WO2020016958A1 - Power module and method of manufacturing same - Google Patents

Power module and method of manufacturing same Download PDF

Info

Publication number
WO2020016958A1
WO2020016958A1 PCT/JP2018/026878 JP2018026878W WO2020016958A1 WO 2020016958 A1 WO2020016958 A1 WO 2020016958A1 JP 2018026878 W JP2018026878 W JP 2018026878W WO 2020016958 A1 WO2020016958 A1 WO 2020016958A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
insulating resin
power module
metal layer
resin portion
Prior art date
Application number
PCT/JP2018/026878
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 田尻
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/026878 priority Critical patent/WO2020016958A1/en
Publication of WO2020016958A1 publication Critical patent/WO2020016958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power module and a method of manufacturing the same.
  • Patent Document 1 discloses a base substrate, an insulating substrate provided on the base substrate, an upper electrode bonded to an upper surface of the insulating substrate, and a lower electrode bonded to a lower surface of the insulating substrate.
  • a power module including an electrode, a semiconductor chip bonded to an upper electrode, and an insulating resin portion is disclosed.
  • the insulating resin portion is formed in the entire space between the lower surface of the insulating substrate and the base plate.
  • the crack is a starting point of the partial discharge. Bubbles and cracks reduce the withstand voltage of the power module and reduce the reliability of the power module.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a power module having improved reliability and a method for manufacturing the same.
  • the power module of the present invention includes a base plate, an insulated circuit board, a semiconductor element, and a first insulating resin part.
  • the insulated circuit board is provided on the base plate.
  • the insulated circuit board includes an insulating substrate, a first metal layer, and a second metal layer.
  • the insulating substrate includes a first main surface facing the base plate, a second main surface opposite to the first main surface, and a first side surface connecting the first main surface and the second main surface.
  • the first metal layer is provided on the first main surface of the insulating substrate.
  • the second metal layer is provided on the second main surface of the insulating substrate.
  • the semiconductor element is joined to the second metal layer.
  • the first insulating resin portion is provided between the base plate and the first main surface.
  • the first metal layer includes a third main surface facing the insulating substrate, a fourth main surface facing the base plate, and a second side surface connecting the third main surface and the fourth main surface. At least a part of the first corner formed by the second side surface and the first main surface is covered with the first insulating resin portion.
  • a first peripheral portion of the first major surface exposed from the first metal layer has a first region proximal to the first corner and a second region adjacent to the first region and distal from the first corner. Region.
  • the first region is covered with a first insulating resin part.
  • the second region is exposed from the first insulating resin part.
  • the surface of the first insulating resin portion opposite to the first metal layer is an inclined surface whose inclination with respect to the first main surface gradually increases from the base plate side toward the first main surface side.
  • the method of manufacturing a power module according to the present invention includes providing an insulating circuit board on a base plate.
  • the insulated circuit board includes an insulating substrate, a first metal layer, and a second metal layer.
  • the insulating substrate includes a first main surface facing the base plate, a second main surface opposite to the first main surface, and a first side surface connecting the first main surface and the second main surface.
  • the first metal layer is provided on the first main surface of the insulating substrate.
  • the second metal layer is provided on the second main surface of the insulating substrate.
  • a method for manufacturing a power module according to the present invention includes joining a semiconductor element to a second metal layer and providing a first insulating resin portion between a base plate and a first main surface.
  • the first metal layer includes a third main surface facing the insulating substrate, a fourth main surface facing the base plate, and a second side surface connecting the third main surface and the fourth main surface. At least a part of the first corner formed by the second side surface and the first main surface is covered with the first insulating resin portion.
  • a first peripheral portion of the first major surface exposed from the first metal layer has a first region proximal to the first corner and a second region adjacent to the first region and distal from the first corner. Region.
  • the first region is covered with a first insulating resin part.
  • the second region is exposed from the first insulating resin part.
  • the surface of the first insulating resin portion opposite to the first metal layer is an inclined surface whose inclination with respect to the first main surface gradually increases from the base plate side toward the first main surface side.
  • the first insulating resin portion when the first insulating resin portion is provided between the first main surface of the insulating substrate and the base plate, it is possible to suppress bubbles from remaining in the first insulating resin portion. . Further, it is possible to prevent the first insulating resin portion from being cracked due to a difference in thermal expansion coefficient between the insulating circuit board and the first insulating resin portion. Further, at least a part of the first corner where the lines of electric force are concentrated during operation of the power module is covered with the first insulating resin part. The withstand voltage of the power module is improved. The reliability of the power module is improved.
  • FIG. 2 is a schematic sectional view of the power module according to the first embodiment.
  • FIG. 2 is a schematic partial enlarged view of a region II shown in FIG. 1 of the power module according to the first embodiment.
  • FIG. 3 is a schematic partial enlarged view of a region III shown in FIG. 2 of the power module according to the first embodiment.
  • FIG. 4 is a schematic partial enlarged view of a region IV shown in FIG. 2 of a power module according to a modification of the first embodiment.
  • FIG. 5 is a schematic partial enlarged view of a region V shown in FIG. 2 of a power module according to a modification of the first embodiment.
  • FIG. 3 is a schematic plan view of a third main surface of a first metal layer included in the power module according to Embodiment 1.
  • FIG. 1 is a schematic partial enlarged view of a region II shown in FIG. 1 of the power module according to the first embodiment.
  • FIG. 3 is a schematic partial enlarged view of a region III shown in FIG. 2 of
  • FIG. 7 is a schematic partial enlarged plan view of a region VII shown in FIG. 6 of a third main surface of a first metal layer included in the power module according to the first embodiment.
  • FIG. 7 is a schematic partially enlarged plan view of a region VIII shown in FIG. 6 of a third main surface of a first metal layer included in a power module according to a modification of the first embodiment.
  • FIG. 3 is a schematic partial enlarged cross-sectional view illustrating electric lines of force generated in the power module when the power module according to the first embodiment operates.
  • FIG. 3 is a schematic partial enlarged cross-sectional view showing a path of a partial discharge in the power module according to the first embodiment.
  • FIG. 5 is a diagram showing a flowchart of a method for manufacturing the power module according to the first embodiment.
  • FIG. 9 is a diagram showing a flowchart of a step of providing a first insulating resin layer in the power module manufacturing methods according to the first and second embodiments.
  • FIG. 7 is a schematic sectional view of a power module according to a second embodiment.
  • FIG. 14 is a schematic partial enlarged sectional view of a region XIV shown in FIG. 13 of the power module according to the second embodiment.
  • FIG. 14 is a schematic partial enlarged cross-sectional view showing electric lines of force generated in the power module when the power module according to the second embodiment operates.
  • FIG. 10 is a diagram showing a flowchart of a method for manufacturing a power module according to the second embodiment.
  • Embodiment 1 FIG.
  • the power module 1 according to the first embodiment will be described with reference to FIGS.
  • the power module 1 includes a base plate 30, an insulated circuit board 3, a semiconductor element 20, a first insulating resin portion 33, and a sealing member 40.
  • the power module 1 of the present embodiment further includes an outer casing 37 and a lid 39.
  • the base plate 30 supports the insulated circuit board 3.
  • the base plate 30 functions as a heat radiating member for dissipating heat generated from the semiconductor element 20 to the outside of the power module 1.
  • the base plate 30 is, for example, a metal plate such as a copper plate or an aluminum plate.
  • the insulating circuit board 3 is provided on the base plate 30. Specifically, the insulating circuit board 3 is joined to the base plate 30 by using a joining member 31.
  • the joining member 31 is, for example, solder.
  • a solder resist layer 32 having an opening is provided on the base plate 30.
  • the solder resist layer 32 defines a region where the joining member 31 is formed.
  • the joining member 31 is formed in the opening of the solder resist layer 32.
  • the insulated circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8.
  • the insulating substrate 4 connects the first main surface 4a facing the base plate 30, the second main surface 4b opposite to the first main surface 4a, and the first main surface 4a and the second main surface 4b. And a first side surface 4c.
  • the insulated circuit board 3 includes a second corner 4d and a fourth corner 4e.
  • the second corner 4d is formed by the first main surface 4a and the first side surface 4c.
  • the fourth corner 4e is formed by the second main surface 4b and the first side surface 4c.
  • the insulating substrate 4 is, for example, a ceramic substrate made of aluminum nitride (AlN).
  • the first metal layer 5 is provided on the first main surface 4a of the insulating substrate 4.
  • the first metal layer 5 includes a third main surface 5a facing the insulating substrate 4, a fourth main surface 5b facing the base plate 30, and a second main surface 5a connecting the third main surface 5a and the fourth main surface 5b. And a side surface 5c.
  • the first metal layer 5 is made of, for example, copper or aluminum.
  • one or more first grooves 6 are formed in the second side surface 5c.
  • One or more first grooves 6 extend from the third main surface 5a toward the fourth main surface 5b.
  • the first groove 61 or more has the following first width w 1 and 0.1mm below the first and the depth d 1 0.1mm.
  • the one or more first grooves 6 are a plurality of first grooves 6.
  • An interval g 1 between the first grooves 6 adjacent to each other is, for example, equal to or less than a first width w 1 .
  • the plurality of first grooves 6 are formed over the entire circumference of the third main surface 5a.
  • the first groove 6 is, for example, a semicircular groove (FIG. 7), a triangular groove (FIG. 8) or a rectangular groove.
  • a second groove 7 communicating with one or more first grooves 6 is formed on the third main surface 5a.
  • the second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a.
  • the second groove 7 extends over, for example, 60% or more of the entire length of the peripheral portion of the third main surface 5a.
  • the second groove 7 extends over, for example, 80% or more of the entire length of the peripheral portion of the third main surface 5a.
  • the second groove 7 extends, for example, over the entire length of the peripheral portion of the third main surface 5a.
  • the second groove 7 is, for example, an inclined groove (FIG. 3), a concave curved groove (FIG. 4), a convex curved groove (FIG. 5), or a rectangular groove.
  • the second metal layer 8 is provided on the second main surface 4b of the insulating substrate 4.
  • the second metal layer 8 includes a fifth main surface 8a facing the insulating substrate 4, a sixth main surface 8b opposite to the fifth main surface 8a, a fifth main surface 8a, and a sixth main surface 8b. And a third side surface 8c to be connected.
  • the second metal layer 8 is made of, for example, copper or aluminum.
  • the first distance D 1 of the between the second side surface 5c of the first side face 4c and the first metal layer 5 of the insulating substrate 4, the first side 4c and the second metal insulating substrate 4 substantially equal to the second distance D 2 between the third side surface 8c of the layer 8.
  • the first distance D 1 is substantially equal to the second distance D 2, which means that the first distance D 1 is less than 110% 90% of the second distance D 2.
  • the first interval D 1 may be, for example, 90% or more and 100% or less of the second interval D 2 .
  • the second metal layer 8 includes a first metal layer portion 9 and a second metal layer portion 10 spaced from the first metal layer portion 9.
  • the semiconductor device 20 is, for example, a power semiconductor device such as an insulated gate bipolar transistor (IGBT), a metal oxide semiconductor field effect transistor (MOSFET), or a diode.
  • the semiconductor element 20 is formed of, for example, silicon (Si) or a wide band gap semiconductor material such as silicon carbide (SiC), gallium nitride (GaN), or diamond.
  • the semiconductor element 20 is joined to the second metal layer 8. Specifically, the semiconductor element 20 is joined to the sixth main surface 8 b of the first metal layer portion 9 of the second metal layer 8 using the first conductive joining member 21.
  • the first conductive bonding member 21 is, for example, a solder or a conductive adhesive in which a metal filler such as a silver filler or a copper filler is dispersed in a resin.
  • the first conductive bonding member 21 is, for example, a sintered bonding member formed by firing metal nanoparticles such as silver nanoparticles or copper nanoparticles at a low temperature of 300 ° C. or less.
  • the semiconductor element 20 is electrically connected to the second metal layer portion 10 of the second metal layer 8 using a conductive wire 23.
  • the first lead terminal 25 is joined to the first metal layer portion 9 using the second conductive joining member 27.
  • the second lead terminal 26 is joined to the second metal layer portion 10 using a third conductive joining member 28.
  • the second conductive bonding member 27 and the third conductive bonding member 28 are, for example, solder or a conductive adhesive in which a metal filler such as a silver filler or a copper filler is dispersed in a resin.
  • the first lead terminal 25 and the second lead terminal 26 are drawn out of the power module 1 through the cover 39.
  • the first insulating resin portion 33 is provided between the base plate 30 and the first main surface 4a. At least a part of the first corner portion 17 formed by the second side surface 5c of the first metal layer 5 and the first main surface 4a of the insulating substrate 4 is covered with the first insulating resin portion 33. Since at least a portion of the first corner portion 17 is covered with the first insulating resin portion 33, at least a portion of the second side surface 5c and a portion of the first main surface 4a are joined by the first insulating resin portion 33. Covered. Specifically, all of the first corner portions 17 are covered with the first insulating resin portion 33. The first insulating resin portion 33 is provided in one or more first grooves 6 formed on the second side surface 5c.
  • the first peripheral portion 4p of the first main surface 4a of the insulating substrate 4 exposed from the first metal layer 5 is adjacent to the first region 4q close to the first corner 17 and the first region 4q, and And a second region 4r distal from the first corner 17.
  • the first region 4q is covered with the first insulating resin part 33.
  • the second region 4r is exposed from the first insulating resin part 33.
  • the width W of the first region 4q from the first corner 17 is, for example, not more than half of the distance D (the width of the first peripheral portion 4p) from the first corner 17 to the second corner 4d. is there.
  • the second region 4r has a larger area than the first region 4q.
  • the width W may be, for example, at most one-third or less of the distance D.
  • the width W may be, for example, at most a quarter of the distance D or less.
  • the width W may be, for example, at most one fifth or less of the distance D.
  • the width W may be, for example, at most one-sixth or less of the distance D.
  • the width W may be, for example, at most one-eighth of the distance D.
  • the width W may be, for example, not more than one tenth of the distance D at the maximum.
  • the width W is, for example, at least 0.1 mm or more. Therefore, at least a part of the first corner portion 17 where the electric lines of force 50 (see FIG.
  • the width W may be, for example, at least 0.2 mm or more.
  • the width W is, for example, at most 1.0 mm or less.
  • the width W may be, for example, at most 0.5 mm or less.
  • the surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is.
  • the first insulating resin portion 33 has a shape that converges from the base plate 30 side to the first main surface 4a side. Therefore, the contact area between the insulating circuit board 3 and the first insulating resin portion 33 and the volume ratio of the first insulating resin portion 33 occupying the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 Can be reduced.
  • the volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 50% or less.
  • the volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 40% or less.
  • the volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 30% or less.
  • the volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 20% or less.
  • the volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 100 ⁇ H 2 / (H 1 + H 2 )% or more (H 1 is the thickness of the first metal layer 5, H 2 is the thickness of the bonding member 31).
  • the first insulating resin portion 33 extends outside the insulating substrate 4 in a plan view of the second main surface 4b of the insulating substrate 4.
  • the electric lines of force 50 are also concentrated on the third corner 18 formed by the third side surface 8c and the second main surface 4b.
  • the partial discharge proceeds along the path 52 shown in FIG. Specifically, the partial discharge advances from the third corner 18 along the second main surface 4b and reaches the fourth corner 4e. Then, the partial discharge extends from the fourth corner 4e along the first side surface 4c and reaches the second corner 4d.
  • the partial discharge propagates through the sealing member 40 from the second corner 4d and reaches the portion 33e of the surface 33s of the first insulating resin portion 33 immediately below the second corner 4d. Then, the partial discharge proceeds from the portion 33 e in the direction opposite to the first metal layer 5 along the surface 33 s of the first insulating resin portion 33 and reaches the base plate 30. When the partial discharge reaches the base plate 30, the power module 1 is broken down.
  • the first insulating resin portion 33 extends outside the insulating substrate 4, so that the path 52 of the partial discharge can be lengthened. .
  • the life of the power module 1 until the power module 1 reaches dielectric breakdown can be extended.
  • the reliability of the power module 1 is improved.
  • the first insulating resin portion 33 is further provided in the second groove 7.
  • the first insulating resin portion 33 is provided in the second groove 7 over, for example, 80% or more of the entire length of the second groove 7.
  • the first insulating resin portion 33 is provided in the second groove 7 over, for example, 90% or more of the entire length of the second groove 7.
  • the first insulating resin portion 33 is provided in the second groove 7 over the entire length of the second groove 7, for example.
  • the first insulating resin portion 33 is formed of a material different from that of the sealing member 40.
  • the first insulating resin portion 33 is formed of, for example, silicone rubber or polyimide resin.
  • the first insulating resin portion 33 has higher adhesion to the insulating substrate 4 than the sealing member 40. Therefore, occurrence of partial discharge in the first corner portion 17 is suppressed.
  • the first insulating resin part 33 may have a lower dielectric constant than the sealing member 40. Therefore, the electric field intensity at the first corner 17 is reduced, and the occurrence of partial discharge at the first corner 17 is suppressed.
  • outer casing 37 is joined to base plate 30 using adhesive 38.
  • the outer enclosure 37 is formed of, for example, a resin having an electrical insulation property such as a polyphenylene sulfide (PPS) resin, an epoxy resin, a polyimide resin, an acrylic resin, or a liquid crystal polymer (LCP).
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • the sealing member 40 is provided inside the outer enclosure 37.
  • the sealing member 40 seals the semiconductor element 20.
  • the sealing member 40 further seals the insulating substrate 4.
  • the sealing member 40 further seals the conductive wire 23.
  • the sealing member 40 has electrical insulation.
  • the sealing member 40 is formed of, for example, an insulating resin material such as silicone gel or epoxy resin.
  • the lid 39 is made of an electrically insulating resin such as an epoxy resin, a polyimide resin, an acrylic resin, or a liquid crystal polymer (LCP).
  • the lid 39 covers the sealing member 40 and closes the opening of the outer enclosure 37.
  • the method for manufacturing the power module 1 includes preparing the insulated circuit board 3 (S1).
  • the insulating circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8.
  • One or more first grooves 6 are formed in the second side surface 5 c of the first metal layer 5.
  • One or more first grooves 6 extend from the third main surface 5a of the first metal layer 5 toward the fourth main surface 5b.
  • a second groove 7 communicating with one or more first grooves 6 is formed on the third main surface 5a of the first metal layer 5.
  • the second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a.
  • first grooves 6 and second grooves 7 are formed by performing laser processing, mechanical processing, or etching on the second side surface 5c of the first metal layer 5.
  • First metal layer 5 is attached to first main surface 4 a of insulating substrate 4.
  • Second metal layer 8 is attached to second main surface 4b of insulating substrate 4.
  • the method for manufacturing the power module 1 includes providing the insulated circuit board 3 on the base plate 30 (S2). Specifically, a solder resist layer 32 is formed on a part of the base plate 30. The solder resist layer 32 has an opening. The solder resist layer 32 is formed by applying a solder resist material on a part of the base plate 30 and curing the solder resist material. Then, the joining member 31 such as solder is provided in the opening of the solder resist layer 32. The insulated circuit board 3 is joined to the base plate 30 using a joining member 31.
  • the method for manufacturing the power module 1 includes bonding the semiconductor element 20 to the second metal layer 8 of the insulated circuit board 3 (S3). Specifically, the semiconductor element 20 is bonded to the first metal layer portion 9 of the second metal layer 8 using the first conductive bonding member 21.
  • the first conductive bonding member 21 is, for example, a solder, a conductive adhesive, or a sintered bonding member. Joining the semiconductor element 20 to the second metal layer 8 (S3) may be performed before providing the insulating circuit board 3 on the base plate 30 (S2).
  • the method for manufacturing the power module 1 of the present embodiment includes providing the first insulating resin portion 33 between the base plate 30 and the first main surface 4a of the insulating substrate 4 (S4). At least a part of the first corner portion 17 formed by the second side surface 5c of the first metal layer 5 and the first main surface 4a of the insulating substrate 4 is covered with the first insulating resin portion 33.
  • the surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is.
  • the first insulating resin portion 33 has a shape that converges from the base plate 30 side to the first main surface 4a side. Specifically, the entire circumference of the first corner portion 17 is covered with the first insulating resin portion 33. In a plan view of the second main surface 4 b of the insulating substrate 4, the first insulating resin portion 33 extends outside the insulating substrate 4.
  • a first insulating resin material is supplied between the base plate 30 and the first main surface 4a of the insulating substrate 4 (S41).
  • the first insulating resin material is supplied into a portion of the one or more first grooves 6 on the side of the base plate 30 (S42).
  • a first insulating resin material is applied on the solder resist layer 32.
  • the first insulating resin material is supplied only to a portion on the base plate 30 side in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30.
  • the first insulating resin material is supplied to at least a part of the first corner 17 through the one or more first grooves 6 by the capillary action in the one or more first grooves 6 (S43).
  • at least a part of the first corner portion 17 is covered with the first insulating resin material.
  • the second groove 7 communicates with one or more first grooves 6.
  • the first insulating resin material crawling up the one or more first grooves 6 by the capillary action in the one or more first grooves 6 is supplied to the second grooves 7.
  • the first insulating resin material supplied from the one or more first grooves 6 to the second grooves 7 is expanded into the second grooves 7 by capillary action in the second grooves 7 (S44).
  • the first insulating resin material is provided in the second groove 7.
  • the first insulating resin material is subjected to defoaming treatment (S45). Specifically, the first insulating resin material is held in a reduced pressure atmosphere, and the first insulating resin material is defoamed. Then, the first insulating resin material is cured (S46). Thus, the first insulating resin portion 33 is formed.
  • the method for manufacturing the power module 1 includes providing electric wiring (for example, the conductive wire 23, the first lead terminal 25, and the second lead terminal 26) to the semiconductor element 20 (S6).
  • the conductive wire 23 is bonded to the semiconductor element 20 and the second metal layer portion 10 of the second metal layer 8.
  • the first lead terminal 25 is joined to the first metal layer portion 9 of the second metal layer 8 using the second conductive joining member 27.
  • the second lead terminal 26 is joined to the second metal layer portion 10 of the second metal layer 8 using a third conductive joining member 28.
  • the application of the electric wiring to the semiconductor element 20 (S6) may be performed before the provision of the first insulating resin portion 33 (S4).
  • the method for manufacturing the power module 1 of the present embodiment includes sealing the semiconductor element 20 using the sealing member 40 (S7). Specifically, the outer enclosure 37 is joined to the base plate 30 using an adhesive 38. The sealing member 40 is provided inside the outer enclosure 37. Specifically, a sealing material is injected into the inside of the outer enclosure 37. The sealing material is then cured. The sealing member 40 is covered with the lid 39. The opening of the outer enclosure 37 is closed by a lid 39. The first lead terminal 25 and the second lead terminal 26 are drawn out of the power module 1 through the cover 39. Thus, the power module 1 is obtained.
  • the power module 1 of the present embodiment and the method of manufacturing the same have the following effects.
  • the power module 1 of the present embodiment includes a base plate 30, an insulated circuit board 3, a semiconductor element 20, and a first insulating resin portion 33.
  • the insulated circuit board 3 is provided on the base plate 30.
  • the insulating circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8.
  • the insulating substrate 4 connects the first main surface 4a facing the base plate 30, the second main surface 4b opposite to the first main surface 4a, and the first main surface 4a and the second main surface 4b. And a first side surface 4c.
  • the first metal layer 5 is provided on the first main surface 4a of the insulating substrate 4.
  • the second metal layer 8 is provided on the second main surface 4b of the insulating substrate 4.
  • the semiconductor element 20 is joined to the second metal layer 8.
  • the first insulating resin portion 33 is provided between the base plate 30 and the first main surface 4a.
  • the first metal layer 5 includes a third main surface 5a facing the insulating substrate 4, a fourth main surface 5b facing the base plate 30, and a second main surface 5a connecting the third main surface 5a and the fourth main surface 5b. And a side surface 5c. At least a part of the first corner portion 17 formed by the second side surface 5c and the first main surface 4a is covered with the first insulating resin portion 33.
  • the first peripheral portion 4p of the first main surface 4a exposed from the first metal layer 5 has a first region 4q which is close to the first corner 17 and a first corner which is adjacent to the first region 4q. 17 and a second region 4r distal to 17. The first region 4q is covered with the first insulating resin portion 33.
  • the second region 4r is exposed from the first insulating resin part 33.
  • the surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is.
  • the air bubbles remain in the first insulating resin portion 33. It escapes into the gap between the resin part 33 and the first main surface 4a. Residual air bubbles in the first insulating resin portion 33 are suppressed. Further, the contact area between the insulating circuit board 3 and the first insulating resin portion 33 is reduced. During the operation of the power module 1, the stress applied to the first insulating resin part 33 due to the difference in thermal expansion coefficient between the insulating circuit board 3 and the first insulating resin part 33 decreases.
  • one or more first grooves 6 are formed in second side surface 5c.
  • One or more first grooves 6 extend from the third main surface 5a toward the fourth main surface 5b.
  • the first insulating resin portion 33 is provided in one or more first grooves 6. Therefore, the first insulating resin portion 33 covers at least a part of the first corner portion 17 while utilizing the capillary phenomenon in the one or more first grooves 6 to form the second region 4r of the first main surface 4a.
  • the inclination of the surface 33s of the first insulating resin portion 33 with respect to the first main surface 4a gradually increases from the base plate 30 toward the first main surface 4a. It can be an inclined surface that becomes larger.
  • one or more first grooves 6 have a first width of 0.1 mm or less and a first depth of 0.1 mm or less. Therefore, the first insulating resin portion 33 covers at least a part of the first corner portion 17 while utilizing the capillary phenomenon in the one or more first grooves 6 to form the second region 4r of the first main surface 4a. While being able to be exposed from the first insulating resin portion 33, the inclination of the surface 33s of the first insulating resin portion 33 with respect to the first main surface 4a gradually increases from the base plate 30 toward the first main surface 4a. It can be an inclined surface that becomes larger.
  • one or more first grooves 6 are a plurality of first grooves 6.
  • the plurality of first grooves 6 are formed over the entire circumference of the third main surface 5a. Therefore, a wider range of the first corner portion 17 is covered by the first insulating resin portion 33.
  • the withstand voltage of the power module 1 is improved.
  • the reliability of the power module 1 is improved.
  • a second groove 7 communicating with one or more first grooves 6 is formed in the third main surface 5a.
  • the second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a.
  • the first insulating resin part 33 is also provided in the second groove 7. Therefore, a wider range of the first corner portion 17 is covered by the first insulating resin portion 33.
  • the withstand voltage of the power module 1 is improved.
  • the reliability of the power module 1 is improved.
  • second groove 7 has a second width of 0.1 mm or more and 0.5 mm or less and a second depth of 0.1 mm or more and 0.5 mm or less. Therefore, the first insulating resin portion 33 can be easily provided in the second groove 7 by utilizing the capillary phenomenon in the second groove 7.
  • second metal layer 8 includes fifth main surface 8a facing insulating substrate 4, sixth main surface 8b opposite to fifth main surface 8a, and fifth main surface 8b. It includes a third side surface 8c connecting the surface 8a and the sixth main surface 8b.
  • the first distance D 1 of the between the first side 4c and the second side surface 5c of the first metal layer 5 of the insulating substrate 4, and a third side surface 8c of the first side 4c and the second metal layer 8 of the insulating substrate 4 substantially equal to the second distance D 2 between.
  • the third main surface 5a and the fourth major surface 5b of the power module 1 of this embodiment, the third main surface 5a and the power module of the first distance D 1 is greater Comparative Example than the second distance D 2 It is larger than the fourth main surface 5b.
  • the power module 1 of the present embodiment can more efficiently dissipate heat generated from the semiconductor element 20 to the outside of the power module 1 through the base plate 30 than the power module of the comparative example. The reliability of the power module 1 is improved.
  • the first insulating resin portion 33 extends outside the insulating substrate 4 in a plan view of the second main surface 4b. Therefore, the path 52 of the partial discharge in the power module 1 can be lengthened, and the life of the power module 1 until the power module 1 reaches dielectric breakdown can be lengthened. The reliability of the power module 1 is improved.
  • the method for manufacturing the power module 1 according to the present embodiment includes providing the insulated circuit board 3 on the base plate 30 (S2).
  • the insulating circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8.
  • the insulating substrate 4 connects the first main surface 4a facing the base plate 30, the second main surface 4b opposite to the first main surface 4a, and the first main surface 4a and the second main surface 4b. And a first side surface 4c.
  • the first metal layer 5 is provided on the first main surface 4a of the insulating substrate 4.
  • the second metal layer 8 is provided on the second main surface 4b of the insulating substrate 4.
  • the method for manufacturing the power module 1 according to the present embodiment includes joining the semiconductor element 20 to the second metal layer 8 (S3) and providing the first insulating resin portion 33 between the base plate 30 and the first main surface 4a. (S4).
  • the first metal layer 5 includes a third main surface 5a facing the insulating substrate 4, a fourth main surface 5b facing the base plate 30, and a second main surface 5a connecting the third main surface 5a and the fourth main surface 5b. And a side surface 5c. At least a part of the first corner portion 17 formed by the second side surface 5c and the first main surface 4a is covered with the first insulating resin portion 33.
  • the first peripheral portion 4p of the first main surface 4a exposed from the first metal layer 5 has a first region 4q which is close to the first corner 17 and a first corner which is adjacent to the first region 4q. 17 and a second region 4r distal to 17. The first region 4q is covered with the first insulating resin portion 33.
  • the second region 4r is exposed from the first insulating resin part 33.
  • the surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is.
  • the air bubbles remain in the first insulating resin portion 33. It escapes into the gap between the resin part 33 and the first main surface 4a. Residual air bubbles in the first insulating resin portion 33 are suppressed. Further, the contact area between the insulating circuit board 3 and the first insulating resin portion 33 is reduced. During the operation of the power module 1, the stress applied to the first insulating resin part 33 due to the difference in thermal expansion coefficient between the insulating circuit board 3 and the first insulating resin part 33 decreases.
  • one or more first grooves 6 are formed on the second side surface 5c.
  • One or more first grooves 6 extend from the third main surface 5a toward the fourth main surface 5b.
  • Providing the first insulating resin portion 33 (S4) includes supplying the first insulating resin material into a portion of the one or more first grooves 6 on the base plate 30 side (S42), Supplying the first insulating resin material to at least a part of the first corner portion 17 through the one or more first grooves 6 by the capillary action in the first groove 6 (S43).
  • first insulating resin portion 33 forms at least a part of first corner portion 17 by utilizing the capillary phenomenon in one or more first grooves 6. While covering, the second region 4r of the first main surface 4a can be exposed from the first insulating resin portion 33, and the surface 33s of the first insulating resin portion 33 is moved from the base plate 30 side to the first main surface 4a. , The slope with respect to the first main surface 4a gradually increases.
  • one or more first grooves 6 are a plurality of first grooves 6.
  • a plurality of first grooves 6 are formed over the entire circumference of the third main surface 5a. Therefore, a wider range of the first corner portion 17 is covered by the first insulating resin portion 33. The withstand voltage of the power module 1 is improved. According to the method of manufacturing power module 1 of the present embodiment, power module 1 having improved reliability can be obtained.
  • second groove 7 communicating with one or more first grooves 6 is formed in third main surface 5a.
  • the second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a.
  • Providing the first insulating resin portion 33 is that the first insulating resin material supplied from the first groove 6 to the second groove 7 is transferred into the second groove 7 by a capillary phenomenon in the second groove 7. Expanding (S44) is further included. Therefore, a wider range of the first corner portion 17 is easily covered by the first insulating resin portion 33.
  • the withstand voltage of the power module 1 is improved. According to the method of manufacturing power module 1 of the present embodiment, power module 1 having improved reliability can be obtained.
  • Embodiment 2 FIG.
  • the power module 1b according to the second embodiment will be described with reference to FIGS.
  • the power module 1b of the present embodiment further includes a second insulating resin part 42 in addition to the same configuration as the power module 1 of the first embodiment.
  • the second insulating resin portion 42 covers at least a part of the third corner portion 18 formed by the third side surface 8c and the second main surface 4b. Since at least a portion of the third corner portion 18 is covered with the second insulating resin portion 42, at least a portion of the third side surface 8c and a portion of the second main surface 4b are joined by the second insulating resin portion 42. Covered. Specifically, the entire third corner 18 is covered with the second insulating resin part 42. As shown in FIG. 15, at least a part of the third corner portion 18 where the electric lines of force 50 are concentrated when the power module 1 b operates is covered with the second insulating resin portion 42. The withstand voltage of the power module 1b is improved. The reliability of the power module 1b is improved.
  • the second insulating resin portion 42 covers the second peripheral portion 4s of the second main surface 4b exposed from the second metal layer 8.
  • the second insulating resin portion 42 extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b.
  • the second insulating resin portion 42 further covers a fifth corner 8d formed by the third side surface 8c and the sixth main surface 8b.
  • the second insulating resin portion 42 further covers a part of the peripheral portion 8e of the sixth main surface 8b.
  • the second insulating resin portion 42 across the width w 3 from the fifth corner 8d, and covers the peripheral edge portion 8e of the sixth main surface 8b.
  • Width w 3 is, for example, 1.0mm or less at the maximum.
  • Width w 3 is, for example, at least 0.1mm or more.
  • the second insulating resin portion 42 is formed of a material different from that of the sealing member 40.
  • the second insulating resin part 42 is formed of, for example, silicone rubber or polyimide resin.
  • the second insulating resin part 42 may have a lower dielectric constant than the sealing member 40. Therefore, the electric field intensity at the third corner 18 decreases, and the occurrence of partial discharge at the third corner 18 is suppressed.
  • the second insulating resin portion 42 may be formed of the same material as the first insulating resin portion 33, or may be formed of a material different from the first insulating resin portion 33.
  • the second insulating resin portion 42 has higher adhesion to the insulating substrate 4 than the sealing member 40. Therefore, occurrence of partial discharge in the third corner portion 18 is suppressed. Further, since the second insulating resin portion 42 extends from the third corner portion 18 to the fourth corner portion 4e formed by the first side surface 4c and the second main surface 4b, the third corner portion is temporarily provided. Even if a partial discharge occurs in portion 18, the rate of progress of the partial discharge along second main surface 4b can be reduced. It is possible to extend the life of the power module 1b until the power module 1b breaks down. The reliability of the power module 1b is improved.
  • the method for manufacturing the power module 1b of the present embodiment further includes providing the second insulating resin portion 42 (S5) in addition to the same steps as those of the method of manufacturing the power module 1 of the first embodiment.
