第2工程と同様の工程を行った。
(2nd process)
A process similar to the second process in Example 1 was performed, except that 300 mL of toluene, 30 mL of water, and 1.0 g of trioctylmethylammonium chloride were used instead of 300 mL of methanol.
 前記第1工程、及び前記第1工程後に行う前記第2工程によって、赤色粉体9.9gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、0.53μmであった。 に よ っ て 9.9 g of red powder was obtained by the first step and the second step performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 0.53 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.38質量部であった。また、前記(1)/(1)+(2)は、96質量部であった。また、前記(4)/(1)+(3)は、0.78質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0.38 parts by mass. The ratio (1) / (1) + (2) was 96 parts by mass. The ratio of (4) / (1) + (3) was 0.78 parts by mass.
 [実施例6]
 (第1工程)
 メタクリル酸8.6mg(0.1ミリモル)の代わりにメタクリル酸0.516g(6.0ミリモル)を用いたこと以外、実施例4における第1工程と同様の工程を行った。この第1工程により、白色粉体21.6g(収率93%)を得た。
[Example 6]
(First step)
A step similar to the first step in Example 4 was performed, except that 0.516 g (6.0 mmol) of methacrylic acid was used instead of 8.6 mg (0.1 mmol) of methacrylic acid. By this first step, 21.6 g (yield 93%) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体9.8gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、0.081μmであった。 に よ っ て 9.8 g of red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 0.081 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、2.04質量部であった。また、前記(1)/(1)+(2)は、97質量部であった。また、前記(4)/(1)+(3)は、0.76質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 2.04 parts by mass. The ratio of (1) / (1) + (2) was 97 parts by mass. The ratio of (4) / (1) + (3) was 0.76 parts by mass.
 [実施例7]
 (第1工程)
 ドデシルベンゼンスルホン酸ナトリウム0.5gの代わりにドデシルベンゼンスルホン酸ナトリウム0.2gを用いたこと以外、実施例4における第1工程と同様の工程を行った。この第1工程により、白色粉体20.9g(収率92%)を得た。
[Example 7]
(First step)
A step similar to the first step in Example 4 was performed, except that 0.2 g of sodium dodecylbenzenesulfonate was used instead of 0.5 g of sodium dodecylbenzenesulfonate. By the first step, 20.9 g (yield 92%) of white powder was obtained.
 (第2工程)
 メタノール300mLの代わりにN,N-ジメチルホルムアミド300mLを用いたこと以外、実施例1における第2工程と同様の工程を行った。
(2nd process)
A step similar to the second step in Example 1 was performed, except that 300 mL of N, N-dimethylformamide was used instead of 300 mL of methanol.
 前記第1工程、及び前記第1工程後に行う前記第2工程によって、赤色粉体9.8gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、7.1μmであった。 に よ っ て 9.8 g of red powder was obtained by the first step and the second step performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was measured by the same method as in Example 1 and found to be 7.1 μm.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.35質量部であった。また、前記(1)/(1)+(2)は、90質量部であった。また、前記(4)/(1)+(3)は、0.77質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0.35 parts by mass. The ratio of (1) / (1) + (2) was 90 parts by mass. The ratio of (4) / (1) + (3) was 0.77 parts by mass.
 [実施例8]
 (第1工程)
 水200mLの代わりにトルエン200mLを用いたこと、ドデシルベンゼンスルホン酸ナトリウムを用いなかったこと、メタクリル酸0.172g(2.0ミリモル)の代わりにメタクリル酸0.258g(3.0ミリモル)を用いたこと、及びエチレングリコールジメチルメタクリレート0.198g(1.0ミリモル)の代わりにエチレングリコールジメチルメタクリレート0.594g(3.0ミリモル)を用いたこと以外、実施例1における第1工程と同様の工程を行った。この第1工程により、白色粉体20.6g(収率90%)を得た。
Example 8
(First step)
Using 200 mL of toluene instead of 200 mL of water, not using sodium dodecylbenzenesulfonate, and using 0.258 g (3.0 mmol) of methacrylic acid instead of 0.172 g (2.0 mmol) of methacrylic acid Steps similar to the first step in Example 1 except that 0.594 g (3.0 mmol) of ethylene glycol dimethyl methacrylate was used instead of 0.198 g (1.0 mmol) of ethylene glycol dimethyl methacrylate Was done. By this first step, 20.6 g (90% yield) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体8.9gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、5.9μmであった。 に よ っ て 8.9 g of red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 5.9 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.36質量部であった。また、前記(1)/(1)+(2)は、83質量部であった。また、前記(4)/(1)+(3)は、2.22質量部であった。 測定 When measured by the same method as in Example 1, (3) / (1) + (3) in the copolymer was 0.36 parts by mass. The ratio of (1) / (1) + (2) was 83 parts by mass. The ratio of (4) / (1) + (3) was 2.22 parts by mass.
 [実施例9]
 (第1工程)
 メタクリル酸8.6mg(0.1ミリモル)の代わりにメタクリル酸0.861g(10.0ミリモル)を用いたこと以外、実施例4における第1工程と同様の工程を行った。この第1工程により、白色粉体21.2g(収率90%)を得た。
[Example 9]
(First step)
A step similar to the first step in Example 4 was performed, except that 0.861 g (10.0 mmol) of methacrylic acid was used instead of 8.6 mg (0.1 mmol) of methacrylic acid. By this first step, 21.2 g (90% yield) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体9.7gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、0.047μmであった。 に よ っ て 9.7 g of red powder was obtained by the first step and the second step (the second step similar to Example 1) performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 0.047 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、6.40質量部であった。また、前記(1)/(1)+(2)は、92質量部であった。また、前記(4)/(1)+(3)は、0.77質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 6.40 parts by mass. The ratio of (1) / (1) + (2) was 92 parts by mass. The ratio of (4) / (1) + (3) was 0.77 parts by mass.
 [比較例1]
 (第1工程)
 メタクリル酸を用いないこと以外、実施例1における第1工程と同様の工程を行った。この第1工程により、白色粉体18.8g(収率83%)を得た。
[Comparative Example 1]
(First step)
A step similar to the first step in Example 1 was performed, except that methacrylic acid was not used. By the first step, 18.8 g (83% yield) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体9.8gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、34μmであった。 に よ っ て 9.8 g of red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step. The obtained red powder contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (4) in a molecule. The polymer particles were composed of a copolymer (crosslinked polymethacrylic acid-based nitroxide copolymer). The average primary particle diameter of the obtained red powder was 34 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0質量部であった。また、前記(1)/(1)+(2)は、77質量部であった。また、前記(4)/(1)+(3)は、1.05質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0 parts by mass. The ratio of (1) / (1) + (2) was 77 parts by mass. The ratio of (4) / (1) + (3) was 1.05 parts by mass.
 [比較例2]
 (第1工程)
 メタクリル酸を用いないこと以外、実施例4における第1工程と同様の工程を行った。この第1工程により、白色粉体19.3g(収率85%)を得た。
[Comparative Example 2]
(First step)
A step similar to the first step in Example 4 was performed except that methacrylic acid was not used. By this first step, 19.3 g (yield 85%) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体9.6gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、38μmであった。 に よ っ て 9.6 g of red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step. The obtained red powder contains a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (4) in a molecule. The polymer particles were composed of a copolymer (crosslinked polymethacrylic acid-based nitroxide copolymer). The average primary particle diameter of the obtained red powder was 38 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0質量部であった。また、前記(1)/(1)+(2)は、67質量部であった。また、前記(4)/(1)+(3)は、0.90質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0 parts by mass. The ratio (1) / (1) + (2) was 67 parts by mass. The ratio of (4) / (1) + (3) was 0.90 parts by mass.
