WO2020017141A1 - Reactive diluent, composition, sealing material, cured product, substrate, electronic component, epoxy compound and method for producing compound - Google Patents

Reactive diluent, composition, sealing material, cured product, substrate, electronic component, epoxy compound and method for producing compound Download PDF

Info

Publication number
WO2020017141A1
WO2020017141A1 PCT/JP2019/019696 JP2019019696W WO2020017141A1 WO 2020017141 A1 WO2020017141 A1 WO 2020017141A1 JP 2019019696 W JP2019019696 W JP 2019019696W WO 2020017141 A1 WO2020017141 A1 WO 2020017141A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
component
composition
cured product
epoxy
Prior art date
Application number
PCT/JP2019/019696
Other languages
French (fr)
Japanese (ja)
Inventor
務 高嶋
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to CN201980047141.XA priority Critical patent/CN112424255A/en
Priority to JP2020530910A priority patent/JPWO2020017141A1/en
Priority to KR1020217000729A priority patent/KR20210032383A/en
Publication of WO2020017141A1 publication Critical patent/WO2020017141A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/36Epoxy compounds containing three or more epoxy groups together with mono-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds

Definitions

  • the present invention relates to a reactive diluent, a composition, a sealing material, a cured product, a substrate, an electronic component, an epoxy compound, an intermediate in the production of the epoxy compound, a method for producing the intermediate, and a method for producing the epoxy compound.
  • This application claims priority based on Japanese Patent Application No. 2018-134435 and Japanese Patent Application No. 2018-134436 for which it applied to Japan on July 17, 2018, and uses the content here.
  • Epoxy resin compositions have excellent electrical performance and adhesive strength, and are widely used as interlayer insulating materials for printed circuit boards of electrical and electronic equipment, sealing materials, matrix materials for various structural members, adhesives, etc. I have.
  • current electronic devices are required to be able to transmit and receive high-speed and large-volume information.
  • the delay between transmissions of electric signals increases due to the large inter-wiring capacity of the conventional interlayer insulating material, and the transmission and reception of high-speed and large-capacity information is performed. Was hindered. Since the delay time is proportional to the capacitance between the wirings, if the capacitance between the wirings is reduced by lowering the dielectric of the interlayer insulating material, the speed of transmission of the electric signal can be increased.
  • dielectric loss tangent and relative dielectric constant Two characteristics, dielectric loss tangent and relative dielectric constant, are important as dielectric characteristics.
  • a method of lowering the dielectric constant of an epoxy resin a method of increasing the amount of silica filler is known.
  • the dielectric loss tangent can be reduced, but there is a problem that the dielectric constant increases.
  • Epoxy resin compositions are widely used in various applications because of their excellent adhesiveness and electromechanical properties. Epoxy resin compositions are usually provided with preferable characteristics according to the use by adding various additives. For example, when an epoxy resin composition is used as a semiconductor encapsulant, with the recent miniaturization of electronic devices, it is necessary to fill the encapsulant into minute gaps. It has been demanded. As a means for reducing the viscosity of a high-viscosity resin composition, a diluent is used. Diluents are divided into non-reactive and reactive.
  • the reactive diluent reacts with the resin component of the resin composition and cures together with the resin composition to become a part of a cured product, there is an advantage that the diluent component hardly bleeds out.
  • a reactive diluent for lowering the viscosity of the resin composition and exhibiting excellent dielectric properties for example, a compound in which a glycidyl group is bonded to an isostearic acid raw material via an ester bond as described in Non-Patent Document 1 ( (Product name: FOLDI) is disclosed.
  • the epoxy resin composition When the epoxy resin composition is used as a cured product, the cured product becomes rigid due to its high modulus of elasticity, and thermal expansion and curing shrinkage occur to easily apply stress to peripheral members. As a result, a dimensional deviation or a crack may cause a malfunction. For this reason, a material that is flexible when cured is required.
  • the present invention has been made to solve the above-described problems, and has realized a reduction in the viscosity of a resin composition, and a cured product of the resin composition has realized low dielectric properties and flexibility. It is an object of the present invention to provide a novel reactive diluent capable of satisfying the above requirement. Another object of the present invention is to provide a composition containing the reactive diluent. Another object of the present invention is to provide a sealing material containing the composition. Another object of the present invention is to provide a cured product of the composition. Another object of the present invention is to provide a substrate including the cured product. Another object of the present invention is to provide an electronic component including the cured product.
  • a composition comprising the following components A and B, Component A: a compound represented by the following general formula (1), (In the formula (1), n is 0 or 1.)
  • Component B a compound having two or more groups containing an epoxy ring in the molecule.
  • a sealing material containing the composition according to [3] or [4].
  • a substrate comprising the cured product according to [6].
  • An electronic component comprising the cured product according to [6].
  • a method for producing a compound represented by the following general formula (2), comprising obtaining a compound represented by the following general formula (2) by hydroxylating a compound represented by the following general formula (3): .
  • the low viscosity of a resin composition is implement
  • a composition containing the reactive diluent can be provided.
  • a sealing material containing the composition can be provided.
  • a cured product of the composition can be provided.
  • a substrate provided with the cured product can be provided.
  • an electronic component including the cured product can be provided.
  • the present invention it is possible to provide a novel epoxy compound that realizes a low viscosity of a resin composition and achieves a low dielectric property and imparts flexibility in a cured product of the resin composition.
  • an intermediate in the production of the epoxy compound can be provided.
  • a method for producing the intermediate can be provided.
  • a method for producing the epoxy compound can be provided.
  • the compound according to the embodiment of the present invention is a compound represented by the following general formula (1) (may be abbreviated as “compound (1)”).
  • n 0 or 1.
  • the viscosity of the resin composition when compounded into a resin composition, the viscosity of the resin composition is reduced, and the cured product of the resin composition achieves low dielectric properties and imparts flexibility. Achievable.
  • Compound (1) has a structure of a saturated hydrocarbon in the molecule. Therefore, when it is blended with the resin composition, it is considered that the cured product contributes to exhibiting low dielectric properties.
  • Compound (1) has a branched saturated hydrocarbon structure in the molecule. Therefore, it is considered that when it is mixed with the resin composition, it contributes to lowering the viscosity of the resin composition. In addition, it is considered that this structure contributes to imparting flexibility to the cured product when blended with the resin composition.
  • providing flexibility refers to a comparison between a resin composition containing the compound according to the present invention and a resin composition not containing the compound according to the present invention. This means that the resin composition containing such a compound is more easily deformed and hardly broken.
  • Compound (1) can be colorless and transparent. Therefore, when compound (1) is blended with the resin composition, compound (1) is also prevented from causing coloring of the resin composition.
  • Compound (2) The compound according to the embodiment of the present invention is a compound represented by the following general formula (2) (sometimes abbreviated as “compound (2)”).
  • n 0 or 1.
  • Compound (2) can be used as an intermediate in the production of compound (1).
  • Compound (1) can be produced, for example, by the following method.
  • Compound (1) is not limited to those produced by the following method.
  • Compound (1) can be produced by subjecting a compound represented by the following general formula (3) (may be abbreviated as “compound (3)”) to epoxidation after hydroxylation.
  • compound (3) a compound represented by the following general formula (3) (may be abbreviated as “compound (3)”) to epoxidation after hydroxylation.
  • epoxidation means to introduce an epoxy ring or a group containing an epoxy ring, unless otherwise specified.
  • n 0 or 1.
  • the method for producing the compound (1) may include the following steps 1 and 2.
  • Step 1 a step of hydroxylating compound (3) to obtain compound (2).
  • Step 2 a step of epoxidizing the compound (2) obtained in the above step 1 to obtain a compound (1).
  • the method for producing compound (1) of the embodiment includes a step (step 1) of hydroxylating compound (3) to obtain compound (2). That is, the present invention provides a method for producing a compound (2), which comprises obtaining a compound (2) by hydroxylating the compound (3).
  • the method for producing the compound (1) of the embodiment may include a step of obtaining the compound (2) by hydroborating the compound (3) and then hydroxylating the compound (3).
  • the step 1 includes: The step of reacting the compound (3) with a hydroborating agent to form a hydroboron, followed by reacting with a peroxide to oxidize and hydroxylate to obtain the compound (2) may be performed.
  • n 0 or 1.
  • hydroborating agent a substance which reacts with an alkene to cause a hydroboration reaction can be used, and may be selected from various substances capable of hydroboration.
  • the hydroborating agent include compounds having a BH bond in the molecule, and examples thereof include borane, borane derivatives, and complexes thereof.
  • the borane derivative include a monoalkyl borane, a dialkyl borane and a compound represented by the following general formula (3a). From the viewpoint of yield and selectivity, 9-borabicyclo [3.3.1] nonane (9 —BBN) or NH 3 BH 3 [in the compound represented by the following general formula (3a), R 1 to R 6 are hydrogen atoms].
  • the complex examples include a tetrahydrofuran (THF) complex, a dimethylsulfide complex, and the like, and from the viewpoint of yield and selectivity, a 9-BBN.THF complex or an NH 3 BH 3 .THF complex is preferable.
  • THF tetrahydrofuran
  • dimethylsulfide complex examples include a dimethylsulfide complex, and the like, and from the viewpoint of yield and selectivity, a 9-BBN.THF complex or an NH 3 BH 3 .THF complex is preferable.
  • R 1 to R 6 are each independently a hydrogen atom or an alkyl group.
  • the alkyl group of R 1 to R 6 may be a linear or branched alkyl group having 1 to 4 carbon atoms.
  • Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group.
  • Etc. can be exemplified.
  • Commercially available NH 3 BH 3 may be used, and a step of synthesizing NH 3 BH 3 may be provided prior to step 1.
  • Compound (3) can be obtained by multiplying isobutylene.
  • the compound (3) has an isomer that is a compound represented by the following general formula (3 ′) (may be abbreviated as “compound (3 ′)”).
  • the method for producing the compound (1) of the embodiment includes a step (step 1) of obtaining a compound (2) by hydroborating a raw material containing the compound (3) and the compound (3 ′) and then hydroxylating the raw material. May be something. Even if the raw material contains the compound (3 ′), the compound (3 ′) does not participate in the above reaction and can be removed after the reaction.
  • the amount of the hydroborating agent to be used may be appropriately adjusted according to the type of the compound in the reaction system, and the amount of the BH bond is 0.9 to 3 based on 1 equivalent of the carbon-carbon unsaturated bond to be reacted. It is preferably in the range of equivalents, more preferably in the range of 1 to 3 equivalents, and even more preferably in the range of 1.1 to 1.5 equivalents. When it is at least the lower limit, the yield will be better, and when it is at most the upper limit, purification will tend to be better.
  • the temperature (reaction temperature) of the reaction for hydroboration may be appropriately adjusted according to the type of the compound in the reaction system, but is preferably in the range of -80 to 120 ° C, for example, preferably in the range of -80 to 80 ° C.
  • the temperature is preferably in the range of -30 ° C, more preferably in the range of -30 to 50 ° C, and even more preferably in the range of -30 to 40 ° C.
  • it is preferably in the range of ⁇ 80 to 120 ° C., more preferably in the range of 0 to 100 ° C., and even more preferably in the range of 50 to 90 ° C.
  • the reaction rate is good and the reaction efficiency is good
  • the risk of decomposition of the raw materials and products tends to be reduced.
  • reaction time The time (reaction time) of the reaction for hydroboration may be appropriately adjusted according to other conditions such as the reaction temperature, and may be, for example, 0.5 to 100 hours.
  • the peroxide examples include hydrogen peroxide, perbenzoic acid, benzoyl peroxide and the like, and hydrogen peroxide is preferable.
  • Commercially available hydrogen peroxide can be used.
  • the amount of hydrogen peroxide to be used is not particularly limited, but is preferably in the range of 1 to 5 equivalents to 1 equivalent of the carbon-carbon unsaturated bond subjected to the reaction with the hydroborating agent, and preferably 1 to 2 equivalents. More preferably, it is within the range. When the amount is equal to or more than the lower limit, the reaction can proceed efficiently, and when the amount is equal to or less than the above upper limit, there is a tendency that a possibility that a side reaction such as oxidation of the generated hydroxy compound proceeds and the yield is reduced is reduced.
  • the oxidation in step 1 can be performed under basic conditions.
  • the basic condition includes a condition in which a peroxide is used in combination with a base, and includes a solution in which a peroxide and a base are added.
  • the base include inorganic bases.
  • the inorganic base include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, and carbonate. Calcium, lithium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate and the like can be mentioned.
  • sodium hydroxide, potassium hydroxide, or lithium hydroxide is preferred from the viewpoint of reaction yield, reaction temperature, simplicity of operation, economy, and the like.
  • reaction temperature may be appropriately adjusted depending on the type of the compound in the reaction system, but is preferably in the range of -80 to 80 ° C, for example, -30 to 50 ° C. Is more preferably in the range of ⁇ 30 to 40 ° C. When it is not less than the above lower limit, the reaction rate is good and the reaction efficiency is good, and when it is not more than the above upper limit, the risk of decomposition of the raw materials and products is small.
  • reaction time may be appropriately adjusted depending on other conditions such as the reaction temperature, and may be, for example, 0.5 to 100 hours.
  • the reaction of the above step 1 may be performed in the presence of a solvent.
  • a solvent One type of solvent may be used alone, or two or more types may be used in combination.
  • the solvent is not particularly limited, and examples thereof include n-hexane, pentane, cyclohexane, benzene, toluene, xylene, acetonitrile, acetone, ethyl acetate, diethyl ether, tetrahydrofuran, dimethyl sulfoxide, dimethyl sulfide, and trimethylamine. From above, diethyl ether, tetrahydrofuran, dimethyl sulfide, and trimethylamine are preferred, and diethyl ether and tetrahydrofuran are more preferred.
  • the method for producing compound (1) of the embodiment includes a step (step 2) of obtaining compound (1) by epoxidizing compound (2) obtained in step 1 above.
  • the method for producing the compound (1) of the embodiment includes a step of epoxidizing the compound (2) obtained in the step 1 and introducing an epoxy ring or a group containing an epoxy ring to obtain the compound (1). May be something.
  • the method for producing the compound (1) of the embodiment may include a step of glycidylating the compound (2) obtained in the above step 1 and introducing a glycidyl group to obtain the compound (1).
  • the step 2 includes: The step of reacting the compound (2) with epihalohydrin to perform epoxidation (glycidylation) to obtain the compound (1) may be performed.
  • n 0 or 1.
  • Epihalohydrin includes epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin and the like.
  • Epihalohydrin may be a compound represented by the following general formula (4) (sometimes abbreviated as “compound (4)”). These may be used alone or in combination of two or more.
  • halogen atom examples include a fluorine atom (-F), a chlorine atom (-Cl), a bromine atom (-Br), and an iodine atom (-I).
  • epichlorohydrin is preferred as epihalohydrin because of its easy industrial availability.
  • epihalohydrin used may be appropriately adjusted according to the type of the compound in the reaction system.
  • epihalohydrin may be added in the range of 2 to 10 equivalents to 1 equivalent of the hydroxyl group in compound (2). No.
  • the epoxidation reaction can be performed under basic conditions.
  • the basic conditions include in a liquid to which a basic catalyst has been added.
  • the basic catalyst include an alkaline earth metal hydroxide, an alkali metal carbonate, and an alkali metal hydroxide.
  • alkali metal hydroxides are preferred from the viewpoint of excellent epoxidation catalytic activity, and examples thereof include sodium hydroxide and potassium hydroxide.
  • these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass or in the form of a solid.
  • the amount of the basic catalyst to be used may be appropriately adjusted according to the type of the compound in the reaction system and the like. For example, 0.9 to 2 equivalents of the basic catalyst are added to 1 equivalent of the hydroxyl group in the compound (2). Are added at once or gradually added.
  • reaction temperature The temperature at which the compound (2) is reacted with epihalohydrin (reaction temperature) may be appropriately adjusted according to the type of the compound in the reaction system, and may be, for example, 20 to 120 ° C.
  • reaction time for reacting compound (2) with epihalohydrin may be appropriately adjusted according to other conditions such as the reaction temperature, and may be, for example, 0.5 to 10 hours.
  • the reaction in the above step 2 may be performed in the presence of a solvent.
  • a solvent One type of solvent may be used alone, or two or more types may be used in combination.
  • the solvent is not particularly limited, and examples thereof include n-hexane, pentane, cyclohexane, benzene, toluene, xylene, acetonitrile, acetone, ethyl acetate, diethyl ether, tetrahydrofuran, dimethyl sulfoxide, dimethyl sulfide, and trimethylamine.
  • Is preferably diethyl ether, tetrahydrofuran, dimethyl sulfide or trimethylamine, and more preferably diethyl ether or tetrahydrofuran.
  • the reaction product may be washed with water, and then unreacted epihalohydrin and an organic solvent used in combination may be distilled off under heating and reduced pressure conditions. Further, in order to further reduce the hydrolyzable halogen in the reaction product, the reaction product is dissolved again in an organic solvent such as toluene, methyl isobutyl ketone, and methyl ethyl ketone, and alkali metal water such as sodium hydroxide and potassium hydroxide is used. The reaction can be further performed by adding an aqueous solution of an oxide. At this time, a phase transfer catalyst such as a quaternary ammonium salt or a crown ether may be present for the purpose of improving the reaction rate.
  • a phase transfer catalyst such as a quaternary ammonium salt or a crown ether may be present for the purpose of improving the reaction rate.
  • the amount thereof is preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the reaction product.
  • the compound (1) can be suitably used as a reactive diluent for adding to a resin component to lower the viscosity of the resin component.
  • the reactive diluent according to the present invention is as follows.
  • a reactive diluent comprising the following component A, Component A: a compound represented by the following general formula (1). (In the formula (1), n is 0 or 1.)
  • the reactive diluent according to the present invention may be as follows.
  • a reactive diluent comprising the following component A, Component A: a compound represented by the above general formula (1).
  • the reactive diluent is preferably liquid at 25 ° C. and has a viscosity at 25 ° C. of 0.01 to 1000 mPa ⁇ s, 1 to 300 mPa ⁇ s, or 5 to 35 mPa ⁇ s. s or 5.5 to 10 mPa ⁇ s.
  • the viscosities are measured under the measurement conditions described in the examples or under compatible conditions to obtain the same results.
  • the compound represented by the general formula (1) is preferably liquid at 25 ° C., and has a viscosity at 25 ° C. of 0.01 to 1000 mPa ⁇ s, or 1 to 300 mPa ⁇ s.
  • the resin component is not particularly limited, but an epoxy resin before curing, such as a monomer or a prepolymer, is preferable.
  • composition according to the present invention is as follows.
  • Composition containing the following components A and B Component A: a compound represented by the following general formula (1), (In the formula (1), n is 0 or 1.)
  • Component B a compound having two or more groups containing an epoxy ring in the molecule.
  • composition according to the present invention containing the component A and the component B may further contain a curing agent (component C), if necessary.
  • the composition according to the present invention can further contain a curing accelerator (component D), a filler (component E), and the like, if necessary.
  • component D curing accelerator
  • component E filler
  • the component A is a compound represented by the general formula (1) (the compound (1)), and is the same as that described in the above ⁇ Compound (1) ⁇ , and thus description thereof will be omitted. .
  • Component B is a compound having two or more groups containing an epoxy ring (for example, an epoxy group or a glycidyl group) in a molecule.
  • the compound having two or more groups containing an epoxy ring in a molecule include a bifunctional or higher functional epoxy compound or an epoxy resin.
  • the compound having two or more groups containing an epoxy ring in the molecule may be a 2- to 10-functional epoxy compound, a 2- to 6-functional epoxy compound, or a 2- to 4-functional epoxy compound. Good.
  • the compound having two or more groups containing an epoxy ring in the molecule may be a bifunctional epoxy resin, a bifunctional epoxy resin, a bifunctional epoxy resin, or a bifunctional epoxy resin. Good.
  • a compound having two or more groups containing an epoxy ring in the molecule may be used as an epoxy resin by polymerizing and used as an epoxy compound or an epoxy resin having two or more groups containing an epoxy ring in the molecule.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol AD type epoxy resin; alicyclic epoxy resin; phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin And novolak type epoxy resins such as aralkyl novolak type epoxy resins; diglycidyl etherified products of polyfunctional phenols; and hydrogenated products thereof.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol AD type epoxy resin
  • alicyclic epoxy resin phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin
  • novolak type epoxy resins such as aralkyl novolak type epoxy resins; dig
  • the bifunctional or higher functional epoxy compound may be a bifunctional epoxy compound (compound having an epoxy ring-containing group having 2 to 10 in a molecule), a bifunctional hexafunctional epoxy compound, or a bifunctional epoxy compound. It may be a tetrafunctional epoxy compound.
  • a trifunctional or higher functional epoxy resin or a tetrafunctional or higher functional epoxy resin is preferable.
  • the bifunctional or higher functional epoxy resin may be a bifunctional epoxy resin (a compound having an epoxy ring-containing group of 2 to 10 in a molecule), a bifunctional hexafunctional epoxy resin, or a bifunctional epoxy resin. It may be a tetrafunctional epoxy resin.
  • a trifunctional epoxy compound or a tetrafunctional epoxy compound is preferably used as the compound having two or more groups containing an epoxy ring in the molecule.
  • a typical trifunctional epoxy compound that can be used in the present invention includes a compound having the following structural formula (product name: TEPIC (registered trademark)).
  • a typical tetrafunctional epoxy compound that can be used in the present invention includes a compound having the following structural formula (product name: jER (registered trademark) 1031S).
  • a typical other tetrafunctional epoxy compound that can be used in the present invention is a naphthalene-type epoxy compound having the following structural formula ((product name: EPICLON EXA-4700)).
  • the mixing ratio (A: B) of component A and component B may be 1 to 80:20 to 99, 5 to 70:30 to 95, and 20 to 60:40 on a weight basis. It may be 80.
  • the total blending ratio of component A and component B in the composition may be 1 to 99% by weight, or 5 to 80% by weight, when the total weight of the entire composition is 100% by weight. , From 10 to 60% by weight.
  • Examples of the curing agent (component C) include various curing agents used as curing agents for epoxy compounds and epoxy resins.
  • examples of the curing agent include phenol-based curing agents, amine-based curing agents, acid anhydrides, boron trifluoride monoethylamine, isocyanates, dicyandiamide, and urea resins.
  • the phenolic curing agent may be any monomer, oligomer, or polymer having two or more phenolic hydroxyl groups in one molecule, for example, a novolak phenol resin such as a phenol novolak resin or a cresol novolak resin; a naphthalene phenol Phenol resins such as resin, high ortho-type novolak phenol resin, terpene-modified phenol resin, terpene phenol-modified phenol resin, aralkyl-type phenol resin, dicyclopentadiene-type phenol resin, salicylaldehyde-type phenol resin, and benzaldehyde-type phenol resin.
  • a novolak phenol resin such as a phenol novolak resin or a cresol novolak resin
  • a naphthalene phenol Phenol resins such as resin, high ortho-type novolak phenol resin, terpene-modified phenol resin, terpene phenol
  • phenol novolak resins cresol novolak resins, and partially modified aminotriazine novolak resins are preferred.
  • the amine-based curing agent include aliphatic amines such as triethylenetetramine, tetraethylenepentamine and diethylaminopropylamine; and amine compounds such as aromatic amines such as metaphenylenediamine and 4,4'-diaminodiphenylmethane.
  • the acid anhydride include acid anhydrides such as phthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
  • curing agents may be used alone or in combination of two or more.
  • the amount of the curing agent used is preferably such that the ratio of the reactive group equivalent of the curing agent to the epoxy equivalent of component A and component B is 0.3 to 1.5 equivalents.
  • the compounding amount of the curing agent is within the above range, the control of the degree of curing is easy and the productivity tends to be good.
  • Examples of the curing accelerator (component D) include an imidazole compound, an organic phosphorus compound, a tertiary amine, and a quaternary ammonium salt.
  • the imidazole compound may be an imidazole compound having a potential by masking a secondary amino group of imidazole with acrylonitrile, isocyanate, melamine, acrylate, or the like.
  • imidazole compound used herein examples include imidazole, 2-methylimidazole, 4-ethyl-2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, and 2-heptadecylimidazole , 4,5-diphenylimidazole, 2-methylimidazoline, 2-ethyl-4-methylimidazoline, 2-undecylimidazoline, 2-phenyl-4-methylimidazoline and the like.
  • the compounding amount of the curing accelerator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the components A and B. If it is at least the above upper limit, a better curing promoting effect will be obtained, and if it is at most the above lower limit, the composition tends to be excellent in storage stability and physical properties of the cured product, and also economically.
  • Examples of the filler (component E) include oxides such as silica, aluminum oxide, zirconia, mullite, and magnesia; hydroxides such as aluminum hydroxide, magnesium hydroxide, and hydrotalcite; aluminum nitride, silicon nitride, boron nitride, and the like. Nitrides; natural minerals such as talc, montmorillonite and saponite; metal particles and carbon particles.
  • the average particle size of the inorganic filler is preferably 25 ⁇ m or less, more preferably 0.01 ⁇ m or more and 25 ⁇ m or less, further preferably 0.1 ⁇ m or more and 10 ⁇ m or less, and particularly preferably 0.3 ⁇ m or more and 7 ⁇ m or less.
  • the average particle size means a 50% volume cumulative diameter (D50) measured by a particle size distribution meter (laser diffraction scattering method).
  • the amount of the filler is preferably 5 to 90% by weight, more preferably 10 to 80% by weight, when the total weight of the whole composition is 100% by weight.
  • composition according to the present invention may further contain, if necessary, other components that do not correspond to the above components A to E.
  • Other components include other resins, solvents, additives, and the like.
  • Other resins include, for example, polyolefin, polyamide, polyimide and the like.
  • composition according to the present invention can be suitably used for the following applications.
  • the composition preferably contains the components A to C, and more preferably the components A to D.
  • the composition according to the present invention can be used as a sealing material for components such as semiconductor components.
  • the sealing material according to the present invention includes the composition according to the present invention.
  • As the sealing material for example, an aspect in which the space between the semiconductor component and the substrate, the periphery of the semiconductor component element is sealed with the sealing material, and an aspect in which the semiconductor component and the substrate are sealed with the sealing material (underfill ) Can be exemplified.
  • the sealing material is used as an underfill, for example, the gap between the substrate and the semiconductor component can be filled with the sealing material by the following procedure. First, a sealing material is applied to one end of a semiconductor component while heating the substrate to 70 to 130 ° C.
  • the gap between the substrate and the semiconductor component is filled with the sealing material by capillary action.
  • the substrate may be inclined, or a pressure difference may be generated between the inside and outside of the gap.
  • the gap can be sealed by heating and curing the sealing material.
  • the composition according to the present invention can be used as a substrate material.
  • a substrate can be manufactured by impregnating fibers such as glass fiber and carbon fiber with the composition according to the present invention, molding the resultant into a sheet, obtaining a prepreg, and heating and curing the prepreg. . Two or more prepregs may be stacked.
  • the cured product according to the present invention is a cured product of the composition according to the present invention.
  • the cured product according to the present invention can be obtained, for example, by heating and curing the composition according to the present invention at 80 to 200 ° C. for 0.2 to 6 hours.
  • the composition when the composition according to the present invention is a cured product, the composition preferably contains the components A to C, and more preferably the components A to D.
  • a substrate provided with a cured product of the composition according to the present invention can be provided.
  • the substrate is provided with a cured product of the composition according to the present invention, and as described below, a cured product of a prepreg, a cured product of a resin sheet, a copper-clad laminate, a printed circuit board, and a multilayer printed circuit board. It may have at least one selected from the group consisting of:
  • a prepreg including the composition and the fiber according to the present invention can be provided.
  • a resin sheet including the composition according to the present invention can be provided.
  • the resin sheet is obtained by molding the composition according to the present invention into a sheet, and the composition may be in a semi-cured state in order to enhance moldability.
  • the resin sheet is suitably used as an interlayer insulating material.
  • the substrate may be provided with a cured product of a prepreg having the composition and fibers according to the present invention. Two or more prepregs described above may be stacked.
  • the substrate can be manufactured, for example, by heat-curing and pressing the prepreg described above.
  • a copper-clad laminate in which a substrate and a copper foil are laminated can be provided.
  • the copper foil of the copper clad laminate can be processed to form a circuit. Therefore, as one embodiment of the present invention, a printed circuit board or a multilayer printed circuit board having a circuit formed on a board can be provided.
  • the printed circuit board or the multilayer printed circuit board may further include a cured product of the resin sheet.
  • a resin sheet may be provided instead of the substrate.
  • the copper-clad laminate can be manufactured by laminating the prepreg and the copper foil and forming the laminate under heat and pressure.
  • the heating and pressing conditions can be appropriately adjusted according to the thickness of the copper-clad laminate to be manufactured or the composition of the composition according to the present invention.
  • a printed circuit board or a multilayer printed circuit board can be manufactured by a conventional method such as a plating through-hole method or a build-up method, and can be obtained by laminating the above-mentioned prepreg or insulating resin sheet on an inner-layer wiring board and performing heat and pressure molding. Can be.
  • a printed circuit board or a multilayer printed circuit board can be manufactured by forming a circuit by etching a copper foil including a film.
  • the thickness of the prepreg, resin sheet, board, copper-clad laminate, printed circuit board, and multilayer printed circuit board is not particularly limited, but may be, for example, 0.1 to 10 mm, and may be, for example, 0.1 to 10 mm. It may be up to 5 mm.
  • the cured product of the composition containing the reactive diluent according to the present invention has moderate flexibility.
  • the cured product according to the present invention may have a flexural modulus value of 3000 MPa or less or 2500 MPa or less.
  • the lower limit of the flexural modulus is not particularly limited, the value of the flexural modulus may be 1500 MPa or more, or 2000 MPa or more.
  • the flexural modulus is assumed to be measured under the measurement conditions described in the examples or under compatible conditions that can provide the same result.
  • the cured product of the composition containing the reactive diluent according to the present invention has excellent dielectric properties.
  • the cured product according to the present invention may have a relative dielectric constant at 1 MHz or 1 GHz of 2 to 10, 2 to 5, or 3 to 4.
  • the relative dielectric constant is assumed to be measured under the measurement conditions described in the examples or under compatible conditions to obtain the same result.
  • the cured product according to the present invention may have a dielectric loss tangent at 1 MHz or 1 GHz of from 0.005 to 0.07, from 0.006 to 0.05, or from 0.007 to 0. 035 and may be 0.008 or more and less than 0.01. It is assumed that the dielectric loss tangent is measured under the measurement conditions described in the examples or under compatible conditions to obtain the same result.
  • the cured product having the above-mentioned dielectric properties may be read as a substrate, a copper-clad laminate, a printed circuit board, and a multilayer printed circuit board.
  • the cured product according to the present invention may have a water absorption value of 4% or less, 3% or less, or 1% or less.
  • the lower limit of the water absorption is not particularly limited, but may be 0.5% or more.
  • the fact that the water absorption is equal to or less than the above upper limit means that the cured product has excellent effect characteristics and that it has excellent water resistance or water repellency.
  • the water absorption is assumed to be measured under the measurement conditions described in the examples or under compatible conditions to obtain the same result.
  • an electronic component including the cured product according to the present invention can be provided. More specifically, an electronic component in which a component such as a semiconductor component and a substrate are sealed with a cured product of the sealing material according to the present invention can be provided.
  • the electronic component may use, for example, a sealing material as an underfill, the space between the component and the substrate may be sealed with a sealing material, or the space between the component and the substrate, and around the component. It may be sealed with a sealing material.
  • the components to be sealed include semiconductor elements, integrated circuits, large-scale integrated circuits, transistors, thyristors, diodes, capacitors, and the like, but are not limited thereto.
  • the electronic component may include a terminal, a wire, a lead frame, other structures, and the like, in addition to the cured product of the substrate, the component, and the sealing material.
  • prepregs, resin sheets, substrates, copper-clad laminates, printed circuit boards, multilayer printed circuit boards, and electronic components can be manufactured from the composition according to the present invention. These have low dielectric properties, flexibility, and excellent heat resistance, and are used for mobile communication devices that handle high-frequency signals of 1 GHz or higher, base station devices, servers, electronic devices for networks such as routers, and large computers.
  • the present invention can be suitably used for components of printed circuit boards for networks used in various electronic devices.
  • reaction solution was ice-cooled again, and 79 ml (238 mmol) of 3M NaOHaq was added dropwise. Subsequently, a 30% by mass H 2 O 2 solution (80 ml) was added dropwise. After 17 hours, disappearance of the starting compound (3-1) was confirmed by GC. After separating the organic layer and the aqueous layer, K 2 CO 3 was added to the organic layer, and water remaining in the organic solvent was separated. After separating the aqueous layer, the same operation was further performed twice. The aqueous layers were combined and extracted three times with ethyl acetate. Finally, the organic layers were combined and dried over MgSO 4 .
  • the yield was 770 mg (3.18 mmol), the yield was 59.2%, the GC purity was 95.8%, the viscosity was 5.8 mPa ⁇ s (25 ° C.), and the epoxy equivalent was 242.
  • 1 H-NMR was used to confirm that the compound (1-1) was synthesized.
  • the E-type viscosity at 25 ° C. was measured using the following E-type viscometer.
  • Equipment used TV20 viscometer manufactured by Toki Sangyo Co., Ltd. Measurement temperature: 25 ° C
  • the measurement of the rotational viscosity of the compound was started with an E-type viscometer, and the numerical value of the rotational viscosity at the point where the indicated value of the rotational viscosity was stabilized was measured.
  • NH 3 BH 3 was synthesized.
  • the reagents used are as follows. ⁇ 7.57 g (200 mmol) of NaBH 4 ⁇ (NH 4) 2 SO 4 26.43g (200mmol) ⁇ THF 300ml ⁇ NH 3 (Liquid specific gravity about 0.6) 7.9g
  • a 5% (v / v) NH 3 / THF solution (200 ml) and a 1M NH 3 / THF solution (100 ml) were prepared by blowing ammonia gas into THF under ice cooling.
  • ⁇ Preparation 1 of composition> The following materials were blended at a blending ratio (parts by weight) shown in Table 1 to obtain a composition according to the present invention.
  • Epoxy resin phenol novolak type (liquid, epoxy equivalent 175 g / eq, viscosity 4500 Pa ⁇ s)
  • Epoxy resin II bisphenol A liquid type (manufactured by Nippon Steel & Sumitomo Metal, model number: YD-128, epoxy equivalent 190 g / eq, viscosity 11,000 mPa ⁇ s)
  • Curing agent Curing agent
  • Curing agent A 2-ethyl-4-methylimidazole (amine equivalent: 110 g / eq)
  • Curing agent B phenol novolak resin (PR-HF-6, manufactured by Sumitomo Bakelite Co.)
  • Curing agent C methyl hexahydroanhydride phthalate Acid (curing accelerator)
  • Curing accelerator A Triphenylphosphine (Hokuko TPP, manufactured by Hokuko Chemical Co., Ltd.)
  • the E-type viscosity at 25 ° C. was measured using the following E-type viscometer. Equipment used: Toki Sangyo Co., Ltd. TV20 viscometer Measurement temperature: 25 ° C About 1.2 mL of each resin composition prepared in the formulation example was placed in a cup attached to an E-type viscometer, and the cup was set to a temperature of 25 ° C. The measurement of the rotational viscosity of the compound was started with an E-type viscometer, and the numerical value of the rotational viscosity at the point where the indicated value of the rotational viscosity was stabilized was measured.
  • the tensile shear strength was measured under the following conditions. After degreasing a Cu plate (length 150 mm ⁇ width 25 mm ⁇ thickness 1.5 mm) and an Al plate (length 150 mm ⁇ width 25 mm ⁇ thickness 1.5 mm) with acetone, each of the resin compositions prepared in the formulation examples was prepared. A thin brush was applied, and the Cu plate and the Al plate were overlapped with an overlap distance of 12.5 mm. Then, it was fixed with scissors and cured at 100 ° C. for 1 hour and 180 ° C. for 5 hours to prepare a test piece. The test was started at a tensile speed of 5 mm / min, and the load when the test piece was broken was defined as the tensile shear bond strength.
  • Table 1 shows the evaluation results.
  • ⁇ Preparation 2 of composition> The following materials were blended at a blending ratio (parts by weight) shown in Table 2 to obtain a composition according to the present invention.
  • Table 2 shows the evaluation results.
  • ⁇ Preparation 3 of composition> The following materials were blended at a blending ratio (parts by weight) shown in Table 3 to obtain a composition according to the present invention.
  • PCT Measure absorption heat resistance evaluation
  • Table 3 shows the evaluation results.
  • the compound according to the present invention can be suitably used as a reactive diluent mixed with an epoxy resin.
  • the resin composition containing the compound according to the present invention has a reduced viscosity, and the cured product of the resin composition exhibits excellent dielectric properties, has good flexibility, and is externally applied with force. It has been found that it has an excellent property that it is hard to break even when it is broken.

Abstract

A reactive diluent which contains a compound represented by general formula (1). (In formula (1), n represents 0 or 1.)

Description

反応性希釈剤、組成物、封止材、硬化物、基板、電子部品、エポキシ化合物、及び化合物の製造方法Reactive diluent, composition, encapsulant, cured product, substrate, electronic component, epoxy compound, and method for producing compound
 本発明は、反応性希釈剤、組成物、封止材、硬化物、基板、電子部品、エポキシ化合物、前記エポキシ化合物製造における中間体、前記中間体の製造方法、及び前記エポキシ化合物の製造方法に関する。
 本願は、2018年7月17日に日本に出願された特願2018-134435及び特願2018-134436に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to a reactive diluent, a composition, a sealing material, a cured product, a substrate, an electronic component, an epoxy compound, an intermediate in the production of the epoxy compound, a method for producing the intermediate, and a method for producing the epoxy compound. .
This application claims priority based on Japanese Patent Application No. 2018-134435 and Japanese Patent Application No. 2018-134436 for which it applied to Japan on July 17, 2018, and uses the content here.
 エポキシ樹脂組成物は、優れた電気的性能と接着力を有するため、電気電子機器のプリント基板等の層間絶縁材料や、封止材、各種構造部材のマトリックス材料、接着材等に広く使用されている。
 特に、現在の電子機器においては、高速且つ大容量の情報を送受信可能とすることが求められている。しかし、機器の小型化により、配線の微細化が進行するにつれ、従来の層間絶縁材料では配線間容量が大きいために、電気信号の伝達の遅延が大きくなり、高速且つ大容量の情報の送受信の妨げとなっていた。
 この遅延時間は、配線間容量に比例するので、層間絶縁材料を低誘電化することによって、配線間容量を低減すれば、電気信号の伝達の高速化が図れる。
Epoxy resin compositions have excellent electrical performance and adhesive strength, and are widely used as interlayer insulating materials for printed circuit boards of electrical and electronic equipment, sealing materials, matrix materials for various structural members, adhesives, etc. I have.
In particular, current electronic devices are required to be able to transmit and receive high-speed and large-volume information. However, as wiring becomes finer due to the miniaturization of equipment, the delay between transmissions of electric signals increases due to the large inter-wiring capacity of the conventional interlayer insulating material, and the transmission and reception of high-speed and large-capacity information is performed. Was hindered.
Since the delay time is proportional to the capacitance between the wirings, if the capacitance between the wirings is reduced by lowering the dielectric of the interlayer insulating material, the speed of transmission of the electric signal can be increased.
 誘電特性としては、誘電正接と比誘電率の2つの特性が重要である。エポキシ樹脂をより低誘電化する方法として、シリカフィラーを増量する方法が知られている。しかし、シリカフィラーを増量すると、誘電正接を低減することはできるものの、誘電率が上昇するなどの問題がある。 Two characteristics, dielectric loss tangent and relative dielectric constant, are important as dielectric characteristics. As a method of lowering the dielectric constant of an epoxy resin, a method of increasing the amount of silica filler is known. However, when the amount of the silica filler is increased, the dielectric loss tangent can be reduced, but there is a problem that the dielectric constant increases.
 エポキシ樹脂組成物は、その優れた接着性や電気機械特性から、各用途に広く使用されている。エポキシ樹脂組成物は、通常、様々な添加剤を加えるなどして用途に応じた好ましい特性の付与が行われている。例えば、エポキシ樹脂組成物を半導体の封止材として用いる場合、近年の電子機器の小型化に伴い、微細な隙間に封止材を充填する必要があるために、樹脂組成物の低粘度化が求められている。高粘度の樹脂組成物を低粘度化する手段として、希釈剤が利用されている。希釈剤は、非反応性のものと反応性のものとに分けられる。反応性希釈剤は、樹脂組成物の樹脂成分と反応し、樹脂組成物とともに硬化して硬化物の一部となるため、希釈剤成分がブリードアウトし難いなどの利点がある。
 樹脂組成物を低粘度化し、優れた誘電特性を発揮させるための反応性希釈剤として、例えば、非特許文献1に記載の、イソステアリン酸原料にエステル結合を介してグリシジル基を結合させた化合物(商品名:FOLDI)が開示されている。
Epoxy resin compositions are widely used in various applications because of their excellent adhesiveness and electromechanical properties. Epoxy resin compositions are usually provided with preferable characteristics according to the use by adding various additives. For example, when an epoxy resin composition is used as a semiconductor encapsulant, with the recent miniaturization of electronic devices, it is necessary to fill the encapsulant into minute gaps. It has been demanded. As a means for reducing the viscosity of a high-viscosity resin composition, a diluent is used. Diluents are divided into non-reactive and reactive. Since the reactive diluent reacts with the resin component of the resin composition and cures together with the resin composition to become a part of a cured product, there is an advantage that the diluent component hardly bleeds out.
As a reactive diluent for lowering the viscosity of the resin composition and exhibiting excellent dielectric properties, for example, a compound in which a glycidyl group is bonded to an isostearic acid raw material via an ester bond as described in Non-Patent Document 1 ( (Product name: FOLDI) is disclosed.
 エポキシ樹脂組成物を硬化物としたとき、硬化物はその弾性率の高さから剛直なものとなり、熱膨張や硬化収縮が生じて周辺部材に応力が加わりやすい。このことにより、寸法ずれやクラックが発生すると誤作動の原因となり得る。そのため、硬化物としたときに可撓性のある素材が求められる。 (4) When the epoxy resin composition is used as a cured product, the cured product becomes rigid due to its high modulus of elasticity, and thermal expansion and curing shrinkage occur to easily apply stress to peripheral members. As a result, a dimensional deviation or a crack may cause a malfunction. For this reason, a material that is flexible when cured is required.
 本発明は、上記のような問題点を解消するためになされたものであり、樹脂組成物の低粘度化を実現し、該樹脂組成物の硬化物においては低誘電性の実現と可撓性の付与とをかなえる、新規な反応性希釈剤を提供することを目的とする。
 また、本発明は、前記反応性希釈剤を含む組成物を提供することを目的とする。
 また、本発明は、前記組成物を含む封止材を提供することを目的とする。
 また、本発明は、前記組成物の硬化物を提供することを目的とする。
 また、本発明は、前記硬化物を備える基板を提供することを目的とする。
 また、本発明は、前記硬化物を備える電子部品を提供することを目的とする。
 また、本発明は、樹脂組成物の低粘度化を実現し、該樹脂組成物の硬化物においては低誘電性の実現と可撓性の付与とをかなえる、新規なエポキシ化合物を提供することを目的とする。
 また、本発明は、前記エポキシ化合物の製造における中間体を提供することを目的とする。
 また、本発明は、前記中間体の製造方法を提供することを目的とする。
 また、本発明は、前記エポキシ化合物の製造方法を提供することを目的とする。
The present invention has been made to solve the above-described problems, and has realized a reduction in the viscosity of a resin composition, and a cured product of the resin composition has realized low dielectric properties and flexibility. It is an object of the present invention to provide a novel reactive diluent capable of satisfying the above requirement.
Another object of the present invention is to provide a composition containing the reactive diluent.
Another object of the present invention is to provide a sealing material containing the composition.
Another object of the present invention is to provide a cured product of the composition.
Another object of the present invention is to provide a substrate including the cured product.
Another object of the present invention is to provide an electronic component including the cured product.
Further, the present invention provides a novel epoxy compound which realizes a low viscosity of a resin composition and achieves a low dielectric property and imparts flexibility in a cured product of the resin composition. Aim.
Another object of the present invention is to provide an intermediate in the production of the epoxy compound.
Another object of the present invention is to provide a method for producing the intermediate.
Another object of the present invention is to provide a method for producing the epoxy compound.
〔1〕以下の成分Aを含む反応性希釈剤、
 成分A:下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、nは0又は1である。)
〔2〕以下の成分A、及び成分Bを含む組成物、
 成分A:下記一般式(1)で表される化合物、
Figure JPOXMLDOC01-appb-C000010
(式(1)中、nは0又は1である。)
 成分B:エポキシ環を含む基を分子内に2つ以上有する化合物。
〔3〕さらに、以下の成分Cを含む前記〔2〕に記載の組成物、
 成分C:硬化剤。
〔4〕さらに、以下の成分Dを含む前記〔3〕に記載の組成物、
 成分D:硬化促進剤。
〔5〕前記〔3〕又は〔4〕に記載の組成物を含む封止材。
〔6〕前記〔3〕又は〔4〕に記載の組成物の硬化物。
〔7〕前記〔6〕に記載の硬化物を備える基板。
〔8〕前記〔6〕に記載の硬化物を備える電子部品。
〔9〕下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、nは0又は1である。)
〔10〕下記一般式(2)で表される化合物。
Figure JPOXMLDOC01-appb-C000012
(式(2)中、nは0又は1である。)
〔11〕下記一般式(3)で表される化合物をヒドロキシル化して、下記一般式(2)で表される化合物を得ることを含む、下記一般式(2)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000013
(式(3)中、nは0又は1である。)
Figure JPOXMLDOC01-appb-C000014
(式(2)中、nは0又は1である。)
〔12〕下記一般式(2)で表される化合物をエポキシ化して、下記一般式(1)で表される化合物を得ることを含む、下記一般式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000015
(式(2)中、nは0又は1である。)
Figure JPOXMLDOC01-appb-C000016
(式(1)中、nは0又は1である。)
[1] a reactive diluent containing the following component A,
Component A: a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
(In the formula (1), n is 0 or 1.)
[2] a composition comprising the following components A and B,
Component A: a compound represented by the following general formula (1),
Figure JPOXMLDOC01-appb-C000010
(In the formula (1), n is 0 or 1.)
Component B: a compound having two or more groups containing an epoxy ring in the molecule.
[3] The composition according to [2], further comprising the following component C:
Component C: curing agent.
[4] The composition according to [3], further comprising the following component D:
Component D: curing accelerator.
[5] A sealing material containing the composition according to [3] or [4].
[6] A cured product of the composition according to [3] or [4].
[7] A substrate comprising the cured product according to [6].
[8] An electronic component comprising the cured product according to [6].
[9] A compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000011
(In the formula (1), n is 0 or 1.)
[10] A compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000012
(In the formula (2), n is 0 or 1.)
[11] A method for producing a compound represented by the following general formula (2), comprising obtaining a compound represented by the following general formula (2) by hydroxylating a compound represented by the following general formula (3): .
Figure JPOXMLDOC01-appb-C000013
(In the formula (3), n is 0 or 1.)
Figure JPOXMLDOC01-appb-C000014
(In the formula (2), n is 0 or 1.)
[12] A method for producing a compound represented by the following general formula (1), comprising epoxidizing a compound represented by the following general formula (2) to obtain a compound represented by the following general formula (1): .
Figure JPOXMLDOC01-appb-C000015
(In the formula (2), n is 0 or 1.)
Figure JPOXMLDOC01-appb-C000016
(In the formula (1), n is 0 or 1.)
 本発明によれば、樹脂組成物の低粘度化を実現し、該樹脂組成物の硬化物においては低誘電性の実現と可撓性の付与とをかなえる、新規な反応性希釈剤を提供できる。
 また、本発明によれば、前記反応性希釈剤を含む組成物を提供できる。
 また、本発明によれば、前記組成物を含む封止材を提供できる。
 また、本発明によれば、前記組成物の硬化物を提供できる。
 また、本発明によれば、前記硬化物を備える基板を提供できる。
 また、本発明によれば、前記硬化物を備える電子部品を提供できる。
 また、本発明によれば、樹脂組成物の低粘度化を実現し、該樹脂組成物の硬化物においては低誘電性の実現と可撓性の付与とをかなえる、新規なエポキシ化合物を提供できる。
 また、本発明によれば、前記エポキシ化合物の製造における中間体を提供できる。
 また、本発明によれば、前記中間体の製造方法を提供できる。
 また、本発明によれば、前記エポキシ化合物の製造方法を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the low viscosity of a resin composition is implement | achieved, and in the hardened | cured material of this resin composition, realization of a low dielectric property and provision of flexibility can provide a novel reactive diluent. .
Further, according to the present invention, a composition containing the reactive diluent can be provided.
Further, according to the present invention, a sealing material containing the composition can be provided.
Further, according to the present invention, a cured product of the composition can be provided.
Further, according to the present invention, a substrate provided with the cured product can be provided.
Further, according to the present invention, an electronic component including the cured product can be provided.
Further, according to the present invention, it is possible to provide a novel epoxy compound that realizes a low viscosity of a resin composition and achieves a low dielectric property and imparts flexibility in a cured product of the resin composition. .
Further, according to the present invention, an intermediate in the production of the epoxy compound can be provided.
Further, according to the present invention, a method for producing the intermediate can be provided.
Further, according to the present invention, a method for producing the epoxy compound can be provided.
 以下、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described.
≪化合物(1)≫
 本発明の実施形態に係る化合物は、下記一般式(1)で表される化合物(「化合物(1)」と略記することがある。)である。
{Compound (1)}
The compound according to the embodiment of the present invention is a compound represented by the following general formula (1) (may be abbreviated as “compound (1)”).
Figure JPOXMLDOC01-appb-C000017
(式(1)中、nは0又は1である。)
Figure JPOXMLDOC01-appb-C000017
(In the formula (1), n is 0 or 1.)
 化合物(1)によれば、樹脂組成物に配合させたときに、樹脂組成物の低粘度化を実現し、樹脂組成物の硬化物においては低誘電性の実現と可撓性の付与とを達成可能である。
 化合物(1)は、分子内に飽和炭化水素の構造を有している。そのため、樹脂組成物に配合させたときに、その硬化物の低誘電性の発揮に寄与すると考えられる。
 化合物(1)は、分子内に分岐鎖状の飽和炭化水素の構造を有している。そのため、樹脂組成物に配合させたときに樹脂組成物の低粘度化に寄与すると考えられる。また、当該構造により、樹脂組成物に配合させたときに、その硬化物の可撓性付与に寄与すると考えられる。
According to the compound (1), when compounded into a resin composition, the viscosity of the resin composition is reduced, and the cured product of the resin composition achieves low dielectric properties and imparts flexibility. Achievable.
Compound (1) has a structure of a saturated hydrocarbon in the molecule. Therefore, when it is blended with the resin composition, it is considered that the cured product contributes to exhibiting low dielectric properties.
Compound (1) has a branched saturated hydrocarbon structure in the molecule. Therefore, it is considered that when it is mixed with the resin composition, it contributes to lowering the viscosity of the resin composition. In addition, it is considered that this structure contributes to imparting flexibility to the cured product when blended with the resin composition.
 本明細書中において、「可撓性の付与」とは、本発明に係る化合物を配合した樹脂組成物と、本発明に係る化合物を配合していない樹脂組成物とを比較し、本発明に係る化合物を配合した樹脂組成物のほうが、変形しやすく破断し難い状態となっていることをいう。 In the present specification, "providing flexibility" refers to a comparison between a resin composition containing the compound according to the present invention and a resin composition not containing the compound according to the present invention. This means that the resin composition containing such a compound is more easily deformed and hardly broken.
 また、化合物(1)は、無色透明とすることができる。そのため、化合物(1)を樹脂組成物に配合させたときに、化合物(1)が樹脂組成物の着色の原因となることも防止される。 化合物 Compound (1) can be colorless and transparent. Therefore, when compound (1) is blended with the resin composition, compound (1) is also prevented from causing coloring of the resin composition.
≪化合物(2)≫
 本発明の実施形態に係る化合物は、下記一般式(2)で表される化合物(「化合物(2)」と略記することがある。)である。
{Compound (2)}
The compound according to the embodiment of the present invention is a compound represented by the following general formula (2) (sometimes abbreviated as “compound (2)”).
Figure JPOXMLDOC01-appb-C000018
(式(2)中、nは0又は1である。)
Figure JPOXMLDOC01-appb-C000018
(In the formula (2), n is 0 or 1.)
 化合物(2)は、前記化合物(1)の製造における中間体として使用可能である。 Compound (2) can be used as an intermediate in the production of compound (1).
≪化合物(1)の製造方法・化合物(2)の製造方法≫
 化合物(1)は、例えば、以下の方法で製造することができる。なお、化合物(1)は、以下の方法で製造されたものに限定されない。
<< Method for producing compound (1) / method for producing compound (2) >>
Compound (1) can be produced, for example, by the following method. Compound (1) is not limited to those produced by the following method.
 化合物(1)は、下記一般式(3)で表される化合物(「化合物(3)」と略記することがある。)を、ヒドロキシル化した後にエポキシ化することで製造できる。
 なお、本明細書において、「エポキシ化」とは、特に断りのない限り、エポキシ環又はエポキシ環を含む基を導入することを意味する。
Compound (1) can be produced by subjecting a compound represented by the following general formula (3) (may be abbreviated as “compound (3)”) to epoxidation after hydroxylation.
In this specification, “epoxidation” means to introduce an epoxy ring or a group containing an epoxy ring, unless otherwise specified.
Figure JPOXMLDOC01-appb-C000019
(式(3)中、nは0又は1である。)
Figure JPOXMLDOC01-appb-C000019
(In the formula (3), n is 0 or 1.)
 化合物(1)の製造方法は、以下の工程1~工程2を含んでいてもよい。
 工程1:化合物(3)をヒドロキシル化して、化合物(2)を得る工程。
 工程2:前記工程1で得られた化合物(2)をエポキシ化して、化合物(1)を得る工程。
The method for producing the compound (1) may include the following steps 1 and 2.
Step 1: a step of hydroxylating compound (3) to obtain compound (2).
Step 2: a step of epoxidizing the compound (2) obtained in the above step 1 to obtain a compound (1).
<工程1>
 実施形態の化合物(1)の製造方法は、化合物(3)をヒドロキシル化して、化合物(2)を得る工程(工程1)を含む。
 すなわち、化合物(3)をヒドロキシル化して、化合物(2)を得ることを含む、化合物(2)の製造方法を提供する。
 実施形態の化合物(1)の製造方法は、化合物(3)をヒドロホウ素化した後に、ヒドロキシル化し、化合物(2)を得る工程を含むものであってよい。
<Step 1>
The method for producing compound (1) of the embodiment includes a step (step 1) of hydroxylating compound (3) to obtain compound (2).
That is, the present invention provides a method for producing a compound (2), which comprises obtaining a compound (2) by hydroxylating the compound (3).
The method for producing the compound (1) of the embodiment may include a step of obtaining the compound (2) by hydroborating the compound (3) and then hydroxylating the compound (3).
 前記工程1は、
 化合物(3)とヒドロホウ素化剤とを反応させてヒドロホウ素化した後に、過酸化物と反応させて酸化してヒドロキシル化し、化合物(2)を得る工程であってよい。
The step 1 includes:
The step of reacting the compound (3) with a hydroborating agent to form a hydroboron, followed by reacting with a peroxide to oxidize and hydroxylate to obtain the compound (2) may be performed.
Figure JPOXMLDOC01-appb-C000020
(式中、nは0又は1である。)
Figure JPOXMLDOC01-appb-C000020
(In the formula, n is 0 or 1.)
 ヒドロホウ素化剤としては、アルケンと反応してヒドロホウ素化反応を起こす物質を使用でき、ヒドロホウ素化可能な種々の物質から選択されてよい。ヒドロホウ素化剤としては、分子内にB-H結合を有する化合物が挙げられ、ボラン、ボラン誘導体及びそれらの錯体を例示できる。ボラン誘導体としては、モノアルキルボラン、ジアルキルボラン、下記一般式(3a)で表される化合物等を例示でき、収率および選択率の観点から、9-ボラビシクロ[3.3.1]ノナン(9-BBN)、又はNHBH〔下記一般式(3a)で表される化合物においてR~Rが水素原子である〕が好ましい。当該錯体としては、テトラヒドロフラン(THF)錯体、ジメチルスルフィド錯体等を例示でき、収率および選択率の観点から、9-BBN・THF錯体、又はNHBH・THF錯体が好ましい。 As the hydroborating agent, a substance which reacts with an alkene to cause a hydroboration reaction can be used, and may be selected from various substances capable of hydroboration. Examples of the hydroborating agent include compounds having a BH bond in the molecule, and examples thereof include borane, borane derivatives, and complexes thereof. Examples of the borane derivative include a monoalkyl borane, a dialkyl borane and a compound represented by the following general formula (3a). From the viewpoint of yield and selectivity, 9-borabicyclo [3.3.1] nonane (9 —BBN) or NH 3 BH 3 [in the compound represented by the following general formula (3a), R 1 to R 6 are hydrogen atoms]. Examples of the complex include a tetrahydrofuran (THF) complex, a dimethylsulfide complex, and the like, and from the viewpoint of yield and selectivity, a 9-BBN.THF complex or an NH 3 BH 3 .THF complex is preferable.
Figure JPOXMLDOC01-appb-C000021
(式中、R~Rはそれぞれ独立に、水素原子又はアルキル基である。)
 R~Rのアルキル基は、炭素数1~4の直鎖状又は分岐鎖状のアルキル基であってよい。炭素数1~4の直鎖状又は分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等を例示できる。
 NHBHは市販のものを使用してもよく、工程1に先立ってNHBHを合成する工程を設けてもよい。
Figure JPOXMLDOC01-appb-C000021
(In the formula, R 1 to R 6 are each independently a hydrogen atom or an alkyl group.)
The alkyl group of R 1 to R 6 may be a linear or branched alkyl group having 1 to 4 carbon atoms. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. Etc. can be exemplified.
Commercially available NH 3 BH 3 may be used, and a step of synthesizing NH 3 BH 3 may be provided prior to step 1.
 化合物(3)は、イソブチレンを多量体化して得ることができる。
 なお、化合物(3)には、下記一般式(3’)で表される化合物(「化合物(3’)」と略記することがある。)である異性体が存在するが、後述する実施例に示すとおり、化合物(3’)よりも化合物(3)が反応してヒドロキシル化が進行する。
 したがって、実施形態の化合物(1)の製造方法は、化合物(3)及び化合物(3’)を含む原料をヒドロホウ素化した後に、ヒドロキシル化し、化合物(2)を得る工程(工程1)を含むものであってよい。原料が化合物(3’)を含んでいたとしても、化合物(3’)は上記反応に関与せず、反応後に取り除くことが可能である。
Compound (3) can be obtained by multiplying isobutylene.
The compound (3) has an isomer that is a compound represented by the following general formula (3 ′) (may be abbreviated as “compound (3 ′)”). As shown in the above, the compound (3) reacts more than the compound (3 ′), and the hydroxylation proceeds.
Therefore, the method for producing the compound (1) of the embodiment includes a step (step 1) of obtaining a compound (2) by hydroborating a raw material containing the compound (3) and the compound (3 ′) and then hydroxylating the raw material. May be something. Even if the raw material contains the compound (3 ′), the compound (3 ′) does not participate in the above reaction and can be removed after the reaction.
Figure JPOXMLDOC01-appb-C000022
(式(3’)中、mは0又は1である。)
Figure JPOXMLDOC01-appb-C000022
(In the formula (3 ′), m is 0 or 1.)
 ヒドロホウ素化剤の使用量は、反応系中の化合物の種類に応じて適宜調節すればよいが、反応させる炭素-炭素不飽和結合1当量に対して、B-H結合が0.9~3当量の範囲であることが好ましく、1~3当量の範囲であることが好ましく、1.1~1.5当量の範囲であることがより好ましい。上記下限以上である場合、収率がより良好となり、上記上限値以下である場合、精製がより良好となる傾向にある。 The amount of the hydroborating agent to be used may be appropriately adjusted according to the type of the compound in the reaction system, and the amount of the BH bond is 0.9 to 3 based on 1 equivalent of the carbon-carbon unsaturated bond to be reacted. It is preferably in the range of equivalents, more preferably in the range of 1 to 3 equivalents, and even more preferably in the range of 1.1 to 1.5 equivalents. When it is at least the lower limit, the yield will be better, and when it is at most the upper limit, purification will tend to be better.
 ヒドロホウ素化させる反応の温度(反応温度)は、反応系中の化合物の種類に応じて適宜調節すればよいが、一例として、-80~120℃の範囲であることが好ましく、-80~80℃の範囲であることが好ましく、-30~50℃の範囲であることがより好ましく、-30~40℃の範囲であることがさらに好ましい。或いは、-80~120℃の範囲であることが好ましく、0~100℃の範囲であることが好ましく、50~90℃の範囲であることがより好ましい。
 上記下限値以上である場合、反応速度が良好で反応効率がよく、上記上限値以下である場合、原料および生成物の分解が生じるおそれが低減される傾向にある。
The temperature (reaction temperature) of the reaction for hydroboration may be appropriately adjusted according to the type of the compound in the reaction system, but is preferably in the range of -80 to 120 ° C, for example, preferably in the range of -80 to 80 ° C. The temperature is preferably in the range of -30 ° C, more preferably in the range of -30 to 50 ° C, and even more preferably in the range of -30 to 40 ° C. Alternatively, it is preferably in the range of −80 to 120 ° C., more preferably in the range of 0 to 100 ° C., and even more preferably in the range of 50 to 90 ° C.
When it is at least the lower limit, the reaction rate is good and the reaction efficiency is good, and when it is at most the upper limit, the risk of decomposition of the raw materials and products tends to be reduced.
 ヒドロホウ素化させる反応の時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、一例として0.5~100時間であってよい。 時間 The time (reaction time) of the reaction for hydroboration may be appropriately adjusted according to other conditions such as the reaction temperature, and may be, for example, 0.5 to 100 hours.
 過酸化物としては、例えば、過酸化水素、過安息香酸、過酸化ベンゾイル等を例示でき、過酸化水素が好ましい。
 過酸化水素は、市販のものを使用することができる。過酸化水素の使用量は特に制限されないが、ヒドロホウ素化剤との反応に供した炭素-炭素不飽和結合1当量に対して、1~5当量の範囲であることが好ましく、1~2当量の範囲であることがより好ましい。上記下限値以上の場合、反応を効率的に進行でき、上記上限値以下の場合、生成したヒドロキシ化合物の酸化などの副反応が進行して収率が低下するおそれが低減される傾向にある。
Examples of the peroxide include hydrogen peroxide, perbenzoic acid, benzoyl peroxide and the like, and hydrogen peroxide is preferable.
Commercially available hydrogen peroxide can be used. The amount of hydrogen peroxide to be used is not particularly limited, but is preferably in the range of 1 to 5 equivalents to 1 equivalent of the carbon-carbon unsaturated bond subjected to the reaction with the hydroborating agent, and preferably 1 to 2 equivalents. More preferably, it is within the range. When the amount is equal to or more than the lower limit, the reaction can proceed efficiently, and when the amount is equal to or less than the above upper limit, there is a tendency that a possibility that a side reaction such as oxidation of the generated hydroxy compound proceeds and the yield is reduced is reduced.
 工程1における酸化は、塩基性条件下でおこなうことができる。塩基性条件下とは、過酸化物を塩基と併用している条件が挙げられ、過酸化物及び塩基を添加した液中が挙げられる。
 塩基としては無機塩基が挙げられ、無機塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウムなどが挙げられる。これらの中でも、反応収率、反応温度、操作の簡便性、経済性などの観点からは、水酸化ナトリウム、水酸化カリウム、又は水酸化リチウムが好ましい。
The oxidation in step 1 can be performed under basic conditions. The basic condition includes a condition in which a peroxide is used in combination with a base, and includes a solution in which a peroxide and a base are added.
Examples of the base include inorganic bases. Examples of the inorganic base include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, and carbonate. Calcium, lithium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate and the like can be mentioned. Among these, sodium hydroxide, potassium hydroxide, or lithium hydroxide is preferred from the viewpoint of reaction yield, reaction temperature, simplicity of operation, economy, and the like.
 ヒドロキシル化させる反応の温度(反応温度)は、反応系中の化合物の種類に応じて適宜調節すればよいが、一例として、-80~80℃の範囲であることが好ましく、-30~50℃の範囲であることがより好ましく、-30~40℃の範囲であることがさらに好ましい。上記下限値以上である場合、反応速度が良好で反応効率がよく、上記上限値以下である場合、原料および生成物の分解が生じるおそれが少ない。 The temperature of the hydroxylation reaction (reaction temperature) may be appropriately adjusted depending on the type of the compound in the reaction system, but is preferably in the range of -80 to 80 ° C, for example, -30 to 50 ° C. Is more preferably in the range of −30 to 40 ° C. When it is not less than the above lower limit, the reaction rate is good and the reaction efficiency is good, and when it is not more than the above upper limit, the risk of decomposition of the raw materials and products is small.
 ヒドロキシル化させる反応の時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、一例として0.5~100時間であってよい。 The reaction time for the hydroxylation (reaction time) may be appropriately adjusted depending on other conditions such as the reaction temperature, and may be, for example, 0.5 to 100 hours.
 前記工程1の反応は、溶媒の共存下で行ってよい。溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。溶媒としては特に制限されず、n-ヘキサン、ペンタン、シクロヘキサン、ベンゼン、トルエン、キシレン、アセトニトリル、アセトン、酢酸エチル、ジエチルエーテル、テトラヒドロフラン、ジメチルスルホキシド、ジメチルスルフィド、トリメチルアミン等が挙げられ、収率の観点からは、ジエチルエーテル、テトラヒドロフラン、ジメチルスルフィド、トリメチルアミンが好ましく、ジエチルエーテル、テトラヒドロフランがより好ましい。 反 応 The reaction of the above step 1 may be performed in the presence of a solvent. One type of solvent may be used alone, or two or more types may be used in combination. The solvent is not particularly limited, and examples thereof include n-hexane, pentane, cyclohexane, benzene, toluene, xylene, acetonitrile, acetone, ethyl acetate, diethyl ether, tetrahydrofuran, dimethyl sulfoxide, dimethyl sulfide, and trimethylamine. From above, diethyl ether, tetrahydrofuran, dimethyl sulfide, and trimethylamine are preferred, and diethyl ether and tetrahydrofuran are more preferred.
<工程2>
 実施形態の化合物(1)の製造方法は、前記工程1で得られた化合物(2)をエポキシ化して、化合物(1)を得る工程(工程2)を含む。
 実施形態の化合物(1)の製造方法は、前記工程1で得られた化合物(2)をエポキシ化して、エポキシ環又はエポキシ環を含む基を導入して、化合物(1)を得る工程を含むものであってよい。
 実施形態の化合物(1)の製造方法は、前記工程1で得られた化合物(2)をグリシジル化して、グリシジル基を導入して、化合物(1)を得る工程を含むものであってよい。
<Step 2>
The method for producing compound (1) of the embodiment includes a step (step 2) of obtaining compound (1) by epoxidizing compound (2) obtained in step 1 above.
The method for producing the compound (1) of the embodiment includes a step of epoxidizing the compound (2) obtained in the step 1 and introducing an epoxy ring or a group containing an epoxy ring to obtain the compound (1). May be something.
The method for producing the compound (1) of the embodiment may include a step of glycidylating the compound (2) obtained in the above step 1 and introducing a glycidyl group to obtain the compound (1).
 前記工程2は、
 化合物(2)とエピハロヒドリンとを反応させてエポキシ化(グリシジル化)し、化合物(1)を得る工程であってよい。
The step 2 includes:
The step of reacting the compound (2) with epihalohydrin to perform epoxidation (glycidylation) to obtain the compound (1) may be performed.
Figure JPOXMLDOC01-appb-C000023
(式中、nは0又は1である。)
Figure JPOXMLDOC01-appb-C000023
(In the formula, n is 0 or 1.)
 エピハロヒドリンは、エピクロルヒドリン、エピブロモヒドリン、β-メチルエピクロルヒドリン等が挙げられる。エピハロヒドリンは、下記一般式(4)で表される化合物(「化合物(4)」と略記することがある。)であってよい。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。 Epihalohydrin includes epichlorohydrin, epibromohydrin, β-methylepichlorohydrin and the like. Epihalohydrin may be a compound represented by the following general formula (4) (sometimes abbreviated as “compound (4)”). These may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000024
(式(4)中、Xはハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000024
(In the formula (4), X represents a halogen atom.)
 ハロゲン原子としては、フッ素原子(-F)、塩素原子(-Cl)、臭素原子(-Br)、ヨウ素原子(-I)等を例示できる。 Examples of the halogen atom include a fluorine atom (-F), a chlorine atom (-Cl), a bromine atom (-Br), and an iodine atom (-I).
 なかでも、エピハロヒドリンとしては、工業的入手が容易なことなどからエピクロルヒドリンが好ましい。 Among them, epichlorohydrin is preferred as epihalohydrin because of its easy industrial availability.
 エピハロヒドリンの使用量は、反応系中の化合物の種類に応じて適宜調節すればよいが、例えば、化合物(2)中の水酸基1当量に対し、エピハロヒドリンを2~10当量の範囲で添加することが挙げられる。 The amount of epihalohydrin used may be appropriately adjusted according to the type of the compound in the reaction system. For example, epihalohydrin may be added in the range of 2 to 10 equivalents to 1 equivalent of the hydroxyl group in compound (2). No.
 エポキシ化反応は、塩基性条件下でおこなうことができる。塩基性条件下とは、塩基性触媒を添加した液中が挙げられる。
 塩基性触媒としては、例えば、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物等が挙げられる。特にエポキシ化の触媒活性に優れる点から、アルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10~55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用してもよい。
The epoxidation reaction can be performed under basic conditions. The basic conditions include in a liquid to which a basic catalyst has been added.
Examples of the basic catalyst include an alkaline earth metal hydroxide, an alkali metal carbonate, and an alkali metal hydroxide. In particular, alkali metal hydroxides are preferred from the viewpoint of excellent epoxidation catalytic activity, and examples thereof include sodium hydroxide and potassium hydroxide. In use, these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass or in the form of a solid.
 塩基性触媒の使用量は、反応系中の化合物の種類等に応じて適宜調節すればよいが、例えば、化合物(2)中の水酸基1当量に対し、0.9~2当量の塩基性触媒を一括添加または徐々に添加して使用することが挙げられる。 The amount of the basic catalyst to be used may be appropriately adjusted according to the type of the compound in the reaction system and the like. For example, 0.9 to 2 equivalents of the basic catalyst are added to 1 equivalent of the hydroxyl group in the compound (2). Are added at once or gradually added.
 化合物(2)とエピハロヒドリンとを反応させる温度(反応温度)は、反応系中の化合物の種類に応じて適宜調節すればよいが、一例として、20~120℃であってよい。 (4) The temperature at which the compound (2) is reacted with epihalohydrin (reaction temperature) may be appropriately adjusted according to the type of the compound in the reaction system, and may be, for example, 20 to 120 ° C.
 化合物(2)とエピハロヒドリンとを反応させる時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、一例として0.5~10時間であってよい。 時間 The time (reaction time) for reacting compound (2) with epihalohydrin may be appropriately adjusted according to other conditions such as the reaction temperature, and may be, for example, 0.5 to 10 hours.
 前記工程2の反応は、溶媒の共存下で行ってよい。溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。溶媒としては特に制限されず、n-ヘキサン、ペンタン、シクロヘキサン、ベンゼン、トルエン、キシレン、アセトニトリル、アセトン、酢酸エチル、ジエチルエーテル、テトラヒドロフラン、ジメチルスルホキシド、ジメチルスルフィド、トリメチルアミン等が挙げられ、収率の観点からは、ジエチルエーテル、テトラヒドロフラン、ジメチルスルフィド、又はトリメチルアミンが好ましく、ジエチルエーテル、又はテトラヒドロフランがより好ましい。 反 応 The reaction in the above step 2 may be performed in the presence of a solvent. One type of solvent may be used alone, or two or more types may be used in combination. The solvent is not particularly limited, and examples thereof include n-hexane, pentane, cyclohexane, benzene, toluene, xylene, acetonitrile, acetone, ethyl acetate, diethyl ether, tetrahydrofuran, dimethyl sulfoxide, dimethyl sulfide, and trimethylamine. Is preferably diethyl ether, tetrahydrofuran, dimethyl sulfide or trimethylamine, and more preferably diethyl ether or tetrahydrofuran.
 エポキシ化反応終了後は、反応生成物を水洗した後、加熱減圧条件下で未反応のエピハロヒドリンや併用した有機溶媒を留去してよい。更に、反応生成物中の加水分解性ハロゲンを一層低減するために、反応生成物を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、反応生成物100質量部に対して0.1~3.0質量部となる割合であることが好ましい。エポキシ化反応の終了後は、生成した塩を濾過又は水洗などにより除去し、加熱減圧条件下で有機溶媒を留去することにより、得られた反応生成物中から化合物(1)を精製できる。 終了 After the epoxidation reaction, the reaction product may be washed with water, and then unreacted epihalohydrin and an organic solvent used in combination may be distilled off under heating and reduced pressure conditions. Further, in order to further reduce the hydrolyzable halogen in the reaction product, the reaction product is dissolved again in an organic solvent such as toluene, methyl isobutyl ketone, and methyl ethyl ketone, and alkali metal water such as sodium hydroxide and potassium hydroxide is used. The reaction can be further performed by adding an aqueous solution of an oxide. At this time, a phase transfer catalyst such as a quaternary ammonium salt or a crown ether may be present for the purpose of improving the reaction rate. When the phase transfer catalyst is used, the amount thereof is preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the reaction product. After completion of the epoxidation reaction, the generated salt is removed by filtration, washing with water, or the like, and the organic solvent is distilled off under reduced pressure under heating, whereby the compound (1) can be purified from the obtained reaction product.
≪反応性希釈剤・組成物≫
 化合物(1)は、樹脂成分に添加して、それを低粘度化するための反応性希釈剤として、好適に使用することができる。
≪Reactive diluent and composition≫
The compound (1) can be suitably used as a reactive diluent for adding to a resin component to lower the viscosity of the resin component.
 すなわち、本発明に係る反応性希釈剤は、以下のものである。
 以下の成分Aを含む反応性希釈剤、
 成分A:下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000025
(式(1)中、nは0又は1である。)
That is, the reactive diluent according to the present invention is as follows.
A reactive diluent comprising the following component A,
Component A: a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000025
(In the formula (1), n is 0 or 1.)
 本発明に係る反応性希釈剤は、以下のものであってもよい。
 以下の成分Aからなる反応性希釈剤、
 成分A:上記一般式(1)で表される化合物。
The reactive diluent according to the present invention may be as follows.
A reactive diluent comprising the following component A,
Component A: a compound represented by the above general formula (1).
 反応性希釈剤は、25℃で液体であることが好ましく、25℃での粘度が0.01~1000mPa・sであってもよく、1~300mPa・sであってもよく、5~35mPa・sであってもよく、5.5~10mPa・sであってもよい。粘度は、実施例に記載の測定条件又はそれと同一の結果が得られる互換性のある条件で測定されたものとする。
 上記一般式(1)で表される化合物は、25℃で液体であることが好ましく、25℃での粘度が0.01~1000mPa・sであってもよく、1~300mPa・sであってもよく、5~35mPa・sであってもよく、5.5~10mPa・sであってもよい。粘度は、実施例に記載の測定条件又はそれと同一の結果が得られる互換性のある条件で測定されたものとする。
 上記で例示した粘度の数値範囲の上限値と下限値とは、自由に組み合わせることができる。
The reactive diluent is preferably liquid at 25 ° C. and has a viscosity at 25 ° C. of 0.01 to 1000 mPa · s, 1 to 300 mPa · s, or 5 to 35 mPa · s. s or 5.5 to 10 mPa · s. The viscosities are measured under the measurement conditions described in the examples or under compatible conditions to obtain the same results.
The compound represented by the general formula (1) is preferably liquid at 25 ° C., and has a viscosity at 25 ° C. of 0.01 to 1000 mPa · s, or 1 to 300 mPa · s. May be 5 to 35 mPa · s, or may be 5.5 to 10 mPa · s. The viscosities are measured under the measurement conditions described in the examples or under compatible conditions to obtain the same results.
The upper limit and the lower limit of the numerical value range of the viscosity exemplified above can be freely combined.
 前記樹脂成分としては、特に制限されないが、モノマー又はプレポリマー等の、硬化前のエポキシ樹脂が好ましい。 The resin component is not particularly limited, but an epoxy resin before curing, such as a monomer or a prepolymer, is preferable.
 すなわち、本発明に係る組成物は以下のものである。
 以下の成分A、及び成分Bを含む組成物
 成分A:下記一般式(1)で表される化合物、
Figure JPOXMLDOC01-appb-C000026
(式(1)中、nは0又は1である。)
 成分B:エポキシ環を含む基を分子内に2つ以上有する化合物。
That is, the composition according to the present invention is as follows.
Composition containing the following components A and B Component A: a compound represented by the following general formula (1),
Figure JPOXMLDOC01-appb-C000026
(In the formula (1), n is 0 or 1.)
Component B: a compound having two or more groups containing an epoxy ring in the molecule.
 成分A及び成分Bを含む本発明に係る組成物は、必要に応じて、さらに硬化剤(成分C)を含有することができる。本発明に係る組成物は、必要に応じて、さらに硬化促進剤(成分D)、充填剤(成分E)等を含有することができる。以下、各成分について説明する。 (4) The composition according to the present invention containing the component A and the component B may further contain a curing agent (component C), if necessary. The composition according to the present invention can further contain a curing accelerator (component D), a filler (component E), and the like, if necessary. Hereinafter, each component will be described.
<成分A>
 成分Aは、前記一般式(1)で表される化合物(前記化合物(1))であり、上述の≪化合物(1)≫で説明したものと同一であるため、ここでの説明を省略する。
<Component A>
The component A is a compound represented by the general formula (1) (the compound (1)), and is the same as that described in the above {Compound (1)}, and thus description thereof will be omitted. .
<成分B>
 成分Bは、エポキシ環を含む基(例えば、エポキシ基、グリシジル基)を分子内に2つ以上有する化合物である。エポキシ環を含む基を分子内に2つ以上有する化合物として、2官能以上のエポキシ化合物又はエポキシ樹脂が挙げられる。
 エポキシ環を含む基を分子内に2つ以上有する化合物は、2~10官能のエポキシ化合物であってよく、2~6官能のエポキシ化合物であってよく、2~4官能のエポキシ化合物であってよい。
 エポキシ環を含む基を分子内に2つ以上有する化合物は、2~10官能のエポキシ樹脂であってよく、2~6官能のエポキシ樹脂であってよく、2~4官能のエポキシ樹脂であってよい。
 エポキシ環を含む基を分子内に2つ以上有する化合物は、重合して使用してエポキシ樹脂として使用してもよく、エポキシ環を含む基を分子内に2つ以上有するエポキシ化合物又はエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;多官能フェノールのジグリシジルエーテル化物;これらの水素添加物などが挙げられる。これらのエポキシ樹脂は単独で用いてもよく、2種以上を併用してもよい。
 2官能以上のエポキシ化合物としては、3官能以上のエポキシ化合物又は4官能以上のエポキシ化合物が好ましい。2官能以上のエポキシ化合物は、2~10官能のエポキシ化合物(エポキシ環を含む基を分子内に2~10有する化合物)であってよく、2~6官能のエポキシ化合物であってよく、2~4官能のエポキシ化合物であってよい。
 2官能以上のエポキシ樹脂としては、3官能以上のエポキシ樹脂又は4官能以上のエポキシ樹脂が好ましい。2官能以上のエポキシ樹脂は、2~10官能のエポキシ樹脂(エポキシ環を含む基を分子内に2~10有する化合物)であってよく、2~6官能のエポキシ樹脂であってよく、2~4官能のエポキシ樹脂であってよい。
<Component B>
Component B is a compound having two or more groups containing an epoxy ring (for example, an epoxy group or a glycidyl group) in a molecule. Examples of the compound having two or more groups containing an epoxy ring in a molecule include a bifunctional or higher functional epoxy compound or an epoxy resin.
The compound having two or more groups containing an epoxy ring in the molecule may be a 2- to 10-functional epoxy compound, a 2- to 6-functional epoxy compound, or a 2- to 4-functional epoxy compound. Good.
The compound having two or more groups containing an epoxy ring in the molecule may be a bifunctional epoxy resin, a bifunctional epoxy resin, a bifunctional epoxy resin, or a bifunctional epoxy resin. Good.
A compound having two or more groups containing an epoxy ring in the molecule may be used as an epoxy resin by polymerizing and used as an epoxy compound or an epoxy resin having two or more groups containing an epoxy ring in the molecule. Are bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol AD type epoxy resin; alicyclic epoxy resin; phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin And novolak type epoxy resins such as aralkyl novolak type epoxy resins; diglycidyl etherified products of polyfunctional phenols; and hydrogenated products thereof. These epoxy resins may be used alone or in combination of two or more.
As the epoxy compound having two or more functions, an epoxy compound having three or more functions or an epoxy compound having four or more functions is preferable. The bifunctional or higher functional epoxy compound may be a bifunctional epoxy compound (compound having an epoxy ring-containing group having 2 to 10 in a molecule), a bifunctional hexafunctional epoxy compound, or a bifunctional epoxy compound. It may be a tetrafunctional epoxy compound.
As the bifunctional or higher functional epoxy resin, a trifunctional or higher functional epoxy resin or a tetrafunctional or higher functional epoxy resin is preferable. The bifunctional or higher functional epoxy resin may be a bifunctional epoxy resin (a compound having an epoxy ring-containing group of 2 to 10 in a molecule), a bifunctional hexafunctional epoxy resin, or a bifunctional epoxy resin. It may be a tetrafunctional epoxy resin.
 エポキシ環を含む基を分子内に2つ以上有する化合物は、3官能のエポキシ化合物又は4官能のエポキシ化合物を使用することが好ましい。
 本発明に使用できる典型的な3官能のエポキシ化合物は以下の構造式を有する化合物(製品名:TEPIC(登録商標))が挙げられる。
As the compound having two or more groups containing an epoxy ring in the molecule, a trifunctional epoxy compound or a tetrafunctional epoxy compound is preferably used.
A typical trifunctional epoxy compound that can be used in the present invention includes a compound having the following structural formula (product name: TEPIC (registered trademark)).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明に使用できる典型的な4官能のエポキシ化合物は以下の構造式を有する化合物(製品名:jER(登録商標)1031S)が挙げられる。 典型 A typical tetrafunctional epoxy compound that can be used in the present invention includes a compound having the following structural formula (product name: jER (registered trademark) 1031S).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 本発明に使用できる典型的な他の4官能のエポキシ化合物は以下の構造式を有するナフタレン型エポキシ化合物((製品名: EPICLON EXA-4700))が挙げられる。 典型 A typical other tetrafunctional epoxy compound that can be used in the present invention is a naphthalene-type epoxy compound having the following structural formula ((product name: EPICLON EXA-4700)).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 成分Aと成分Bとの配合割合(A:B)は、重量基準で、1~80:20~99であってよく、5~70:30~95であってよく、20~60:40~80であってよい。
 組成物における、成分A及び成分Bの合計の配合割合は、組成物全体の総重量を100重量%とした場合に、1~99重量%であってよく、5~80重量%であってよく、10~60重量%であってよい。
The mixing ratio (A: B) of component A and component B may be 1 to 80:20 to 99, 5 to 70:30 to 95, and 20 to 60:40 on a weight basis. It may be 80.
The total blending ratio of component A and component B in the composition may be 1 to 99% by weight, or 5 to 80% by weight, when the total weight of the entire composition is 100% by weight. , From 10 to 60% by weight.
<成分C>
 硬化剤(成分C)としては、エポキシ化合物やエポキシ樹脂用の硬化剤として用いられる各種硬化剤を例示できる。硬化剤としては、例えば、フェノール系硬化剤、アミン系硬化剤、酸無水物、3フッ化ホウ素モノエチルアミン、イソシアネート、ジシアンジアミド等、ユリア樹脂などが挙げられる。
 フェノール系硬化剤としては、1分子中に2個以上のフェノール性水酸基を有するモノマー、オリゴマー、ポリマー全般であってよく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型フェノール樹脂;ナフタレン型フェノール樹脂、ハイオルソ型ノボラックフェノール樹脂、テルペン変性フェノール樹脂、テルペンフェノール変性フェノール樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ベンズアルデヒド型フェノール樹脂などのフェノール樹脂が挙げられる。これらの中でも、フェノールノボラック樹脂、クレゾールノボラック樹脂、一部修飾されたアミノトリアジンノボラック樹脂が好ましい。
 アミン系硬化剤としては、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン等の脂肪族アミン;メタフェニレンジアミン、4,4’-ジアミノジフェニルメタン等の芳香族アミンなどのアミン化合物が挙げられる。
 酸無水物としては、無水フタル酸、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸などの酸無水物が挙げられる。
 これらの硬化剤は単独で用いてもよく、2種以上を併用してもよい。
 硬化剤の使用量は、成分A及び成分Bのエポキシ当量1に対して、硬化剤の反応基当量比が0.3~1.5当量となる量が好ましい。硬化剤の配合量が前記範囲内であると、硬化度の制御が容易であり、生産性が良好となる傾向にある。
<Component C>
Examples of the curing agent (component C) include various curing agents used as curing agents for epoxy compounds and epoxy resins. Examples of the curing agent include phenol-based curing agents, amine-based curing agents, acid anhydrides, boron trifluoride monoethylamine, isocyanates, dicyandiamide, and urea resins.
The phenolic curing agent may be any monomer, oligomer, or polymer having two or more phenolic hydroxyl groups in one molecule, for example, a novolak phenol resin such as a phenol novolak resin or a cresol novolak resin; a naphthalene phenol Phenol resins such as resin, high ortho-type novolak phenol resin, terpene-modified phenol resin, terpene phenol-modified phenol resin, aralkyl-type phenol resin, dicyclopentadiene-type phenol resin, salicylaldehyde-type phenol resin, and benzaldehyde-type phenol resin. Of these, phenol novolak resins, cresol novolak resins, and partially modified aminotriazine novolak resins are preferred.
Examples of the amine-based curing agent include aliphatic amines such as triethylenetetramine, tetraethylenepentamine and diethylaminopropylamine; and amine compounds such as aromatic amines such as metaphenylenediamine and 4,4'-diaminodiphenylmethane.
Examples of the acid anhydride include acid anhydrides such as phthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride.
These curing agents may be used alone or in combination of two or more.
The amount of the curing agent used is preferably such that the ratio of the reactive group equivalent of the curing agent to the epoxy equivalent of component A and component B is 0.3 to 1.5 equivalents. When the compounding amount of the curing agent is within the above range, the control of the degree of curing is easy and the productivity tends to be good.
<成分D>
 硬化促進剤(成分D)としては、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩などが挙げられる。
 イミダゾール化合物は、イミダゾールの2級アミノ基をアクリロニトリル、イソシアネート、メラミン、アクリレートなどでマスク化して潜在性を持たしたイミダゾール化合物であってもよい。ここで用いられるイミダゾール化合物としては、イミダゾール、2-メチルイミダゾール、4-エチル-2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ヘプタデシルイミダゾール、4,5-ジフェニルイミダゾール、2-メチルイミダゾリン、2-エチル-4-メチルイミダゾリン、2-ウンデシルイミダゾリン、2-フェニル-4-メチルイミダゾリンなどが挙げられる。
また、光分解によりラジカル、アニオン又はカチオンを生成し硬化開始する光開始剤を使用してもよい。
 これらの硬化促進剤は単独で用いてもよく、2種以上を併用してもよい。
 硬化促進剤の配合量は成分A及び成分B100質量部に対して、0.01~20質量部が好ましい。上記上限値以上であると、より良好な硬化促進効果が得られ、上記下限値以下であると、組成物の保存性及び硬化物の物性に優れ、経済性にも優れる傾向にある。
<Component D>
Examples of the curing accelerator (component D) include an imidazole compound, an organic phosphorus compound, a tertiary amine, and a quaternary ammonium salt.
The imidazole compound may be an imidazole compound having a potential by masking a secondary amino group of imidazole with acrylonitrile, isocyanate, melamine, acrylate, or the like. Examples of the imidazole compound used herein include imidazole, 2-methylimidazole, 4-ethyl-2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, and 2-heptadecylimidazole , 4,5-diphenylimidazole, 2-methylimidazoline, 2-ethyl-4-methylimidazoline, 2-undecylimidazoline, 2-phenyl-4-methylimidazoline and the like.
Moreover, you may use the photoinitiator which produces | generates a radical, an anion, or a cation by photolysis and starts hardening.
These curing accelerators may be used alone or in combination of two or more.
The compounding amount of the curing accelerator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the components A and B. If it is at least the above upper limit, a better curing promoting effect will be obtained, and if it is at most the above lower limit, the composition tends to be excellent in storage stability and physical properties of the cured product, and also economically.
<成分E>
 充填剤(成分E)としては、シリカ、酸化アルミニウム、ジルコニア、ムライト、マグネシア等の酸化物;水酸化アルミニウム、水酸化マグネシウム、ハイドロタルサイト等の水酸化物;窒化アルミニウム、窒化珪素、窒化ホウ素等の窒化系セラミックス;タルク、モンモリロナイト、サポナイト等の天然鉱物;金属粒子、カーボン粒子などが挙げられる。無機充填剤の平均粒径は、25μm以下が好ましく、0.01μm以上25μm以下がより好ましく、0.1μm以上10μm以下がさらに好ましく、0.3μm以上7μm以下が特に好ましい。平均粒径が上記下限値以上であると、無機充填剤の凝集が抑制されやすくなり、無機充填剤が樹脂中に分散しやすい。平均粒径が上記上限値以下であると、封止成形時にワイヤが損傷することを抑制しやすい。平均粒径は、粒度分布計(レーザー回折散乱法)により測定された50%体積累積径(D50)を意味する。
 充填剤の配合量は、組成物全体の総重量を100重量%とした場合に、5~90重量%とすることが好ましく、10~80重量%とすることがより好ましい。
<Component E>
Examples of the filler (component E) include oxides such as silica, aluminum oxide, zirconia, mullite, and magnesia; hydroxides such as aluminum hydroxide, magnesium hydroxide, and hydrotalcite; aluminum nitride, silicon nitride, boron nitride, and the like. Nitrides; natural minerals such as talc, montmorillonite and saponite; metal particles and carbon particles. The average particle size of the inorganic filler is preferably 25 μm or less, more preferably 0.01 μm or more and 25 μm or less, further preferably 0.1 μm or more and 10 μm or less, and particularly preferably 0.3 μm or more and 7 μm or less. When the average particle size is not less than the lower limit, aggregation of the inorganic filler is easily suppressed, and the inorganic filler is easily dispersed in the resin. When the average particle size is equal to or less than the above upper limit, it is easy to suppress the wire from being damaged during the encapsulation molding. The average particle size means a 50% volume cumulative diameter (D50) measured by a particle size distribution meter (laser diffraction scattering method).
The amount of the filler is preferably 5 to 90% by weight, more preferably 10 to 80% by weight, when the total weight of the whole composition is 100% by weight.
<その他成分>
 本発明に係る組成物は、さらに必要に応じて、前記成分A~Eに該当しないその他成分を含有することができる。その他成分としては、その他の樹脂、溶媒、添加剤等が挙げられる。
 その他の樹脂としては、例えば、ポリオレフィン、ポリアミド、ポリイミド等が挙げられる。
<Other components>
The composition according to the present invention may further contain, if necessary, other components that do not correspond to the above components A to E. Other components include other resins, solvents, additives, and the like.
Other resins include, for example, polyolefin, polyamide, polyimide and the like.
≪組成物の用途≫
 本発明に係る組成物は以下の用途に好適に用いることができる。本発明に係る組成物を硬化して使用する場合、該組成物は、前記成分A~Cを含むことが好ましく、前記成分A~Dを含むことがより好ましい。
≫Applications of the composition≫
The composition according to the present invention can be suitably used for the following applications. When the composition according to the present invention is used after being cured, the composition preferably contains the components A to C, and more preferably the components A to D.
(封止材)
 本発明に係る組成物は、半導体部品等の部品の封止材として使用することができる。
 本発明に係る封止材は、本発明に係る組成物を含む。
 封止材としては、例えば半導体部品と基板との間、半導体部品子の周囲を封止材で封止する態様、及び半導体部品と基板との間を封止材で封止する態様(アンダーフィル)を例示できる。
 封止材をアンダーフィルとして使用する場合、例えば、以下の手順で基板と半導体部品との間のギャップに封止材を充填できる。まず、基板を70~130℃に加熱しながら、半導体部品の一端に封止材を塗布する。すると、毛細管現象によって、基板と半導体部品との間のギャップに封止材が充填される。この際、封止材の充填に要する時間を短くするため、基板を傾斜させたり、該ギャップ内外に圧力差を生じさせたりしてもよい。該ギャップに封止材を充填させた後、封止材を加熱硬化させることによって、該ギャップを封止できる。
(Sealing material)
The composition according to the present invention can be used as a sealing material for components such as semiconductor components.
The sealing material according to the present invention includes the composition according to the present invention.
As the sealing material, for example, an aspect in which the space between the semiconductor component and the substrate, the periphery of the semiconductor component element is sealed with the sealing material, and an aspect in which the semiconductor component and the substrate are sealed with the sealing material (underfill ) Can be exemplified.
When the sealing material is used as an underfill, for example, the gap between the substrate and the semiconductor component can be filled with the sealing material by the following procedure. First, a sealing material is applied to one end of a semiconductor component while heating the substrate to 70 to 130 ° C. Then, the gap between the substrate and the semiconductor component is filled with the sealing material by capillary action. At this time, in order to shorten the time required for filling the sealing material, the substrate may be inclined, or a pressure difference may be generated between the inside and outside of the gap. After filling the gap with the sealing material, the gap can be sealed by heating and curing the sealing material.
(基板材料)
 本発明に係る組成物は、基板材料として使用することができる。
 例えば、ガラス繊維、炭素繊維等の繊維に本発明に係る組成物を含浸させてシート状に成型してプリプレグ(prepreg)を得て、それを加熱硬化させることによって、基板を製造することができる。プリプレグは2枚以上積層されてもよい。
(Substrate material)
The composition according to the present invention can be used as a substrate material.
For example, a substrate can be manufactured by impregnating fibers such as glass fiber and carbon fiber with the composition according to the present invention, molding the resultant into a sheet, obtaining a prepreg, and heating and curing the prepreg. . Two or more prepregs may be stacked.
≪硬化物≫
 本発明に係る硬化物は、本発明に係る組成物の硬化物である。
 本発明に係る硬化物は、例えば、本発明に係る組成物を、80~200℃で0.2~6時間加熱することで、加熱硬化させて得ることができる。
≪cured product≫
The cured product according to the present invention is a cured product of the composition according to the present invention.
The cured product according to the present invention can be obtained, for example, by heating and curing the composition according to the present invention at 80 to 200 ° C. for 0.2 to 6 hours.
 本発明に係る組成物を硬化物とする場合、該組成物は、前記成分A~Cを含むことが好ましく、前記成分A~Dを含むことがより好ましい。 When the composition according to the present invention is a cured product, the composition preferably contains the components A to C, and more preferably the components A to D.
 また、本発明の一実施形態として、本発明に係る組成物の硬化物を備える基板を提供できる。
 基板としては、本発明に係る組成物の硬化物を備えるものであって、後述するように、プリプレグの硬化物、樹脂シートの硬化物、銅張積層板、印刷回路基板及び多層印刷回路基板からなる群から選ばれる少なくとも一種を備えるものであってよい。
Further, as one embodiment of the present invention, a substrate provided with a cured product of the composition according to the present invention can be provided.
The substrate is provided with a cured product of the composition according to the present invention, and as described below, a cured product of a prepreg, a cured product of a resin sheet, a copper-clad laminate, a printed circuit board, and a multilayer printed circuit board. It may have at least one selected from the group consisting of:
 本発明の一実施形態として、本発明に係る組成物及び繊維を備えるプリプレグを提供できる。
 また、本発明の一実施形態として、本発明に係る組成物を備える樹脂シートを提供できる。
As one embodiment of the present invention, a prepreg including the composition and the fiber according to the present invention can be provided.
Further, as one embodiment of the present invention, a resin sheet including the composition according to the present invention can be provided.
 前記樹脂シートは、本発明に係る組成物がシート状に成型されたものであり、成型性を高めるため、当該組成物は半硬化状態であってもよい。樹脂シートは、層間絶縁材料として好適に用いられる。
 前記基板は、本発明に係る組成物及び繊維を有するプリプレグの硬化物を備えるものであってよい。前述したプリプレグは、2枚以上積層されていてもよい。
 前記基板は、例えば、前述したプリプレグを加熱硬化及び加圧して製造することができる。
The resin sheet is obtained by molding the composition according to the present invention into a sheet, and the composition may be in a semi-cured state in order to enhance moldability. The resin sheet is suitably used as an interlayer insulating material.
The substrate may be provided with a cured product of a prepreg having the composition and fibers according to the present invention. Two or more prepregs described above may be stacked.
The substrate can be manufactured, for example, by heat-curing and pressing the prepreg described above.
 また、本発明の一実施形態として、基板と銅箔とが積層された銅張積層板を提供できる。銅張積層板の銅箔は、加工されて回路を形成することができる。
 したがって、本発明の一実施形態として、基板上に回路が形成された印刷回路基板又は多層印刷回路基板を提供できる。印刷回路基板又は多層印刷回路基板は、さらに前記樹脂シートの硬化物を備えることができる。樹脂シートは、前記基板に代えて備えられてもよい。
Further, as one embodiment of the present invention, a copper-clad laminate in which a substrate and a copper foil are laminated can be provided. The copper foil of the copper clad laminate can be processed to form a circuit.
Therefore, as one embodiment of the present invention, a printed circuit board or a multilayer printed circuit board having a circuit formed on a board can be provided. The printed circuit board or the multilayer printed circuit board may further include a cured product of the resin sheet. A resin sheet may be provided instead of the substrate.
 銅張積層板は、前記プリプレグ及び銅箔を積層し、加熱加圧成形して製造することができる。加熱加圧条件は、製造する銅張積層板の厚さ又は本発明に係る組成物の組成などに応じて適宜調節することができる。
 印刷回路基板又は多層印刷回路基板は、めっきスルーホール法やビルドアップ法など常法によって作製でき、内層配線板に前述のプリプレグ又は絶縁樹脂シートを重ね合わせて加熱加圧成形を行うことで得ることができる。例えば、本発明に係るプリプレグの片面又は両面に銅箔を積層し、加熱加圧して銅張積層板を製作した後、銅張積層板に孔を開口してスルーホールめっきを行った後、めっき膜を含む銅箔をエッチング処理して回路を形成することで、印刷回路基板又は多層印刷回路基板を製造することができる。
The copper-clad laminate can be manufactured by laminating the prepreg and the copper foil and forming the laminate under heat and pressure. The heating and pressing conditions can be appropriately adjusted according to the thickness of the copper-clad laminate to be manufactured or the composition of the composition according to the present invention.
A printed circuit board or a multilayer printed circuit board can be manufactured by a conventional method such as a plating through-hole method or a build-up method, and can be obtained by laminating the above-mentioned prepreg or insulating resin sheet on an inner-layer wiring board and performing heat and pressure molding. Can be. For example, after laminating copper foil on one or both sides of the prepreg according to the present invention, heat and press to produce a copper-clad laminate, open a hole in the copper-clad laminate, perform through-hole plating, and then perform plating. A printed circuit board or a multilayer printed circuit board can be manufactured by forming a circuit by etching a copper foil including a film.
 プリプレグ、樹脂シート、基板、銅張積層板、印刷回路基板、及び多層印刷回路基板の厚みは、特に制限されるものではないが、一例として、0.1~10mmであってよく、0.3~5mmであってよい。 The thickness of the prepreg, resin sheet, board, copper-clad laminate, printed circuit board, and multilayer printed circuit board is not particularly limited, but may be, for example, 0.1 to 10 mm, and may be, for example, 0.1 to 10 mm. It may be up to 5 mm.
 本発明に係る反応性希釈剤を配合する組成物の硬化物は、適度な可撓性が付与されたものとなる。本発明に係る硬化物は、曲げ弾性率の値が、3000MPa以下であってもよく、2500MPa以下であってもよい。曲げ弾性率の下限値は特に制限されるものではないが、曲げ弾性率の値が1500MPa以上であってもよく、2000MPa以上であってもよい。曲げ弾性率は、実施例に記載の測定条件又はそれと同一の結果が得られる互換性のある条件で測定されたものとする。 (4) The cured product of the composition containing the reactive diluent according to the present invention has moderate flexibility. The cured product according to the present invention may have a flexural modulus value of 3000 MPa or less or 2500 MPa or less. Although the lower limit of the flexural modulus is not particularly limited, the value of the flexural modulus may be 1500 MPa or more, or 2000 MPa or more. The flexural modulus is assumed to be measured under the measurement conditions described in the examples or under compatible conditions that can provide the same result.
 本発明に係る反応性希釈剤を配合する組成物の硬化物は、優れた誘電特性が付与されたものとなる。
 本発明に係る硬化物は、1MHz又は1GHzにおける比誘電率の値が、2~10であってもよく、2~5であってもよく、3~4であってもよい。比誘電は、実施例に記載の測定条件又はそれと同一の結果が得られる互換性のある条件で測定されたものとする。
 本発明に係る硬化物は、1MHz又は1GHzにおける誘電正接の値が、0.005~0.07であってもよく、0.006~0.05であってもよく、0.007~0.035であってもよく、0.008以上0.01未満であってもよい。誘電正接は、実施例に記載の測定条件又はそれと同一の結果が得られる互換性のある条件で測定されたものとする。なお、上記誘電特性を有する硬化物は、基板、銅張積層板、印刷回路基板、及び多層印刷回路基板に読みかえてもよい。
 本発明に係る硬化物は、吸水率の値が4%以下であってよく、3%以下であってよく、1%以下であってよい。吸水率の下限値は特に限定されるものではないが、0.5%以上であってよい。吸水率が上記上限値以下であるということは、硬化物が優れた効果特性を有することを意味するとともに、耐水性又は撥水性に優れたものであることを意味する。吸水率は、実施例に記載の測定条件又はそれと同一の結果が得られる互換性のある条件で測定されたものとする。
The cured product of the composition containing the reactive diluent according to the present invention has excellent dielectric properties.
The cured product according to the present invention may have a relative dielectric constant at 1 MHz or 1 GHz of 2 to 10, 2 to 5, or 3 to 4. The relative dielectric constant is assumed to be measured under the measurement conditions described in the examples or under compatible conditions to obtain the same result.
The cured product according to the present invention may have a dielectric loss tangent at 1 MHz or 1 GHz of from 0.005 to 0.07, from 0.006 to 0.05, or from 0.007 to 0. 035 and may be 0.008 or more and less than 0.01. It is assumed that the dielectric loss tangent is measured under the measurement conditions described in the examples or under compatible conditions to obtain the same result. The cured product having the above-mentioned dielectric properties may be read as a substrate, a copper-clad laminate, a printed circuit board, and a multilayer printed circuit board.
The cured product according to the present invention may have a water absorption value of 4% or less, 3% or less, or 1% or less. The lower limit of the water absorption is not particularly limited, but may be 0.5% or more. The fact that the water absorption is equal to or less than the above upper limit means that the cured product has excellent effect characteristics and that it has excellent water resistance or water repellency. The water absorption is assumed to be measured under the measurement conditions described in the examples or under compatible conditions to obtain the same result.
 また、本発明の一実施形態として、本発明に係る硬化物を備える電子部品を提供できる。より詳細には、半導体部品等の部品と基板とが本発明に係る封止材の硬化物で封止された電子部品を提供できる。
 当該電子部品は、例えば、封止材をアンダーフィルとして使用し、部品と基板との間が封止材で封止されていてもよく、又は、部品と基板との間、及び部品の周囲が封止材で封止されていてもよい。
 ここで封止対象である部品としては、半導体素子、集積回路、大規模集積回路、トランジスタ、サイリスタおよびダイオード、コンデンサ等が挙げられ、これらに限定されるものではない。電子部品は、基板、部品、封止材の硬化物の他に、端子やワイヤ、リードフレーム、その他の構造物等を含んでいてもよい。
Further, as one embodiment of the present invention, an electronic component including the cured product according to the present invention can be provided. More specifically, an electronic component in which a component such as a semiconductor component and a substrate are sealed with a cured product of the sealing material according to the present invention can be provided.
The electronic component may use, for example, a sealing material as an underfill, the space between the component and the substrate may be sealed with a sealing material, or the space between the component and the substrate, and around the component. It may be sealed with a sealing material.
Here, the components to be sealed include semiconductor elements, integrated circuits, large-scale integrated circuits, transistors, thyristors, diodes, capacitors, and the like, but are not limited thereto. The electronic component may include a terminal, a wire, a lead frame, other structures, and the like, in addition to the cured product of the substrate, the component, and the sealing material.
 以上に述べたように、プリプレグ、樹脂シート、基板、銅張積層板、印刷回路基板、多層印刷回路基板及び電子部品は、本発明に係る組成物から製造することができる。これらは、低誘電性、可撓性、及び優れた耐熱性を有し、1GHz以上の高周波信号を取り扱うモバイル通信機器やその基地局装置、サーバー、ルーターなどのネットワーク向け電子機器及び大型コンピュータなどの各種の電子機器に使用されるネットワーク用印刷回路基板の部品用途などに好適に使用可能である。 As described above, prepregs, resin sheets, substrates, copper-clad laminates, printed circuit boards, multilayer printed circuit boards, and electronic components can be manufactured from the composition according to the present invention. These have low dielectric properties, flexibility, and excellent heat resistance, and are used for mobile communication devices that handle high-frequency signals of 1 GHz or higher, base station devices, servers, electronic devices for networks such as routers, and large computers. The present invention can be suitably used for components of printed circuit boards for networks used in various electronic devices.
 以上、この発明の実施形態について詳述してきたが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の組み合わせ、付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 As described above, the embodiments of the present invention have been described in detail. However, each configuration in each embodiment and a combination thereof are only examples, and a combination of configurations, addition, omission, substitution, And other changes are possible. The present invention is not limited by each embodiment, but is limited only by the scope of the claims.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
<化合物の合成> <Synthesis of Compound>
[合成例1]
 1L反応容器中でアルゴン気流下、下記式(3-1)で表される化合物(「化合物(3-1)」と略記することがある。)及び下記式(3’-1)で表される化合物(「化合物(3’-1)」と略記することがある。)が含まれるトリイソブチレン原料(TCI社製)10g(59.4mmol)に、脱水THF60mlを加えて撹拌した。そこへ氷冷下で9-BBN(89.1mmol)を10℃以下で滴下し、30分後、35℃に昇温した。終夜撹拌後、ガスクロマトグラフィ(GC)で原料化合物(3-1)の消失を確認した。
[Synthesis Example 1]
A compound represented by the following formula (3-1) (sometimes abbreviated as “compound (3-1)”) and a compound represented by the following formula (3′-1) in a 1 L reaction vessel under an argon stream. 60 ml of dehydrated THF was added to 10 g (59.4 mmol) of a triisobutylene raw material (manufactured by TCI) containing the compound (may be abbreviated as “compound (3′-1)”) and stirred. Under ice-cooling, 9-BBN (89.1 mmol) was added dropwise at 10 ° C or lower, and after 30 minutes, the temperature was raised to 35 ° C. After stirring overnight, disappearance of the starting compound (3-1) was confirmed by gas chromatography (GC).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 再び反応液を氷冷し、3M NaOHaq79ml(238mmol)を滴下した。続いて30質量%H溶液(80ml)を滴下した。17時間後、GCで原料化合物(3-1)の消失を確認した。
 有機層と水層を分離した後、有機層にKCOを加え、有機溶媒中に残存した水を分離した。水層を分液後、同様の操作を更に2回行った。水層をあわせて、酢酸エチルで3回抽出した。最後に有機層をまとめ、MgSOで乾燥した。乾燥剤をろ過後、溶媒を減圧留去し18.22gの無色透明オイル状の粗体を得た。なお、減圧留去時に未反応の内部オレフィン構造が除去された。
 粗体を減圧蒸留(バス温度:100℃,トップ温度:45℃,減圧度:1.3kPa)で粗精製した後、シリカゲルカラム(Silicagel:92.8g、eluent:Heptane/Ethyl acetate=7/1)で精製し、白色固体のOH体を得た。収量2.74g(14.7mmol)、収率24.8%、GC純度99.9%以上であった。また、H-NMRを用いて、下記式(2-1)で表される化合物(「化合物(2-1)」と略記することがある。)が合成されたことを確認した。
The reaction solution was ice-cooled again, and 79 ml (238 mmol) of 3M NaOHaq was added dropwise. Subsequently, a 30% by mass H 2 O 2 solution (80 ml) was added dropwise. After 17 hours, disappearance of the starting compound (3-1) was confirmed by GC.
After separating the organic layer and the aqueous layer, K 2 CO 3 was added to the organic layer, and water remaining in the organic solvent was separated. After separating the aqueous layer, the same operation was further performed twice. The aqueous layers were combined and extracted three times with ethyl acetate. Finally, the organic layers were combined and dried over MgSO 4 . After filtering the desiccant, the solvent was distilled off under reduced pressure to obtain 18.22 g of a colorless transparent oily crude product. Unreacted internal olefin structure was removed during distillation under reduced pressure.
The crude product was roughly purified by distillation under reduced pressure (bath temperature: 100 ° C., top temperature: 45 ° C., degree of reduced pressure: 1.3 kPa), and then silica gel column (Silicagel: 92.8 g, eluent: Heptane / Ethyl acetate = 7/1). ) To obtain a white solid OH form. The yield was 2.74 g (14.7 mmol), the yield was 24.8%, and the GC purity was 99.9% or more. In addition, 1 H-NMR was used to confirm that a compound represented by the following formula (2-1) (may be abbreviated as “compound (2-1)”) was synthesized.
 得られた化合物(2-1)のNMRデータを以下に示す。
 1H-NMR(300.40 MHz, CDCl3, 内部基準TMS)
0.92 (s,18H), 1.15-1.41 (d,4H), 1.57 (m,1H), 3.53 (d,2H), 7.28 (s,OH).
The NMR data of the obtained compound (2-1) are shown below.
1 H-NMR (300.40 MHz, CDCl 3 , internal reference TMS)
0.92 (s, 18H), 1.15-1.41 (d, 4H), 1.57 (m, 1H), 3.53 (d, 2H), 7.28 (s, OH).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[合成例2]
 次に、30mL反応容器に、前記合成例1で合成した化合物(2-1)1.0g(5.37mmol)、トルエン、Tetrabutylammonium Hydrogen
 Sulfate73mg(0.215mmol)、50%NaOHaq(5.4mL)を加えてアルゴン置換した後に氷冷し、撹拌した。そこにエピクロヒドリン1.49g(16.1mmol)を滴下して30分撹拌し、室温に昇温した。2日後GCで原料化合物(2-1-1)の消失を確認した。
 水でクエンチ後、酢酸エチルで希釈した。有機層と水層を分離した後、水層を酢酸エチルで3回抽出した。有機層をまとめ、sat.NaClaqで1回洗浄し、NaSOで乾燥した。乾燥剤をろ過後、溶媒を減圧留去し1.94gの淡黄色オイル状の粗体を得た。
 粗体をクーゲルロール蒸留装置(加熱温度:160~240℃,減圧度:0.1mmHg)で精製を行い、無色透明で液状の本発明に係る下記式(1-1)で表される化合物(「化合物(1-1)」と略記することがある。)を得た。収量770mg(3.18mmol)、収率59.2%、GC純度95.8%、粘度5.8mPa・s(25℃)、エポキシ当量242であった。また、H-NMRを用いて、化合物(1-1)が合成されたことを確認した。
[Synthesis Example 2]
Next, in a 30 mL reaction vessel, 1.0 g (5.37 mmol) of the compound (2-1) synthesized in Synthesis Example 1, toluene, and tetrabutylammonium hydrogen were added.
After adding 73 mg (0.215 mmol) of Sulfate and 50% NaOHaq (5.4 mL) and purging with argon, the mixture was ice-cooled and stirred. 1.49 g (16.1 mmol) of epichlorohydrin was added dropwise thereto, and the mixture was stirred for 30 minutes and heated to room temperature. Two days later, the disappearance of the raw material compound (2-1-1) was confirmed by GC.
After quenching with water, the mixture was diluted with ethyl acetate. After separating the organic layer and the aqueous layer, the aqueous layer was extracted three times with ethyl acetate. The organic layers are combined and sat. Washed once with NaClaq and dried over Na 2 SO 4 . After filtering the drying agent, the solvent was distilled off under reduced pressure to obtain 1.94 g of a pale yellow oily crude product.
The crude product is purified by a Kugelrohr distillation apparatus (heating temperature: 160 to 240 ° C., degree of reduced pressure: 0.1 mmHg), and is a colorless, transparent and liquid compound represented by the following formula (1-1) according to the present invention ( "Compound (1-1)"). The yield was 770 mg (3.18 mmol), the yield was 59.2%, the GC purity was 95.8%, the viscosity was 5.8 mPa · s (25 ° C.), and the epoxy equivalent was 242. In addition, 1 H-NMR was used to confirm that the compound (1-1) was synthesized.
 以下のE型粘度計を用いて25℃E型粘度を測定した。
  使用機器:東機産業株式会社製 TV20形粘度計
  測定温度:25℃
 化合物(1-1)約1.2mLをE型粘度計付属のカップに入れ、このカップを温度25℃に設定した。E型粘度計で上記化合物の回転粘度の計測を開始し、回転粘度の指示値が安定した点での回転粘度の数値を測定した。
The E-type viscosity at 25 ° C. was measured using the following E-type viscometer.
Equipment used: TV20 viscometer manufactured by Toki Sangyo Co., Ltd. Measurement temperature: 25 ° C
About 1.2 mL of the compound (1-1) was placed in a cup attached to an E-type viscometer, and the temperature of the cup was set to 25 ° C. The measurement of the rotational viscosity of the compound was started with an E-type viscometer, and the numerical value of the rotational viscosity at the point where the indicated value of the rotational viscosity was stabilized was measured.
 得られた化合物(1-1)のNMRデータを以下に示す。
 1H-NMR(300.40 MHz, CDCl3, 内部基準TMS)
0.92 (s,18H), 1.15-1.36 (d,4H), 1.74 (m,1H), 2.61-2.77 (d,2H), 3.14 (m,1H), 3.40-3.67 (d,18H), 3.38 (t,2H).
The NMR data of the obtained compound (1-1) are shown below.
1 H-NMR (300.40 MHz, CDCl 3, internal reference TMS)
0.92 (s, 18H), 1.15-1.36 (d, 4H), 1.74 (m, 1H), 2.61-2.77 (d, 2H), 3.14 (m, 1H), 3.40-3.67 (d, 18H), 3.38 ( t, 2H).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[合成例3]
 前記トリイソブチレン原料に代えて、下記式(3-2)で表される化合物(「化合物(3-2)」と略記することがある。)及び下記式(3’-2)で表される化合物(「化合物(3’-2)」と略記することがある。)が含まれるテトライソブチレン原料(TCI社製)を用いた以外は、合成例1と同様に反応を行い、下記式(2-2)で表される化合物(「化合物(2-2)」と略記することがある。)を合成した。
[Synthesis Example 3]
Instead of the triisobutylene raw material, a compound represented by the following formula (3-2) (sometimes abbreviated as “compound (3-2)”) and a compound represented by the following formula (3′-2) The reaction was carried out in the same manner as in Synthesis Example 1 except that a tetraisobutylene raw material (manufactured by TCI) containing a compound (may be abbreviated as “compound (3′-2)”) was used. -2) (in some cases, abbreviated as “compound (2-2)”) was synthesized.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 得られた化合物(2-2)のNMRデータを以下に示す。
 1H-NMR(300.40 MHz, CDCl3, 内部基準TMS)
0.87 (s,6H), 0.92 (s,9H), 0.97 (s,9H), 1.02 (d,2H), 1.17-1.41 (d,4H), 1.60 (m,1H), 3.50 (m,2H), 7.21 (s,OH).
The NMR data of the obtained compound (2-2) are shown below.
1 H-NMR (300.40 MHz, CDCl 3 , internal reference TMS)
0.87 (s, 6H), 0.92 (s, 9H), 0.97 (s, 9H), 1.02 (d, 2H), 1.17-1.41 (d, 4H), 1.60 (m, 1H), 3.50 (m, 2H) , 7.21 (s, OH).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[合成例4]
 化合物(2-1)代えて、上記で得られた化合物(2-2)を用いた以外は、合成例2と同様に反応を行い、無色透明で液状の本発明に係る下記式(1-2)で表される化合物(「化合物(1-2)」と略記することがある。)を得た。化合物(1-2)の総合収率は17.2%、GC純度98.2%、粘度33mPa・s(25℃)、エポキシ当量298であった。また、H-NMRを用いて、化合物(1-2)が合成されたことを確認した。化合物(1-2)の粘度測定は前記合成例2と同様の方法にて行った。
[Synthesis Example 4]
The reaction was carried out in the same manner as in Synthesis Example 2 except that the compound (2-2) obtained above was used in place of the compound (2-1). The compound represented by 2) (may be abbreviated as “compound (1-2)”) was obtained. The overall yield of the compound (1-2) was 17.2%, GC purity was 98.2%, viscosity was 33 mPa · s (25 ° C.), and epoxy equivalent was 298. In addition, 1 H-NMR was used to confirm that the compound (1-2) was synthesized. The viscosity of compound (1-2) was measured by the same method as in Synthesis Example 2.
 得られた化合物(1-2)のNMRデータを以下に示す。
 1H-NMR(300.40 MHz, CDCl3, 内部基準TMS)
0.87 (s,6H), 0.92 (s,9H), 0.97 (s,9H), 1.02 (d,2H), 1.15-1.36(d,4H), 1.74(m,1H), 2.64-2.79(d,2H), 3.17(m,1H), 3.42-3.69(d,2H), 3.36(t,2H).
The NMR data of the obtained compound (1-2) are shown below.
1 H-NMR (300.40 MHz, CDCl 3, internal reference TMS)
0.87 (s, 6H), 0.92 (s, 9H), 0.97 (s, 9H), 1.02 (d, 2H), 1.15-1.36 (d, 4H), 1.74 (m, 1H), 2.64-2.79 (d, 2H), 3.17 (m, 1H), 3.42-3.69 (d, 2H), 3.36 (t, 2H).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
[合成例5]
 前記9-BBNに代えてNHBHを用いた以外は、合成例1と同様に反応を行い、上記化合物(2-1)を合成した。詳細を以下に記載する。
[Synthesis Example 5]
The reaction was carried out in the same manner as in Synthesis Example 1 except that NH 3 BH 3 was used instead of 9-BBN, to synthesize the compound (2-1). Details are described below.
(NHBH合成)
 まず、NHBHを合成した。使用した試薬は以下である。
・NaBH          7.57g(200mmol)
・(NHSO       26.43g(200mmol)
・THF           300ml
・NH(液体比重 約0.6) 7.9g
 事前準備として、氷冷下、THFにアンモニアガスを吹き込むことで、5%(v/v)NH/THF溶液(200ml)、及び1M NH/THF溶液(100ml)を作成した。
 大気下、500mlフラスコに冷やした5%(v/v)NH/THF溶液(200ml)を仕込んだ。これに氷冷下で、水素化ホウ素ナトリウム、硫酸アンモニウムを加えて、0℃で2時間攪拌した後、室温で8時間攪拌を行った。
 得られた白色懸濁液に、1MNH/THF溶液(100ml)を加えて、30min攪拌後、セライト濾過し、THFでかけ洗いを行った。得られたろ液を濃縮し、室温で減圧乾燥することで、白色固体としてNHBHを4.73g得た(収率:76.6%, 不純物ピーク無し)。B-NMRを用いて、NHBHが合成されたことを確認した。
(NH 3 BH 3 synthesis)
First, NH 3 BH 3 was synthesized. The reagents used are as follows.
・ 7.57 g (200 mmol) of NaBH 4
· (NH 4) 2 SO 4 26.43g (200mmol)
・ THF 300ml
・ NH 3 (Liquid specific gravity about 0.6) 7.9g
As a preliminary preparation, a 5% (v / v) NH 3 / THF solution (200 ml) and a 1M NH 3 / THF solution (100 ml) were prepared by blowing ammonia gas into THF under ice cooling.
Under air, a cooled 5% (v / v) NH 3 / THF solution (200 ml) was charged into a 500 ml flask. Under ice-cooling, sodium borohydride and ammonium sulfate were added thereto, and the mixture was stirred at 0 ° C. for 2 hours and then at room temperature for 8 hours.
A 1M NH 3 / THF solution (100 ml) was added to the obtained white suspension, and the mixture was stirred for 30 minutes, filtered through celite, and washed with THF. The obtained filtrate was concentrated and dried under reduced pressure at room temperature to obtain 4.73 g of NH 3 BH 3 as a white solid (yield: 76.6%, no impurity peak). 1 B-NMR was used to confirm that NH 3 BH 3 was synthesized.
 200mL反応容器中で大気下、化合物(3-1)及び化合物(3’-1)が含まれるトリイソブチレン原料(TCI社製)25.20g(149.7mmol)に、脱水THF25ml、及びNHBH1.16g(37.43mmol)を加えて撹拌し、78℃加熱還流下で1時間反応を行い、その後反応液からTHF10mlを留去し、80℃加熱還流下で2時間反応後、ガスクロマトグラフィ(GC)で原料化合物(3-1)の消失を確認した。 25.20 g (149.7 mmol) of a triisobutylene raw material (manufactured by TCI) containing compound (3-1) and compound (3′-1) in the air in a 200 mL reaction vessel, 25 ml of dehydrated THF, and NH 3 BH 3 1.16 g (37.43 mmol) was added and stirred, and the reaction was carried out at 78 ° C. under reflux for 1 hour. Then, 10 ml of THF was distilled off from the reaction solution, and the mixture was reacted at 80 ° C. under reflux for 2 hours, followed by gas chromatography. (GC) confirmed the disappearance of the starting compound (3-1).
 反応液に、3M NaOHaq17ml(49.9mmol)を加えて、73℃で3時間加熱還流を行った。これを30℃に冷却した後、続いて30質量%H溶液17ml(154.2mmol)を10分かけて滴下した。45℃まで昇温後、そのまま室温で終夜攪拌した。
 上記合成例1と同様に精製し、白色固体のOH体を得た。収量6.7g、収率24.0%、GC純度99.0%以上であった。また、H-NMRを用いて、化合物(2-1)が合成されたことを確認した。
17 ml (49.9 mmol) of 3M NaOHaq was added to the reaction solution, and the mixture was heated under reflux at 73 ° C. for 3 hours. After cooling to 30 ° C., 17 ml (154.2 mmol) of a 30% by mass H 2 O 2 solution was added dropwise over 10 minutes. After the temperature was raised to 45 ° C, the mixture was stirred at room temperature overnight.
Purification was carried out in the same manner as in Synthesis Example 1 above, to obtain a white solid OH form. The yield was 6.7 g, the yield was 24.0%, and the GC purity was 99.0% or more. In addition, 1 H-NMR was used to confirm that the compound (2-1) was synthesized.
<組成物の調製1>
 表1に示す配合比(重量部)で下記材料を配合し、本発明に係る組成物を得た。
<Preparation 1 of composition>
The following materials were blended at a blending ratio (parts by weight) shown in Table 1 to obtain a composition according to the present invention.
(反応性希釈剤)
・化合物(1-1)
・化合物(1-2)
(エポキシ樹脂)
・エポキシ樹脂I:フェノールノボラック型(液状、エポキシ当量175g/eq、粘度4500Pa・s)
・エポキシ樹脂II:ビスフェノールA液状型(新日鉄住金製、型番:YD-128、エポキシ当量190g/eq、粘度11,000mPa・s)(硬化剤)
・硬化剤A:2-エチル-4-メチルイミダゾール(アミン当量110g/eq)・硬化剤B:フェノールノボラック樹脂(住友ベークライト社製、PR-HF-6)・硬化剤C:メチルヘキサヒドロ無水フタル酸
(硬化促進剤)
・硬化促進剤A:トリフェニルホスフィン(北興化学工業社製、ホクコーTPP)・硬化促進剤B:2-エチル-4-メチルイミダゾール
(充填剤)
・充填剤A:二酸化ケイ素粉
・充填剤B:窒化ホウ素粉
(Reactive diluent)
-Compound (1-1)
-Compound (1-2)
(Epoxy resin)
Epoxy resin I: phenol novolak type (liquid, epoxy equivalent 175 g / eq, viscosity 4500 Pa · s)
Epoxy resin II: bisphenol A liquid type (manufactured by Nippon Steel & Sumitomo Metal, model number: YD-128, epoxy equivalent 190 g / eq, viscosity 11,000 mPa · s) (curing agent)
Curing agent A: 2-ethyl-4-methylimidazole (amine equivalent: 110 g / eq) Curing agent B: phenol novolak resin (PR-HF-6, manufactured by Sumitomo Bakelite Co.) Curing agent C: methyl hexahydroanhydride phthalate Acid (curing accelerator)
Curing accelerator A: Triphenylphosphine (Hokuko TPP, manufactured by Hokuko Chemical Co., Ltd.) Curing accelerator B: 2-ethyl-4-methylimidazole (filler)
-Filler A: silicon dioxide powder-Filler B: boron nitride powder
<評価>
(粘度)
 以下のE型粘度計を用いて25℃E型粘度を測定した。
  使用機器:東機産業株式会社製 TV20形粘度計
  測定温度:25℃
 配合例で調整した各樹脂組成物約1.2mLをE型粘度計付属のカップに入れ、このカップを温度25℃に設定した。E型粘度計で上記化合物の回転粘度の計測を開始し、回転粘度の指示値が安定した点での回転粘度の数値を測定した。
<Evaluation>
(viscosity)
The E-type viscosity at 25 ° C. was measured using the following E-type viscometer.
Equipment used: Toki Sangyo Co., Ltd. TV20 viscometer Measurement temperature: 25 ° C
About 1.2 mL of each resin composition prepared in the formulation example was placed in a cup attached to an E-type viscometer, and the cup was set to a temperature of 25 ° C. The measurement of the rotational viscosity of the compound was started with an E-type viscometer, and the numerical value of the rotational viscosity at the point where the indicated value of the rotational viscosity was stabilized was measured.
(引張せん断接着強さ)
 以下の条件にて引張せん断接着強さの測定を行った。
 Cu板(長さ150mm×幅25mm×厚さ1.5mm)とAl板(長さ150mm×幅25mm×厚さ1.5mm)とをアセトンで脱脂後、配合例で調整した各樹脂組成物を薄く刷毛で塗布し、12.5mmのオーバーラップ距離でCu板とAl板とを重ね合わせた。その後、ハサミ具にて固定し、100℃1時間、180℃5時間にて硬化させる事で試験片を作製した。試験は、引張速度5mm/minにて試験を開始し、試験片が破断したときの荷重を引張せん断接着強さとした。
(Tensile shear bond strength)
The tensile shear strength was measured under the following conditions.
After degreasing a Cu plate (length 150 mm × width 25 mm × thickness 1.5 mm) and an Al plate (length 150 mm × width 25 mm × thickness 1.5 mm) with acetone, each of the resin compositions prepared in the formulation examples was prepared. A thin brush was applied, and the Cu plate and the Al plate were overlapped with an overlap distance of 12.5 mm. Then, it was fixed with scissors and cured at 100 ° C. for 1 hour and 180 ° C. for 5 hours to prepare a test piece. The test was started at a tensile speed of 5 mm / min, and the load when the test piece was broken was defined as the tensile shear bond strength.
 評価結果を表1に示す。 Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
<組成物の調製2>
 表2に示す配合比(重量部)で下記材料を配合し、本発明に係る組成物を得た。
<Preparation 2 of composition>
The following materials were blended at a blending ratio (parts by weight) shown in Table 2 to obtain a composition according to the present invention.
(反応性希釈剤)
・化合物(1-1)
(エポキシ化合物1)
・TEPIC-S(日産化学工業株式会社製、エポキシ当量100)
(エポキシ化合物2)
・jER1031S(三菱ケミカル株式会社製、エポキシ当量196)
(硬化剤)
・MH-700(MeHHPA、新日本理化株式会社製、酸無水物当量164)
(硬化促進剤)
・キュアゾール(2E4MZ、四国化成工業株式会社製)
(Reactive diluent)
-Compound (1-1)
(Epoxy compound 1)
・ TEPIC-S (Nissan Chemical Industries, Ltd., epoxy equivalent: 100)
(Epoxy compound 2)
・ JER1031S (Mitsubishi Chemical Corporation, epoxy equivalent 196)
(Curing agent)
-MH-700 (MeHHPA, manufactured by Shin Nippon Rika Co., Ltd., acid anhydride equivalent 164)
(Curing accelerator)
・ Curesol (2E4MZ, manufactured by Shikoku Chemical Industry Co., Ltd.)
<評価>
(試験片の作製)
 反応性希釈剤、エポキシ化合物、及び硬化剤の各材料を、表2に示す所定の配合で混合した。次いで、表2に示す所定の配合で硬化促進剤を加えて混合した後、注型用のセルに流し込んだ。注型用セルを熱風循環式オーブンに入れ、100℃2時間の条件で加熱後、さらに150℃5時間の条件にて硬化させ、試験片を得た。
<Evaluation>
(Preparation of test pieces)
Reactive diluents, epoxy compounds, and curing agents were mixed in predetermined formulations shown in Table 2. Next, after adding and mixing a curing accelerator in a predetermined composition shown in Table 2, the mixture was poured into a casting cell. The casting cell was placed in a hot-air circulation oven, heated at 100 ° C. for 2 hours, and then cured at 150 ° C. for 5 hours to obtain a test piece.
(曲げ試験)
 以下の条件にて曲げ試験を行った。
・試験方法 :JIS K 7171準拠
・測定項目 :強さ、弾性率
・試験片形状:65mm×25mm×3mm
・測定条件 :試験速度;1.5mm/min
・支点間距離:48mm
・測定数  :n=3
・試験環境 :23℃±1℃・50%RH±5%RH
・測定装置 :万能材料試験機5582型(インストロン社製)
(Bending test)
A bending test was performed under the following conditions.
・ Test method: JIS K 7171 compliant ・ Measurement items: strength, elastic modulus ・ Test specimen shape: 65 mm × 25 mm × 3 mm
・ Measurement conditions: Test speed: 1.5 mm / min
・ Distance between supporting points: 48mm
・ Number of measurements: n = 3
・ Test environment: 23 ℃ ± 1 ℃ ・ 50% RH ± 5% RH
-Measuring device: Universal material testing machine 5582 type (Instron)
(比誘電率・誘電正接)
 以下の条件にて比誘電率及び誘電正接の測定を行った。
・試験方法 :IEC 60250準拠(自動平衡ブリッジ法)・測定項目 :比誘電率・誘電正接
・試験片形状:60mm×60mm×3mm
・測定条件 :周波数;1MHz
・測定温度 :23℃
・電極寸法 :主電極径φ36mm、環状電極内径φ38mm・電極材質 :導電性銀ペイント
・測定数  :n=2(1枚を2回測定した)
・状態調節 :23℃±2℃・50%RH±5%RH,48時間・試験環境 :23℃±2℃・50%RH±5%RH
・測定装置 :プレシジョンLCRメータE4980A(アジレント・テクノロジー株式会社製)
(Relative permittivity and dielectric loss tangent)
The relative permittivity and the dielectric loss tangent were measured under the following conditions.
・ Test method: IEC 60250 compliant (automatic equilibrium bridge method) ・ Measurement items: relative permittivity ・ Dielectric loss tangent ・ Test piece shape: 60 mm × 60 mm × 3 mm
・ Measurement condition: Frequency; 1MHz
・ Measurement temperature: 23 ℃
・ Electrode dimensions: main electrode diameter φ36 mm, annular electrode inner diameter φ38 mm ・ Electrode material: conductive silver paint ・ Number of measurements: n = 2 (one sheet was measured twice)
-Condition adjustment: 23 ° C ± 2 ° C · 50% RH ± 5% RH for 48 hours · Test environment: 23 ° C ± 2 ° C · 50% RH ± 5% RH
-Measuring device: Precision LCR meter E4980A (manufactured by Agilent Technologies)
(吸水率)
 以下の条件にて吸水率の測定を行った。
・試験片形状:約30mm×40mm×3mm
・前処理  :50℃,24時間(熱風循環式オーブン)・試験条件 :沸騰水(100℃),100時間
・測定数  :n=2
(Water absorption)
The water absorption was measured under the following conditions.
-Specimen shape: about 30mm x 40mm x 3mm
・ Pretreatment: 50 ° C, 24 hours (hot air circulation oven) ・ Test conditions: Boiling water (100 ° C), 100 hours ・ Number of measurements: n = 2
 評価結果を表2に示す。 Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
<組成物の調製3>
 表3に示す配合比(重量部)で下記材料を配合し、本発明に係る組成物を得た。
<Preparation 3 of composition>
The following materials were blended at a blending ratio (parts by weight) shown in Table 3 to obtain a composition according to the present invention.
(反応性希釈剤)
・化合物(1-1)
・化合物(1-2)
(エポキシ化合物)
・TEPIC-S(日産化学工業株式会社製、エポキシ当量100)
(硬化剤)
・MH-700(MeHHPA、新日本理化株式会社製、酸無水物当量164)
(硬化促進剤)
・キュアゾール(2E4MZ、四国化成工業株式会社製)
(充填剤)
・シリカ粉(平均粒径25μm)
(Reactive diluent)
-Compound (1-1)
-Compound (1-2)
(Epoxy compound)
・ TEPIC-S (Nissan Chemical Industries, Ltd., epoxy equivalent: 100)
(Curing agent)
-MH-700 (MeHHPA, manufactured by Shin Nippon Rika Co., Ltd., acid anhydride equivalent 164)
(Curing accelerator)
・ Curesol (2E4MZ, manufactured by Shikoku Chemicals)
(filler)
・ Silica powder (25 μm average particle size)
<プリプレグ及び印刷回路基板の製造>
 表3に示す配合で調製された各樹脂組成物を、ガラス繊維に含浸させた後、165℃で3~10分間乾燥してプリプレグを製造した。前記プリプレグを2plyと、厚み18μm銅箔とを積層した後、プレスして0.2mm厚さの積層薄板を得た。
<Manufacture of prepreg and printed circuit board>
Each resin composition prepared according to the formulation shown in Table 3 was impregnated into glass fibers and then dried at 165 ° C. for 3 to 10 minutes to produce a prepreg. After laminating 2 ply of the prepreg and an 18 μm-thick copper foil, the laminate was pressed to obtain a laminated thin plate having a thickness of 0.2 mm.
<評価>
(銅箔接着性(Peel Strength:P/S))
 IPC-TM-650 2.4.8の評価規格に従い、前記積層薄板を銅エッチング液に含浸させて銅箔を除去して得られた印刷回路基板に形成された回路パターン(銅箔)を90°方向で引き上げ、回路パターンの剥離時点を測定して評価した(kgf/cm)。
<Evaluation>
(Copper foil adhesion (Peel Strength: P / S))
According to the evaluation standard of IPC-TM-650 2.4.8, a circuit pattern (copper foil) formed on a printed circuit board obtained by impregnating the laminated thin plate with a copper etchant and removing the copper foil was 90%. It was pulled up in the ° direction, and the peeling time of the circuit pattern was measured and evaluated (kgf / cm).
(吸湿耐熱評価(PCT))
 上記印刷回路基板に対し、プレッシャークッカー試験装置(ESPEC、EHS-411MD)を用いて、121℃、0.2MPaの条件まで4時間放置した後、solder288℃で印刷回路基板10秒間隔でディッピング(Dipping)し、絶縁層と銅箔、絶縁層と金属コア、又は絶縁層同士の層間剥離現象が起こる時点までの時間を測定して評価した。
 2時間以上で合格とした。
(Moisture absorption heat resistance evaluation (PCT))
The printed circuit board was allowed to stand at 121 ° C. and 0.2 MPa for 4 hours using a pressure cooker tester (ESPEC, EHS-411MD), and then was dipped at a solder 288 ° C. every 10 seconds. Then, the time until the delamination phenomenon between the insulating layer and the copper foil, between the insulating layer and the metal core, or between the insulating layers occurred was measured and evaluated.
The test was passed in 2 hours or more.
(比誘電率及び誘電正接)
 上記印刷回路基板に対し、比誘電率測定装置(RF Impedence/Material Analyzer:Agilent社製)で周波数1GHzでの比誘電率及び誘電正接の測定を行った。
(Relative permittivity and dielectric loss tangent)
The relative permittivity and the dielectric loss tangent of the printed circuit board were measured at a frequency of 1 GHz using a relative dielectric constant measuring device (RF Impedance / Material Analyzer: manufactured by Agilent).
 評価結果を表3に示す。 Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 上記に示す結果から、本発明に係る化合物は、エポキシ樹脂と混合する反応性希釈剤として、好適に使用できることが分かる。本発明に係る化合物を配合した樹脂組成物は低粘度化され、当該樹脂組成物の硬化物は、優れた誘電特性を発揮するとともに、可撓性が良好であって、外部から力が加えられても破断し難いという、優れた性質を有することが明らかとなった。 From the results shown above, it is understood that the compound according to the present invention can be suitably used as a reactive diluent mixed with an epoxy resin. The resin composition containing the compound according to the present invention has a reduced viscosity, and the cured product of the resin composition exhibits excellent dielectric properties, has good flexibility, and is externally applied with force. It has been found that it has an excellent property that it is hard to break even when it is broken.

Claims (12)

  1.  以下の成分Aを含む反応性希釈剤、
     成分A:下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは0又は1である。)
    A reactive diluent comprising the following component A,
    Component A: a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), n is 0 or 1.)
  2.  以下の成分A、及び成分Bを含む組成物、
     成分A:下記一般式(1)で表される化合物、
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、nは0又は1である。)
     成分B:エポキシ環を含む基を分子内に2つ以上有する化合物。
    A composition comprising the following components A and B,
    Component A: a compound represented by the following general formula (1),
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (1), n is 0 or 1.)
    Component B: a compound having two or more groups containing an epoxy ring in the molecule.
  3.  さらに、以下の成分Cを含む請求項2に記載の組成物、
     成分C:硬化剤。
    The composition according to claim 2, further comprising the following component C:
    Component C: curing agent.
  4.  さらに、以下の成分Dを含む請求項3に記載の組成物、
     成分D:硬化促進剤。
    The composition according to claim 3, further comprising the following component D:
    Component D: curing accelerator.
  5.  請求項3又は4に記載の組成物を含む封止材。 封 止 A sealing material containing the composition according to claim 3.
  6.  請求項3又は4に記載の組成物の硬化物。 硬化 A cured product of the composition according to claim 3 or 4.
  7.  請求項6に記載の硬化物を備える基板。 A substrate comprising the cured product according to claim 6.
  8.  請求項6に記載の硬化物を備える電子部品。 An electronic component comprising the cured product according to claim 6.
  9.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、nは0又は1である。)
    A compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (1), n is 0 or 1.)
  10.  下記一般式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(2)中、nは0又は1である。)
    A compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (2), n is 0 or 1.)
  11.  下記一般式(3)で表される化合物をヒドロキシル化して、下記一般式(2)で表される化合物を得ることを含む、下記一般式(2)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(3)中、nは0又は1である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(2)中、nは0又は1である。)
    A method for producing a compound represented by the following general formula (2), comprising hydroxylating a compound represented by the following general formula (3) to obtain a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula (3), n is 0 or 1.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (2), n is 0 or 1.)
  12.  下記一般式(2)で表される化合物をエポキシ化して、下記一般式(1)で表される化合物を得ることを含む、下記一般式(1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式(2)中、nは0又は1である。)
    Figure JPOXMLDOC01-appb-C000008
    (式(1)中、nは0又は1である。)
    A method for producing a compound represented by the following general formula (1), comprising epoxidizing a compound represented by the following general formula (2) to obtain a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula (2), n is 0 or 1.)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula (1), n is 0 or 1.)
PCT/JP2019/019696 2018-07-17 2019-05-17 Reactive diluent, composition, sealing material, cured product, substrate, electronic component, epoxy compound and method for producing compound WO2020017141A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980047141.XA CN112424255A (en) 2018-07-17 2019-05-17 Reactive diluent, composition, sealing material, cured product, substrate, electronic component, epoxy compound, and method for producing compound
JP2020530910A JPWO2020017141A1 (en) 2018-07-17 2019-05-17 Reactive diluents, compositions, encapsulants, cured products, substrates, electronic components, epoxy compounds, and methods for producing compounds.
KR1020217000729A KR20210032383A (en) 2018-07-17 2019-05-17 Reactive diluent, composition, sealing material, cured product, substrate, electronic component, epoxy compound, and method for producing compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018134435 2018-07-17
JP2018134436 2018-07-17
JP2018-134436 2018-07-17
JP2018-134435 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017141A1 true WO2020017141A1 (en) 2020-01-23

Family

ID=69163514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019696 WO2020017141A1 (en) 2018-07-17 2019-05-17 Reactive diluent, composition, sealing material, cured product, substrate, electronic component, epoxy compound and method for producing compound

Country Status (5)

Country Link
JP (1) JPWO2020017141A1 (en)
KR (1) KR20210032383A (en)
CN (1) CN112424255A (en)
TW (1) TW202006038A (en)
WO (1) WO2020017141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170778A1 (en) * 2019-02-21 2020-08-27 ナミックス株式会社 Liquid epoxy resin composition, and cured product obtained by curing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924026A (en) * 1989-08-11 1990-05-08 International Flavors & Fragrances Inc. Triisobutylene alcohols and esters, uses thereof in perfumery and halogenated intermediates useful for preparing same
JP2000198830A (en) * 1998-12-30 2000-07-18 Yuka Shell Epoxy Kk Manufacture of polycarboxylic acid composition
JP2004537598A (en) * 2001-08-06 2004-12-16 ノバルティス アクチエンゲゼルシャフト Certain substituted polyketides, pharmaceutical compositions containing them and their use in treating tumors
JP2012102230A (en) * 2010-11-10 2012-05-31 Honda Motor Co Ltd Curable resin composition and electric and electronic part using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103505A2 (en) * 2014-01-03 2015-07-09 Ess Daniel Halsell Direct stereospecific synthesis of unprotected aziridines from olefins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924026A (en) * 1989-08-11 1990-05-08 International Flavors & Fragrances Inc. Triisobutylene alcohols and esters, uses thereof in perfumery and halogenated intermediates useful for preparing same
JP2000198830A (en) * 1998-12-30 2000-07-18 Yuka Shell Epoxy Kk Manufacture of polycarboxylic acid composition
JP2004537598A (en) * 2001-08-06 2004-12-16 ノバルティス アクチエンゲゼルシャフト Certain substituted polyketides, pharmaceutical compositions containing them and their use in treating tumors
JP2012102230A (en) * 2010-11-10 2012-05-31 Honda Motor Co Ltd Curable resin composition and electric and electronic part using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CRANDALL, J. K. ET AL.: "Reactions of ketenes with peracids and ozone", JOURNAL OF ORGANIC CHEMISTRY, vol. 39, 1974, pages 2172 - 2175 *
WHITMORE, F. C. ET AL.: "Grignard reductions. IX. Further studies on the reduction of acid halides", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 63, 1941, pages 643 - 654, XP055675788 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170778A1 (en) * 2019-02-21 2020-08-27 ナミックス株式会社 Liquid epoxy resin composition, and cured product obtained by curing same

Also Published As

Publication number Publication date
TW202006038A (en) 2020-02-01
KR20210032383A (en) 2021-03-24
JPWO2020017141A1 (en) 2021-09-24
CN112424255A (en) 2021-02-26

Similar Documents

Publication Publication Date Title
KR101758535B1 (en) Epoxy resin composition, epoxy resin, and cured article
JP6963565B2 (en) Alkenyl group-containing resin, curable resin composition and cured product thereof
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP4144732B2 (en) High molecular weight epoxy resin, resin composition for electric laminate and electric laminate
JP5319289B2 (en) Epoxy resin and method for producing the same, and epoxy resin composition and cured product using the same
WO2020195733A1 (en) Epoxy resin and method for producing same
JP4670255B2 (en) Curable resin composition for electric and electronic materials, highly flexible cured product thereof
WO2020017141A1 (en) Reactive diluent, composition, sealing material, cured product, substrate, electronic component, epoxy compound and method for producing compound
JP5569215B2 (en) Method for producing highly flexible resin
JP5368707B2 (en) Liquid epoxy resin, epoxy resin composition, and cured product
WO2022209642A1 (en) Epoxy resin and production method therefor, curable resin composition, and cured product thereof
JP4844796B2 (en) 1-pack type epoxy resin composition and cured product thereof
JP7240989B2 (en) Curable resin composition and its cured product
WO2013187185A1 (en) Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP7128598B1 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JPWO2018199156A1 (en) Methallyl group-containing resin, curable resin composition and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP7256160B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JPWO2017026396A1 (en) Epoxy resin, modified epoxy resin, epoxy resin composition and cured product thereof
JP4656374B2 (en) Epoxy resin composition and cured product thereof
JP2022147099A (en) Epoxy resin, curable resin composition, and cured product thereof
JP2014162854A (en) Resin composition and cured product
JP6043602B2 (en) Resin composition
JP2007045978A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JPH1160688A (en) Epoxy resin composition and its cured item

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020530910

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838538

Country of ref document: EP

Kind code of ref document: A1