  • the second insulating resin part 42 covers at least a part of the third corner 18. Specifically, the second insulating resin portion 42 covers the entire third corner 18.
  • the second insulating resin portion 42 covers the second peripheral portion 4s of the second main surface 4b exposed from the second metal layer 8.
  • the second insulating resin portion 42 extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b.
  • the second insulating resin material is supplied (S51). Specifically, the second insulating resin material is applied on at least a part of the third corner 18. The second insulating resin material covers at least a part of the third corner 18. The second insulating resin material further covers the second peripheral portion 4s of the second main surface 4b exposed from the second metal layer 8. The second insulating resin material extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b. The second insulating resin material further covers a fifth corner 8d formed by the third side surface 8c and the sixth main surface 8b. The second insulating resin material further covers a part of the peripheral portion 8e of the sixth main surface 8b.
  • the power module 1b of the present embodiment and the method of manufacturing the same have the following effects in addition to the effects of the power module 1 of the first embodiment and the method of manufacturing the same.
  • the power module 1b further includes a second insulating resin portion 42.
  • the second insulating resin portion 42 covers at least a part of the third corner 18 formed by the third side surface 8c and the second main surface 4b. At least a part of the third corner portion 18 where the electric lines of force 50 are concentrated during operation of the power module 1b is covered with the third insulating resin portion, so that the withstand voltage of the power module 1b is improved. The reliability of the power module 1b is improved.
  • the method for manufacturing the power module 1b according to the present embodiment further includes providing the second insulating resin portion 42 (S5).
  • the second insulating resin portion 42 covers at least a part of the third corner 18 formed by the third side surface 8c and the second main surface 4b. At least a part of the third corner portion 18 where the electric lines of force 50 are concentrated during operation of the power module 1b is covered with the third insulating resin portion, so that the withstand voltage of the power module 1b is improved. According to the method of manufacturing power module 1b of the present embodiment, power module 1b having improved reliability can be obtained.
  • the second insulating resin portion 42 covers the second peripheral portion 4 s of the second main surface 4 b exposed from the second metal layer 8.
  • the second insulating resin portion 42 extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b. Therefore, the second insulating resin portion 42 can reduce the rate of progress of the partial discharge along the second main surface 4b. It is possible to extend the life of the power module 1b until the power module 1b breaks down. The reliability of the power module 1b is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A power module (1) includes a base plate (30), an insulating circuit board (3), and a first insulating resin part (33). The insulating circuit board (3) includes an insulating board (4) and a first metal layer (5). At least a portion of a first corner part (17) is covered by the first insulating resin part (33). A second region (4r) which is part of a first major face (4a) and distal from the first corner part (17) is exposed from the first insulating resin part (33). A surface (33s) of the first insulating resin part (33) on the opposite side from the first metal layer (5) is an inclined surface with a slope to the first major face (4a) gradually increasing from the base plate (30) side to the first major face (4a) side. Thus, the reliability of the power module (1) is improved.

Description

パワーモジュール及びその製造方法Power module and method of manufacturing the same
 本発明は、パワーモジュール及びその製造方法に関する。 << The present invention relates to a power module and a method of manufacturing the same.
 特開2009-70863号公報(特許文献1)は、ベース基板と、ベース基板上に設けられた絶縁基板と、絶縁基板の上面に接合された上部電極と、絶縁基板の下面に接合された下部電極と、上部電極に接合された半導体チップと、絶縁樹脂部とを備えるパワーモジュールを開示している。絶縁樹脂部は、絶縁基板の下面とベース板との間の空間全体に形成されている。 Japanese Patent Application Laid-Open No. 2009-70863 (Patent Document 1) discloses a base substrate, an insulating substrate provided on the base substrate, an upper electrode bonded to an upper surface of the insulating substrate, and a lower electrode bonded to a lower surface of the insulating substrate. A power module including an electrode, a semiconductor chip bonded to an upper electrode, and an insulating resin portion is disclosed. The insulating resin portion is formed in the entire space between the lower surface of the insulating substrate and the base plate.
特開2009-70863号公報JP 2009-70863 A
 特許文献1に開示されたパワーモジュールでは、絶縁基板の下面とベース板との間の空間全体に絶縁樹脂部を形成する際に、絶縁樹脂部に気泡が噛みこまれて、気泡が絶縁樹脂部内に残存することがあった。この気泡は、部分放電の起点となる。また、パワーモジュールの動作中に、パワーモジュールは温度サイクル環境に晒される。絶縁樹脂部は、絶縁基板の下面とベース板との間の空間全体に形成されており、絶縁基板等と広い面積で接触している。絶縁基板等と絶縁樹脂部との間の熱膨張係数の差に起因して、絶縁樹脂部にクラックが発生することがある。クラックは、部分放電の起点となる。気泡及びクラックは、パワーモジュールの絶縁耐圧を低下させて、パワーモジュールの信頼性を低下させる。本発明は、上記の課題を鑑みてなされたものであり、その目的は、向上された信頼性を有するパワーモジュール及びその製造方法を提供することである。 In the power module disclosed in Patent Literature 1, when the insulating resin portion is formed in the entire space between the lower surface of the insulating substrate and the base plate, bubbles are caught in the insulating resin portion, and the bubbles are generated in the insulating resin portion. In some cases. This bubble serves as a starting point of the partial discharge. Also, during operation of the power module, the power module is exposed to a temperature cycling environment. The insulating resin portion is formed in the entire space between the lower surface of the insulating substrate and the base plate, and is in contact with the insulating substrate and the like over a wide area. Cracks may occur in the insulating resin part due to the difference in thermal expansion coefficient between the insulating substrate and the like and the insulating resin part. The crack is a starting point of the partial discharge. Bubbles and cracks reduce the withstand voltage of the power module and reduce the reliability of the power module. The present invention has been made in view of the above problems, and an object of the present invention is to provide a power module having improved reliability and a method for manufacturing the same.
 本発明のパワーモジュールは、ベース板と、絶縁回路基板と、半導体素子と、第1絶縁樹脂部とを備える。絶縁回路基板は、ベース板上に設けられている。絶縁回路基板は、絶縁基板と、第1金属層と、第2金属層とを含む。絶縁基板は、ベース板に面する第1主面と、第1主面とは反対側の第2主面と、第1主面と第2主面とを接続する第1側面とを含む。第1金属層は、絶縁基板の第1主面上に設けられている。第2金属層は、絶縁基板の第2主面上に設けられている。半導体素子は、第2金属層に接合されている。第1絶縁樹脂部は、ベース板と第1主面との間に設けられている。第1金属層は、絶縁基板に面する第3主面と、ベース板に面する第4主面と、第3主面と第4主面とを接続する第2側面とを含む。第2側面と第1主面とによって形成される第1角部の少なくとも一部は第1絶縁樹脂部で覆われている。第1金属層から露出している第1主面の第1周縁部は、第1角部に近位の第1領域と、第1領域に隣接しかつ第1角部から遠位の第2領域とを含む。第1領域は第1絶縁樹脂部で覆われている。第2領域は、第1絶縁樹脂部から露出している。第1金属層とは反対側の第1絶縁樹脂部の表面は、ベース板の側から第1主面の側に向かうにつれて第1主面に対する傾きが次第に大きくなる傾斜面である。 The power module of the present invention includes a base plate, an insulated circuit board, a semiconductor element, and a first insulating resin part. The insulated circuit board is provided on the base plate. The insulated circuit board includes an insulating substrate, a first metal layer, and a second metal layer. The insulating substrate includes a first main surface facing the base plate, a second main surface opposite to the first main surface, and a first side surface connecting the first main surface and the second main surface. The first metal layer is provided on the first main surface of the insulating substrate. The second metal layer is provided on the second main surface of the insulating substrate. The semiconductor element is joined to the second metal layer. The first insulating resin portion is provided between the base plate and the first main surface. The first metal layer includes a third main surface facing the insulating substrate, a fourth main surface facing the base plate, and a second side surface connecting the third main surface and the fourth main surface. At least a part of the first corner formed by the second side surface and the first main surface is covered with the first insulating resin portion. A first peripheral portion of the first major surface exposed from the first metal layer has a first region proximal to the first corner and a second region adjacent to the first region and distal from the first corner. Region. The first region is covered with a first insulating resin part. The second region is exposed from the first insulating resin part. The surface of the first insulating resin portion opposite to the first metal layer is an inclined surface whose inclination with respect to the first main surface gradually increases from the base plate side toward the first main surface side.
 本発明のパワーモジュールの製造方法は、ベース板上に絶縁回路基板を設けることを備える。絶縁回路基板は、絶縁基板と、第1金属層と、第2金属層とを含む。絶縁基板は、ベース板に面する第1主面と、第1主面とは反対側の第2主面と、第1主面と第2主面とを接続する第1側面とを含む。第1金属層は、絶縁基板の第1主面上に設けられている。第2金属層は、絶縁基板の第2主面上に設けられている。本発明のパワーモジュールの製造方法は、第2金属層に半導体素子を接合することと、ベース板と第1主面との間に第1絶縁樹脂部を設けることとを備える。第1金属層は、絶縁基板に面する第3主面と、ベース板に面する第4主面と、第3主面と第4主面とを接続する第2側面とを含む。第2側面と第1主面とによって形成される第1角部の少なくとも一部は第1絶縁樹脂部で覆われている。第1金属層から露出している第1主面の第1周縁部は、第1角部に近位の第1領域と、第1領域に隣接しかつ第1角部から遠位の第2領域とを含む。第1領域は第1絶縁樹脂部で覆われている。第2領域は、第1絶縁樹脂部から露出している。第1金属層とは反対側の第1絶縁樹脂部の表面は、ベース板の側から第1主面の側に向かうにつれて第1主面に対する傾きが次第に大きくなる傾斜面である。 The method of manufacturing a power module according to the present invention includes providing an insulating circuit board on a base plate. The insulated circuit board includes an insulating substrate, a first metal layer, and a second metal layer. The insulating substrate includes a first main surface facing the base plate, a second main surface opposite to the first main surface, and a first side surface connecting the first main surface and the second main surface. The first metal layer is provided on the first main surface of the insulating substrate. The second metal layer is provided on the second main surface of the insulating substrate. A method for manufacturing a power module according to the present invention includes joining a semiconductor element to a second metal layer and providing a first insulating resin portion between a base plate and a first main surface. The first metal layer includes a third main surface facing the insulating substrate, a fourth main surface facing the base plate, and a second side surface connecting the third main surface and the fourth main surface. At least a part of the first corner formed by the second side surface and the first main surface is covered with the first insulating resin portion. A first peripheral portion of the first major surface exposed from the first metal layer has a first region proximal to the first corner and a second region adjacent to the first region and distal from the first corner. Region. The first region is covered with a first insulating resin part. The second region is exposed from the first insulating resin part. The surface of the first insulating resin portion opposite to the first metal layer is an inclined surface whose inclination with respect to the first main surface gradually increases from the base plate side toward the first main surface side.
 本発明のパワーモジュール及びその製造方法では、絶縁基板の第1主面とベース板との間に第1絶縁樹脂部を設ける際に、第1絶縁樹脂部内に気泡が残存することが抑制される。また、絶縁回路基板と第1絶縁樹脂部との間の熱膨張係数の差に起因して、第1絶縁樹脂部にクラックが発生することが防止される。さらに、パワーモジュールの動作時に電気力線が集中する第1角部の少なくとも一部は、第1絶縁樹脂部によって覆われている。パワーモジュールの絶縁耐圧が向上する。パワーモジュールの信頼性が向上する。 In the power module and the method of manufacturing the same according to the present invention, when the first insulating resin portion is provided between the first main surface of the insulating substrate and the base plate, it is possible to suppress bubbles from remaining in the first insulating resin portion. . Further, it is possible to prevent the first insulating resin portion from being cracked due to a difference in thermal expansion coefficient between the insulating circuit board and the first insulating resin portion. Further, at least a part of the first corner where the lines of electric force are concentrated during operation of the power module is covered with the first insulating resin part. The withstand voltage of the power module is improved. The reliability of the power module is improved.
実施の形態1に係るパワーモジュールの概略断面図である。FIG. 2 is a schematic sectional view of the power module according to the first embodiment. 実施の形態1に係るパワーモジュールの、図1に示される領域IIの概略部分拡大図である。FIG. 2 is a schematic partial enlarged view of a region II shown in FIG. 1 of the power module according to the first embodiment. 実施の形態1に係るパワーモジュールの、図2に示される領域IIIの概略部分拡大図である。FIG. 3 is a schematic partial enlarged view of a region III shown in FIG. 2 of the power module according to the first embodiment. 実施の形態1の変形例に係るパワーモジュールの、図2に示される領域IVの概略部分拡大図である。FIG. 4 is a schematic partial enlarged view of a region IV shown in FIG. 2 of a power module according to a modification of the first embodiment. 実施の形態1の変形例に係るパワーモジュールの、図2に示される領域Vの概略部分拡大図である。FIG. 5 is a schematic partial enlarged view of a region V shown in FIG. 2 of a power module according to a modification of the first embodiment. 実施の形態1に係るパワーモジュールに含まれる第1金属層の第3主面の概略平面図である。FIG. 3 is a schematic plan view of a third main surface of a first metal layer included in the power module according to Embodiment 1. 実施の形態1に係るパワーモジュールに含まれる第1金属層の第3主面の、図6に示される領域VIIの概略部分拡大平面図である。FIG. 7 is a schematic partial enlarged plan view of a region VII shown in FIG. 6 of a third main surface of a first metal layer included in the power module according to the first embodiment. 実施の形態1の変形例に係るパワーモジュールに含まれる第1金属層の第3主面の、図6に示される領域VIIIの概略部分拡大平面図である。FIG. 7 is a schematic partially enlarged plan view of a region VIII shown in FIG. 6 of a third main surface of a first metal layer included in a power module according to a modification of the first embodiment. 実施の形態1のパワーモジュールの動作時にパワーモジュールに発生する電気力線を示す概略部分拡大断面図である。FIG. 3 is a schematic partial enlarged cross-sectional view illustrating electric lines of force generated in the power module when the power module according to the first embodiment operates. 実施の形態1に係るパワーモジュールにおける部分放電の経路を示す概略部分拡大断面図である。FIG. 3 is a schematic partial enlarged cross-sectional view showing a path of a partial discharge in the power module according to the first embodiment. 実施の形態1に係るパワーモジュールの製造方法のフローチャートを示す図である。FIG. 5 is a diagram showing a flowchart of a method for manufacturing the power module according to the first embodiment. 実施の形態1及び実施の形態2に係るパワーモジュールの製造方法における、第1絶縁樹脂層を設ける工程のフローチャートを示す図である。FIG. 9 is a diagram showing a flowchart of a step of providing a first insulating resin layer in the power module manufacturing methods according to the first and second embodiments. 実施の形態2に係るパワーモジュールの概略断面図である。FIG. 7 is a schematic sectional view of a power module according to a second embodiment. 実施の形態2に係るパワーモジュールの、図13に示される領域XIVの概略部分拡大断面図である。FIG. 14 is a schematic partial enlarged sectional view of a region XIV shown in FIG. 13 of the power module according to the second embodiment. 実施の形態2のパワーモジュールの動作時にパワーモジュールに発生する電気力線を示す概略部分拡大断面図である。FIG. 14 is a schematic partial enlarged cross-sectional view showing electric lines of force generated in the power module when the power module according to the second embodiment operates. 実施の形態2に係るパワーモジュールの製造方法のフローチャートを示す図である。FIG. 10 is a diagram showing a flowchart of a method for manufacturing a power module according to the second embodiment.
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described. Note that the same components are denoted by the same reference numerals, and description thereof will not be repeated.
 実施の形態1.
 図1から図10を参照して、実施の形態1のパワーモジュール1を説明する。パワーモジュール1は、ベース板30と、絶縁回路基板3と、半導体素子20と、第1絶縁樹脂部33と、封止部材40とを備える。本実施の形態のパワーモジュール1は、外囲体37と、蓋部39とをさらに備える。
Embodiment 1 FIG.
The power module 1 according to the first embodiment will be described with reference to FIGS. The power module 1 includes a base plate 30, an insulated circuit board 3, a semiconductor element 20, a first insulating resin portion 33, and a sealing member 40. The power module 1 of the present embodiment further includes an outer casing 37 and a lid 39.
 ベース板30は、絶縁回路基板3を支持している。ベース板30は、半導体素子20から発生する熱をパワーモジュール1の外部に放散させる放熱部材として機能している。ベース板30は、例えば、銅板またはアルミニウム板のような金属板である。 The base plate 30 supports the insulated circuit board 3. The base plate 30 functions as a heat radiating member for dissipating heat generated from the semiconductor element 20 to the outside of the power module 1. The base plate 30 is, for example, a metal plate such as a copper plate or an aluminum plate.
 絶縁回路基板3は、ベース板30上に設けられている。具体的には、絶縁回路基板3は、接合部材31を用いて、ベース板30に接合されている。接合部材31は、例えば、はんだである。開口部を有するソルダーレジスト層32が、ベース板30上に設けられている。ソルダーレジスト層32は、接合部材31が形成される領域を規定する。接合部材31は、ソルダーレジスト層32の開口部内に形成されている。 The insulating circuit board 3 is provided on the base plate 30. Specifically, the insulating circuit board 3 is joined to the base plate 30 by using a joining member 31. The joining member 31 is, for example, solder. A solder resist layer 32 having an opening is provided on the base plate 30. The solder resist layer 32 defines a region where the joining member 31 is formed. The joining member 31 is formed in the opening of the solder resist layer 32.
 絶縁回路基板3は、絶縁基板4と、第1金属層5と、第2金属層8とを含む。絶縁基板4は、ベース板30に面する第1主面4aと、第1主面4aとは反対側の第2主面4bと、第1主面4aと第2主面4bとを接続する第1側面4cとを含む。絶縁回路基板3は、第2角部4dと第4角部4eとを含む。第2角部4dは、第1主面4aと第1側面4cとによって形成される。第4角部4eは、第2主面4bと第1側面4cとによって形成される。絶縁基板4は、例えば、窒化アルミニウム(AlN)製のセラミック基板である。 The insulated circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8. The insulating substrate 4 connects the first main surface 4a facing the base plate 30, the second main surface 4b opposite to the first main surface 4a, and the first main surface 4a and the second main surface 4b. And a first side surface 4c. The insulated circuit board 3 includes a second corner 4d and a fourth corner 4e. The second corner 4d is formed by the first main surface 4a and the first side surface 4c. The fourth corner 4e is formed by the second main surface 4b and the first side surface 4c. The insulating substrate 4 is, for example, a ceramic substrate made of aluminum nitride (AlN).
 第1金属層5は、絶縁基板4の第1主面4a上に設けられている。第1金属層5は、絶縁基板4に面する第3主面5aと、ベース板30に面する第4主面5bと、第3主面5aと第4主面5bとを接続する第2側面5cとを含む。第1金属層5は、例えば、銅またはアルミニウム製である。 The first metal layer 5 is provided on the first main surface 4a of the insulating substrate 4. The first metal layer 5 includes a third main surface 5a facing the insulating substrate 4, a fourth main surface 5b facing the base plate 30, and a second main surface 5a connecting the third main surface 5a and the fourth main surface 5b. And a side surface 5c. The first metal layer 5 is made of, for example, copper or aluminum.
 図2及び図3に示されるように、第2側面5cに1つ以上の第1の溝6が形成されている。1つ以上の第1の溝6は、第3主面5aから第4主面5bに向かって延在している。図3及び図7に示されるように、1つ以上の第1の溝6は、0.1mm以下の第1の幅w1と0.1mm以下の第1の深さd1とを有する。特定的には、1つ以上の第1の溝6は、複数の第1の溝6である。互いに隣り合う第1の溝6の間の間隔g1は、例えば、第1の幅w1以下である。複数の第1の溝6は、第3主面5aの全周にわたって形成されている。第1の溝6は、例えば、半円形溝(図7)、三角形溝(図8)または矩形溝である。 As shown in FIGS. 2 and 3, one or more first grooves 6 are formed in the second side surface 5c. One or more first grooves 6 extend from the third main surface 5a toward the fourth main surface 5b. As shown in FIGS. 3 and 7, the first groove 61 or more has the following first width w 1 and 0.1mm below the first and the depth d 1 0.1mm. Specifically, the one or more first grooves 6 are a plurality of first grooves 6. An interval g 1 between the first grooves 6 adjacent to each other is, for example, equal to or less than a first width w 1 . The plurality of first grooves 6 are formed over the entire circumference of the third main surface 5a. The first groove 6 is, for example, a semicircular groove (FIG. 7), a triangular groove (FIG. 8) or a rectangular groove.
 図3、図6及び図7に示されるように、第3主面5aに、1つ以上の第1の溝6と連通する第2の溝7が形成されている。第2の溝7は、第3主面5aの周縁部の少なくとも一部に沿って延在している。第2の溝7は、例えば、第3主面5aの周縁部の全長の60%以上にわたって延在している。第2の溝7は、例えば、第3主面5aの周縁部の全長の80%以上にわたって延在している。第2の溝7は、例えば、第3主面5aの周縁部の全長にわたって延在している。第2の溝7は、0.1mm以上0.5mm以下の第2の幅w2と0.1mm以上0.5mm以下の第2の深さd2とを有する。図3に示されるように、第2の溝7は、例えば、傾斜溝(図3)、凹曲面溝(図4)、凸曲面溝(図5)または矩形溝である。 As shown in FIGS. 3, 6, and 7, a second groove 7 communicating with one or more first grooves 6 is formed on the third main surface 5a. The second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a. The second groove 7 extends over, for example, 60% or more of the entire length of the peripheral portion of the third main surface 5a. The second groove 7 extends over, for example, 80% or more of the entire length of the peripheral portion of the third main surface 5a. The second groove 7 extends, for example, over the entire length of the peripheral portion of the third main surface 5a. The second groove 7, and a second depth of 0.1mm or more 0.5mm or less following the second width w 2 and 0.1mm or more 0.5mm d 2. As shown in FIG. 3, the second groove 7 is, for example, an inclined groove (FIG. 3), a concave curved groove (FIG. 4), a convex curved groove (FIG. 5), or a rectangular groove.
 第2金属層8は、絶縁基板4の第2主面4b上に設けられている。第2金属層8は、絶縁基板4に面する第5主面8aと、第5主面8aとは反対側の第6主面8bと、第5主面8aと第6主面8bとを接続する第3側面8cとを含む。第2金属層8は、例えば、銅またはアルミニウム製である。 The second metal layer 8 is provided on the second main surface 4b of the insulating substrate 4. The second metal layer 8 includes a fifth main surface 8a facing the insulating substrate 4, a sixth main surface 8b opposite to the fifth main surface 8a, a fifth main surface 8a, and a sixth main surface 8b. And a third side surface 8c to be connected. The second metal layer 8 is made of, for example, copper or aluminum.
 図1に示されるように、絶縁基板4の第1側面4cと第1金属層5の第2側面5cとの間の第1間隔D1は、絶縁基板4の第1側面4cと第2金属層8の第3側面8cとの間の第2間隔D2に実質的に等しい。本明細書において、第1間隔D1が第2間隔D2に実質的に等しいことは、第1間隔D1が第2間隔D2の90%以上110%以下であることを意味する。第1間隔D1は、例えば、第2間隔D2の90%以上100%以下であってもよい。第2金属層8は、第1金属層部分9と、第1金属層部分9から間隔を空けて配置されている第2金属層部分10とを含む。 As shown in FIG. 1, the first distance D 1 of the between the second side surface 5c of the first side face 4c and the first metal layer 5 of the insulating substrate 4, the first side 4c and the second metal insulating substrate 4 substantially equal to the second distance D 2 between the third side surface 8c of the layer 8. In this specification, the first distance D 1 is substantially equal to the second distance D 2, which means that the first distance D 1 is less than 110% 90% of the second distance D 2. The first interval D 1 may be, for example, 90% or more and 100% or less of the second interval D 2 . The second metal layer 8 includes a first metal layer portion 9 and a second metal layer portion 10 spaced from the first metal layer portion 9.
 半導体素子20は、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)、金属酸化物半導体電界効果トランジスタ(MOSFET)またはダイオードのようなパワー半導体素子である。半導体素子20は、例えば、シリコン(Si)、または、炭化珪素(SiC)、窒化ガリウム(GaN)もしくはダイヤモンドのようなワイドバンドギャップ半導体材料で形成されている。 The semiconductor device 20 is, for example, a power semiconductor device such as an insulated gate bipolar transistor (IGBT), a metal oxide semiconductor field effect transistor (MOSFET), or a diode. The semiconductor element 20 is formed of, for example, silicon (Si) or a wide band gap semiconductor material such as silicon carbide (SiC), gallium nitride (GaN), or diamond.
 半導体素子20は、第2金属層8に接合されている。具体的には、半導体素子20は、第1導電接合部材21を用いて、第2金属層8の第1金属層部分9の第6主面8bに接合されている。第1導電接合部材21は、例えば、はんだ、または、銀フィラーもしくは銅フィラーのような金属フィラーが樹脂に分散された導電性接着剤である。第1導電接合部材21は、例えば、銀ナノ粒子もしくは銅ナノ粒子のような金属ナノ粒子を300℃以下の低温で焼成することによって形成された焼結接合部材である。半導体素子20は、導電ワイヤ23を用いて、第2金属層8の第2金属層部分10に電気的に接続されている。 The semiconductor element 20 is joined to the second metal layer 8. Specifically, the semiconductor element 20 is joined to the sixth main surface 8 b of the first metal layer portion 9 of the second metal layer 8 using the first conductive joining member 21. The first conductive bonding member 21 is, for example, a solder or a conductive adhesive in which a metal filler such as a silver filler or a copper filler is dispersed in a resin. The first conductive bonding member 21 is, for example, a sintered bonding member formed by firing metal nanoparticles such as silver nanoparticles or copper nanoparticles at a low temperature of 300 ° C. or less. The semiconductor element 20 is electrically connected to the second metal layer portion 10 of the second metal layer 8 using a conductive wire 23.
 第1リード端子25が、第2導電接合部材27を用いて第1金属層部分9に接合されている。第2リード端子26が、第3導電接合部材28を用いて第2金属層部分10に接合されている。第2導電接合部材27及び第3導電接合部材28は、例えば、はんだ、または、銀フィラーもしくは銅フィラーのような金属フィラーが樹脂に分散された導電性接着剤である。第1リード端子25及び第2リード端子26は、蓋部39を貫通してパワーモジュール1の外部に引き出されている。 The first lead terminal 25 is joined to the first metal layer portion 9 using the second conductive joining member 27. The second lead terminal 26 is joined to the second metal layer portion 10 using a third conductive joining member 28. The second conductive bonding member 27 and the third conductive bonding member 28 are, for example, solder or a conductive adhesive in which a metal filler such as a silver filler or a copper filler is dispersed in a resin. The first lead terminal 25 and the second lead terminal 26 are drawn out of the power module 1 through the cover 39.
 第1絶縁樹脂部33は、ベース板30と第1主面4aとの間に設けられている。第1金属層5の第2側面5cと絶縁基板4の第1主面4aとによって形成される第1角部17の少なくとも一部は、第1絶縁樹脂部33で覆われている。第1角部17の少なくとも一部は第1絶縁樹脂部33で覆われているため、第2側面5cの少なくとも一部と第1主面4aの一部とは、第1絶縁樹脂部33で覆われている。特定的には、第1角部17の全ては、第1絶縁樹脂部33で覆われている。第1絶縁樹脂部33は、第2側面5cに形成されている1つ以上の第1の溝6内に設けられている。 The first insulating resin portion 33 is provided between the base plate 30 and the first main surface 4a. At least a part of the first corner portion 17 formed by the second side surface 5c of the first metal layer 5 and the first main surface 4a of the insulating substrate 4 is covered with the first insulating resin portion 33. Since at least a portion of the first corner portion 17 is covered with the first insulating resin portion 33, at least a portion of the second side surface 5c and a portion of the first main surface 4a are joined by the first insulating resin portion 33. Covered. Specifically, all of the first corner portions 17 are covered with the first insulating resin portion 33. The first insulating resin portion 33 is provided in one or more first grooves 6 formed on the second side surface 5c.
 第1金属層5から露出している絶縁基板4の第1主面4aの第1周縁部4pは、第1角部17に近位の第1領域4qと、第1領域4qに隣接しかつ第1角部17から遠位の第2領域4rとを含む。第1領域4qは、第1絶縁樹脂部33で覆われている。第2領域4rは、第1絶縁樹脂部33から露出している。第1角部17からの第1領域4qの幅Wは、例えば、最大で第1角部17から第2角部4dまでの距離D(第1周縁部4pの幅)の二分の一以下である。第2領域4rは、第1領域4qよりも広い面積を有している。 The first peripheral portion 4p of the first main surface 4a of the insulating substrate 4 exposed from the first metal layer 5 is adjacent to the first region 4q close to the first corner 17 and the first region 4q, and And a second region 4r distal from the first corner 17. The first region 4q is covered with the first insulating resin part 33. The second region 4r is exposed from the first insulating resin part 33. The width W of the first region 4q from the first corner 17 is, for example, not more than half of the distance D (the width of the first peripheral portion 4p) from the first corner 17 to the second corner 4d. is there. The second region 4r has a larger area than the first region 4q.
 幅Wは、例えば、最大で距離Dの三分の一以下であってもよい。幅Wは、例えば、最大で距離Dの四分の一以下であってもよい。幅Wは、例えば、最大で距離Dの五分の一以下であってもよい。幅Wは、例えば、最大で距離Dの六分の一以下であってもよい。幅Wは、例えば、最大で距離Dの八分の一以下であってもよい。幅Wは、例えば、最大で距離Dの十分の一以下であってもよい。幅Wは、例えば、少なくとも0.1mm以上である。そのため、パワーモジュール1の動作時に電気力線50(図9を参照)が集中する第1角部17の少なくとも一部は、第1絶縁樹脂部33によってより確実に覆われて、パワーモジュール1の絶縁耐圧がより確実に向上する。幅Wは、例えば、少なくとも0.2mm以上であってもよい。幅Wは、例えば、最大で1.0mm以下である。幅Wは、例えば、最大で0.5mm以下であってもよい。 The width W may be, for example, at most one-third or less of the distance D. The width W may be, for example, at most a quarter of the distance D or less. The width W may be, for example, at most one fifth or less of the distance D. The width W may be, for example, at most one-sixth or less of the distance D. The width W may be, for example, at most one-eighth of the distance D. The width W may be, for example, not more than one tenth of the distance D at the maximum. The width W is, for example, at least 0.1 mm or more. Therefore, at least a part of the first corner portion 17 where the electric lines of force 50 (see FIG. 9) are concentrated when the power module 1 operates is more reliably covered with the first insulating resin portion 33, and the power module 1 The dielectric strength is more reliably improved. The width W may be, for example, at least 0.2 mm or more. The width W is, for example, at most 1.0 mm or less. The width W may be, for example, at most 0.5 mm or less.
 第1金属層5とは反対側の第1絶縁樹脂部33の表面33sは、ベース板30の側から第1主面4aの側に向かうにつれて第1主面4aに対する傾きが次第に大きくなる傾斜面である。第1絶縁樹脂部33は、ベース板30の側から第1主面4aの側に向かうにつれて収束する形状を有している。そのため、絶縁回路基板3と第1絶縁樹脂部33との間の接触面積と、絶縁基板4の第1主面4aとベース板30との間の空間に占める第1絶縁樹脂部33の体積比率とが、減少され得る。 The surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is. The first insulating resin portion 33 has a shape that converges from the base plate 30 side to the first main surface 4a side. Therefore, the contact area between the insulating circuit board 3 and the first insulating resin portion 33 and the volume ratio of the first insulating resin portion 33 occupying the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 Can be reduced.
 絶縁基板4の第1主面4aとベース板30との間の空間に占める第1絶縁樹脂部33の体積比率は、例えば、50%以下である。絶縁基板4の第1主面4aとベース板30との間の空間に占める第1絶縁樹脂部33の体積比率は、例えば、40%以下である。絶縁基板4の第1主面4aとベース板30との間の空間に占める第1絶縁樹脂部33の体積比率は、例えば、30%以下である。絶縁基板4の第1主面4aとベース板30との間の空間に占める第1絶縁樹脂部33の体積比率は、例えば、20%以下である。絶縁基板4の第1主面4aとベース板30との間の空間に占める第1絶縁樹脂部33の体積比率は、例えば、100×H2/(H1+H2)%以上である(H1は第1金属層5の厚さであり、H2は接合部材31の厚さである)。 The volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 50% or less. The volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 40% or less. The volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 30% or less. The volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 20% or less. The volume ratio of the first insulating resin portion 33 in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30 is, for example, 100 × H 2 / (H 1 + H 2 )% or more (H 1 is the thickness of the first metal layer 5, H 2 is the thickness of the bonding member 31).
 絶縁基板4の第2主面4bの平面視において、第1絶縁樹脂部33は、絶縁基板4の外側に延在している。図9に示されるように、パワーモジュール1の動作時に、第3側面8cと第2主面4bとによって形成される第3角部18にも電気力線50が集中している。仮に、第3角部18において部分放電が発生しても、部分放電は、図10に示される経路52に沿って進展する。具体的には、部分放電は、第3角部18から第2主面4bに沿って進展して、第4角部4eに達する。それから、部分放電は、第4角部4eから第1側面4cに沿って進展して、第2角部4dに達する。それから、部分放電は、第2角部4dから封止部材40中を進展して、第2角部4dの直下の第1絶縁樹脂部33の表面33sの部分33eに達する。それから、部分放電は、部分33eから第1金属層5とは反対方向に第1絶縁樹脂部33の表面33sに沿って進展して、ベース板30に達する。部分放電がベース板30に達すると、パワーモジュール1は絶縁破壊される。 に お い て The first insulating resin portion 33 extends outside the insulating substrate 4 in a plan view of the second main surface 4b of the insulating substrate 4. As shown in FIG. 9, when the power module 1 operates, the electric lines of force 50 are also concentrated on the third corner 18 formed by the third side surface 8c and the second main surface 4b. Even if a partial discharge occurs in the third corner portion 18, the partial discharge proceeds along the path 52 shown in FIG. Specifically, the partial discharge advances from the third corner 18 along the second main surface 4b and reaches the fourth corner 4e. Then, the partial discharge extends from the fourth corner 4e along the first side surface 4c and reaches the second corner 4d. Then, the partial discharge propagates through the sealing member 40 from the second corner 4d and reaches the portion 33e of the surface 33s of the first insulating resin portion 33 immediately below the second corner 4d. Then, the partial discharge proceeds from the portion 33 e in the direction opposite to the first metal layer 5 along the surface 33 s of the first insulating resin portion 33 and reaches the base plate 30. When the partial discharge reaches the base plate 30, the power module 1 is broken down.
 このように、絶縁基板4の第2主面4bの平面視において、第1絶縁樹脂部33は、絶縁基板4の外側に延在しているため、部分放電の経路52を長くすることができる。パワーモジュール1が絶縁破壊に至るまでのパワーモジュール1の寿命を長くすることができる。パワーモジュール1の信頼性が向上する。 As described above, in plan view of the second main surface 4b of the insulating substrate 4, the first insulating resin portion 33 extends outside the insulating substrate 4, so that the path 52 of the partial discharge can be lengthened. . The life of the power module 1 until the power module 1 reaches dielectric breakdown can be extended. The reliability of the power module 1 is improved.
 第1絶縁樹脂部33は、第2の溝7内にさらに設けられている。第1絶縁樹脂部33は、例えば、第2の溝7の全長の80%以上の長さにわたって、第2の溝7内に設けられている。第1絶縁樹脂部33は、例えば、第2の溝7の全長の90%以上の長さにわたって、第2の溝7内に設けられている。第1絶縁樹脂部33は、例えば、第2の溝7の全長にわたって、第2の溝7内に設けられている。 The first insulating resin portion 33 is further provided in the second groove 7. The first insulating resin portion 33 is provided in the second groove 7 over, for example, 80% or more of the entire length of the second groove 7. The first insulating resin portion 33 is provided in the second groove 7 over, for example, 90% or more of the entire length of the second groove 7. The first insulating resin portion 33 is provided in the second groove 7 over the entire length of the second groove 7, for example.
 第1絶縁樹脂部33は、封止部材40と異なる材料で形成されている。第1絶縁樹脂部33は、例えば、シリコーンゴムまたはポリイミド樹脂で形成されている。第1絶縁樹脂部33は、封止部材40よりも絶縁基板4に対する密着性が高い。そのため、第1角部17において部分放電が発生することが抑制される。第1絶縁樹脂部33は、封止部材40よりも低い誘電率を有してもよい。そのため、第1角部17における電界強度が減少し、第1角部17において部分放電が発生することが抑制される。 The first insulating resin portion 33 is formed of a material different from that of the sealing member 40. The first insulating resin portion 33 is formed of, for example, silicone rubber or polyimide resin. The first insulating resin portion 33 has higher adhesion to the insulating substrate 4 than the sealing member 40. Therefore, occurrence of partial discharge in the first corner portion 17 is suppressed. The first insulating resin part 33 may have a lower dielectric constant than the sealing member 40. Therefore, the electric field intensity at the first corner 17 is reduced, and the occurrence of partial discharge at the first corner 17 is suppressed.
 図1を参照して、外囲体37は、接着剤38を用いてベース板30に接合されている。外囲体37は、例えば、ポリフェニレンサルファイド(PPS)樹脂、エポキシ樹脂、ポリイミド樹脂、アクリル樹脂または液晶ポリマー(LCP)のような電気的絶縁性を有する樹脂で形成されている。 を Referring to FIG. 1, outer casing 37 is joined to base plate 30 using adhesive 38. The outer enclosure 37 is formed of, for example, a resin having an electrical insulation property such as a polyphenylene sulfide (PPS) resin, an epoxy resin, a polyimide resin, an acrylic resin, or a liquid crystal polymer (LCP).
 封止部材40は、外囲体37の内側に設けられている。封止部材40は、半導体素子20を封止している。封止部材40は、絶縁基板4をさらに封止している。封止部材40は、導電ワイヤ23をさらに封止している。封止部材40は、電気的絶縁性を有している。封止部材40は、例えば、シリコーンゲルまたはエポキシ樹脂のような絶縁樹脂材料で形成されている。 The sealing member 40 is provided inside the outer enclosure 37. The sealing member 40 seals the semiconductor element 20. The sealing member 40 further seals the insulating substrate 4. The sealing member 40 further seals the conductive wire 23. The sealing member 40 has electrical insulation. The sealing member 40 is formed of, for example, an insulating resin material such as silicone gel or epoxy resin.
 蓋部39は、エポキシ樹脂、ポリイミド樹脂、アクリル樹脂または液晶ポリマー(LCP)のような電気的絶縁性を有する樹脂で形成されている。蓋部39は、封止部材40を覆い、外囲体37の開口を閉塞している。 (4) The lid 39 is made of an electrically insulating resin such as an epoxy resin, a polyimide resin, an acrylic resin, or a liquid crystal polymer (LCP). The lid 39 covers the sealing member 40 and closes the opening of the outer enclosure 37.
 図11及び図12を参照して、実施の形態1のパワーモジュール1の製造方法を説明する。 製造 A method for manufacturing the power module 1 according to the first embodiment will be described with reference to FIGS.
 本実施の形態のパワーモジュール1の製造方法は、絶縁回路基板3を準備すること(S1)を備える。絶縁回路基板3は、絶縁基板4と、第1金属層5と、第2金属層8とを含む。第1金属層5の第2側面5cに、1つ以上の第1の溝6が形成されている。1つ以上の第1の溝6は、第1金属層5の第3主面5aから第4主面5bに向かって延在している。第1金属層5の第3主面5aに、1つ以上の第1の溝6と連通する第2の溝7が形成されている。第2の溝7は、第3主面5aの周縁部の少なくとも一部に沿って延在している。具体的には、1つ以上の第1の溝6及び第2の溝7は、第1金属層5の第2側面5cにレーザー加工、機械加工またはエッチングを施すことによって形成される。第1金属層5が絶縁基板4の第1主面4aに貼り付けられる。第2金属層8が絶縁基板4の第2主面4bに貼り付けられる。こうして、絶縁回路基板3が得られる。 製造 The method for manufacturing the power module 1 according to the present embodiment includes preparing the insulated circuit board 3 (S1). The insulating circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8. One or more first grooves 6 are formed in the second side surface 5 c of the first metal layer 5. One or more first grooves 6 extend from the third main surface 5a of the first metal layer 5 toward the fourth main surface 5b. On the third main surface 5a of the first metal layer 5, a second groove 7 communicating with one or more first grooves 6 is formed. The second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a. Specifically, one or more first grooves 6 and second grooves 7 are formed by performing laser processing, mechanical processing, or etching on the second side surface 5c of the first metal layer 5. First metal layer 5 is attached to first main surface 4 a of insulating substrate 4. Second metal layer 8 is attached to second main surface 4b of insulating substrate 4. Thus, the insulated circuit board 3 is obtained.
 本実施の形態のパワーモジュール1の製造方法は、ベース板30上に絶縁回路基板3を設けること(S2)を備える。具体的には、ベース板30の一部上に、ソルダーレジスト層32が形成される。ソルダーレジスト層32は開口部を有している。ベース板30の一部上にソルダーレジスト材料を塗布し、ソルダーレジスト材料を硬化させることによって、ソルダーレジスト層32が形成される。それから、ソルダーレジスト層32の開口部に、はんだのような接合部材31が設けられる。絶縁回路基板3は、接合部材31を用いて、ベース板30に接合される。 製造 The method for manufacturing the power module 1 according to the present embodiment includes providing the insulated circuit board 3 on the base plate 30 (S2). Specifically, a solder resist layer 32 is formed on a part of the base plate 30. The solder resist layer 32 has an opening. The solder resist layer 32 is formed by applying a solder resist material on a part of the base plate 30 and curing the solder resist material. Then, the joining member 31 such as solder is provided in the opening of the solder resist layer 32. The insulated circuit board 3 is joined to the base plate 30 using a joining member 31.
 本実施の形態のパワーモジュール1の製造方法は、絶縁回路基板3の第2金属層8に半導体素子20を接合すること(S3)を備える。具体的には、半導体素子20は、第1導電接合部材21を用いて、第2金属層8の第1金属層部分9に接合される。第1導電接合部材21は、例えば、はんだ、導電性接着剤または焼結接合部材である。第2金属層8に半導体素子20を接合すること(S3)は、ベース板30上に絶縁回路基板3を設けること(S2)の前に行われてもよい。 The method for manufacturing the power module 1 according to the present embodiment includes bonding the semiconductor element 20 to the second metal layer 8 of the insulated circuit board 3 (S3). Specifically, the semiconductor element 20 is bonded to the first metal layer portion 9 of the second metal layer 8 using the first conductive bonding member 21. The first conductive bonding member 21 is, for example, a solder, a conductive adhesive, or a sintered bonding member. Joining the semiconductor element 20 to the second metal layer 8 (S3) may be performed before providing the insulating circuit board 3 on the base plate 30 (S2).
 本実施の形態のパワーモジュール1の製造方法は、ベース板30と絶縁基板4の第1主面4aとの間に第1絶縁樹脂部33を設けること(S4)を備える。第1金属層5の第2側面5cと絶縁基板4の第1主面4aとによって形成される第1角部17の少なくとも一部は、第1絶縁樹脂部33で覆われる。第1金属層5とは反対側の第1絶縁樹脂部33の表面33sは、ベース板30の側から第1主面4aの側に向かうにつれて第1主面4aに対する傾きが次第に大きくなる傾斜面である。第1絶縁樹脂部33は、ベース板30の側から第1主面4aの側に向かうにつれて収束する形状を有している。特定的には、第1角部17の全周は、第1絶縁樹脂部33で覆われる。絶縁基板4の第2主面4bの平面視において、第1絶縁樹脂部33は、絶縁基板4の外側に延在している。 The method for manufacturing the power module 1 of the present embodiment includes providing the first insulating resin portion 33 between the base plate 30 and the first main surface 4a of the insulating substrate 4 (S4). At least a part of the first corner portion 17 formed by the second side surface 5c of the first metal layer 5 and the first main surface 4a of the insulating substrate 4 is covered with the first insulating resin portion 33. The surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is. The first insulating resin portion 33 has a shape that converges from the base plate 30 side to the first main surface 4a side. Specifically, the entire circumference of the first corner portion 17 is covered with the first insulating resin portion 33. In a plan view of the second main surface 4 b of the insulating substrate 4, the first insulating resin portion 33 extends outside the insulating substrate 4.
 具体的には、ベース板30と絶縁基板4の第1主面4aとの間に第1絶縁樹脂材料を供給する(S41)。例えば、1つ以上の第1の溝6のベース板30の側の部分内に第1絶縁樹脂材料を供給する(S42)。ソルダーレジスト層32上に第1絶縁樹脂材料を塗布する。第1絶縁樹脂材料は、絶縁基板4の第1主面4aとベース板30との間の空間のうちベース板30の側の部分にのみ供給される。それから、1つ以上の第1の溝6における毛細管現象によって、第1絶縁樹脂材料は、1つ以上の第1の溝6を通して第1角部17の少なくとも一部に供給される(S43)。こうして、第1角部17の少なくとも一部は、第1絶縁樹脂材料によって覆われる。 Specifically, a first insulating resin material is supplied between the base plate 30 and the first main surface 4a of the insulating substrate 4 (S41). For example, the first insulating resin material is supplied into a portion of the one or more first grooves 6 on the side of the base plate 30 (S42). A first insulating resin material is applied on the solder resist layer 32. The first insulating resin material is supplied only to a portion on the base plate 30 side in the space between the first main surface 4a of the insulating substrate 4 and the base plate 30. Then, the first insulating resin material is supplied to at least a part of the first corner 17 through the one or more first grooves 6 by the capillary action in the one or more first grooves 6 (S43). Thus, at least a part of the first corner portion 17 is covered with the first insulating resin material.
 第2の溝7は、1つ以上の第1の溝6と連通している。1つ以上の第1の溝6における毛細管現象によって1つ以上の第1の溝6を這い上がる第1絶縁樹脂材料は、第2の溝7に供給される。1つ以上の第1の溝6から第2の溝7に供給された第1絶縁樹脂材料は、第2の溝7における毛細管現象によって、第2の溝7内に拡げられる(S44)。こうして、第1絶縁樹脂材料は、第2の溝7内に設けられる。 The second groove 7 communicates with one or more first grooves 6. The first insulating resin material crawling up the one or more first grooves 6 by the capillary action in the one or more first grooves 6 is supplied to the second grooves 7. The first insulating resin material supplied from the one or more first grooves 6 to the second grooves 7 is expanded into the second grooves 7 by capillary action in the second grooves 7 (S44). Thus, the first insulating resin material is provided in the second groove 7.
 それから、第1絶縁樹脂材料に脱泡処理を施す(S45)。具体的には、減圧雰囲気中に第1絶縁樹脂材料を保持して、第1絶縁樹脂材料は脱泡される。それから、第1絶縁樹脂材料を硬化させる(S46)。こうして、第1絶縁樹脂部33が形成される。 (4) Then, the first insulating resin material is subjected to defoaming treatment (S45). Specifically, the first insulating resin material is held in a reduced pressure atmosphere, and the first insulating resin material is defoamed. Then, the first insulating resin material is cured (S46). Thus, the first insulating resin portion 33 is formed.
 本実施の形態のパワーモジュール1の製造方法は、半導体素子20に電気配線(例えば、導電ワイヤ23、第1リード端子25及び第2リード端子26)を施すこと(S6)を備える。具体的には、導電ワイヤ23は、半導体素子20と第2金属層8の第2金属層部分10とにボンディングされる。第1リード端子25が、第2導電接合部材27を用いて第2金属層8の第1金属層部分9に接合される。第2リード端子26が、第3導電接合部材28を用いて第2金属層8の第2金属層部分10に接合される。半導体素子20に電気配線を施すこと(S6)は、第1絶縁樹脂部33を設けること(S4)の前に行われてもよい。 The method for manufacturing the power module 1 according to the present embodiment includes providing electric wiring (for example, the conductive wire 23, the first lead terminal 25, and the second lead terminal 26) to the semiconductor element 20 (S6). Specifically, the conductive wire 23 is bonded to the semiconductor element 20 and the second metal layer portion 10 of the second metal layer 8. The first lead terminal 25 is joined to the first metal layer portion 9 of the second metal layer 8 using the second conductive joining member 27. The second lead terminal 26 is joined to the second metal layer portion 10 of the second metal layer 8 using a third conductive joining member 28. The application of the electric wiring to the semiconductor element 20 (S6) may be performed before the provision of the first insulating resin portion 33 (S4).
 本実施の形態のパワーモジュール1の製造方法は、封止部材40を用いて半導体素子20を封止すること(S7)を備える。具体的には、外囲体37は、接着剤38を用いてベース板30に接合される。封止部材40は、外囲体37の内側に設けられる。具体的には、封止材料を外囲体37の内側に注入する。それから封止材料を硬化させる。封止部材40は、蓋部39で覆われる。外囲体37の開口は、蓋部39で閉塞される。第1リード端子25及び第2リード端子26は、蓋部39を貫通してパワーモジュール1の外部に引き出される。こうして、パワーモジュール1が得られる。 The method for manufacturing the power module 1 of the present embodiment includes sealing the semiconductor element 20 using the sealing member 40 (S7). Specifically, the outer enclosure 37 is joined to the base plate 30 using an adhesive 38. The sealing member 40 is provided inside the outer enclosure 37. Specifically, a sealing material is injected into the inside of the outer enclosure 37. The sealing material is then cured. The sealing member 40 is covered with the lid 39. The opening of the outer enclosure 37 is closed by a lid 39. The first lead terminal 25 and the second lead terminal 26 are drawn out of the power module 1 through the cover 39. Thus, the power module 1 is obtained.
 本実施の形態のパワーモジュール1及びその製造方法は、以下の効果を奏する。
 本実施の形態のパワーモジュール1は、ベース板30と、絶縁回路基板3と、半導体素子20と、第1絶縁樹脂部33とを備える。絶縁回路基板3は、ベース板30上に設けられている。絶縁回路基板3は、絶縁基板4と、第1金属層5と、第2金属層8とを含む。絶縁基板4は、ベース板30に面する第1主面4aと、第1主面4aとは反対側の第2主面4bと、第1主面4aと第2主面4bとを接続する第1側面4cとを含む。第1金属層5は、絶縁基板4の第1主面4a上に設けられている。第2金属層8は、絶縁基板4の第2主面4b上に設けられている。半導体素子20は、第2金属層8に接合されている。第1絶縁樹脂部33は、ベース板30と第1主面4aとの間に設けられている。
The power module 1 of the present embodiment and the method of manufacturing the same have the following effects.
The power module 1 of the present embodiment includes a base plate 30, an insulated circuit board 3, a semiconductor element 20, and a first insulating resin portion 33. The insulated circuit board 3 is provided on the base plate 30. The insulating circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8. The insulating substrate 4 connects the first main surface 4a facing the base plate 30, the second main surface 4b opposite to the first main surface 4a, and the first main surface 4a and the second main surface 4b. And a first side surface 4c. The first metal layer 5 is provided on the first main surface 4a of the insulating substrate 4. The second metal layer 8 is provided on the second main surface 4b of the insulating substrate 4. The semiconductor element 20 is joined to the second metal layer 8. The first insulating resin portion 33 is provided between the base plate 30 and the first main surface 4a.
 第1金属層5は、絶縁基板4に面する第3主面5aと、ベース板30に面する第4主面5bと、第3主面5aと第4主面5bとを接続する第2側面5cとを含む。第2側面5cと第1主面4aとによって形成される第1角部17の少なくとも一部は、第1絶縁樹脂部33で覆われている。第1金属層5から露出している第1主面4aの第1周縁部4pは、第1角部17に近位の第1領域4qと、第1領域4qに隣接しかつ第1角部17から遠位の第2領域4rとを含む。第1領域4qは第1絶縁樹脂部33で覆われている。第2領域4rは、第1絶縁樹脂部33から露出している。第1金属層5とは反対側の第1絶縁樹脂部33の表面33sは、ベース板30の側から第1主面4aの側に向かうにつれて第1主面4aに対する傾きが次第に大きくなる傾斜面である。 The first metal layer 5 includes a third main surface 5a facing the insulating substrate 4, a fourth main surface 5b facing the base plate 30, and a second main surface 5a connecting the third main surface 5a and the fourth main surface 5b. And a side surface 5c. At least a part of the first corner portion 17 formed by the second side surface 5c and the first main surface 4a is covered with the first insulating resin portion 33. The first peripheral portion 4p of the first main surface 4a exposed from the first metal layer 5 has a first region 4q which is close to the first corner 17 and a first corner which is adjacent to the first region 4q. 17 and a second region 4r distal to 17. The first region 4q is covered with the first insulating resin portion 33. The second region 4r is exposed from the first insulating resin part 33. The surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is.
 そのため、絶縁基板4の第1主面4aとベース板30との間に第1絶縁樹脂部33を設ける際に第1絶縁樹脂部33内に気泡が噛み込まれても、気泡は第1絶縁樹脂部33と第1主面4aとの間の隙間に抜ける。第1絶縁樹脂部33内に気泡が残存することが抑制される。また、絶縁回路基板3と第1絶縁樹脂部33との間の接触面積が減少する。パワーモジュール1の動作中に、絶縁回路基板3と第1絶縁樹脂部33との間の熱膨張係数の差に起因して第1絶縁樹脂部33へ印加される応力が減少する。絶縁回路基板3と第1絶縁樹脂部33との間の熱膨張係数の差に起因して、第1絶縁樹脂部33にクラックが発生することが防止される。さらに、パワーモジュール1の動作時に電気力線50が集中する第1角部17の少なくとも一部は、第1絶縁樹脂部33によって覆われている。こうして、パワーモジュール1の絶縁耐圧が向上する。パワーモジュール1の信頼性が向上する。 Therefore, even when air bubbles are caught in the first insulating resin portion 33 when the first insulating resin portion 33 is provided between the first main surface 4a of the insulating substrate 4 and the base plate 30, the air bubbles remain in the first insulating resin portion 33. It escapes into the gap between the resin part 33 and the first main surface 4a. Residual air bubbles in the first insulating resin portion 33 are suppressed. Further, the contact area between the insulating circuit board 3 and the first insulating resin portion 33 is reduced. During the operation of the power module 1, the stress applied to the first insulating resin part 33 due to the difference in thermal expansion coefficient between the insulating circuit board 3 and the first insulating resin part 33 decreases. Cracks are prevented from occurring in the first insulating resin portion 33 due to the difference in thermal expansion coefficient between the insulating circuit board 3 and the first insulating resin portion 33. Further, at least a part of the first corner portion 17 where the electric lines of force 50 are concentrated when the power module 1 operates is covered with the first insulating resin portion 33. Thus, the withstand voltage of the power module 1 is improved. The reliability of the power module 1 is improved.
 本実施の形態のパワーモジュール1では、第2側面5cに1つ以上の第1の溝6が形成されている。1つ以上の第1の溝6は、第3主面5aから第4主面5bに向かって延在している。第1絶縁樹脂部33は、1つ以上の第1の溝6内に設けられている。そのため、1つ以上の第1の溝6における毛細管現象を利用して、第1絶縁樹脂部33が第1角部17の少なくとも一部を覆いながら、第1主面4aの第2領域4rを第1絶縁樹脂部33から露出させることができるとともに、第1絶縁樹脂部33の表面33sを、ベース板30の側から第1主面4aの側に向かうにつれて第1主面4aに対する傾きが次第に大きくなる傾斜面とすることができる。 パ ワ ー In power module 1 of the present embodiment, one or more first grooves 6 are formed in second side surface 5c. One or more first grooves 6 extend from the third main surface 5a toward the fourth main surface 5b. The first insulating resin portion 33 is provided in one or more first grooves 6. Therefore, the first insulating resin portion 33 covers at least a part of the first corner portion 17 while utilizing the capillary phenomenon in the one or more first grooves 6 to form the second region 4r of the first main surface 4a. While being able to be exposed from the first insulating resin portion 33, the inclination of the surface 33s of the first insulating resin portion 33 with respect to the first main surface 4a gradually increases from the base plate 30 toward the first main surface 4a. It can be an inclined surface that becomes larger.
 本実施の形態のパワーモジュール1では、1つ以上の第1の溝6は、0.1mm以下の第1の幅と0.1mm以下の第1の深さとを有する。そのため、1つ以上の第1の溝6における毛細管現象を利用して、第1絶縁樹脂部33が第1角部17の少なくとも一部を覆いながら、第1主面4aの第2領域4rを第1絶縁樹脂部33から露出させることができるとともに、第1絶縁樹脂部33の表面33sを、ベース板30の側から第1主面4aの側に向かうにつれて第1主面4aに対する傾きが次第に大きくなる傾斜面とすることができる。 で は In power module 1 of the present embodiment, one or more first grooves 6 have a first width of 0.1 mm or less and a first depth of 0.1 mm or less. Therefore, the first insulating resin portion 33 covers at least a part of the first corner portion 17 while utilizing the capillary phenomenon in the one or more first grooves 6 to form the second region 4r of the first main surface 4a. While being able to be exposed from the first insulating resin portion 33, the inclination of the surface 33s of the first insulating resin portion 33 with respect to the first main surface 4a gradually increases from the base plate 30 toward the first main surface 4a. It can be an inclined surface that becomes larger.
 本実施の形態のパワーモジュール1では、1つ以上の第1の溝6は、複数の第1の溝6である。複数の第1の溝6は、第3主面5aの全周にわたって形成されている。そのため、第1角部17のより広い範囲が、第1絶縁樹脂部33によって覆われている。パワーモジュール1の絶縁耐圧が向上する。パワーモジュール1の信頼性が向上する。 で は In power module 1 of the present embodiment, one or more first grooves 6 are a plurality of first grooves 6. The plurality of first grooves 6 are formed over the entire circumference of the third main surface 5a. Therefore, a wider range of the first corner portion 17 is covered by the first insulating resin portion 33. The withstand voltage of the power module 1 is improved. The reliability of the power module 1 is improved.
 本実施の形態のパワーモジュール1では、第3主面5aに、1つ以上の第1の溝6と連通する第2の溝7が形成されている。第2の溝7は、第3主面5aの周縁部の少なくとも一部に沿って延在している。第1絶縁樹脂部33は、第2の溝7内にも設けられている。そのため、第1角部17のより広い範囲が、第1絶縁樹脂部33によって覆われている。パワーモジュール1の絶縁耐圧が向上する。パワーモジュール1の信頼性が向上する。 パ ワ ー In the power module 1 of the present embodiment, a second groove 7 communicating with one or more first grooves 6 is formed in the third main surface 5a. The second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a. The first insulating resin part 33 is also provided in the second groove 7. Therefore, a wider range of the first corner portion 17 is covered by the first insulating resin portion 33. The withstand voltage of the power module 1 is improved. The reliability of the power module 1 is improved.
 本実施の形態のパワーモジュール1では、第2の溝7は、0.1mm以上0.5mm以下の第2の幅と0.1mm以上0.5mm以下の第2の深さとを有する。そのため、第2の溝7における毛細管現象を利用して、第1絶縁樹脂部33が第2の溝7内に容易に設けられ得る。 パ ワ ー In power module 1 of the present embodiment, second groove 7 has a second width of 0.1 mm or more and 0.5 mm or less and a second depth of 0.1 mm or more and 0.5 mm or less. Therefore, the first insulating resin portion 33 can be easily provided in the second groove 7 by utilizing the capillary phenomenon in the second groove 7.
 本実施の形態のパワーモジュール1では、第2金属層8は、絶縁基板4に面する第5主面8aと、第5主面8aとは反対側の第6主面8bと、第5主面8aと第6主面8bとを接続する第3側面8cとを含む。絶縁基板4の第1側面4cと第1金属層5の第2側面5cとの間の第1間隔D1は、絶縁基板4の第1側面4cと第2金属層8の第3側面8cとの間の第2間隔D2に実質的に等しい。そのため、本実施の形態のパワーモジュール1の第3主面5a及び第4主面5bは、第1間隔D1が第2間隔D2よりも大きな比較例のパワーモジュールの第3主面5a及び第4主面5bよりも大きい。本実施の形態のパワーモジュール1は、比較例のパワーモジュールよりも、半導体素子20から発生する熱を、ベース板30を通して、パワーモジュール1の外部に効率的に放散させることができる。パワーモジュール1の信頼性が向上する。 In power module 1 of the present embodiment, second metal layer 8 includes fifth main surface 8a facing insulating substrate 4, sixth main surface 8b opposite to fifth main surface 8a, and fifth main surface 8b. It includes a third side surface 8c connecting the surface 8a and the sixth main surface 8b. The first distance D 1 of the between the first side 4c and the second side surface 5c of the first metal layer 5 of the insulating substrate 4, and a third side surface 8c of the first side 4c and the second metal layer 8 of the insulating substrate 4 substantially equal to the second distance D 2 between. Therefore, the third main surface 5a and the fourth major surface 5b of the power module 1 of this embodiment, the third main surface 5a and the power module of the first distance D 1 is greater Comparative Example than the second distance D 2 It is larger than the fourth main surface 5b. The power module 1 of the present embodiment can more efficiently dissipate heat generated from the semiconductor element 20 to the outside of the power module 1 through the base plate 30 than the power module of the comparative example. The reliability of the power module 1 is improved.
 本実施の形態のパワーモジュール1では、第2主面4bの平面視において、第1絶縁樹脂部33は、絶縁基板4の外側に延在している。そのため、パワーモジュール1における部分放電の経路52を長くすることができ、パワーモジュール1が絶縁破壊に至るまでのパワーモジュール1の寿命を長くすることができる。パワーモジュール1の信頼性が向上する。 In the power module 1 of the present embodiment, the first insulating resin portion 33 extends outside the insulating substrate 4 in a plan view of the second main surface 4b. Therefore, the path 52 of the partial discharge in the power module 1 can be lengthened, and the life of the power module 1 until the power module 1 reaches dielectric breakdown can be lengthened. The reliability of the power module 1 is improved.
 本実施の形態のパワーモジュール1の製造方法は、ベース板30上に絶縁回路基板3を設けること(S2)を備える。絶縁回路基板3は、絶縁基板4と、第1金属層5と、第2金属層8とを含む。絶縁基板4は、ベース板30に面する第1主面4aと、第1主面4aとは反対側の第2主面4bと、第1主面4aと第2主面4bとを接続する第1側面4cとを含む。第1金属層5は、絶縁基板4の第1主面4a上に設けられている。第2金属層8は、絶縁基板4の第2主面4b上に設けられている。本実施の形態のパワーモジュール1の製造方法は、第2金属層8に半導体素子20を接合すること(S3)と、ベース板30と第1主面4aとの間に第1絶縁樹脂部33を設けること(S4)とを備える。 製造 The method for manufacturing the power module 1 according to the present embodiment includes providing the insulated circuit board 3 on the base plate 30 (S2). The insulating circuit board 3 includes an insulating substrate 4, a first metal layer 5, and a second metal layer 8. The insulating substrate 4 connects the first main surface 4a facing the base plate 30, the second main surface 4b opposite to the first main surface 4a, and the first main surface 4a and the second main surface 4b. And a first side surface 4c. The first metal layer 5 is provided on the first main surface 4a of the insulating substrate 4. The second metal layer 8 is provided on the second main surface 4b of the insulating substrate 4. The method for manufacturing the power module 1 according to the present embodiment includes joining the semiconductor element 20 to the second metal layer 8 (S3) and providing the first insulating resin portion 33 between the base plate 30 and the first main surface 4a. (S4).
 第1金属層5は、絶縁基板4に面する第3主面5aと、ベース板30に面する第4主面5bと、第3主面5aと第4主面5bとを接続する第2側面5cとを含む。第2側面5cと第1主面4aとによって形成される第1角部17の少なくとも一部は、第1絶縁樹脂部33で覆われている。第1金属層5から露出している第1主面4aの第1周縁部4pは、第1角部17に近位の第1領域4qと、第1領域4qに隣接しかつ第1角部17から遠位の第2領域4rとを含む。第1領域4qは第1絶縁樹脂部33で覆われている。第2領域4rは、第1絶縁樹脂部33から露出している。第1金属層5とは反対側の第1絶縁樹脂部33の表面33sは、ベース板30の側から第1主面4aの側に向かうにつれて第1主面4aに対する傾きが次第に大きくなる傾斜面である。 The first metal layer 5 includes a third main surface 5a facing the insulating substrate 4, a fourth main surface 5b facing the base plate 30, and a second main surface 5a connecting the third main surface 5a and the fourth main surface 5b. And a side surface 5c. At least a part of the first corner portion 17 formed by the second side surface 5c and the first main surface 4a is covered with the first insulating resin portion 33. The first peripheral portion 4p of the first main surface 4a exposed from the first metal layer 5 has a first region 4q which is close to the first corner 17 and a first corner which is adjacent to the first region 4q. 17 and a second region 4r distal to 17. The first region 4q is covered with the first insulating resin portion 33. The second region 4r is exposed from the first insulating resin part 33. The surface 33s of the first insulating resin portion 33 opposite to the first metal layer 5 has an inclined surface whose inclination with respect to the first main surface 4a gradually increases from the base plate 30 side toward the first main surface 4a. It is.
 そのため、絶縁基板4の第1主面4aとベース板30との間に第1絶縁樹脂部33を設ける際に第1絶縁樹脂部33内に気泡が噛み込まれても、気泡は第1絶縁樹脂部33と第1主面4aとの間の隙間に抜ける。第1絶縁樹脂部33内に気泡が残存することが抑制される。また、絶縁回路基板3と第1絶縁樹脂部33との間の接触面積が減少する。パワーモジュール1の動作中に、絶縁回路基板3と第1絶縁樹脂部33との間の熱膨張係数の差に起因して第1絶縁樹脂部33へ印加される応力が減少する。絶縁回路基板3と第1絶縁樹脂部33との間の熱膨張係数の差に起因して、第1絶縁樹脂部33にクラックが発生することが防止される。さらに、パワーモジュール1の動作時に電気力線50が集中する第1角部17の少なくとも一部は、第1絶縁樹脂部33によって覆われている。パワーモジュール1の絶縁耐圧が向上する。本実施の形態のパワーモジュール1の製造方法によれば、向上された信頼性を有するパワーモジュール1を得ることができる。 Therefore, even when air bubbles are caught in the first insulating resin portion 33 when the first insulating resin portion 33 is provided between the first main surface 4a of the insulating substrate 4 and the base plate 30, the air bubbles remain in the first insulating resin portion 33. It escapes into the gap between the resin part 33 and the first main surface 4a. Residual air bubbles in the first insulating resin portion 33 are suppressed. Further, the contact area between the insulating circuit board 3 and the first insulating resin portion 33 is reduced. During the operation of the power module 1, the stress applied to the first insulating resin part 33 due to the difference in thermal expansion coefficient between the insulating circuit board 3 and the first insulating resin part 33 decreases. Cracks are prevented from occurring in the first insulating resin portion 33 due to the difference in thermal expansion coefficient between the insulating circuit board 3 and the first insulating resin portion 33. Further, at least a part of the first corner portion 17 where the electric lines of force 50 are concentrated when the power module 1 operates is covered with the first insulating resin portion 33. The withstand voltage of the power module 1 is improved. According to the method of manufacturing power module 1 of the present embodiment, power module 1 having improved reliability can be obtained.
 本実施の形態のパワーモジュール1の製造方法では、第2側面5cに1つ以上の第1の溝6が形成されている。1つ以上の第1の溝6は、第3主面5aから第4主面5bに向かって延在している。第1絶縁樹脂部33を設けること(S4)は、1つ以上の第1の溝6のベース板30の側の部分内に第1絶縁樹脂材料を供給すること(S42)と、1つ以上の第1の溝6における毛細管現象によって、第1絶縁樹脂材料を1つ以上の第1の溝6を通して第1角部17の少なくとも一部に供給すること(S43)とを含む。本実施の形態のパワーモジュール1の製造方法によれば、1つ以上の第1の溝6における毛細管現象を利用して、第1絶縁樹脂部33が、第1角部17の少なくとも一部を覆いながら、第1主面4aの第2領域4rを第1絶縁樹脂部33から露出させることができるとともに、第1絶縁樹脂部33の表面33sを、ベース板30の側から第1主面4aの側に向かうにつれて第1主面4aに対する傾きが次第に大きくなる傾斜面とすることができる。 In the method for manufacturing the power module 1 according to the present embodiment, one or more first grooves 6 are formed on the second side surface 5c. One or more first grooves 6 extend from the third main surface 5a toward the fourth main surface 5b. Providing the first insulating resin portion 33 (S4) includes supplying the first insulating resin material into a portion of the one or more first grooves 6 on the base plate 30 side (S42), Supplying the first insulating resin material to at least a part of the first corner portion 17 through the one or more first grooves 6 by the capillary action in the first groove 6 (S43). According to the method of manufacturing power module 1 of the present embodiment, first insulating resin portion 33 forms at least a part of first corner portion 17 by utilizing the capillary phenomenon in one or more first grooves 6. While covering, the second region 4r of the first main surface 4a can be exposed from the first insulating resin portion 33, and the surface 33s of the first insulating resin portion 33 is moved from the base plate 30 side to the first main surface 4a. , The slope with respect to the first main surface 4a gradually increases.
 本実施の形態のパワーモジュール1の製造方法では、1つ以上の第1の溝6は、複数の第1の溝6である。第3主面5aの全周にわたって、複数の第1の溝6が形成されている。そのため、第1角部17のより広い範囲が、第1絶縁樹脂部33によって覆われている。パワーモジュール1の絶縁耐圧が向上する。本実施の形態のパワーモジュール1の製造方法によれば、向上された信頼性を有するパワーモジュール1を得ることができる。 In the method for manufacturing the power module 1 according to the present embodiment, one or more first grooves 6 are a plurality of first grooves 6. A plurality of first grooves 6 are formed over the entire circumference of the third main surface 5a. Therefore, a wider range of the first corner portion 17 is covered by the first insulating resin portion 33. The withstand voltage of the power module 1 is improved. According to the method of manufacturing power module 1 of the present embodiment, power module 1 having improved reliability can be obtained.
 本実施の形態のパワーモジュール1の製造方法では、第3主面5aに、1つ以上の第1の溝6と連通する第2の溝7が形成されている。第2の溝7は、第3主面5aの周縁部の少なくとも一部に沿って延在している。第1絶縁樹脂部33を設けることは、第1の溝6から第2の溝7に供給された第1絶縁樹脂材料を、第2の溝7における毛細管現象によって、第2の溝7内に拡げること(S44)をさらに含む。そのため、第1角部17のより広い範囲が、第1絶縁樹脂部33によって容易に覆われる。パワーモジュール1の絶縁耐圧が向上する。本実施の形態のパワーモジュール1の製造方法によれば、向上された信頼性を有するパワーモジュール1を得ることができる。 で は In the method of manufacturing power module 1 of the present embodiment, second groove 7 communicating with one or more first grooves 6 is formed in third main surface 5a. The second groove 7 extends along at least a part of the peripheral portion of the third main surface 5a. Providing the first insulating resin portion 33 is that the first insulating resin material supplied from the first groove 6 to the second groove 7 is transferred into the second groove 7 by a capillary phenomenon in the second groove 7. Expanding (S44) is further included. Therefore, a wider range of the first corner portion 17 is easily covered by the first insulating resin portion 33. The withstand voltage of the power module 1 is improved. According to the method of manufacturing power module 1 of the present embodiment, power module 1 having improved reliability can be obtained.
 本実施の形態のパワーモジュール1の製造方法では、第2主面4bの平面視において、第1絶縁樹脂部33は、絶縁基板4の外側に延在している。そのため、パワーモジュール1における部分放電の経路52を長くすることができ、パワーモジュール1が絶縁破壊に至るまでのパワーモジュール1の寿命を長くすることができる。パワーモジュール1の信頼性が向上する。 In the method of manufacturing the power module 1 according to the present embodiment, the first insulating resin portion 33 extends outside the insulating substrate 4 in a plan view of the second main surface 4b. Therefore, the path 52 of the partial discharge in the power module 1 can be lengthened, and the life of the power module 1 until the power module 1 reaches dielectric breakdown can be lengthened. The reliability of the power module 1 is improved.
 実施の形態2.
 図13から図15を参照して、実施の形態2のパワーモジュール1bを説明する。本実施の形態のパワーモジュール1bは、実施の形態1のパワーモジュール1と同様の構成に加えて、第2絶縁樹脂部42をさらに備える。
Embodiment 2 FIG.
The power module 1b according to the second embodiment will be described with reference to FIGS. The power module 1b of the present embodiment further includes a second insulating resin part 42 in addition to the same configuration as the power module 1 of the first embodiment.
 図13及び図14に示されるように、第2絶縁樹脂部42は、第3側面8cと第2主面4bとによって形成される第3角部18の少なくとも一部を覆っている。第3角部18の少なくとも一部は第2絶縁樹脂部42で覆われているため、第3側面8cの少なくとも一部と第2主面4bの一部とは、第2絶縁樹脂部42で覆われている。特定的には、第3角部18の全ては、第2絶縁樹脂部42で覆われている。図15に示されるように、パワーモジュール1bの動作時に電気力線50が集中する第3角部18の少なくとも一部は、第2絶縁樹脂部42によって覆われている。パワーモジュール1bの絶縁耐圧が向上する。パワーモジュール1bの信頼性が向上する。 As shown in FIGS. 13 and 14, the second insulating resin portion 42 covers at least a part of the third corner portion 18 formed by the third side surface 8c and the second main surface 4b. Since at least a portion of the third corner portion 18 is covered with the second insulating resin portion 42, at least a portion of the third side surface 8c and a portion of the second main surface 4b are joined by the second insulating resin portion 42. Covered. Specifically, the entire third corner 18 is covered with the second insulating resin part 42. As shown in FIG. 15, at least a part of the third corner portion 18 where the electric lines of force 50 are concentrated when the power module 1 b operates is covered with the second insulating resin portion 42. The withstand voltage of the power module 1b is improved. The reliability of the power module 1b is improved.
 特定的には、第2絶縁樹脂部42は、第2金属層8から露出している第2主面4bの第2周縁部4sを覆っている。第2絶縁樹脂部42は、第3角部18から、第1側面4cと第2主面4bとによって形成される第4角部4eまで延在している。第2絶縁樹脂部42は、第3側面8cと第6主面8bとによって形成される第5角部8dをさらに覆っている。第2絶縁樹脂部42は、第6主面8bの周縁部8eの一部をさらに覆っている。具体的には、第2絶縁樹脂部42は、第5角部8dから幅w3にわたって、第6主面8bの周縁部8eを覆っている。幅w3は、例えば、最大で1.0mm以下である。幅w3は、例えば、最大で0.7mm以下であってもよい。幅w3は、例えば、少なくとも0.1mm以上である。幅w3は、例えば、少なくとも0.2mm以上であってもよい。 Specifically, the second insulating resin portion 42 covers the second peripheral portion 4s of the second main surface 4b exposed from the second metal layer 8. The second insulating resin portion 42 extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b. The second insulating resin portion 42 further covers a fifth corner 8d formed by the third side surface 8c and the sixth main surface 8b. The second insulating resin portion 42 further covers a part of the peripheral portion 8e of the sixth main surface 8b. Specifically, the second insulating resin portion 42, across the width w 3 from the fifth corner 8d, and covers the peripheral edge portion 8e of the sixth main surface 8b. Width w 3 is, for example, 1.0mm or less at the maximum. Width w 3, for example, it may be 0.7mm or less at the maximum. Width w 3 is, for example, at least 0.1mm or more. Width w 3, for example, it may be at least 0.2mm or more.
 第2絶縁樹脂部42は、封止部材40と異なる材料で形成されている。第2絶縁樹脂部42は、例えば、シリコーンゴムまたはポリイミド樹脂で形成されている。第2絶縁樹脂部42は、封止部材40よりも低い誘電率を有してもよい。そのため、第3角部18における電界強度が減少し、第3角部18において部分放電が発生することが抑制される。第2絶縁樹脂部42は、第1絶縁樹脂部33と同じ材料で形成されてもよいし、第1絶縁樹脂部33と異なる材料で形成されてもよい。 The second insulating resin portion 42 is formed of a material different from that of the sealing member 40. The second insulating resin part 42 is formed of, for example, silicone rubber or polyimide resin. The second insulating resin part 42 may have a lower dielectric constant than the sealing member 40. Therefore, the electric field intensity at the third corner 18 decreases, and the occurrence of partial discharge at the third corner 18 is suppressed. The second insulating resin portion 42 may be formed of the same material as the first insulating resin portion 33, or may be formed of a material different from the first insulating resin portion 33.
 第2絶縁樹脂部42は、封止部材40よりも絶縁基板4に対する密着性が高い。そのため、第3角部18において部分放電が発生することが抑制される。また、第2絶縁樹脂部42は、第3角部18から、第1側面4cと第2主面4bとによって形成される第4角部4eまで延在しているため、仮に、第3角部18において部分放電が発生しても、第2主面4bに沿う部分放電の進展速度を低下させることができる。パワーモジュール1bが絶縁破壊に至るまでのパワーモジュール1bの寿命を長くすることができる。パワーモジュール1bの信頼性が向上する。 密 着 The second insulating resin portion 42 has higher adhesion to the insulating substrate 4 than the sealing member 40. Therefore, occurrence of partial discharge in the third corner portion 18 is suppressed. Further, since the second insulating resin portion 42 extends from the third corner portion 18 to the fourth corner portion 4e formed by the first side surface 4c and the second main surface 4b, the third corner portion is temporarily provided. Even if a partial discharge occurs in portion 18, the rate of progress of the partial discharge along second main surface 4b can be reduced. It is possible to extend the life of the power module 1b until the power module 1b breaks down. The reliability of the power module 1b is improved.
 図12及び図16を参照して、実施の形態2のパワーモジュール1bの製造方法を説明する。本実施の形態のパワーモジュール1bの製造方法は、実施の形態1のパワーモジュール1の製造方法と同様の工程に加えて、第2絶縁樹脂部42を設けること(S5)をさらに備える。第2絶縁樹脂部42は、第3角部18の少なくとも一部を覆っている。特定的には、第2絶縁樹脂部42は、第3角部18の全てを覆っている。第2絶縁樹脂部42は、第2金属層8から露出している第2主面4bの第2周縁部4sを覆っている。第2絶縁樹脂部42は、第3角部18から、第1側面4cと第2主面4bとによって形成される第4角部4eまで延在している。 A method of manufacturing the power module 1b according to the second embodiment will be described with reference to FIGS. The method for manufacturing the power module 1b of the present embodiment further includes providing the second insulating resin portion 42 (S5) in addition to the same steps as those of the method of manufacturing the power module 1 of the first embodiment. The second insulating resin part 42 covers at least a part of the third corner 18. Specifically, the second insulating resin portion 42 covers the entire third corner 18. The second insulating resin portion 42 covers the second peripheral portion 4s of the second main surface 4b exposed from the second metal layer 8. The second insulating resin portion 42 extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b.
 特定的には、第2絶縁樹脂材料が供給される(S51)。具体的には、第2絶縁樹脂材料は、第3角部18の少なくとも一部上に塗布される。第2絶縁樹脂材料は、第3角部18の少なくとも一部を覆っている。第2絶縁樹脂材料は、第2金属層8から露出している第2主面4bの第2周縁部4sをさらに覆っている。第2絶縁樹脂材料は、第3角部18から、第1側面4cと第2主面4bとによって形成される第4角部4eまで延在している。第2絶縁樹脂材料は、第3側面8cと第6主面8bとによって形成される第5角部8dをさらに覆っている。第2絶縁樹脂材料は、第6主面8bの周縁部8eの一部をさらに覆っている。 Specifically, the second insulating resin material is supplied (S51). Specifically, the second insulating resin material is applied on at least a part of the third corner 18. The second insulating resin material covers at least a part of the third corner 18. The second insulating resin material further covers the second peripheral portion 4s of the second main surface 4b exposed from the second metal layer 8. The second insulating resin material extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b. The second insulating resin material further covers a fifth corner 8d formed by the third side surface 8c and the sixth main surface 8b. The second insulating resin material further covers a part of the peripheral portion 8e of the sixth main surface 8b.
 それから、第2絶縁樹脂材料に脱泡処理を施す(S52)。具体的には、減圧雰囲気中に第2絶縁樹脂材料を保持して、第2絶縁樹脂材料は脱泡される。それから、第2絶縁樹脂材料を硬化させる(S53)。こうして、第2絶縁樹脂部42が形成される。第2絶縁樹脂材料に脱泡処理を施す(S52)ことは、第1絶縁樹脂材料に脱泡処理を施す(S45)ことと一括して行われてもよい。第2絶縁樹脂材料を硬化させる(S53)ことは、第1絶縁樹脂材料を硬化させる(S46)ことと一括して行われてもよい。半導体素子20に電気配線を施すこと(S6)は、第1絶縁樹脂部33を設けること(S4)及び第2絶縁樹脂部42を設けること(S5)の前に行われてもよい。 (4) Then, a defoaming process is performed on the second insulating resin material (S52). Specifically, the second insulating resin material is held in a reduced-pressure atmosphere, and the second insulating resin material is defoamed. Then, the second insulating resin material is cured (S53). Thus, the second insulating resin portion 42 is formed. Defoaming the second insulating resin material (S52) may be performed together with defoaming the first insulating resin material (S45). Curing the second insulating resin material (S53) may be performed together with curing the first insulating resin material (S46). The application of the electrical wiring to the semiconductor element 20 (S6) may be performed before providing the first insulating resin part 33 (S4) and providing the second insulating resin part 42 (S5).
 本実施の形態のパワーモジュール1b及びその製造方法は、実施の形態1のパワーモジュール1及びその製造方法の効果に加えて、以下の効果を奏する。 パ ワ ー The power module 1b of the present embodiment and the method of manufacturing the same have the following effects in addition to the effects of the power module 1 of the first embodiment and the method of manufacturing the same.
 本実施の形態のパワーモジュール1bは、第2絶縁樹脂部42をさらに備える。第2絶縁樹脂部42は、第3側面8cと第2主面4bとによって形成される第3角部18の少なくとも一部を覆っている。パワーモジュール1bの動作時に電気力線50が集中する第3角部18の少なくとも一部は第3絶縁樹脂部によって覆われているため、パワーモジュール1bの絶縁耐圧が向上する。パワーモジュール1bの信頼性が向上する。 パ ワ ー The power module 1b according to the present embodiment further includes a second insulating resin portion 42. The second insulating resin portion 42 covers at least a part of the third corner 18 formed by the third side surface 8c and the second main surface 4b. At least a part of the third corner portion 18 where the electric lines of force 50 are concentrated during operation of the power module 1b is covered with the third insulating resin portion, so that the withstand voltage of the power module 1b is improved. The reliability of the power module 1b is improved.
 本実施の形態のパワーモジュール1bの製造方法は、第2絶縁樹脂部42を設けること(S5)をさらに備える。第2絶縁樹脂部42は、第3側面8cと第2主面4bとによって形成される第3角部18の少なくとも一部を覆っている。パワーモジュール1bの動作時に電気力線50が集中する第3角部18の少なくとも一部は第3絶縁樹脂部によって覆われているため、パワーモジュール1bの絶縁耐圧が向上する。本実施の形態のパワーモジュール1bの製造方法によれば、向上された信頼性を有するパワーモジュール1bを得ることができる。 製造 The method for manufacturing the power module 1b according to the present embodiment further includes providing the second insulating resin portion 42 (S5). The second insulating resin portion 42 covers at least a part of the third corner 18 formed by the third side surface 8c and the second main surface 4b. At least a part of the third corner portion 18 where the electric lines of force 50 are concentrated during operation of the power module 1b is covered with the third insulating resin portion, so that the withstand voltage of the power module 1b is improved. According to the method of manufacturing power module 1b of the present embodiment, power module 1b having improved reliability can be obtained.
 本実施の形態のパワーモジュール1b及びその製造方法では、第2絶縁樹脂部42は、第2金属層8から露出している第2主面4bの第2周縁部4sを覆っている。第2絶縁樹脂部42は、第3角部18から、第1側面4cと第2主面4bとによって形成される第4角部4eまで延在している。そのため、第2絶縁樹脂部42は、第2主面4bに沿う部分放電の進展速度を低下させることができる。パワーモジュール1bが絶縁破壊に至るまでのパワーモジュール1bの寿命を長くすることができる。パワーモジュール1bの信頼性が向上する。 In the power module 1 b and the method of manufacturing the same according to the present embodiment, the second insulating resin portion 42 covers the second peripheral portion 4 s of the second main surface 4 b exposed from the second metal layer 8. The second insulating resin portion 42 extends from the third corner 18 to a fourth corner 4e formed by the first side surface 4c and the second main surface 4b. Therefore, the second insulating resin portion 42 can reduce the rate of progress of the partial discharge along the second main surface 4b. It is possible to extend the life of the power module 1b until the power module 1b breaks down. The reliability of the power module 1b is improved.
 今回開示された実施の形態1及び実施の形態2はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 実 施 Embodiments 1 and 2 disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,1b パワーモジュール、3 絶縁回路基板、4 絶縁基板、4a 第1主面、4b 第2主面、4c 第1側面、4d 第2角部、4e 第4角部、4p 第1周縁部、4q 第1領域、4r 第2領域、4s 第2周縁部、5 第1金属層、5a 第3主面、5b 第4主面、5c 第2側面、6 第1の溝、7 第2の溝、8 第2金属層、8a 第5主面、8b 第6主面、8c 第3側面、8d 第5角部、8e 周縁部、9 第1金属層部分、10 第2金属層部分、17 第1角部、18 第3角部、20 半導体素子、21 第1導電接合部材、23 導電ワイヤ、25 第1リード端子、26 第2リード端子、27 第2導電接合部材、28 第3導電接合部材、30 ベース板、31 接合部材、32 ソルダーレジスト層、33 第1絶縁樹脂部、33e 部分、33s 表面、37 外囲体、38 接着剤、39 蓋部、40 封止部材、42 第2絶縁樹脂部、50 電気力線、52 部分放電の経路。 1, 1b power module, 3 insulating circuit board, 4 insulating board, 4a first main surface, 4b second main surface, 4c first side surface, 4d second corner portion, 4e fourth corner portion, 4p first peripheral portion, 4q {first region, 4r} second region, 4s} second peripheral portion, 5} first metal layer, 5a {third main surface, 5b} fourth main surface, 5c} second side surface, 6} first groove, 7} second groove , 8 second metal layer, 8a fifth principal surface, 8b sixth principal surface, 8c third side surface, 8d fifth corner, 8e peripheral edge, 9 first metal layer portion, 10 second metal layer portion, 17 th 1 corner, 18 third corner, 20 semiconductor element, 21 first conductive bonding member, 23 conductive wire, 25 first lead terminal, 26 second lead terminal, 27 second conductive bonding member, 28 third conductive bonding member , 30 base plate, 31 joining member, 32 solder Resist layer, 33 {first insulating resin portion, 33e} portion, 33s surface, 37 enclosure, 38 adhesive, 39 lid, 40 sealing member, 42 second insulating resin portion, 50 electric lines of force, 52 partial discharge Route.

Claims (17)

  1.  ベース板と、
     前記ベース板上に設けられている絶縁回路基板とを備え、前記絶縁回路基板は、絶縁基板と、第1金属層と、第2金属層とを含み、前記絶縁基板は、前記ベース板に面する第1主面と、前記第1主面とは反対側の第2主面と、前記第1主面と前記第2主面とを接続する第1側面とを含み、前記第1金属層は前記第1主面上に設けられており、前記第2金属層は前記第2主面上に設けられており、さらに、
     前記第2金属層に接合されている半導体素子と、
     前記ベース板と前記第1主面との間に設けられている第1絶縁樹脂部とを備え、
     前記第1金属層は、前記絶縁基板に面する第3主面と、前記ベース板に面する第4主面と、前記第3主面と前記第4主面とを接続する第2側面とを含み、
     前記第2側面と前記第1主面とによって形成される第1角部の少なくとも一部は前記第1絶縁樹脂部で覆われており、
     前記第1金属層から露出している前記第1主面の第1周縁部は、前記第1角部に近位の第1領域と、前記第1領域に隣接しかつ前記第1角部から遠位の第2領域とを含み、
     前記第1領域は前記第1絶縁樹脂部で覆われており、前記第2領域は、前記第1絶縁樹脂部から露出しており、
     前記第1金属層とは反対側の前記第1絶縁樹脂部の表面は、前記ベース板の側から前記第1主面の側に向かうにつれて前記第1主面に対する傾きが次第に大きくなる傾斜面である、パワーモジュール。
    A base plate,
    An insulating circuit board provided on the base plate, wherein the insulating circuit board includes an insulating substrate, a first metal layer, and a second metal layer, and the insulating substrate has a surface facing the base plate. A first main surface, a second main surface opposite to the first main surface, and a first side surface connecting the first main surface and the second main surface. Is provided on the first main surface, the second metal layer is provided on the second main surface,
    A semiconductor element bonded to the second metal layer;
    A first insulating resin portion provided between the base plate and the first main surface;
    The first metal layer includes a third main surface facing the insulating substrate, a fourth main surface facing the base plate, and a second side surface connecting the third main surface and the fourth main surface. Including
    At least a portion of a first corner formed by the second side surface and the first main surface is covered with the first insulating resin portion,
    A first peripheral portion of the first main surface exposed from the first metal layer has a first region proximate to the first corner and a first region adjacent to the first region and from the first corner. A distal second region;
    The first region is covered with the first insulating resin portion, the second region is exposed from the first insulating resin portion,
    The surface of the first insulating resin portion opposite to the first metal layer is an inclined surface whose inclination with respect to the first main surface gradually increases from the base plate side toward the first main surface side. There is a power module.
  2.  前記第2側面に1つ以上の第1の溝が形成されており、
     前記1つ以上の第1の溝は、前記第3主面から前記第4主面に向かって延在しており、
     前記第1絶縁樹脂部は前記1つ以上の第1の溝内に設けられている、請求項1に記載のパワーモジュール。
    One or more first grooves are formed in the second side surface;
    The one or more first grooves extend from the third main surface toward the fourth main surface;
    The power module according to claim 1, wherein the first insulating resin portion is provided in the one or more first grooves.
  3.  前記1つ以上の第1の溝は、0.1mm以下の第1の幅と0.1mm以下の第1の深さとを有する、請求項2に記載のパワーモジュール。 The power module according to claim 2, wherein the one or more first grooves have a first width of 0.1 mm or less and a first depth of 0.1 mm or less.
  4.  前記1つ以上の第1の溝は、複数の前記第1の溝であり、
     前記第3主面の全周にわたって、前記複数の第1の溝が形成されている、請求項2または請求項3に記載のパワーモジュール。
    The one or more first grooves are a plurality of the first grooves;
    4. The power module according to claim 2, wherein the plurality of first grooves are formed over the entire circumference of the third main surface. 5.
  5.  前記第3主面に、前記1つ以上の第1の溝と連通する第2の溝が形成されており、
     前記第2の溝は、前記第3主面の周縁部の少なくとも一部に沿って延在しており、
     前記第1絶縁樹脂部は前記第2の溝内にも設けられている、請求項2から請求項4のいずれか1項に記載のパワーモジュール。
    A second groove communicating with the one or more first grooves is formed on the third main surface;
    The second groove extends along at least a part of a peripheral portion of the third main surface,
    The power module according to any one of claims 2 to 4, wherein the first insulating resin portion is provided also in the second groove.
  6.  前記第2の溝は、0.1mm以上0.5mm以下の第2の幅と0.1mm以上0.5mm以下の第2の深さとを有する、請求項5に記載のパワーモジュール。 The power module according to claim 5, wherein the second groove has a second width of 0.1 mm or more and 0.5 mm or less and a second depth of 0.1 mm or more and 0.5 mm or less.
  7.  前記第2主面の平面視において、前記第1絶縁樹脂部は、前記絶縁基板の外側に延在している、請求項1から請求項6のいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 6, wherein in a plan view of the second main surface, the first insulating resin portion extends outside the insulating substrate.
  8.  前記第2金属層は、前記絶縁基板に面する第5主面と、前記第5主面とは反対側の第6主面と、前記第5主面と前記第6主面とを接続する第3側面とを含み、
     前記絶縁基板の前記第1側面と前記第1金属層の前記第2側面との間の第1間隔は、前記絶縁基板の前記第1側面と前記第2金属層の前記第3側面との間の第2間隔に実質的に等しい、請求項1から請求項7のいずれか1項に記載のパワーモジュール。
    The second metal layer connects a fifth main surface facing the insulating substrate, a sixth main surface opposite to the fifth main surface, and connects the fifth main surface and the sixth main surface. Including a third aspect,
    A first distance between the first side surface of the insulating substrate and the second side surface of the first metal layer is a distance between the first side surface of the insulating substrate and the third side surface of the second metal layer. The power module according to any one of claims 1 to 7, wherein the second interval is substantially equal to the second interval.
  9.  第2絶縁樹脂部をさらに備え、
     前記第2金属層は、前記絶縁基板に面する第5主面と、前記第5主面とは反対側の第6主面と、前記第5主面と前記第6主面とを接続する第3側面とを含み、
     前記第2絶縁樹脂部は、前記第3側面と前記第2主面とによって形成される第3角部の少なくとも一部を覆っている、請求項1から請求項7のいずれか1項に記載のパワーモジュール。
    A second insulating resin portion,
    The second metal layer connects a fifth main surface facing the insulating substrate, a sixth main surface opposite to the fifth main surface, and connects the fifth main surface and the sixth main surface. Including a third aspect,
    The second insulating resin portion according to any one of claims 1 to 7, wherein the second insulating resin portion covers at least a part of a third corner formed by the third side surface and the second main surface. Power module.
  10.  前記第2絶縁樹脂部は、前記第2金属層から露出している前記第2主面の第2周縁部を覆っており、前記第2絶縁樹脂部は、前記第3角部から、前記第1側面と前記第2主面とによって形成される第4角部まで延在している、請求項9に記載のパワーモジュール。 The second insulating resin portion covers a second peripheral portion of the second main surface exposed from the second metal layer. The power module according to claim 9, wherein the power module extends to a fourth corner formed by one side surface and the second main surface.
  11.  ベース板上に絶縁回路基板を設けることを備え、前記絶縁回路基板は、絶縁基板と、第1金属層と、第2金属層とを含み、前記絶縁基板は、前記ベース板に面する第1主面と、前記第1主面とは反対側の第2主面と、前記第1主面と前記第2主面とを接続する第1側面とを含み、前記第1金属層は前記第1主面上に設けられており、前記第2金属層は前記第2主面上に設けられており、
     前記第2金属層に半導体素子を接合することと、
     前記ベース板と前記第1主面との間に第1絶縁樹脂部を設けることとを備え、
     前記第1金属層は、前記絶縁基板に面する第3主面と、前記ベース板に面する第4主面と、前記第3主面と前記第4主面とを接続する第2側面とを含み、
     前記第2側面と前記第1主面とによって形成される第1角部の少なくとも一部は前記第1絶縁樹脂部で覆われており、
     前記第1金属層から露出している前記第1主面の第1周縁部は、前記第1角部に近位の第1領域と、前記第1領域に隣接しかつ前記第1角部から遠位の第2領域とを含み、
     前記第1領域は前記第1絶縁樹脂部で覆われており、前記第2領域は、前記第1絶縁樹脂部から露出しており、
     前記第1金属層とは反対側の前記第1絶縁樹脂部の表面は、前記ベース板の側から前記第1主面の側に向かうにつれて前記第1主面に対する傾きが次第に大きくなる傾斜面である、パワーモジュールの製造方法。
    Providing an insulated circuit board on a base plate, the insulated circuit board including an insulated board, a first metal layer, and a second metal layer, wherein the insulated board is a first metal substrate facing the base plate. A main surface, a second main surface opposite to the first main surface, and a first side surface connecting the first main surface and the second main surface, wherein the first metal layer is A first main surface, the second metal layer is provided on the second main surface,
    Bonding a semiconductor element to the second metal layer;
    Providing a first insulating resin portion between the base plate and the first main surface,
    The first metal layer includes a third main surface facing the insulating substrate, a fourth main surface facing the base plate, and a second side surface connecting the third main surface and the fourth main surface. Including
    At least a portion of a first corner formed by the second side surface and the first main surface is covered with the first insulating resin portion,
    A first peripheral portion of the first main surface exposed from the first metal layer has a first region proximate to the first corner and a first region adjacent to the first region and from the first corner. A distal second region;
    The first region is covered with the first insulating resin portion, the second region is exposed from the first insulating resin portion,
    The surface of the first insulating resin portion opposite to the first metal layer is an inclined surface whose inclination with respect to the first main surface gradually increases from the base plate side toward the first main surface side. A method for manufacturing a power module.
  12.  前記第2側面に1つ以上の第1の溝が形成されており、
     前記1つ以上の第1の溝は、前記第3主面から前記第4主面に向かって延在しており、
     前記第1絶縁樹脂部を設けることは、前記1つ以上の第1の溝の前記ベース板の側の部分内に第1絶縁樹脂材料を供給することと、前記1つ以上の第1の溝における毛細管現象によって、前記第1絶縁樹脂材料を前記1つ以上の第1の溝を通して前記第1角部の前記少なくとも一部に供給することとを含む、請求項11に記載のパワーモジュールの製造方法。
    One or more first grooves are formed in the second side surface;
    The one or more first grooves extend from the third main surface toward the fourth main surface;
    Providing the first insulating resin portion includes supplying a first insulating resin material into a portion of the one or more first grooves on the side of the base plate, and providing the one or more first grooves. Supplying the first insulating resin material to the at least a portion of the first corner portion through the one or more first grooves by a capillary action in the manufacturing of the power module according to claim 11. Method.
  13.  前記1つ以上の第1の溝は、複数の前記第1の溝であり、
     前記第3主面の全周にわたって、前記複数の第1の溝が形成されている、請求項12に記載のパワーモジュールの製造方法。
    The one or more first grooves are a plurality of the first grooves;
    The method for manufacturing a power module according to claim 12, wherein the plurality of first grooves are formed over the entire circumference of the third main surface.
  14.  前記第3主面に、前記1つ以上の第1の溝と連通する第2の溝が形成されており、
     前記第2の溝は、前記第3主面の周縁部の少なくとも一部に沿って延在しており、
     前記第1絶縁樹脂部を設けることは、前記第1の溝から前記第2の溝に供給された前記第1絶縁樹脂材料を、前記第2の溝における毛細管現象によって、前記第2の溝内に拡げることをさらに含む、請求項12または請求項13に記載のパワーモジュールの製造方法。
    A second groove communicating with the one or more first grooves is formed on the third main surface;
    The second groove extends along at least a part of a peripheral portion of the third main surface,
    Providing the first insulating resin portion includes causing the first insulating resin material supplied from the first groove to the second groove to move the first insulating resin material into the second groove by a capillary phenomenon in the second groove. 14. The method for manufacturing a power module according to claim 12, further comprising expanding the power module.
  15.  前記第2主面の平面視において、前記第1絶縁樹脂部は、前記絶縁基板の外側に延在している、請求項11から請求項14のいずれか1項に記載のパワーモジュールの製造方法。 The method for manufacturing a power module according to any one of claims 11 to 14, wherein the first insulating resin portion extends outside the insulating substrate in plan view of the second main surface. .
  16.  第2絶縁樹脂部を設けることをさらに備え、
     前記第2金属層は、前記絶縁基板に面する第5主面と、前記第5主面とは反対側の第6主面と、前記第5主面と前記第6主面とを接続する第3側面とを含み、
     前記第2絶縁樹脂部は、前記第3側面と前記第2主面とによって形成される第3角部の少なくとも一部を覆っている、請求項11から請求項15のいずれか1項に記載のパワーモジュールの製造方法。
    Further comprising providing a second insulating resin portion,
    The second metal layer connects a fifth main surface facing the insulating substrate, a sixth main surface opposite to the fifth main surface, and connects the fifth main surface and the sixth main surface. Including a third aspect,
    16. The second insulating resin portion according to claim 11, wherein the second insulating resin portion covers at least a part of a third corner formed by the third side surface and the second main surface. Method of manufacturing power module.
  17.  前記第2絶縁樹脂部は、前記第2金属層から露出している前記第2主面の第2周縁部を覆っており、前記第2絶縁樹脂部は、前記第3角部から、前記第1側面と前記第2主面とによって形成される第4角部まで延在している、請求項16に記載のパワーモジュールの製造方法。 The second insulating resin portion covers a second peripheral portion of the second main surface exposed from the second metal layer. The method of manufacturing a power module according to claim 16, wherein the power module extends to a fourth corner formed by one side surface and the second main surface.
PCT/JP2018/026878 2018-07-18 2018-07-18 Power module and method of manufacturing same WO2020016958A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026878 WO2020016958A1 (en) 2018-07-18 2018-07-18 Power module and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026878 WO2020016958A1 (en) 2018-07-18 2018-07-18 Power module and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2020016958A1 true WO2020016958A1 (en) 2020-01-23

Family

ID=69164795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026878 WO2020016958A1 (en) 2018-07-18 2018-07-18 Power module and method of manufacturing same

Country Status (1)

Country Link
WO (1) WO2020016958A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076190A (en) * 2000-08-24 2002-03-15 Toshiba Corp Circuit board, semiconductor device and their manufacturing method
JP2006522468A (en) * 2003-04-02 2006-09-28 アーベーベー・リサーチ・リミテッド Insulated power semiconductor module in which partial discharge behavior is suppressed to a low level and manufacturing method thereof
JP2013183038A (en) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076190A (en) * 2000-08-24 2002-03-15 Toshiba Corp Circuit board, semiconductor device and their manufacturing method
JP2006522468A (en) * 2003-04-02 2006-09-28 アーベーベー・リサーチ・リミテッド Insulated power semiconductor module in which partial discharge behavior is suppressed to a low level and manufacturing method thereof
JP2013183038A (en) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP3868777B2 (en) Semiconductor device
US10104775B2 (en) Semiconductor device and method for manufacturing the same
JP6398270B2 (en) Semiconductor device
JP6848802B2 (en) Semiconductor device
JPWO2015178296A1 (en) Power semiconductor device
JP2016018866A (en) Power module
US10959333B2 (en) Semiconductor device
JP2007012831A (en) Power semiconductor device
US11699625B2 (en) Power semiconductor module arrangement
JPWO2017082122A1 (en) Power module
JP3440824B2 (en) Semiconductor device
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
JP6150718B2 (en) Semiconductor device and manufacturing method thereof
CN113206048A (en) Semiconductor device and method for manufacturing the same
JP7170614B2 (en) semiconductor equipment
WO2020016958A1 (en) Power module and method of manufacturing same
JP7308791B2 (en) power semiconductor equipment
JP5826443B1 (en) Semiconductor device and manufacturing method thereof
US11282774B2 (en) Power semiconductor module arrangement
JP2017135144A (en) Semiconductor module
WO2021181468A1 (en) Semiconductor module
JP7419781B2 (en) semiconductor module
JP6891075B2 (en) Power semiconductor module
CN112687640A (en) Heat dissipation plate, method of manufacturing the same, and semiconductor package including the same
JP2018170362A (en) Semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP