KR101428852B1 - Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere - Google Patents

Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere Download PDF

Info

Publication number
KR101428852B1
KR101428852B1 KR1020120086957A KR20120086957A KR101428852B1 KR 101428852 B1 KR101428852 B1 KR 101428852B1 KR 1020120086957 A KR1020120086957 A KR 1020120086957A KR 20120086957 A KR20120086957 A KR 20120086957A KR 101428852 B1 KR101428852 B1 KR 101428852B1
Authority
KR
South Korea
Prior art keywords
cell
blood
human blood
cells
derived
Prior art date
Application number
KR1020120086957A
Other languages
Korean (ko)
Other versions
KR20140021154A (en
Inventor
박영배
김효수
허진
최재일
윤지연
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020120086957A priority Critical patent/KR101428852B1/en
Priority to PCT/KR2013/000441 priority patent/WO2013109104A1/en
Priority to US14/372,891 priority patent/US20150157663A1/en
Publication of KR20140021154A publication Critical patent/KR20140021154A/en
Application granted granted Critical
Publication of KR101428852B1 publication Critical patent/KR101428852B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0645Macrophages, e.g. Kuepfer cells in the liver; Monocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 인간 혈액 유래 혈구 세포괴를 포함하는 허혈성 질환 치료용 약학적 조성물 등을 제공한다. 구체적으로, 본 발명은 혈액의 단핵구 세포을 이용한 효과적인 3차원 배양을 통해 혈관내피세포 및 혈관평활근세포를 유도하고, 궁극적으로 효율적인 혈관형성을 가능하게 함으로써 허혈성 질환을 치료할 수 있는 새로운 세포치료제 개발에 이용될 수 있을 것으로 기대된다.The present invention provides a pharmaceutical composition for the treatment of ischemic diseases including hematopoietic cells derived from human blood. More specifically, the present invention relates to an effective three-dimensional culture using blood mononuclear cells to induce vascular endothelial cells and vascular smooth muscle cells, and ultimately to enable efficient blood vessel formation, thereby being used in the development of new cell therapy agents capable of treating ischemic diseases It is expected to be possible.

Description

인간 혈액 유래 혈구 세포괴를 포함하는 허혈성 질환 치료용 약학적 조성물{Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere}[0001] The present invention relates to a pharmaceutical composition for treating ischemic diseases comprising hematopoietic cells derived from human blood,

본 발명은 인간 혈액 유래 혈구 세포괴를 이용하여 허혈성(Ischemic) 질환을 치료하는 방법 등에 관한 것이다.The present invention relates to a method for treating ischemic diseases using human blood-derived blood cell mass.

줄기세포는(Stem cell)은 전능세포(Pluripotent cell)이며, 이는 어떤 세포로든 분화가 가능한 세포이다. 줄기세포는 기본적으로 배아줄기세포(Embryonic Stem Cell, ESC), 역분화줄기세포(Induced Pluripotent Stem cell, IPS) 및 성체줄기세포(Adult Stem Cell, ASC)를 포함한다.Stem cells are pluripotent cells, which can be differentiated into any cell. Stem cells basically include Embryonic Stem Cell (ESC), Induced Pluripotent Stem Cell (IPS), and Adult Stem Cell (ASC).

배아줄기세포(ESC)는 증식이 활발하고, 어떤 세포로든 분화가 가능하지만, 실제 치료에 사용하기에는 여러가지 문제점이 야기되고 있다. 예를 들면, 끊임없는 증식으로 인해 종양의 발생 및 면역 거부 반응 문제, 윤리적인 문제점 등이 있다.Embryonic stem cells (ESCs) are proliferative and capable of differentiating into any cell, but there are many problems in using them for actual treatment. For example, constant proliferation can lead to tumor development, immune rejection, and ethical problems.

배아줄기세포(ESC)의 문제점을 극복하고자 2006년에 역분화줄기세포(IPS)가 개발되었다(Kazutoshi Takahashi and Shinya Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 2006;126:663-676). 그러나 IPS 가 실제 치료에 사용되기 위해서는 해결하여야 할 여러가지 문제점이 있는데, 특히, 바이러스(Virus)를 사용했다는 점과 면역 거부반응 등이 이에 해당된다.In order to overcome the problems of embryonic stem cells (ESC), degenerative stem cells (IPS) were developed in 2006 (Kazutoshi Takahashi and Shinya Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. ; 126: 663-676). However, there are various problems that need to be solved in order for IPS to be used for actual treatment, in particular, the use of virus and immune rejection.

한편, 성체줄기세포(ASC)는 세포의 수가 적고, 증식이 활발하지 않는 점 등의 문제가 있지만, 이 세포는 자가 이식이 가능하기 때문에 안전하게 세포 치료제로 사용할 수 있다는 큰 장점이 있다.On the other hand, adult stem cells (ASCs) have a problem in that the number of cells is small and proliferation is not active. However, these cells have a great advantage that they can be safely used as a cell therapy agent because autotransplantation is possible.

본 발명자들은 기존에 개발된 배아줄기세포(ESC), 역분화 줄기세포(IPS), 및 성체줄기세포(ASC) 등의 줄기세포 치료제의 문제점이었던 종양발생, 면역거부, 윤리문제점 등의 한계점을 극복하고자 예의 노력한 결과, 인간 혈액 유래 혈구 세포괴를 이용하여 혈관전구세포 증폭 및 혈관내피세포, 혈관평활근세포 분화를 통해 혈관형성이 가능함을 발견하고 본 발명을 완성하기에 이르렀다. 본 발명은 인간 혈액 유래 혈구 세포괴를 이용하여, 허혈성(Ischemic) 질환을 치료하는 방법을 제공하고자 한다.The present inventors overcome the limitations of tumor development, immunodeficiency, and ethical problems, which have been the problems of previously developed stem cell therapy (ESC), degenerative stem cell (IPS), and adult stem cell (ASC) As a result, it has been found that angiogenesis is possible through vascular progenitor cell amplification and vascular endothelial cell and vascular smooth muscle cell differentiation using human blood-derived hemocyte cell mass. Thus, the present invention has been accomplished. The present invention provides a method for treating ischemic diseases using hematopoietic cells derived from human blood.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

본 발명은 인간 혈액 유래 혈구 세포괴를 포함하는 허혈성 질환 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for the treatment of ischemic diseases comprising hematopoietic cells derived from human blood.