 [比較例3]
 (第1工程)
 エチレングリコールジメチルメタクリレート0.198g(1.0ミリモル)の代わりにエチレングリコールジメチルメタクリレート0.396g(2.0ミリモル)を用いたこと以外、比較例2における第1工程と同様の工程を行った。この第1工程により、白色粉体20.0g(収率87%)を得た。
[Comparative Example 3]
(First step)
A process similar to the first process in Comparative Example 2 was performed, except that 0.396 g (2.0 mmol) of ethylene glycol dimethyl methacrylate was used instead of 0.198 g (1.0 mmol) of ethylene glycol dimethyl methacrylate. By this first step, 20.0 g (yield 87%) of white powder was obtained.
 (第2工程)
 タングステン酸ナトリウム二水和物0.73g(2.2ミリモル)の代わりにタングステン酸ナトリウム二水和物1.45g(4.4ミリモル)を用いたこと、30%の過酸化水素水50.40(445ミリモル)の代わりに30%の過酸化水素水100.8g(890ミリモル)を用いたこと、及び上記30%の過酸化水素水を滴下後の30℃での保持時間を16時間としたこと以外、実施例1にける第2工程と同様の工程を行った。
(2nd process)
1.45 g (4.4 mmol) of sodium tungstate dihydrate was used instead of 0.73 g (2.2 mmol) of sodium tungstate dihydrate, and 50.40% of a 30% aqueous hydrogen peroxide solution. (445 mmol) was replaced by 100.8 g (890 mmol) of 30% aqueous hydrogen peroxide, and the holding time at 30 ° C. after the dropwise addition of the 30% aqueous hydrogen peroxide was 16 hours. Except for this, the same step as the second step in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程によって、赤色粉体9.7gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、23μmであった。 に よ っ て 9.7 g of red powder was obtained by the first step and the second step performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 23 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0質量部であった。また、前記(1)/(1)+(2)は、64質量部であった。また、前記(4)/(1)+(3)は、0.94質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0 parts by mass. The ratio of (1) / (1) + (2) was 64 parts by mass. The ratio of (4) / (1) + (3) was 0.94 parts by mass.
 [比較例4]
 (第1工程)
 水200mLの代わりにトルエン200mLを用いたこと、ドデシルベンゼンスルホン酸ナトリウムを用いなかったこと、メタクリル酸0.172g(2.0ミリモル)の代わりにメタクリル酸0.086g(1.0ミリモル)を用いたこと以外、実施例1における第1工程と同様の工程を行った。この第1工程により、白色粉体20.1g(収率88%)を得た。
[Comparative Example 4]
(First step)
Using 200 mL of toluene instead of 200 mL of water, not using sodium dodecylbenzenesulfonate, and using 0.086 g (1.0 mmol) of methacrylic acid instead of 0.172 g (2.0 mmol) of methacrylic acid Except for this, the same step as the first step in Example 1 was performed. By the first step, 20.1 g (88% yield) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体8.9gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、41μmであった。 に よ っ て 8.9 g of red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 41 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.35質量部であった。また、前記(1)/(1)+(2)は、59質量部であった。また、前記(4)/(1)+(3)は、0.49質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0.35 parts by mass. The ratio (1) / (1) + (2) was 59 parts by mass. The ratio of (4) / (1) + (3) was 0.49 parts by mass.
 [比較例5]
 (第1工程)
 トルエン30mLの代わりにTHF30mLを用いたこと、水200mLの代わりにTHF200mLを用いたこと、ドデシルベンゼンスルホン酸ナトリウムを用いなかったこと、メタクリル酸0.172g(2.0ミリモル)の代わりにメタクリル酸0.086g(1.0ミリモル)を用いたこと以外、実施例1における第1工程と同様の工程を行った。この第1工程により、白色粉体20.3g(収率89%)を得た。
[Comparative Example 5]
(First step)
30 mL of THF was used instead of 30 mL of toluene, 200 mL of THF was used instead of 200 mL of water, no sodium dodecylbenzenesulfonate was used, and 0.172 g (2.0 mmol) of methacrylic acid was used instead of methacrylic acid 0 A step similar to the first step in Example 1 was performed, except that 0.086 g (1.0 mmol) was used. By the first step, 20.3 g (89% yield) of white powder was obtained.
 (第2工程)
 実施例1と同様の第2工程を行った。
(2nd process)
The same second step as in Example 1 was performed.
 前記第1工程、及び前記第1工程後に行う前記第2工程(実施例1と同様の第2工程)によって、赤色粉体9.0gが得られた。この得られた赤色粉末は、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、前記式(3)で表される繰り返し単位、及び前記式(4)で表される繰り返し単位を分子内に含有する共重合体(架橋ポリメタクリル酸系ニトロキシド共重合体)からなる重合体粒子であった。この得られた赤色粉体の平均一次粒子径は、実施例1と同様の方法により測定したところ、29μmであった。 赤色 9.0 g of red powder was obtained by the first step and the second step (the second step similar to that in Example 1) performed after the first step. The obtained red powder is composed of the repeating unit represented by the formula (1), the repeating unit represented by the formula (2), the repeating unit represented by the formula (3), and the formula (4) The polymer particles consisted of a copolymer (cross-linked polymethacrylic acid-based nitroxide copolymer) containing the repeating unit represented by in the molecule. The average primary particle diameter of the obtained red powder was 29 μm as measured by the same method as in Example 1.
 実施例1と同様の方法により測定したところ、前記共重合体における、前記(3)/(1)+(3)は、0.33質量部であった。また、前記(1)/(1)+(2)は、74質量部であった。た、前記(4)/(1)+(3)は、0.76質量部であった。 測定 When measured by the same method as in Example 1, the ratio (3) / (1) + (3) in the copolymer was 0.33 parts by mass. The ratio of (1) / (1) + (2) was 74 parts by mass. The ratio of (4) / (1) + (3) was 0.76 parts by mass.
 実施例1~9及び比較例1~5に係る粒子を、以下に示す方法により評価を行った。 粒子 The particles according to Examples 1 to 9 and Comparative Examples 1 to 5 were evaluated by the following method.
 [電池特性]
 実施例1~8及び比較例1~5に係る各粒子1g、スチレンブタジエン微粒子(SBR)とカルボキシルメチルセルロースナトリウム(CMC-Na)とからなる水系バインダ(各粒子に対して5質量%)、導電助剤として炭素粉体のSuper-P(TIMCAL社製)1.0g、及びスラリー粘度調整のためのイオン交換水を混合押し、混錬攪拌することによって、黒色スラリーを得た。このスラリーを、厚さ18μmのアルミニウム箔(集電体)の表面にと後期とアプリケータとを用いて、塗工クリアランス100μmで塗工した後、120℃で3時間減圧乾燥させた。そうすることによって、実施例1~8及び比較例1~5に係る各粒子と炭素粉末との複合膜を集電体に結着させた電極が得られた。得られた電極を乾燥させ、この乾燥させた電極を荷重4トンにロールプレス(宝泉株式会社製)を用いて圧延処理を施し、再度乾燥させた。
[Battery characteristics]
1 g of each of the particles according to Examples 1 to 8 and Comparative Examples 1 to 5, an aqueous binder composed of styrene butadiene fine particles (SBR) and sodium carboxymethyl cellulose (CMC-Na) (5% by mass based on each particle), A black slurry was obtained by mixing, pressing, kneading and stirring 1.0 g of carbon powder Super-P (manufactured by TIMCAL) and ion-exchanged water for adjusting the slurry viscosity. This slurry was applied on the surface of an aluminum foil (current collector) having a thickness of 18 μm using a late stage and an applicator with an application clearance of 100 μm, and then dried under reduced pressure at 120 ° C. for 3 hours. By doing so, electrodes were obtained in which the composite films of the particles and the carbon powder according to Examples 1 to 8 and Comparative Examples 1 to 5 were bound to the current collector. The obtained electrode was dried, and the dried electrode was subjected to a rolling treatment with a load of 4 tons using a roll press (manufactured by Hosen Co., Ltd.) and dried again.
 この複合電極を直径13mmの円形で切り出して、コインセルの正極として用いた。これに対して、対極(負極)には、金属リチウム箔(厚さ0.2m、直径16mm)を、セパレータには、ポリプロピレン系のセパレータ(ポリポア社製のセルガード#2400)を、電解質には、エチレンカーボネートとジメチルカーボネートとの混合溶液(質量比3:7)に対して、LiPF6を1モル/Lとなるように溶解させた電解液を用いて、アルゴン雰囲気のグローブボックス中で、リチウム二次電池(コインハーフセル)を作製した。 複合 This composite electrode was cut out in a circle having a diameter of 13 mm and used as a positive electrode of a coin cell. On the other hand, a lithium metal foil (thickness 0.2 m, diameter 16 mm) is used for the counter electrode (negative electrode), a polypropylene-based separator (Celgard # 2400 manufactured by Polypore) is used for the separator, and an electrolyte is used for the electrolyte. Lithium secondary was added to a mixed solution of ethylene carbonate and dimethyl carbonate (mass ratio 3: 7) using an electrolytic solution in which LiPF6 was dissolved at 1 mol / L in a glove box under an argon atmosphere. A battery (coin half cell) was produced.
 上記構成の各リチウム二次電池について、充放電試験装置(東洋システム株式会社製のTOSCAT3100)を用いて定電流(33μA/cm、25℃)にて充放電評価を行った。具体的には、1C放電容量、10C放電容量、10C充電容量、及び10C放電容量維持率(10C放電における容量維持率)を測定した。10C放電容量維持率は、満充電の状態から1/10時間(6分間)での放電容量であり、高速放充電後の容量維持率を示す。そして、この10C放電容量維持率は、高出力二次電池の指標になる。 With respect to each lithium secondary battery having the above-described configuration, charge / discharge evaluation was performed at a constant current (33 μA / cm 2 , 25 ° C.) using a charge / discharge test apparatus (TOSCAT3100 manufactured by Toyo System Corporation). Specifically, 1C discharge capacity, 10C discharge capacity, 10C charge capacity, and 10C discharge capacity retention rate (capacity retention rate at 10C discharge) were measured. The 10C discharge capacity retention rate is a discharge capacity in 1/10 hour (6 minutes) from a fully charged state, and indicates a capacity retention rate after high-speed discharge charging. The 10C discharge capacity retention rate is an index for a high-output secondary battery.
 これらの結果を、表1に示す。なお、表1中、「(3)/(1)+(3)」は、前記(1)と(3)の合計含有量100重量部に対する、前記(3)の含有量(質量部)を示す。また、「(1)/(1)+(2)」は、前記(1)と(2)の合計含有量100重量部に対する、前記(1)の含有量(質量部)を示す。また、「(4)/(1)+(3)」は、前記(1)と(3)の合計含有量100重量部に対する、前記(4)の含有量(質量部)を示す。 These results are shown in Table 1. In Table 1, “(3) / (1) + (3)” means the content (parts by mass) of (3) based on 100 parts by weight of the total content of (1) and (3). Show. “(1) / (1) + (2)” indicates the content (parts by mass) of (1) based on 100 parts by weight of the total content of (1) and (2). “(4) / (1) + (3)” indicates the content (parts by mass) of (4) relative to 100 parts by weight of the total content of (1) and (3).
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1から、実施例1~9に係る粒子を用いて得られた電極を用いたリチウム二次電池は、比較例1~5に係る粒子を用いた場合より、1C放電容量、10C放電容量、10C充電容量、及び10C充電容量維持率のいずれも高いことがわかる。具体的には、実施例1~9に係る粒子を用いて得られた電極を用いたいリチウム二次電池は、理論充電容量に対して高い実容量を示し、容量発揮効率が高かった。 From Table 1, it can be seen that the lithium secondary battery using the electrodes obtained using the particles according to Examples 1 to 9 has a 1 C discharge capacity, a 10 C discharge capacity, and a higher discharge capacity than the case using the particles according to Comparative Examples 1 to 5. It can be seen that both the 10C charge capacity and the 10C charge capacity maintenance rate are high. Specifically, the lithium secondary batteries using the electrodes obtained by using the particles according to Examples 1 to 9 showed a high actual capacity with respect to the theoretical charge capacity, and had high capacity efficiency.
 以上のことから、前記式(1)で表される繰り返し単位、前記式(2)で表される繰り返し単位、及び前記式(3)で表される繰り返し単位を分子内に含有する共重合体を含み、平均一次粒子径が、0.01~20μmであることが、充分に良好な電池特性を発揮するために必要であることがわかった。 From the above, a copolymer containing a repeating unit represented by the formula (1), a repeating unit represented by the formula (2), and a repeating unit represented by the formula (3) in a molecule It has been found that it is necessary that the average primary particle diameter is 0.01 to 20 μm in order to exhibit sufficiently good battery characteristics.
 この出願は、2018年7月19日に出願された日本国特許出願特願2018-135624を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2018-135624 filed on Jul. 19, 2018, the contents of which are included in the present application.
 本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 Although the present invention has been described above appropriately and sufficiently through the embodiments to express the present invention, those skilled in the art can easily modify and / or improve the above-described embodiments. Should be recognized. Therefore, unless a modification or improvement performed by those skilled in the art is at a level that departs from the scope of the claims set forth in the claims, the modification or the improvement will not be included in the scope of the claims. Is interpreted as being included in
 本発明によれば、リチウム二次電池に備えられる電極に含ませた場合に、リチウム二次電池に好適な電極を製造することができる重合体粒子が提供される。また、本発明によれば、前記重合体粒子の製造方法が提供される。 According to the present invention, there is provided a polymer particle capable of producing an electrode suitable for a lithium secondary battery when included in an electrode provided in the lithium secondary battery. Further, according to the present invention, there is provided a method for producing the polymer particles.

Claims (7)

  1.  下記式(1)で表される繰り返し単位、下記式(2)で表される繰り返し単位、及び下記式(3)で表される繰り返し単位を分子内に含有する共重合体を含み、
     平均一次粒子径が、0.01~20μmであることを特徴とする重合体粒子。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは、水素原子又はメチル基を示す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rは、水素原子又はメチル基を示す。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、Rは、水素原子又はメチル基を示す。]
    Including a repeating unit represented by the following formula (1), a repeating unit represented by the following formula (2), and a copolymer containing a repeating unit represented by the following formula (3) in a molecule,
    Polymer particles having an average primary particle diameter of 0.01 to 20 μm.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 represents a hydrogen atom or a methyl group. ]
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), R 2 represents a hydrogen atom or a methyl group. ]
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3), R 3 represents a hydrogen atom or a methyl group. ]
  2.  前記共重合体は、前記式(3)で表される繰り返し単位の含有量が、前記式(1)で表される繰り返し単位の含有量と前記式(3)で表される繰り返し単位の含有量との合計100質量部に対して、0.01~5質量部である請求項1に記載の重合体粒子。 In the copolymer, the content of the repeating unit represented by the formula (3) is the same as the content of the repeating unit represented by the formula (1) and the content of the repeating unit represented by the formula (3). 2. The polymer particles according to claim 1, wherein the amount is 0.01 to 5 parts by mass based on 100 parts by mass in total.
  3.  前記共重合体は、下記式(4)で表される繰り返し単位を分子内にさらに含有する請求項1又は請求項2に記載の重合体粒子。
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、R及びRは、それぞれ独立に、水素原子又はメチル基を示し、Zは、エチレン基、プロピレン基、ブチレン基、又は、-COC-基を示す。]
    3. The polymer particle according to claim 1, wherein the copolymer further contains a repeating unit represented by the following formula (4) in the molecule. 4.
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (4), R 4 and R 5 each independently represent a hydrogen atom or a methyl group, and Z represents an ethylene group, a propylene group, a butylene group, or —C 2 H 4 OC 2 H 4 −. Represents a group. ]
  4.  請求項1~3のいずれか1項に記載の重合体粒子の製造方法であって、
     下記式(5)で表されるイミノ化合物と下記式(6)で表される(メタ)アクリル酸とを含む単量体組成物を重合する第1工程と、
     前記第1工程で得られた重合体をニトロキシド化する第2工程とを備えることを特徴とする重合体粒子の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中、Rは、水素原子又はメチル基を示す。]
    Figure JPOXMLDOC01-appb-C000006
    [式(6)中、Rは、水素原子又はメチル基を示す。]
    The method for producing polymer particles according to any one of claims 1 to 3, wherein
    A first step of polymerizing a monomer composition containing an imino compound represented by the following formula (5) and (meth) acrylic acid represented by the following formula (6):
    A second step of nitroxidizing the polymer obtained in the first step.
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (5), R 6 represents a hydrogen atom or a methyl group. ]
    Figure JPOXMLDOC01-appb-C000006
    [In the formula (6), R 7 represents a hydrogen atom or a methyl group. ]
  5.  前記単量体組成物は、下記式(7)で表される架橋剤を含む請求項4に記載の重合体粒子の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    [式(7)中、R及びRは、それぞれ独立に、水素原子又はメチル基を示し、Zは、エチレン基、プロピレン基、ブチレン基、又は、-COC-基を示す。]
    The method for producing polymer particles according to claim 4, wherein the monomer composition contains a crosslinking agent represented by the following formula (7).
    Figure JPOXMLDOC01-appb-C000007
    [In the formula (7), R 8 and R 9 each independently represent a hydrogen atom or a methyl group, and Z represents an ethylene group, a propylene group, a butylene group, or —C 2 H 4 OC 2 H 4 −. Represents a group. ]
  6.  前記第1工程における前記重合が、懸濁重合、乳化重合、又は分散重合である請求項4又は請求項5に記載の重合体粒子の製造方法。 The method according to claim 4 or 5, wherein the polymerization in the first step is suspension polymerization, emulsion polymerization, or dispersion polymerization.
  7.  前記第1工程は、前記単量体組成物を含む水溶性溶媒溶液を、界面活性剤と重合開始剤とを含む水溶液に添加することによって、前記単量体組成物を重合する請求項4又は請求項5に記載の重合体粒子の製造方法。 The first step polymerizes the monomer composition by adding a water-soluble solvent solution containing the monomer composition to an aqueous solution containing a surfactant and a polymerization initiator. A method for producing the polymer particles according to claim 5.
PCT/JP2019/028433 2018-07-19 2019-07-19 Polymer particles and method for producing polymer particles WO2020017631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018135624 2018-07-19
JP2018-135624 2018-07-19

Publications (1)

Publication Number Publication Date
WO2020017631A1 true WO2020017631A1 (en) 2020-01-23

Family

ID=69163688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028433 WO2020017631A1 (en) 2018-07-19 2019-07-19 Polymer particles and method for producing polymer particles

Country Status (2)

Country Link
TW (1) TW202012468A (en)
WO (1) WO2020017631A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019065A1 (en) * 2020-07-20 2022-01-27 株式会社クラレ Acidic gas separation device, air purifier, air conditioner, and acidic gas concentration device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001725A (en) * 2007-06-22 2009-01-08 Sumitomo Seika Chem Co Ltd Method for preparing crosslinked poly(meth)acrylic acid nitroxide compound
JP2013184981A (en) * 2012-03-05 2013-09-19 Sumitomo Seika Chem Co Ltd Method for producing radical material composition, active material for secondary battery, electrode for the secondary battery, and the secondary battery
JP2014143067A (en) * 2013-01-23 2014-08-07 Sumitomo Seika Chem Co Ltd Positive electrode mixture slurry for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018115291A (en) * 2017-01-20 2018-07-26 株式会社クラレ Polymer particle
JP2018115290A (en) * 2017-01-20 2018-07-26 株式会社クラレ Polymer particle
WO2018135624A1 (en) * 2017-01-20 2018-07-26 日本電気株式会社 Electrode and secondary battery using radical polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001725A (en) * 2007-06-22 2009-01-08 Sumitomo Seika Chem Co Ltd Method for preparing crosslinked poly(meth)acrylic acid nitroxide compound
JP2013184981A (en) * 2012-03-05 2013-09-19 Sumitomo Seika Chem Co Ltd Method for producing radical material composition, active material for secondary battery, electrode for the secondary battery, and the secondary battery
JP2014143067A (en) * 2013-01-23 2014-08-07 Sumitomo Seika Chem Co Ltd Positive electrode mixture slurry for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018115291A (en) * 2017-01-20 2018-07-26 株式会社クラレ Polymer particle
JP2018115290A (en) * 2017-01-20 2018-07-26 株式会社クラレ Polymer particle
WO2018135624A1 (en) * 2017-01-20 2018-07-26 日本電気株式会社 Electrode and secondary battery using radical polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019065A1 (en) * 2020-07-20 2022-01-27 株式会社クラレ Acidic gas separation device, air purifier, air conditioner, and acidic gas concentration device

Also Published As

Publication number Publication date
TW202012468A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP5124139B2 (en) Method for producing crosslinked poly (meth) acrylic acid nitroxide compound
EP2450985B1 (en) Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
JP5438254B2 (en) (Meth) acrylic acid-based crosslinked copolymer and secondary battery electrode using the same
JP6729603B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, method for producing the same, and use thereof
JP7497979B2 (en) Electrode binder, electrode, and power storage device
JP6795814B2 (en) Negative electrode binder for lithium ion secondary batteries, slurry composition for negative electrodes, negative electrodes, and lithium ion secondary batteries
JP5957245B2 (en) Manufacturing method of radical material composition, active material for secondary battery, electrode for secondary battery, and secondary battery
JP4943106B2 (en) Method for producing (meth) acrylic acid-based crosslinked copolymer
US8252869B2 (en) Process for production of crosslinked poly(meth) acrylic acid nitroxide compounds
JP6148864B2 (en) Non-aqueous electrolyte secondary battery positive electrode mixture slurry, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP6094794B2 (en) Binder resin and slurry composition for non-aqueous electrolyte secondary battery electrode, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2018115290A (en) Polymer particle
WO2020017631A1 (en) Polymer particles and method for producing polymer particles
WO2019082867A1 (en) Binder for secondary battery electrodes and use of binder
JP2018115291A (en) Polymer particle
JP7226442B2 (en) Binder for secondary battery electrode and its use
JPWO2018198644A1 (en) Binder for non-aqueous electrolyte secondary battery electrode, method for producing the same, and use thereof
JP2020117647A (en) Copolymer, and method for producing copolymer
JP5002430B2 (en) Method for producing (meth) acrylic acid adamantyl cross-linked polymer and electrode of secondary battery using the cross-linked polymer
JP4997075B2 (en) (Meth) adamantyl acrylate cross-linked polymer and secondary battery electrode using the same
JP2008088330A (en) (meth)acrylic acid-based cross-linked polymer and electrode of secondary battery using the same
JP2008101037A (en) Method for producing (meth)acrylic acid-based crosslinked polymer, and electrode of secondary battery using the crosslinked polymer
JP7460335B2 (en) Electrode binder, electrode binder composition, electrode material, electrode, and power storage device
JP2023125461A (en) Copolymer, composition, slurry for positive electrodes, positive electrode, and secondary battery
KR20230119661A (en) Binder for lithium sulfur secondary battery electrode and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP