WO2020017112A1 - Eicosanoid production promoter - Google Patents

Eicosanoid production promoter Download PDF

Info

Publication number
WO2020017112A1
WO2020017112A1 PCT/JP2019/015657 JP2019015657W WO2020017112A1 WO 2020017112 A1 WO2020017112 A1 WO 2020017112A1 JP 2019015657 W JP2019015657 W JP 2019015657W WO 2020017112 A1 WO2020017112 A1 WO 2020017112A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesenchymal stem
stem cells
pparγ
culture supernatant
agent
Prior art date
Application number
PCT/JP2019/015657
Other languages
French (fr)
Japanese (ja)
Inventor
漆畑 直樹
勝幸 隠岐
桃子 小林
Original Assignee
株式会社バイオミメティクスシンパシーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バイオミメティクスシンパシーズ filed Critical 株式会社バイオミメティクスシンパシーズ
Priority to CN201980006451.7A priority Critical patent/CN111727046B/en
Publication of WO2020017112A1 publication Critical patent/WO2020017112A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/51Umbilical cord; Umbilical cord blood; Umbilical stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a pharmaceutical composition for promoting the production of eicosanoids from macrophages.
  • Non-Patent Document 1 Activation of PPAR ⁇ in macrophages suppresses conversion of macrophages to an inflammatory phenotype by treatment with lipopolysaccharide (LPS) or interferon ⁇ (INF ⁇ ) (Non-Patent Document 1).
  • LPS lipopolysaccharide
  • INF ⁇ interferon ⁇
  • Non-Patent Document 1 The iNOS gene, which produces nitric oxide necessary for host defense, causes the inflammatory response to be exacerbated when overexpressed.
  • 15-deoxy-delta-12,14-prostaglandin J2, a PPAR ⁇ activating ligand is activated.
  • (15-deoxy- ⁇ -12,14-PGJ2) remarkably suppresses the transcription level of the iNOS gene and the activation level of NF ⁇ B that controls the gene expression.
  • Non-Patent Document 2 It has been reported that activation of PPAR ⁇ in macrophages contributes to muscle regeneration. PPAR ⁇ deficiency leads to poor regeneration of skeletal muscle, and conversely ligand-activated PPAR ⁇ promotes gene expression of transforming growth factor (TGF) family growth differentiation factor 3 (GDF3), and GDF3 It has been reported that cell regeneration is promoted by promoting cell division (Non-Patent Document 2).
  • TGF transforming growth factor
  • GDF3 transforming growth factor family growth differentiation factor 3
  • Patent Document 1 describes eicosanoids as immunosuppressants.
  • Patent Document 2 discloses, as examples of PPAR ⁇ ligands, 15-deoxy- ⁇ 12,14-prostaglandin J2, nitrolinoleic acid, oxidized LDL, long-chain fatty acids, eicosanoids, thiazolidinedione drugs, And non-steroidal anti-inflammatory drugs.
  • an object of the present invention is to provide a medical composition that promotes the production of a PPAR ⁇ activator from macrophages.
  • the present invention is basically based on the fact that those containing secretions of mesenchymal stem cells, such as culture supernatants of mesenchymal stem cells, promote the production of eicosanoids from macrophages, and eicosanoids are PPAR ⁇ activating ligands. Based on the finding that PPAR ⁇ is activated.
  • the first aspect of the present specification relates to an eicosanoid production promoter for promoting the production of eicosanoids from macrophages.
  • This agent contains a secretion of mesenchymal stem cells as an active ingredient.
  • the mesenchymal stem cells are preferably mesenchymal stem cells derived from subcutaneous adipose tissue or umbilical cord tissue.
  • the eicosanoid is any of 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy- ⁇ -12,14-PGJ2) and 15-hydroxyeicosatetraenoic acid (15-HETE) Or both.
  • Examples of secretions of mesenchymal stem cells are culture supernatants of mesenchymal stem cells or components of culture supernatants of mesenchymal stem cells, and are preferably culture supernatants using a serum-free medium.
  • the agent does not contain IL-4.
  • the phrase "containing no IL-4" includes those in which the agent does not contain IL-4 at all, as well as those in which the agent does not contain an amount of IL-4 that expresses a physiological activity.
  • This agent is preferably a therapeutic agent for arteriosclerosis or diabetes.
  • This agent is preferably a therapeutic agent for rheumatoid arthritis.
  • This agent is preferably a prophylactic or therapeutic agent for prostate cancer, cerebral infarction, or cerebral dysfunction.
  • This agent is preferably a prophylactic or therapeutic agent for pain.
  • a medical composition that promotes the production of a PPAR ⁇ activator from macrophages can be provided.
  • FIG. 1A is a graph instead of a drawing showing the results of quantitative analysis of 15-deoxy-delta-12,14-prostaglandin J2.
  • FIG. 1B is a graph instead of a drawing showing the results of quantitative analysis of 15-HETE.
  • FIG. 2A is a photograph instead of a drawing showing cells after culture.
  • FIG. 2B is a graph instead of a drawing showing the results of quantitative RT-PCR.
  • FIG. 3 is a photograph replacing a drawing showing a fluorescence micrograph after staining with CD36. In the figure, “Merge” indicates a superimposed image of the phase difference photograph and the fluorescent photograph of CD36 staining.
  • FIG. 4 is a graph instead of a drawing, showing the results of ELISA quantitative analysis showing the expression level of IL-4.
  • the present invention is basically based on the fact that those containing secretions of mesenchymal stem cells, such as culture supernatants of mesenchymal stem cells, promote the production of eicosanoids from macrophages, and eicosanoids are PPAR ⁇ activating ligands. Based on the finding that PPAR ⁇ is activated.
  • PPAR ⁇ is a transcription activator activated by ligand binding, and its function as a master regulator that promotes differentiation into adipocytes is best known. On the other hand, PPAR ⁇ in macrophages is also important as a factor having an important medical effect.
  • PPAR ⁇ endogenous activating ligands include 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy- ⁇ -12,14-PGJ2) and 15-hydroxyeicosatetraenoic acid (15-deoxy-delta-12,14-PGJ2).
  • HETE prostaglandin D2
  • PWD2 prostaglandin D2
  • Rosiglitazone, pioglitazone, NSAIDs indomethacin and the like are known.
  • a plurality of substances activate PPAR ⁇ , and are classified into full agonists having a full action and partial agonists having a partial action, depending on the binding site of PPAR ⁇ .
  • PPAR ⁇ is a specific fatty acid metabolite or eicosanoid as an endogenous ligand, but prostaglandin E2 does not function as a ligand for PPAR ⁇ .
  • Pioglitazone (15 mg tablet), which is a PPAR ⁇ activator sold as a diabetes improving drug, has a maximum blood concentration reaching time (T-max) of 2.1 ⁇ 0.9 hours and a blood concentration half-life (T-max). -Half) is 5.3 ⁇ 1.6 hours, and adults usually receive 15 mg of pioglitazone once a day to compensate for the decrease in blood concentration (medicine interview form—Japanese Pharmacopoeia) Pioglitazone hydrochloride tablets). Furthermore, the use of pioglitazone is contraindicated in patients with heart failure, patients with severe renal impairment, patients with severe liver impairment, etc., and in patients with renal failure as a complication of diabetes, In some cases, use was restricted.
  • the first aspect of the present specification relates to an eicosanoid production promoter for promoting the production of eicosanoids from macrophages.
  • This drug contains secreted mesenchymal stem cells as an active ingredient.
  • Examples of secretions of mesenchymal stem cells are culture supernatants or components derived from culture supernatants.
  • the mesenchymal stem cells are preferably mesenchymal stem cells derived from subcutaneous adipose tissue or umbilical cord tissue.
  • Examples of secretions of mesenchymal stem cells are culture supernatants of mesenchymal stem cells or components of culture supernatants of mesenchymal stem cells, and are preferably culture supernatants using a serum-free medium.
  • This agent preferably does not contain an amount of IL-4 that expresses a physiological activity.
  • Mesenchymal stem cells are a cell population with anti-inflammatory activity, and cellular drugs are being developed. There is a close functional correlation between mesenchymal stem cells and macrophages that play a central role in the inflammatory response. Mesenchymal stem cells change macrophages from M1 type (inflammatory type) to M2 type (anti-inflammatory type) and terminate the inflammatory response. Its actions are the CC motif chemokine ligand ⁇ 2 (CCL2) of proteins secreted from mesenchymal stem cells, Siglec-9 of the sialic acid receptor protein family and (J Neurosci. 2015 Feb 11; 35 (6): 2452-64.), And the eicosanoid prostaglandin E2 (PGE2) is responsible (Luan B. et. Al., Proc Natl Acad Sci U U S A. 2015 Dec 22; 112 (51): 15642-7.).
  • CCL2 CC motif chemokine ligand ⁇ 2
  • interleukin 4 has been reported to enhance the production of endogenous PPAR ⁇ ligands from macrophages (Nature. 1999 Jul 22; 400 (6742): 378-82. ).
  • interleukin 4 has a risk of side effects such as promotion of IgE production, atopic dermatitis, and increased sensitivity of allergic reactions in addition to its action. Is difficult to choose.
  • a monoclonal antibody against the interleukin 4/13 receptor has been approved as a therapeutic agent for atopic dermatitis (packaged human anti-IL-4 / 13 receptor monoclonal antibody Sanofi Co., Ltd.).
  • a component secreted by mesenchymal stem cells has an effect of accelerating the production of a PPAR ⁇ -activating ligand from macrophages. More specifically, 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy- ⁇ -12,14-PGJ2) and 15-hydroxyeicosatetraenoic acid (15-HETE) Corresponds to that.
  • Interleukin 4 is a factor mainly produced from mast cells, activated T cells and the like, and its expression is usually not recognized in mesenchymal stem cells.
  • Interleukin-4 was not contained in the mesenchymal stem cell-derived culture supernatant of the present invention. Therefore, the novelty of the present invention exists as a culture supernatant derived from mesenchymal stem cells that does not contain interleukin 4 and that functions as a PPAR ⁇ -activating ligand production promoter.
  • the pharmaceutical composition of the present invention was confirmed to have a substance other than interleukin 4 in which secretion of mesenchymal stem cells had an effect of enhancing PPAR ⁇ ligand production.
  • the secretion of mesenchymal stem cells having a PPAR ⁇ ligand production promoting action can be usually obtained as a culture supernatant of mesenchymal stem cells.
  • the mesenchymal stem cells are preferably derived from adipose tissue or umbilical cord tissue, but the tissues that separate mesenchymal stem cells are not limited, and mesenchymal stem cells isolated from dental pulp, amniotic membrane, bone marrow, or umbilical cord blood Furthermore, mesenchymal stem cells differentiated from embryonic stem cells (ES cells) and mesenchymal stem cells differentiated from induced pluripotent stem cells (iPS cells) may be used.
  • ES cells embryonic stem cells
  • iPS cells induced pluripotent stem cells
  • the mesenchymal stem cells for effectively carrying out the present invention may be derived from humans or animals.
  • Tissues to be cultured may be free of microorganisms as much as possible, and may be subjected to bactericidal or bacteriostatic treatment with an antibacterial agent or an antifungal agent, if necessary. In the cultivation, it is necessary to perform the cultivation by an aseptic operation so that there is no propagation of microorganisms.
  • Serum medium is selected. More desirably, for all reagents, culture media, flasks, and the like, products that do not use animal or human components can be selected, and biological safety as a pharmaceutical composition can be ensured.
  • the cell division frequency (PDL) of the mesenchymal stem cells for recovering the culture supernatant of the mesenchymal stem cells is not particularly limited, but is preferably 0 to 100 in non-transformed cells. Preferably, PDLs 5 to 20 are selected. The optimum values of these vary depending on the medium used. In the transformed cells, collection of the culture supernatant can be continued as long as the characteristics of the cells are maintained.
  • the culture supernatant when the culture supernatant is collected in a flat culture such as a T flask, the cells are seeded at 100 to 50,000 cells / cm 2 , and more preferably at 500 to 15,000 cells / cm 2 . And most preferably seeded at 2,000 to 6,000 cells / cm 2 .
  • the culture supernatant as the PPAR ⁇ ligand production promoter of the present invention should be collected between the time when the cell growth rate becomes about 90% of the flask area and the day 20 in the case of planar culture. And more preferably from the second day to the fifth day.
  • the culture supernatant may be collected by hollow fiber culture or culture using a microcarrier, and the culture method is limited as long as the environment allows mesenchymal stem cells to be cultured well. It is not something to be done.
  • any culture method in which the amount of interleukin-4 protein detected by a biochemical method is secreted into the culture supernatant of mesenchymal stem cells at a concentration that expresses a biological activity should not be taken. More specifically, the concentration of interleukin 4 is preferably 1 pg / mL or less.
  • the obtained culture supernatant containing secreted mesenchymal stem cells is desirably stored in a refrigerated or frozen state at 4 ° C or lower, where many substances are stable.
  • the obtained culture supernatant is subjected to aseptic treatment usually selected from a filter of PES material of 0.1 to 0.2 ⁇ m, a virus clearance filter for removal of virus, an ultrafiltration filter for component concentration, and the like. May be.
  • the culture supernatant containing the mesenchymal stem cell-derived secretion as a pharmaceutical composition thus obtained by the practice of the present invention can directly act on macrophages to reduce the production of PPAR ⁇ ligand from the acted macrophages. Can be promoted.
  • a culture supernatant derived from mesenchymal stem cells may be directly added to the cultured macrophages.
  • the treatment for 1 to 3 days enhances the production of PPAR ⁇ ligand from macrophages, and the PPAR ⁇ ligand is recovered in the culture medium of macrophages.
  • the PPAR ⁇ ligand before secretion outside the cell can also be recovered from the macrophage cell.
  • Macrophages are present in all tissues in the body, and are monocytes in the bone marrow and blood vessels as poorly differentiated monocytes, as tissue macrophages in other tissues, alveolar macrophages in the lung, glial cells in the brain, and destruction in bone. There are bone cells, intestinal macrophages in the intestine, Kupffer cells in the liver, and marginal zone macrophages in the spleen.
  • the production of the PPAR ⁇ ligand may be enhanced by effectively delivering the pharmaceutical composition according to the present invention to a tissue in which PPAR ⁇ ligand production from macrophages is to be activated. .
  • the liver may be used by administering the agent of the present invention from the hepatic portal vein, or the brain may be used by delivering it directly from the nose through the nasal mucosal epithelium to the brain. May be. Injection and application under the skin. In order to effect the present pharmaceutical composition most widely and systemically, intravenous injection may be selected.
  • the composition of the appropriate pharmaceutical composition may be constituted depending on the method of delivery. For example, when the present invention is used as a subcutaneous agent for application in application, it is combined with a sustained-release pharmaceutical base (PLGA), which is a component that promotes subcutaneous penetration, etc.
  • PLGA sustained-release pharmaceutical base
  • the pharmaceutical compositions of the invention may be delivered effectively.
  • Examples of the culture supernatant of mesenchymal stem cells include a supernatant obtained by solid-liquid separation of the culture supernatant by centrifugation, a processed supernatant obtained by removing water by lyophilization, and an evaporator.
  • the product obtained by concentrating the culture supernatant under reduced pressure using a method such as the above, the product obtained by concentrating the culture supernatant using an ultrafiltration membrane, etc., or the culture supernatant is solid-liquid separated using a filter. Or a stock solution of the culture supernatant before the treatment as described above.
  • the supernatant obtained by culturing the mesenchymal stem cells of the present invention is centrifuged (for example, 1,000 ⁇ g, 10 minutes), and then fractionated with ammonium sulfate (for example, 65% saturated ammonium sulfate) to obtain a precipitate. May be suspended in an appropriate buffer, dialyzed, and filtered through a syringe filter (for example, 0.2 ⁇ m) to obtain a sterile culture supernatant.
  • the collected culture supernatant can be used as it is, or can be stored frozen and thawed at the time of use.
  • a pharmaceutically acceptable carrier may be added and the solution may be dispensed into a sterile container so as to have an easily handled liquid volume, for example, 0.2 ml or 0.5 ml.
  • the culture supernatant may be treated with a virus clearance filter or ultraviolet irradiation.
  • An agent containing a culture supernatant as an active ingredient is known as disclosed in, for example, JP-A-2013-18756, Japanese Patent No. 5139294, and Japanese Patent No. 5526320. Therefore, the agent containing the culture supernatant of the present invention can be produced by a known method.
  • both liquid and solid preparations can be selected.
  • powdering with excellent storage stability is often selected due to stability problems.
  • the culture supernatant of the present invention is also produced as a solid preparation in order to improve the stability and the storage period.
  • a culture supernatant as an active ingredient may be prepared together with a pharmaceutically acceptable carrier or medium.
  • Pharmaceutically acceptable carriers or vehicles include, for example, excipients, stabilizers, solubilizers, emulsifiers, suspending agents, buffers, isotonic agents, antioxidants, or preservatives. Substances that are acceptable. Further, a polymer material such as polyethylene glycol (PEG) or a conjugation inhibitor such as cyclodextrin can also be used. Examples of excipients are those which themselves have no pharmacological action, such as starch or lactose.
  • stabilizers are albumin, gelatin, sorbitol, mannitol, lactose, sucrose, trehalose, maltose, and glucose. Of these, sucrose or trehalose is preferred.
  • solubilizers are ethanol, glycerin, propylene glycol, and polyethylene glycol.
  • emulsifiers are lecithin, aluminum stearate, or sorbitan sesquioleate.
  • suspending agents are macrogol, polyvinylpyrrolidone (PVP), or carmellose (CMC).
  • tonicity agents are sodium chloride and glucose.
  • buffers are citrate, acetate, boric acid, and phosphate.
  • aqueous medium for diluting the culture supernatant preparation for example, an aqueous solution for injection in which the osmotic pressure and pH are adjusted to a physiological range and the salt concentration and the like are adjusted may be used as appropriate.
  • Ringer's solution such as acetic acid-ringer solution or other infusions, physiological saline, glucose solution, or the like can be used, but is not limited thereto.
  • antioxidants are ascorbic acid, sodium bisulfite, and sodium pyrosulfite.
  • preservatives are phenol, thimerosal, and benzalkonium chloride.
  • the agent containing the secretion of mesenchymal stem cells such as the culture supernatant of mesenchymal stem cells of the present invention may be administered intravenously, intraarterially, intramuscularly, subcutaneously, intraperitoneally, or in the nasal cavity.
  • the administration can be performed by a known administration method such as internal administration, intrathecal spinal transplant, intraarticular transplant, intragingival injection, and application.
  • the agent of the present invention may be directly injected into an affected part or a target site, or the agent of the present invention may be administered by opening the affected part by surgical operation. All optimal administration methods are possible depending on the disease to be treated.
  • the culture supernatant in a dose of 1 mL or more and 1,000 mL or less, more preferably 30 mL or more and 300 mL or less, as one unit.
  • This agent is preferably a therapeutic agent for arteriosclerosis or diabetes.
  • Patent No. 6250196 describes that a PPAR agonist is a therapeutic agent for diabetes.
  • Japanese Patent No. 4515026 shows that activating PPAR ⁇ is effective for treating diabetes.
  • Japanese Patent No. 6157041 discloses that a PPAR ⁇ activator is effective for treating arteriosclerosis and diabetes. Since the agent of the present invention activates PPAR ⁇ , it is effective for treating arteriosclerosis and diabetes.
  • This agent is preferably a therapeutic agent for rheumatoid arthritis.
  • 15-deoxy-delta-12,14-prostaglandin J2 is known to suppress rheumatic clinical score, pain, and edema (Mediators Inflamm. 2016; 2016: 9626427. Epub 2016) Oct 31.).
  • the agent of the present invention promotes the production of eicosanoid which is an activator of PPAR ⁇ from macrophages.
  • the agent promotes the production of 15-deoxy-delta-12,14-prostaglandin J2. It is effective for treating rheumatism.
  • This agent is preferably a prophylactic or therapeutic agent for prostate cancer, cerebral infarction, or cerebral dysfunction.
  • Cancer Res. 2001 2001 Jan 15; 61 (2): 497-503. Reports that 15-HETE suppresses the growth of prostate cancer cell line (PC3) and suppresses multiple carcinomas. Have been.
  • J-Lipid Res. 2015 Mar; 56 (3): 502-14 shows that administration of 15-HETE suppresses brain tissue injury level after cerebral ischemia and inflammatory response in the brain in a cerebral infarction model. It has been reported.
  • the agent of the present invention promotes the production of eicosanoid which is an activator of PPAR ⁇ from macrophages.
  • the agent of the present invention promotes the production of 15-hydroxyeicosatetraenoic acid (15-HETE). It is effective for the treatment of.
  • Patent No. 5940261 discloses that a peroxisome proliferator-activated receptor gamma (PPAR ⁇ ) activator can prevent and improve at least one of hypertension, insulin resistance disease, cerebral infarction, Alzheimer's disease, and neurological disease. Has been described. Since the agent of the present invention activates PPAR ⁇ , it is effective for prevention and treatment of cerebral infarction and cerebral dysfunction.
  • PPAR ⁇ peroxisome proliferator-activated receptor gamma
  • This agent is preferably a prophylactic or therapeutic agent for pain.
  • Exp. Ther. ⁇ Med. In 2016 ⁇ Oct; 12 (4): 2644--2650. ⁇ Administration of pioglitazone, an activator of PPAR ⁇ , suppresses activated microglia in neuropathic pain and consequently reduces pain threshold for mechanical stimulation It is shown.
  • the agent of the present invention promotes the production of eicosanoid which is an activator of PPAR ⁇ from macrophages. For example, it promotes the production of 15-deoxy-delta-12,14-prostaglandin J2, and It is effective for prevention or treatment of
  • This application also provides the use of secreted mesenchymal stem cells to produce an eicosanoid production promoter for promoting the production of eicosanoids from macrophages.
  • This application also provides a method of promoting the production of eicosanoids from macrophages present in the body of a subject, comprising the step of administering a secretion of mesenchymal stem cells to the subject.
  • the application also provides a method of treating or preventing arteriosclerosis, diabetes, rheumatoid arthritis, prostate cancer, cerebral infarction, or cerebral dysfunction, comprising administering to the subject a secretion of mesenchymal stem cells.
  • the pharmaceutical composition according to the present invention can continuously increase the amount of an endogenous PPAR ⁇ activating ligand in vivo by promoting the production of an endogenous PPAR ⁇ activating ligand from macrophages in vivo. . Furthermore, the production of macrophages that require PPAR ⁇ activation enables macrophages to preferentially and effectively receive PPAR ⁇ activation, and to activate PPAR ⁇ at a high concentration for treatment. Since there is no need to administer the ligand, it can be expected that a pharmaceutical composition having high safety in terms of side effects will be obtained.
  • the upper and lower layers were discarded, leaving the middle adipose tissue fraction.
  • a 0.15% collagenase enzyme solution in an amount 4 times the weight of the tissue was added, and the mixture was permeated at 37 ° C. for 1 hour to perform enzyme treatment.
  • centrifuge 400 xg for 5 minutes
  • suspend the precipitated fraction as a stromal vascular cell fraction containing mesenchymal stem cells in 30 mL of PBS (-) solution. did.
  • the suspension was passed through a cell strainer (70 ⁇ m diameter), and the flow-through fraction was subjected to centrifugation again (400 ⁇ g for 5 minutes), and the tissue residue and the like captured by the cell strainer were discarded.
  • the precipitate fraction was suspended in 6 mL of a serum-free culture solution (Procul AD (registered trademark); Rohto Pharmaceutical Co., Ltd.), the whole volume was inoculated into a T-25 flask (CellBIND (registered trademark); Corning), and the whole was inoculated (37 ° C) , 5% CO 2 ) to start primary culture.
  • the precipitated cells were suspended in a culture solution, the cell number was measured by a trypan blue staining method, and seeded in a T-150 flask (CellBIND (registered trademark); Corning) with a serum-free culture solution (Procul AD; Rohto Pharmaceutical).
  • the cells were allowed to stand in an incubator (37 ° C., 5% CO 2 ) and subcultured (P0 ⁇ P1). Thereafter, the cells were subcultured in the same procedure to obtain the required number of cells (P1 ⁇ P2).
  • ⁇ Preparation of culture supernatant> In the preparation of the culture supernatant, a serum-free culture medium (Procul AD; Rohto Pharmaceutical) was used as the medium. Adipose tissue-derived mesenchymal stem cells were seeded in the same medium at the number of 4.5 ⁇ 10 5 cells per T-150 flask, and the culture supernatant was collected on the third day when the cells reached semi-confluence. The culture supernatant was filtered through a 0.2 ⁇ m PES syringe filter (25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan) at ⁇ 28 ° C. until used for analysis. It was kept frozen.
  • PES syringe filter 25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan
  • the suspension was diluted 10-fold with PBS (-), centrifuged at 1,000 ⁇ g for 5 minutes, and the upper layer was discarded except for the precipitated fraction.
  • the precipitate fraction was suspended in PBS (-), applied to a 70 ⁇ m filter, the flow-through fraction was equally divided into two conical tubes, and then subjected to centrifugation at 400 ⁇ g for 5 minutes.
  • the precipitated cells were suspended in a culture solution, the cell number was measured by trypan blue staining, and the cells were seeded in a T-150 flask (CellBIND (registered trademark); Corning) with a serum-free culture solution (Procul AD; Rohto Pharmaceutical).
  • the subculture was carried out by leaving still in an incubator (37 ° C., 5% CO 2) (P0 ⁇ P1).
  • the medium was completely changed once every two days, and then subculture was performed in the same manner to secure the required number of cells (P1 ⁇ P2).
  • ⁇ Preparation of culture supernatant> In the preparation of the culture supernatant, a serum-free culture solution (Procul AD (registered trademark); Rohto Pharmaceutical Co., Ltd.) was used as the medium. Umbilical cord tissue-derived mesenchymal stem cells were seeded at 9.0 ⁇ 10 5 cells per T-150 flask in the same medium, and the culture supernatant was collected on the third day when the cells reached semi-confluence.
  • the culture supernatant was filtered through a 0.2 ⁇ m PES syringe filter (25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan) and kept at -28 ° C until used for analysis. It was kept frozen.
  • PES syringe filter 25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan
  • THP-1 was seeded in a T-25 flask (CellBIND; Corning) at 5.0 ⁇ 10 5 per well.
  • the medium was supplemented with 100 nM LPS for RPMI with 10% FBS to activate THP-1.
  • the medium volume was 6.0 mL per flask.
  • the medium was changed, and 3.6 mL of RPMI containing 10% FBS and 2.4 mL of a test substance were added per well, and LPS having a final concentration of 100 nM was added.
  • test substances culture supernatant of mesenchymal stem cells derived from adipose tissue, culture supernatant of mesenchymal stem cells derived from umbilical cord tissue, or Procul AD medium (Rohto Pharmaceutical) as a control. Thereafter, culture was performed for 2 days, and the culture supernatant of THP-1 was recovered. The collected culture supernatant is filtered through a 0.2 ⁇ m PES syringe filter (25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan) until it is used for analysis. It was kept frozen at 80 ° C.
  • Eicosanoids which are PPAR ⁇ activating agonists, were quantified by liquid chromatography mass spectrometry (LC-MS / MS).
  • LC-MS / MS liquid chromatography mass spectrometry
  • Table 1 shows the analysis conditions of LC-MS / MS.
  • FIGS. 1A and 1B The quantification results are shown in FIGS. 1A and 1B.
  • FIG. 1A is a graph instead of a drawing showing the results of quantitative analysis of 15-deoxy-delta-12,14-prostaglandin J2.
  • FIG. 1B is a graph instead of a drawing showing the results of quantitative analysis of 15-HETE.
  • the culture supernatant of adipose tissue-derived mesenchymal stem cells and the culture supernatant of umbilical cord tissue-derived mesenchymal stem cells contained 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy- ⁇ -12). , 14-PGJ2) and 15-HETE were not detected (“AD-CM” and “UC-CM” in FIGS. 1A and 1B). On the other hand, those eicosanoids were detected in the culture supernatant of THP-1 in all samples.
  • THP-1 treated with Prucul AD medium (FIG. 1A and FIG. 1B "THP-1 @ Procul @ AD")
  • THP-1 treated with the culture supernatant of adipose tissue-derived mesenchymal stem cells was 0.0014 ng / mL
  • THP-1 treated with the culture supernatant of umbilical cord tissue-derived mesenchymal stem cells was 0.0018 ng / mL (“THP-1 @ UC-CM” in FIGS. 1A and 1B).
  • THP-1 treated with Prucul AD medium was 0.006 ng / mL
  • THP-1 treated with the culture supernatant of adipose tissue-derived mesenchymal stem cells was 0.01 ng / mL
  • umbilical cord was used.
  • THP-1 treated with the culture supernatant of tissue-derived mesenchymal stem cells was 0.013 ng / mL.
  • the culture supernatant containing the secretion of mesenchymal stem cells is allowed to act on macrophages, thereby producing 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy- ⁇ -12, 14-PGJ2) and 15-HETE were found to increase.
  • the secretion of mesenchymal stem cells was found to be a PPAR ⁇ activating agonist production promoter for macrophages.
  • PPAR ⁇ regulatory factor In macrophage cells (THP-1) obtained by treating the culture supernatant of mesenchymal stem cells, expression analysis of CD36 and FABP4, which are typical genes controlled by PPAR ⁇ , was performed. Both genes are known as major genes whose expression is increased in a PPAR ⁇ -dependent manner by treating cells with a PPAR ⁇ -activating agonist, and can be used as an index for knowing the activation state of PPAR ⁇ .
  • THP-1 Cell culture and RNA extraction THP-1 was seeded in a 12-well plate (CellBIND; Corning) at 1 ⁇ 10 5 cells per well.
  • the culture medium was supplemented with RPMI supplemented with 10% FBS with 100 nM PMA for THP-1 activation.
  • the medium volume was 800 ⁇ L per well.
  • the medium was changed, and 600 ⁇ L of RPMI medium supplemented with 10% FBS and 400 ⁇ L of a culture medium for mesenchymal stem cell culture or control were added per well.
  • mesenchymal stem cell culture supernatant As a mesenchymal stem cell culture supernatant, a sample of the same lot as that used for eicosanoid quantification in “Example 1” was used and prepared from adipose tissue-derived mesenchymal stem cells and umbilical cord tissue-derived mesenchymal stem cells. The culture supernatant was used. The control medium used was serum-free medium Procul AD (Rohto Pharmaceutical) used for cell culture when preparing the culture supernatant of mesenchymal stem cells, and RPMI without FBS.
  • Procul AD Rohto Pharmaceutical
  • FIG. 2A shows a photograph of the cells subjected to RNA extraction.
  • FIG. 2A is a photograph instead of a drawing showing cells after culture.
  • PPAR ⁇ primer sequence gacaggaaagacaacagacaaatc (SEQ ID NO: 1)
  • PPAR ⁇ -Rv ggggtgatgtgtttttgaacttg
  • FABP primer sequence FABP4-Fw: ccaccataaagagaaaacgagag (SEQ ID NO: 3)
  • FABP4-Rv gtggaagtgacgcctttcat (SEQ ID NO: 4)
  • CD36 primer sequence CD36-Fw: gcagcaacattcaagttaagca (SEQ ID NO: 5)
  • CD36-Rv gctgcaggaaagagactgtgt (SEQ ID NO: 6)
  • GAPDH-Fw ttcaccaccatggagaagg (SEQ ID NO: 7)
  • GAPDH-Rv cacacccatcacaaacatgg (SEQ ID NO: 8)
  • PCR conditions were performed according to the procedure manual of the reagent manufacturer.
  • the composition of the PCR reaction solution was as shown in Table 2a, and the PCR reaction conditions were as shown in Table 2b.
  • FIG. 2B The results of the quantitative RT-PCR are shown in FIG. 2B.
  • FABP4 and CD36, PPAR ⁇ response genes were expressed in THP-1 treated with culture supernatant containing secretion from adipose tissue-derived mesenchymal stem cells and umbilical cord tissue-derived mesenchymal stem cells (in FIG. 2B, the former was referred to as “AD -CM “, the latter is referred to as” UC-CM “), and the gene expression level of each gene was significantly increased as compared with the control medium-added group (" RPMI "and” ProculProAD "in Fig. 2B).
  • AD -CM tissue-derived mesenchymal stem cells
  • UC-CM umbilical cord tissue-derived mesenchymal stem cells
  • Example 1 The control sample added to THP-1 for eicosanoid quantification in “Example 1” is "Procul @ AD", but compared to THP-1 treated with Procul @ AD, 15-deoxy-delta-12, In THP-1 in which increased production of 14-prostaglandin J2 (15-deoxy- ⁇ -12,14-PGJ2) and 15-HETE was detected (THP treated with culture supernatant derived from mesenchymal stem cells) -1), It was confirmed that the expression of FABP4 and CD36, which are PPAR ⁇ response genes, was increased.
  • CD36 antibody immunostaining we evaluated the induction of protein expression by the action of the secretory component of mesenchymal stem cells for CD36, a scavenger receptor that has the function of taking up oxidized lipids etc. into cells induced by PPAR ⁇ expression. did.
  • THP-1 was seeded in a 6-well plate (CellBIND; Corning) at 2.5 ⁇ 10 5 per well.
  • the medium was supplemented with 100 nM LPS for RPMI with 10% FBS to activate THP-1.
  • the medium volume was 3 mL per well.
  • the medium was changed, and 1.8 mL of RPMI containing 10% FBS and 1.2 mL of the test substance were added per well, and LPS having a final concentration of 100 nM was added.
  • Three kinds of test substances were used: culture supernatant of adipose tissue-derived mesenchymal stem cells, RPMI basic medium, or Procul AD medium (Rohto Pharmaceutical). Thereafter, the cells were cultured for 3 days and subjected to human anti-CD36 antibody immunostaining.
  • the cells were fixed with ⁇ 4% paraformaldehyde (PFA) for 15 minutes at room temperature, and washed three times with 0.01% Triton X-100 (Tx-100) prepared by diluting with PBS (-) ⁇ . Next, blocking was performed for 30 minutes at room temperature in 0.01% Tx100 / PBS ( ⁇ ) supplemented with 3% bovine serum albumin (BSA), followed by 1,000% with 3% BSA / 0.01% Tx100 / PBS ( ⁇ ). The cells were immunostained with a 1: 2 diluted anti-CD36 antibody solution (PE-anti-Human-CD36 (BioLegend; Cat.
  • Interleukin 4 Protein Expression in Mesenchymal Stem Cell Culture Supernatant Interleukin 4 (IL-4) is known as a known factor that promotes PPAR ⁇ ligand production from macrophages.
  • IL-4 Interleukin 4
  • THP-1 macrophage cells
  • IL-4 secretion amount of IL-4 protein in the culture supernatant of mesenchymal stem cells was quantified.
  • the culture supernatant of mesenchymal stem cells used for measurement was prepared from adipose tissue-derived mesenchymal stem cells and umbilical cord tissue-derived mesenchymal stem cells, the former being “AD-CM” and the latter being Was designated as “UC-CM”.
  • Samples prepared from two different tissue donors were subjected to analysis, and the culture supernatants treated with THP-1 in “Example 1” were referred to as “AD-CM-1” and “UC-CM-1”. did.
  • the preparation of the culture supernatants “AD-CM-2” and “UC-CM-2” was also performed using the preparation of “AD-CM-1” and “UC-CM-1” described in “Example 1”. According to the law.
  • the culture supernatant was filtered through a 0.2 ⁇ m PES syringe filter (25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan) and kept at -28 ° C until used for analysis. It was kept frozen.
  • PES syringe filter 25 mm GD / X syringe filter (PES 0.2 ⁇ m sterilized); 6896-2502; GE Healthcare Japan
  • ELISA Quantification Using a commercially available ELISA kit (Human IL-4 Quantikine HS ELISA Kit; HS400; R & D SYSTEMS), a quantitative test of interleukin 4 (IL-4) protein was performed by the method described in the protocol. The lower limit of detection of this kit is 0.22 pg / mL.
  • RPMI a basic medium
  • RPMI 10% FBS RPMI 10% FBS
  • Procul AD a serum-free medium used for preparing culture supernatants of mesenchymal stem cells. It was measured.
  • Procul AD (Roth Pharmaceutical) is a serum-free medium and contains no animal-derived components. That is, Procul AD does not contain interleukin 4.
  • the present invention can be used in the pharmaceutical industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Rheumatology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Obesity (AREA)
  • Hospice & Palliative Care (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)

Abstract

[Problem] To provide a medical composition for promoting the production of a PPARγ activator from macrophages. [Solution] An eicosanoid production promoter for promoting the production of an eicosanoid from macrophages, the eicosanoid production promoter containing a secretion of mesenchymal stem cells as an active ingredient, wherein the eicosanoid is one or both of 15-deoxy-delta-12,14-prostaglandin J2 and 15-hydroxyeicosatetraenoic acid (15-HETE).

Description

エイコサノイド産生促進剤Eicosanoid production promoter
 本発明は,マクロファージからのエイコサノイドの産生を促進する医薬組成物に関する。  (4) The present invention relates to a pharmaceutical composition for promoting the production of eicosanoids from macrophages.
マクロファージにおけるPPARγの活性化は,リポポリサッカライド(LPS)やインターフェロンγ(INFγ)処理によるマクロファージの炎症型表現系への変換を抑制する(非特許文献1)。生体防御に必要な一酸化窒素を産生するiNOS遺伝子は,過剰に発現すると炎症反応を悪化させる要因となるが,PPARγの活性化リガンドである15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2)は,iNOS遺伝子の転写レベルと,その遺伝子発現を制御するNFκBの活性化レベルを,顕著に抑制する。  Activation of PPARγ in macrophages suppresses conversion of macrophages to an inflammatory phenotype by treatment with lipopolysaccharide (LPS) or interferon γ (INFγ) (Non-Patent Document 1). The iNOS gene, which produces nitric oxide necessary for host defense, causes the inflammatory response to be exacerbated when overexpressed. However, 15-deoxy-delta-12,14-prostaglandin J2, a PPARγ activating ligand, is activated. (15-deoxy-δ-12,14-PGJ2) remarkably suppresses the transcription level of the iNOS gene and the activation level of NFκB that controls the gene expression.
 さらに,マクロファージにおけるPPARγの活性化は,筋肉の再生に寄与することが報告されている。PPARγの欠損は骨格筋の再生不良につながり,逆にリガンドで活性化されたPPARγは,トランスフォーミング増殖因子(TGF)ファミリーの増殖分化因子3(GDF3)の遺伝子発現を促進し,GDF3は筋前駆細胞の分裂を促進することにより,筋肉の再生を促進することが報告されている(非特許文献2)。 Furthermore, it has been reported that activation of PPARγ in macrophages contributes to muscle regeneration. PPARγ deficiency leads to poor regeneration of skeletal muscle, and conversely ligand-activated PPARγ promotes gene expression of transforming growth factor (TGF) family growth differentiation factor 3 (GDF3), and GDF3 It has been reported that cell regeneration is promoted by promoting cell division (Non-Patent Document 2).
 また,マクロファージにおけるPPARγ欠損動物は,抗炎症型マクロファージ(M2型)への分化が進まず,高脂肪食摂取マウスにおけるグルコース負荷時の耐糖能低下や,インスリン感受性の低下が示されている(非特許文献3)。 In addition, PPARγ-deficient animals in macrophages have not progressed to differentiation into anti-inflammatory macrophages (M2 type), and mice with a high fat diet have reduced glucose tolerance during glucose load and reduced insulin sensitivity (non Patent Document 3).
 特許第3518547号公報(特許文献1)には,免疫抑制剤としてのエイコサノイドが記載されている。 Patent No. 3518547 (Patent Document 1) describes eicosanoids as immunosuppressants.
 特許第5950428号公報(特許文献2)には,PPARγリガンドの例として,15-デオキシ-Δ12,14-プロスタグランジンJ2,ニトロリノール酸,酸化LDL,長鎖脂肪酸,エイコサノイド,チアゾリジンジオン系薬剤,及び非ステロイド性抗炎症薬が記載されている。 Patent No. 5950428 (Patent Document 2) discloses, as examples of PPARγ ligands, 15-deoxy-Δ12,14-prostaglandin J2, nitrolinoleic acid, oxidized LDL, long-chain fatty acids, eicosanoids, thiazolidinedione drugs, And non-steroidal anti-inflammatory drugs.
特許第3518547号公報Patent No. 3518547 特許第5950428号公報Patent No. 5950428
 上記の背景から,マクロファージにおけるPPARγの活性化させることができる医薬組成物が望まれた。
 そこで,本発明は,マクロファージからのPPARγ活性化物質の産生を促進する医療組成物を提供することを目的とする。
In view of the above background, a pharmaceutical composition capable of activating PPARγ in macrophages has been desired.
Therefore, an object of the present invention is to provide a medical composition that promotes the production of a PPARγ activator from macrophages.
 本発明は,基本的には,間葉系幹細胞の培養上清といった間葉系幹細胞の分泌物を含むものが,マクロファージからのエイコサノイドの産生を促進し,エイコサノイドがPPARγ活性化リガンドであるから,PPARγを活性化させるという知見に基づく。 The present invention is basically based on the fact that those containing secretions of mesenchymal stem cells, such as culture supernatants of mesenchymal stem cells, promote the production of eicosanoids from macrophages, and eicosanoids are PPARγ activating ligands. Based on the finding that PPARγ is activated.
 本明細書の第1の側面は,マクロファージからのエイコサノイドの産生を促進するためのエイコサノイド産生促進剤に関する。この剤は,間葉系幹細胞の分泌物を有効成分として含む。
 間葉系幹細胞は皮下脂肪組織または臍帯組織に由来する間葉系幹細胞であることが好ましい。
 エイコサノイドが,15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2),及び,15-ハイドロキシエイコサテトラエノイックアシッド(15-HETE)のいずれか又は両方であることが好ましい。
 間葉系幹細胞の分泌物の例は,間葉系幹細胞の培養上清,又は間葉系幹細胞の培養上清の成分であり,無血清培地を用いた培養上清であることが好ましい。
 この剤は,IL-4を含有しないことが好ましい。IL-4を含有しないとは,剤がIL-4を全く含まないものの他,生理活性を発現する量のIL-4を含まないものを含む。
 この剤は,動脈硬化,又は糖尿病の治療剤であることが好ましい。
 この剤は,関節リウマチの治療剤であることが好ましい。
この剤は,前立腺癌,脳梗塞,又は脳機能障害の予防剤又は治療剤であることが好ましい。
この剤は,疼痛の予防剤又は治療剤であることが好ましい。
The first aspect of the present specification relates to an eicosanoid production promoter for promoting the production of eicosanoids from macrophages. This agent contains a secretion of mesenchymal stem cells as an active ingredient.
The mesenchymal stem cells are preferably mesenchymal stem cells derived from subcutaneous adipose tissue or umbilical cord tissue.
The eicosanoid is any of 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy-δ-12,14-PGJ2) and 15-hydroxyeicosatetraenoic acid (15-HETE) Or both.
Examples of secretions of mesenchymal stem cells are culture supernatants of mesenchymal stem cells or components of culture supernatants of mesenchymal stem cells, and are preferably culture supernatants using a serum-free medium.
Preferably, the agent does not contain IL-4. The phrase "containing no IL-4" includes those in which the agent does not contain IL-4 at all, as well as those in which the agent does not contain an amount of IL-4 that expresses a physiological activity.
This agent is preferably a therapeutic agent for arteriosclerosis or diabetes.
This agent is preferably a therapeutic agent for rheumatoid arthritis.
This agent is preferably a prophylactic or therapeutic agent for prostate cancer, cerebral infarction, or cerebral dysfunction.
This agent is preferably a prophylactic or therapeutic agent for pain.
 本発明によれば,マクロファージからのPPARγ活性化物質の産生を促進する医療組成物を提供できる。 According to the present invention, a medical composition that promotes the production of a PPARγ activator from macrophages can be provided.
図1Aは,15-デオキシ-デルタ-12,14-プロスタグランジンJ2の定量分析の結果を示す図面に代わるグラフである。FIG. 1A is a graph instead of a drawing showing the results of quantitative analysis of 15-deoxy-delta-12,14-prostaglandin J2. 図1Bは,15-HETEの定量分析の結果を示す図面に代わるグラフである。FIG. 1B is a graph instead of a drawing showing the results of quantitative analysis of 15-HETE. 図2Aは,培養後の細胞を示す図面に代わる写真である。FIG. 2A is a photograph instead of a drawing showing cells after culture. 図2Bは,定量RT-PCRの結果を示す図面に代わるグラフである。FIG. 2B is a graph instead of a drawing showing the results of quantitative RT-PCR. 図3は,CD36染色後の蛍光顕微鏡写真を示す図面に代わる写真である。図中Merge(マージ)は,位相差写真とCD36染色の蛍光写真の重ね合わせた画像を示す。FIG. 3 is a photograph replacing a drawing showing a fluorescence micrograph after staining with CD36. In the figure, “Merge” indicates a superimposed image of the phase difference photograph and the fluorescent photograph of CD36 staining. 図4は,IL-4の発現量を示すELISA定量分析の結果を示す図面に代わるグラフである。FIG. 4 is a graph instead of a drawing, showing the results of ELISA quantitative analysis showing the expression level of IL-4.
 本発明は,基本的には,間葉系幹細胞の培養上清といった間葉系幹細胞の分泌物を含むものが,マクロファージからのエイコサノイドの産生を促進し,エイコサノイドがPPARγ活性化リガンドであるから,PPARγを活性化させるという知見に基づく。 The present invention is basically based on the fact that those containing secretions of mesenchymal stem cells, such as culture supernatants of mesenchymal stem cells, promote the production of eicosanoids from macrophages, and eicosanoids are PPARγ activating ligands. Based on the finding that PPARγ is activated.
 PPARγは,リガンド結合により活性化する転写活性化因子であり,脂肪細胞への分化を促進するマスターレギュレーターとしての機能が最も良く知られるところである。一方,マクロファージにおけるPPARγは,医療上重要な作用をもたらす因子としても重要である。 PPARγ is a transcription activator activated by ligand binding, and its function as a master regulator that promotes differentiation into adipocytes is best known. On the other hand, PPARγ in macrophages is also important as a factor having an important medical effect.
 PPARγの内因性活性化リガンドとしては,15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2),15-ハイドロキシエイコサテトラエノイックアシッド(15-HETE),プロスタグランジンD2(PGD2),セロトニン代謝物の5-ハイドロキシインドール酢酸(5-HIAA),5-メトキシインドール酢酸(5-MIA)などが存在し,合成活性化リガンドとして,チアゾリジン系のロジグリタゾン,ピオグリタゾン,NSAIDs系のインドメタシンなどが知られる。複数の物質がPPARγを活性化するが,PPARγの結合部位によって,完全な作用を有するフルアゴニストと,部分的な作用を有するパーシャルアゴニストに分類される。 PPARγ endogenous activating ligands include 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy-δ-12,14-PGJ2) and 15-hydroxyeicosatetraenoic acid (15-deoxy-delta-12,14-PGJ2). HETE), prostaglandin D2 (PGD2), serotonin metabolites 5-hydroxyindoleacetic acid (5-HIAA), 5-methoxyindoleacetic acid (5-MIA), and the like. Rosiglitazone, pioglitazone, NSAIDs indomethacin and the like are known. A plurality of substances activate PPARγ, and are classified into full agonists having a full action and partial agonists having a partial action, depending on the binding site of PPARγ.
 上述のように,特定の脂肪酸代謝物やエイコサノイドを内因性リガンドとするPPARγであるが,プロスタグランジンE2はPPARγのリガンドとして機能しない。 PAs mentioned above, PPARγ is a specific fatty acid metabolite or eicosanoid as an endogenous ligand, but prostaglandin E2 does not function as a ligand for PPARγ.
 また,糖尿病改善薬として販売されるPPARγ活性化剤であるピオグリタゾン(15mg錠)は,最高血中濃度到達時間(T-max)が2.1±0.9時間,血中濃度半減期(T-half)が5.3±1.6時間であり,血中濃度の低下を補うために,通常,成人にはピオグリタゾンとして15mg を1日1回投与することになる(医薬品インタビューフォーム 日本薬局方 ピオグリタゾン塩酸塩錠)。さらに,ピオグリタゾンは,心不全患者,重篤な腎障害患者,重篤な肝障害患者等に対して,その使用が禁忌とされており,糖尿病の合併症として腎不全を患う患者に対しては,使用が制限される場合もあった。 Pioglitazone (15 mg tablet), which is a PPARγ activator sold as a diabetes improving drug, has a maximum blood concentration reaching time (T-max) of 2.1 ± 0.9 hours and a blood concentration half-life (T-max). -Half) is 5.3 ± 1.6 hours, and adults usually receive 15 mg of pioglitazone once a day to compensate for the decrease in blood concentration (medicine interview form—Japanese Pharmacopoeia) Pioglitazone hydrochloride tablets). Furthermore, the use of pioglitazone is contraindicated in patients with heart failure, patients with severe renal impairment, patients with severe liver impairment, etc., and in patients with renal failure as a complication of diabetes, In some cases, use was restricted.
 本明細書の第1の側面は,マクロファージからのエイコサノイドの産生を促進するためのエイコサノイド産生促進剤に関する。 The first aspect of the present specification relates to an eicosanoid production promoter for promoting the production of eicosanoids from macrophages.
 この剤は,間葉系幹細胞の分泌物を有効成分として含む。間葉系幹細胞の分泌物の例は,培養上清,又は培養上清由来の成分である。間葉系幹細胞は皮下脂肪組織または臍帯組織に由来する間葉系幹細胞であることが好ましい。間葉系幹細胞の分泌物の例は,間葉系幹細胞の培養上清,又は間葉系幹細胞の培養上清の成分であり,無血清培地を用いた培養上清であることが好ましい。この剤は,生理活性を発現する量のIL-4を含有しないことが好ましい。 剤 This drug contains secreted mesenchymal stem cells as an active ingredient. Examples of secretions of mesenchymal stem cells are culture supernatants or components derived from culture supernatants. The mesenchymal stem cells are preferably mesenchymal stem cells derived from subcutaneous adipose tissue or umbilical cord tissue. Examples of secretions of mesenchymal stem cells are culture supernatants of mesenchymal stem cells or components of culture supernatants of mesenchymal stem cells, and are preferably culture supernatants using a serum-free medium. This agent preferably does not contain an amount of IL-4 that expresses a physiological activity.
 間葉系幹細胞は抗炎症作用を有する細胞集団であり,細胞性医薬品の開発が進んでいる。間葉系幹細胞と炎症反応の中心的役割を担うマクロファージの間には,密接な機能的相関が存在する。間葉系幹細胞はマクロファージをM1型(炎症型)からM2型(抗炎症型)に変化させ,炎症反応を終息させる。その作用は,間葉系幹細胞から分泌されるタンパク質のC-Cモチーフケモカインリガンド 2(CCL2)と,シアル酸受容体タンパク質ファミリーのSiglec-9や(J Neurosci. 2015 Feb 11;35(6):2452-64.),エイコサノイドのプロスタグランジンE2(PGE2)が担う(Luan B. et. al., Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15642-7.)。 Mesenchymal stem cells are a cell population with anti-inflammatory activity, and cellular drugs are being developed. There is a close functional correlation between mesenchymal stem cells and macrophages that play a central role in the inflammatory response. Mesenchymal stem cells change macrophages from M1 type (inflammatory type) to M2 type (anti-inflammatory type) and terminate the inflammatory response. Its actions are the CC motif chemokine ligand の 2 (CCL2) of proteins secreted from mesenchymal stem cells, Siglec-9 of the sialic acid receptor protein family and (J Neurosci. 2015 Feb 11; 35 (6): 2452-64.), And the eicosanoid prostaglandin E2 (PGE2) is responsible (Luan B. et. Al., Proc Natl Acad Sci U U S A. 2015 Dec 22; 112 (51): 15642-7.).
 上述の通り,PPARγの活性化は,臨床上有益な結果をもたらす場合が多い。また,マクロファージにおけるPPARγの機能は特に重要な1つである。これまでに,マクロファージからのPPARγの内因性リガンドの産生を増強するとして,インターロイキン4(IL-4)の利用が報告されている(Nature.1999 Jul 22;400(6742):378-82.)。しかしながら,インターロイキン4はその作用の他に,IgEの産生促進やアトピー性皮膚炎,アレルギー反応の感受性上昇などの副作用のリスクが存在することから,生体内に作用させる剤としては,現実的には選択は難しい。実際に,インターロイキン4/13受容体に対するモノクローナル抗体は,アトピー性皮膚炎の治療薬として承認されている(添付文書
ヒト型抗IL-4/13受容体モノクローナル抗体 サノフィ株式会社)。
As noted above, activation of PPARγ often has clinically beneficial consequences. In addition, the function of PPARγ in macrophages is one particularly important. The use of interleukin 4 (IL-4) has been reported to enhance the production of endogenous PPARγ ligands from macrophages (Nature. 1999 Jul 22; 400 (6742): 378-82. ). However, interleukin 4 has a risk of side effects such as promotion of IgE production, atopic dermatitis, and increased sensitivity of allergic reactions in addition to its action. Is difficult to choose. In fact, a monoclonal antibody against the interleukin 4/13 receptor has been approved as a therapeutic agent for atopic dermatitis (packaged human anti-IL-4 / 13 receptor monoclonal antibody Sanofi Co., Ltd.).
 本発明においては,間葉系幹細胞が分泌する成分が,偶然にもマクロファージからのPPARγ活性化リガンドの産生を促進する作用を持つことを新規に発見した。より具体的には,15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2),及び,15-ハイドロキシエイコサテトラエノイックアシッド(15-HETE)がそれに該当する。 (4) In the present invention, it has been newly discovered that a component secreted by mesenchymal stem cells has an effect of accelerating the production of a PPARγ-activating ligand from macrophages. More specifically, 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy-δ-12,14-PGJ2) and 15-hydroxyeicosatetraenoic acid (15-HETE) Corresponds to that.
 PPARγリガンドの産生を増加させる剤や方法については,ほとんど知られていない。前述のインターロイキン4は,一部の報告で間葉系幹細胞からIL-4が分泌されたことを示すデータが示されているが(PLoS One. 2013 Sep 12;8(9):e73722.),インターロイキン4は主にマスト細胞や活性化T細胞などから産生される因子であり,間葉系幹細胞においてはその発現が認めらないことが通常である。本発明の間葉系幹細胞由来培養上清にもインターロイキン4は含有されなかった。そのため,インターロイキン4を含有しないことを特徴とする,PPARγ活性化リガンド産生促進剤として機能する間葉系幹細胞由来培養上清として,本発明の新規性は存在する。 Little is known about agents or methods that increase PPARγ ligand production. Some reports have shown that IL-4 was secreted from mesenchymal stem cells for the aforementioned interleukin-4 (PLoS \ One. \ 2013 \ Sep \ 12; 8 (9): e73722.) , Interleukin 4 is a factor mainly produced from mast cells, activated T cells and the like, and its expression is usually not recognized in mesenchymal stem cells. Interleukin-4 was not contained in the mesenchymal stem cell-derived culture supernatant of the present invention. Therefore, the novelty of the present invention exists as a culture supernatant derived from mesenchymal stem cells that does not contain interleukin 4 and that functions as a PPARγ-activating ligand production promoter.
 本発明の医薬組成物は,そこに含有されるインターロイキン4以外の物質によって,間葉系幹細胞の分泌物がPPARγのリガンド産生を増強する作用を有することを確認した。 The pharmaceutical composition of the present invention was confirmed to have a substance other than interleukin 4 in which secretion of mesenchymal stem cells had an effect of enhancing PPARγ ligand production.
PPARγのリガンド産生促進作用を有する間葉系幹細胞の分泌物は,通常,間葉系幹細胞の培養上清として得ることができる。間葉系幹細胞は脂肪組織または臍帯組織に由来するものが望ましいが,間葉系幹細胞を分離する組織は限定されるものではなく,歯髄,羊膜,骨髄または臍帯血から分離された間葉系幹細胞,さらには,胚性幹細胞(ES細胞)から分化誘導された間葉系幹細胞,及び人工多能性幹細胞(iPS細胞)から分化誘導された間葉系幹細胞であっても良い。 The secretion of mesenchymal stem cells having a PPARγ ligand production promoting action can be usually obtained as a culture supernatant of mesenchymal stem cells. The mesenchymal stem cells are preferably derived from adipose tissue or umbilical cord tissue, but the tissues that separate mesenchymal stem cells are not limited, and mesenchymal stem cells isolated from dental pulp, amniotic membrane, bone marrow, or umbilical cord blood Furthermore, mesenchymal stem cells differentiated from embryonic stem cells (ES cells) and mesenchymal stem cells differentiated from induced pluripotent stem cells (iPS cells) may be used.
 また,本発明を効果的に実施するための間葉系幹細胞は,ヒト由来であっても動物由来であっても良い。培養に供する組織は微生物の混入を可能な限り排除し,必要に応じて抗菌剤や抗真菌剤等で除菌または静菌処理を実施しても良い。培養においては,微生物の繁殖が無いように無菌操作で培養される必要がある。 The mesenchymal stem cells for effectively carrying out the present invention may be derived from humans or animals. Tissues to be cultured may be free of microorganisms as much as possible, and may be subjected to bactericidal or bacteriostatic treatment with an antibacterial agent or an antifungal agent, if necessary. In the cultivation, it is necessary to perform the cultivation by an aseptic operation so that there is no propagation of microorganisms.
 間葉系幹細胞の培養には,一般的な細胞生物学実験等で使用されるフラスコや,酵素を任意に選択することができ,好適には,細胞増殖培地及び培養上清回収培地として,無血清培地が選択される。さらに望ましくは,全ての試薬や培地,フラスコ等について,動物またはヒト由来成分を使用しない製品を選択することができ,医薬組成物としての生物学的安全性を確保することができる。 For the culture of mesenchymal stem cells, flasks and enzymes used in general cell biology experiments and the like can be arbitrarily selected. Serum medium is selected. More desirably, for all reagents, culture media, flasks, and the like, products that do not use animal or human components can be selected, and biological safety as a pharmaceutical composition can be ensured.
 間葉系幹細胞の培養上清を回収するための間葉系幹細胞の細胞分裂回数(PDL)としては,特に限定されるものではないが,非形質転換細胞においては,PDL0から100が望ましく,さらに好適にはPDL5から20が選択される。これらは用いる培地によって最適値が変化する。形質転換細胞においては,細胞の形質が維持される限り,培養上清の回収を継続することができる。 The cell division frequency (PDL) of the mesenchymal stem cells for recovering the culture supernatant of the mesenchymal stem cells is not particularly limited, but is preferably 0 to 100 in non-transformed cells. Preferably, PDLs 5 to 20 are selected. The optimum values of these vary depending on the medium used. In the transformed cells, collection of the culture supernatant can be continued as long as the characteristics of the cells are maintained.
 細胞播種数としては,Tフラスコなどの平面培養で培養上清の回収を実施する場合,100から50,000cells/cm2で細胞は播種され,より好ましくは500から15,000cells/cm2で播種され,最も好適には2,000から6,000cells/cm2で播種される。また,本発明のPPARγリガンド産生促進剤としての培養上清回収のタイミングは,平面培養の場合,細胞増殖率がフラスコ面積の約90%となった時点から20日目までの間に回収することができ,より好適には2日目から5日目に回収される。 Regarding the number of cells to be seeded, when the culture supernatant is collected in a flat culture such as a T flask, the cells are seeded at 100 to 50,000 cells / cm 2 , and more preferably at 500 to 15,000 cells / cm 2 . And most preferably seeded at 2,000 to 6,000 cells / cm 2 . The culture supernatant as the PPARγ ligand production promoter of the present invention should be collected between the time when the cell growth rate becomes about 90% of the flask area and the day 20 in the case of planar culture. And more preferably from the second day to the fifth day.
 また,平面培養以外にも,中空糸培養や,マイクロキャリアを用いた培養によって,培養上清を回収しても良く,間葉系幹細胞が良好に培養される環境であれば,培養方法は限定されるものではない。 In addition to the flat culture, the culture supernatant may be collected by hollow fiber culture or culture using a microcarrier, and the culture method is limited as long as the environment allows mesenchymal stem cells to be cultured well. It is not something to be done.
 ただし,生化学的手法により検出される量のインターロイキン4タンパク質が,生理活性を発現する濃度で間葉系幹細胞の培養上清中に分泌されるいかなる培養方法も取り得てはならない。より具体的には,インターロイキン4の濃度は1pg/mL以下であることが好ましい。 However, any culture method in which the amount of interleukin-4 protein detected by a biochemical method is secreted into the culture supernatant of mesenchymal stem cells at a concentration that expresses a biological activity should not be taken. More specifically, the concentration of interleukin 4 is preferably 1 pg / mL or less.
 その濃度以上にインターロイキン4が培養上清中に含有されていないことを確認する否定試験は,インターロイキン4の抗体を用いたELISA法やウエスタンブロット法が選択される。その場合,抗体が本質的に有する非特異的反応の特性を十分に考慮した上で,培養上清に対するコントロールサンプルの定量も同時に実施し,それとの結果の妥当な比較により,実施者は慎重に判断をする必要があることに留意する。より具体的に説明すると,抗体は非特異的な抗原への反応を示すことが散見され,特に研究用試薬として販売される抗体にはその傾向がある。抗体ベースの否定試験と合わせて,遺伝子発現解析でインターロイキン4の遺伝子発現がないことを補完的に示すことも有効である。 否定 As a negative test to confirm that interleukin 4 is not contained in the culture supernatant at a concentration higher than that concentration, an ELISA method using an antibody against interleukin 4 or a Western blot method is selected. In this case, the practitioner should carefully consider the characteristics of the non-specific reaction inherent in the antibody, quantify the control sample with the culture supernatant at the same time, and make a reasonable comparison of the results with the control sample. Note that you need to make a decision. More specifically, antibodies are sometimes seen to react with non-specific antigens, especially for antibodies sold as research reagents. It is also effective to complement the absence of interleukin-4 gene expression by gene expression analysis in conjunction with the antibody-based negative test.
 次に,得られた間葉系幹細胞の分泌物を含む培養上清は,多くの物質が安定である4℃以下の冷蔵または凍結状態で保管されることが望ましい。得られた培養上清は,通常0.1から0.2μmのPES素材のフィルターから選択される無菌処理,ウイルスの除去のためのウイルスクリアランスフィルター,成分濃縮のための限外濾過フィルター等に供しても良い。 Next, the obtained culture supernatant containing secreted mesenchymal stem cells is desirably stored in a refrigerated or frozen state at 4 ° C or lower, where many substances are stable. The obtained culture supernatant is subjected to aseptic treatment usually selected from a filter of PES material of 0.1 to 0.2 μm, a virus clearance filter for removal of virus, an ultrafiltration filter for component concentration, and the like. May be.
 そのようにして本発明の実施により得られた医薬組成物としての間葉系幹細胞由来分泌物を含む培養上清は,マクロファージに直接作用させることにより,作用されたマクロファージからの,PPARγリガンド産生を促進させることができる。試験管内においては,培養されたマクロファージに直接,間葉系幹細胞由来培養上清を添加すれば良い。一般的には,1日から3日間の処理により,マクロファージからのPPARγリガンド産生が増強され,マクロファージの培養液中にもPPARγリガンドが回収される。なお,当然のように細胞外へ分泌前のPPARγリガンドも,マクロファージの細胞内から回収することができる。 The culture supernatant containing the mesenchymal stem cell-derived secretion as a pharmaceutical composition thus obtained by the practice of the present invention can directly act on macrophages to reduce the production of PPARγ ligand from the acted macrophages. Can be promoted. In a test tube, a culture supernatant derived from mesenchymal stem cells may be directly added to the cultured macrophages. In general, the treatment for 1 to 3 days enhances the production of PPARγ ligand from macrophages, and the PPARγ ligand is recovered in the culture medium of macrophages. As a matter of course, the PPARγ ligand before secretion outside the cell can also be recovered from the macrophage cell.
 なお,マクロファージは生体中のあらゆる組織に存在し,骨髄及び血管内においては分化程度の低い単球として,その他の組織においては組織マクロファージとして,肺における肺胞マクロファージ,脳におけるグリア細胞,骨における破骨細胞,腸における腸管マクロファージ,肝臓におけるクッパー細胞,脾臓における辺縁帯マクロファージなどがある。生体内で本発明を作用させる場合については,本発明による医薬組成物を,マクロファージからのPPARγリガンド産生を活性化したい組織に効果的に送達することにより,PPARγリガンドの産生を増強させれば良い。より具体的には,例えば肝臓であれば肝門脈から本発明による剤を投与して用いられても良いし,脳においては経鼻から鼻腔粘膜上皮を介して直接脳に送達して用いられても良い。皮下においては注射や塗布をしてもより。もっとも広く全身性に本医薬組成物を作用させるためには,静脈からの注射が選択され得る。また,それらの送達の方法に応じて適切な医薬組成物の組成を構成してもよい。一例を示すと皮下投与剤として本発明を塗布で用いる際には,皮下への浸透を促進する成分である徐放性医薬品基材(乳酸グリコール酸共重合体:PLGA)などと合わせて,本発明の医薬組成物を有効に送達しても良い。 Macrophages are present in all tissues in the body, and are monocytes in the bone marrow and blood vessels as poorly differentiated monocytes, as tissue macrophages in other tissues, alveolar macrophages in the lung, glial cells in the brain, and destruction in bone. There are bone cells, intestinal macrophages in the intestine, Kupffer cells in the liver, and marginal zone macrophages in the spleen. When the present invention is made to act in vivo, the production of the PPARγ ligand may be enhanced by effectively delivering the pharmaceutical composition according to the present invention to a tissue in which PPARγ ligand production from macrophages is to be activated. . More specifically, for example, the liver may be used by administering the agent of the present invention from the hepatic portal vein, or the brain may be used by delivering it directly from the nose through the nasal mucosal epithelium to the brain. May be. Injection and application under the skin. In order to effect the present pharmaceutical composition most widely and systemically, intravenous injection may be selected. In addition, the composition of the appropriate pharmaceutical composition may be constituted depending on the method of delivery. For example, when the present invention is used as a subcutaneous agent for application in application, it is combined with a sustained-release pharmaceutical base (PLGA), which is a component that promotes subcutaneous penetration, etc. The pharmaceutical compositions of the invention may be delivered effectively.
 マクロファージからのPPARγリガンド産生が増強されれば,当然のことながら,最も近傍に存在する自身のマクロファージのPPARγも活性化される。その結果として,マクロファージのPPARγが発症に関与する疾病群に対して,治療的効果が発揮されるため,本医薬組成物は,それらの予防剤または治療剤としてなり得る。 (4) If the production of PPARγ ligand from macrophages is enhanced, the PPARγ of its own macrophage, which is the closest, is naturally activated. As a result, a therapeutic effect is exerted on a group of diseases in which PPARγ of macrophages is involved in the onset, so that the present pharmaceutical composition can be used as a prophylactic or therapeutic agent for them.
 間葉系幹細胞の培養上清の例は,遠心分離により培養上清を固液分離して得られる上清成分である培養上清を,凍結乾燥により水分を除去して得られる処理物,エバポレーター等を用いて培養上清を減圧濃縮して得られる処理物,限外ろ過膜等を用いて培養上清を濃縮して得られる処理物,又はフィルターを用いて培養上清を固液分離して得られる処理物,もしくは,上述のような処理をする前の培養上清の原液である。また,例えば,本発明の間葉系幹細胞を培養した上澄みを,遠心分離(例えば,1,000×g,10分)した後,硫安(例えば,65%飽和硫安)で分画し,沈殿物を適切な緩衝液で懸濁した後に透析処理を行い,シリンジフィルター(例えば,0.2μm)で濾過し,無菌的な培養上清を得てもよい。採取した培養上清を,そのまま用いても,また凍結保存しておき使用時に解凍して用いることもできる。また薬剤学的に許容される担体を加えて,取り扱いやすい液量,例えば0.2ml又は0.5ml等となるように滅菌容器に分注してもよい。さらに,感染性病原体リスクの対策として,培養上清をウイルスクリアランスフィルターや紫外線照射により処理してもよい。 Examples of the culture supernatant of mesenchymal stem cells include a supernatant obtained by solid-liquid separation of the culture supernatant by centrifugation, a processed supernatant obtained by removing water by lyophilization, and an evaporator. The product obtained by concentrating the culture supernatant under reduced pressure using a method such as the above, the product obtained by concentrating the culture supernatant using an ultrafiltration membrane, etc., or the culture supernatant is solid-liquid separated using a filter. Or a stock solution of the culture supernatant before the treatment as described above. Further, for example, the supernatant obtained by culturing the mesenchymal stem cells of the present invention is centrifuged (for example, 1,000 × g, 10 minutes), and then fractionated with ammonium sulfate (for example, 65% saturated ammonium sulfate) to obtain a precipitate. May be suspended in an appropriate buffer, dialyzed, and filtered through a syringe filter (for example, 0.2 μm) to obtain a sterile culture supernatant. The collected culture supernatant can be used as it is, or can be stored frozen and thawed at the time of use. Alternatively, a pharmaceutically acceptable carrier may be added and the solution may be dispensed into a sterile container so as to have an easily handled liquid volume, for example, 0.2 ml or 0.5 ml. Furthermore, as a measure against the risk of infectious pathogens, the culture supernatant may be treated with a virus clearance filter or ultraviolet irradiation.
 培養上清を有効成分として含む剤は,例えば,特開2013-18756号公報,特許第5139294号,及び特許第5526320号公報に開示されるとおり公知である。したがって,本発明の培養上清を含む剤を,公知の方法を用いて製造することができる。 剤 An agent containing a culture supernatant as an active ingredient is known as disclosed in, for example, JP-A-2013-18756, Japanese Patent No. 5139294, and Japanese Patent No. 5526320. Therefore, the agent containing the culture supernatant of the present invention can be produced by a known method.
 本発明による培養上清の剤型としては,液剤と固形剤の両方を選択できる。タンパク質を主剤とするバイオ医薬品においては,安定性の問題から,保存性に優れる粉体化がしばしば選択される。本発明の培養上清もまた,安定性と保存期間の向上のために,固形剤として製造されることが望ましい。 (4) As the dosage form of the culture supernatant according to the present invention, both liquid and solid preparations can be selected. For protein-based biopharmaceuticals, powdering with excellent storage stability is often selected due to stability problems. It is desirable that the culture supernatant of the present invention is also produced as a solid preparation in order to improve the stability and the storage period.
 本発明の剤は,有効成分としての培養上清が,薬学的に許容される担体又は媒体とともに調製されてもよい。薬学的に許容される担体又は媒体は,例えば,賦形剤,安定化剤,溶解補助剤,乳化剤,懸濁化剤,緩衝剤,等張化剤,抗酸化剤,又は保存剤など薬学的に許容される物質があげられる。また,ポリエチレングリコール(PEG)などの高分子材料やシクロデキストリン等の抱合化防物を使用することもできる。賦形剤の例は,デンプンや乳糖などそれ自体が薬理作用を有さないものである。安定化剤の例は,アルブミン,ゼラチン,ソルビトール,マンニトール,乳糖,ショ糖,トレハロース,マルトース,及びグルコースである。これらのうちでは,ショ糖又はトレハロースが好ましい。溶解補助剤の例は,エタノール,グリセリン,プロピレングリコール,及びポリエチレングリコールである。乳化剤の例は,レシチン,ステアリン酸アルミニウム,またはセスキオレイン酸ソルビタンである。懸濁化剤の例は,マクロゴール,ポリビニルピロリドン(PVP),またはカルメロース(CMC)である。等張化剤の例は,塩化ナトリウム,及びグルコースである。緩衝剤の例は,クエン酸塩,酢酸塩,ホウ酸,及びリン酸塩である。培養上清製剤を希釈する水性媒質としては,例えば,浸透圧やpHを生理的な範囲に調整し,塩類濃度等を調整した注射用の水溶液等を適宜用いればよく,例えば,酢酸リンゲル液,糖加酢酸リンゲル液等のリンゲル液その他の輸液,生理食塩水,またはブドウ糖液等を用いることができるが,これらに限定されない。抗酸化剤の例は,アスコルビン酸,亜硫酸水素ナトリウム,及びピロ亜硫酸ナトリウムである。保存剤の例は,フェノール,チメロサール,及び塩化ベンザルコニウムである。 (4) In the agent of the present invention, a culture supernatant as an active ingredient may be prepared together with a pharmaceutically acceptable carrier or medium. Pharmaceutically acceptable carriers or vehicles include, for example, excipients, stabilizers, solubilizers, emulsifiers, suspending agents, buffers, isotonic agents, antioxidants, or preservatives. Substances that are acceptable. Further, a polymer material such as polyethylene glycol (PEG) or a conjugation inhibitor such as cyclodextrin can also be used. Examples of excipients are those which themselves have no pharmacological action, such as starch or lactose. Examples of stabilizers are albumin, gelatin, sorbitol, mannitol, lactose, sucrose, trehalose, maltose, and glucose. Of these, sucrose or trehalose is preferred. Examples of solubilizers are ethanol, glycerin, propylene glycol, and polyethylene glycol. Examples of emulsifiers are lecithin, aluminum stearate, or sorbitan sesquioleate. Examples of suspending agents are macrogol, polyvinylpyrrolidone (PVP), or carmellose (CMC). Examples of tonicity agents are sodium chloride and glucose. Examples of buffers are citrate, acetate, boric acid, and phosphate. As the aqueous medium for diluting the culture supernatant preparation, for example, an aqueous solution for injection in which the osmotic pressure and pH are adjusted to a physiological range and the salt concentration and the like are adjusted may be used as appropriate. Ringer's solution such as acetic acid-ringer solution or other infusions, physiological saline, glucose solution, or the like can be used, but is not limited thereto. Examples of antioxidants are ascorbic acid, sodium bisulfite, and sodium pyrosulfite. Examples of preservatives are phenol, thimerosal, and benzalkonium chloride.
 本発明の間葉系幹細胞の培養上清といった間葉系幹細胞の分泌物を含む剤(本発明の剤)は,静脈内投与,動脈内投与,筋肉内投与,皮下投与,腹腔内投与,鼻腔内投与,脊髄管腔内移植,関節内移植,歯肉内注射,塗布などの公知の投与方法を用いて投与することができる。本発明の剤は,患部や対象部位に直接注射してもよく,また外科手術により患部を開口し本発明の剤を投与することも可能である。対象となる疾患によって最適なあらゆる投与方法が可能である。移植法として静脈内注射を選択する場合においては,培養上清を1投与単位として1mL以上1,000mL以下で投与することが好ましく,さらに好ましくは,30mL以上300mL以下で投与される。 The agent containing the secretion of mesenchymal stem cells such as the culture supernatant of mesenchymal stem cells of the present invention (the agent of the present invention) may be administered intravenously, intraarterially, intramuscularly, subcutaneously, intraperitoneally, or in the nasal cavity. The administration can be performed by a known administration method such as internal administration, intrathecal spinal transplant, intraarticular transplant, intragingival injection, and application. The agent of the present invention may be directly injected into an affected part or a target site, or the agent of the present invention may be administered by opening the affected part by surgical operation. All optimal administration methods are possible depending on the disease to be treated. When intravenous injection is selected as the transplantation method, it is preferable to administer the culture supernatant in a dose of 1 mL or more and 1,000 mL or less, more preferably 30 mL or more and 300 mL or less, as one unit.
 この剤は,動脈硬化,又は糖尿病の治療剤であることが好ましい。特許第6250196号公報には,PPARアゴニストが糖尿病の治療剤であることが記載されている。特許第4515026号には,PPARγを活性化することが,糖尿病の治療に有効であることが示されている。特許第6157041号には,PPARγ活性化剤が動脈硬化,及び糖尿病の治療に有効であることが示されている。本発明の剤は,PPARγを活性化するので,動脈硬化,及び糖尿病の治療に有効である。 This agent is preferably a therapeutic agent for arteriosclerosis or diabetes. Patent No. 6250196 describes that a PPAR agonist is a therapeutic agent for diabetes. Japanese Patent No. 4515026 shows that activating PPARγ is effective for treating diabetes. Japanese Patent No. 6157041 discloses that a PPARγ activator is effective for treating arteriosclerosis and diabetes. Since the agent of the present invention activates PPARγ, it is effective for treating arteriosclerosis and diabetes.
 この剤は,関節リウマチの治療剤であることが好ましい。関節リウマチモデルにおいて,15-デオキシ-デルタ-12,14-プロスタグランジンJ2が,リウマチ臨床スコア,痛み,及び浮腫を抑制することが知られている(Mediators Inflamm. 2016;2016:9626427. Epub 2016 Oct 31.)。本発明の剤は,マクロファージからのPPARγの活性化剤であるエイコサノイドの産生を促進するものであり,例えば,15-デオキシ-デルタ-12,14-プロスタグランジンJ2の産生を促進するので,関節リウマチの治療に有効である。 This agent is preferably a therapeutic agent for rheumatoid arthritis. In a rheumatoid arthritis model, 15-deoxy-delta-12,14-prostaglandin J2 is known to suppress rheumatic clinical score, pain, and edema (Mediators Inflamm. 2016; 2016: 9626427. Epub 2016) Oct 31.). The agent of the present invention promotes the production of eicosanoid which is an activator of PPARγ from macrophages. For example, the agent promotes the production of 15-deoxy-delta-12,14-prostaglandin J2. It is effective for treating rheumatism.
 この剤は,前立腺癌,脳梗塞,又は脳機能障害の予防剤又は治療剤であることが好ましい。例えば,Cancer Res. 2001 Jan 15;61(2):497-503.では,15-HETEが,前立腺癌細胞株(PC3)の増殖を抑制することや,複数の癌腫において抑制的な作用が報告されている。また,J Lipid Res. 2015 Mar;56(3):502-14では,15-HETEの投与が,脳梗塞モデルの脳虚血後の脳組織障害レベルや,脳における炎症反応を抑制することが報告されている。本発明の剤は,マクロファージからのPPARγの活性化剤であるエイコサノイドの産生を促進するものであり,例えば15-ハイドロキシエイコサテトラエノイックアシッド(15-HETE)の産生を促進するので,前立腺癌の治療に有効である。特許第5940261号公報には,ペルオキシソーム増殖剤応答性受容体γ(PPARγ)活性化剤が,高血圧症,インスリン抵抗性疾患,脳梗塞,アルツハイマー病,神経疾患の少なくともひとつを予防及び改善することが記載されている。本発明の剤は,PPARγを活性化するので,脳梗塞,及び脳機能障害の予防及び治療に有効である。 This agent is preferably a prophylactic or therapeutic agent for prostate cancer, cerebral infarction, or cerebral dysfunction. For example, Cancer Res. 2001 2001 Jan 15; 61 (2): 497-503. Reports that 15-HETE suppresses the growth of prostate cancer cell line (PC3) and suppresses multiple carcinomas. Have been. In addition, J-Lipid Res. 2015 Mar; 56 (3): 502-14 shows that administration of 15-HETE suppresses brain tissue injury level after cerebral ischemia and inflammatory response in the brain in a cerebral infarction model. It has been reported. The agent of the present invention promotes the production of eicosanoid which is an activator of PPARγ from macrophages. For example, the agent of the present invention promotes the production of 15-hydroxyeicosatetraenoic acid (15-HETE). It is effective for the treatment of. Patent No. 5940261 discloses that a peroxisome proliferator-activated receptor gamma (PPARγ) activator can prevent and improve at least one of hypertension, insulin resistance disease, cerebral infarction, Alzheimer's disease, and neurological disease. Has been described. Since the agent of the present invention activates PPARγ, it is effective for prevention and treatment of cerebral infarction and cerebral dysfunction.
 この剤は,疼痛の予防剤又は治療剤であることが好ましい。例えば,Exp. Ther. Med.2016 Oct;12(4):2644-2650. では,PPARγの活性化剤であるピオグリタゾンの投与が,神経障害性疼痛における活性化ミクログリアを抑制し,その結果,機械刺激に対する疼痛閾値を緩和することが示されている。本発明の剤は,マクロファージからのPPARγの活性化剤であるエイコサノイドの産生を促進するものであり,例えば,15-デオキシ-デルタ-12,14-プロスタグランジンJ2の産生を促進するので,疼痛の予防又は治療に有効である。 This agent is preferably a prophylactic or therapeutic agent for pain. For example, Exp. Ther. {Med. In 2016 {Oct; 12 (4): 2644--2650.}, Administration of pioglitazone, an activator of PPARγ, suppresses activated microglia in neuropathic pain and consequently reduces pain threshold for mechanical stimulation It is shown. The agent of the present invention promotes the production of eicosanoid which is an activator of PPARγ from macrophages. For example, it promotes the production of 15-deoxy-delta-12,14-prostaglandin J2, and It is effective for prevention or treatment of
 この出願は,マクロファージからのエイコサノイドの産生を促進するためのエイコサノイド産生促進剤を製造するための,間葉系幹細胞の分泌物の使用をも提供する。 This application also provides the use of secreted mesenchymal stem cells to produce an eicosanoid production promoter for promoting the production of eicosanoids from macrophages.
 この出願は,対象に間葉系幹細胞の分泌物を投与する工程を含む,対象の体内に存在するマクロファージからのエイコサノイドの産生を促進する方法をも提供する。この出願は,対象に間葉系幹細胞の分泌物を投与する工程を含む,動脈硬化,糖尿病,関節リウマチ,前立腺癌,脳梗塞,又は脳機能障害の治療又は予防方法をも提供する。 This application also provides a method of promoting the production of eicosanoids from macrophages present in the body of a subject, comprising the step of administering a secretion of mesenchymal stem cells to the subject. The application also provides a method of treating or preventing arteriosclerosis, diabetes, rheumatoid arthritis, prostate cancer, cerebral infarction, or cerebral dysfunction, comprising administering to the subject a secretion of mesenchymal stem cells.
 本発明による医薬組成物は,生体内のマクロファージからの内因性PPARγの活性化リガンドの産生を促進する作用によって,持続的に生体内の内因性PPARγの活性化リガンドの量を増加させることができる。さらには,PPARγの活性化が必要となるマクロファージがこれらを産生することにより,マクロファージ自身が優先的,且つ効果的にPPARγの活性化を受けることができ,治療のために高濃度のPPAR活性化リガンドを投与する必要性がなくなることから,副作用の面でも安全性の高い医薬組成物となることが期待できる。 The pharmaceutical composition according to the present invention can continuously increase the amount of an endogenous PPARγ activating ligand in vivo by promoting the production of an endogenous PPARγ activating ligand from macrophages in vivo. . Furthermore, the production of macrophages that require PPARγ activation enables macrophages to preferentially and effectively receive PPARγ activation, and to activate PPARγ at a high concentration for treatment. Since there is no need to administer the ligand, it can be expected that a pharmaceutical composition having high safety in terms of side effects will be obtained.
 1.マクロファージ培養上清中のエイコサノイド定量
 間葉系幹細胞からの分泌物がマクロファージからのエイコサノイドの分泌量に与える作用を評価するために,ヒトマクロファージ系細胞株THP-1を間葉系幹細胞の培養上清で処理した後,マクロファージからのエイコサノイドの分泌量を定量した。エイコサノイドの定量にはマクロファージの培養上清を測定サンプルに用いた。
1. Quantification of eicosanoids in macrophage culture supernatant To evaluate the effect of secretions from mesenchymal stem cells on the amount of eicosanoids secreted from macrophages, human macrophage cell line THP-1 was used as a culture supernatant of mesenchymal stem cells. After treatment with E. coli, the amount of eicosanoid secreted from macrophages was quantified. For eicosanoid quantification, the culture supernatant of macrophages was used as a measurement sample.
 1.1 脂肪組織由来間葉系幹細胞からの培養上清の調製
 <初代培養(P0)>
 脂肪組織由来間葉系幹細胞を用いた再生医療を受ける患者より,投与用細胞の調製に必要な原料となる皮下脂肪組織を分取した後の余剰組織について,研究用利用用途の同意取得の後に皮下脂肪の提供を受け,初代培養に供した。皮下脂肪組織は遠心分離(400×gで5分間)に供し,上層から順に脂質画分,脂肪組織画分,および水性画分の3層に分離した。中層の脂肪組織画分を残して,上層と下層を破棄した。残した脂肪組織画分に対して,組織重量当たり4倍量の0.15%コラゲナーゼ酵素溶液を添加し,37℃で1時間浸透させ,酵素処理を行った。脂肪組織が分散された後, 遠心分離(400×gで5分間)に供し,間葉系幹細胞を含む間質血管細胞画分として,沈殿画分を30 mLのPBS(-)溶液で懸濁した。その後,セルストレーナー(70μm径)に懸濁液を通液し,通液画分を再度遠心分離(400×gで5分間)に供し,セルストレーナーに捕捉された組織残渣等は破棄した。沈殿画分を6 mLの無血清培養液(Procul AD(登録商標); ロート製薬)で懸濁し,T-25フラスコ(CellBIND(登録商標); Corning)に全量を播種し,インキュベーター内(37℃,5% CO2)に静置して初代培養を開始した。
1.1 Preparation of culture supernatant from adipose tissue-derived mesenchymal stem cells <Primary culture (P0)>
After obtaining consent for the research use of surplus tissue from the subcutaneous adipose tissue, which is a raw material necessary for the preparation of cells for administration, from patients undergoing regenerative medicine using adipose tissue-derived mesenchymal stem cells Subcutaneous fat was provided and used for primary culture. The subcutaneous adipose tissue was subjected to centrifugation (400 × g for 5 minutes), and separated into three layers of a lipid fraction, an adipose tissue fraction, and an aqueous fraction in order from the upper layer. The upper and lower layers were discarded, leaving the middle adipose tissue fraction. To the remaining adipose tissue fraction, a 0.15% collagenase enzyme solution in an amount 4 times the weight of the tissue was added, and the mixture was permeated at 37 ° C. for 1 hour to perform enzyme treatment. After the adipose tissue is dispersed, centrifuge (400 xg for 5 minutes), and suspend the precipitated fraction as a stromal vascular cell fraction containing mesenchymal stem cells in 30 mL of PBS (-) solution. did. Thereafter, the suspension was passed through a cell strainer (70 μm diameter), and the flow-through fraction was subjected to centrifugation again (400 × g for 5 minutes), and the tissue residue and the like captured by the cell strainer were discarded. The precipitate fraction was suspended in 6 mL of a serum-free culture solution (Procul AD (registered trademark); Rohto Pharmaceutical Co., Ltd.), the whole volume was inoculated into a T-25 flask (CellBIND (registered trademark); Corning), and the whole was inoculated (37 ° C) , 5% CO 2 ) to start primary culture.
 <継代培養(P0→P1→P2)>
 3日に1回の頻度で培地全交換を実施し,上澄みは破棄して,フラスコ底面上で増殖する細胞を選択的に増殖した。セミコンフルエントまで増殖したT-25フラスコの細胞に対して,2 mLの酵素溶液(TrypLE Secelt(登録商標);Thermo Fisher Scientific)を添加し剥離した(37℃,5分間静置)。細胞をPBS(-)で希釈し,遠心分離(400×gで5分間)に供した。沈殿した細胞を培養液で懸濁し,トリパンブルー染色法による細胞数計測を行ない,T-150フラスコ(CellBIND(登録商標); Corning)に無血清培養液(Procul AD; ロート製薬)で播種し,インキュベーター内(37℃,5% CO2)に静置して継代培養を行った(P0→P1)。その後も同様の手順で継代培養を行い,必要な細胞数を得た(P1→P2)。
<Subculture (P0 → P1 → P2)>
The medium was completely changed once every three days, the supernatant was discarded, and the cells growing on the bottom of the flask were selectively grown. To the cells in a T-25 flask that had grown to semi-confluence, 2 mL of an enzyme solution (TrypLE Secret (registered trademark); Thermo Fisher Scientific) was added, and the cells were detached (rest at 37 ° C for 5 minutes). The cells were diluted with PBS (-) and subjected to centrifugation (400 xg for 5 minutes). The precipitated cells were suspended in a culture solution, the cell number was measured by a trypan blue staining method, and seeded in a T-150 flask (CellBIND (registered trademark); Corning) with a serum-free culture solution (Procul AD; Rohto Pharmaceutical). The cells were allowed to stand in an incubator (37 ° C., 5% CO 2 ) and subcultured (P0 → P1). Thereafter, the cells were subcultured in the same procedure to obtain the required number of cells (P1 → P2).
 <培養上清の調製>
 培養上清の調製においても,培地は無血清培養液(Procul AD; ロート製薬)を使用した。同培地で脂肪組織由来間葉系幹細胞をT-150フラスコ1枚当たり4.5×10細胞の数で播種し,セミコンフルエントに到達した3日目に,培養上清を回収した。培養上清は0.2μmのPESシリンジフィルター(25 mm GD/Xシリンジフィルター(PES 0.2 μm 滅菌済);6896-2502;GEヘルスケア・ジャパン)でろ過し,解析に使用するまで-28℃で冷凍保管とした。
<Preparation of culture supernatant>
In the preparation of the culture supernatant, a serum-free culture medium (Procul AD; Rohto Pharmaceutical) was used as the medium. Adipose tissue-derived mesenchymal stem cells were seeded in the same medium at the number of 4.5 × 10 5 cells per T-150 flask, and the culture supernatant was collected on the third day when the cells reached semi-confluence. The culture supernatant was filtered through a 0.2 μm PES syringe filter (25 mm GD / X syringe filter (PES 0.2 μm sterilized); 6896-2502; GE Healthcare Japan) at −28 ° C. until used for analysis. It was kept frozen.
 1.2 臍帯組織由来間葉系幹細胞からの培養上清の調製
<初代培養(P0)>
通常分娩を行う産婦より同意を得て取得した臍帯組織を,採取の翌日に初代培養に供した。約10 cmの臍帯組織から臍帯血を除去した後,医療用メスで5mm程度に裁断し,0.15 % コラゲナーゼ溶液に浸して37℃で16時間,シェーカーで緩やかに攪拌させながら酵素処理を行った。臍帯組織の分散を目視で確認した後,PBS(-)で10倍希釈を行った後,1,000×g, 5分の遠心分離に供し,沈殿画分を残して上層を破棄した。その後,沈殿画分をPBS(-)で懸濁した後,70μmのフィルターに供し,通液画分をコニカルチューブ2本に等分した後,400×g, 5分の遠心分離に供し,細胞を含む沈殿画分を,24 mLの無血清培養液(Procul AD(登録商標); ロート製薬)培地で懸濁した。その後,T-150フラスコ(CellBIND(登録商標); Corning)1枚に全量を播種し,インキュベーター内(37℃,5% CO2)に静置して初代培養を開始した。
1.2 Preparation of culture supernatant from umbilical cord tissue-derived mesenchymal stem cells <Primary culture (P0)>
The umbilical cord tissue obtained with the consent of a parturition woman who normally gave birth was subjected to primary culture the day after collection. After removing cord blood from about 10 cm of umbilical cord tissue, it was cut into about 5 mm with a medical scalpel, immersed in a 0.15% collagenase solution, and subjected to enzyme treatment at 37 ° C. for 16 hours while gently stirring with a shaker. After visually confirming the dispersion of the umbilical cord tissue, the suspension was diluted 10-fold with PBS (-), centrifuged at 1,000 × g for 5 minutes, and the upper layer was discarded except for the precipitated fraction. After that, the precipitate fraction was suspended in PBS (-), applied to a 70 μm filter, the flow-through fraction was equally divided into two conical tubes, and then subjected to centrifugation at 400 × g for 5 minutes. Was suspended in 24 mL of serum-free culture medium (Procul AD (registered trademark); Rohto Pharmaceutical). Thereafter, the entire amount was inoculated into one T-150 flask (CellBIND (registered trademark); Corning), and left to stand in an incubator (37 ° C., 5% CO 2) to start primary culture.
 <継代培養(P0→P1→P2)>
 2日に1回の頻度で培地全交換を実施し,上澄みは破棄して,フラスコ底面上で増殖する細胞を選択的に増殖した。セミコンフルエントまで増殖したT-150フラスコの細胞に対して,6mLの酵素溶液(TrypLE Secelt(登録商標);Thermo Fisher Scientific)を添加し剥離した(37℃,5分間静置)。細胞をPBS(-)で希釈し,遠心分離(400×gで5分間)に供した。沈殿した細胞を培養液で懸濁し,トリパンブルー染色法による細胞数計測を行い,T-150フラスコ(CellBIND(登録商標); Corning)に無血清培養液(Procul AD; ロート製薬)で播種し,インキュベーター内(37℃,5% CO2)に静置して継代培養を行った(P0→P1)。2日に1回の頻度で培地全交換を実施し,その後も同様に継代培養を実施し,必要な細胞数を確保した(P1→P2)。
<Subculture (P0 → P1 → P2)>
The medium was completely changed once every two days, the supernatant was discarded, and the cells growing on the bottom of the flask were selectively grown. 6 mL of an enzyme solution (TrypLE Secelt (registered trademark); Thermo Fisher Scientific) was added to the cells in a T-150 flask that had grown to semi-confluence, and the cells were detached (rest at 37 ° C. for 5 minutes). The cells were diluted with PBS (-) and subjected to centrifugation (400 xg for 5 minutes). The precipitated cells were suspended in a culture solution, the cell number was measured by trypan blue staining, and the cells were seeded in a T-150 flask (CellBIND (registered trademark); Corning) with a serum-free culture solution (Procul AD; Rohto Pharmaceutical). The subculture was carried out by leaving still in an incubator (37 ° C., 5% CO 2) (P0 → P1). The medium was completely changed once every two days, and then subculture was performed in the same manner to secure the required number of cells (P1 → P2).
 <培養上清の調製>
 培養上清の調製においても,培地は無血清培養液(Procul AD(登録商標); ロート製薬)を使用した。同培地で臍帯組織由来間葉系幹細胞をT-150フラスコ1枚当たり9.0×10細胞の数で播種し,セミコンフルエントに到達した3日目に,培養上清を回収した。培養上清は0.2μmのPESシリンジフィルター(25 mm GD/Xシリンジフィルター(PES 0.2 μm 滅菌済);6896-2502;GEヘルスケア・ジャパン)でろ過し,解析に使用するまで-28℃で冷凍保管とした。
<Preparation of culture supernatant>
In the preparation of the culture supernatant, a serum-free culture solution (Procul AD (registered trademark); Rohto Pharmaceutical Co., Ltd.) was used as the medium. Umbilical cord tissue-derived mesenchymal stem cells were seeded at 9.0 × 10 5 cells per T-150 flask in the same medium, and the culture supernatant was collected on the third day when the cells reached semi-confluence. The culture supernatant was filtered through a 0.2 μm PES syringe filter (25 mm GD / X syringe filter (PES 0.2 μm sterilized); 6896-2502; GE Healthcare Japan) and kept at -28 ° C until used for analysis. It was kept frozen.
 1.3 マクロファージの培養上清調製
 ヒトのマクロファージ系細胞株THP-1の培養系に対して,上述の通り調製した,脂肪及び臍帯組織由来間葉系幹細胞から得た培養上清を添加した。コントロールとしては,間葉系幹細胞の培養上清調製時の培養に用いた無血清培養液(Procul AD; ロート製薬)を添加した。
1.3 Preparation of culture supernatant of macrophage The culture supernatant obtained from fat and umbilical cord tissue-derived mesenchymal stem cells prepared as described above was added to the culture system of human macrophage cell line THP-1. As a control, a serum-free culture solution (Procul AD; Rohto Pharmaceutical Co., Ltd.) used for culturing the culture supernatant of mesenchymal stem cells was added.
 具体的な手順は次の通りとした。THP-1をT-25フラスコ(CellBIND;Corning)に1ウェルあたり5.0×105で播種した。培地は10% FBS添加RPMIに対し,THP-1の活性化のために100 nM LPSを添加した。培地量はフラスコ1枚あたり6.0mLとした。その翌日に培地交換を行い,1ウェルあたりにつき,10% FBS添加RPMIを3.6 mLと,被験物を2.4mL加え,最終濃度100 nM のLPSを添加した。被験物としては,脂肪組織由来間葉系幹細胞の培養上清,臍帯組織由来間葉系幹細胞の培養上清,または,コントロールとしてProcul AD培地(ロート製薬)の3種類とした。その後2日間培養を行い,THP-1の培養上清を回収した。回収した培養上清は, 0.2μmのPESシリンジフィルター(25 mm GD/Xシリンジフィルター(PES 0.2 μm 滅菌済);6896-2502;GEヘルスケア・ジャパン)でろ過し,解析に使用するまで-80℃で冷凍保管とした。 The specific procedure was as follows. THP-1 was seeded in a T-25 flask (CellBIND; Corning) at 5.0 × 10 5 per well. The medium was supplemented with 100 nM LPS for RPMI with 10% FBS to activate THP-1. The medium volume was 6.0 mL per flask. On the following day, the medium was changed, and 3.6 mL of RPMI containing 10% FBS and 2.4 mL of a test substance were added per well, and LPS having a final concentration of 100 nM was added. Three kinds of test substances were used: culture supernatant of mesenchymal stem cells derived from adipose tissue, culture supernatant of mesenchymal stem cells derived from umbilical cord tissue, or Procul AD medium (Rohto Pharmaceutical) as a control. Thereafter, culture was performed for 2 days, and the culture supernatant of THP-1 was recovered. The collected culture supernatant is filtered through a 0.2 μm PES syringe filter (25 mm GD / X syringe filter (PES 0.2 μm sterilized); 6896-2502; GE Healthcare Japan) until it is used for analysis. It was kept frozen at 80 ° C.
 1.4 エイコサノイド定量
液体クロマトグラフィー質量分析(LC-MS/MS)により,PPARγの活性化アゴニストとなるエイコサノイドの定量を実施した。上述の間葉系幹細胞由来培養上清で処理したTHP-1の培養上清と,間葉系幹細胞の培養上清についても定量を行った。
1.4 Quantification of eicosanoids Eicosanoids, which are PPARγ activating agonists, were quantified by liquid chromatography mass spectrometry (LC-MS / MS). The THP-1 culture supernatant treated with the above-mentioned mesenchymal stem cell-derived culture supernatant and the mesenchymal stem cell culture supernatant were also quantified.
 <標準物質の調製>
測定対象の15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2),及び,15-HETE,そして内部標準物質の重水素標識プロスタグランジンE2(PGE2-d4)をメタノールに溶解後,超純水で2倍希釈して各10 ng/mLの標準溶液を調製した。
<Preparation of standard substance>
15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy-δ-12,14-PGJ2) and 15-HETE, and deuterium-labeled prostaglandin E2 as an internal standard substance ( After dissolving PGE2-d4) in methanol, it was diluted 2-fold with ultrapure water to prepare standard solutions of 10 ng / mL each.
 <試料の前処理>
 THP-1の培養上清900μLに5 ng/mL PGE2-d4メタノール溶液を100 μLを添加して混合後,固相抽出カラムであるEmpore Solid Phase Extraction Cartridge C18 Standard Density, 4 mm/1 mL(3M)でエイコサノイドを含む画分を精製した。より具体的には,樹脂の平衡化にメタノール1 mLと超純水1 mLを供し,試料を供した後,超純水1mLで樹脂を洗浄した。その後9,100×g,1分間の遠心分離により脱水し,溶出にはメタノール 500μLを供した。溶出した画分は,ロータリーエバポレーターにより遠心乾固し,メタノール 50 μLを添加してシェーカーで溶解した(2,500 rpm,5分間)。そこに超純水50 μLを加え混合し,LC-MS/MSの測定サンプルとした。
<Pretreatment of sample>
After adding and mixing 100 μL of 5 ng / mL methanol solution of PGE2-d4 to 900 μL of THP-1 culture supernatant, the solid phase extraction column Empore Solid Phase Extraction Cartridge C18 Standard Density, 4 mm / 1 mL (3M )) To purify the fraction containing eicosanoids. More specifically, 1 mL of methanol and 1 mL of ultrapure water were provided for equilibration of the resin, the sample was provided, and the resin was washed with 1 mL of ultrapure water. Thereafter, dehydration was performed by centrifugation at 9,100 × g for 1 minute, and 500 μL of methanol was used for elution. The eluted fraction was centrifuged to dryness by a rotary evaporator, dissolved in a shaker after adding 50 μL of methanol (2,500 rpm, 5 minutes). Then, 50 μL of ultrapure water was added and mixed to obtain a sample for LC-MS / MS measurement.
 <分析条件>
LC-MS/MSの分析条件を表1に示す。
<Analysis conditions>
Table 1 shows the analysis conditions of LC-MS / MS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<定量解析>
 ピークの検出には解析ソフトMassLynx ver.4.1(Waters)を使用した。検出限界はシグナルノイズ比(S/N)= 3とした。検出されたピークの面積値は内部標準物質(PGE2-d4)のピーク面積値で除してノーマライズを行った。10 ng/mL標準溶液と分析試料のノーマライズ後,ピーク面積比及び前処理における濃縮倍率(18倍)から検体試料中の濃度を算出した。定量結果を図1A及び図1Bに示す。図1Aは,15-デオキシ-デルタ-12,14-プロスタグランジンJ2の定量分析の結果を示す図面に代わるグラフである。図1Bは,15-HETEの定量分析の結果を示す図面に代わるグラフである。
<Quantitative analysis>
Analysis software MassLynx ver.4.1 (Waters) was used for peak detection. The detection limit was a signal-to-noise ratio (S / N) = 3. The area value of the detected peak was divided by the peak area value of the internal standard substance (PGE2-d4) to perform normalization. After normalizing the 10 ng / mL standard solution and the analysis sample, the concentration in the sample was calculated from the peak area ratio and the concentration ratio (18 times) in the pretreatment. The quantification results are shown in FIGS. 1A and 1B. FIG. 1A is a graph instead of a drawing showing the results of quantitative analysis of 15-deoxy-delta-12,14-prostaglandin J2. FIG. 1B is a graph instead of a drawing showing the results of quantitative analysis of 15-HETE.
脂肪組織由来間葉系幹細胞の培養上清中及び臍帯組織由来間葉系幹細胞の培養上清中には,15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2),及び,15-HETEのいずれも検出されなかった(図1A及び図1Bの「AD-CM」及び「UC-CM」)。一方で,THP-1の培養上清中には,いずれのサンプルにおいてもそれらのエイコサノイドが検出された。15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2)について,Prucul AD培地で処理したTHP-1は0.001 ng/mL(図1A及び図1Bの「THP-1 Procul AD」),脂肪組織由来間葉系幹細胞の培養上清で処理したTHP-1は0.0014 ng/mL(図1A及び図1Bの「THP-1 AD-CM」),臍帯組織由来間葉系幹細胞の培養上清で処理したTHP-1は0.0018 ng/mL(図1A及び図1Bの「THP-1 UC-CM」)となった。次に15-HETEについて,Prucul AD培地で処理したTHP-1は0.006 ng/mL,脂肪組織由来間葉系幹細胞の培養上清で処理したTHP-1は0.01 ng/mL,臍帯組織由来間葉系幹細胞の培養上清で処理したTHP-1は0.013 ng/mLとなった。これにより,間葉系幹細胞の分泌物を含む培養上清をマクロファージに作用させることにより,マクロファージが産生する15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2),及び,15-HETEの量が増加することが明らかとなった。間葉系幹細胞の分泌物は,マクロファージに対する,PPARγ活性化アゴニストの産生促進剤であることを見出した。 The culture supernatant of adipose tissue-derived mesenchymal stem cells and the culture supernatant of umbilical cord tissue-derived mesenchymal stem cells contained 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy-δ-12). , 14-PGJ2) and 15-HETE were not detected (“AD-CM” and “UC-CM” in FIGS. 1A and 1B). On the other hand, those eicosanoids were detected in the culture supernatant of THP-1 in all samples. For 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy-δ-12,14-PGJ2), 0.001 ng / mL of THP-1 treated with Prucul AD medium (FIG. 1A and FIG. 1B "THP-1 @ Procul @ AD"), THP-1 treated with the culture supernatant of adipose tissue-derived mesenchymal stem cells was 0.0014 ng / mL ("THP-1 @ AD-CM" in FIGS. 1A and 1B). ), THP-1 treated with the culture supernatant of umbilical cord tissue-derived mesenchymal stem cells was 0.0018 ng / mL (“THP-1 @ UC-CM” in FIGS. 1A and 1B). Next, for 15-HETE, THP-1 treated with Prucul AD medium was 0.006 ng / mL, THP-1 treated with the culture supernatant of adipose tissue-derived mesenchymal stem cells was 0.01 ng / mL, and umbilical cord was used. THP-1 treated with the culture supernatant of tissue-derived mesenchymal stem cells was 0.013 ng / mL. In this way, the culture supernatant containing the secretion of mesenchymal stem cells is allowed to act on macrophages, thereby producing 15-deoxy-delta-12,14-prostaglandin J2 (15-deoxy-δ-12, 14-PGJ2) and 15-HETE were found to increase. The secretion of mesenchymal stem cells was found to be a PPARγ activating agonist production promoter for macrophages.
2. PPARγ制御因子の遺伝子発現解析
 間葉系幹細胞の培養上清を処理したマクロファージ系細胞(THP-1)において,PPARγで制御される代表的な遺伝子であるCD36及びFABP4の発現解析を実施した。両遺伝子は,PPARγの活性化アゴニストで細胞を処理することにより,PPARγ依存的に発現が上昇する主要な遺伝子として知られており,PPARγの活性化状態を知る上で指標とすることができる。
2. Analysis of gene expression of PPARγ regulatory factor In macrophage cells (THP-1) obtained by treating the culture supernatant of mesenchymal stem cells, expression analysis of CD36 and FABP4, which are typical genes controlled by PPARγ, was performed. Both genes are known as major genes whose expression is increased in a PPARγ-dependent manner by treating cells with a PPARγ-activating agonist, and can be used as an index for knowing the activation state of PPARγ.
 2.1 細胞培養とRNA抽出
THP-1を12ウェルプレート(CellBIND;Corning)に1ウェルあたり1×10cellsで播種した。培地は10% FBS添加RPMIに対し,THP-1の活性化のために100 nM PMAを添加した。培地量は1ウェルあたり800μLとした。その翌日に培地交換を行い, 1ウェルあたり10% FBS添加RPMI培地を600μLと,間葉系幹細胞培養上清またはコントロールの培地を400μL添加した。間葉系幹細胞培養上清としては,「実施例1」でエイコサノイド定量に用いたものと同じロットのサンプルを使用し,脂肪組織由来間葉系幹細胞と臍帯組織由来間葉系幹細胞から調製された培養上清を用いた。コントロールの培地としては,間葉系幹細胞の培養上清を調製する際に細胞培養に用いた無血清培地Procul AD(ロート製薬)と,FBS非添加RPMIとした。
2.1 Cell culture and RNA extraction
THP-1 was seeded in a 12-well plate (CellBIND; Corning) at 1 × 10 5 cells per well. The culture medium was supplemented with RPMI supplemented with 10% FBS with 100 nM PMA for THP-1 activation. The medium volume was 800 μL per well. On the next day, the medium was changed, and 600 μL of RPMI medium supplemented with 10% FBS and 400 μL of a culture medium for mesenchymal stem cell culture or control were added per well. As a mesenchymal stem cell culture supernatant, a sample of the same lot as that used for eicosanoid quantification in “Example 1” was used and prepared from adipose tissue-derived mesenchymal stem cells and umbilical cord tissue-derived mesenchymal stem cells. The culture supernatant was used. The control medium used was serum-free medium Procul AD (Rohto Pharmaceutical) used for cell culture when preparing the culture supernatant of mesenchymal stem cells, and RPMI without FBS.
 さらに3日後に培地を除去し,細胞をTRI Reagent(Molecular Research Center;TR118)で溶解し,SV Total RNA Isolation System(Promega;Z3100)を用いて,キット付属の説明書に従いトータルRNAの抽出を行った。RNA抽出を行った細胞の写真を図2Aに示す。図2Aは,培養後の細胞を示す図面に代わる写真である。 After 3 days, the medium was removed, the cells were lysed with TRI Reagent (Molecular Research Center; TR118), and total RNA was extracted using SV Total RNA Isolation System (Promega; Z3100) according to the instructions attached to the kit. Was. FIG. 2A shows a photograph of the cells subjected to RNA extraction. FIG. 2A is a photograph instead of a drawing showing cells after culture.
 2.2 定量RT-PCR
 各々1μgのトータルRNAから, PrimeScript(登録商標) II 1st strand cDNA Synthesis Kit(タカラバイオ;6210A)により,Oligo dT プライマーによる逆転写反応を行った。得られたcDNAを鋳型に,THUNDERBIRD(登録商標) SYBR qPCR Mix(TOYOBO;QPS-201)を用いて,CD36遺伝子及びFABP4遺伝子の定量PCRを行った。装置はMx3000P(アジレントテクノロジーズ)を使用し,プライマーは下記を用いた。各遺伝子発現量の内部補正には,GAPDH遺伝子を用いた。
2.2 Quantitative RT-PCR
From 1 μg of the total RNA, a reverse transcription reaction was performed with an Oligo dT primer using PrimeScript (registered trademark) II 1st strand cDNA Synthesis Kit (Takara Bio; 6210A). Using the obtained cDNA as a template, quantitative PCR of the CD36 gene and the FABP4 gene was performed using THUNDERBIRD (registered trademark) SYBR qPCR Mix (TOYOBO; QPS-201). The apparatus used was Mx3000P (Agilent Technologies), and the following primers were used. GAPDH gene was used for internal correction of each gene expression level.
 「PPARγ プライマー配列」
 PPARγ-Fw    : gacaggaaagacaacagacaaatc (配列番号1)
 PPARγ-Rv    : ggggtgatgtgtttgaacttg(配列番号2)
"PPARγ primer sequence"
PPARγ-Fw: gacaggaaagacaacagacaaatc (SEQ ID NO: 1)
PPARγ-Rv: ggggtgatgtgtttttgaacttg (SEQ ID NO: 2)
 「FABP プライマー配列」
FABP4-Fw    : ccaccataaagagaaaacgagag (配列番号3)
FABP4-Rv    : gtggaagtgacgcctttcat (配列番号4)
"FABP primer sequence"
FABP4-Fw: ccaccataaagagaaaacgagag (SEQ ID NO: 3)
FABP4-Rv: gtggaagtgacgcctttcat (SEQ ID NO: 4)
 「CD36 プライマー配列」
CD36-Fw    : gcagcaacattcaagttaagca(配列番号5)
CD36-Rv    : gctgcaggaaagagactgtgt(配列番号6)
"CD36 primer sequence"
CD36-Fw: gcagcaacattcaagttaagca (SEQ ID NO: 5)
CD36-Rv: gctgcaggaaagagactgtgt (SEQ ID NO: 6)
 「GAPDH プライマー配列」
GAPDH-Fw   : ttcaccaccatggagaagg(配列番号7)
GAPDH-Rv   :  cacacccatcacaaacatgg(配列番号8)
"GAPDH primer sequence"
GAPDH-Fw: ttcaccaccatggagaagg (SEQ ID NO: 7)
GAPDH-Rv: cacacccatcacaaacatgg (SEQ ID NO: 8)
 PCR条件は試薬メーカーの手順書に準じて実施した。PCR反応液の組成については表2のaの通りとし,PCR反応条件は表2のbの通り実施した。 PCR conditions were performed according to the procedure manual of the reagent manufacturer. The composition of the PCR reaction solution was as shown in Table 2a, and the PCR reaction conditions were as shown in Table 2b.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 定量RT-PCRの結果を図2Bに示す。PPARγの応答遺伝子であるFABP4とCD36は,脂肪組織由来間葉系幹細胞及び臍帯組織由来間葉系幹細胞からの分泌物を含む培養上清を処理したTHP-1において(図2Bにおいて前者を「AD-CM」,後者を「UC-CM」と表記する),コントロールの培地添加群(図2Bにおける「RPMI」及び「Procul AD」)と比較して,各遺伝子発現量の大幅な増加が認められた。「実施例1」でエイコサノイド定量のためにTHP-1に添加したコントロールのサンプルは「Procul AD」であるが,Procul ADを処理したTHP-1と比較して,15-デオキシ-デルタ-12,14-プロスタグランジンJ2(15-deoxy-δ-12,14-PGJ2),及び,15-HETEの産生増加が検出されたTHP-1において(間葉系幹細胞由来培養上清処理を行ったTHP-1),PPARγの応答遺伝子であるFABP4とCD36の発現上昇が確認された。 結果 The results of the quantitative RT-PCR are shown in FIG. 2B. FABP4 and CD36, PPARγ response genes, were expressed in THP-1 treated with culture supernatant containing secretion from adipose tissue-derived mesenchymal stem cells and umbilical cord tissue-derived mesenchymal stem cells (in FIG. 2B, the former was referred to as “AD -CM ", the latter is referred to as" UC-CM "), and the gene expression level of each gene was significantly increased as compared with the control medium-added group (" RPMI "and" ProculProAD "in Fig. 2B). Was. The control sample added to THP-1 for eicosanoid quantification in "Example 1" is "Procul @ AD", but compared to THP-1 treated with Procul @ AD, 15-deoxy-delta-12, In THP-1 in which increased production of 14-prostaglandin J2 (15-deoxy-δ-12,14-PGJ2) and 15-HETE was detected (THP treated with culture supernatant derived from mesenchymal stem cells) -1), It was confirmed that the expression of FABP4 and CD36, which are PPARγ response genes, was increased.
 2.3  CD36抗体免疫染色
 次に,PPARγにより発現誘導を受け,酸化脂質などを細胞内に取り込む機能などを有するスカベンジャーレセプターのCD36について,間葉系幹細胞の分泌成分の作用によるタンパク質発現誘導を評価した。
2.3 CD36 antibody immunostaining Next, we evaluated the induction of protein expression by the action of the secretory component of mesenchymal stem cells for CD36, a scavenger receptor that has the function of taking up oxidized lipids etc. into cells induced by PPARγ expression. did.
 具体的な手順は次の通りとした。THP-1を6ウェルプレート(CellBIND;Corning)に1ウェルあたり2.5×10で播種した。培地は10% FBS添加RPMIに対し,THP-1の活性化のために100 nM LPSを添加した。培地量は1ウェルあたり3 mLとした。その翌日に培地交換を行い,1ウェルあたりにつき,10% FBS添加RPMIを1.8 mLと,被験物を1.2 mL加え,最終濃度100 nM のLPSを添加した。被験物としては,脂肪組織由来間葉系幹細胞の培養上清,RPMI基本培地,またはProcul AD培地(ロート製薬)の3種類とした。その後3日間培養を行い,ヒト抗CD36抗体免疫染色に供した。 The specific procedure was as follows. THP-1 was seeded in a 6-well plate (CellBIND; Corning) at 2.5 × 10 5 per well. The medium was supplemented with 100 nM LPS for RPMI with 10% FBS to activate THP-1. The medium volume was 3 mL per well. On the following day, the medium was changed, and 1.8 mL of RPMI containing 10% FBS and 1.2 mL of the test substance were added per well, and LPS having a final concentration of 100 nM was added. Three kinds of test substances were used: culture supernatant of adipose tissue-derived mesenchymal stem cells, RPMI basic medium, or Procul AD medium (Rohto Pharmaceutical). Thereafter, the cells were cultured for 3 days and subjected to human anti-CD36 antibody immunostaining.
 4%パラホルムアルデヒド(PFA)で15分間室温において細胞を固定し,PBS(-)で希釈して調製した0.01%トリトンX-100(Tx-100) で3回洗浄した。次に,3%牛血清アルブミン(BSA)を添加した0.01%Tx100/PBS(-) において室温で30分間ブロッキングを行い,続いて,3%BSA/0.01%Tx100/PBS(-)で1,000倍希釈した抗CD36抗体溶液にて細胞を免疫染色した(PE anti-Human CD36 (BioLegend;Cat.336206)。その後,3%BSA/0.01%Tx100/PBS(-)で3回洗浄を行い,直ちに蛍光顕微鏡(キーエンス;BZ-X)でフィコエリスリン(PE)検出条件にてCD36の染色像を観察した。 The cells were fixed with {4% paraformaldehyde (PFA) for 15 minutes at room temperature, and washed three times with 0.01% Triton X-100 (Tx-100) prepared by diluting with PBS (-)}. Next, blocking was performed for 30 minutes at room temperature in 0.01% Tx100 / PBS (−) supplemented with 3% bovine serum albumin (BSA), followed by 1,000% with 3% BSA / 0.01% Tx100 / PBS (−). The cells were immunostained with a 1: 2 diluted anti-CD36 antibody solution (PE-anti-Human-CD36 (BioLegend; Cat. 336206), followed by washing 3 times with 3% BSA / 0.01% Tx100 / PBS (-), and immediately The staining image of CD36 was observed under a phycoerythrin (PE) detection condition using a fluorescence microscope (Keyence; BZ-X).
 その結果を図3に示す。コントロールのRPMI基本培地,及びProcul AD培地を処理したTHP-1におけるCD36タンパク質の発現量と比較して,脂肪組織由来間葉系幹細胞の培養上清を処理したTHP-1(図3の「AD-CM」)においては,その発現量が増加したことを示す,強い蛍光シグナルが検出された。これは,図2BにおけるCD36遺伝子発現解析の結果に準じるものであった。これらのことから,間葉系幹細胞の培養上清の作用を受けたマクロファージにおいて,PPARγの活性化により発現が誘導される因子の発現誘導が生じていることを確認した。 The results are shown in FIG. Compared with the expression level of CD36 protein in THP-1 treated with control RPMI basal medium and ProculcAD medium, THP-1 treated with the culture supernatant of adipose tissue-derived mesenchymal stem cells (see “AD -CM "), a strong fluorescent signal was detected, indicating that the expression level was increased. This was in accordance with the result of CD36 gene expression analysis in FIG. 2B. From these results, it was confirmed that in macrophages affected by the culture supernatant of mesenchymal stem cells, the induction of the expression of a factor whose expression was induced by the activation of PPARγ occurred.
 3. 間葉系幹細胞培養上清のインターロイキン4(IL-4)タンパク質発現定量
 マクロファージからのPPARγリガンド産生を促進する既知の因子として,インターロイキン4(IL-4)が知られている。実施例1で示した作用として,間葉系幹細胞から調製した培養上清を処理したマクロファージ系細胞(THP-1)において,PPARγの産生が増強されたが,それがIL-4の作用によるものであるかを検証するために,間葉系幹細胞の培養上清におけるIL-4タンパク質の分泌量を定量した。
3. Quantification of Interleukin 4 (IL-4) Protein Expression in Mesenchymal Stem Cell Culture Supernatant Interleukin 4 (IL-4) is known as a known factor that promotes PPARγ ligand production from macrophages. In the action shown in Example 1, the production of PPARγ was enhanced in macrophage cells (THP-1) treated with culture supernatant prepared from mesenchymal stem cells, but this was due to the action of IL-4. In order to verify whether this was the case, the secretion amount of IL-4 protein in the culture supernatant of mesenchymal stem cells was quantified.
 3.1  培養上清の調製
測定に用いた間葉系幹細胞の培養上清は,脂肪組織由来間葉系幹細胞と臍帯組織由来間葉系幹細胞より調製し,前者を「AD-CM」,後者を「UC-CM」とした。それぞれ2つの異なる組織提供者から調製された検体を解析に供し,「実施例1」でTHP-1に処理した培養上清を,「AD-CM-1」及び「UC-CM-1」とした。なお,培養上清「AD-CM-2」と「UC-CM-2」の調製についても,「実施例1」に記載の「AD-CM-1」及び「UC-CM-1」の調製法に準じた。培養上清は0.2μmのPESシリンジフィルター(25 mm GD/Xシリンジフィルター(PES 0.2 μm 滅菌済);6896-2502;GEヘルスケア・ジャパン)でろ過し,解析に使用するまで-28℃で冷凍保管とした。
3.1 Preparation of culture supernatant The culture supernatant of mesenchymal stem cells used for measurement was prepared from adipose tissue-derived mesenchymal stem cells and umbilical cord tissue-derived mesenchymal stem cells, the former being “AD-CM” and the latter being Was designated as “UC-CM”. Samples prepared from two different tissue donors were subjected to analysis, and the culture supernatants treated with THP-1 in “Example 1” were referred to as “AD-CM-1” and “UC-CM-1”. did. The preparation of the culture supernatants “AD-CM-2” and “UC-CM-2” was also performed using the preparation of “AD-CM-1” and “UC-CM-1” described in “Example 1”. According to the law. The culture supernatant was filtered through a 0.2 μm PES syringe filter (25 mm GD / X syringe filter (PES 0.2 μm sterilized); 6896-2502; GE Healthcare Japan) and kept at -28 ° C until used for analysis. It was kept frozen.
 3.2  ELISA定量
市販のELISAキット(Human IL-4 Quantikine HS ELISA Kit;HS400;R&D SYSTEMS)を用いて,プロトコール記載の方法により,インターロイキン4(IL-4)タンパク質の定量試験を行った。本キットの検出下限値は0.22 pg/mLである。比較のために,基本培地の「RPMI」,RPMIに10% FBSを添加した「RPMI 10% FBS」,間葉系幹細胞の培養上清の調製に用いた無血清培地である「Procul AD」も測定した。上述の通り,Procul AD(ロート製薬)は無血清培地であり動物由来成分不含有である。つまり,Procul ADにインターロイキン4は含有されない。
3.2 ELISA Quantification Using a commercially available ELISA kit (Human IL-4 Quantikine HS ELISA Kit; HS400; R & D SYSTEMS), a quantitative test of interleukin 4 (IL-4) protein was performed by the method described in the protocol. The lower limit of detection of this kit is 0.22 pg / mL. For comparison, “RPMI”, a basic medium, “RPMI 10% FBS” with 10% FBS added to RPMI, and “Procul AD”, a serum-free medium used for preparing culture supernatants of mesenchymal stem cells, were also used. It was measured. As described above, Procul AD (Roth Pharmaceutical) is a serum-free medium and contains no animal-derived components. That is, Procul AD does not contain interleukin 4.
 その結果を図4に示す。「RPMI 10% FBS」はIL-4濃度が0.38(±0.03)pg/mLであり,その他の検体はキットの検出限界以下であった。タンパク質不含有培地の「RPMI」はキットの測定濃度範囲を下回り,「AD-CM-1」,「AD-CM-2」,「UC-CM-1」及び「UC-CM-2」は,検出ノイズによる「RPMI」と同程度の値であった。これにより,本発明の間葉系幹細胞の培養上清において,IL-4は含有されないことを確認し,THP-1におけるPPARγ活性化リガンド産生促進の作用は,IL-4とは異なる別の因子によるものであることを確認した。 (4) The results are shown in FIG. “RPMI 10% FBS” had an IL-4 concentration of 0.38 (± 0.03) pg / mL, and the other samples were below the detection limit of the kit. The "RPMI" of the protein-free medium is below the measurement concentration range of the kit, and "AD-CM-1", "AD-CM-2", "UC-CM-1" and "UC-CM-2" The value was about the same as "RPMI" due to detection noise. This confirmed that IL-4 was not contained in the culture supernatant of the mesenchymal stem cells of the present invention, and that the effect of THP-1 to promote the production of PPARγ-activating ligand was different from that of IL-4. It was confirmed that it was due to.
 本発明は医薬産業において利用されうる。 The present invention can be used in the pharmaceutical industry.
配列番号1 プライマー
配列番号2 プライマー
配列番号3 プライマー
配列番号4 プライマー
配列番号5 プライマー
配列番号6 プライマー
配列番号7 プライマー
配列番号8 プライマー
 
SEQ ID NO: 1 Primer SEQ ID NO: 2 Primer SEQ ID NO: 3 Primer SEQ ID NO: 4 Primer SEQ ID NO: 5 Primer SEQ ID NO: 6 Primer SEQ ID NO: 7 Primer SEQ ID NO: 8 Primer

Claims (9)

  1. 間葉系幹細胞の分泌物を有効成分として含む,マクロファージからのPPARγ活性化物質であるエイコサノイドの産生を促進するためのエイコサノイド産生促進剤。 An eicosanoid production promoter for promoting the production of eicosanoids, which are PPARγ activators, from macrophages, comprising a secretion of mesenchymal stem cells as an active ingredient.
  2. 請求項1に記載の剤であって,前記間葉系幹細胞は皮下脂肪組織または臍帯組織に由来する間葉系幹細胞である剤。 The agent according to claim 1, wherein the mesenchymal stem cells are mesenchymal stem cells derived from subcutaneous adipose tissue or umbilical cord tissue.
  3. 請求項1に記載の剤であって,前記間葉系幹細胞の分泌物が無血清培地を用いた培養上清である,剤。 The agent according to claim 1, wherein the secretion of the mesenchymal stem cells is a culture supernatant using a serum-free medium.
  4. 請求項1に記載の剤であって,前記PPARγ活性化物質であるエイコサノイドが,15-デオキシ-デルタ-12,14-プロスタグランジンJ2,及び,15-ハイドロキシエイコサテトラエノイックアシッドのいずれか又は両方である剤。 2. The agent according to claim 1, wherein the PPARγ activator eicosanoid is any one of 15-deoxy-delta-12,14-prostaglandin J2 and 15-hydroxyeicosatetraenoic acid. Or an agent that is both.
  5. 請求項1に記載の剤であって,IL-4を含有しない,剤。 The agent according to claim 1, wherein the agent does not contain IL-4.
  6. 請求項1に記載の剤であって,動脈硬化,又は糖尿病の治療剤である剤。 The agent according to claim 1, which is an agent for treating arteriosclerosis or diabetes.
  7. 請求項1に記載の剤であって,関節リウマチの治療剤である剤。 The agent according to claim 1, which is a therapeutic agent for rheumatoid arthritis.
  8. 請求項1に記載の剤であって前立腺癌,脳梗塞,又は脳機能障害の予防剤又は治療剤である,剤。 The agent according to claim 1, which is a prophylactic or therapeutic agent for prostate cancer, cerebral infarction, or cerebral dysfunction.
  9. 請求項1に記載の剤であって疼痛の予防剤又は治療剤である,剤。
     
    The agent according to claim 1, which is a prophylactic or therapeutic agent for pain.
PCT/JP2019/015657 2018-07-17 2019-04-10 Eicosanoid production promoter WO2020017112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980006451.7A CN111727046B (en) 2018-07-17 2019-04-10 Use of mesenchymal stem cell secretion in preparation of eicosanoid production promoter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133858 2018-07-17
JP2018133858A JP6497827B1 (en) 2018-07-17 2018-07-17 Eicosanoid production promoter

Publications (1)

Publication Number Publication Date
WO2020017112A1 true WO2020017112A1 (en) 2020-01-23

Family

ID=66092674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015657 WO2020017112A1 (en) 2018-07-17 2019-04-10 Eicosanoid production promoter

Country Status (3)

Country Link
JP (1) JP6497827B1 (en)
CN (1) CN111727046B (en)
WO (1) WO2020017112A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075294A1 (en) * 2020-10-07 2022-04-14 富士フイルム株式会社 Method for producing cell formulation for joint treatment, cell formulation for joint treatment, and method for culturing mesenchymal stem cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536222A (en) * 2010-08-23 2013-09-19 カン ステム ホールディングス カンパニー リミテッド Pharmaceutical composition for prevention and treatment of immune diseases and inflammatory diseases comprising stem cells treated with NOD2 agonist or cultures thereof
JP2014513075A (en) * 2011-04-07 2014-05-29 ライコード・リミテツド Synergistic compositions and methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU765354B2 (en) * 1996-07-30 2003-09-18 Osiris Therapeutics, Inc. Adipogenic differentiation of human mesenchymal stem cells
WO2011070974A1 (en) * 2009-12-07 2011-06-16 国立大学法人名古屋大学 Cell preparation for treating prostatic cancer comprising adipose tissue-derived mesenchymal stem cells
CN104902909A (en) * 2012-06-26 2015-09-09 拉斯提地产控股企业有限公司 Compositions and methods for reducing frequency and/or severity of headache
JP7126703B2 (en) * 2016-05-24 2022-08-29 国立大学法人 東京大学 Cerebral disorder therapeutic agent containing umbilical cord-derived cells
WO2018038575A1 (en) * 2016-08-26 2018-03-01 연세대학교 산학협력단 Pharmaceutical composition for treating rheumatoid arthritis, comprising mesenchymal stem cell-derived secretory proteome, and therapeutic method using same
CN106929474B (en) * 2017-03-31 2021-09-14 北京恒峰铭成生物科技有限公司 M2 macrophage inducer
JP6829225B2 (en) * 2018-06-13 2021-02-10 株式会社 バイオミメティクスシンパシーズ Pharmaceutical composition containing mesenchymal stem cells as a monoamine production increasing agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536222A (en) * 2010-08-23 2013-09-19 カン ステム ホールディングス カンパニー リミテッド Pharmaceutical composition for prevention and treatment of immune diseases and inflammatory diseases comprising stem cells treated with NOD2 agonist or cultures thereof
JP2014513075A (en) * 2011-04-07 2014-05-29 ライコード・リミテツド Synergistic compositions and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG, JUN-PARK ET AL.: "Adipose-derived stem cells ameliorate coli tis by suppression of inflammasome formation and regulation of Ml-macrophage population through prostaglandin E2", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 498, no. 4, 1 January 2018 (2018-01-01), pages 988 - 995, XP055676721, ISSN: 0006-291X, DOI: 10.1016/j.bbrc.2018.03.096 *

Also Published As

Publication number Publication date
JP6497827B1 (en) 2019-04-10
CN111727046A (en) 2020-09-29
JP2020011915A (en) 2020-01-23
CN111727046B (en) 2024-03-22

Similar Documents

Publication Publication Date Title
CA2699236C (en) Cell growth method and pharmaceutical preparation for tissue repair and regeneration
RU2527182C2 (en) Method for inducing stem cell migration in fatty tissue
JP6105846B2 (en) Cell therapy of ischemic tissue
JP2021535894A (en) Extracellular vesicles derived from mesenchymal stem cells
JP6073135B2 (en) Treatment with reprogrammed mature adult cells
KR101819827B1 (en) Composition for preventing or treating osteoarthritis comprising mesenchymal stem cell treated STAT3 inhibitor
WO2020017112A1 (en) Eicosanoid production promoter
JPWO2015129791A1 (en) Medicine containing dendritic cells and method for producing the same
US20110123591A1 (en) Tumoricidal, bactericidal, or viricidal macrophage activation
US20230233604A1 (en) Regulatory macrophages for treating angiopathies
US20230374462A1 (en) Method for producing myocardial stem/progenitor cell and method for suppressing myocardial fibrosis
JP5301994B2 (en) Method for proliferating LAK cells
WO2014193895A1 (en) Ex vivo perfusion of donor organs prior to transplantation using mesenchymal stem cells
US20210180024A1 (en) Systems and methods for producing injectable enhanced stem cell exosomes, improved exosomes and methods of use
WO2019240126A1 (en) Pharmaceutical composition containing mesenchymal stem cells as monoamine production promoter
JP2020137518A (en) Additive
US20190255117A1 (en) Synoviolin expression inhibitor containing mesenchymal stem cell or culture supernatant thereof
JP4012399B2 (en) Simple screening of drugs for regenerative medicine
EP4349347A1 (en) Composition for promoting angiogenesis comprising extracellular vesicles derived from three-dimensional spheroid-type cell aggregate
Li et al. Trasplantation of Exosomes Derived From CD90 Positive Fibroblasts Reduce Apoptosis of Cardiomyocytes in Mice After Acute Myocardial Infarction
US20190382728A1 (en) Menstrual Blood Derived Angiogenesis Stimulatory Cells
KR101428852B1 (en) Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere
JP2017008049A (en) Treatment using reprogrammed mature adult cells
JP2017139975A (en) Serum-free culture medium for culturing mononuclear cells
Gupte Pluripotent Hematopoietic Stem Cells Augment α-Adrenergic Receptor-Mediated 1 Contraction of Pulmonary Artery and Contribute to the Pathogenesis of Pulmonary 2 Hypertension 3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP