WO2020016477A1 - Método para el estudio de mutaciones en embriones en procesos de reproducción in vitro - Google Patents
Método para el estudio de mutaciones en embriones en procesos de reproducción in vitro Download PDFInfo
- Publication number
- WO2020016477A1 WO2020016477A1 PCT/ES2019/070506 ES2019070506W WO2020016477A1 WO 2020016477 A1 WO2020016477 A1 WO 2020016477A1 ES 2019070506 W ES2019070506 W ES 2019070506W WO 2020016477 A1 WO2020016477 A1 WO 2020016477A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- snps
- snp
- study
- embryos
- dgp
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1072—Differential gene expression library synthesis, e.g. subtracted libraries, differential screening
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/10—Ploidy or copy number detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- the object of the present invention is a method for the study of mutations in embryos in in vitro reproduction processes with the particularity that it combines the techniques of detection of Aneuploidy (DPG-A) and the study of monogenic diseases in embryos (DGP- M) according to claim 1.
- DPG-A Aneuploidy
- DGP- M monogenic diseases in embryos
- the present invention relates to a method for the study of mutations in embryos of couples subjected to in vitro reproduction cycles by SNP (single nucleotide polymorphisms) analysis by massive sequencing combining the detection of Aneuploidies (DGP-A Preimplantation Genetic Diagnosis of Aneuploidies) and the study of monogenic diseases in embryos (DGP-M, Preimplantation Genetic Diagnosis for Monogenic diseases) with a single biopsy.
- SNP single nucleotide polymorphisms
- a single nucleotide polymorphism or SNP is a variation in the DNA sequence that affects a single base (adenine (A), thymine (T), cytosine (C) or guanine (G)) of a sequence of the genome
- PTD Preimplantation genetic diagnosis
- the DGP consists in performing a biopsy of one or more cells of the embryos generated during an in vitro fertilization cycle when the embryos have between 3 and 5 days, to use said material in the elaboration of a genetic diagnosis. Thus, only those embryos diagnosed as unaffected by a certain genetic alteration are transferred to be able to breed a healthy child.
- the DGP has two characteristics that differentiate it from the genetic diagnosis applied to any other field. First, the response time must be much smaller, since, in many cases, it is necessary to obtain results in less than 24 hours to allow the transfer of embryos in the same cycle. Thus, for example, an embryo biopsied on day 3 must be transferred or vitrified on day 5 or 6. On the other hand, normally, each couple produces an average of 6 to 10 embryos, so the cost of the analysis must be low to be able to analyze all the embryos and that this does not suppose a substantial increase of what already costs in itself a cycle of reproduction in vitro.
- MDA Multiple Displacement Amplification
- This method produces long DNA fragments with a low error rate.
- ADO Allele-Drop-Out
- DGP Downlink telomere
- CGH Microarray Comparative Genomic Hybridization
- This technique is used for the detection of aneuploidies (DGP-A) and unbalanced alterations when one of the parents is a carrier of a balanced disorder.
- DGP-A aneuploidies
- the main limitations of the technique are: It is an expensive technique, so that many of the couples who would really benefit from it - for example, elderly mothers, since a high number of their oocytes will be aneuploid - cannot opt for them.
- a PCR-based amplification method is used, which has a much higher ADO percentage than MDA-based methods, which It makes integration with techniques for the study of monogenic diseases difficult, as indicated above.
- DGP-M monogenic diseases in embryos
- Karyomapping It is a technique that analyzes thousands of polymorphisms by microarray, combining aneuploidy analysis and the study of monogenic diseases.
- the great advantage is that the same microarray is used to analyze different pathologies. Its limitations are as follows:
- the protocol is long and cannot be used for cycles with fresh transfer.
- Document ES2360085T3 describes that chromosomal analysis by molecular karyotyping (for example, for the detection of trisomy) can be carried out using an analysis of biallelic markers of the entire genome (e.g., biallelic single nucleotide polymorphisms (SNPs)) that are distributed throughout the genome, and that can be easily detected using existing technologies.
- SNPs biallelic single nucleotide polymorphisms
- this document performs a high density analysis of nearby adjacent SNPs is able to positively identify, among others, the presence of two chromosomes derived from a parent and based on well-established assumptions about the frequency and spacing of recombination events between Parental chromosomes during meiosis, this will allow accurate detection of trisomy.
- the parental origin of the error is identified in each case, which is not possible by some karyotyping procedures.
- An object of the present invention is a method that combines DGP-A and DGP-M techniques with a single biopsy by mass sequencing. This object is achieved by the method of claim 1. Particular embodiments of the method of the invention are shown in the dependent claims.
- the kit is included which includes an electronic device that executes the method of the invention as well as the software product containing the executable instructions for carrying out the method of the present invention.
- the preparation of a library for DGP-A is first performed. Any commercial kit available, such as Ion Reproseq (ThermoFisher), PicoPlex (Rubicon Genomics), Veriseq (lllumina) and Repli-G (Qiagen) can be used in the preparation of this library.
- a method is applied to enrich the SNPs that are interesting.
- this method is based on multiplex amplification, but capture methods, simple PCR, or any other can also be used.
- libraries are prepared, adding the necessary adapters and barcodes.
- the library for DGP-M will be held.
- the quantification of both libraries they are combined in certain proportions, and the standard sequencing protocol for the chosen platform is continued. As different library preparation methods are used for both processes, each with its barcode, the sequencer throws the results of DGP-A and DGP-M separately.
- the analysis is performed independently for DGP-A, using the appropriate solution according to the library and sequencer preparation method selected, while the DGP-M analysis is performed by a SNP quench, as described below.
- This protocol is faster than other technologies such as Karyomapping (ES2360085T3) because it only adds four hours (time to prepare the DGP-M library) to the global DGP-A process through mass sequencing.
- the entire process can be carried out in less than twelve hours, thus being an ideal method to perform biopsy in D-3 and transfer in D-5, but also for biopsy in D-5 and transfer in D-6 and, obviously, for cycles with deferred transfer because in the protocol there are multiple steps where it can be stopped.
- This method is also cheaper than methods based on karyotyping or karyomaping (ES2360085T3) because the price depends on the cost of library preparation for DGP-A.
- it is adaptable to the number of samples that are to be analyzed, while a 12-array slide is used in the karyotype mapping, so the number of samples must be a multiple of 12 to maximize results.
- a library for DGP-A can be prepared using Ion Reproseq. If the couple has, for example, 8 embryos, 8 different libraries will be prepared with the corresponding barcodes, from 1 to 8. After this library, an aliquot is taken and the corresponding polymorphisms are amplified.
- the couple is a carrier, for example, of mutations in the SMN1 gene
- a kit that amplifies certain polymorphisms around that mutation will be used.
- the library will be prepared using the corresponding method.
- One method could be amplification by multiplex PCR using Ampliseq, with its corresponding library preparation kit, and by adding different barcodes to the previous ones (for example, from 9 to 16).
- Both libraries are quantified, and mixed in a 3: 1 ratio, that is, three times more DGP-A library than DGP-M library.
- the selected sequencing method is, for example, PGM Ion, sequencing preparation and sequencing are carried out. itself, using the standard protocol of the equipment manufacturer.
- FIG. 1 shows an outline of the entire process.
- FIG. 1 shows a scheme of the method object of the present invention.
- the gene is analyzed with the mutation to be discarded in the embryos and a region around (typically, 4 Mb) is selected.
- Those polymorphisms that do not meet any exclusion criteria are selected, and those most likely to be informative are sought.
- those polymorphisms that can be tag are identified by correlation analysis and linkage imbalance.
- a final panel design is carried out, and an in silico validation is done simulating cross-linking between a multitude of individuals whose genomes are deposited in public databases.
- FIG. 1 shows a scheme of the method object of the present invention.
- FIG. 2 shows a diagram of the entire process, including the method of the invention, for a first example of use, starting with the design and synthesis of the panel that will then be used for library amplification for DGP-M.
- patients and other relatives are analyzed to determine the distribution of polymorphisms in the different alleles.
- the library for DGP-A is prepared, and with an aliquot of this the library for DGP-M is prepared. All libraries are quantified and mixed, and sequencing is carried out. Finally, the bioinformatic analysis of aneuploidies and monogenic disease is performed independently.
- FIG. 3 shows an example of SNP fasting, in the case of a trio formed by the couple and an affected child. SNPs are shown before and after fasar, with their distribution in alleles. In addition, which are informative (give information about the phase) and which are not.
- FIG. 4 shows an example of SNPs fasting with analysis of results in embryos. For simplicity, only those SNPs that are informative are shown.
- the couple carries heterozygous mutations in the CEP290 gene, which causes Meckel syndrome. This syndrome is lethal prenatal, so the DNA of a previous fetus was used for the patient.
- the panel was designed including the direct analysis of the mutation, which appears shaded.
- FIG. 5 shows the result of SNPs fasting in an embryo, where different problems and artefacts appear, along with their description.
- the developed fasting algorithm allows detecting these errors.
- FIG. 6 shows an example of a couple with a balanced translocation, and the embryos that can be generated as a consequence. 50% of these embryos can inherit an unbalanced alteration with serious consequences (from repeated abortions to children with metal retardation and dysmorphic features). 25% of the embryos will be normal, and the other 25% will have a balanced alteration as one of the parents.
- the method for studying embryonic mutations in in vitro reproduction processes, object of the present invention can be divided, in turn, into three sequential and differentiated processes.
- the method of the invention combines several tagSNPs selection techniques, since it calculates the linkage imbalance correlations for the block of interest (by default, 4 Mb around the mutation, 1 Mb is equal to one million nucleotides).
- the SNPs of that region in turn, will be considered as a block-free approach, so that all correlations between SNPs are calculated and taken into account in the selection of tagSNPs.
- the present invention selects polymorphisms with a high probability of being informative, considering their allelic frequencies within the target population and whether or not they are part of the same haploboque (set of SNPs that are inherited together).
- a tagSNP is that SNP that is considered representative for the entire haploblock, that is, if the tagSNP is in heterozygous, for example, all SNPs belonging to that same haploblock will be in heterozygous.
- a tagSNP avoids having to analyze all polymorphisms because knowing how it behaves, it can be deduced how the rest of the haploblock polymorphs do.
- FIG. 1 the objective of the method of the invention (FIG. 1) is focused on obtaining a minimum panel of tagSNPs with maximum informative capacity, simplifying the subsequent analysis and interpretation of the results of an informativity analysis.
- the method of the invention comprises is divided into two basic processes and a third validation process.
- the first two processes do not necessarily have to be in this order:
- the values of the n candidate SNPs (ti ... t k ) of each individual x are taken as input, in a chromosomal region of interest and specifically extracted for the population under study.
- Those SNPS that are biallelic are selected, so that individuals can be represented as haplotypes of length m formed by binary chains ⁇ 1, 0 ⁇ , 110 and 0
- n candidate SNPs of the region are analyzed and Exclude those that meet any of the following conditions:
- SNPs with more than one alternative allele i. SNPs with more than one alternative allele (non-biallelic SNPs)
- Uncommon SNPs that is, whose allelic frequency is less than 1% c.
- the next point tries to maximize the situation in which one of the parents presents the value of a SNP in a heterozygous state, while in the other parent it is presented as homozygous, that is, it is informative. This is achieved through the maximization of the value of two functions above a certain threshold value:
- HET rate 2pq being p and q respectively the allelic frequencies of the reference and alternative alleles for each SNP. These are the Hardy-Weinberg equilibrium equations and their derivative.
- the output of this algorithm will be a panel of z SNPs optimized for both values in the form of matrix M whose columns correspond to the individuals in the population and the rows to the values of each SNP for each individual.
- the SNPs of the M matrix of the block-region are organized into high correlation groups based on the criterion of the pairwise r 2 .
- the pairwise value r 2 is calculated from the allelic frequency calculated for the matrix M. In this way SNPs of different groups will present low correlation, so two SNPs will belong to the same group only when the r 2 pairwise between them exceeds a certain threshold value (set by the user).
- the organization of SNPs within each group based on the criterion of LD allows a selection to be made based on the functional range, ensuring that the first solution found is an optimal solution and considerably reducing the computation time.
- a third validation process consisting of an in-silica validation of the tagSNPs panel obtained for this purpose and using the 1000Genomes db database, individuals are randomly chosen to perform multiple crossings. After this, the number of tagSNPS that were informative of each crossing is counted and the average is provided by way of informational information on the information power of the panel.
- FIG. 2 shows a scheme of the method of the invention, in which first, the gene is analyzed with the mutation to be discarded in the embryos and a region around (typically, 4 Mb) is selected. Those polymorphisms that do not meet any exclusion criteria are selected, and those most likely to be informative are sought. On the other hand, those polymorphisms that can be tag are identified by correlation analysis and linkage imbalance. With both, a final panel design is performed, and an in silico validation is done simulating cross-linking between a multitude of individuals whose genomes are deposited in public databases.
- FIG. 2 The complete scheme for use in the diagnosis of aneuploidies is shown in FIG. 2. It is considered a European population couple where a member of the couple is a carrier of the autosomal dominant pathogenic variant W- /: c.233A> G p. (Asn78Ser) (chromosomal position chr13: 10183764) that causes a condition known as Von Hippel-Lindau, which has an autosomal dominant mode of inheritance.
- the software input will be the 69473 SNPs contained in the chr13 block-region: 9181319-11681319.
- the output of this algorithm will be an M matrix of 1625 candidate SNPs, which will act as input for the SNPs selection algorithm, whose output will be formed by a panel of 283 tagSNPs. In the validation phase it was obtained that 49% of tagSNPs in the panel was informative on average.
- the positions are introduced in the corresponding enrichment platform.
- Ion Ampliseq This platform designs the oligos necessary to capture the regions.
- IVF laboratory embryos that biopsy are generated when they reach the blastocyst stage. The biopsy is placed in a PCR tube and sent to the laboratory.
- DNA is amplified using, for example, Ion Reproseq, so that, in addition to amplification, the library for DGP-A is made.
- all regions designed with Ampliseq in the previously amplified material are amplified, and the library for DGP-M is produced.
- we do mass sequencing It must be taken into account that in order to be able to sequence multiple samples simultaneously, it is necessary to mark the samples with a molecular bar code. Special care should be taken that bar codes do not match between samples.
- DGP-A a series of files with readings for the entire embryo
- DGP-M other files with the detected polymorphisms
- a bioinformatic analysis should be done.
- aneuplodies are determined using the most appropriate software according to the platform.
- the segregation pattern of each polymorphism is determined for analysis of DGP-M.
- the readings obtained are alienated from the reference genome, and polymorphisms are identified in each and every sample, including patients, relatives used as a reference and embryos. In the case of family members, the simplest situation is that in which we have a partner and an affectionate child.
- each sample can be 0/0, 0/1, 1/1 if they are homozygous for the wild SNP, heterozygous or homozygous for the alternative SNP, respectively.
- the number 0 is indicating that it is the reference SNP (whatever it may be) while 1 indicates that it is the alternative SNP. This is true for all chromosomes, except sex, in which women can be homozygous or heterozygous, while men are always hemizogotos (0 or 1).
- SNPs fasting is carried out.
- those SNPs that are informative in the couple are analyzed.
- Informative SNPs are those in which one of the patients is heterozygous (0/1) and the other is homozygous (0/0 or 1/1).
- the polymorphism used to marry is one that is different in the heterozygous individual. For example, if we have an individual 0/1 and the other 1/1, the polymorphism that we will use to fasar is 0. By comparison with one or more individuals in the family, it is determined arbitrarily to which allele each one belongs.
- An example of SNP fasting would be the following:
- the embryos are analyzed. To do this, it is about identifying the informative SNP in each of the embryos. For example, if polymorphism 0 belongs to the P1 allele, if an embryo exhibits said polymorphism, it means that it has said haplotype. In short, it is about identifying the informative SNPs in the different embryos and thus determining the haplotype of each of them.
- FIG. 3 An example of the fasting process of SNPs is shown in FIG. 3, where it is also specified whether the SNPs are informative, non-informative or semi-informative.
- An informative SNP is one that complies with the aforementioned, that is, that it is heterocygous in one of the parents, and homozygous in the other; a non-informative SNP can occur when both parents are homozygous, or both are heterozygous and the child is also homozygous; A semi-informative SNP occurs when both parents are heterozygous and the child is homozygous. This classification can be extended to other family combinations.
- FIG. 4 shows an example of SNPs fasting that includes embryo analysis.
- the SNP fasting algorithm is also able to identify the different possible sources of error and alert the analyst so that he can weigh and analyze them. These sources of error are diverse.
- the result for an embryo similar to FIG. 4 is shown in FIG. 5, but where the different sources of error are identified and described:
- an allele-drop-out phenomenon This phenomenon implies that, in an embryo, only one of the alleles is amplified. So, when sequencing, we can interpret that an embryo is homozygous for a polymorphism, when in fact it is heterozygous. For example, an embryo may be 0/1 but have suffered an ADO phenomenon during amplification and be shown as 1/1 in sequencing. This failure can lead to a misinterpretation of the results, misleading the allele of the embryos. In order to avoid it, it is necessary to distinguish those polymorphisms that, in addition to being informative, are key. The key polymorphisms are what, besides being informative, are heterozygous in the embryo.
- polymorphism 0 will be key because it is informative and heterozygous.
- the embryo is 1/1, the polymorphism will only be informative. In the latter case we cannot determine if the embryo is really 1/1, or if we have suffered an allele-drop-out and we are only seeing one of the alleles 1.
- Another source of error is due to what is called No Cali. It occurs when no signal is obtained for any of the alleles for a given polymorphism, so we cannot know even one of them.
- Another source that can lead to confusion is recombination.
- a recombination is when the alleles in one of the parents are exchanged, and this is reflected in the embryo. For example, if we analyze 100 polymorphisms in an embryo, it may happen that part of them (for example, 60) belong to the P1 allele and the rest to the P2 allele. In order to identify recombination, it must happen that the change of allele P1 to P2 is sequential. That is, for example, that the first 60 polymorphisms belong to the P1 allele and the following to P2. If the exchange of polymorphisms occurs more or less randomly, that would mean that it is a sequencing error, because statistically it cannot happen that an embryo has more than two recombinations in a space as small as the analyzed fragment (4 Mb)
- Triploid embryos are an important problem in any IVF cycle. These account for 15% of spontaneous abortions due to chromosomal abnormalities. Triploid embryos should always be discarded from any in vitro fertilization cycle, but it is difficult to identify them because there are no differences in embryonic quality with respect to normal embryos. Sometimes, it is possible to distinguish them because in D + 1 three pronuclei are observed, but it is not always possible. The triploid embryos can be of dysmemic origin (in cases of IVF) or originate from an oocyte failure by not extruding the second polar corpuscle. Triploid embryos cannot be identified by current DGP-A techniques, despite being a numerical anomaly. Sometimes, by visual inspection, it is possible to detect embryos 46, XXY by observing an abnormal distribution of sex chromosome readings, but it is not always possible and requires trained personnel.
- the method described here can be used to identify this type of embryos. You can select informational polymorphisms throughout the genome and determine if they are triploids by analyzing the present polymorphisms and their frequency. Normally, a heterozygous polymorphism should be found in a proportion around 0.5, because half of the readings will correspond to one allele and half to another. A triploid embryo has three alleles, so this proportion will be diverted. Thus, the result can be three polymorphisms for the same position (if they are multiallelic) or two polymorphs but one of them frequently over 33% and the other over 66%. If all polymorphisms with sufficient readings follow this pattern throughout the entire genome, that means that the embryo is triploid.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medical Informatics (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Método para el estudio de mutaciones en embriones en procesos de reproducción in vitro con la particularidad de que combina las técnicas de detección de Aneuploidía (DPG-A) y el estudio de enfermedades monogénicas en embriones (DGP-M) y que se comprende, un proceso de selección de SNPs donde se toma como entrada los valores de unos n SNPs candidatos (t1... tk) de cada individuo x, en una región cromosómica de interés y específicamente extraídos para una población objeto de estudio; un proceso de selección se SNPs se evalúan todas las combinaciones de SNPs para obtener un set t mínimo de tagSNPs a partir de la matriz M obtenida en el primer proceso de selección se SNPs; y un proceso de validación in-sílico del panel de tagSNPs obtenido en el segundo proceso.
Description
MÉTODO PARA EL ESTUDIO DE MUTACIONES EN EMBRIONES EN PROCESOS DE
REPRODUCCIÓN IN VITRO
El objeto de la presente invención es un método para el estudio de mutaciones en embriones en procesos de reproducción in vitro con la particularidad de que combina las técnicas de detección de Aneuploidía (DPG-A) y el estudio de enfermedades monogénicas en embriones (DGP-M) de acuerdo con la reivindicación 1.
CAMPO DE LA TÉCNICA
La presente invención está referida a un método para el estudio de mutaciones en embriones de parejas sometidas a ciclos de reproducción in vitro mediante análisis de SNP (polimorfismos de nucleótido único) por secuenciación masiva que combine la detección de Aneuploidías (DGP-A Diagnóstico Genético Preimplantacional de Aneuploidías) y el estudio de enfermedades monogénicas en embriones (DGP-M, Diagnóstico Genético Preimplantacional para enfermedades Monogénicas) con una única biopsia.
ESTADO DE LA TÉCNICA ANTERIOR Un polimorfismo de nucleótido único o SNP es una variación en la secuencia de ADN que afecta a una sola base (adenina (A), timina (T), citosina (C) o guanina (G)) de una secuencia del genoma.
El diagnóstico genético preimplantacional (DGP) se desarrolló en la década de los 80 del siglo XX como una opción para aquellas parejas que estaban en riesgo de tener un hijo afectado por una enfermedad monogénica o una alteración cromosómica determinada y que querían evitar la posibilidad de requerir una terminación voluntaria del embarazo.
El DGP consiste en la realización de una biopsia de una o más células de los embriones generados durante un ciclo de fecundación in vitro cuando los embriones tienen entre 3 y 5 días, para utilizar dicho material en la elaboración de un diagnóstico genético. Así pues, sólo aquellos embriones diagnosticados como no afectados por una determinada alteración genética son transferidos para poder engendrar un niño sano. Cabe destacar que el DGP tiene dos características que lo diferencian del diagnóstico genético aplicado a cualquier otro ámbito. En primer lugar, el tiempo de respuesta debe ser
mucho menor, dado que, en muchas ocasiones, es necesario obtener resultados en menos de 24 horas para permitir la transferencia de embriones en el mismo ciclo. Así, por ejemplo, un embrión biopsiado en el día 3 debe ser transferido o vitrificado en el día 5 ó 6. Por otro lado, normalmente, cada pareja produce una media de 6 a 10 embriones, por lo que el coste del análisis debe ser bajo para poder analizar todos los embriones y que esto no suponga un incremento sustancial de lo que ya cuesta de por sí un ciclo de reproducción in vitro.
Debido a lo anterior, el DGP se realiza utilizando múltiples y variadas técnicas, dependiendo de la naturaleza de la alteración estudiada. Tradicionalmente, para las enfermedades monogénicas se utilizaban métodos basados en la reacción en cadena de la polimerasa (PCR) y análisis de fragmentos y, más recientemente, sistemas como el Karyomapping basado en la utilización de microarrays aplicados a la detección de SNP (por ejemplo, como se describe en el documento ES2360085T3). Aunque se trata de métodos muy diversos, todos ellos tienen características en común:
En primer lugar, requieren de una amplificación previa. En este caso se trabaja con muy poco material genético de partida -en muchas ocasiones, procedente de una única célula- por lo que es necesario amplificarlo. Para ello, tradicionalmente, se utiliza un método conocido como MDA ( Múltiple Displacement Amplification) que amplifica el material genético gracias a la polimerasa Phi29 a temperatura constante.
Este método produce fragmentos de ADN largos con una baja tasa de error.
En segundo lugar, tienen una alta tasa de Allele-Drop-Out (ADO). El ADO es un artefacto frecuente en este tipo de análisis -sobre un 5% de los análisis lo tienen- que consiste en la amplificación preferencial de uno de los alelos. Por este motivo, si al realizar un análisis no se detecta mutación, cabe la posibilidad de que se deba a que el alelo mutado no se ha amplificado.
En tercer lugar, se realiza un análisis indirecto. Como consecuencia de lo anterior, siempre se hace un análisis indirecto de la mutación. Este análisis consiste en estudiar una serie de polimorfismos alrededor de la mutación -generalmente STR o Sho t Tándem Repeats- y determinar si los polimorfismos presentes en el embrión son los asociados al alelo patológico o al alelo sano, es decir, se realiza un análisis de ligamiento.
En cuarto lugar, requieren de un estudio de informatividad previo. Para poder determinar qué polimorfismos segregan con el alelo sano y cuáles con el patológico,
es necesario realizar un estudio de informatividad previo. Este estudio consiste en analizar de 5 a 10 STR cercanos a la mutación -situados a ambos lados- en la pareja y en otros miembros de la familia. Idealmente, un hijo en común con la mutación, o bien padres y madres de la pareja. Así, por ejemplo, si se puede asociar que un número determinado de repeticiones de un STR concreto esté siempre presente en familiares con la mutación patogénica, se podrá asociar dicho polimorfismo al alelo patológico y descartar aquellos embriones que lo posean.
Finalmente, el análisis directo de la mutación no siempre es posible. Siempre que sea posible, se realiza el análisis directo de la mutación de los embriones, generalmente, mediante mini secuenciación. Sin embargo, esto sólo es posible si se trata de una mutación puntual. Con este tipo de técnicas, no es posible detectar otro tipo de alteraciones, como deleciones. Por su parte, Karyomapping no es capaz de detectar la mutación directa en ningún caso.
Recientemente, la secuenciación masiva (NGS) se ha incorporado como técnica al DGP - como se describe en los documentos US20140274741 , W02014082032, US20150038337 o EP2947156-. No obstante, en el estado de la técnica sólo se describe su aplicación a la detección de aneuploidías (DGP-A).
Si bien la tecnología ha ido evolucionando en el perfeccionamiento de estas técnicas de DGP, existen actualmente ciertas limitaciones en la técnica de análisis. Las principales técnicas y sus limitaciones en DGP son: Microarray CGH (Hibridación Genómica Comparativa). Esta técnica se utiliza para la detección de aneuploidías (DGP-A) y de alteraciones desbalanceadas cuando uno de los padres es portador de una alteración balanceada. Las principales limitaciones de la técnica son: Se trata de una técnica cara, de forma que muchas de las parejas que realmente se beneficiarían de ella -por ejemplo, madres de edad avanzada, dado que un número alto de sus ovocitos serán aneuploides- no pueden optar a ellas. Se utiliza un método de amplificación basado en PCR, que tiene un porcentaje de ADO mucho mayor que los métodos basados en MDA, lo que
dificulta la integración con técnicas para el estudio de enfermedades monogénicas, como se ha indicado anteriormente.
Requiere un equipamiento específico, tal como un escáner de microarrays.
No permite el análisis de mutaciones, por lo que no puede ser utilizado para seleccionar embriones libres de patología genética, cuando los padres son portadores.
No permite distinguir entre embriones normales y aquellos que portan una translocación balanceada.
No permite identificar aquellos embriones que portan anomalías numéricas en mosaico.
Mini secuenciación. Se utiliza para la detección directa de una mutación específica en el estudio de enfermedades monogénicas en embriones (DGP-M). Las principales limitaciones son:
Requiere el diseño de oligos específicos en una región muy concreta, lo que puede dificultar el análisis.
Requiere amplificación previa mediante MDA, por lo que no es fácilmente combinable con técnicas para el cribado de aneuploidías.
Se necesita conocimiento previo de la mutación a analizar, y de un proceso largo de puesta a punto.
Requiere de un secuenciador capilar.
No permite detectar anomalías estructurales de ningún tipo.
Sólo es útil en el caso de mutaciones puntuales.
Análisis de fragmentos. Se usa sólo o en conjunto con el anterior, para hacer el estudio indirecto de las patologías, por lo que las limitaciones son las mismas que en
el caso de la mini-secuenciación, además de:
Requiere el diseño de oligos específicos marcados fluorescentemente para diseñar el estudio de informatividad previo.
En ocasiones, el estudio de informatividad se puede alargar debido a la dificultad de encontrar STRs informativos.
Karyomapping. Es una técnica que analiza mediante microarray miles de polimorfismos, aunando el análisis de aneuploidías y el estudio de enfermedades monogénicas. La gran ventaja, es que el mismo microarray sirve para analizar distintas patologías. Sus limitaciones son las siguientes:
Aunque detecta aneuploidías, no es capaz de detectar errores mitóticos, lo que supone que no es capaz de determinar la presencia de mosaicismo.
Requiere de muestras en trío (padre, madre y niño previo afecto) para determinar la segregación de los alelos. Esto es debido a que únicamente hace estudio indirecto.
No es posible detectar la mutación en sí misma en ningún caso, con lo que el riesgo de recombinación nunca queda excluido.
El protocolo es largo, no pudiéndose utilizar para ciclos con transferencia en fresco.
El documento ES2360085T3 describe que el análisis cromosómico por cariotipado molecular (por ejemplo, para la detección de trisomía) se puede llevar a cabo usando un análisis de marcadores bialélicos del genoma completo (p. ej. , polimorfismos de nucleótido único (SNP) bialélicos) que están distribuidos por el genoma, y que se pueden detectar fácilmente usando tecnologías existentes. Este descubrimiento es inesperado por varias razones, principalmente porque a priori se supondría que un marcador bialélico (que proporciona solo información binaria en una posición dada en el cromosoma) no podría identificar positivamente la presencia de tres o más cromosomas diferentes.
No obstante, este documento realiza un análisis de alta densidad de SNP adyacentes cercanos es capaz de identificar positivamente, entre otros, la presencia de dos cromosomas derivados de un progenitor y que basado en suposiciones bien establecidas sobre la frecuencia y espaciado de sucesos de recombinación entre cromosomas parentales durante la meiosis, esto permitirá la detección precisa de trisomía. Además, se identifica en cada caso el origen parental del error, lo cual no es posible mediante algunos procedimientos de cariotipado.
Sin embargo, todavía no se ha podido establecer con éxito un método rápido, eficaz y económico que permita combinar DGP-A y DGP-M con una única biopsia. Por tanto, el avance de la técnica va en el sentido del perfeccionamiento de las herramientas DGP-A y DGP-M con una única biopsia mediante secuenciación masiva, línea principal en el desarrollo del presente proyecto. EXPLICACIÓN DE LA INVENCIÓN
Es un objeto de la presente invención un método que combine técnicas DGP-A y DGP-M con una única biopsia mediante secuenciación masiva. Este objeto se alcanza con el método de la reivindicación 1. En las reivindicaciones dependientes se muestran realizaciones particulares del método de la invención. En otros aspectos se reivindica el kit que incluye un dispositivo electrónico que ejecuta el método de la invención así como el producto de software que contiene las instrucciones ejecutables para llevar a cabo el método de la presente invención. Para la combinación de ambas técnicas, primero se realiza la preparación de una librería para DGP-A. En la preparación de esta librería se puede utilizar cualquier kit comercial disponible como, por ejemplo, Ion Reproseq (ThermoFisher), PicoPlex (Rubicon Genomics), Veriseq (lllumina) y Repli-G (Qiagen). Posteriormente, se toma una alícuota de ese ADN amplificado, y se aplica un método para enriquecer los SNPs que sean interesantes. Preferentemente, este método está basado en amplificación multiplex, pero también se pueden utilizar métodos de captura, PCR simple, o cualquier otro. Tras la amplificación de las regiones de interés, se procede a la preparación de librerías, añadiendo los adaptadores y códigos de barras necesarios. Así, se tendrá la librería para DGP-M.
Finalmente, tras la cuantificación de ambas librerías, se combinan en unas proporciones determinadas, y se prosigue con el protocolo estándar de secuenciación para la plataforma elegida. Como se utilizan métodos de preparación de librerías diferentes para ambos procesos, cada uno de ellos con su código de barras, el secuenciador arroja los resultados de DGP-A y DGP-M por separado. Así, el análisis se realiza de manera independiente para DGP-A, utilizando la solución apropiada según el método de preparación de librería y secuenciador seleccionado, mientras que el análisis de DGP-M se realiza haciendo un fasado de SNPs, como se describe posteriormente. Este protocolo, es más rápido que otras tecnologías como Karyomapping (ES2360085T3) porque sólo añade cuatro horas (tiempo de preparación de la librería de DGP-M) al proceso global de DGP-A mediante secuenciación masiva. De esta manera, si se emplea, por ejemplo, la combinación de Ion Rerproseq para DGP-A junto con el método de la invención, el proceso completo se puede realizar en menos de doce horas, siendo, por tanto, un método ideal para realizar biopsia en D-3 y transferencia en D-5, pero también para biopsia en D-5 y transferencia en D-6 y, obviamente, para ciclos con transferencia en diferido debido a que en el protocolo existen múltiples pasos donde se puede parar.
Este método es también más económico que los métodos basados en cariotipado o cariomapeado (ES2360085T3) porque el precio depende del coste de la preparación de librería para DGP-A. Además, es adaptable al número de muestras que se tenga para analizar, mientras que en el cariomapeado se utiliza un slide de 12 arrays, por lo que el número de muestras debe ser múltiplo de 12 para maximizar resultados. Por ejemplo, se puede preparar una librería para DGP-A utilizando Ion Reproseq. Si la pareja tiene, por ejemplo, 8 embriones, se habrán preparado 8 librerías diferentes con los códigos de barras correspondientes, del 1 al 8. Tras esta librería, se toma una alícuota y se amplifican los polimorfismos correspondientes. Si la pareja es portadora, por ejemplo, de mutaciones en el gen SMN1 , se utilizará un kit que amplifica determinados polimorfismos alrededor de esa mutación. Tras la amplificación, se preparará la librería utilizando el método correspondiente. Un método podría ser amplificación mediante PCR multiplex utilizando Ampliseq, con su correspondiente kit de preparación de librería, y añadiendo unos códigos de barras distintos a los anteriores (por ejemplo, del 9 al 16). Se cuantifican ambas librerías, y se mezclan en una proporción 3:1 , es decir, tres veces más librería DGP-A que librería DGP-M. Tras la cuantificación, si el método de secuenciación seleccionado es, por ejemplo, Ion PGM, se procede a la preparación de la secuenciación y a la secuenciación en
sí misma, utilizando el protocolo estándar del fabricante del equipo. Una vez finalizada la secuenciación, el secuenciador nos arrojará 16 ficheros, 8 para la librería DGP-A y 8 para DGP-M. Los ficheros para DGP-A se analizarán utilizando el software del fabricante del equipo, o cualquier otra solución. Para el análisis DGP-M se realizará el fasado de SNPs utilizando el software que se propone en la presente invención. La FIG. 1 muestra un esquema de todo el proceso.
Gracias al método así descrito es posible la combinación de técnicas DGP-A y DGP-M mediante secuenciación masiva. Además, es considerablemente más rápido que las tecnologías basadas en cariotipado o cariomapeado (Karyomapping) además de resultar más económico.
A lo largo de la descripción y de las reivindicaciones, la palabra «comprende» y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la invención y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración y no se pretende que restrinjan la presente invención. Además, la invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
A continuación, se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención, que se ilustra como un ejemplo no limitativo de ésta.
La FIG.1 muestra un esquema del método objeto de la presente invención. En primer lugar, se analiza el gen con la mutación a descartar en los embriones y se selecciona una región alrededor (típicamente, de 4 Mb). Se seleccionan aquellos polimorfismos que no cumplen ningún criterio de exclusión, y se buscan aquellos con mayor probabilidad de ser informativos. Por otro lado, se identifican aquellos polimorfismos que pueden ser tag mediante análisis de correlación y desequilibrio de ligamiento. Con ambas cosas, se realiza un diseño final de panel, y se hace una validación in silico simulando entrecruzamientos entre multitud de individuos cuyos genomas se encuentran depositados en bases de datos públicas.
La FIG.2 muestra un esquema de todo el proceso, incluyendo el método de la invención, para un primer ejemplo de uso, empezando por el diseño y síntesis del panel que luego se utilizará para la amplificación de la librería para DGP-M. Por un lado, los pacientes y otros familiares son analizados para determinar la distribución de los polimorfismos en los distintos alelos. En cuanto a las muestras de los embriones, tras la biopsia, se prepara la librería para DGP-A, y con una alícuota de esta se prepara la librería para DGP-M. Se cuantifican y mezclan todas las librerías, y se procede a la secuenciación. Finalmente, se realiza el análisis bioinformático de aneuploidías y de la enfermedad monogénica, de manera independiente.
La FIG.3 muestra un ejemplo de fasado de SNPs, en el caso de un trío formado por la pareja y un hijo afecto. Se muestran los SNPs antes y después de fasar, con la distribución de los mismos en los alelos. Además, se señala cuáles son informativos (dan información sobre la fase) y cuáles no.
La FIG.4 muestra un ejemplo de fasado de SNPs con análisis de resultados en embriones. Para simplificar, se muestran sólo aquellos SNPs que son informativos. En este caso, la pareja es portadora de mutaciones en heterocigosis en el gen CEP290, que provoca síndrome de Meckel. Este síndrome es letal prenatal, por lo que para el fasado se utilizó ADN de un feto anterior. En este caso, el panel se diseñó incluyendo el análisis directo de la mutación, que aparece sombreada.
La FIG.5 muestra el resultado del fasado de SNPs en un embrión, donde aparecen distintos problemas y artefactos, junto con la descripción de estos. El algoritmo de fasado desarrollado permite detectar estos errores.
La FIG.6 muestra un ejemplo de una pareja con una translocación balanceada, y los embriones que como consecuencia se pueden generar. El 50% de estos embriones pueden heredar una alteración desbalanceada con graves consecuencias (desde abortos de repetición hasta niños con retraso metal y rasgos dismórficos). El 25% de los embriones serán normales, y el otro 25% tendrán la alteración balanceada como uno de los progenitores.
EXPLICACIÓN DE UN MODO DETALLADO DE REALIZACIÓN DE LA INVENCIÓN
El método para el estudio de mutaciones en embriones en procesos de reproducción in vitro,
objeto de la presente invención puede dividirse, a su vez, en tres procesos secuenciales y diferenciados. El método de la invención combina varias técnicas de selección de tagSNPs, pues calcula las correlaciones de desequilibrio de ligamiento para el bloque de interés (por defecto, 4 Mb alrededor de la mutación, 1 Mb es igual a un millón de nucleótidos). Los SNPs de esa región, a su vez, serán considerados como en un enfoque libre de bloques, de manera que todas las correlaciones entre SNPs son calculadas y tenidas en cuenta en la selección de los tagSNPs. De esta forma la presente invención selecciona polimorfismos con alta probabilidad de ser informativos, considerando las frecuencias alélicas de los mismos dentro de la población objetivo y si forman parte o no de un mismo haploboque (conjunto de SNPs que se heredan juntos). Un tagSNP es aquel SNP que se considera representativo para todo el haplobloque, es decir, que si el tagSNP está en heterocigosis, por ejemplo, todo los SNPs pertenecientes a ese mismo haplobloque estarán en heterocigosis. Un tagSNP evita tener que analizar todos los polimorfismos porque conociendo cómo se comporta, se puede deducir cómo lo hace el resto de polimorfimos del haplobloque.
Por lo tanto, el objetivo del método de la invención (FIG.1) se centra en la obtención de un panel mínimo de tagSNPs con máxima capacidad informativa, simplificando el posterior análisis e interpretación de los resultados de un análisis de informatividad.
Más concretamente, el método de la invención comprende se divide en dos procesos básicos y un tercer proceso de validación. Los dos primeros procesos no tienen porqué ser, necesariamente, en este orden:
(i) Un primer proceso de selección de SNPs:
a. En este proceso se toma como entrada los valores de los n SNPs candidatos (ti ... tk) de cada individuo x, en una región cromosómica de interés y específicamente extraídos para la población objeto de estudio. Se seleccionan aquellos SNPS que son bialélicos, por lo que los individuos pueden ser representados como haplotipos de longitud m formados por cadenas binarias {1 ,0}, siendo 110 y 0|1 los valores para SNPs heterocigotos y 0|0 y 111 los valores para los homocigotos. Esto se realiza en toda la región cromosómica de interés que queda definida como toda posición que se encuentre 2 Mb (es un valor por defecto que es posible modificar) aguas arriba y 2 Mb aguas abajo del gen/mutación que se desee estudiar.
b. Tras la obtención, se analizan los n SNPs candidatos de la región y se
excluyen aquellos que cumplan alguna de las siguientes condiciones:
i. SNPs con más de un alelo alternativo (SNPs no bialélicos) ii. SNPs cuyos alelos sean diferentes al cambio de un nucleótido simple (indels, cambios de patrón de polinucleótidos, entre otros)
i¡¡. SNPs que se encuentren en homocigosis en al menos el 99% de la población de interés
iv. SNPs no comunes, es decir, cuya frecuencia alélica menor sea inferior al 1 % c. El siguiente punto trata de maximizar la situación en que uno de los parentales presente el valor de un SNP en estado heterocigoto, mientras en el otro parental se presente como homocigoto, es decir, sea informativo. Esto se consigue a través de la maximización del valor de dos funciones por encima de cierto valor umbral:
MaxP: p-(3p2) + (4p3) - (2p4)
HET rate: 2pq siendo p y q respectivamente las frecuencias alélicas de los alelos referencia y alternativo para cada SNP. Estas son las ecuaciones del equilibrio de Hardy-Weinberg y su derivada.
d. La salida de este algoritmo será un panel de z SNPs optimizados para ambos valores en forma de matriz M cuyas columnas corresponden a los individuos de la población y las filas a los valores de cada SNP para cada individuo.
(¡i) Un segundo proceso de selección de SNPs:
a. Mediante una búsqueda exhaustiva, se evalúan todas las combinaciones de SNPs para obtener un set t mínimo de tagSNPs a partir de la matriz M obtenida en el punto (i).
b. En primer lugar los SNPs de la matriz M del block-región se organizan en grupos de alta correlación en base al criterio del pairwise r2. Para ello se calcula el valor de pairwise r2 a partir de la frecuencia alélica calculada para la matriz M. De esta manera SNPs de diferentes grupos presentarán baja correlación, por lo que dos SNPs pertenecerán a un mismo grupo tan solo cuando el r2 pairwise entre ellos supere cierto valor umbral (fijado por el usuario).
c. Tras esto se realiza la selección de tagSNPs dentro de cada grupo en base al criterio de LD, empezando por k=1 SNPs y estudiando todas las k-
combinaciones posibles, organizando los SNPs dentro de cada grupo d. Suponiendo dos SNPs cuyas frecuencias sean p (alelo de mayor frecuencia) y q=1-p. Se emplean las ecuaciones:
Siendo pA y pB la probabilidad observada del alelo p para el SNP1 y el SNP2 respectivamente y pa y pb la probabilidad para el alelo menor. Finalmente, pAB es la probabilidad combinada del par pq. Mediante el uso de estas ecuaciones se considerarán tagSNPs aquellos SNPs cuyos rangos funcionales superen cierto valor umbral.
La organización de los SNPs dentro de cada grupo en base al criterio de LD permite realizar una selección en base al rango funcional, asegurando que la primera solución encontrada es una solución óptima y permitiendo reducir considerablemente el tiempo de computación.
Finalmente, si un SNP no supera los umbrales de r2 o LD será considerado en un grupo sólo y tomado como tagSNP por sí mismo.
(i¡¡) Un tercer proceso de validación que consiste en una validación in-sílico del panel de tagSNPs obtenido Para ello y empleando la base de datos 1000Genomes db, se escogen aleatoriamente individuos para realizar múltiples cruces. Tras esto se contabiliza el número de tagSNPS que resultaron informativos de cada cruce y se aporta el promedio a modo de dato informativo de la potencia informativa del panel.
Como se ha indicado, la FIG.2 muestra un esquema del método de la invención, en donde en primer lugar, se analiza el gen con la mutación a descartar en los embriones y se selecciona una región alrededor (típicamente, de 4 Mb). Se seleccionan aquellos polimorfismos que no cumplen ningún criterio de exclusión, y se buscan aquellos con mayor probabilidad de ser informativos. Por otro lado, se identifican aquellos polimorfismos que pueden ser tag mediante análisis de correlación y desequilibrio de ligamiento. Con ambas cosas, se realiza un diseño final de panel, y se hace una validación in silico simulando
entrecruzamientos entre multitud de individuos cuyos genomas se encuentran depositados en bases de datos públicas.
Ejemplo 1. Diagnóstico de aneuploidías
En la FIG.2 se muestra el esquema completo para el uso en el diagnóstico de aneuploidías. Se considera una pareja de población europea donde un miembro de la pareja es portador de la variante patogénica autosómica dominante W-/ :c.233A>G p.(Asn78Ser) (posición cromosómica chr13:10183764) causante de una afección conocida como síndrome de Von Hippel-Lindau, que tiene un modo de herencia autosómico dominante.
El input del software serán los 69473 SNPs que contiene el block-region chr13:9181319- 11681319. El output de este algoritmo será una matriz M de 1625 SNPs candidatos, los cuales actuarán como input para el algoritmo de selección de SNPs, cuyo output estará formado por un panel de 283 tagSNPs. En la fase de validación se obtuvo que el 49% de tagSNPs del panel resultaba informativo en promedio.
Parte de laboratorio húmedo. Una vez seleccionados los polimorfismos que queremos secuenciar, se introducen las posiciones en la plataforma correspondiente de enriquecimiento. Preferiblemente, Ion Ampliseq. Esta plataforma diseña los oligos necesarios para la captura de las regiones. En el laboratorio de IVF se generan los embriones que se biopsian cuando llegan a la etapa de blastocisto. La biopsia se mete en un tubo de PCR y se envía al laboratorio. En el laboratorio, se amplifica el ADN utilizando, por ejemplo, Ion Reproseq, de manera que, además de la amplificación, se hace la librería para DGP-A. Siguiendo el protocolo adecuado, se amplifican todas las regiones diseñadas con Ampliseq en el material previamente amplificado, y se produce la librería para DGP-M. Posteriormente, hacemos la secuenciación masiva. Hay que tener en cuenta que para poder secuenciar de manera simultánea múltiples muestras, es necesario marcar las muestras con un código de barras molecular. Se debe tener especial precaución en que los códigos de barras no coincidan entre las muestras.
Análisis de datos. Una vez finalizada la secuenciación, se obtienen una serie de ficheros con lecturas para todo el embrión (DGP-A) y otros ficheros con los polimorfismos detectados (DGP-M). Con estos ficheros, se debe hacer un análisis bioinformático. Con los primeros, se determinan las aneuplodías utilizando el software más apropiado según la plataforma. Con los segundos, se determina el patrón de segregación de cada polimorfismo para el análisis
de DGP-M. En primer lugar, las lecturas obtenidas se alienan al genoma de referencia, y se identifican los polimorfismos en todas y cada una de las muestras, incluidas pacientes, familiares utilizados como referencia y embriones. En el caso de los familiares, la situación más sencilla es aquella en la que disponemos de la pareja y de un hijo afecto. Para el fasado de SNPs, debemos determinar qué polimorfismos se comparten en el trío y de esta manera averiguar cuáles segregan con el alelo sano y cuáles con el patogénico. Como se han seleccionado SNPs bialélicos, cada una de las muestras puede ser 0/0, 0/1 , 1/1 si son homocigotas para el SNP silvestre, heterocigotas u homocigotas para el SNP alternativo, respectivamente. El número 0 está indicando que se trata del SNP de referencia (sea cual fuere) mientras que el 1 indica que se trata del SNP alternativo. Esto es así para todos los cromosomas, excepto los sexuales, en los cuales las mujeres pueden ser homocigotas u heterocigotas, mientras que los hombres son siempre hemizogotos (0 ó 1). Con estos datos, se procede a realizar el fasado de SNPs. Para ello, se analizan aquellos SNPs que son informativos en la pareja. Los SNPs informativos son aquellos en los cuales uno de los pacientes es heterocigoto (0/1) y el otro homocigoto (0/0 o 1/1). El polimorfismo que se utiliza para casar es aquel que es distinto en el individuo heterocigoto. Por ejemplo, si tenemos un individuo 0/1 y el otro 1/1 , el polimorfismo que utilizaremos para fasar es el 0. Por comparación con uno o más individuos en la familia, se determina arbitrariamente a qué alelo pertenece cada uno. Un ejemplo de fasado de SNPs sería el siguiente:
Se considera que la situación en la que tenemos una pareja con un hijo, cada uno con sus alelos. Consideramos que el padre tiene los alelos P1 y P2, la madre M1 y M2. Lógicamente, el hijo habrá heredado un alelo de cada uno, por ejemplo, P1 del padre y M1 de la madre. Si al analizar unos polimorfismos, se obtienen que el padre es 0/1 , la madre 1/1 y el hijo 0/1 , determinaremos que el polimorfismo 0 pertenece al alelo P1 , que es el compartido entre el padre y el hijo, dado que ambos presentan dicho polimorfismo. En otro caso, podemos tener el padre 0/1 , la madre 1/1 y el hijo 1/1. En ese caso, el polimorfismo 0 debe necesariamente pertenecer al alelo P2 del padre, puesto que no es compartido entre padre e hijo. De manera análoga, se procede con todos los polimorfismos que sean informativos para la madre.
Una vez determinados los haplotipos de los padres, se procede al análisis de los embriones. Para ello, se trata de identificar el SNP informativo en cada uno de los embriones. Por ejemplo, si el polimorfismo 0 pertenece al alelo P1 , si un embrión presenta dicho polimorfismo, significa que tiene dicho haplotipo. En definitiva, se trata de identificar los SNPs informativos en los distintos embriones y así determinar el
haplotipo de cada uno de ellos.
Un ejemplo del proceso de fasado de SNPs se muestra en la FIG.3, donde se especifica, además, si los SNPs son informativos, no informativos o semiinformativo. Un SNP informativo es aquel que cumple lo anteriormente dicho, es decir, que sea heterocitogo en uno de los progenitores, y homocigoto en el otro; un SNP no informativo puede darse cuando ambos progenitores sean homocigotos, o que ambos sean heterocigotos y el hijo también lo sea; un SNP semiinformativo se da cuando ambos progenitores son heterocigotos y el hijo es homocigoto. Esta clasificación se puede extender a otras combinaciones familiares.
Una vez hecho el fasado de SNP con familiares, se debe comparar el patrón de polimorfismos con los embriones secuenciados, y de esta manera determinaremos que embriones son portadores y cuáles son normales. En la FIG.4 se muestra un ejemplo de fasado de SNPs que incluye el análisis de los embriones.
El algoritmo de fasado de SNPs es, además, capaz de identificar las distintas posibles fuentes de error y poner sobre alerta al analista para que las pueda sopesar y analizar. Estas fuentes de error son diversas. En la FIG.5 se muestra el resultado para un embrión similar a la FIG.4, pero donde se identifican y describen las distintas fuentes de error:
Por ejemplo, podemos tener un fenómeno de allele-drop-out. Este fenómeno implica que, en un embrión, sólo se amplifica uno de los alelos. De manera que, al secuenciar, podemos interpretar que un embrión es homocigoto para un polimorfismo, cuando en realidad es heterocigoto. Por ejemplo, un embrión puede ser 0/1 pero haber sufrido un fenómeno de ADO durante la amplificación y mostrarse como 1/1 en la secuenciación. Este fallo puede dar lugar a una mala interpretación de los resultados, asignando equívocamente el alelo de los embriones. A fin de evitarlo, es necesario distinguir aquellos polimorfismos que, además de ser informativos, son clave. Los polimorfismos clave son aquello que además de ser informativos son heterocigotas en el embrión. Por ejemplo, si tenemos un padre 0/1 y una madre 1/1 , y el embrión en 0/1 , el polimorfismo 0 será clave porque es informativo y heterocigoto. Por el contrario, si el embrión es 1/1 , el polimorfismo sólo será informativo. En este último caso no podemos determinar si el embrión es realmente 1/1 , o si hemos sufrido un allele-drop-out y sólo estamos viendo uno de los alelos 1.
Otra fuente de error se debe a lo que se llama No Cali. Se produce cuando no se obtienen señal para ninguno de los alelos para un polimorfismo determinado, así que no podemos saber ni siquiera uno de ellos. Finalmente, otra fuente que puede dar lugar a confusión es se produzca una recombinación. Una recombinación es cuando los alelos en uno de los padres se intercambian, y esto se ve reflejado en el embrión. Por ejemplo, si analizamos 100 polimorfismos en un embrión, puede suceder que parte de ellos (por ejemplo, 60) pertenezcan al alelo P1 y el resto al alelo P2. Para poder identificar la recombinación, debe suceder que el cambio de alelo P1 al P2 sea de manera secuencial. Es decir, por ejemplo, que los primeros 60 polimorfismos pertenezcan al alelo P1 y los siguientes al P2. Si el intercambio de polimorfismos se produjera de manera más o menos aleatoria, eso significaría que se trata de un error de la secuenciación, porque estadísticamente no puede suceder que un embrión tenga más de dos recombinaciones en un espacio tan pequeño como el fragmento analizado (4 Mb).
También puede suceder que haya errores de secuenciación o artefactos. Estos artefactos se pueden identificar fácilmente porque parecen recombinaciones o allele- drop-outs, pero suceden de manera esporádica en una o muy pocas posiciones.
Finalmente, para poder realizar la asignación de alelos de manera inequívoca, se requiere que haya al menos tres polimorfismos informativos y que sean además clave a cada lado de la mutación, de manera consecutiva, además de al menos otros 3 polimorfismos más no clave.
Ejemplo 2. Identificación de embriones triploides
Los embriones triploides son un problema importante en cualquier ciclo de IVF. Estos suponen un 15% de los abortos espontáneos por anomalías cromosómicas. Los embriones triploides deben descartarse siempre de cualquier ciclo de fecundación in vitro, pero es difícil identificarlos porque no se observan diferencias en cuanto a calidad embrionaria con respecto a embriones normales. En ocasiones, es posible distinguirlos porque en D+1 se observan tres pronúcleos, pero no siempre es posible. Los embriones triploides pueden ser de origen dispérmico (en casos de FIV) o bien originarse por un fallo del ovocito al no realizar la extrusión del segundo corpúsculo polar.
Los embriones triploides no se pueden identificar mediante técnicas corrientes de DGP-A, a pesar de tratarse de una anomalía numérica. En ocasiones, mediante inspección visual, es posible detectar embriones 46,XXY al observar una distribución anormal de las lecturas de los cromosomas sexuales, pero no siempre es posible y requiere de personal entrenado.
El método aquí descrito se puede utilizar para identificar este tipo de embriones. Se pueden seleccionar polimorfismos informativos a lo largo del genoma y determinar si son triploides analizando los polimorfismos presentes y la frecuencia de los mismos. Normalmente, un polimorfismo en heterocigosis se debe encontrar en una proporción alrededor de 0,5, debido a que la mitad de las lecturas se corresponderán a un alelo y la mitad a otro. Un embrión triploide tiene tres alelos, por lo que esta proporción se verá desviada. Así, el resultado puede ser de tres polimorfismos para la misma posición (si son multialélicos) o bien dos polimorfimos pero uno de ellos con frecuencia sobre el 33% y el otro sobre el 66%. Si todos los polimorfismos con suficientes lecturas siguen este patrón a lo largo de todo el genoma, eso significa que el embrión es triploide.
Ejemplo 3. Identificación de embriones con traslocaciones balanceadas
En ocasiones, algunas parejas deciden acudir a ciclos de fecundación in vitro porque uno de ellos es portador de una translocación balanceada. En estos casos, estos padres tienen un riesgo reproductivo elevado, porque el 50% de sus embriones tendrán una translocación desbalanceada como consecuencia de heredar uno de los cromosomas alterados. Además, tendrá un 25% de posibilidades de generar embriones completamente normales, y un 25% de generar embriones con la alteración balanceada. En la FIG.6 se muestra un esquema de los posibles embriones generados. Las técnicas actuales permiten distinguir aquellos embriones con alteraciones desbalanceadas, la mayoría de las veces utilizando simplemente DGP-A. Sin embargo, no es posible diferenciar aquellos embriones con la alteración balanceada de aquellos completamente normales, dado que no se producen cambios de número de copia. Mediante el presente desarrollo, es posible mapear todo el cromosoma mediante distintos polimorfismos y, estudiando la distribución de esos polimorfismos en los embriones desbalanceados, determinar cuáles están presentes en el cromosoma alterado y cuáles en el normal. De esta manera, podremos saber si los embriones sin cambios de número de copia han recibido de su progenitor el cromosoma normal o el alterado. Este estudio es posible gracias a la combinación de DGP-A y DGP-M.
Claims
1.- Un método para el estudio de mutaciones en embriones en procesos de reproducción in vitro con la particularidad de que combina las técnicas de detección de Aneuploidía (DPG-A) y el estudio de enfermedades monogénicas en embriones (DGP-M) y que se caracteriza por que comprende, a su vez los procesos de:
un proceso de selección de SNPs donde se toma como entrada los valores de unos n SNPs candidatos (ti ... tk) de cada individuo x, en una región cromosómica de interés y específicamente extraídos para una población objeto de estudio; y donde este proceso está configurado para maximizar la situación en que uno de los parentales presente el valor de un SNP en estado heterocigoto, mientras en el otro parental se presente como homocigoto y obtener un panel de z SNPs optimizados para ambos valores maximizados en forma de matriz M cuyas columnas corresponden a los individuos de la población y las filas a los valores de cada SNP para cada individuo;
un proceso de selección se SNPs se evalúan todas las combinaciones de SNPs para obtener un set t mínimo de tagSNPs a partir de la matriz M obtenida en el primer proceso de selección se SNPs; y
un proceso de validación in-sílico del panel de tagSNPs obtenido en el segundo proceso.
2.- El método de acuerdo con la reivindicación 1 donde el primer proceso de selección de SNPs comprende la selección de aquellos SNPS que son bialélicos, por lo que los individuos pueden ser representados como haplotipos de longitud m formados por cadenas binarias {1 ,0}, siendo 110 y 0|1 los valores para SNPs heterocigotos y 0|0 y 111 los valores para los homocigotos; realizándose esta selección en toda la región cromosómica de interés.
3.- El método de acuerdo con la reivindicación 2 donde la región cromosómica de interés queda definida como toda posición que se encuentre dos megabases por encima y dos megabases por debajo del gen o mutación objeto de estudio.
4 - El método de acuerdo con una cualquiera de las reivindicaciones 1 a 3 donde el primer proceso comprende una etapa de analizar los n SNPs candidatos de la región y excluir aquellos que cumplan alguna de las siguientes condiciones: SNPs con más de un alelo alternativo (SNPs no bialélicos); SNPs cuyos alelos sean diferentes al cambio de un nucleótido
simple; SNPs que se encuentren en homocigosis en al menos el 99% de la población de interés; y SNPs no comunes, es decir, cuya frecuencia alélica menor sea inferior al 1 %.
5.- El método de acuerdo con una cualquiera de las reivindicaciones 1 a 4 donde el primer proceso comprende una etapa de maximizar la situación en que uno de los parentales presente el valor de un SNP en estado heterocigoto, mientras en el otro parental se presente como homocigoto, es decir, que sea informativo a través de la maximización del valor de dos funciones por encima de cierto valor umbral: MaxP: p-(3p2) + (4p3) - (2p4)
HET rate: 2pq siendo p y q respectivamente las frecuencias alélicas de los alelos referencia y alternativo para cada SNP.
6.- El método de acuerdo con una cualquiera de las reivindicaciones 1 a 5 donde el segundo proceso de selección de SNPs que comprende, en primer lugar, que los SNPs de la matriz M del block-región se organicen en grupos de alta correlación en base al criterio del pairwise r2; de tal forma que se calcula el valor de pairwise r2 a partir de la frecuencia alélica calculada para la matriz M.
1 - El método de acuerdo con la reivindicación 6 donde los SNPs de diferentes grupos presentarán baja correlación, por lo que dos SNPs pertenecerán a un mismo grupo tan solo cuando el r2 pairwise entre ellos supere cierto valor umbral fijado por el usuario.
8.- El método de acuerdo con una cualquiera de las reivindicaciones 1 a 7 donde la selección de tagSNPs dentro de cada grupo se realiza en base al criterio de límite de la detección (LD), empezando por k=1 SNPs y estudiando todas las k-combinaciones posibles, organizando los SNPs dentro de cada grupo.
9.- El método de acuerdo con una cualquiera de las reivindicaciones 6 a 8 donde si un SNP no supera los umbrales de r2 o LD será considerado en un grupo sólo y tomado como tagSNP por sí mismo.
10.- El método de acuerdo con una cualquiera de las reivindicaciones 1 a 9 donde en el tercer proceso de validación se emplea una base de datos genómica donde se escogen aleatoriamente individuos para realizar 300 cruces, tras lo cual se se contabiliza el número de tagSNPs que resultaron informativos de cada cruce y se aporta el promedio a modo de dato informativo de la potencia informativa.
11.- Un kit para el estudio de mutaciones en embriones en procesos de reproducción in vitro que se caracteriza porque comprende, al menos, un dispositivo electrónico con un procesador o procesadores y una memoria, donde la memoria almacena instrucciones que cuando son ejecutadas por el procesador o procesadores hacen que el dispositivo electrónico ejecute el método de acuerdo con una cualquiera de las reivindicaciones 1 a 10.
12.- Un producto de programa informático con instrucciones configuradas para ser ejecutadas por uno o más procesadores que hacen que el dispositivo electrónico del kit de la reivindicación 11 lleve a cabo el método de acuerdo con una cualquiera de las reivindicaciones 1 a 10.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19758787.6A EP3825414B1 (en) | 2018-07-20 | 2019-07-19 | Method for the study of embryo mutations in vitro reproduction processes |
US17/262,009 US20210343365A1 (en) | 2018-07-20 | 2019-07-19 | Method for the Study of Embryo Mutations in IN VITRO Reproduction Processes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201830731A ES2738176B2 (es) | 2018-07-20 | 2018-07-20 | Metodo para el estudio de mutaciones en embriones en procesos de reproduccion in vitro |
ESP201830731 | 2018-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020016477A1 true WO2020016477A1 (es) | 2020-01-23 |
Family
ID=67742452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2019/070506 WO2020016477A1 (es) | 2018-07-20 | 2019-07-19 | Método para el estudio de mutaciones en embriones en procesos de reproducción in vitro |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210343365A1 (es) |
EP (1) | EP3825414B1 (es) |
ES (1) | ES2738176B2 (es) |
WO (1) | WO2020016477A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021180722A1 (en) * | 2020-03-12 | 2021-09-16 | Vrije Universiteit Brussel | Method for the analysis of genetic material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2360085T3 (es) | 2005-11-15 | 2011-05-31 | London Bridge Fertility, Gynaecology And Genetics Centre Ltd | Análisis cromosómico de cariotipado molecular. |
WO2014082032A1 (en) | 2012-11-26 | 2014-05-30 | The University Of Toledo | Methods for standardized sequencing of nucleic acids and uses thereof |
US20140274741A1 (en) | 2013-03-15 | 2014-09-18 | The Translational Genomics Research Institute | Methods to capture and sequence large fragments of dna and diagnostic methods for neuromuscular disease |
US20150038337A1 (en) | 2013-08-01 | 2015-02-05 | Abbvie Inc. | Methods of selecting biologic-producing cell lines by next generation sequencing |
EP2947156A1 (en) | 2014-05-22 | 2015-11-25 | Qiagen GmbH | Optimization of sequencing reactions |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007147074A2 (en) * | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Use of highly parallel snp genotyping for fetal diagnosis |
CN103620055A (zh) * | 2010-12-07 | 2014-03-05 | 利兰·斯坦福青年大学托管委员会 | 在全基因组规模非侵入性确定亲本单倍型的胎儿遗传 |
WO2012142334A2 (en) * | 2011-04-12 | 2012-10-18 | Verinata Health, Inc. | Resolving genome fractions using polymorphism counts |
-
2018
- 2018-07-20 ES ES201830731A patent/ES2738176B2/es active Active
-
2019
- 2019-07-19 US US17/262,009 patent/US20210343365A1/en active Pending
- 2019-07-19 EP EP19758787.6A patent/EP3825414B1/en active Active
- 2019-07-19 WO PCT/ES2019/070506 patent/WO2020016477A1/es unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2360085T3 (es) | 2005-11-15 | 2011-05-31 | London Bridge Fertility, Gynaecology And Genetics Centre Ltd | Análisis cromosómico de cariotipado molecular. |
WO2014082032A1 (en) | 2012-11-26 | 2014-05-30 | The University Of Toledo | Methods for standardized sequencing of nucleic acids and uses thereof |
US20140274741A1 (en) | 2013-03-15 | 2014-09-18 | The Translational Genomics Research Institute | Methods to capture and sequence large fragments of dna and diagnostic methods for neuromuscular disease |
US20150038337A1 (en) | 2013-08-01 | 2015-02-05 | Abbvie Inc. | Methods of selecting biologic-producing cell lines by next generation sequencing |
EP2947156A1 (en) | 2014-05-22 | 2015-11-25 | Qiagen GmbH | Optimization of sequencing reactions |
Non-Patent Citations (4)
Title |
---|
GONZÁLEZ-REIG SANTIAGO ET AL: "New all-in-one protocol for 24-chromosome aneuploidies and monogenic diseases detection by next- generation sequencing: first-year experience", REPRODUCTIVE BIOMEDICINE ONLINE, ELSEVIER, AMSTERDAM, NL, vol. 36, 14 February 2018 (2018-02-14), XP085349865, ISSN: 1472-6483, DOI: 10.1016/J.RBMO.2017.10.083 * |
LIYING YAN ET AL: "Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES (PNAS), vol. 112, no. 52, 28 December 2015 (2015-12-28), US, pages 15964 - 15969, XP055625129, ISSN: 0027-8424, DOI: 10.1073/pnas.1523297113 * |
NATHAN R. TREFF ET AL: "Advances in Preimplantation Genetic Testing for Monogenic Disease and Aneuploidy", ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, vol. 18, no. 1, 31 August 2017 (2017-08-31), US, pages 189 - 200, XP055639149, ISSN: 1527-8204, DOI: 10.1146/annurev-genom-091416-035508 * |
SUEOKA KOU: "Preimplantation genetic diagnosis: an update on current technologies and ethical considerations", REPRODUCTIVE MEDICINE AND BIOLOGY, SPRINGER JAPAN, TOKYO, vol. 15, no. 2, 14 November 2015 (2015-11-14), pages 69 - 75, XP035960666, ISSN: 1445-5781, [retrieved on 20151114], DOI: 10.1007/S12522-015-0224-6 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021180722A1 (en) * | 2020-03-12 | 2021-09-16 | Vrije Universiteit Brussel | Method for the analysis of genetic material |
Also Published As
Publication number | Publication date |
---|---|
EP3825414B1 (en) | 2024-08-28 |
US20210343365A1 (en) | 2021-11-04 |
ES2738176B2 (es) | 2021-01-11 |
ES2738176A1 (es) | 2020-01-20 |
EP3825414A1 (en) | 2021-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Werling et al. | An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder | |
Suchan et al. | Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens | |
Helgason et al. | The Y-chromosome point mutation rate in humans | |
1000 Genomes Project Consortium | A map of human genome variation from population scale sequencing | |
Hohenlohe et al. | Population genomic analysis of model and nonmodel organisms using sequenced RAD tags | |
CA2731991A1 (en) | Methods for allele calling and ploidy calling | |
CN105779280A (zh) | 由母本生物样品鉴定新生胎儿突变 | |
Vergult et al. | Mate pair sequencing for the detection of chromosomal aberrations in patients with intellectual disability and congenital malformations | |
Kumar et al. | Whole genome prediction for preimplantation genetic diagnosis | |
Armstrong et al. | Genomic associations with bill length and disease reveal drift and selection across island bird populations | |
AU2017263319A1 (en) | Methods of determining genomic health risk | |
Kim et al. | SNP linkage analysis and whole exome sequencing identify a novel POU4F3 mutation in autosomal dominant late-onset nonsyndromic hearing loss (DFNA15) | |
Ajmone-Marsan et al. | Genomic characterization of animal genetic resources: Practical guide | |
KR20180054834A (ko) | 시퀀싱에서 사용하기 위한 분자 품질 보증 방법 | |
Kockum et al. | Overview of genotyping technologies and methods | |
Lyu et al. | Personalized genome structure via single gamete sequencing | |
Porubsky et al. | A familial, telomere-to-telomere reference for human de novo mutation and recombination from a four-generation pedigree | |
LInderoth | Identifying population histories, adaptive genes, and genetic duplication from population-scale next generation sequencing | |
Oget-Ebrad et al. | Benchmarking phasing software with a whole-genome sequenced cattle pedigree | |
ES2738176B2 (es) | Metodo para el estudio de mutaciones en embriones en procesos de reproduccion in vitro | |
Graham et al. | Genomic Mosaicism of the Brain: Origin, Impact, and Utility | |
JP2022537443A (ja) | ゲノム倍数性を判定するためのシステム、コンピュータプログラム製品及び方法 | |
Bradley et al. | 19. The evolutionary genetics and molecular ecology of chimpanzees and bonobos | |
Erbilgin et al. | The Human Genome and Inheritance: Key Concepts | |
Alyousfi | Development and application of methods for resolving molecular diagnoses from patient sequence data for monogenic diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19758787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019758787 Country of ref document: EP Effective date: 20210222 |