WO2020017605A1 - Joint of medical instrument and medical instrument - Google Patents

Joint of medical instrument and medical instrument Download PDF

Info

Publication number
WO2020017605A1
WO2020017605A1 PCT/JP2019/028337 JP2019028337W WO2020017605A1 WO 2020017605 A1 WO2020017605 A1 WO 2020017605A1 JP 2019028337 W JP2019028337 W JP 2019028337W WO 2020017605 A1 WO2020017605 A1 WO 2020017605A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer shell
joint
cable
medical device
core tube
Prior art date
Application number
PCT/JP2019/028337
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 原口
恭平 滝川
Original Assignee
リバーフィールド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019058401A external-priority patent/JP2020018835A/en
Application filed by リバーフィールド株式会社 filed Critical リバーフィールド株式会社
Publication of WO2020017605A1 publication Critical patent/WO2020017605A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible

Definitions

  • the present disclosure relates to a joint of a medical device and a medical device.
  • the forceps of the surgery support robot are provided with flexible joints having a total of three degrees of freedom of roll, pitch, and yaw. This joint allows the tip of the forceps to rotate in the roll direction, the pitch direction, and the yaw direction, and can reproduce the movement of the wrist joint of the operator (for example, see Patent Document 1).
  • the inside of the bent portion of the joint extends outward without shrinking.
  • the wire that drives the end effector is located in the joint. As described above, when the joint is bent in such a manner that the inside extends without expanding, the path length of the wire that drives the end effector disposed inside becomes longer than before the bending.
  • NiTi tube formed of a nickel titanium alloy having a slit (cut) on a side surface
  • the outer shell has a larger radius than the core material, and therefore has a larger bending radius.
  • the bending radius is large, there is a problem that the operability at the time of surgery in the surgery support robot having the joint is deteriorated as compared with the case where the bending radius is small.
  • the joint of the medical device is a joint arranged between the rod-shaped portion and the surgical tool of the medical device, and is formed in a cylindrical shape having a space therein.
  • a medical device includes a joint according to the first aspect of the present disclosure, a rod-shaped portion disposed at one end of the joint, and the other end of the joint. And a surgical tool arranged in the part.
  • the joint portion and the joint portion are formed by combining the outer shell portion, the core tube, and the resin tube. It becomes easy to secure the operability of the surgical tool.
  • the combination of the outer shell and the core tube makes it easier for the joint as a whole to bend into an arc shape, and it is easy to ensure the operability of the joint.
  • the resin tube by combining the resin tube, it becomes easy to arrange the cable used for operating the surgical instrument near the center axis of the joint. Thereby, it becomes easy to suppress the change in the path length of the cable when the joint is bent, and it is easy to secure the operability of the surgical instrument. Further, since the coefficient of friction with respect to the cable is small, the cable can be easily operated, and the operability of the surgical instrument can be easily secured.
  • a plurality of slits extending in a circumferential direction may be provided on a side surface of the core tube, and the plurality of slits may be arranged at regular intervals in a longitudinal direction of the core tube.
  • a plurality of slits extending in a circumferential direction are provided, and the plurality of slits are arranged along the longitudinal direction of the core tube, and a plurality of slits are formed.
  • the arrangement interval may be shorter from the rod portion in the longitudinal direction toward the surgical instrument.
  • the outer shell may be a flexible body having a helical structure.
  • the joint portion By forming the outer shell portion by spirally winding the outer shell plate formed in a belt shape, for example, compared with a case where the outer shell plates formed in a disk shape are arranged in the longitudinal direction, the joint portion is formed. It is easy to shorten the dimension in the longitudinal direction.
  • the outer shell may include a plurality of disk-shaped outer shell plates having a through-hole at the center, which are arranged side by side in the longitudinal direction.
  • the core tube may be formed of a metal material containing at least nickel and titanium as components.
  • the core tube By forming the core tube from a metal material containing at least nickel and titanium as components, the compression stiffness and bending flexibility of the core tube are ensured as compared with the case where the core tube is formed from other metal materials. It will be easier.
  • a gap between the core tube and the resin tube may be smaller than a gap between the outer shell member and the core tube.
  • the gap between the core tube and the resin tube By making the gap between the core tube and the resin tube smaller than the gap between the outer shell member and the core tube, it becomes easier to bend the joint as compared with the case where it is enlarged, and the operation of the joint is made. Easy to secure.
  • a gap between the resin tube and the cable may be smaller than a gap between the outer shell member and the core tube.
  • the path length of the cable changes when the joint is bent as compared with the case where it is enlarged. And it is easy to secure the operability of the surgical tool.
  • the outer shell and the cable are formed of a conductive material, and are electrically connected to the surgical tool, and the resin tube is disposed between the outer shell and the cable. It may be formed from an insulating material that enables insulation.
  • the outer shell and the cable are made electrically conductive, and each is electrically contacted with the surgical tool. Two energization paths can be secured. In other words, the surgical tool can be used as a bipolar device.
  • the joints are smaller than when the two energization paths pass inside the outer shell. It is easy to reduce the diameter of the part. For example, when the cross-sectional areas of the current-carrying paths passing through the inside of the outer shell are equalized, the current-carrying path including the outer shell and the outer shell are compared with when the two current paths pass through the inside of the outer shell. When an energization path passing through the inside is used, it is easy to reduce the diameter of the joint.
  • the cross-sectional area of the energized path passing through the inside of the outer shell and the path including the outer shell are smaller than when the two energized paths pass through the inside of the outer shell.
  • the current supply path is not easily disconnected due to bending of the joint, in other words, it is difficult to disconnect.
  • a first power cable is provided at an end of the outer shell portion on the side of the surgical instrument so as to enable conduction between the outer shell portion and the surgical tool.
  • a second power cable may be provided at the end opposite to the tool for connecting the outside and the outer shell so as to enable conduction.
  • the degree of freedom in setting the energization path is increased as compared with the case where the first power cable is not provided, so that conduction between the outer shell and the surgical instrument can be easily ensured.
  • the degree of freedom in setting the energizing path is increased as compared with a case where the second power cable is not provided, so that conduction between the outside and the outer shell can be easily secured.
  • At least one of an end of the resin tube on the side of the surgical instrument and an end of the resin tube on the opposite side may protrude from the outer shell in a direction in which the cable extends.
  • a cover formed of a material having an insulating property and covering at least a periphery of the outer shell may be provided.
  • ⁇ ⁇ ⁇ By providing a cover that covers at least the periphery of the outer shell, it is easier to suppress the flow of current between the outer shell and the treatment target.
  • the cover is disposed between the outer shell and the treatment target or the like. For this reason, a leakage path through which a current flows between the outer shell portion and the treatment target is less likely to occur.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the joint of FIG. 1.
  • FIG. 2 is a partial cross-sectional view illustrating a configuration of a joint of FIG. 1.
  • FIG. 4 is a perspective view illustrating a configuration of a core tube of FIG. 3.
  • FIG. 4 is a front view illustrating a configuration of a core tube of FIG. 3.
  • FIG. 3 is a schematic cross-sectional view illustrating a relationship between a plurality of gaps in a joint. It is sectional drawing explaining the structure of the joint part in the medical device which concerns on 2nd Embodiment. It is a perspective view explaining the structure of the core tube of FIG.
  • FIG. 12 is another partial perspective view illustrating the configuration of the outer shell part in FIG. 11. It is a partial perspective view explaining composition of a medical instrument concerning a 5th embodiment of this indication.
  • FIG. 14 is a cross-sectional view illustrating the configuration of the joint of FIG. 13.
  • the medical instrument 1 according to the present embodiment is an endoscopic surgical instrument used for an endoscopic surgical operation or the like, and may be used for a surgical assistance robot.
  • the medical instrument 1 includes a rod-shaped portion 10 disposed on the side of the surgery support robot, a surgical tool 20 used for endoscopic surgery, and the like, between the rod-shaped portion 10 and the surgical tool 20. And a joint 30 arranged at the center of the vehicle.
  • the rod-shaped portion 10 is a column-shaped member attached to the surgery support robot.
  • the rod-shaped part 10 is formed in a cylindrical shape having an internal space (not shown) through which a later-described surgical instrument cable (cable) 21 and a joint part cable 61 are inserted.
  • the direction in which the central axis CL corresponding to the rod-shaped portion 10 extends is described as an X direction, a direction orthogonal to the X direction is defined as a Y direction, and a direction orthogonal to the X direction and the Y direction is defined as a Z direction. I do.
  • the surgical tool 20 is arranged at the tip of the joint 30, in other words, at the end on the positive side in the X direction. In addition, the relative position and the relative posture of the surgical tool 20 with respect to the rod 10 are controlled by bending the joint 30.
  • the surgical tool 20 is a forceps that is opened and closed by a surgical tool cable 21.
  • the surgical instrument 20 may be other instruments used for endoscopic surgery or the like, other than forceps, and the specific type is not limited.
  • the joint 30 is a cylindrical or columnar member provided at the tip of the rod 10 attached to the surgery support robot, in other words, at the end on the positive side in the X direction.
  • the joint 30 is bent in an arc shape in the Y direction, in an arc shape in the Z direction, and in a direction combining the Y direction and the Z direction. Is configured to be capable of bending in an arc shape.
  • the joint 30 includes an outer shell (outer shell member) 31, a core tube 41, a resin tube 51, and a joint cable 61.
  • the outer shell 31 is a member constituting the outer shape of the joint 30 and is formed in a cylindrical shape.
  • the outer shell 31 is attached to the rod 10 and the surgical tool 20.
  • the outer shell portion 31 is configured to be capable of arcuate bending in the Y direction, arcuate bending in the Z direction, and arcuate bending in a direction combining the Y direction and the Z direction. Thus, it is configured to be able to expand and contract in the X direction.
  • the material forming the outer shell 31 may be a metal material or a resin material.
  • the outer shell 31 has a rod-side end 32 (hereinafter referred to as an end 32) to which the rod 10 is attached, and a surgical-tool-side end 33 to which the surgical tool 20 is attached. (Hereinafter referred to as an end portion 33).
  • the end 32 is a negative end of the outer shell 31 in the X direction
  • the end 33 is a positive end of the outer shell 31 in the X direction.
  • the end portion 32 and the end portion 33 are provided with a step portion 34 used for attaching the rod portion 10 and the surgical instrument 20, respectively.
  • a region between the end portion 32 and the end portion 33 in the outer shell portion 31 is a region that can be bent in an arc shape.
  • the plate-like member 35 extending substantially along the YZ plane is a rod-shaped member that rotates around the longitudinal direction of the outer shell 31 (in other words, a portion corresponding to the outer shell 31 on the center axis CL).
  • the part 10 and the surgical tool 20 are arranged so as to move from one side to the other (in other words, spirally).
  • the region may be any shape as long as it can be bent in an arc shape, and the specific shape is not limited.
  • the outer shell 31 extends in the longitudinal direction of the outer shell 31 (in other words, in the X direction when the outer shell 31 extends linearly).
  • a first through-hole (space) 36 and a second through-hole 37 penetrating the outer shell 31 are provided.
  • the first through-hole 36 is a through-hole extending along a portion corresponding to the outer shell 31 on the center axis CL.
  • the core tube 41, the resin tube 51, and the surgical instrument cable 21 can be arranged in the first through hole 36.
  • the inner peripheral surface of the first through hole 36 supports the core tube 41 from the periphery.
  • the second through-hole 37 is a through-hole provided on a circumference centered on the center axis line CL and spaced at equal intervals. Specifically, the second through hole 37 is located at a position away from the first through hole 36 in the positive direction in the Y direction, at a position away from the first through hole 36 in the negative direction, and at a position away from the first through hole 36 in the positive direction in the Z direction. , Through holes provided at a total of four locations separated in the negative direction. In each of the four second through holes 37, a cable 61 for a joint can be arranged.
  • an enlarged portion 38 having a larger diameter than other portions is formed (see FIG. 3).
  • a locking end 62 provided on the joint cable 61 is disposed in the enlarged diameter portion 38 (see FIG. 2).
  • the second through-holes 37 are provided at four positions.
  • the number of the second through-holes 37 is not limited as long as the outer shell 31 can be bent in an arbitrary direction.
  • the core tube 41 is a cylindrical member having an outer diameter smaller than that of the outer shell 31 and is provided inside the first through hole 36 of the outer shell 31. It is a member to be arranged.
  • the core tube 41 like the outer shell 31, has an arc-shaped bend in the Y-direction, an arc-shaped bend in the Z-direction, and an arc-shaped bend in a direction combining the Y-direction and the Z-direction. Has a possible configuration.
  • the core tube 41 has a higher compression rigidity than the outer shell portion 31 and has less expansion and contraction due to a compressive force and a tensile force in the X direction.
  • the compression rigidity of the core tube 41 is increased.
  • the core tube 41 is provided with a plurality of slits 42 extending in the circumferential direction on a side surface (circumferential surface) thereof.
  • a side surface circumferential surface
  • two slits 42 extending substantially halfway around the side surface are arranged at the same position (same height) in the center axis CL, that is, in the X direction.
  • a column 43 that forms a part of the side surface of the core tube 41 is formed.
  • the two slits 42 are arranged side by side at an interval D along a central axis CL that is a longitudinal direction of the core tube 41.
  • the interval D has the same value from the end of the core tube 41 on the side of the rod 10 (the end on the negative side in the X direction) to the end on the side of the surgical instrument 20 (the end on the positive side in the X direction). ing.
  • the plurality of slits 42 are arranged at equal intervals in the longitudinal direction of the core tube 41.
  • the plurality of slits 42 include a set in which two slits 42 are arranged in the Y direction and a set in which two slits 42 are arranged in the Z axis.
  • the sets arranged side by side in the Y direction and the sets arranged side by side in the Z axis are arranged alternately.
  • the resin tube 51 is a member formed in a cylindrical shape as shown in FIGS. 2 and 3, and is a member arranged inside the core tube 41.
  • the surgical instrument cable 21 is inserted into the resin tube 51.
  • the resin tube 51 is formed of a material having a smaller coefficient of friction with respect to the surgical instrument cable 21 than the material forming the core tube 41.
  • a material for forming the resin tube 51 a material having a small friction coefficient and high heat resistance, for example, PTFE (polytetrafluoroethylene) can be exemplified.
  • the resin tube 51 is arranged such that the surgical instrument cable 21 arranged inside is arranged coaxially with or near the center axis CL of the joint 30 (hereinafter also referred to as “near the center axis CL”).
  • Guide the surgical instrument cable 21 For example, when the joint portion 30 is in a posture extending coaxially with the rod-shaped portion 10 (a posture extending linearly), the surgical instrument cable 21 is arranged near the center axis CL extending in the X direction. Guide the component cable 21. When the joint 30 is bent, the surgical instrument cable 21 is guided so that the surgical instrument cable 21 is disposed near the center axis CL of the bent joint 30.
  • the gap DA between the core tube 41 and the resin tube 51 is smaller than the gap DC between the outer shell 31 and the core tube 41 (gap DA ⁇ gap DC).
  • the gap DB between the resin tube 51 and the surgical instrument cable 21 is smaller than the gap DC between the outer shell 31 and the core tube 41 (gap DB ⁇ gap DC).
  • the operation of the medical device 1 having the above configuration will be described. Specifically, the bending operation of the joint 30 and the operation of the surgical tool 20 will be described with reference to FIGS. 1 and 2.
  • the joint 30 is bent in an arc shape in the positive direction of the Y direction
  • At least one of the two joint cables 61 (joint cables 61 shown in a cross section in FIG. 2) arranged in the Y direction among the four joint cables 61 is operated.
  • an operation is performed in which the joint cable 61 arranged on the positive side in the Y direction is pulled toward the rod 10 (negative side in the X direction).
  • the joint portion cable 61 disposed on the negative side in the Y direction may be positively sent out toward the surgical instrument 20 (the positive side in the X direction), or may be sent out with the bending of the joint portion 30. It may be.
  • a tension may be applied to pull the joint part cable 61 toward the rod-shaped part 10 while sending the joint part cable 61 toward the surgical instrument 20 (the positive side in the X direction).
  • the joint 30 is bent in an arc shape by operating the joint cable 61.
  • the compression stiffness of the core tube 41 suppresses the joint 30 from shrinking in the X direction due to the pulling operation of the joint cable 61.
  • the core tube 41 having an outer diameter smaller than that of the outer shell portion 31 is disposed inside the first through hole 36 of the outer shell portion 31, the center axis CL of the joint portion 30 due to bending is formed. The change in the length along the portion is suppressed.
  • the operation of the surgical instrument 20 of the medical instrument 1 is performed by operating the surgical instrument cable 21.
  • the operation of the surgical tool 20 is performed by an operation of pulling the surgical tool cable 21 toward the rod portion 10 (negative side in the X direction).
  • the operation method of the operation tool cable 21 can be appropriately changed according to the type of the operation tool 20, and is not limited to the above operation method.
  • the operability of the joint 30 and the surgical instrument 20 can be easily secured by combining the outer shell 31, the core tube 41, and the resin tube 51.
  • the combination of the outer shell 31 and the core tube 41 makes it easier for the joint 30 to bend into an arcuate shape as a whole, and to ensure the operability of the joint 30.
  • shortage of compression stiffness in the joint 30 can be suppressed, and operability of the surgical instrument 20 can be easily secured.
  • the surgical instrument cable 21 used for operating the surgical instrument 20 can be easily arranged near the center axis CL of the joint section 30. This makes it easy to suppress a change in the path length of the surgical instrument cable 21 when the joint portion 30 is bent, and it is easy to secure the operability of the surgical instrument 20. Furthermore, since the resin tube 51 has a small coefficient of friction with respect to the surgical instrument cable 21, the operation of the surgical instrument cable 21 is facilitated, and the operability of the surgical instrument 20 is easily ensured.
  • the outer shell portion 31 By forming the outer shell portion 31 by spirally winding an outer shell plate formed in a belt shape, for example, as compared with a case where the outer shell plates formed in a disk shape are arranged in the longitudinal direction, It is easy to shorten the dimension of the outer shell 31 in the direction of the central axis CL which is the longitudinal direction of the joint 30.
  • the core tube 41 By forming the core tube 41 from a metal material containing at least nickel and titanium as components, the compression stiffness and bending flexibility of the core tube 41 are compared with the case where the core tube 41 is formed from other metal materials. Is easy to secure.
  • the joint portion is larger than the case where the gap DA is larger than the gap DC.
  • the joint 30 is easily bent, and the operability of the joint 30 is easily ensured.
  • the gap DB between the resin tube 51 and the surgical instrument cable 21 By making the gap DB between the resin tube 51 and the surgical instrument cable 21 smaller than the gap DC between the outer shell portion 31 and the core tube 41, compared with the case where the gap DB is made larger than the gap DC, When the joint portion 30 is bent, a change in the path length of the surgical instrument cable 21 is easily suppressed, and the operability of the surgical instrument 20 is easily ensured.
  • FIGS. 7 and 8 The basic configuration of the medical device of the second embodiment is the same as that of the first embodiment, but is different from the first embodiment in the configuration of the core tube.
  • the configuration of the core tube will be described with reference to FIGS. 7 and 8, and description of other configurations will be omitted.
  • the core tube 141 of the joint 130 in the medical device 101 of the second embodiment is a cylindrical member having an outer diameter smaller than that of the outer shell 31 as shown in FIGS. 7 and 8. It is a member arranged inside the first through hole 36 of the outer shell 31.
  • the core material tube 141 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction.
  • the material for forming the core tube 141 is the same as the material for forming the core tube 41 of the first embodiment, and a description thereof will be omitted.
  • the core tube 141 is provided with a plurality of slits 42 which are cuts extending in the circumferential direction on the side surface. At the same position (same height) in the X direction, at least two slits 42 and column portions 43 extending substantially halfway around the side surface are formed on the side surface of the core tube 141.
  • the above-mentioned two slits 42 are arranged side by side at an interval.
  • the interval is from the interval D1 at the end of the core tube 141 on the rod-shaped portion 10 side (the end on the negative side in the X direction) to the interval at the end on the surgical instrument 20 side (the end on the positive side in the X direction).
  • Dn (n is a natural number and a value determined by the number of slits 42) is set so that the value becomes smaller (the interval becomes shorter).
  • the operation (bending operation of the joint 30 and operation of the surgical instrument 20) in the medical device 101 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and a description thereof will be omitted. .
  • the joint 130 can be easily bent in an arc shape.
  • FIGS. 9 and 10 a third embodiment of the present disclosure will be described with reference to FIGS. 9 and 10.
  • the basic configuration of the medical device of the third embodiment is the same as that of the first embodiment, but is different from the first embodiment in the configuration of the core tube. Therefore, in the third embodiment, the configuration of the core tube will be described with reference to FIGS. 9 and 10, and the description of the other configurations will be omitted.
  • the core tube 241 of the joint 230 in the medical device 201 of the third embodiment is a cylindrical member having an outer diameter smaller than that of the outer shell 31 as shown in FIGS. 9 and 10. It is a member arranged inside the first through hole 36 of the outer shell 31.
  • the core tube 241 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction.
  • the material for forming the core tube 241 is the same as the material for forming the core tube 41 of the first embodiment, and a description thereof will be omitted.
  • the core tube 241 is provided with a slit 242 which is a cut in the side surface.
  • the slit 242 is a cut formed in a spiral shape that extends so as to rotate about the central axis CL and extends from the rod-shaped portion 10 toward the surgical instrument 20 along the central axis CL.
  • the pitch P1 at the end of the core tube 241 on the rod-shaped portion 10 side (the end on the negative side in the X direction) is greater than the pitch P2 at the end on the surgical instrument 20 side (the end on the positive side in the X direction). Becomes larger. Further, the value of the pitch of the slit 242 continuously changes.
  • the pitch is an amount by which the slit 242 moves along the central axis CL during one rotation around the central axis CL.
  • the operation (bending operation of the joint 30 and operation of the surgical instrument 20) in the medical device 201 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and thus the description thereof is omitted. .
  • the flexibility of the joint section 230 on the surgical tool 20 side is increased as compared with the case where the pitch of the slit 42 is uniform. . Therefore, the joint 230 can be easily bent in an arc shape.
  • the outer shell 331 of the joint 330 in the medical device 301 of the fourth embodiment constitutes the outer shape of the joint 330 as shown in FIGS. 11 and 12, and includes the rod-shaped portion 10 and the surgical instrument. 20.
  • the material forming the outer shell 331 may be a metal material or a resin material.
  • the outer shell portion 331 is configured by stacking a plurality of disk-shaped or columnar outer shell plates 335 in the direction of the center axis CL (X direction).
  • the end surface of the outer shell plate 335 on the side of the surgical instrument 20 (the positive side in the X direction) is formed with a concave surface 336 having a V-shaped cross section and extending.
  • a convex surface 337 On the end surface on the side of the rod-shaped portion 10 (negative side in the X direction), a convex surface 337 whose cross section protrudes and extends in a V-shape is formed.
  • the convex surface 337 of the other outer shell plate 335 is overlapped with the concave surface 336 of the one outer shell plate 335.
  • the V-shaped ridge line of the concave surface 336 and the V-shaped ridge line of the convex surface 337 are overlapped.
  • one outer shell plate 335 and the other outer shell plate 335 is in contact at the above-mentioned ridge line, and a space is formed in the other region. Due to this space, one outer shell plate 335 and the other outer shell plate 335 can relatively rotate about the ridge line as an axis.
  • the outer shell portion 331 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction. .
  • the operation (bending operation of the joint 30 and operation of the surgical instrument 20) in the medical device 301 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and a description thereof will be omitted. .
  • a plurality of disk-shaped outer shell plates 335 are arranged in the longitudinal direction, in other words, in the direction of the center axis CL to form the outer shell portion 331, so that the belt-shaped outer shell plate 331 is formed.
  • the torsional rigidity of the joint 330 for example, the torsional rigidity about the center axis CL is easily increased as compared with the case where the outer shell is formed by spirally winding.
  • the end surface of the outer shell plate 335 on the side of the surgical instrument 20 may be formed as a concave surface 336, and the end surface on the rod-shaped portion 10 side (negative side in the X direction) may be formed as a convex surface 337.
  • the end surface on the side of the surgical instrument 20 may be formed as a convex surface 337
  • the end surface on the side of the rod-shaped portion 10 may be formed as a concave surface 336.
  • FIGS. 13 and 14 The basic configuration of the medical device of the fifth embodiment is the same as that of the first embodiment, but differs from the first embodiment mainly in the configuration of the outer shell. Therefore, in the fifth embodiment, the configuration of the outer shell and the like will be described with reference to FIGS. 13 and 14, and the description of the other configurations will be omitted.
  • the medical device 401 of the fifth embodiment has a rod-shaped portion 10, a surgical tool 20 used for endoscopic surgery or the like, and between the rod-shaped portion 10 and the surgical tool 20.
  • a joint 430 to be arranged and a cover 460 covering at least the periphery of the joint 430 are provided.
  • the joint 430 is a cylindrical or columnar member provided at the tip of the rod 10 attached to the surgery support robot, in other words, at the positive end in the X direction.
  • the joint 430 can be bent in an arc shape in the Y direction, an arc shape in the Z direction, and a circle in a direction combining the Y direction and the Z direction. It is configured such that arc-shaped bending is possible.
  • the joint 430 is provided with an outer shell (outer shell member) 431, a core tube 41, a resin tube 451, and a joint cable 61. .
  • the outer shell 431 is a member that is formed in a cylindrical shape and constitutes the outer shape of the joint 430, and is a member that is attached to the rod 10 and the surgical instrument 20.
  • the outer shell portion 431 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction. It is configured to be able to expand and contract in the direction.
  • Examples of the material forming the outer shell portion 431 include a conductive material, for example, a metal material such as SUS304 (a JIS standard symbol for stainless steel that is a steel containing chromium and nickel).
  • the outer shell 431 includes an end 32, an end 33, a step 34, a first through hole 36, and a second through hole 37. Is provided.
  • the region between the end portion 32 and the end portion 33 in the outer shell portion 431 is configured in the same manner as in the first embodiment.
  • first power cable 471 for enabling connection between the outer shell portion 431 and the surgical instrument 20 and an electrical connection between the outside and the outer shell portion 431 are connected to the outer shell portion 431.
  • a second power cable 472 is provided.
  • the first power cable 471 is a conductive cable that extends from the end face of the end 33 toward the surgical instrument 20. Among the ends of the first power cable 471, the end on the end 33 side is conductively connected to the end 33, and the end on the surgical instrument 20 side is conductively connected to the surgical tool 20. .
  • the second power cable 472 is a conductive cable extending along the rod 10 from the end face of the end 32. Of the ends of the second power cable 472, the end on the end 32 side is conductively connected to the end 32, and the opposite end is conductive on a power source disposed outside the rod 10. It is connected to the.
  • cables having conductivity can be used, and specific configurations and types thereof are not limited.
  • the resin tube 451 is a member formed in a cylindrical shape, and is a member arranged inside the core tube 41.
  • the surgical instrument cable 21 is inserted into the inside of the resin tube 451.
  • the resin tube 451 is formed of the same material as the resin tube 51 of the first embodiment. Further, it also guides such that the surgical instrument cable 21 arranged inside is arranged near the center axis CL of the joint 430.
  • the end of the resin tube 451 on the side of the surgical instrument 20 is arranged so as to protrude from the end surface of the end 33, and the end of the resin tube 451 on the side of the rod-shaped portion 10 is arranged so as to protrude from the end surface of the end 32.
  • the amount by which the end of the resin tube 451 protrudes from the end surface of the end portion 33 and the amount by which it protrudes from the end surface of the end portion 32 can ensure at least insulation between the outer shell portion 431 and the surgical instrument cable 21.
  • the amount is preferred.
  • the protrusion between the end surface of the end portion 33 and the surface of the surgical instrument cable 21 exposed from the resin tube 451 is preferably such that insulation can be ensured. It is preferable that the protrusion between the end surface of the end portion 32 and the surface of the surgical instrument cable 21 that is exposed from the resin tube 451 can ensure insulation.
  • the degree of insulation is a value determined based on the voltage applied from the power supply to the surgical instrument 20, and also determined based on rules that regulate the safety required of the medical device 401.
  • the cover 460 is a cylindrical member formed from a material having an insulating property as shown in FIG.
  • the cover 460 has a length that covers at least the periphery of the outer shell 431. Specifically, it has a length that covers the periphery of the outer shell 431 and the end of the rod 10.
  • the material for forming the cover 460 is preferably a material having higher insulating properties than the outer shell 431.
  • a flexible material such as silicone rubber that can be used in endoscopic surgery or the like is preferable.
  • the operation (bending operation of the joint 430 and operation of the surgical instrument 20) in the medical device 401 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and thus the description thereof is omitted. .
  • the outer shell portion 431 and the operating tool cable 21 are made conductive, and each of them is electrically contacted with the operating tool 20. Since the two are insulated by the resin tube 451 disposed between the cables 21, two current paths can be secured for the surgical instrument 20. In other words, the surgical tool 20 can be used as a bipolar device.
  • an energizing path including the outer shell 431 and an energizing path including the surgical instrument cable 21 disposed inside the outer shell 431 are used, two energizing paths pass through the inside of the outer shell 431.
  • the diameter of the joint 430 can be easily reduced.
  • the cross-sectional areas of the energization paths passing through the inside of the outer shell portion 431 are equalized, the energization path including the outer shell portion 431 and the outer When an energization path passing through the inside of the shell 431 is used, the diameter of the joint 430 can be easily reduced.
  • the energization path passing through the inside of the outer shell 431 and the path including the outer shell 431 are compared.
  • the degree of freedom in setting the energization path is increased as compared with the case where the first power cable 471 is not provided. Therefore, conduction between the outer shell 431 and the surgical instrument 20 can be easily secured. Further, by providing the second power cable 472, the degree of freedom in setting the energization path is increased as compared with the case where the second power cable 472 is not provided. Therefore, conduction between the outside and the outer shell portion 431 is easily ensured.
  • the cover 460 that covers at least the periphery of the outer shell portion 431, it becomes easier to suppress the flow of current between the outer shell portion 431 and the target to be treated by the surgical instrument 20 or the like.
  • the cover 460 is disposed between the outer shell 431 and the treatment target or the like. Therefore, it is difficult to form a leakage path, which is a path through which current flows between the outer shell 431 and the treatment target or the like.
  • the technical scope of the present disclosure is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present disclosure.
  • the present disclosure is not limited to the one applied to the above embodiment, and may be applied to an embodiment in which these embodiments are appropriately combined, and is not particularly limited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is a joint disposed between a rod-like portion and a surgical tool in a medical instrument. The joint includes: a cylindrical outer shell portion having a space therein; a cylindrical core tube disposed in an inner space of the outer shell portion and having higher compression rigidity than that of the outer shell portion; and a cylindrical resin tube which is disposed in an inner space of the core tube, into which a cable used for the manipulation of the surgical tool is inserted, and which is made of a material having a smaller friction coefficient against the cable than that of the core tube.

Description

医療用器具の関節部および医療用器具Medical device joints and medical devices 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2018年7月18日に日本国特許庁に出願された日本国特許出願第2018-135096号、及び2019年3月26日に日本国特許庁に出願された日本国特許出願第2019-58401号に基づく優先権を主張するものであり、その全内容を本国際出願に参照により援用する。 This international application is filed with Japanese Patent Application No. 2018-135096 filed with the Japan Patent Office on July 18, 2018, and with a Japanese patent application filed with the Japan Patent Office on March 26, 2019. No. 2019-58401, the entire content of which is incorporated herein by reference.
 本開示は、医療用器具の関節部および医療用器具に関する。 The present disclosure relates to a joint of a medical device and a medical device.
 近年、手術支援ロボットを用いた内視鏡外科手術が普及しつつある。手術支援ロボットの鉗子にはロール、ピッチ、およびヨーの合計3つの自由度を持つ柔軟な関節部が設けられている。この関節部により、鉗子の先端はロール方向、ピッチ方向、およびヨー方向に回動可能となり、操作者の手首関節の動きを再現することができる(例えば、特許文献1参照。)。 In recent years, endoscopic surgery using a surgery support robot has become widespread. The forceps of the surgery support robot are provided with flexible joints having a total of three degrees of freedom of roll, pitch, and yaw. This joint allows the tip of the forceps to rotate in the roll direction, the pitch direction, and the yaw direction, and can reproduce the movement of the wrist joint of the operator (for example, see Patent Document 1).
特許第5339472号公報Japanese Patent No. 5339472
 上述の特許文献1に開示されている構造では、ワイヤ駆動により関節部が屈曲する。そして、鉗子(以下「エンドエフェクタ」とも表記する。)が把持などの動作を行う。このような構造においては、例えば、駆動ワイヤに大きな張力が加えられると、屈曲や把持などの動作を操作者の意図通りに行いにくくなるという問題がある。この問題は、関節部における圧縮方向の剛性が不足する場合に発生する。具体的には、剛性が不足している関節部が、駆動ワイヤの張力によって収縮して潰れてしまうために発生する。 構造 In the structure disclosed in Patent Document 1 described above, the joint is bent by driving the wire. Then, forceps (hereinafter also referred to as “end effector”) perform operations such as grasping. In such a structure, for example, when a large tension is applied to the drive wire, there is a problem that it is difficult to perform operations such as bending and gripping as intended by the operator. This problem occurs when the joint has insufficient rigidity in the compression direction. Specifically, this occurs because the joint part having insufficient rigidity contracts and collapses due to the tension of the drive wire.
 この問題を解決するために、圧縮剛性と屈曲柔軟性とを有する密着コイルばね等の部材を関節部の芯材として用いる技術が提案されている。しかしながら、この技術においては、密着コイルばねは縮まないことから、エンドエフェクタの動作と、関節部の屈曲動作とが干渉する問題がある。 技術 In order to solve this problem, a technique has been proposed in which a member such as a close contact coil spring having compression rigidity and bending flexibility is used as a core material of a joint. However, in this technique, since the close contact coil spring does not contract, there is a problem that the operation of the end effector interferes with the bending operation of the joint.
 具体的には、駆動ワイヤに張力を加えることにより関節部を屈曲させると、関節部における屈曲部分の内側は縮まずに外側が延びる。その一方で、エンドエフェクタを駆動するワイヤは、関節部の中に配置されている。上述のように、内側は縮まずに外側が延びる態様で関節部が屈曲すると、内部に配置されたエンドエフェクタを駆動するワイヤの経路長は、屈曲前と比較して長くなる。 Specifically, when the joint is bent by applying tension to the drive wire, the inside of the bent portion of the joint extends outward without shrinking. On the other hand, the wire that drives the end effector is located in the joint. As described above, when the joint is bent in such a manner that the inside extends without expanding, the path length of the wire that drives the end effector disposed inside becomes longer than before the bending.
 つまり、関節部を屈曲させるとエンドエフェクタを駆動するワイヤを操作しなくても、エンドエフェクタを操作する張力が加えられる。このように、エンドエフェクタの動作と、関節部の屈曲動作とを独立させることが難しく、エンドエフェクタと関節部とが干渉するという問題があった。 That is, when the joint is bent, tension for operating the end effector is applied without operating the wire that drives the end effector. As described above, it is difficult to make the operation of the end effector independent of the bending operation of the joint, and there is a problem that the end effector and the joint interfere with each other.
 芯材の代わりに、芯材の外周に配置される外殻部によって圧縮剛性および屈曲柔軟性(線形弾性特性)を持たせる技術も提案されている。この技術では、側面にスリット(切れ目)を設けたニッケルチタン合金から形成されたチューブ(以下「NiTiチューブ」とも表記する。)が用いられている。 技術 Instead of the core material, a technique of providing compression rigidity and bending flexibility (linear elasticity) by an outer shell portion arranged on the outer periphery of the core material has also been proposed. In this technique, a tube (hereinafter also referred to as “NiTi tube”) formed of a nickel titanium alloy having a slit (cut) on a side surface is used.
 しかしながら、外殻部により圧縮剛性および屈曲柔軟性を確保する場合には、外殻部は芯材と比較して径が大きいため、屈曲半径も比較して大きくなる。屈曲半径が大きくなると、屈曲半径が小さい場合と比較して、当該関節部を有する手術支援ロボットにおける手術時の操作性が悪くなる問題がある。 However, when compressive rigidity and bending flexibility are ensured by the outer shell, the outer shell has a larger radius than the core material, and therefore has a larger bending radius. When the bending radius is large, there is a problem that the operability at the time of surgery in the surgery support robot having the joint is deteriorated as compared with the case where the bending radius is small.
 その一方で、屈曲半径を小さくするために、外殻部に設けるスリットの切り込み量を大きくすると、外殻部の屈曲に対する耐久性が確保しにくくなり、破断するおそれが高くなるという問題がある。 On the other hand, if the cut amount of the slit provided in the outer shell portion is increased to reduce the bending radius, it is difficult to ensure durability against bending of the outer shell portion, and there is a problem that the possibility of breakage increases.
 また、上述のように関節部の内部にエンドエフェクタを駆動するワイヤが配置されている場合、関節部が屈曲すると、関節部の内面と当該ワイヤとが接触する。接触した状態で当該ワイヤを操作する際、関節部の内面との間で摩擦が働きワイヤの操作を阻害するという問題があった。 In addition, when the wire for driving the end effector is disposed inside the joint as described above, when the joint is bent, the inner surface of the joint contacts the wire. When the wire is operated in the contact state, friction occurs between the inner surface of the joint and the operation of the wire is hindered.
 本開示の一局面は、関節部および術具の操作性を確保しやすい医療用器具の関節部および医療用器具を提供することが望ましい。 According to one aspect of the present disclosure, it is desirable to provide a joint part and a medical device of a medical device that can easily ensure the operability of the joint part and the surgical instrument.
 本開示の第1の態様に係る医療用器具の関節部は、医療用器具における棒状部および術具の間に配置される関節部であって、内部に空間を有する筒状に形成された外殻部と、前記外殻部の内部空間に配置され、前記外殻部よりも圧縮剛性が高い筒状に形成された芯材チューブと、樹脂チューブであって、前記芯材チューブの内部空間に配置され、樹脂チューブの内部に前記術具の操作に用いられるケーブルが挿通されるとともに前記芯材チューブよりも前記ケーブルに対する摩擦係数が小さな材料から筒状に形成された樹脂チューブと、が設けられている。 The joint of the medical device according to the first aspect of the present disclosure is a joint arranged between the rod-shaped portion and the surgical tool of the medical device, and is formed in a cylindrical shape having a space therein. A shell portion, a core tube formed in a cylindrical shape having a higher compression rigidity than the outer shell portion, and a resin tube, which is disposed in the inner space of the outer shell portion; And a resin tube formed into a tubular shape from a material having a smaller coefficient of friction with respect to the cable than the core tube while a cable used for operating the surgical tool is inserted into the resin tube. ing.
 本開示の第2の態様に係る医療用器具は、本開示の第1の態様に係る関節部と、前記関節部の一方の端部に配置される棒状部と、前記関節部の他方の端部に配置される術具と、が設けられている。 A medical device according to a second aspect of the present disclosure includes a joint according to the first aspect of the present disclosure, a rod-shaped portion disposed at one end of the joint, and the other end of the joint. And a surgical tool arranged in the part.
 本開示の第1の態様に係る医療用器具の関節部、および、第2の態様に係る医療用器具によれば、外殻部、芯材チューブ、および、樹脂チューブを組み合わせることにより関節部および術具の操作性を確保しやすくなる。 According to the joint portion of the medical device according to the first embodiment of the present disclosure, and the medical device according to the second embodiment, the joint portion and the joint portion are formed by combining the outer shell portion, the core tube, and the resin tube. It becomes easy to secure the operability of the surgical tool.
 具体的には、外殻部および芯材チューブの組み合わせにより、関節部は全体として円弧形状に屈曲しやすくなり、関節部の操作性を確保しやすい。また、関節部において圧縮剛性が不足することを抑制でき、術具の操作性を確保しやすい。 Specifically, the combination of the outer shell and the core tube makes it easier for the joint as a whole to bend into an arc shape, and it is easy to ensure the operability of the joint. In addition, it is possible to suppress insufficient compression stiffness at the joint portion, and it is easy to ensure operability of the surgical instrument.
 また、樹脂チューブを組み合わせることにより、術具の操作に用いるケーブルを関節部の中心軸線近傍に配置させやすくなる。これにより、関節部が屈曲した際にケーブルの経路長の変化を抑制しやすくなり、術具の操作性を確保しやすい。さらにケーブルに対する摩擦係数が小さいため、ケーブルの操作が行いやすくなり、術具の操作性を確保しやすい。 In addition, by combining the resin tube, it becomes easy to arrange the cable used for operating the surgical instrument near the center axis of the joint. Thereby, it becomes easy to suppress the change in the path length of the cable when the joint is bent, and it is easy to secure the operability of the surgical instrument. Further, since the coefficient of friction with respect to the cable is small, the cable can be easily operated, and the operability of the surgical instrument can be easily secured.
 上記開示において前記芯材チューブの側面には、周方向に延びる複数のスリット設けられ、前記複数のスリットは、前記芯材チューブの長手方向に等間隔に並んで配置されていても良い。 In the above disclosure, a plurality of slits extending in a circumferential direction may be provided on a side surface of the core tube, and the plurality of slits may be arranged at regular intervals in a longitudinal direction of the core tube.
 長手方向に等間隔に並ぶ複数のスリットを設けることにより、複数のスリットの間隔が不均一である場合と比較して、関節部における長手方向の柔軟性を均一にしやすくなり、関節部の操作性を確保しやすくなる。 By providing a plurality of slits arranged at equal intervals in the longitudinal direction, it becomes easier to make the flexibility in the longitudinal direction of the joint more uniform than in the case where the intervals of the plurality of slits are uneven, and the operability of the joint is improved. Is easy to secure.
 上記開示において前記芯材チューブの側面には、周方向に延びる複数のスリットが設けられ、前記複数のスリットは、前記芯材チューブの長手方向に並んで配置されていると共に、前記複数のスリットの配置間隔は、前記長手方向における前記棒状部から前記術具に向かって短くなっていても良い。 In the above disclosure, on the side surface of the core tube, a plurality of slits extending in a circumferential direction are provided, and the plurality of slits are arranged along the longitudinal direction of the core tube, and a plurality of slits are formed. The arrangement interval may be shorter from the rod portion in the longitudinal direction toward the surgical instrument.
 複数のスリットの配置間隔を術具に向かって短くすることにより、複数のスリットの間隔が均一である場合と比較して、関節部における術具側の柔軟性が高くなるため関節部を円弧状に屈曲させやすくなる。 By shortening the interval between the plurality of slits toward the surgical tool, the flexibility of the surgical tool side at the joint becomes higher than when the interval between the multiple slits is uniform. Bends easily.
 上記開示において前記外殻部は、らせん状の構造を有する可撓体であっても良い。 In the above disclosure, the outer shell may be a flexible body having a helical structure.
 外殻部を帯状に形成された外殻板をらせん状に巻いて形成することにより、例えば、円板状に形成された外殻板を長手方向に並べて配置した場合と比較して、関節部の長手方向の寸法を短くしやすい。 By forming the outer shell portion by spirally winding the outer shell plate formed in a belt shape, for example, compared with a case where the outer shell plates formed in a disk shape are arranged in the longitudinal direction, the joint portion is formed. It is easy to shorten the dimension in the longitudinal direction.
 上記開示において前記外殻部は、中心に貫通孔が設けられた複数の円盤状の部材である外殻板が、前記長手方向に並んで配置されていても良い。 In the above disclosure, the outer shell may include a plurality of disk-shaped outer shell plates having a through-hole at the center, which are arranged side by side in the longitudinal direction.
 複数の円盤状に形成された外殻板を長手方向に並べた外殻部とすることにより、帯状に形成された外殻板をらせん状に巻いて外殻部を形成する場合と比較して、関節部におけるねじり剛性を高めやすくなる。 By using a plurality of disc-shaped outer shell plates arranged in the longitudinal direction as an outer shell portion, compared to a case where the outer shell plate formed in a belt shape is spirally wound to form an outer shell portion. In addition, the torsional rigidity at the joint can be easily increased.
 上記開示において前記芯材チューブは、少なくともニッケルおよびチタンを成分として含む金属材料から形成されていても良い。 In the above disclosure, the core tube may be formed of a metal material containing at least nickel and titanium as components.
 少なくともニッケルおよびチタンを成分として含む金属材料から芯材チューブを形成することにより、その他の金属材料から芯材チューブを形成する場合と比較して、芯材チューブの圧縮剛性および屈曲柔軟性を確保しやすくなる。 By forming the core tube from a metal material containing at least nickel and titanium as components, the compression stiffness and bending flexibility of the core tube are ensured as compared with the case where the core tube is formed from other metal materials. It will be easier.
 上記開示において前記芯材チューブおよび前記樹脂チューブの間の隙間は、前記外殻部材および前記芯材チューブの間の隙間よりも小さくても良い。 In the above disclosure, a gap between the core tube and the resin tube may be smaller than a gap between the outer shell member and the core tube.
 芯材チューブおよび樹脂チューブの間の隙間を、外殻部材および芯材チューブの間の隙間よりも小さくすることにより、大きくする場合と比較して、関節部を屈曲させやすくなり、関節部の操作性を確保しやすくなる。 By making the gap between the core tube and the resin tube smaller than the gap between the outer shell member and the core tube, it becomes easier to bend the joint as compared with the case where it is enlarged, and the operation of the joint is made. Easy to secure.
 上記開示において前記樹脂チューブおよび前記ケーブルの間の隙間は、前記外殻部材および前記芯材チューブの間の隙間よりも小さくても良い。 In the above disclosure, a gap between the resin tube and the cable may be smaller than a gap between the outer shell member and the core tube.
 樹脂チューブおよびケーブルの間の隙間を、外殻部材および芯材チューブの間の隙間よりも小さくすることにより、大きくする場合と比較して、関節部を屈曲させた際にケーブルの経路長の変化を抑制しやすくなり、術具の操作性を確保しやすくなる。 By making the gap between the resin tube and the cable smaller than the gap between the outer shell member and the core tube, the path length of the cable changes when the joint is bent as compared with the case where it is enlarged. And it is easy to secure the operability of the surgical tool.
 上記開示において前記外殻部および前記ケーブルは、導電性を有する材料から形成されるとともに、前記術具に対して電気的に接続され、前記樹脂チューブは、前記外殻部および前記ケーブルの間の絶縁を可能とする絶縁材料から形成されていても良い。 In the above disclosure, the outer shell and the cable are formed of a conductive material, and are electrically connected to the surgical tool, and the resin tube is disposed between the outer shell and the cable. It may be formed from an insulating material that enables insulation.
 外殻部およびケーブルに導電性を持たせ、それぞれを術具に電気的に接触させるとともに、外殻部およびケーブルの間に配置される樹脂チューブにより両者を絶縁することにより、術具に対して2つの通電経路を確保することができる。言い換えると術具をバイポーラデバイスとして用いることができる。 The outer shell and the cable are made electrically conductive, and each is electrically contacted with the surgical tool. Two energization paths can be secured. In other words, the surgical tool can be used as a bipolar device.
 また、外殻部を含む通電経路、および、外殻部の内部に配置されたケーブルを含む通電経路が用いられるため、2つの通電経路が外殻部の内部を通る場合と比較して、関節部の細径化を図りやすい。例えば、外殻部の内部を通る通電経路の断面積を等しくした場合、2つの通電経路が外殻部の内部を通したときと比較して、外殻部を含む通電経路および外殻部の内部を通る通電経路を用いるときには、関節部の細径化を図りやすい。 In addition, since an energization path including the outer shell and an energization path including a cable arranged inside the outer shell are used, the joints are smaller than when the two energization paths pass inside the outer shell. It is easy to reduce the diameter of the part. For example, when the cross-sectional areas of the current-carrying paths passing through the inside of the outer shell are equalized, the current-carrying path including the outer shell and the outer shell are compared with when the two current paths pass through the inside of the outer shell. When an energization path passing through the inside is used, it is easy to reduce the diameter of the joint.
 関節部の外径を等しくした場合、2つの通電経路が外殻部の内部を通る場合と比較して、外殻部の内部を通る通電経路、および、外殻部を含む経路の断面積を増やしやすい。そのため、術具に印加できる最大電圧を高めやすい。また、関節部の屈曲などにより通電経路が絶たれにくい、言い換えると断線しにくい。 When the outer diameters of the joints are equal, the cross-sectional area of the energized path passing through the inside of the outer shell and the path including the outer shell are smaller than when the two energized paths pass through the inside of the outer shell. Easy to increase. Therefore, it is easy to increase the maximum voltage that can be applied to the surgical instrument. In addition, the current supply path is not easily disconnected due to bending of the joint, in other words, it is difficult to disconnect.
 上記開示において前記外殻部における前記術具側の端部には、前記外殻部および前記術具の間の導通を可能に接続する第1電力ケーブルが設けられ、前記外殻部における前記術具と反対側の端部には、外部および前記外殻部の間の導通を可能に接続する第2電力ケーブルが設けられていても良い。 In the above disclosure, a first power cable is provided at an end of the outer shell portion on the side of the surgical instrument so as to enable conduction between the outer shell portion and the surgical tool. A second power cable may be provided at the end opposite to the tool for connecting the outside and the outer shell so as to enable conduction.
 第1電力ケーブルを設けることにより、第1電力ケーブルを設けない場合と比較して、通電経路の設定の自由度が高くなるため外殻部と術具との間の導通を確保しやすくなる。また、第2電力ケーブルを設けることにより、第2電力ケーブルを設けない場合と比較して、通電経路の設定の自由度が高くなるため外部と外殻部との間の導通を確保しやすくなる。 (4) By providing the first power cable, the degree of freedom in setting the energization path is increased as compared with the case where the first power cable is not provided, so that conduction between the outer shell and the surgical instrument can be easily ensured. In addition, by providing the second power cable, the degree of freedom in setting the energizing path is increased as compared with a case where the second power cable is not provided, so that conduction between the outside and the outer shell can be easily secured. .
 上記開示において前記樹脂チューブにおける前記術具側の端部、および、前記術具と反対側の端部の少なくとも一方は、前記外殻部よりも前記ケーブルが延びる方向へ突出していても良い。 In the above disclosure, at least one of an end of the resin tube on the side of the surgical instrument and an end of the resin tube on the opposite side may protrude from the outer shell in a direction in which the cable extends.
 樹脂チューブの端部を外殻部の端部よりもケーブルが延びる方向へ突出させることにより、突出させない場合と比較して外殻部とケーブルとの間の短絡が発生しにくくなる。具体的には、樹脂チューブの端部を突出させない場合と比較して、ケーブルにおける樹脂チューブに覆われていない領域から外殻部までの距離である沿面距離を長くしやすいため、短絡を発生させにくくなる。 (4) By making the end of the resin tube protrude in the direction in which the cable extends beyond the end of the outer shell, a short circuit between the outer shell and the cable is less likely to occur as compared with a case where it does not protrude. Specifically, as compared with the case where the end of the resin tube is not protruded, the creeping distance, which is the distance from the region of the cable not covered by the resin tube to the outer shell, is likely to be longer, so that a short circuit occurs. It becomes difficult.
 上記開示においては、絶縁性を有する材料から形成され、少なくとも前記外殻部の周囲を覆うカバーが設けられていても良い。 In the above disclosure, a cover formed of a material having an insulating property and covering at least a periphery of the outer shell may be provided.
 外殻部の周囲を少なくとも覆うカバーを設けることにより、外殻部と処置対象等との間で電流が流れることを抑制しやすくなる。カバーは、外殻部と処置対象などとの間に配置される。そのため、外殻部と処置対象等との間で電流が流れる漏電経路が発生しにくくなる。 設 け る By providing a cover that covers at least the periphery of the outer shell, it is easier to suppress the flow of current between the outer shell and the treatment target. The cover is disposed between the outer shell and the treatment target or the like. For this reason, a leakage path through which a current flows between the outer shell portion and the treatment target is less likely to occur.
 本開示の医療用器具の関節部および医療用器具によれば、外殻部、芯材チューブ、および、樹脂チューブを組み合わせることにより関節部および術具の操作性を確保しやすくなるという効果を奏する。 ADVANTAGE OF THE INVENTION According to the joint part of the medical device of this indication, and a medical device, there exists an effect that it becomes easy to ensure the operability of a joint part and a surgical instrument by combining an outer shell part, a core material tube, and a resin tube. .
第1実施形態に係る医療用器具の全体構成を説明する斜視図である。It is a perspective view explaining the whole medical instrument composition concerning a 1st embodiment. 図1の関節部の構成を説明する断面視図である。FIG. 2 is a cross-sectional view illustrating the configuration of the joint of FIG. 1. 図1の関節部の構成を説明する部分断面視図である。FIG. 2 is a partial cross-sectional view illustrating a configuration of a joint of FIG. 1. 図3の芯材チューブの構成を説明する斜視図である。FIG. 4 is a perspective view illustrating a configuration of a core tube of FIG. 3. 図3の芯材チューブの構成を説明する正面視図である。FIG. 4 is a front view illustrating a configuration of a core tube of FIG. 3. 関節部における複数の隙間の関係を説明する摸式断面視図である。FIG. 3 is a schematic cross-sectional view illustrating a relationship between a plurality of gaps in a joint. 第2実施形態に係る医療用器具における関節部の構成を説明する断面視図である。It is sectional drawing explaining the structure of the joint part in the medical device which concerns on 2nd Embodiment. 図7の芯材チューブの構成を説明する斜視図である。It is a perspective view explaining the structure of the core tube of FIG. 第3実施形態に係る医療用器具における関節部の構成を説明する断面視図である。It is sectional drawing explaining the structure of the joint part in the medical device which concerns on 3rd Embodiment. 図9の芯材チューブの構成を説明する斜視図である。It is a perspective view explaining the structure of the core tube of FIG. 第4実施形態に係る医療用器具の関節部における外殻部の構成を説明する部分斜視図である。It is a partial perspective view explaining composition of an outer shell part in a joint part of a medical instrument concerning a 4th embodiment. 図11の外殻部の構成を説明する他の部分斜視図である。FIG. 12 is another partial perspective view illustrating the configuration of the outer shell part in FIG. 11. 本開示の第5実施形態に係る医療用器具の構成を説明する部分斜視図である。It is a partial perspective view explaining composition of a medical instrument concerning a 5th embodiment of this indication. 図13の関節部の構成を説明する断面視図である。FIG. 14 is a cross-sectional view illustrating the configuration of the joint of FIG. 13.
 1,101,201,301,401…医療用器具、 10…棒状部、 20…術具、21…術具用ケーブル(ケーブル)、 30,130,230,330,430…関節部、 31,331,431…外殻部(外殻部材)、 41,141,241…芯材チューブ、 42,242…スリット、 51,451…樹脂チューブ、 335…外殻板、460…カバー、 第1電力ケーブル471、 第2電力ケーブル472、DA,DB,DC…隙間、D,D1,Dn…間隔 1, 101, 201, 301, 401: medical instrument, # 10: rod-shaped part, # 20: surgical tool, 21: cable (cable) for surgical tool, # 30, 130, 230, 330, 430: joint part, # 31, 331 , 431: outer shell (outer shell member), # 41, 141, 241: core tube, # 42, 242: slit, # 51, 451: resin tube, # 335: outer shell plate, 460: cover, #first power cable 471 , {2nd power cable 472, DA, DB, DC ... gap, D, D1, Dn ... interval
 〔第1の実施形態〕
 以下、本開示の第1の実施形態に係る医療用器具1について図1から図6を参照しながら説明する。本実施形態の医療用器具1は、内視鏡外科手術などに使用される内視鏡外科手術器具であり、手術支援ロボットに用いられても良い。
[First Embodiment]
Hereinafter, the medical device 1 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 6. The medical instrument 1 according to the present embodiment is an endoscopic surgical instrument used for an endoscopic surgical operation or the like, and may be used for a surgical assistance robot.
 医療用器具1には、図1に示すように、手術支援ロボット側に配置される棒状部10と、内視鏡外科手術などに用いられる術具20と、棒状部10および術具20の間に配置される関節部30と、が設けられている。 As shown in FIG. 1, the medical instrument 1 includes a rod-shaped portion 10 disposed on the side of the surgery support robot, a surgical tool 20 used for endoscopic surgery, and the like, between the rod-shaped portion 10 and the surgical tool 20. And a joint 30 arranged at the center of the vehicle.
 棒状部10は、手術支援ロボットに取り付けられる柱状に延びる部材である。棒状部10は、後述する術具用ケーブル(ケーブル)21や、関節部用ケーブル61などが挿通される内部空間(図示せず。)を有する円筒状に形成されている。また、説明を容易にするために、棒状部10に対応する中心軸線CLが延びる方向をX方向、X方向に直交する方向をY方向、X方向およびY方向に直交する方向をZ方向として説明する。 The rod-shaped portion 10 is a column-shaped member attached to the surgery support robot. The rod-shaped part 10 is formed in a cylindrical shape having an internal space (not shown) through which a later-described surgical instrument cable (cable) 21 and a joint part cable 61 are inserted. For ease of explanation, the direction in which the central axis CL corresponding to the rod-shaped portion 10 extends is described as an X direction, a direction orthogonal to the X direction is defined as a Y direction, and a direction orthogonal to the X direction and the Y direction is defined as a Z direction. I do.
 術具20は、関節部30の先端、言い換えるとX方向の正側の端部に配置される。また、術具20は、関節部30の屈曲により、棒状部10に対する相対的な配置位置や、相対的な姿勢が制御される。術具20は、術具用ケーブル21により開閉操作される鉗子である。なお、術具20としては、鉗子の他に、内視鏡外科手術などに用いられる他の器具であってもよく、具体的な種類は限定されない。 The surgical tool 20 is arranged at the tip of the joint 30, in other words, at the end on the positive side in the X direction. In addition, the relative position and the relative posture of the surgical tool 20 with respect to the rod 10 are controlled by bending the joint 30. The surgical tool 20 is a forceps that is opened and closed by a surgical tool cable 21. The surgical instrument 20 may be other instruments used for endoscopic surgery or the like, other than forceps, and the specific type is not limited.
 関節部30は、手術支援ロボットに取り付けられた棒状部10の先端、言い換えるとX方向の正側の端部に設けられる円筒状または円柱状に形成された部材である。また、関節部30は、後述する関節部用ケーブル61を操作することにより、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能なように構成されている。 The joint 30 is a cylindrical or columnar member provided at the tip of the rod 10 attached to the surgery support robot, in other words, at the end on the positive side in the X direction. By operating a joint cable 61 to be described later, the joint 30 is bent in an arc shape in the Y direction, in an arc shape in the Z direction, and in a direction combining the Y direction and the Z direction. Is configured to be capable of bending in an arc shape.
 関節部30には、図2に示すように、外殻部(外殻部材)31と、芯材チューブ41と、樹脂チューブ51と、関節部用ケーブル61と、が設けられている。 As shown in FIG. 2, the joint 30 includes an outer shell (outer shell member) 31, a core tube 41, a resin tube 51, and a joint cable 61.
 外殻部31は、関節部30の外形を構成する部材であり、円筒状に形成されている。外殻部31は、棒状部10および術具20に取り付けられる。外殻部31は、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能なように構成され、加えて、X方向への伸び縮みが可能なように構成されている。また、外殻部31を形成する材料としては、金属材料、または、樹脂材料を例示することができる。 The outer shell 31 is a member constituting the outer shape of the joint 30 and is formed in a cylindrical shape. The outer shell 31 is attached to the rod 10 and the surgical tool 20. The outer shell portion 31 is configured to be capable of arcuate bending in the Y direction, arcuate bending in the Z direction, and arcuate bending in a direction combining the Y direction and the Z direction. Thus, it is configured to be able to expand and contract in the X direction. The material forming the outer shell 31 may be a metal material or a resin material.
 外殻部31には、図2および図3に示すように、棒状部10が取り付けられる棒状部側端部32(以下、端部32)と、術具20が取り付けられる術具側端部33(以下、端部33)と、が設けられている。端部32は、外殻部31におけるX方向の負側の端部であり、端部33は、外殻部31におけるX方向の正側の端部である。端部32および端部33には、それぞれ、棒状部10および術具20の取付けに用いられる段差部34が設けられている。 As shown in FIGS. 2 and 3, the outer shell 31 has a rod-side end 32 (hereinafter referred to as an end 32) to which the rod 10 is attached, and a surgical-tool-side end 33 to which the surgical tool 20 is attached. (Hereinafter referred to as an end portion 33). The end 32 is a negative end of the outer shell 31 in the X direction, and the end 33 is a positive end of the outer shell 31 in the X direction. The end portion 32 and the end portion 33 are provided with a step portion 34 used for attaching the rod portion 10 and the surgical instrument 20, respectively.
 外殻部31における端部32および端部33の間の領域は、円弧状に屈曲可能とされた領域である。本実施形態では、Y-Z平面にほぼ沿って延びる板状部材35は、外殻部31の長手方向(言い換えると、中心軸線CLにおける外殻部31に対応する部分)周りに回転しつつ棒状部10および術具20の一方から他方へ移動して(言い換えると、らせん状に)配置されている。なお、当該領域は、円弧状に屈曲可能であればよく、その具体的な形状は限定されない。 領域 A region between the end portion 32 and the end portion 33 in the outer shell portion 31 is a region that can be bent in an arc shape. In the present embodiment, the plate-like member 35 extending substantially along the YZ plane is a rod-shaped member that rotates around the longitudinal direction of the outer shell 31 (in other words, a portion corresponding to the outer shell 31 on the center axis CL). The part 10 and the surgical tool 20 are arranged so as to move from one side to the other (in other words, spirally). Note that the region may be any shape as long as it can be bent in an arc shape, and the specific shape is not limited.
 外殻部31には、図2および図3に示すように、外殻部31の長手方向(言い換えると、外殻部31が直線状に延びて配置されている場合にはX方向)に延びて外殻部31を貫通する第1貫通孔(空間)36および第2貫通孔37が設けられている。 As shown in FIGS. 2 and 3, the outer shell 31 extends in the longitudinal direction of the outer shell 31 (in other words, in the X direction when the outer shell 31 extends linearly). A first through-hole (space) 36 and a second through-hole 37 penetrating the outer shell 31 are provided.
 第1貫通孔36は、中心軸線CLにおける外殻部31に対応する部分に沿って延びる貫通孔である。第1貫通孔36には、芯材チューブ41、樹脂チューブ51、および、術具用ケーブル21が配置可能とされている。また第1貫通孔36の内周面は、芯材チューブ41を周囲から支持している。 The first through-hole 36 is a through-hole extending along a portion corresponding to the outer shell 31 on the center axis CL. In the first through hole 36, the core tube 41, the resin tube 51, and the surgical instrument cable 21 can be arranged. The inner peripheral surface of the first through hole 36 supports the core tube 41 from the periphery.
 第2貫通孔37は、中心軸線CLを中心とした円周上であって、等間隔に離れた位置に設けられた貫通孔である。具体的には、第2貫通孔37は、第1貫通孔36からY方向の正方向に離れた位置、負方向に離れた位置、第1貫通孔36からZ方向の正方向に離れた位置、負方向に離れた位置の合計4箇所に設けられた貫通孔である。4つの第2貫通孔37には、それぞれ、関節部用ケーブル61が配置可能である。 The second through-hole 37 is a through-hole provided on a circumference centered on the center axis line CL and spaced at equal intervals. Specifically, the second through hole 37 is located at a position away from the first through hole 36 in the positive direction in the Y direction, at a position away from the first through hole 36 in the negative direction, and at a position away from the first through hole 36 in the positive direction in the Z direction. , Through holes provided at a total of four locations separated in the negative direction. In each of the four second through holes 37, a cable 61 for a joint can be arranged.
 第2貫通孔37における術具20側(X方向の正側)の端部には、その他の部分と比較して径が大きい拡径部38が形成されている(図3参照)。拡径部38には、関節部用ケーブル61に設けられた係止端部62が配置される(図2参照)。 径 At the end of the second through hole 37 on the side of the surgical instrument 20 (positive side in the X direction), an enlarged portion 38 having a larger diameter than other portions is formed (see FIG. 3). A locking end 62 provided on the joint cable 61 is disposed in the enlarged diameter portion 38 (see FIG. 2).
 なお、本実施形態では、第2貫通孔37が4箇所に設けられているが、外殻部31を任意の方向へ屈曲させることができればよく、第2貫通孔37の数は限定されない。 In the present embodiment, the second through-holes 37 are provided at four positions. However, the number of the second through-holes 37 is not limited as long as the outer shell 31 can be bent in an arbitrary direction.
 芯材チューブ41は、図3から図5に示すように、外殻部31よりも外径が小さく形成された円筒状の部材であって、外殻部31の第1貫通孔36の内部に配置される部材である。芯材チューブ41は、外殻部31と同様に、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能な構成を有する。 As shown in FIGS. 3 to 5, the core tube 41 is a cylindrical member having an outer diameter smaller than that of the outer shell 31 and is provided inside the first through hole 36 of the outer shell 31. It is a member to be arranged. The core tube 41, like the outer shell 31, has an arc-shaped bend in the Y-direction, an arc-shaped bend in the Z-direction, and an arc-shaped bend in a direction combining the Y-direction and the Z-direction. Has a possible configuration.
 また、芯材チューブ41は、外殻部31と比較して圧縮剛性が高く、X方向への圧縮力や引っ張り力による伸び縮みが小さい。例えば、芯材チューブ41を少なくともニッケルおよびチタンを成分として含む金属材料、より好ましくはニッケルチタン合金から形成することより、芯材チューブ41の圧縮剛性が高められている。 (4) The core tube 41 has a higher compression rigidity than the outer shell portion 31 and has less expansion and contraction due to a compressive force and a tensile force in the X direction. For example, by forming the core tube 41 from a metal material containing at least nickel and titanium as components, more preferably a nickel-titanium alloy, the compression rigidity of the core tube 41 is increased.
 芯材チューブ41には、その側面(円周面)に周方向に延びる複数の切れ目であるスリット42が設けられている。芯材チューブ41の側面には中心軸線CL、言い換えるとX方向の同じ位置(同じ高さ)において、側面をほぼ半周にわたって延びる2つのスリット42が配置されている。当該2つのスリット42の間には、芯材チューブ41の側面の一部を構成する柱部43が形成されている。 The core tube 41 is provided with a plurality of slits 42 extending in the circumferential direction on a side surface (circumferential surface) thereof. On the side surface of the core tube 41, two slits 42 extending substantially halfway around the side surface are arranged at the same position (same height) in the center axis CL, that is, in the X direction. Between the two slits 42, a column 43 that forms a part of the side surface of the core tube 41 is formed.
 上述の2つのスリット42は、芯材チューブ41の長手方向である中心軸線CLに沿って、間隔Dを空けて並んで配置されている。間隔Dは、芯材チューブ41の棒状部10側の端部(X方向の負側の端部)から、術具20側の端部(X方向の正側の端部)にわたって同じ値となっている。 The two slits 42 are arranged side by side at an interval D along a central axis CL that is a longitudinal direction of the core tube 41. The interval D has the same value from the end of the core tube 41 on the side of the rod 10 (the end on the negative side in the X direction) to the end on the side of the surgical instrument 20 (the end on the positive side in the X direction). ing.
 言い換えると、複数のスリット42は、芯材チューブ41の長手方向に等間隔に並んで配置されている。複数のスリット42は、2つのスリット42がY方向に並んで配置される組と、2つのスリット42がZ軸に並んで配置される組とを含む。Y方向に並んで配置される組と、Z軸に並んで配置される組と、は交互に並んで配置されている。 In other words, the plurality of slits 42 are arranged at equal intervals in the longitudinal direction of the core tube 41. The plurality of slits 42 include a set in which two slits 42 are arranged in the Y direction and a set in which two slits 42 are arranged in the Z axis. The sets arranged side by side in the Y direction and the sets arranged side by side in the Z axis are arranged alternately.
 樹脂チューブ51は、図2および図3に示すように、円筒状に形成された部材であって、芯材チューブ41の内部に配置される部材である。樹脂チューブ51の内部には、術具用ケーブル21が挿通されている。 The resin tube 51 is a member formed in a cylindrical shape as shown in FIGS. 2 and 3, and is a member arranged inside the core tube 41. The surgical instrument cable 21 is inserted into the resin tube 51.
 樹脂チューブ51は、芯材チューブ41を形成する材料と比較して、術具用ケーブル21に対する摩擦係数が小さな材料から形成されている。樹脂チューブ51を形成する材料としては、摩擦係数が小さく、耐熱性の高い材料、例えばPTFE(ポリテトラフルオロエチレン)を例示することができる。 The resin tube 51 is formed of a material having a smaller coefficient of friction with respect to the surgical instrument cable 21 than the material forming the core tube 41. As a material for forming the resin tube 51, a material having a small friction coefficient and high heat resistance, for example, PTFE (polytetrafluoroethylene) can be exemplified.
 また、樹脂チューブ51は、内部に配置される術具用ケーブル21が、関節部30の中心軸線CLと同軸またはその近傍(以下「中心軸線CL近傍」とも表記する。)に配置されるように、術具用ケーブル21をガイドする。例えば、関節部30が棒状部10と同軸に延びた姿勢(直線状に延びた姿勢)の場合には、X方向へ延びる中心軸線CLの近傍に術具用ケーブル21が配置されるように術具用ケーブル21をガイドする。また、関節部30が屈曲した場合には、屈曲した関節部30の中心軸線CL近傍に術具用ケーブル21が配置されるように術具用ケーブル21をガイドする。 In addition, the resin tube 51 is arranged such that the surgical instrument cable 21 arranged inside is arranged coaxially with or near the center axis CL of the joint 30 (hereinafter also referred to as “near the center axis CL”). , Guide the surgical instrument cable 21. For example, when the joint portion 30 is in a posture extending coaxially with the rod-shaped portion 10 (a posture extending linearly), the surgical instrument cable 21 is arranged near the center axis CL extending in the X direction. Guide the component cable 21. When the joint 30 is bent, the surgical instrument cable 21 is guided so that the surgical instrument cable 21 is disposed near the center axis CL of the bent joint 30.
 また、図6に示すように、芯材チューブ41および樹脂チューブ51の間の隙間DAは、外殻部31および芯材チューブ41の間の隙間DCよりも小さくされている(隙間DA<隙間DC)。樹脂チューブ51および術具用ケーブル21の間の隙間DBは、外殻部31および芯材チューブ41の間の隙間DCよりも小さくされている(隙間DB<隙間DC)。 6, the gap DA between the core tube 41 and the resin tube 51 is smaller than the gap DC between the outer shell 31 and the core tube 41 (gap DA <gap DC). ). The gap DB between the resin tube 51 and the surgical instrument cable 21 is smaller than the gap DC between the outer shell 31 and the core tube 41 (gap DB <gap DC).
 次に、上記の構成からなる医療用器具1における動作について説明する。具体的には、関節部30の屈曲動作および術具20の操作について図1および図2を参照しながら説明する
 例えば、関節部30をY方向の正方向へ円弧状に屈曲させる場合には、4本の関節部用ケーブル61のうち、Y方向に並んでいる2本の関節部用ケーブル61(図2において断面で図示された関節部用ケーブル61)の少なくとも一方が操作される。
Next, the operation of the medical device 1 having the above configuration will be described. Specifically, the bending operation of the joint 30 and the operation of the surgical tool 20 will be described with reference to FIGS. 1 and 2. For example, when the joint 30 is bent in an arc shape in the positive direction of the Y direction, At least one of the two joint cables 61 (joint cables 61 shown in a cross section in FIG. 2) arranged in the Y direction among the four joint cables 61 is operated.
 具体的には、Y方向の正側に配置された関節部用ケーブル61を、棒状部10側(X方向の負側)へ引っ張る操作が行われる。Y方向の負側に配置された関節部用ケーブル61は、積極的に術具20側(X方向の正側)へ送り出す操作が行われてもよいし、関節部30の屈曲に伴って送り出されてもよい。さらに、関節部30の屈曲状態を制御するために、当該関節部用ケーブル61を術具20側(X方向の正側)へ送り出しつつ、棒状部10側へ引っ張る張力が加えられてもよい。 Specifically, an operation is performed in which the joint cable 61 arranged on the positive side in the Y direction is pulled toward the rod 10 (negative side in the X direction). The joint portion cable 61 disposed on the negative side in the Y direction may be positively sent out toward the surgical instrument 20 (the positive side in the X direction), or may be sent out with the bending of the joint portion 30. It may be. Furthermore, in order to control the bending state of the joint part 30, a tension may be applied to pull the joint part cable 61 toward the rod-shaped part 10 while sending the joint part cable 61 toward the surgical instrument 20 (the positive side in the X direction).
 関節部30は、関節部用ケーブル61の操作により円弧状に屈曲する。このとき、芯材チューブ41の圧縮剛性により、関節部30が関節部用ケーブル61の引っ張り操作によりX方向へ縮むことが抑制される。また、外殻部31よりも外径が小さく形成された芯材チューブ41が、外殻部31の第1貫通孔36の内部に配置されているため、屈曲による、関節部30における中心軸線CLに沿う部分の長さの変化が抑制される。 The joint 30 is bent in an arc shape by operating the joint cable 61. At this time, the compression stiffness of the core tube 41 suppresses the joint 30 from shrinking in the X direction due to the pulling operation of the joint cable 61. In addition, since the core tube 41 having an outer diameter smaller than that of the outer shell portion 31 is disposed inside the first through hole 36 of the outer shell portion 31, the center axis CL of the joint portion 30 due to bending is formed. The change in the length along the portion is suppressed.
 屈曲させた関節部30を、X方向へ延びた姿勢に戻す場合には、Y方向の負側に配置された関節部用ケーブル61を、棒状部10側(X方向の負側)へ引っ張る操作が行われる。 When returning the bent joint 30 to the posture extended in the X direction, the operation of pulling the joint cable 61 disposed on the negative side in the Y direction toward the rod 10 (the negative side in the X direction). Is performed.
 関節部30を、Z方向へ円弧状に屈曲させる場合には、4本の関節部用ケーブル61のうち、Z方向に並んでいる2本の関節部用ケーブル61の少なくとも一方が操作される。また、Y方向およびZ方向を組み合わせた方向へ円弧状に屈曲させる場合には、4本の関節部用ケーブル61のうち少なくとも2本が操作される。 When the joint 30 is bent in an arc shape in the Z direction, at least one of the two joint cables 61 arranged in the Z direction among the four joint cables 61 is operated. When bending in an arc shape in a direction combining the Y direction and the Z direction, at least two of the four joint cables 61 are operated.
 医療用器具1の術具20の操作は、術具用ケーブル21を操作することにより行われる。例えば、術具用ケーブル21を棒状部10側(X方向の負側)へ引っ張る操作により、術具20の操作が行われる。術具用ケーブル21の操作方法は、術具20の種類に応じて適宜変更することができ、上述の操作方法に限定されない。 術 The operation of the surgical instrument 20 of the medical instrument 1 is performed by operating the surgical instrument cable 21. For example, the operation of the surgical tool 20 is performed by an operation of pulling the surgical tool cable 21 toward the rod portion 10 (negative side in the X direction). The operation method of the operation tool cable 21 can be appropriately changed according to the type of the operation tool 20, and is not limited to the above operation method.
 上記の構成によれば、外殻部31、芯材チューブ41、および、樹脂チューブ51を組み合わせることにより関節部30および術具20の操作性を確保しやすくなる。 According to the above configuration, the operability of the joint 30 and the surgical instrument 20 can be easily secured by combining the outer shell 31, the core tube 41, and the resin tube 51.
 具体的には、外殻部31および芯材チューブ41の組み合わせにより、関節部30は全体として円弧形状に屈曲しやすくなり、関節部30の操作性を確保しやすい。また、関節部30において圧縮剛性が不足することを抑制でき、術具20の操作性を確保しやすい。 Specifically, the combination of the outer shell 31 and the core tube 41 makes it easier for the joint 30 to bend into an arcuate shape as a whole, and to ensure the operability of the joint 30. In addition, shortage of compression stiffness in the joint 30 can be suppressed, and operability of the surgical instrument 20 can be easily secured.
 また、樹脂チューブ51を組み合わせることにより、術具20の操作に用いる術具用ケーブル21を関節部30の中心軸線CL近傍に配置させやすくなる。これにより、関節部30が屈曲した際に術具用ケーブル21の経路長の変化を抑制しやすくなり、術具20の操作性を確保しやすい。さらに樹脂チューブ51は、術具用ケーブル21に対する摩擦係数が小さいため、術具用ケーブル21の操作が行いやすくなり、術具20の操作性を確保しやすい。 In addition, by combining the resin tube 51, the surgical instrument cable 21 used for operating the surgical instrument 20 can be easily arranged near the center axis CL of the joint section 30. This makes it easy to suppress a change in the path length of the surgical instrument cable 21 when the joint portion 30 is bent, and it is easy to secure the operability of the surgical instrument 20. Furthermore, since the resin tube 51 has a small coefficient of friction with respect to the surgical instrument cable 21, the operation of the surgical instrument cable 21 is facilitated, and the operability of the surgical instrument 20 is easily ensured.
 芯材チューブ41の長手方向である中心軸線CLに沿って等間隔に並ぶ複数のスリット42を設けることにより、スリット42の間隔が不均一である場合と比較して、関節部30における長手方向の柔軟性を均一にしやすくなり、関節部30の操作性を確保しやすくなる。 By providing a plurality of slits 42 arranged at equal intervals along the central axis line CL which is the longitudinal direction of the core tube 41, compared with the case where the intervals of the slits 42 are non-uniform, It becomes easy to make the flexibility uniform, and it becomes easy to secure the operability of the joint 30.
 外殻部31を、帯状に形成された外殻板をらせん状に巻いて形成することにより、例えば、円板状に形成された外殻板を長手方向に並べて配置した場合と比較して、外殻部31の寸法であって関節部30の長手方向である中心軸線CL方向の寸法を短くしやすい。 By forming the outer shell portion 31 by spirally winding an outer shell plate formed in a belt shape, for example, as compared with a case where the outer shell plates formed in a disk shape are arranged in the longitudinal direction, It is easy to shorten the dimension of the outer shell 31 in the direction of the central axis CL which is the longitudinal direction of the joint 30.
 少なくともニッケルおよびチタンを成分として含む金属材料から芯材チューブ41を形成することにより、その他の金属材料から芯材チューブ41を形成する場合と比較して、芯材チューブ41の圧縮剛性および屈曲柔軟性を確保しやすくなる。 By forming the core tube 41 from a metal material containing at least nickel and titanium as components, the compression stiffness and bending flexibility of the core tube 41 are compared with the case where the core tube 41 is formed from other metal materials. Is easy to secure.
 芯材チューブ41および樹脂チューブ51の間の隙間DAを、外殻部31および芯材チューブ41の間の隙間DCよりも小さくすることにより、隙間DCよりも大きくする場合と比較して、関節部30を屈曲させやすくなり、関節部30の操作性を確保しやすくなる。 By making the gap DA between the core tube 41 and the resin tube 51 smaller than the gap DC between the outer shell portion 31 and the core tube 41, the joint portion is larger than the case where the gap DA is larger than the gap DC. The joint 30 is easily bent, and the operability of the joint 30 is easily ensured.
 樹脂チューブ51および術具用ケーブル21の間の隙間DBを、外殻部31および芯材チューブ41との間の隙間DCよりも小さくすることにより、隙間DCよりも大きくする場合と比較して、関節部30を屈曲させた際に術具用ケーブル21の経路長の変化を抑制しやすくなり、術具20の操作性を確保しやすくなる。 By making the gap DB between the resin tube 51 and the surgical instrument cable 21 smaller than the gap DC between the outer shell portion 31 and the core tube 41, compared with the case where the gap DB is made larger than the gap DC, When the joint portion 30 is bent, a change in the path length of the surgical instrument cable 21 is easily suppressed, and the operability of the surgical instrument 20 is easily ensured.
 〔第2の実施形態〕
 次に、本開示の第2の実施形態について図7および図8を参照しながら説明する。本第2の実施形態の医療用器具の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、芯材チューブの構成が異なっている。本第2の実施形態においては、図7および図8を用いて芯材チューブの構成について説明し、その他の構成等の説明を省略する。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIGS. 7 and 8. The basic configuration of the medical device of the second embodiment is the same as that of the first embodiment, but is different from the first embodiment in the configuration of the core tube. In the second embodiment, the configuration of the core tube will be described with reference to FIGS. 7 and 8, and description of other configurations will be omitted.
 本第2の実施形態の医療用器具101における関節部130の芯材チューブ141は、図7および図8に示すように、外殻部31よりも外径が小さく形成された円筒状の部材であって、外殻部31の第1貫通孔36の内部に配置される部材である。 The core tube 141 of the joint 130 in the medical device 101 of the second embodiment is a cylindrical member having an outer diameter smaller than that of the outer shell 31 as shown in FIGS. 7 and 8. It is a member arranged inside the first through hole 36 of the outer shell 31.
 芯材チューブ141は、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能な構成を有する。なお、芯材チューブ141を形成する材料は、第1実施形態の芯材チューブ41を形成する材料と同じであるため、その説明を省略する。 The core material tube 141 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction. The material for forming the core tube 141 is the same as the material for forming the core tube 41 of the first embodiment, and a description thereof will be omitted.
 芯材チューブ141には、その側面に周方向に延びる切れ目である複数のスリット42が設けられている。芯材チューブ141の側面には、X方向の同じ位置(同じ高さ)において、側面をほぼ半周にわたって延びる2つのスリット42と柱部43とが少なくとも形成されている。 The core tube 141 is provided with a plurality of slits 42 which are cuts extending in the circumferential direction on the side surface. At the same position (same height) in the X direction, at least two slits 42 and column portions 43 extending substantially halfway around the side surface are formed on the side surface of the core tube 141.
 上述の2つのスリット42は、間隔を空けて並んで配置されている。当該間隔は、芯材チューブ141の棒状部10側の端部(X方向の負側の端部)における間隔D1から、術具20側の端部(X方向の正側の端部)における間隔Dn(nは自然数であり、スリット42の数によって定まる値)に向かって値が小さくなる(間隔が短くなる)ようにされている。 The above-mentioned two slits 42 are arranged side by side at an interval. The interval is from the interval D1 at the end of the core tube 141 on the rod-shaped portion 10 side (the end on the negative side in the X direction) to the interval at the end on the surgical instrument 20 side (the end on the positive side in the X direction). Dn (n is a natural number and a value determined by the number of slits 42) is set so that the value becomes smaller (the interval becomes shorter).
 上記の構成からなる医療用器具101における動作(関節部30の屈曲動作および術具20の操作)は、第1の実施形態の医療用器具1における動作と同じであるため、その説明を省略する。 The operation (bending operation of the joint 30 and operation of the surgical instrument 20) in the medical device 101 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and a description thereof will be omitted. .
 上記の構成によれば、複数のスリット42の配置間隔を術具20に向かって短くすることにより、複数のスリット42の間隔が均一である場合と比較して、関節部130における術具20側の柔軟性が高くなる。そのため、関節部130を円弧状に屈曲させやすくなる。 According to the above configuration, by shortening the arrangement interval of the plurality of slits 42 toward the surgical instrument 20, compared with the case where the interval of the plurality of slits 42 is uniform, Flexibility is increased. Therefore, the joint 130 can be easily bent in an arc shape.
 〔第3の実施形態〕
 次に、本開示の第3の実施形態について図9および図10を参照しながら説明する。本第3の実施形態の医療用器具の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、芯材チューブの構成が異なっている。よって、本第3の実施形態においては、図9および図10を用いて芯材チューブの構成について説明し、その他の構成等の説明を省略する。
[Third embodiment]
Next, a third embodiment of the present disclosure will be described with reference to FIGS. 9 and 10. The basic configuration of the medical device of the third embodiment is the same as that of the first embodiment, but is different from the first embodiment in the configuration of the core tube. Therefore, in the third embodiment, the configuration of the core tube will be described with reference to FIGS. 9 and 10, and the description of the other configurations will be omitted.
 本第3の実施形態の医療用器具201における関節部230の芯材チューブ241は、図9および図10に示すように、外殻部31よりも外径が小さく形成された円筒状の部材であって、外殻部31の第1貫通孔36の内部に配置される部材である。 The core tube 241 of the joint 230 in the medical device 201 of the third embodiment is a cylindrical member having an outer diameter smaller than that of the outer shell 31 as shown in FIGS. 9 and 10. It is a member arranged inside the first through hole 36 of the outer shell 31.
 芯材チューブ241は、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能な構成を有する。なお、芯材チューブ241を形成する材料は、第1実施形態の芯材チューブ41を形成する材料と同じであるため、その説明を省略する。 The core tube 241 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction. The material for forming the core tube 241 is the same as the material for forming the core tube 41 of the first embodiment, and a description thereof will be omitted.
 芯材チューブ241には、その側面に切れ目であるスリット242が設けられている。スリット242は、中心軸線CLを中心として回転するように延びるとともに、中心軸線CLに沿って棒状部10から術具20に向かって延びる形状であるらせん状に形成された切れ目である。 ス リ ッ ト The core tube 241 is provided with a slit 242 which is a cut in the side surface. The slit 242 is a cut formed in a spiral shape that extends so as to rotate about the central axis CL and extends from the rod-shaped portion 10 toward the surgical instrument 20 along the central axis CL.
 芯材チューブ241の棒状部10側の端部(X方向の負側の端部)におけるピッチP1は、術具20側の端部(X方向の正側の端部)におけるピッチP2よりも値が大きくなる。また、スリット242のピッチの値は連続して変化する。ここで、ピッチは、スリット242が、中心軸線CLを中心として1回転する間に、中心軸線CLに沿って移動する量である。 The pitch P1 at the end of the core tube 241 on the rod-shaped portion 10 side (the end on the negative side in the X direction) is greater than the pitch P2 at the end on the surgical instrument 20 side (the end on the positive side in the X direction). Becomes larger. Further, the value of the pitch of the slit 242 continuously changes. Here, the pitch is an amount by which the slit 242 moves along the central axis CL during one rotation around the central axis CL.
 上記の構成からなる医療用器具201における動作(関節部30の屈曲動作および術具20の操作)は、第1の実施形態の医療用器具1における動作と同じであるため、その説明を省略する。 The operation (bending operation of the joint 30 and operation of the surgical instrument 20) in the medical device 201 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and thus the description thereof is omitted. .
 上記の構成によれば、スリット42のピッチを術具に向かって短くすることにより、スリット42のピッチが均一である場合と比較して、関節部230における術具20側の柔軟性が高くなる。そのため、関節部230を円弧状に屈曲させやすくなる。 According to the above configuration, by shortening the pitch of the slit 42 toward the surgical tool, the flexibility of the joint section 230 on the surgical tool 20 side is increased as compared with the case where the pitch of the slit 42 is uniform. . Therefore, the joint 230 can be easily bent in an arc shape.
 〔第4の実施形態〕
 次に、本開示の第4の実施形態について図11および図12を参照しながら説明する。本第4の実施形態の医療用器具の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、外殻部の構成が異なっている。よって、本第4の実施形態においては、図11および図12を用いて外殻部の構成を説明し、その他の構成等の説明を省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present disclosure will be described with reference to FIGS. The basic configuration of the medical device of the fourth embodiment is the same as that of the first embodiment, but is different from the first embodiment in the configuration of the outer shell. Therefore, in the fourth embodiment, the configuration of the outer shell will be described with reference to FIGS. 11 and 12, and the description of other configurations will be omitted.
 本第4の実施形態の医療用器具301における関節部330の外殻部331は、図11および図12に示すように、関節部330の外形を構成するものであり、棒状部10および術具20に取り付けられるものである。また、外殻部331を形成する材料としては、金属材料、または、樹脂材料を例示することができる。 The outer shell 331 of the joint 330 in the medical device 301 of the fourth embodiment constitutes the outer shape of the joint 330 as shown in FIGS. 11 and 12, and includes the rod-shaped portion 10 and the surgical instrument. 20. The material forming the outer shell 331 may be a metal material or a resin material.
 外殻部331は、複数の円盤状または円柱状に形成された外殻板335を、中心軸線CL方向(X方向)に重ねて構成されている。外殻板335における術具20側(X方向の正側)の端面は、断面がV字状に凹んで延びる凹面336が形成されている。棒状部10側(X方向の負側)の端面は、断面がV字状に突出して延びる凸面337が形成されている。 The outer shell portion 331 is configured by stacking a plurality of disk-shaped or columnar outer shell plates 335 in the direction of the center axis CL (X direction). The end surface of the outer shell plate 335 on the side of the surgical instrument 20 (the positive side in the X direction) is formed with a concave surface 336 having a V-shaped cross section and extending. On the end surface on the side of the rod-shaped portion 10 (negative side in the X direction), a convex surface 337 whose cross section protrudes and extends in a V-shape is formed.
 同じ外殻板335における凹面336が延びる方向と凸面337が延びる方向とは交差している。より好ましくは、直交している。さらに、凹面336におけるV字状の角度は、凸面337におけるV字状の角度よりも大きい。 方向 The direction in which the concave surface 336 extends in the same outer shell plate 335 and the direction in which the convex surface 337 extends intersect. More preferably, they are orthogonal. Further, the V-shaped angle of the concave surface 336 is larger than the V-shaped angle of the convex surface 337.
 一の外殻板335と他の外殻板335とを重ねる場合には、一の外殻板335の凹面336に、他の外殻板335の凸面337が対向して重ねられる。この時、当該凹面336におけるV字状の稜線と、当該凸面337のV字状の稜線とが重ね合わされる。 When the outer shell plate 335 and the other outer shell plate 335 are overlapped, the convex surface 337 of the other outer shell plate 335 is overlapped with the concave surface 336 of the one outer shell plate 335. At this time, the V-shaped ridge line of the concave surface 336 and the V-shaped ridge line of the convex surface 337 are overlapped.
 一の外殻板335と他の外殻板335との間は、上記の稜線において接触し、その他の領域には空間が形成される。この空間により、一の外殻板335と他の外殻板335とは、当該稜線を軸線として相対的に回動可能となる。 The space between one outer shell plate 335 and the other outer shell plate 335 is in contact at the above-mentioned ridge line, and a space is formed in the other region. Due to this space, one outer shell plate 335 and the other outer shell plate 335 can relatively rotate about the ridge line as an axis.
 言い換えると、外殻部331は、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能な構成を有する。 In other words, the outer shell portion 331 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction. .
 上記の構成からなる医療用器具301における動作(関節部30の屈曲動作および術具20の操作)は、第1の実施形態の医療用器具1における動作と同じであるため、その説明を省略する。 The operation (bending operation of the joint 30 and operation of the surgical instrument 20) in the medical device 301 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and a description thereof will be omitted. .
 上記の構成によれば、複数の円盤状に形成された外殻板335を長手方向、言い換えると中心軸線CL方向に並べて外殻部331を形成することにより、帯状に形成された外殻板をらせん状に巻いて外殻部を形成する場合と比較して、関節部330におけるねじり剛性、例えば、中心軸線CLを中心としたねじり剛性を高めやすくなる。 According to the above configuration, a plurality of disk-shaped outer shell plates 335 are arranged in the longitudinal direction, in other words, in the direction of the center axis CL to form the outer shell portion 331, so that the belt-shaped outer shell plate 331 is formed. The torsional rigidity of the joint 330, for example, the torsional rigidity about the center axis CL is easily increased as compared with the case where the outer shell is formed by spirally winding.
 なお、外殻板335における術具20側(X方向の正側)の端面が凹面336として形成され、棒状部10側(X方向の負側)の端面が凸面337として形成されてもよいし、術具20側の端面が凸面337として形成され、棒状部10側の端面が凹面336として形成されてもよい。 The end surface of the outer shell plate 335 on the side of the surgical instrument 20 (positive side in the X direction) may be formed as a concave surface 336, and the end surface on the rod-shaped portion 10 side (negative side in the X direction) may be formed as a convex surface 337. Alternatively, the end surface on the side of the surgical instrument 20 may be formed as a convex surface 337, and the end surface on the side of the rod-shaped portion 10 may be formed as a concave surface 336.
 〔第5の実施形態〕
 次に、本開示の第5の実施形態について図13および図14を参照しながら説明する。本第5の実施形態の医療用器具の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、外殻部の構成が主に異なっている。よって、本第5の実施形態においては、図13および図14を用いて外殻部などの構成を説明し、その他の構成等の説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment of the present disclosure will be described with reference to FIGS. The basic configuration of the medical device of the fifth embodiment is the same as that of the first embodiment, but differs from the first embodiment mainly in the configuration of the outer shell. Therefore, in the fifth embodiment, the configuration of the outer shell and the like will be described with reference to FIGS. 13 and 14, and the description of the other configurations will be omitted.
 本第5の実施形態の医療用器具401には、図13に示すように、棒状部10と、内視鏡外科手術などに用いられる術具20と、棒状部10および術具20の間に配置される関節部430と、少なくとも関節部430の周囲を覆うカバー460と、が設けられている。 As shown in FIG. 13, the medical device 401 of the fifth embodiment has a rod-shaped portion 10, a surgical tool 20 used for endoscopic surgery or the like, and between the rod-shaped portion 10 and the surgical tool 20. A joint 430 to be arranged and a cover 460 covering at least the periphery of the joint 430 are provided.
 関節部430は、手術支援ロボットに取り付けられた棒状部10の先端、言い換えるとX方向の正側の端部に設けられる円筒状または円柱状に形成された部材である。また、関節部430は、関節部用ケーブル61を操作することにより、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能となるように構成されている。 The joint 430 is a cylindrical or columnar member provided at the tip of the rod 10 attached to the surgery support robot, in other words, at the positive end in the X direction. By operating the joint cable 61, the joint 430 can be bent in an arc shape in the Y direction, an arc shape in the Z direction, and a circle in a direction combining the Y direction and the Z direction. It is configured such that arc-shaped bending is possible.
 関節部430には、図13および図14に示すように、外殻部(外殻部材)431と、芯材チューブ41と、樹脂チューブ451と、関節部用ケーブル61と、が設けられている。 As shown in FIGS. 13 and 14, the joint 430 is provided with an outer shell (outer shell member) 431, a core tube 41, a resin tube 451, and a joint cable 61. .
 外殻部431は、円筒状に形成され、関節部430の外形を構成する部材であり、また、棒状部10および術具20に取り付けられる部材である。外殻部431は、Y方向への円弧状の屈曲、Z方向への円弧状の屈曲、および、Y方向およびZ方向を組み合わせた方向への円弧状の屈曲が可能な構成を有するとともに、X方向への伸び縮みが可能なように構成されている。また、外殻部431を形成する材料としては、導電性を有する材料、例えば金属材料のSUS304(クロムとニッケルを含む鋼であるステンレス鋼におけるJIS規格の記号)などを例示することができる。 The outer shell 431 is a member that is formed in a cylindrical shape and constitutes the outer shape of the joint 430, and is a member that is attached to the rod 10 and the surgical instrument 20. The outer shell portion 431 has a configuration capable of bending in an arc shape in the Y direction, bending in an arc shape in the Z direction, and bending in an arc shape combining the Y direction and the Z direction. It is configured to be able to expand and contract in the direction. Examples of the material forming the outer shell portion 431 include a conductive material, for example, a metal material such as SUS304 (a JIS standard symbol for stainless steel that is a steel containing chromium and nickel).
 外殻部431には、第1の実施形態の外殻部31と同様に、端部32と、端部33と、段差部34と、第1貫通孔36と、第2貫通孔37とが設けられている。外殻部431における端部32および端部33の間の領域は、第1の実施形態と同様に構成されている。 Similarly to the outer shell 31 of the first embodiment, the outer shell 431 includes an end 32, an end 33, a step 34, a first through hole 36, and a second through hole 37. Is provided. The region between the end portion 32 and the end portion 33 in the outer shell portion 431 is configured in the same manner as in the first embodiment.
 さらに、外殻部431には、外殻部431と術具20との間の導通を可能に接続する第1電力ケーブル471と、外部と外殻部431との間の導通を可能に接続する第2電力ケーブル472とが設けられている。 Further, a first power cable 471 for enabling connection between the outer shell portion 431 and the surgical instrument 20 and an electrical connection between the outside and the outer shell portion 431 are connected to the outer shell portion 431. A second power cable 472 is provided.
 第1電力ケーブル471は、端部33の端面から術具20に向かって延びて配置される導電性を有するケーブルである。第1電力ケーブル471の端部のうち、端部33側の端部は、端部33と導電可能に接続され、術具20側の端部は、術具20と導電可能に接続されている。 The first power cable 471 is a conductive cable that extends from the end face of the end 33 toward the surgical instrument 20. Among the ends of the first power cable 471, the end on the end 33 side is conductively connected to the end 33, and the end on the surgical instrument 20 side is conductively connected to the surgical tool 20. .
 第2電力ケーブル472は、端部32の端面から棒状部10に沿って延びる導電性を有するケーブルである。第2電力ケーブル472の端部のうち、端部32側の端部は、端部32と導電可能に接続され、反対側の端部は、棒状部10の外部に配置された電源と導電可能に接続されている。 The second power cable 472 is a conductive cable extending along the rod 10 from the end face of the end 32. Of the ends of the second power cable 472, the end on the end 32 side is conductively connected to the end 32, and the opposite end is conductive on a power source disposed outside the rod 10. It is connected to the.
 なお第1電力ケーブル471および第2電力ケーブル472としては、導電性を有するケーブルを用いることができ、その具体的な構成や種類等は限定されない。 As the first power cable 471 and the second power cable 472, cables having conductivity can be used, and specific configurations and types thereof are not limited.
 樹脂チューブ451は、円筒状に形成された部材であって、芯材チューブ41の内部に配置される部材である。樹脂チューブ451の内部には、術具用ケーブル21が挿通されている。 The resin tube 451 is a member formed in a cylindrical shape, and is a member arranged inside the core tube 41. The surgical instrument cable 21 is inserted into the inside of the resin tube 451.
 樹脂チューブ451は、第1の実施形態の樹脂チューブ51と同様な材料から形成されている。また、内部に配置される術具用ケーブル21が、関節部430の中心軸線CL近傍に配置されるようにガイドするものでもある。 The resin tube 451 is formed of the same material as the resin tube 51 of the first embodiment. Further, it also guides such that the surgical instrument cable 21 arranged inside is arranged near the center axis CL of the joint 430.
 樹脂チューブ451における術具20側の端部は、端部33の端面から突出して配置され、棒状部10側の端部は、端部32の端面から突出して配置されている。 端 The end of the resin tube 451 on the side of the surgical instrument 20 is arranged so as to protrude from the end surface of the end 33, and the end of the resin tube 451 on the side of the rod-shaped portion 10 is arranged so as to protrude from the end surface of the end 32.
 樹脂チューブ451の端部が端部33の端面から突出する量、および、端部32の端面から突出する量としては、少なくとも外殻部431と術具用ケーブル21との間の絶縁を確保できる量が好ましい。 The amount by which the end of the resin tube 451 protrudes from the end surface of the end portion 33 and the amount by which it protrudes from the end surface of the end portion 32 can ensure at least insulation between the outer shell portion 431 and the surgical instrument cable 21. The amount is preferred.
 言い換えると、端部33の端面と、術具用ケーブル21における樹脂チューブ451から露出している面との間が、絶縁を確保できる突出量が好ましい。端部32の端面と、術具用ケーブル21における樹脂チューブ451から露出している面との間が、絶縁を確保できる突出量が好ましい。 In other words, the protrusion between the end surface of the end portion 33 and the surface of the surgical instrument cable 21 exposed from the resin tube 451 is preferably such that insulation can be ensured. It is preferable that the protrusion between the end surface of the end portion 32 and the surface of the surgical instrument cable 21 that is exposed from the resin tube 451 can ensure insulation.
 なお、絶縁の程度は、電源から術具20に印加される電圧に基づいて定められる値であり、また、医療用器具401に求められる安全性を規定する規則に基づいて定められるものでもある。 The degree of insulation is a value determined based on the voltage applied from the power supply to the surgical instrument 20, and also determined based on rules that regulate the safety required of the medical device 401.
 カバー460は、図13に示すように絶縁性を有する材料から形成された筒状の部材である。カバー460は、少なくとも外殻部431の周囲を覆う長さを有している。具体的には、外殻部431および棒状部10の端部周辺を覆う長さを有している。 The cover 460 is a cylindrical member formed from a material having an insulating property as shown in FIG. The cover 460 has a length that covers at least the periphery of the outer shell 431. Specifically, it has a length that covers the periphery of the outer shell 431 and the end of the rod 10.
 カバー460における術具20側の端部の周辺には、棒状部10に向かってカバー460の径が大きくなる拡径領域が形成されている。また、カバー460における棒状部10に対向する領域は、外殻部431と対向する領域よりも径が小さく形成され、棒状部10の外周面と当接している。 径 Around the end of the cover 460 on the side of the surgical instrument 20, there is formed an enlarged area in which the diameter of the cover 460 increases toward the rod 10. Further, the area of the cover 460 facing the rod 10 is smaller in diameter than the area facing the outer shell 431, and is in contact with the outer peripheral surface of the rod 10.
 カバー460を形成する材料としては、外殻部431よりも絶縁性の高い材料であることが好ましい。例えば、内視鏡外科手術などで使用可能なシリコンゴムなどの柔軟性を有する材料が好ましい。 材料 The material for forming the cover 460 is preferably a material having higher insulating properties than the outer shell 431. For example, a flexible material such as silicone rubber that can be used in endoscopic surgery or the like is preferable.
 上記の構成からなる医療用器具401における動作(関節部430の屈曲動作および術具20の操作)は、第1の実施形態の医療用器具1における動作と同じであるため、その説明を省略する。 The operation (bending operation of the joint 430 and operation of the surgical instrument 20) in the medical device 401 having the above-described configuration is the same as the operation in the medical device 1 of the first embodiment, and thus the description thereof is omitted. .
 上記の構成の医療用器具401によれば、外殻部431および術具用ケーブル21に導電性を持たせ、それぞれを術具20に電気的に接触させるとともに、外殻部431および術具用ケーブル21の間に配置される樹脂チューブ451により両者を絶縁しているため、術具20に対して2つの通電経路を確保することができる。言い換えると術具20をバイポーラデバイスとして用いることができる。 According to the medical device 401 having the above-described configuration, the outer shell portion 431 and the operating tool cable 21 are made conductive, and each of them is electrically contacted with the operating tool 20. Since the two are insulated by the resin tube 451 disposed between the cables 21, two current paths can be secured for the surgical instrument 20. In other words, the surgical tool 20 can be used as a bipolar device.
 また、外殻部431を含む通電経路、および、外殻部431の内部に配置された術具用ケーブル21を含む通電経路が用いられるため、2つの通電経路が外殻部431の内部を通る場合と比較して、関節部430の細径化を図りやすい。例えば、外殻部431の内部を通る通電経路の断面積を等しくした場合、2つの通電経路を外殻部431の内部に通したときと比較して、外殻部431を含む通電経路および外殻部431の内部を通る通電経路を用いるときには、関節部430の細径化を図りやすい。 In addition, since an energizing path including the outer shell 431 and an energizing path including the surgical instrument cable 21 disposed inside the outer shell 431 are used, two energizing paths pass through the inside of the outer shell 431. In comparison with the case, the diameter of the joint 430 can be easily reduced. For example, when the cross-sectional areas of the energization paths passing through the inside of the outer shell portion 431 are equalized, the energization path including the outer shell portion 431 and the outer When an energization path passing through the inside of the shell 431 is used, the diameter of the joint 430 can be easily reduced.
 関節部430の外径を等しくした場合、2つの通電経路が外殻部の内部を通る場合と比較して、外殻部431の内部を通る通電経路、および、外殻部431を含む経路の断面積を増やしやすい。そのため、術具20に印加できる最大電圧を高めやすい。また、関節部430の屈曲などにより通電経路が絶たれにくい、言い換えると断線しにくくすることができる。 When the outer diameters of the joints 430 are equalized, compared to the case where the two energization paths pass through the inside of the outer shell, the energization path passing through the inside of the outer shell 431 and the path including the outer shell 431 are compared. Easy to increase cross-sectional area. Therefore, the maximum voltage that can be applied to the surgical instrument 20 can be easily increased. In addition, it is possible to make it difficult for the current supply path to be disconnected due to the bending of the joint 430 or the like, in other words, to make it difficult for disconnection.
 第1電力ケーブル471を設けることにより、第1電力ケーブル471を設けない場合と比較して、通電経路の設定の自由度が高くなる。そのため外殻部431と術具20との間の導通を確保しやすくなる。また、第2電力ケーブル472を設けることにより、第2電力ケーブル472を設けない場合と比較して、通電経路の設定の自由度が高くなる。そのため外部と外殻部431との間の導通を確保しやすくなる。 (4) By providing the first power cable 471, the degree of freedom in setting the energization path is increased as compared with the case where the first power cable 471 is not provided. Therefore, conduction between the outer shell 431 and the surgical instrument 20 can be easily secured. Further, by providing the second power cable 472, the degree of freedom in setting the energization path is increased as compared with the case where the second power cable 472 is not provided. Therefore, conduction between the outside and the outer shell portion 431 is easily ensured.
 樹脂チューブ451の端部を外殻部431の端部よりも突出させることにより、突出させない場合と比較して外殻部431と術具用ケーブル21との間の短絡が発生しにくくなる。具体的には、樹脂チューブ451の端部を突出させない場合と比較して、術具用ケーブル21における樹脂チューブ451に覆われていない領域から外殻部431までの距離である沿面距離を長くしやすいため、短絡を発生させにくくなる。 さ せ る By making the end of the resin tube 451 protrude from the end of the outer shell 431, a short circuit between the outer shell 431 and the surgical instrument cable 21 is less likely to occur than in a case where the resin tube 451 does not protrude. Specifically, as compared with the case where the end of the resin tube 451 is not protruded, the creepage distance which is the distance from the region of the surgical instrument cable 21 not covered by the resin tube 451 to the outer shell portion 431 is increased. Therefore, a short circuit is less likely to occur.
 外殻部431の周囲を少なくとも覆うカバー460を設けることにより、外殻部431と術具20が処置する対象等との間で電流が流れることを抑制しやすくなる。カバー460は、外殻部431と処置対象などとの間に配置される。そのため、外殻部431と処置対象等との間で電流が流れる経路である漏電経路が形成されにくくなる。
なお、本開示の技術範囲は上記実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、本開示を上記の実施形態に適用したものに限られることなく、これらの実施形態を適宜組み合わせた実施形態に適用してもよく、特に限定するものではない。
By providing the cover 460 that covers at least the periphery of the outer shell portion 431, it becomes easier to suppress the flow of current between the outer shell portion 431 and the target to be treated by the surgical instrument 20 or the like. The cover 460 is disposed between the outer shell 431 and the treatment target or the like. Therefore, it is difficult to form a leakage path, which is a path through which current flows between the outer shell 431 and the treatment target or the like.
The technical scope of the present disclosure is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present disclosure. For example, the present disclosure is not limited to the one applied to the above embodiment, and may be applied to an embodiment in which these embodiments are appropriately combined, and is not particularly limited.

Claims (13)

  1.  医療用器具における棒状部および術具の間に配置される関節部であって、
     内部に空間を有する筒状に形成された外殻部と、
     前記外殻部の内部空間に配置され、前記外殻部よりも圧縮剛性が高い筒状に形成された芯材チューブと、
     前記芯材チューブの内部空間に配置され、内部に前記術具の操作に用いられるケーブルが挿通されるとともに前記芯材チューブよりも前記ケーブルに対する摩擦係数が小さな材料から筒状に形成された樹脂チューブと、
     を備える、医療用器具の関節部。
    A joint portion disposed between the rod portion and the surgical tool in the medical device,
    An outer shell formed into a cylindrical shape having a space inside,
    A core material tube arranged in the inner space of the outer shell portion and formed in a cylindrical shape having a higher compression rigidity than the outer shell portion;
    A resin tube which is disposed in the inner space of the core tube, into which a cable used for operating the surgical tool is inserted, and which is formed in a tubular shape from a material having a smaller coefficient of friction with respect to the cable than the core tube. When,
    A joint of a medical device, comprising:
  2.  前記芯材チューブの側面には、周方向に延びる複数のスリットが設けられ、
     前記複数のスリットは、前記芯材チューブの長手方向に等間隔に並んで配置されている、請求項1に記載の医療用器具の関節部。
    A plurality of slits extending in the circumferential direction are provided on a side surface of the core tube,
    The joint of the medical device according to claim 1, wherein the plurality of slits are arranged at regular intervals in a longitudinal direction of the core tube.
  3.  前記芯材チューブの側面には、周方向に延びる複数のスリットが設けられ、
     前記複数のスリットは、前記芯材チューブの長手方向に並んで配置されていると共に、前記複数のスリットの配置間隔は、前記長手方向における前記棒状部から前記術具に向かって短くなる、
     請求項1に記載の医療用器具の関節部。
    A plurality of slits extending in the circumferential direction are provided on a side surface of the core tube,
    The plurality of slits are arranged side by side in the longitudinal direction of the core tube, and the arrangement interval of the plurality of slits decreases from the rod-shaped portion in the longitudinal direction toward the surgical tool.
    The joint of the medical device according to claim 1.
  4.  前記外殻部は、らせん状の構造を有する可撓体である、請求項1から3のいずれか1項に記載の医療用器具の関節部。 4. The joint of the medical device according to claim 1, wherein the outer shell is a flexible body having a helical structure. 5.
  5.  前記外殻部は、中心に貫通孔が設けられた複数の円盤状の部材である外殻板が、前記長手方向に並んで配置されている、請求項1から3のいずれか1項に記載の医療用器具の関節部。 4. The outer shell portion according to claim 1, wherein outer shell plates, which are a plurality of disk-shaped members provided with through holes in the center, are arranged in the longitudinal direction. 5. Joints of medical instruments.
  6.  前記芯材チューブは、少なくともニッケルおよびチタンを成分として含む金属材料から形成されている、請求項1から5のいずれか1項に記載の医療用器具の関節部。 The joint part of the medical device according to any one of claims 1 to 5, wherein the core material tube is formed of a metal material containing at least nickel and titanium as components.
  7.  前記芯材チューブおよび前記樹脂チューブの間の隙間は、前記外殻部材および前記芯材チューブの間の隙間よりも小さい、請求項1から6のいずれか1項に記載の医療用器具の関節部。 The joint section of the medical device according to any one of claims 1 to 6, wherein a gap between the core tube and the resin tube is smaller than a gap between the outer shell member and the core tube. .
  8.  前記樹脂チューブおよび前記ケーブルの間の隙間は、前記外殻部材および前記芯材チューブとの間の隙間よりも小さい、請求項1から7のいずれか1項に記載の医療用器具の関節部。 The joint part of the medical device according to any one of claims 1 to 7, wherein a gap between the resin tube and the cable is smaller than a gap between the outer shell member and the core tube.
  9.  前記外殻部および前記ケーブルは、導電性を有する材料から形成されるとともに、前記術具に対して電気的に接続され、
     前記樹脂チューブは、前記外殻部および前記ケーブルとの間の絶縁を可能とする絶縁材料から形成されている、請求項1に記載の医療用器具の関節部。
    The outer shell and the cable are formed of a conductive material, and are electrically connected to the surgical tool,
    The joint of a medical device according to claim 1, wherein the resin tube is formed of an insulating material that enables insulation between the outer shell and the cable.
  10.  前記外殻部における前記術具側の端部には、前記外殻部および前記術具の間の導通を可能に接続する第1電力ケーブルが設けられ、
     前記外殻部における前記術具と反対側の端部には、外部および前記外殻部の間の導通を可能に接続する第2電力ケーブルが設けられている、請求項9に記載の医療用器具の関節部。
    At the end of the outer shell portion on the side of the surgical instrument, a first power cable that connects the outer shell portion and the surgical instrument so as to allow conduction is provided,
    10. The medical device according to claim 9, wherein a second power cable is provided at an end of the outer shell opposite to the surgical instrument, the second power cable connecting the outer shell and the outer shell so as to enable conduction. The joints of the instrument.
  11.  前記樹脂チューブにおける前記術具側の端部、および、前記術具と反対側の端部の少なくとも一方は、前記外殻部よりも前記ケーブルが延びる方向へ突出している、請求項9または10に記載の医療用器具の関節部。 11. The end according to claim 9, wherein at least one of an end of the resin tube on the side of the surgical tool and an end of the resin tube opposite to the surgical tool protrudes from the outer shell in a direction in which the cable extends. A joint of the medical device as described.
  12.  絶縁性を有する材料から形成され、少なくとも前記外殻部の周囲を覆うカバーが設けられている、請求項9から11のいずれか1項に記載の医療用器具の関節部。 The joint part of the medical device according to any one of claims 9 to 11, wherein a cover made of a material having an insulating property and covering at least a periphery of the outer shell part is provided.
  13.  請求項1から12のいずれかに記載の関節部と、
     前記関節部の一方の端部に配置される棒状部と、
     前記関節部の他方の端部に配置される術具と、
     が設けられている、医療用器具。
    A joint part according to any one of claims 1 to 12,
    A rod-shaped portion disposed at one end of the joint,
    A surgical tool arranged at the other end of the joint,
    Is provided, medical equipment.
PCT/JP2019/028337 2018-07-18 2019-07-18 Joint of medical instrument and medical instrument WO2020017605A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018135096 2018-07-18
JP2018-135096 2018-07-18
JP2019058401A JP2020018835A (en) 2018-07-18 2019-03-26 Joint of medical instrument and medical instrument
JP2019-058401 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020017605A1 true WO2020017605A1 (en) 2020-01-23

Family

ID=69164670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028337 WO2020017605A1 (en) 2018-07-18 2019-07-18 Joint of medical instrument and medical instrument

Country Status (1)

Country Link
WO (1) WO2020017605A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181493A1 (en) * 2020-03-10 2021-09-16 オリンパス株式会社 Medical manipulator
WO2022000709A1 (en) * 2020-06-30 2022-01-06 天津大学 Minimally invasive surgical robot operating tool

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258024A (en) * 1997-03-21 1998-09-29 Olympus Optical Co Ltd Bending tube
JP2000185013A (en) * 1998-12-22 2000-07-04 Olympus Optical Co Ltd Endoscope
WO2007120353A2 (en) * 2005-12-27 2007-10-25 Intuitive Surgical, Inc. Articulate and swapable endoscope for a surgical robot
JP2009522121A (en) * 2006-01-06 2009-06-11 オリヴァー クリスペン ロバティックス リミテッド Robot arm
US20110144656A1 (en) * 2001-02-15 2011-06-16 Hansen Medical, Inc. Robotically controlled medical instrument
JP2012513822A (en) * 2008-12-30 2012-06-21 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument having a tendon housed in a sheath
JP2016105938A (en) * 2009-11-13 2016-06-16 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Curved cannula surgical system
US20170105746A1 (en) * 2015-10-20 2017-04-20 Lumendi Ltd. Medical instruments for performing minimally-invasive procedures
JP2019034081A (en) * 2017-08-21 2019-03-07 日本発條株式会社 Bending structure of medical manipulator
WO2019073860A1 (en) * 2017-10-12 2019-04-18 日本発條株式会社 Bending structure and flexible tube for medical manipulator
WO2019073859A1 (en) * 2017-10-12 2019-04-18 日本発條株式会社 Bending structure and flexible tube for medical manipulator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258024A (en) * 1997-03-21 1998-09-29 Olympus Optical Co Ltd Bending tube
JP2000185013A (en) * 1998-12-22 2000-07-04 Olympus Optical Co Ltd Endoscope
US20110144656A1 (en) * 2001-02-15 2011-06-16 Hansen Medical, Inc. Robotically controlled medical instrument
WO2007120353A2 (en) * 2005-12-27 2007-10-25 Intuitive Surgical, Inc. Articulate and swapable endoscope for a surgical robot
JP2009522121A (en) * 2006-01-06 2009-06-11 オリヴァー クリスペン ロバティックス リミテッド Robot arm
JP2012513822A (en) * 2008-12-30 2012-06-21 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument having a tendon housed in a sheath
JP2016105938A (en) * 2009-11-13 2016-06-16 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Curved cannula surgical system
US20170105746A1 (en) * 2015-10-20 2017-04-20 Lumendi Ltd. Medical instruments for performing minimally-invasive procedures
JP2019034081A (en) * 2017-08-21 2019-03-07 日本発條株式会社 Bending structure of medical manipulator
WO2019073860A1 (en) * 2017-10-12 2019-04-18 日本発條株式会社 Bending structure and flexible tube for medical manipulator
WO2019073859A1 (en) * 2017-10-12 2019-04-18 日本発條株式会社 Bending structure and flexible tube for medical manipulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181493A1 (en) * 2020-03-10 2021-09-16 オリンパス株式会社 Medical manipulator
WO2022000709A1 (en) * 2020-06-30 2022-01-06 天津大学 Minimally invasive surgical robot operating tool

Similar Documents

Publication Publication Date Title
JP2020018835A (en) Joint of medical instrument and medical instrument
KR101118049B1 (en) Medical instrument
JP2017205524A (en) Steerable delivery sheaths
CN102905638B (en) Endoscope-use high-frequency treatment instrument
US11484690B2 (en) Torqueable steerable sheaths
WO2020017605A1 (en) Joint of medical instrument and medical instrument
KR20190029603A (en) Pathway instrument for surgical instruments, associated apparatus, system, and method
JP2019034081A (en) Bending structure of medical manipulator
JP6482101B2 (en) Operation unit for bending treatment tools
WO2023008275A1 (en) Flexible structure and method for producing same
JP6913775B1 (en) Flexion structure and joint function
JP7506620B2 (en) Bent structure and current-carrying device
JP7271948B2 (en) Forceps-type instrument
EP3595761B1 (en) Flexible elongated structure having a steerable end
JP5992355B2 (en) Endoscopic high-frequency treatment instrument
US20240116195A1 (en) Bending structure and conductive device
JP6754144B2 (en) Surgical support robot
WO2023008274A1 (en) Flexible structure
JP2019034083A (en) Flexible tube of medical manipulator and bending structure
WO2022092268A1 (en) Bending structural body
WO2017154172A1 (en) Flexible treatment instrument and medical tube
WO2016203821A1 (en) Flexible tube and endoscope using flexible tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837999

Country of ref document: EP

Kind code of ref document: A1