본 발명의 일 구현예에서 상기 인간 혈액 유래 혈구 세포괴는 인간 혈액으로부터 단핵구세포를 분리하여 삼차원 응집 배양을 통해 형성되는 것을 특징으로 한다.In one embodiment of the present invention, the hematopoietic cell population derived from human blood is formed through three-dimensional coagulation culture by separating mononuclear cells from human blood.

본 발명의 다른 구현예에서, 상기 인간 혈액 유래 혈구 세포괴는 단일세포로 분리 후 사용되는 것을 특징으로 한다.In another embodiment of the present invention, the hematopoietic cell derived from human blood is used after being separated into single cells.

본 발명의 또 다른 구현예에서 상기 인간 혈액 유래 혈구 세포괴는 혈관내피세포 및 혈관평활근세포로 유도되는 것을 특징으로 한다.In another embodiment of the present invention, the hematopoietic cell derived from human blood is characterized by being induced into vascular endothelial cells and vascular smooth muscle cells.

본 발명의 또 다른 구현예에서 상기 인간 혈액 유래 혈구 세포괴는 혈관을 형성하는 것을 특징으로 한다.In another embodiment of the present invention, the human blood-derived hemocyte cell mass is characterized by forming blood vessels.

본 발명의 또 다른 구현예에서 상기 허혈성 질환은 허혈성 심장질환, 심근경색, 협심증 및 하지허혈 등을 포함한다.In another embodiment of the present invention, the ischemic diseases include ischemic heart disease, myocardial infarction, angina pectoris, and lower limb ischemia.

또한 본 발명은 상기 약학적 조성물의 약제학적 유효량을 개체에 투여하여 허혈성 질환을 치료하는 방법을 제공한다.The present invention also provides a method for treating an ischemic disease by administering to said individual a pharmaceutically effective amount of said pharmaceutical composition.

본 발명에 따르면 인간 혈액 유래 세포를 효과적으로 배양하여, 혈관전구세포 및 혈관평활근세포를 유도하고 혈관형성을 가능하게 함으로써, 궁극적으로 허혈과 관련된 질환을 치료할 수 있는 세포치료제 개발에 이용할 수 있을 것으로 기대된다. 본 발명에 따르면, 종래 줄기세포 치료제의 문제점이었던 종양발생, 면역거부, 윤리적 문제점 등의 한계점을 극복할 수 있다.According to the present invention, it is expected that human blood-derived cells can be effectively cultured to induce vascular progenitor cells and vascular smooth muscle cells and enable angiogenesis, and ultimately be used for the development of a cell therapy agent capable of treating diseases related to ischemia . According to the present invention, it is possible to overcome limitations such as tumor development, immunodeficiency, and ethical problems that have been a problem of conventional stem cell therapeutic agents.

도 1은 인간의 혈액으로부터 분리한 단핵구 세포를 삼차원 배양 기법을 통하여 고밀도 응집 배양한 후 인간 혈액 유래 혈구 세포괴를 배양 및 제작하는 과정을 나타낸 모식도이다.
도 2는 인간 혈액 유래 혈구 세포괴를 Matrigel이 코팅된 접시에 배양할 경우, 스스로 발아(Sprouting)가 가능함을 보여주는 결과이다.
도 3은 인간 혈액 유래 혈구 세포괴를 Matrigel이 코팅된 접시에 배양할 경우, Vascular endothelial growth factor receptor 2(VEGFR-2, KDR, 붉은색, 화살표)가 발현됨을 보여주는 결과이다.
도 4는 인간 혈액 유래 혈구 세포괴를 Matrigel이 코팅된 접시에 배양할 경우, Vascular endothelial growth factor receptor 2(VEGFR-2, KDR 초록색) 및 Platelet endothelial cell adhesion molecule(PECAM-1, 붉은색)이 발현하며, 또한 Tip cell(화살표)이 관찰됨을 보여주는 결과이다.
도 5는 인간 혈액 유래 혈구 세포괴에서 Vascular endothelial growth factor(VEGF, 초록색, 위) 및 C-X-C chemokine receptor type 4(CXCR4, 초록색, 아래)가 발현하고 있는 것을 면역형광염색법을 통해 확인한 결과이다.
도 6은 VEGF 항체 및 그 수용체인 VEGFR2(KDR)의 화학적 저해제(SU1498)를 이용하여, VEGF 및 VEGFR2(KDR)를 억제시켰을 때, 인간 혈액 유래 혈구 세포괴의 형성이 급격하게 저하됨을 나타내는 결과이다.
도 7은 인간 혈액 유래 혈구 세포괴에서 혈관신생(Angiogenesis)에 중요하다고 알려진 Cytokine 및 그 Receptor들의 발현을 Reverse Transcriptase-Polymerase Chain Reaction(RT-PCR) 및 Enzyme-linked immunosorbent assay(ELISA)를 통해 확인한 결과이다.
도 8은 인간 혈액 유래 혈구 세포괴의 상층액을 이용하여 Matrix metallopeptidase 9(MMP-9)의 활성이 증가한 것을 MMP-9 Zymography assay를 통해 확인한 결과이다.
도 9는 인간 혈액 유래 혈구 세포괴의 상층액을 이용하여 Human Umbilical Vein Endothelial Cell(HUVEC)을 배양했을 때, HUVEC의 이동(Migration) 및 튜브 형성(Tube formation)이 증가한 것을 확인한 것으로, 현미경 사진(위)과 이를 정량한 그래프(아래)이다.
도 10은 면역시스템이 저하된 쥐(Nude mouse)의 뒷다리(Hindlimb)에 허혈(Ischemic)을 유도 후 인간 혈액 유래 혈구 세포괴를 주입하고 Laser Doppler perfusion imaging(LDPI)를 통해 관류(Perfusion)를 측정한 결과, 혈관내피세포 표지자인 Cluster of Differentiation 34(CD34, 초록색)의 인간 세포에 특이적인 항체 및 alpha smooth muscle actin(SMA-α, 붉은색)를 이용하여 면역형광염색을 진행 한 결과를 나타낸 것이다.
FIG. 1 is a schematic view showing a process of culturing and producing a hematopoietic cell derived from human blood after high-density coagulation culture of a mononuclear cell isolated from human blood through a three-dimensional culture technique.
Fig. 2 is a graph showing that sprouting itself can be performed when human blood hematopoietic cells are cultured on a Matrigel-coated dish.
FIG. 3 is a graph showing the expression of vascular endothelial growth factor receptor 2 (VEGFR-2, KDR, red color, arrow) when human blood-derived hematopoietic cells were cultured on a Matrigel-coated dish.
FIG. 4 shows the expression of vascular endothelial growth factor receptor 2 (VEGFR-2, KDR green) and platelet endothelial cell adhesion molecule (PECAM-1, red) when human blood hematopoietic cells were cultured on Matrigel- , And a tip cell (arrow) is observed.
FIG. 5 shows the expression of Vascular endothelial growth factor (VEGF, green, stomach) and CXC chemokine receptor type 4 (CXCR4, green, and below) in human blood derived hematopoietic cell mass through immunofluorescence staining.
FIG. 6 is a graph showing that the formation of blood cell-derived hematopoietic cells rapidly decreases when VEGF and VEGFR2 (KDR) are inhibited by using a VEGF antibody and its receptor VEGFR2 (KDR) chemical inhibitor (SU1498).
FIG. 7 shows the results of reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) for the expression of Cytokine and its receptors, which are known to be important for angiogenesis in human blood- .
FIG. 8 shows the results of confirming the increase of the activity of Matrix metallopeptidase 9 (MMP-9) using the supernatant of human blood-derived blood cell mass through the MMP-9 zymography assay.
FIG. 9 shows that HUVEC migration and tube formation were increased when Human Umbilical Vein Endothelial Cell (HUVEC) was cultured using a supernatant of human blood-derived blood cell mass. Microscopic photographs ) And a graph (below).
FIG. 10 is a graph showing the results of ischemic induction in the Hindlimb of a nude mouse with reduced immune system and perfusion through laser Doppler perfusion imaging (LDPI) Immunofluorescence staining was performed using antibodies specific for human cells and alpha smooth muscle actin (SMA-alpha, red) of Cluster of Differentiation 34 (CD34, green), a vascular endothelial cell marker.

본 발명은 인간 혈액 유래 혈구 세포괴를 포함하는 허혈성 질환 치료용 약학적 조성물을 제공한다. 상기 허혈성 질환은 허혈성 심장질환, 심근경색, 협심증, 하지허혈 등을 포함한다. The present invention provides a pharmaceutical composition for the treatment of ischemic diseases comprising hematopoietic cells derived from human blood. The ischemic diseases include ischemic heart disease, myocardial infarction, angina pectoris, lower limb ischemia, and the like.

발명에서 사용되는 ‘인간 혈액 유래 혈구 세포괴 (blood-born hematospheres, BBHS)’는 혈액 내에 존재하고 있는 단핵구 세포들과 줄기성을 가지고 있는 특정 세포들과의 응집체로서, 삼차원적 구조를 형성하여 배반포기의 내부 세포덩어리들과 같은 구형을 형성하고 있는 것을 의미한다. Blood-born hematopoietic cells (BBHS) used in the invention are aggregates of mononuclear cells present in the blood and specific cells with stem cells, forming a three-dimensional structure, Of the inner cell mass.

본 발명의 약학적 조성물은 약제학적으로 허용 가능한 담체를 포함할 수 있다. 상기 약제학적으로 허용 가능한 담체는 생리식염수, 폴리에틸렌글리콜, 에탄올, 식물성 오일, 및 이소프로필미리스테이트 등을 포함할 수 있으며, 이에 한정되지는 않는다.The pharmaceutical composition of the present invention may comprise a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier may include, but is not limited to, physiological saline, polyethylene glycol, ethanol, vegetable oil, and isopropyl myristate.

또한 본 발명은 상기 약학적 조성물의 약제학적 유효량을 개체에 투여하여 허혈성 질환을 치료하는 방법을 제공한다. 본 발명에서 '개체'란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는 인간, 또는 비-인간인 영장류, 생쥐(mouse), 쥐(rat), 개, 고양이, 말, 및 소 등의 포유류를 의미한다. 또한, 본 발명에서 '약제학적 유효량'은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율, 및 질환의 중증도 등에 따라 그 범위가 다양하게 조절될 수 있음은 당업자에게 명백하다.The present invention also provides a method for treating an ischemic disease by administering to said individual a pharmaceutically effective amount of said pharmaceutical composition. In the present invention, an 'individual' refers to a subject in need of treatment for diseases, and more specifically, a human or non-human primate, mouse, rat, dog, cat, horse, And the like. It is to be understood that the term "pharmaceutically effective amount" in the present invention can be variously adjusted depending on the patient's body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, .

본 발명의 약학적 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여경로, 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나 바람직하게는, 1일 0.001 내지 100 mg/체중kg으로, 보다 바람직하게는 0.01 내지 30 mg/체중kg으로 투여한다. 투여는 하루에 한번 투여할 수도 있고, 여러번 나누어 투여할 수 있다.The preferred dosage of the pharmaceutical composition of the present invention varies depending on the condition and the weight of the patient, the degree of disease, the drug form, the administration route, and the period, but can be appropriately selected by those skilled in the art. However, it is preferably administered at a daily dose of 0.001 to 100 mg / kg body weight, more preferably 0.01 to 30 mg / kg body weight. The administration can be carried out once a day or divided into several times.

본 발명의 약학적 조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여방법에는 제한이 없으며, 예를 들면, 경구, 직장, 또는 정맥, 근육, 피하, 자궁내 경막, 또는 뇌혈관(intra cerbroventricular) 주사에 의해 투여될 수 있다.The pharmaceutical composition of the present invention can be administered to mammals such as rats, mice, livestock, humans, and the like in various routes. The method of administration is not limited and can be administered, for example, orally, rectally, or by intravenous, intramuscular, subcutaneous, intrauterine, or intra-cerebroventricular injection.

본 발명의 약학적 조성물은 다양한 약제학적 제형으로 제조될 수 있으며, 제제의 형태에는 제한이 없다. The pharmaceutical composition of the present invention can be prepared into various pharmaceutical formulations, and there is no limitation on the form of the formulation.

이하, 하기 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

[[ 실시예Example ]]

실시예Example 1. 인간 혈액 유래 혈구  1. Human hematopoietic stem cells 세포괴Cell mass ( ( bloodblood -- bornborn hematospherehematosphere , , BBHSBBHS ) 의 형성)

(1) 말초혈액에서 단핵구 세포 분리단계(1) Mononuclear cell separation step in peripheral blood

50ml 주사기에 Heparin (대략 100 ul)으로 도포 후 말초혈액을 얻었다. 50ml 튜브에 말초혈액을 10ml 씩 나눠 담은 뒤 PBS (phosphate-buffered saline) 30ml을 넣어 조심스럽게 잘 혼합하였다. 희석된 혈액에 밀도 구배에 사용되는 Ficoll 10ml을 파이펫 에이드를 이용하여 튜브 하단에 천천히 내보내서 투명한 Ficoll층과 붉은 혈액층이 분리되게 한 후 2,500rpm 으로 25℃ 에서 30분간 정지 속도를 최소화하여 원심분리 하였다. 상단에 노란색 혈청층, 하얀색 단핵구층, 투명한 Ficoll층 하단에 붉은 적혈구 및 다핵구층이 분리된 것을 확인한 뒤, 상단의 노란색 혈청층을 흡입하고 하얀색 단핵구층을 조심스럽게 새로운 튜브에 옮겨 담았다. 옮겨 담은 단핵구층은 두개의 튜브로 나눠 담은 뒤 PBS를 끝까지 채워, 1800rpm 으로 4℃ 에서 10분간 원심분리 하였다. 세포 펠렛 (pellet)은 볼텍싱 (vortexing)하여 단일 세포로 잘 풀어준 뒤 PBS로 끝까지 채우고 1,700rpm 으로 4℃ 에서 10분간 원심분리 하였다. 위 헹굼 과정을 세 번 반복하며 이를 통해 밀도 구배에 사용된 물질 및 혈액 내 잔류물들을 제거하였다. 마지막 원심분리 전 헤모사이토미터 (hemocytometer) 로 세포 수를 측정하였다.
Peripheral blood was obtained by applying Heparin (approximately 100 ul) to a 50 ml syringe. 10 ml of peripheral blood was poured into 50 ml tubes, and 30 ml of PBS (phosphate-buffered saline) was added and carefully mixed. 10 ml of Ficoll used for the density gradient in the diluted blood was slowly poured into the bottom of the tube using a pipette to separate the clear Ficoll layer and the red blood layer and then the centrifugation was performed at 2500 rpm at 25 ° C for 30 minutes, Respectively. After confirming the separation of the yellow serum layer, the white mononuclear layer, the red erythrocytes and the polynuclear morphology layer at the bottom of the transparent Ficoll layer, the upper yellowish serum layer was inhaled and the white mononuclear layer was carefully transferred to a new tube. The transferred mononuclear layer was divided into two tubes, filled with PBS, and centrifuged at 1800 rpm for 10 minutes at 4 ° C. The cell pellet was vortexed and unfolded to single cells, filled to the end with PBS, and centrifuged at 1700 rpm for 10 min at 4 ° C. The above rinse procedure was repeated three times to remove the substances used in the density gradient and the residues in the blood. Cell counts were measured with a hemocytometer prior to the final centrifugation.

(2) 삼차원 배양단계(2) Three-dimensional culture step

상기 헹굼 과정이 끝난 세포는 Endothelial basal medium-2 (EBM-2)에 5% FBS를 첨가한 배양액을 사용하여 10^6/ml 이상의 고밀도로 초저부착 배양접시(Ultra-low attach culture dish)에 부유시킨 후, 5% CO2가 공급되는 배양기에서 37℃ 를 유지하며 배양하였으며, 배양 첫 2일 후 동일한 배지를 첨가해주었다.The rinsed cells were suspended in an ultra-low-attach culture dish at a density of 10 6 / ml or higher at a density of 10 6 / ml or higher using a culture medium supplemented with 5% FBS in Endothelial basal medium-2 (EBM-2) The cells were incubated at 37 ° C in a 5% CO 2 -concentrated incubator and the same medium was added for the first two days after incubation.

도 1은 인간 말초혈액 단핵구(Peripheral Blood Mononuclear Cells, PBMC) 분리 후 5일 동안 인간 혈액 유래 세포괴(blood-born hematosphere, BBHS)를 배양하는 과정을 나타낸 모식도이다.
FIG. 1 is a schematic diagram showing a process of culturing a blood-born hematosphere (BBHS) for 5 days after the separation of human peripheral blood mononuclear cells (PBMC).

(3) (3) 세포괴의Cell mass 단일세포로의 해체단계 Disassembly step into single cell

상기 배양 과정을 거쳐 얻은 세포괴를 특성분석 및 치료용으로 사용하기 위하여 단일세포로 분리하는 과정을 거쳤다. 부유해 있는 세포괴는 배양접시를 가로 세로로 흔들어 가운데로 모이도록 한 뒤 현미경을 보며 세포괴만을 튜브에 옮겨 담고 1,700rpm 으로 4℃ 에서 10분간 원심분리 하였다. 세포 펠렛은 세포 해체 용액인 Accutase 1ml 로 가볍게 풀어준 뒤, 37℃ 배양기에 2~3분간 배양시켰다. 인큐베이션이 끝난 세포는 세포 배양액 1ml을 넣어준 뒤 수차례 파이펫팅하고 PBS를 끝까지 채워 1,700rpm 으로 4℃ 에서 10분간 원심분리 하였다.
The cell mass obtained through the culturing process was separated into single cells for use in characterization and treatment. The suspended cells were collected by centrifugation at 4 ° C for 10 minutes at 1,700 rpm. After the cells were collected by centrifugation, the cells were collected by centrifugation. The cell pellet was lightly loosened with 1 ml of Accutase, a cell disassembly solution, and cultured in a 37 ° C incubator for 2 to 3 minutes. After incubation, 1 ml of the cell culture was added, followed by several pipetting, followed by centrifugation at 1,700 rpm at 4 ° C for 10 minutes.

실시예Example 2. 혈관신생관련 유전자 및  2. Angiogenesis-related genes and 표지자의Marker 발현 고찰 ( Expression Study inin vitrovitro 실험) Experiment)

상기 실시예 1에서 형성된 세포괴 (BBHS) 에 대하여 혈관신생과 관련한 유전자, receptor, 표지자들의 발현을 고찰한 결과들을 도 2 내지 도 9에 나타내었다.
The results of examining the expression of genes, receptors, and markers related to angiogenesis in the cell mass (BBHS) formed in Example 1 are shown in FIGS. 2 to 9.

(1) 인간 혈액 유래 혈구 (1) human hematopoietic stem cells 세포괴(BBHS)의Of cell mass (BBHS) 자가 발아 확인 Self-germination confirmation

얼음 위에서 35mm Confocal dish (ibidi)에 GFR Matrigel (BD Biosciences)을 대략 200ul로 두껍게(Thick) Coating한 후, 37℃ Incubator에서 Incubation시켰다. 그 이후에 5일 동안 배양된 인간 혈액 유래 혈구 세포괴 (BBHS)를 현미경을 보면서 Sphere만을 따내고, Matrigel로 두껍게 코팅된 35mm Confocal dish위에 조심스럽게 올렸다. 배양액은 EGM-2MV(Lonza)로 교체하며, 24시간과 72시간 후에 현미경으로 인간 혈액 유래 혈구 세포괴(BBHS)의 발아를 확인한 결과, 인간 혈액 유래 혈구 세포괴(BBHS)가 스스로 발아하는 것을 확인하였다 (도 2 참조).GFR Matrigel (BD Biosciences) was thickly coated on a 35 mm Confocal dish (ibidi) on ice at approximately 200 ul and then incubated at 37 ° C in an Incubator. After that, the human blood-derived hematopoietic cell (BBHS) cultured for 5 days was observed with a microscope and only the spheres were collected and carefully raised on a 35 mm thick confocal dish coated with Matrigel. The culture medium was replaced with EGM-2MV (Lonza). After 24 hours and 72 hours, germination of human blood-derived blood cell mass (BBHS) was confirmed by a microscope, and it was confirmed that human blood-derived blood cell mass (BBHS) germinated by itself 2).

(2) (2) VEGFR2VEGFR2  And PECAMPECAM -1 발현과 자가 발아 확인-1 expression and self-germination confirmation

상기 실시예 2의 (1) 과 동일한 방법으로, 인간 혈액 유래 혈구 세포괴를 GFR Matrigel을 두껍게(Tick) 코팅된 35mm Confocal 접시에 올린 후, 24시간 배양하고, 고정(Fixation)한 다음 PBS로 3번 세척하였다. 이후 30분간 Blocking 하고 Vascular endothelial growth factor receptor 2 (VEGFR-2, KDR)로 면역형광염색법(immunofluorescence)을 진행하였으며, 그 결과, 도 3에 나타난 바와 같이, VEGFR-2 (붉은색, 화살표)가 발현됨을 확인하였다.Human blood hematopoietic cell mass was placed on a 35 mm Confocal dish coated with GFR Matrigel in the same manner as in Example 2 (2), cultured for 24 hours, fixed, and washed three times with PBS And washed. Immunofluorescence was performed with VEGFR-2 (KDR) and VEGFR-2 (red arrow) as shown in FIG. 3. As a result, .

또한, 상기 인간 혈액 유래 혈구 세포괴를 Matrigel이 코팅된 접시에 배양할 경우, 도 4에 나타난 바와 같이, Vascular endothelial growth factor receptor 2(VEGFR-2, KDR 초록색) 뿐만 아니라 Platelet endothelial cell adhesion molecule(PECAM-1, 붉은색)도 발현하며, 또한 Tip cell(화살표)이 관찰됨을 확인하였다.
In addition, as shown in FIG. 4, when the human blood-derived hemocyte cell mass was cultured on a Matrigel-coated dish, the platelet endothelial cell adhesion molecule (PECAM-2), as well as VEGFR- 1, red), and a tip cell (arrow) was observed.

(3) (3) VEGFVEGF  And CXCR4CXCR4 발현 확인  Confirmation of expression

상기 인간 혈액 유래 혈구 세포괴 (BBHS)를 5일 동안 배양 후 면역형광염색을 통해, 도 5에 나타난 바와 같이, Vascular endothelial growth factor(VEGF, 초록색, 위) 및 C-X-C chemokine receptor type 4(CXCR4, 초록색, 아래)가 발현됨을 확인하였다.
The human blood-derived hematopoietic cell (BBHS) cells were cultured for 5 days, and then immunofluorescent staining revealed that VEGF, green, and stomach) and CXC chemokine receptor type 4 (CXCR4, green, Below) was expressed.

(4) (4) VEGFVEGF -  - VEGFR2VEGFR2 ( ( KDRKDR ) ) looploop signalingsignaling this BBHSBBHS -- AngiogenicAngiogenic nicheniche 에 중요함을 확인Confirmation of importance to

세포괴가 형성되기 전부터(0 hrs) VEGF 항체 및 그 수용체인 VEGFR2의 화학적 저해제(SU1498)를 이용하여, VEGF 및 VEGFR2(KDR)를 억제시켰다. VEGF 중화항체(R&D)는 10ug/ml로, VEGFR2의 화학적 저해제인 SU1498(Calbiochem)은 10uM로 처리하였다. 그 결과, 도 6에 나타난 바와 같이, 인간 혈액 유래 혈구 세포괴 (BBHS)의 형성이 급격하게 저하됨을 확인하였다.
VEGF and VEGFR2 (KDR) were inhibited by using a VEGF antibody and its receptor, a chemical inhibitor of VEGFR2 (SU1498), before the cell mass was formed (0 hrs). VEGF neutralizing antibody (R & D) was treated with 10 ug / ml, and VEGFR2 chemical inhibitor SU1498 (Calbiochem) was treated with 10 uM. As a result, as shown in Fig. 6, it was confirmed that the formation of human blood-derived blood cell mass (BBHS) was abruptly decreased.

(5) (5) RTRT -- PCRPCR 을 이용하여 혈관 형성에 중요한  , Which is important for angiogenesis CytokineCytokine  And ReceptorReceptor 발현 확인 Confirmation of expression

Fresh Human PBMC와 상기 인간 혈액 유래 혈구 세포괴 (BBHS)를 배양 후 3일 및 5일 각각에서 RNA를 분리하여 Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)을 진행하였다. 혈관신생(Angiogenesis)에 중요하다고 알려진 IL-9, C-X-C chemokine receptor type 1 (CXCR1), CXCR2, VEGF, KDR, Hepatocyte growth factor (HGF), c-Met, Matrix metalloproteinases 9 (MMP-9)을 확인하였으며, 이때 사용된 각각의 Primer는 하기 표 1과 같다.
Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) was performed by separating RNA from Fresh Human PBMC and the human blood derived hematopoietic cell mass (BBHS) at 3 and 5 days respectively. We have identified IL-9, CXC chemokine receptor type 1 (CXCR1), CXCR2, VEGF, KDR, hepatocyte growth factor (HGF), c-Met and Matrix metalloproteinases 9 (MMP-9), which are known to be important for angiogenesis , And the primers used at this time are shown in Table 1 below.

primerprimer SequenceSequence TMTM Access NumberAccess Number Product size (bp)Product size (bp) IL-8IL-8 Forward 5'-GGCCGTGGCTCTCTTGGCAG-3'Forward 5'-GGCCGTGGCTCTCTTGGCAG-3 ' 60℃60 ° C NM_000584.3NM_000584.3 178178 Reverse 5'-TGTGTTGGCGCAGTGTGGTCC-3'Reverse 5'-TGTGTTGGCGCAGTGTGGTCC-3 ' CXCR1CXCR1 Forward 5'-GAGCCCCCGAATCTGACATTA-3'Forward 5'-GAGCCCCCGAATCTGACATTA-3 ' 60℃60 ° C NM_000634.2NM_000634.2 222222 Reverse 5'-AGTGCCTGCCTCAATGTCTCC-3'Reverse 5'-AGTGCCTGCCTCAATGTCTCC-3 ' VEGFVEGF Forward 5'-GGGCAGAATCATCACGAAGT-3'Forward 5'-GGGCAGAATCATCACGAAGT-3 ' 60℃60 ° C NM_001025366.2NM_001025366.2 211211 Reverse 5'-TGGTGATGTTGGACTCCTCA-3'Reverse 5'-TGGTGATGTTGGACTCCTCA-3 ' KDRKDR Forward 5'-ATGCTGGACTGCTGGCACGG-3'Forward 5'-ATGCTGGACTGCTGGCACGG-3 ' 64℃64 ° C NM_002253.2NM_002253.2 289289 Reverse 5'-TCACAGGCCGGCTCTTTCGC-3'Reverse 5'-TCACAGGCCGGCTCTTTCGC-3 ' HGFHGF Forward 5'-CTGGTTCCCCTTCAATAGCA-3'Forward 5'-CTGGTTCCCCTTCAATAGCA-3 ' 60℃60 ° C NM_00601.4NM_00601.4 168168 Reverse 5'-CTCCAGGGCTGACATTTGAT-3'Reverse 5'-CTCCAGGGCTGACATTTGAT-3 ' c-Metc-Met Forward 5'-CCAATGGCCTGCAGCCGTGA-3'Forward 5'-CCAATGGCCTGCAGCCGTGA-3 ' 59℃59 ℃ NM_001127500.1NM_001127500.1 199199 Reverse 5'-CTGTTCTGGGGCTGCCGCTC-3'Reverse 5'-CTGTTCTGGGGCTGCCGCTC-3 ' MMP-9MMP-9 Forward 5'-CAACATCACCTATTGGATCC-3'Forward 5'-CAACATCACCTATTGGATCC-3 ' 56℃56 ℃ NM_004994.2NM_004994.2 482482 Reverse 5'-CGGGTGTAGAGTCTCTCGCT-3'Reverse 5'-CGGGTGTAGAGTCTCTCGCT-3 ' GAPDHGAPDH Forward 5'-GAGTCAACGGATTTGGTCGT-3'Forward 5'-GAGTCAACGGATTTGGTCGT-3 ' 60℃60 ° C NM_002046.3NM_002046.3 185185 Reverse 5'-GACAAGCTTCCCGTTCTCAG-3'Reverse 5'-GACAAGCTTCCCGTTCTCAG-3 '

도 7a에 나타난 바와 같이, Fresh Human PBMC (0D)에 대비하여 BBHS 를 3일(3D) 및 5일(5D) 배양했을 때, 상기 혈관신생(Angiogenesis)에 중요하다고 알려진 cytokine 들이 증가하는 것으로 나타났다.As shown in FIG. 7A, when BBHS was cultured for 3 days (3D) and 5 days (5D) in contrast to Fresh Human PBMC (0D), cytokines known to be important for the angiogenesis increased.

또한, 도 7b에 나타난 바와 같이, RNA 뿐만 아니라 혈관신생(Angiogenesis)에 중요하다고 알려진 분자들이 실제로 분비(Secretion)되었는지를 확인하기 위해 Enzyme-linked immunosorbent assay(ELISA)를 진행한 결과 Attached PBMC 대비 세포괴 (BBHS)에서 VEGF, HGF, IL-8의 분비가 증가하였음을 확인하였다.
In addition, as shown in FIG. 7 (b), enzyme-linked immunosorbent assay (ELISA) was performed to confirm whether secretion of molecules known to be important for RNA as well as angiogenesis was actually secreted. BBHS) increased the secretion of VEGF, HGF, and IL-8.

(6) (6) MMPMMP -- 9 의9 of 활성 증가 확인 Check for increased activity

상기 간 혈액 유래 혈구 세포괴의 상등액을 이용하여 MMP-9 Zymography assay를 수행한 결과, 도 8에 나타난 바와 같이, Matrix metallopeptidase 9(MMP-9)의 활성이 증가한 것을 확인하였다.
As shown in FIG. 8, the activity of Matrix metallopeptidase 9 (MMP-9) was increased by performing the MMP-9 zymography assay using the supernatant of the hematopoietic stem cells derived from the liver.

(7) (7) HUVEC 의Of HUVEC 이동 및 튜브형성 증가 확인 Confirm movement and tube formation increase

5일 동안 배양된 인간 혈액 유래 혈구 세포괴 (BBHS)의 상등액을 이용하여 Human Umbilical Vein Endothelial Cell(HUVEC)을 배양했을 때, 도 9에 나타난 바와 같이, HUVEC의 이동(Migration) 및 튜브 형성(Tube formation)이 증가함을 확인하였다.
When Human Umbilical Vein Endothelial Cell (HUVEC) was cultured using the supernatant of human blood-derived blood cell culture (BBHS) cultured for 5 days, migration and tube formation of HUVEC ) Was increased.

실시예Example 3. 혈관형성 효과 확인 ( 3. Verification of angiogenic effect inin vivovivo 실험) Experiment)

본 발명자들은 상기 실시예 1에서 형성된 인간 혈액 유래 혈구 세포괴 (BBHS) 를 전임상 단계에서 실험하여 혈관형성이 가능하다는 것을 입증하였다.The present inventors have demonstrated that blood vessel-derived hematopoietic cell (BBHS) formed in Example 1 is tested in pre-clinical phase to enable angiogenesis.

구체적으로는 면역시스템이 저하된 쥐(Nude mouse)의 뒷다리(Hindlimb)에 허혈(Ischemic)을 유도하여 본 발명의 인간 혈액 유래 혈구 세포괴를 주입한 다음, Laser Doppler perfusion imaging(LDPI)를 통해 허혈 전, 허헐 직후, 허혈 후 3, 7, 14일에 관류(Perfusion)를 측정하였다. 그 결과, 도 10a에 나타난 바와 같이, Phosphate Buffered Saline(PBS) 혹은 인간 혈액 유래 단핵구를 바로 주입한 그룹에 비해 상기 실시예 1에서 형성된 인간 혈액 유래 혈구 세포괴를 그대로 주입하거나 세포괴를 해체하여 주입한 경우 관류(Perfusion)가 더 좋아진 것으로 나타났다.Specifically, the human blood-derived hematopoietic cell of the present invention is induced by inducing ischemic action in the Hindlimb of the Nude mouse with reduced immune system, and then the ischemic preconditioning is performed through Laser Doppler perfusion imaging (LDPI) Perfusion was measured at 3, 7, and 14 days after ischemia. As a result, as shown in FIG. 10A, when human blood hematopoietic cell masses formed in Example 1 were directly injected or disintegrated and cell debris was injected as compared to the group injected directly with phosphate buffered saline (PBS) or human blood mononuclear cells Perfusion was found to be better.

또한, 혈관내피세포 표지자인 Cluster of Differentiation 34(CD34, 초록색)의 인간 세포에 특이적인 항체 및 alpha smooth muscle actin(SMA-α, 붉은색)을 이용하여 면역형광염색을 진행한 결과, 도 10b에 나타난 바와 같이, 인간 혈액 유래 혈구 세포괴가 실제로 혈관형성(Vasculogenesis)을 가능하게 함을 확인하였다.Immunofluorescence staining was performed using antibodies specific for human cells and alpha smooth muscle actin (SMA-alpha, red) of the vascular endothelial cell marker Cluster of Differentiation 34 (CD34, green) As shown, it was confirmed that human hematopoietic stem cells from the blood can actually cause vasculogenesis.

이에 더하여, 혈관을 보기 위해서 BS-1 Lectin을 염색한 결과, 도 10c에 나타난 바와 같이, 세포괴를 주입한 경우 더욱 많은 혈관이 형성되어 있다는 것을 확인하였다.
In addition, BS-1 Lectin was stained for blood vessels. As shown in FIG. 10C, it was confirmed that more blood vessels were formed when the cells were injected.

상기 결과는 혈액의 단핵구 세포의 효과적인 3차원 배양을 통해 혈관내피세포 및 혈관평활근세포로 유도가 가능하며, 이를 통해 혈관형성을 효율적으로 할 수 있음을 시사한다. 따라서 상기 실시예 1에서 형성된 인간 혈액 유래 혈구 세포괴(BBHS)를 이용하여 허혈성 질환 치료제를 개발할 수 있을 것으로 기대된다.
This result suggests that efficient induction of vascular endothelial cells and vascular smooth muscle cells through effective three-dimensional culture of blood mononuclear cells enables blood vessel formation to be efficiently performed. Therefore, it is expected that a therapeutic agent for ischemic diseases can be developed using the human hematopoietic cell mass (BBHS) formed in Example 1 above.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (7)

혈관내피세포 및 혈관평활근세포 분화 유도성 인간 혈액 유래 혈구 세포괴를 포함하는 하지허혈 치료용 약학적 조성물로서,
상기 인간 혈액 유래 혈구 세포괴는 인간 혈액으로부터 단핵구세포를 분리하여 삼차원 응집 배양을 통해 형성되는, 약학적 조성물.
A pharmaceutical composition for treatment of lower limb ischemia comprising a vascular endothelial cell and a vascular smooth muscle cell differentiation-inducing human blood-derived blood cell mass,
Wherein said human hematopoietic cell mass is formed through three-dimensional coagulation culture by separating mononuclear cells from human blood.
삭제delete 제1항에 있어서,
상기 인간 혈액 유래 혈구 세포괴는 단일세포로 분리 후 사용되는 것을 특징으로 하는, 약학적 조성물.
The method according to claim 1,
Wherein the human blood-derived hemocyte cell mass is separated and used as a single cell.
삭제delete 제1항에 있어서,
상기 인간 혈액 유래 혈구 세포괴는 혈관을 형성하는 것을 특징으로 하는, 약학적 조성물.
The method according to claim 1,
Wherein said hematopoietic cell derived from human blood forms blood vessels.
삭제delete 삭제delete
KR1020120086957A 2012-01-19 2012-08-08 Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere KR101428852B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020120086957A KR101428852B1 (en) 2012-08-08 2012-08-08 Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere
PCT/KR2013/000441 WO2013109104A1 (en) 2012-01-19 2013-01-18 Pharmaceutical composition comprising human-blood-derived blood-cell mass
US14/372,891 US20150157663A1 (en) 2012-01-19 2013-01-18 Pharmaceutical Composition Comprising Human-Blood-Derived-Cell Mass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120086957A KR101428852B1 (en) 2012-08-08 2012-08-08 Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere

Publications (2)

Publication Number Publication Date
KR20140021154A KR20140021154A (en) 2014-02-20
KR101428852B1 true KR101428852B1 (en) 2014-08-12

Family

ID=50267700

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120086957A KR101428852B1 (en) 2012-01-19 2012-08-08 Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere

Country Status (1)

Country Link
KR (1) KR101428852B1 (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Cell Research, Vol.21, pp.987-990 (2011) *
Cell Research, Vol.21, pp.987-990 (2011)*
Cell, Vol.102, pp.199-209 (2000) *
Cell, Vol.102, pp.199-209 (2000)*
Hanyang Medical Reviews, Vol.25, No.1, pp.61-67 (2005) *
Hanyang Medical Reviews, Vol.25, No.1, pp.61-67 (2005)*

Also Published As

Publication number Publication date
KR20140021154A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
US11464806B2 (en) Genetically modified mesenchymal stem cells expressing an immune response-stimulating cytokine to attract and/or activate immune cells
US20200306319A1 (en) Methods for treating radiation or chemical injury
CN104582711B (en) pluripotent stem cells for inducing repair and regeneration of myocardial infarction
US20200016210A1 (en) Methods of Reducing Teratoma Formation During Allogeneic Stem Cell Therapy
JP6105846B2 (en) Cell therapy of ischemic tissue
KR102388828B1 (en) Colony forming medium and its use
US20080241246A1 (en) Cell-based therapies for treating liver disease
ES2846795T3 (en) Pluripotent stem cells for the treatment of diabetic skin ulcer
TW201130977A (en) Mesenchymal stem cells (MSCs) isolated from mobilized peripheral blood
JP6869303B2 (en) Providing methods and compositions for stimulating cell proliferation, as well as biologically active mixtures of FGF2 isoforms.
Tracy et al. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration
US8491887B2 (en) Anticancer therapy by transplanting vascular endothelial progenitor cells
KR102182513B1 (en) Formulation of human derived cardiac stem cell spheroids and application thereof
KR101428852B1 (en) Pharmaceutical composition for treating ischemic disease comprising human blood derived hematosphere
JP7473207B2 (en) Treatment for peripheral blood flow disorders
Kunter et al. Potential risks of stem cell therapies
US11369641B2 (en) Identification and uses of vasculature forming progenitor cells and progenitor cell combinations
KR101404903B1 (en) Pharmaceutical composition for the stimulation of lymphatic neovascularization comprising human blood derived hematosphere
US20190382728A1 (en) Menstrual Blood Derived Angiogenesis Stimulatory Cells
US20150157663A1 (en) Pharmaceutical Composition Comprising Human-Blood-Derived-Cell Mass
Squillaro et al. CT-1470 Provisionally Accepted 07/02/2015 for publication in “Cell Transplantation” Clinical Trials with Mesenchymal Stem Cells: An Update

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160224

Year of fee payment: 6