WO2020016175A1 - Schaltungsanordnung für ein batteriesystem - Google Patents

Schaltungsanordnung für ein batteriesystem Download PDF

Info

Publication number
WO2020016175A1
WO2020016175A1 PCT/EP2019/068996 EP2019068996W WO2020016175A1 WO 2020016175 A1 WO2020016175 A1 WO 2020016175A1 EP 2019068996 W EP2019068996 W EP 2019068996W WO 2020016175 A1 WO2020016175 A1 WO 2020016175A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
monitoring
actuator
order
sensor system
Prior art date
Application number
PCT/EP2019/068996
Other languages
English (en)
French (fr)
Inventor
Johannes Grabowski
Joachim Joos
Walter Von Emden
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US17/260,089 priority Critical patent/US20210288358A1/en
Priority to EP19748753.1A priority patent/EP3824507A1/de
Priority to CN201980060725.0A priority patent/CN112714974A/zh
Publication of WO2020016175A1 publication Critical patent/WO2020016175A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • H02H3/023Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order by short-circuiting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08122Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in field-effect transistor switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a circuit arrangement for a
  • the invention relates to a method for safety discharge of individual cells
  • battery systems preferably accumulators and / or high-voltage batteries, for. B. for electric vehicles from a battery pack (array) with multiple battery cells.
  • EP 1 289 096 A2 shows a battery system in which diodes are used to prevent the battery cells from being discharged.
  • a modular energy storage direct converter system emerges from WO 2016/012247 A1.
  • the invention relates to a circuit arrangement with the features of claim 1 and a method with the features of claim 7. Further features and details of the invention result from the respective
  • a circuit arrangement for a rechargeable battery system preferably for a battery system of a vehicle or of a mobile radio device, is in particular protected.
  • the battery system can in particular be designed as a rechargeable high-voltage battery.
  • the battery system advantageously has a plurality of cells (battery cells) and in this way forms a battery pack.
  • the cells are in particular designed as 3.7 volt cells.
  • the vehicle is, for example, as a passenger vehicle and / or as
  • Truck and / or designed as an electric vehicle can be a hybrid vehicle or a pure electric vehicle that is driven exclusively by electricity.
  • the mobile device is e.g. B. executed as a smartphone or the like.
  • the following (for example electronic) components are used:
  • At least one actuator which is assigned to an individual cell of the battery system in order to switch a discharge of the cell, in particular via its inherent resistance
  • At least one sensor system which is assigned to the individual cell, in order to monitor the cell, and preferably, depending on the monitoring, to discharge the actuator in the event of an error state
  • each cell of the battery system can be equipped with its own diagnostic sensor (i.e. the sensor system) and its own actuator (e.g. one or more electronic switches).
  • its own diagnostic sensor i.e. the sensor system
  • its own actuator e.g. one or more electronic switches
  • the sensor system can advantageously comprise at least one sensor in order to detect an electrical cell voltage and / or an electrical current and / or a temperature of the cell and / or a pressure in the cell.
  • the actuator can e.g. B. have an electrical switch, which is designed to short-circuit the actuator associated cell.
  • each cell of the battery system has at least one assigned actuator and / or at least one assigned sensor system in order to monitor the respective cell and / or depending on the
  • the sensor system of a cell is designed to directly control the actuator of this cell.
  • the sensor system can be electrically connected directly to the actuator in order to close the actuator turn.
  • the actuator has, for example, at least one electrical switch, such as a MOSFET (metal oxide semiconductor field effect transistor).
  • the sensor system is advantageously connected to a control input of the electrical switch in order to convert it from an open state to a closed state (or vice versa). This enables a particularly fast response time to be guaranteed.
  • the actuator assigned to the individual cell can advantageously be designed exclusively for discharging this individual cell.
  • the sensor system assigned to the individual cell can be designed exclusively for monitoring this individual cell and / or exclusively for controlling the actuator assigned to this individual cell. In this way, this individual cell can be quickly discharged in the event of a fault, without having to go through another device (such as a central one)
  • the sensor system is designed to detect an electrical voltage and an electrical current, and preferably also a temperature and / or a pressure, in the individual cell for monitoring and preferably to compare it with a specification, to detect the fault condition in the cell by means of this monitoring and / or on the basis of the comparison.
  • the default can e.g. B. be stored in a non-volatile memory of the sensor system. This makes it possible to reliably detect a critical state (that is, the fault state).
  • the sensor system may optionally be possible for the sensor system to have an integrated circuit, preferably an ASIC (application-specific integrated circuit), in order to provide the monitoring and / or control. In this way, highly integrated and intelligent electronics, which are directly assigned to the cell, can be used for monitoring and / or
  • the senor system is part of a decentralized battery management system, preferably as a decentralized one
  • Battery management unit is designed to be independent of a central To provide the battery management system and / or at least one further decentralized battery management unit for monitoring and / or control at least one further cell of the battery system.
  • the decentralized battery management can have several battery management units, which are decentrally assigned to individual cells. This enables particularly fast control in the event of a fault.
  • the actuator is designed as a circuit breaker, preferably as a field effect transistor, and in particular is connected in parallel to the cell, around the cell for discharge via an internal resistance (in particular internal resistance) of the cell
  • the cell can also be heated here, but largely homogeneously, so that excessive heating no longer occurs.
  • the invention also relates to a method for the safety discharge of individual cells of a rechargeable battery system.
  • the method according to the invention thus brings with it the same advantages as have been described in detail with reference to a circuit arrangement according to the invention.
  • the method can be suitable for operating a circuit arrangement according to the invention.
  • the sensor system and the actuator can be designed according to an inventive method
  • Circuit arrangement executed and / or connected to the cell.
  • the detection and / or each of the aforementioned steps is preferably carried out by the sensor system of the cell.
  • a voltage value on the cell can be determined repeatedly, this voltage value being specific for a cell voltage of the individual cell.
  • the voltage values determined in this way can, for. B. cached to evaluate the history.
  • Temporary storage and / or evaluation can take place, for example, through the sensors.
  • the fault state is preferably detected when the evaluation detects an excessive drop in the cell voltage.
  • the sinking is e.g. B. by falling below a predetermined negative slope, such as. B. -0.5 volts per ps, recognized as a threshold.
  • a short-circuiting of the cell is initiated as a function of the monitoring when the error state is detected.
  • This short-circuiting can in particular be carried out in a controlled manner in order to avoid excessive heating.
  • At least one further actuator for discharging at least one cell adjacent to the cell is controlled, preferably by a central battery management system, preferably independently of one further monitoring of the neighboring cell by a further sensor system, the neighboring cell (s) advantageously being those with a mechanical contact point to the defective cell.
  • the safety can be further increased, for example, a fixed number of adjacent cells also being automatically discharged when the fault condition is detected.
  • the neighboring cells are, for example, those cells that are spatially closest to the defective battery cell in the battery system.
  • the activation comprises repeated, preferably pulsed, switching of the actuator in order to limit a discharge current of the cell. This can prevent excessive heat build-up.
  • FIG. 1 is a schematic representation of a battery system
  • Fig. 3 is a schematic representation of an inventive
  • Fig. 4 shows a further schematic representation of an inventive
  • Fig. 6 is a schematic representation of a cell.
  • a module 3 of a battery system 1 is shown schematically in FIG. 1.
  • a module voltage Um is also shown for better understanding.
  • a single module 3 of the battery system 1 has, for example, a plurality of cells 2, 2 ′.
  • a plurality of modules 3 can be connected together in a battery system 1, in particular in a high-voltage battery for a vehicle. This is clearly shown in Fig. 2.
  • the interconnection of the modules 3 has the effect that a larger total voltage Up of the entire battery pack can be provided.
  • the circuit arrangement 10 can have at least one actuator 30, which is assigned to an individual cell 2 of the battery system 1.
  • This actuator 30 has z. B. at least one electronic switch 31, 32, to switch a discharge of the cell 2.
  • a first electronic switch 31 and a second electronic switch 32 are shown as examples, both of which are connected to the individual cell 2. In the normal state, i.e. H. if the battery system 1 is operating correctly, the second electronic switch 32 is closed and the first electronic switch 31 is open.
  • a sensor system 20 is provided, which is assigned to the individual cell 2 in order to monitor the cell 2 and in dependence thereon
  • the actuator 30 Monitoring to actuate the actuator 30 for discharge in the event of an error state F.
  • a voltage in the cell 2 is measured by the sensor system 20.
  • the first electronic switch 31 can be closed in the fault state F, for example, and the second electronic switch 32 can remain closed, so that the cell 2 concerned is above its own
  • Inherent resistance can discharge itself.
  • the current of the other cells 2 'of the module 3 can also be diverted. This procedure can cause cell 2 to heat up, but not as locally as at a fault location.
  • the fault location is, for example, damage to cell 2, which causes fault condition F.
  • a battery management system 5 can be informed by the sensor system 20 when the fault state F is detected.
  • Battery management system 5 can be done.
  • further or all further cells 2 ′′ of the battery system 1 can each have an associated further sensor system 20 ′′ and / or an associated further actuator 30 ′′ and / or a circuit arrangement 10. In this way it is possible that the fault state F can also be detected in the further cells 2 ′′ and possibly a discharge
  • the senor 20 also monitors a temperature in the cell 2. For example. can unload and / or the
  • the second electronic switch 32 can be controlled. This can in particular also be carried out by the sensor system 20.
  • the sensor system 20 can carry out the monitoring and / or control independently and / or independently of further electronic devices of the battery system and / or of the central battery management system 5.
  • the sensor system 20 z. B. Detect a measuring voltage Ua at the cell 2 at regular time intervals, which is specific and / or dependent on a cell voltage Uz.
  • the occurrence of the fault state F can be detected on the basis of a rapid drop in this voltage Ua.
  • a curve of this voltage Ua is evaluated over time t.
  • An equivalent circuit diagram of cell 2 (or also of further cells 2 ') is shown schematically in FIG. 6. It can be seen that a current flow I. of the cell can be influenced by a contact resistance Rs and by an inherent resistance Ri.
  • the contact resistance Rs is, for example, the resistance that arises at a fault point in the fault state.
  • Unloading according to the circuit arrangement 10 according to the invention and / or according to a method according to the invention can, for example, by the
  • Battery management system 5 can be controlled such that a discharge to a state of charge of 60% or less, e.g. B. 30% (depending on the cell used), in the battery system and / or the short-circuited

Abstract

Die Erfindung betrifft eine Schaltungsanordnung (10) für ein wiederaufladbares Batteriesystem (1), aufweisend: - wenigstens einen Aktuator (30), welcher einer einzelnen Zelle (2) des Batteriesystems (1) zugeordnet ist, um eine Entladung der Zelle (2) zu schalten, - wenigstens eine Sensorik (20), welche der einzelnen Zelle (2) zugeordnet ist, um die Zelle (2) zu überwachen, und um in Abhängigkeit von der Überwachung den Aktuator (30) zur Entladung bei einem Fehlerzustand (F) anzusteuern.

Description

Beschreibung
Titel
SCHALTUNGSANORDNUNG FÜR EIN BATTERIESYSTEM
Die vorliegende Erfindung betrifft eine Schaltungsanordnung für ein
wiederaufladbares Batteriesystem. Ferner bezieht sich die Erfindung auf ein Verfahren zur Sicherheitsentladung von einzelnen Zellen eines
wiederaufladbaren Batteriesystems.
Stand der Technik
Es ist aus dem Stand der Technik bekannt, dass Batteriesysteme, vorzugsweise Akkumulatoren und/oder Hochvolt- Batterien, z. B. für Elektrofahrzeuge aus einem Batteriepack (Array) mit mehreren Batteriezellen ausgebildet sein können.
Aus der WO 2010/118 310 A2 sind z. B. Batteriesysteme bekannt, bei welchen ein Bypass-Mechanismus zur Rekonfiguration des Batteriesystems vorgesehen ist.
Aus der EP 1 289 096 A2 geht ein Batteriesystem hervor, bei welchem Dioden genutzt werden, um eine Entladung der Batteriezellen zu verhindern.
Aus der WO 2016/012247 Al geht ein modulares Energiespeicher- Direkt- Umrichtersystem hervor.
Es hat sich hierbei herausgestellt, dass durch eine Beschädigung von einzelnen Zellen im Bereich einer Störstelle sich die Zelle entladen kann und somit eine Erhitzung an dieser Störstelle bewirkt. Dies kann sich ggf. auch auf
Nachbarzellen dieser Zelle auswirken, sodass auch diese Zellen sich entladen und eine Erhitzung bewirken. Um in einem solchen Fehlerfall einen kritischen Zustand zu vermeiden, sind technisch aufwendige und/oder kostenaufwendige Lösungen bekannt, um eine Kühlung zu gewährleisten.
Offenbarung der Erfindung
Gegenstand der Erfindung ist eine Schaltungsanordnung mit den Merkmalen des Anspruchs 1 und ein Verfahren mit den Merkmalen des Anspruchs 7. Weitere Merkmale und Details der Erfindung ergeben sich aus den jeweiligen
Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten
Merkmale und Details, die im Zusammenhang mit der erfindungsgemäßen Schaltungsanordnung beschrieben sind, selbstverständlich auch im
Zusammenhang mit dem erfindungsgemäßen Verfahren, und jeweils umgekehrt, sodass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird bzw. werden kann.
Unter Schutz gestellt ist insbesondere eine Schaltungsanordnung für ein wiederaufladbares Batteriesystem, vorzugsweise für ein Batteriesystem eines Fahrzeuges oder eines Mobilfunkgeräts.
Das Batteriesystem kann insbesondere als wiederaufladbare Hochvoltbatterie ausgebildet sein. Vorteilhafterweise weist das Batteriesystem mehrere Zellen (Batteriezellen) auf und bildet auf diese Weise ein Batteriepack. Die Zellen sind insbesondere als 3,7 Volt-Zellen ausgeführt. Ferner kann eine weitere
Untergliederung der Batterie in Modulen erfolgen, jeweils z. B. mit 12 - 16 Zellen. Es ist möglich, dass das gesamte Batteriepack eine Gesamtspannung von ca. 400 Volt bereitstellt. Bspw. kann die Gesamtspannung 200 - 600 Volt betragen.
Das Fahrzeug ist bspw. als Personenkraftfahrzeug und/oder als
Lastkraftfahrzeug und/oder als Elektrofahrzeug ausgebildet. Ferner kann es sich um ein Hybrid- Fahrzeug oder um ein reines Elektrofahrzeug handeln, welches ausschließlich elektrisch angetrieben wird. Das Mobilfunkgerät ist z. B. als Smartphone oder dergleichen ausgeführt. Bei der erfindungsgemäßen Schaltungsanordnung kann vorgesehen sein, dass die nachfolgenden (bspw. elektronischen) Komponenten genutzt werden:
wenigstens ein Aktuator, welcher einer einzelnen Zelle des Batteriesystems zugeordnet ist, um eine Entladung der Zelle, insbesondere über ihren Eigenwiderstand, zu schalten,
wenigstens eine Sensorik, welche der einzelnen Zelle zugeordnet ist, um die Zelle zu überwachen, und vorzugsweise um in Abhängigkeit von der Überwachung den Aktuator zur Entladung bei einem Fehlerzustand
(insbesondere Fehlerfall) anzusteuern.
Dies hat den Vorteil, dass im Fehlerfall (beim Vorliegen oder Auftreten eines Fehlerzustandes) durch die Sensorik und/oder durch den Aktuator ein aktives Entleeren und/oder Deaktivieren der Zelle als schadhafte Zelle ermöglicht wird. Die Entladung kann dabei z. B. über einen elektrischen Innenwiderstand
(Eigenwiderstand) der Zelle geschehen. Dies wird ggf. zwar auch zur Erwärmung der Zelle führen, allerdings weitgehend homogen und nicht mehr lokal an einer Störstelle (im Bereich der Zelle des Batteriesystems). Um eine erhöhte
Robustheit zu erzielen, kann ggf. jede Zelle des Batteriesystems mit einem eigenen Diagnosesensor (d. h. der Sensorik) sowie einem eigenen Aktuator (z. B. einem oder mehreren elektronischen Schaltern) ausgestattet werden.
Vorteilhafterweise kann die Sensorik mindestens einen Sensor umfassen, um eine elektrische Zellspannung und/oder einen elektrischen Strom und/oder eine Temperatur der Zelle und/oder einen Druck in der Zelle zu erfassen. Der Aktuator kann z. B. einen elektrischen Schalter aufweisen, welcher dazu ausgeführt ist, die dem Aktuator zugeordnete Zelle kurzzuschließen.
Von Vorteil ist es ferner, wenn jede Zelle des Batteriesystems wenigstens einen zugeordneten Aktuator und/oder wenigstens eine zugeordnete Sensorik aufweist, um die jeweilige Zelle zu überwachen und/oder in Abhängigkeit von der
Überwachung den Aktuator zur Entladung bei einem Fehlerzustand anzusteuern.
Bspw. kann es vorgesehen sein, dass die Sensorik einer Zelle dazu ausgeführt ist, den Aktuator dieser Zelle unmittelbar anzusteuern. Insbesondere kann die Sensorik elektrisch direkt mit dem Aktuator verbunden sein, um den Aktuator zu schalten. Der Aktuator weist bspw. wenigstens einen elektrischen Schalter, wie einen MOSFET (Metall-Oxid-Halbleiter-Feld-Effekttransistor) auf.
Vorteilhafterweise ist die Sensorik mit einem Steuereingang des elektrischen Schalters verbunden, um diesen von einem geöffneten Zustand in einen geschlossenen Zustand zu überführen (oder umgekehrt). Dies ermöglicht es, eine besonders schnelle Reaktionszeit zu gewährleisten.
Vorteilhafterweise kann der der einzelnen Zelle zugeordnete Aktuator ausschließlich zur Entladung dieser einzelnen Zelle ausgeführt sein. Alternativ oder zusätzlich kann die der einzelnen Zelle zugeordnete Sensorik ausschließlich zum Überwachen dieser einzelnen Zelle und/oder ausschließlich zum Ansteuern des dieser einzelnen Zelle zugeordneten Aktuators ausgeführt sein. Auf diese Weise ist eine schnelle Entladung dieser einzelnen Zelle im Fehlerfall möglich, ohne den Umweg über ein weiteres Gerät (wie ein zentrales
Batteriemanagementsystem oder ein Steuergerät des Fahrzeuges oder dergleichen) gehen zu müssen.
In einer weiteren Möglichkeit kann vorgesehen sein, dass die Sensorik dazu ausgeführt ist, zur Überwachung eine elektrische Spannung sowie einen elektrischen Strom, und vorzugsweise auch eine Temperatur und/oder einen Druck, bei der einzelnen Zelle zu erfassen und bevorzugt mit einer Vorgabe zu vergleichen, um durch diese Überwachung und/oder anhand des Vergleichs den Fehlerzustand bei der Zelle zu detektieren. Die Vorgabe kann z. B. in einem Datenspeicher der Sensorik nicht flüchtig gespeichert sein. Dies ermöglicht es, zuverlässig einen kritischen Zustand (also den Fehlerzustand) zu detektieren. Es kann optional möglich sein, dass die Sensorik einen integrierten Schaltkreis, vorzugsweise einen ASIC (anwendungsspezifische integrierte Schaltung), aufweist, um die Überwachung und/oder Ansteuerung bereitzustellen. Auf diese Weise kann eine hochintegrierte und intelligente, unmittelbar der Zelle zugeordnete, Elektronik genutzt werden, um die Überwachung und/oder
Ansteuerung bereitzustellen.
Ferner ist es optional vorgesehen, dass die Sensorik Teil eines dezentralen Batteriemanagements ist, vorzugsweise als dezentrale
Batteriemanagementeinheit ausgeführt ist, um unabhängig von einem zentralen Bateriemanagementsystem und/oder wenigstens einer weiteren dezentralen Bateriemanagementeinheit wenigstens einer weiteren Zelle des Bateriesystems die Überwachung und/oder die Ansteuerung bereitzustellen. Bspw. kann das dezentrale Bateriemanagement mehrere Bateriemanagementeinheiten aufweisen, welche dezentral einzelnen Zellen zugeordnet sind. Dies ermöglicht eine besonders schnelle Ansteuerung im Fehlerfall.
Es kann von Vorteil sein, wenn im Rahmen der Erfindung der Aktuator als Leistungsschalter, vorzugsweise als ein Feldeffektransistor ausgeführt ist, und insbesondere parallel zur Zelle geschaltet ist, um die Zelle zur Entladung über einen Eigenwiderstand (insbesondere Innenwiderstand) der Zelle
kurzzuschließen. Die Zelle kann hierbei zwar ebenfalls erwärmt werden, allerdings weitgehend homogen, sodass es nicht mehr zu einer übermäßigen Erhitzung kommt.
Ebenfalls Gegenstand der Erfindung ist ein Verfahren zur Sicherheitsentladung von einzelnen Zellen eines wiederaufladbaren Bateriesystems.
Hierbei ist vorgesehen, dass die nachfolgenden Schrite durchgeführt werden, vorzugsweise nacheinander oder in beliebiger Reihenfolge, wobei einzelne Schrite ggf. auch wiederholt durchgeführt werden können:
- Überwachen einer einzelnen Zelle durch eine Sensorik, welche (insbesondere nur) der einzelnen Zelle zugeordnet ist, wobei wenigstens eine Zellspannung überwacht wird,
- Detektion eines Fehlerzustands zumindest anhand der Überwachung, vorzugsweise eines zeitlichen Verlaufs der Zellspannung,
- Ansteuern eines Aktuators in Abhängigkeit von der Detektion, um die Zelle im Fehlerzustand zu entladen.
Damit bringt das erfindungsgemäße Verfahren die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf eine erfindungsgemäße Schaltungsanordnung beschrieben worden sind. Zudem kann das Verfahren geeignet sein, eine erfindungsgemäße Schaltungsanordnung zu betreiben. So können bspw. die Sensorik und der Aktuator gemäß einer erfindungsgemäßen
Schaltungsanordnung ausgeführt und/oder mit der Zelle verschaltet sein. Bevorzugt erfolgen die Detektion und/oder jeder der vorgenannten Schritte durch die Sensorik der Zelle.
Vorteilhafterweise kann zur Ermittlung des zeitlichen Verlaufs der Zellspannung bei der Überwachung wiederholt ein Spannungswert an der Zelle ermittelt werden, wobei dieser Spannungswert spezifisch ist für eine Zellspannung der einzelnen Zelle. Die hierdurch ermittelten Spannungswerte können dabei z. B. zwischengespeichert werden, um den Verlauf auszuwerten. Die
Zwischenspeicherung und/oder Auswertung kann bspw. durch die Sensorik erfolgen. Vorzugsweise wird der Fehlerzustand dann detektiert, wenn durch die Auswertung ein übermäßiges Absinken der Spannung der Zelle erkannt wird.
Das Absinken wird z. B. durch das Unterschreiten einer vorgegebenen negativen Steigung, wie z. B. -0,5 Volt pro ps, als Schwellenwert erkannt.
Optional kann es vorgesehen sein, dass in Abhängigkeit von der Überwachung bei der Detektion des Fehlerzustands ein Kurzschließen der Zelle initiiert wird. Dieses Kurzschließen kann insbesondere kontrolliert erfolgen, um eine übermäßige Erhitzung zu vermeiden.
Bevorzugt kann im Rahmen der Erfindung vorgesehen sein, dass in Abhängigkeit von der Überwachung bei der Detektion des Fehlerzustands wenigstens ein weiterer Aktuator zum Entladen wenigstens einer zur Zelle (d. h. schadhaften Zelle) benachbarten Zelle angesteuert wird, bevorzugt durch ein zentrales Batteriemanagementsystem, vorzugsweise unabhängig von einer weiteren Überwachung der benachbarten Zelle durch eine weitere Sensorik, wobei die benachbarte Zelle(n) vorteilhafterweise solche mit mechanischem, Kontaktpunkt zu der schadhaften Zelle sind. Hierdurch kann die Sicherheit weiter erhöht werden, wobei bspw. eine feste Anzahl benachbarter Zellen automatisch bei der Detektion des Fehlerzustandes ebenfalls entladen wird. Die benachbarten Zellen sind beispielsweise solche Zellen, welche im Batteriesystem räumlich der schadhaften Batteriezelle am nächsten sind.
Vorteilhaft ist es zudem, wenn das Ansteuern ein wiederholtes, vorzugsweise gepulstes, Schalten des Aktuators umfasst, um einen Entladestrom der Zelle zu begrenzen. Damit kann eine übermäßige Hitzeentwicklung vermieden werden. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.
Es zeigen:
Fig. 1 Eine schematische Darstellung eines Batteriesystems,
Fig. 2 eine weitere schematische Darstellung eines Batteriesystems,
Fig. 3 eine schematische Darstellung einer erfindungsgemäßen
Schaltungsanordnung,
Fig. 4 eine weitere schematische Darstellung einer erfindungsgemäßen
Schaltungsanordnung,
Fig. 5 eine schematische Darstellung eines Verlaufs eines, bei der einzelnen Zelle gemessenen, Spannungswertes,
Fig. 6 eine schematische Darstellung einer Zelle.
In den nachfolgenden Figuren werden für die gleichen technischen Merkmale auch von unterschiedlichen Ausführungsbeispielen die identischen
Bezugszeichen verwendet.
In Fig. 1 ist schematisch ein Modul 3 eines Batteriesystems 1 dargestellt. Zum besseren Verständnis ist ferner eine Modulspannung Um eingezeichnet. Ein einzelnes Modul 3 des Batteriesystems 1 weist beispielsweise mehrere Zellen 2, 2‘ auf.
Darüber hinaus können in einem Batteriesystem 1, insbesondere in einer Hochvoltbatterie für ein Fahrzeug, mehrere Module 3 zusammengeschaltet sein. Dies ist in Fig. 2 anschaulich dargestellt. Die Zusammenschaltung der Module 3 bewirkt, dass eine größere Gesamtspannung Up des gesamten Batteriepacks bereitgestellt werden kann.
In Fig. 3 ist schematisch eine erfindungsgemäße Schaltungsanordnung 10 für ein wiederaufladbares Batteriesystem 1 dargestellt. Die Schaltungsanordnung 10 kann dabei wenigstens einen Aktuator 30 aufweisen, welcher einer einzelnen Zelle 2 des Batteriesystems 1 zugeordnet ist. Dieser Aktuator 30 weist z. B. wenigstens einen elektronischen Schalter 31, 32, auf, um eine Entladung der Zelle 2 zu schalten. Beispielhaft dargestellt sind ein erster elektronischer Schalter 31 und zweiter elektronischer Schalter 32, welche beide mit der einzelnen Zelle 2 verschaltet sind. Im Normalzustand, d. h. bei einem fehlerlosen Betrieb des Batteriesystems 1, ist der zweite elektronische Schalter 32 geschlossen und der erste elektronische Schalter 31 geöffnet.
Ferner ist eine Sensorik 20 vorgesehen, welche der einzelnen Zelle 2 zugeordnet ist, um die Zelle 2 zu überwachen, und um in Abhängigkeit von dieser
Überwachung den Aktuator 30 zur Entladung bei einem Fehlerzustand F anzusteuern. Zur Detektion des Fehlerzustandes über die Überwachung wird bspw. eine Spannung bei der Zelle 2 durch die Sensorik 20 gemessen. Um das Entladen zu bewirken, kann im Fehlerzustand F bspw. der erste elektronische Schalter 31 geschlossen werden und der zweite elektronische Schalter 32 geschlossen bleiben, sodass sich die betroffene Zelle 2 über ihren
Eigenwiderstand selbst entladen kann. Durch das Schließen des ersten elektronischen Schalters 31 kann zudem der Strom der anderen Zellen 2‘ des Moduls 3 umgeleitet werden. Dieses Vorgehen kann zwar eine Erwärmung der Zelle 2 bewirken, jedoch nicht so lokal wie an einer Störstelle. Die Störstelle ist bspw. eine Beschädigung der Zelle 2, welche den Fehlerzustand F bewirkt.
Des Weiteren kann bei der Detektion des Fehlerzustandes F ggf. durch die Sensorik 20 ein Batteriemanagementsystem 5 informiert werden. Hierzu kann bspw. eine Datenleitung zwischen der Sensorik 20 und einem optionalen
(zentralen) Batteriemanagementsystem 5 vorgesehen sein. Gleichwohl kann diese Datenleitung und/oder eine Kommunikation zwischen der Sensorik 20 und dem Batteriemanagementsystem 5 nicht zur Ansteuerung des Aktuators 30 durch die Sensorik 20 notwendig sein, sodass die Entladung bei dem
Fehlerzustand F auch unabhängig von dem (zentralen)
Batteriemanagementsystem 5 erfolgen kann.
Gemäß Fig. 4 können auch weitere oder sämtliche weiteren Zellen 2‘ des Batteriesystems 1 jeweils eine zugeordnete weitere Sensorik 20‘ und/oder einen zugeordneten weiteren Aktuator 30‘ und/oder eine Schaltungsanordnung 10 aufweisen. Auf diese Weise ist es möglich, dass auch bei den weiteren Zellen 2‘ der Fehlerzustand F detektiert werden kann, und ggf. eine Entladung
automatisch erfolgt. Auch ist es möglich, dass benachbarte Zellen 2‘ einer schadhaften Zelle 2 ebenfalls entladen werden.
Darüber hinaus ist es möglich, dass durch die Sensorik 20 auch eine Temperatur bei der Zelle 2 überwacht wird. Bspw. kann das Entladen und/oder der
Kurzschluss durch den Aktuator 30 beendet werden, sollte die Temperatur in einen kritischen Bereich gelangen.
Auch ist es möglich, dass der maximale Entladestrom durch ein Pulsen
(wiederholtes Ein- und Ausschalten bzw. Schließen und Öffnen) des zweiten elektronischen Schalters 32 gesteuert werden kann. Dies kann insbesondere ebenfalls durch die Sensorik 20 durchgeführt werden.
Ebenfalls ist es möglich, dass die Sensorik 20 unabhängig und/oder autark von weiteren elektronischen Geräten des Batteriesystems und/oder von dem zentralen Batteriemanagementsystem 5 die Überwachung und/oder Ansteuerung durchführt.
Wie in Fig. 5 dargestellt ist, kann die Sensorik 20 z. B. in regelmäßigen zeitlichen Abständen eine Messspannung Ua bei der Zelle 2 erfassen, welche spezifisch und/oder abhängig ist von einer Zellspannung Uz. Anhand eines rapiden Abfalls dieser Spannung Ua kann das Eintreten des Fehlerzustandes F detektiert werden. Hierzu erfolgt bspw. eine Auswertung eines Verlaufs dieser Spannung Ua über die Zeit t. In Fig. 6 ist schematisch ein Ersatzschaltbild der Zelle 2 (bzw. auch weiterer Zellen 2‘) gezeigt. Es ist erkennbar, dass ein Stromfluss I. der Zelle durch einen Übergangswiderstand Rs und durch einen Eigenwiderstand Ri beeinflusst werden kann. Der Übergangswiderstand Rs ist bspw. der Widerstand, welcher an einer Störstelle im Fehlerzustand entsteht. Durch einen bewusst durch die
Sensorik 20 herbeigeführten Kurzschluss (z. B. durch das Ansteuern des Aktuators 30 und/oder das Schließen des zweiten elektronischen Schalters 32 gemäß Fig. 3) kann der Strom I nur noch z. T. über Rs geführt und hauptsächlich über Ri abgeführt werden (niederohmiger Kontakt).
Das Entladen gemäß der erfindungsgemäßen Schaltungsanordnung 10 und/oder gemäß einem erfindungsgemäßen Verfahren kann bspw. durch das
Batteriemanagementsystem 5 derart gesteuert werden, dass eine Entladung auf einen Ladezustand von 60 % oder geringer, z. B. 30 % (abhängig von der verwendeten Zelle), bei dem Batteriesystem und/oder der kurzgeschlossenen
Zellen 2, 2‘ erfolgt.
Die voranstehende Erläuterung der Ausführungsformen beschreibt die vorliegende Erfindung ausschließlich im Rahmen von Beispielen.
Selbstverständlich können einzelne Merkmale der Ausführungsformen, sofern technisch sinnvoll, frei miteinander kombiniert werden, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Claims

Ansprüche
1. Schaltungsanordnung (10) für ein wiederaufladbares Batteriesystem (1), aufweisend:
wenigstens einen Aktuator (30), welcher einer einzelnen Zelle (2) des Batteriesystems (1) zugeordnet ist, um eine Entladung der Zelle (2) zu schalten,
wenigstens eine Sensorik (20), welche der einzelnen Zelle (2) zugeordnet ist, um die Zelle (2) zu überwachen, und um in Abhängigkeit von der Überwachung den Aktuator (30) zur Entladung bei einem Fehlerzustand (F) anzusteuern.
2. Schaltungsanordnung (10) nach Anspruch 1,
dadurch gekennzeichnet,
dass die Sensorik (20) dazu ausgeführt ist, den Aktuator (30) unmittelbar anzusteuern.
3. Schaltungsanordnung (10) nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Sensorik (20) dazu ausgeführt ist, zur Überwachung eine elektrische Spannung (Ua) sowie einen elektrischen Strom, und vorzugsweise auch eine Temperatur und/oder einen Druck, bei der einzelnen Zelle (2) zu erfassen, und bevorzugt mit einer Vorgabe zu vergleichen, um durch diese Überwachung den Fehlerzustand (F) bei der Zelle (2) zu detektieren.
4. Schaltungsanordnung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Sensorik (20) einen integrierten Schaltkreis, vorzugsweise einen ASIC (20), aufweist, um die Überwachung und/oder Ansteuerung bereitzustellen.
5. Schaltungsanordnung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Sensorik (20) Teil eines dezentralen Batteriemanagements ist, vorzugsweise als dezentrale Batteriemanagementeinheit (20) ausgeführt ist, um unabhängig von einem zentralen Batteriemanagementsystem (5) und/oder wenigstens einer weiteren Batteriemanagementeinheit (20‘) wenigstens einer weiteren Zelle (2‘) des Batteriesystems (1) die
Überwachung und/oder Ansteuerung bereitzustellen.
6. Schaltungsanordnung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass der Aktuator (30) als Leistungsschalter, vorzugsweise als ein
Feldeffekttransistor ausgeführt ist, und insbesondere parallel zur Zelle (2) geschaltet ist, um die Zelle (2) zur Entladung über einen Eigenwiderstand (Ri) der Zelle (2) kurzzuschließen.
7. Verfahren zur Sicherheitsentladung von einzelnen Zellen (2) eines
wiederaufladbaren Batteriesystems (1),
wobei die nachfolgenden Schritte durchgeführt werden:
Überwachen einer einzelnen Zelle (2) durch eine Sensorik (20), welche der einzelnen Zelle (2) zugeordnet ist, wobei wenigstens eine Zellspannung (Uz) überwacht wird,
Detektion eines Fehlerzustands (F) zumindest anhand der Überwachung,
Ansteuern eines Aktuators (30) in Abhängigkeit von der Detektion, um die Zelle (2) im Fehlerzustand (F) zu entladen.
8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
dass in Abhängigkeit von der Überwachung bei der Detektion des
Fehlerzustands (F) ein Kurzschließen der Zelle (2) initiiert wird.
9. Verfahren nach Anspruch 7 oder 8,
dadurch gekennzeichnet,
dass in Abhängigkeit von der Überwachung bei der Detektion des Fehlerzustands (F) wenigstens ein weiterer Aktuator (30‘) zum Entladen wenigstens einer zur Zelle (2) benachbarten Zelle (2‘) angesteuert wird, vorzugsweise unabhängig von einer weiteren Überwachung der benachbarten Zelle (2‘) durch eine weitere Sensorik (20‘).
10. Verfahren nach einem der Ansprüche 7 bis 9,
dadurch gekennzeichnet,
dass das Ansteuern ein wiederholtes, vorzugsweise gepulstes, Schalten des Aktuators (30) umfasst, um einen Entladestrom (I) der Zelle (2) zu begrenzen.
PCT/EP2019/068996 2018-07-17 2019-07-15 Schaltungsanordnung für ein batteriesystem WO2020016175A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/260,089 US20210288358A1 (en) 2018-07-17 2019-07-15 Circuit system for a battery system
EP19748753.1A EP3824507A1 (de) 2018-07-17 2019-07-15 Schaltungsanordnung für ein batteriesystem
CN201980060725.0A CN112714974A (zh) 2018-07-17 2019-07-15 用于电池系统的电路布置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018211834.5 2018-07-17
DE102018211834.5A DE102018211834A1 (de) 2018-07-17 2018-07-17 Schaltungsanordnung

Publications (1)

Publication Number Publication Date
WO2020016175A1 true WO2020016175A1 (de) 2020-01-23

Family

ID=67514598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/068996 WO2020016175A1 (de) 2018-07-17 2019-07-15 Schaltungsanordnung für ein batteriesystem

Country Status (5)

Country Link
US (1) US20210288358A1 (de)
EP (1) EP3824507A1 (de)
CN (1) CN112714974A (de)
DE (1) DE102018211834A1 (de)
WO (1) WO2020016175A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289096A2 (de) 2001-08-29 2003-03-05 Hitachi, Ltd. Batterievorrichtung zur Steuerung einer Vielzahl von Batterien und Steuerungsverfahren einer Vielzahl von Batterien
WO2010118310A2 (en) 2009-04-10 2010-10-14 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system
EP2355229A1 (de) * 2010-02-08 2011-08-10 Fortu Intellectual Property AG Hochstrombatteriesystem und Verfahren zur Steuerung eines Hochstrombatteriesystems
DE102014208543A1 (de) * 2014-05-07 2015-11-12 Robert Bosch Gmbh Batteriezelleinrichtung mit einer Batteriezelle und einer Überwachungselektronik zum Überwachen der Batteriezelle und entsprechendes Verfahren zum Betreiben und Überwachen einer Batteriezelle
WO2016012247A1 (de) 2014-07-23 2016-01-28 Universität der Bundeswehr München Modulares energiespeicher-direktumrichtersystem
WO2018086787A1 (de) * 2016-11-11 2018-05-17 Robert Bosch Gmbh Mos-bauelement, elektrische schaltung sowie batterieeinheit für ein kraftfahrzeug

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718731B2 (ja) * 2011-05-31 2015-05-13 ルネサスエレクトロニクス株式会社 電圧監視システム及び電圧監視モジュール
DE102013204526A1 (de) * 2013-03-15 2014-09-18 Robert Bosch Gmbh Batteriezelleinheit mit einer Batteriezelle und einer Überwachungs- und Ansteuerungseinheit zur Überwachung der Batteriezelle und Verfahren zur Überwachung einer Batteriezelle
DE102013218077A1 (de) * 2013-09-10 2015-03-12 Robert Bosch Gmbh Batteriezelleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz einer in einer Batteriezelleinrichtung angeordneten Batteriezelle
US11502340B2 (en) * 2018-03-23 2022-11-15 Bloom Energy Corporation Battery analysis via electrochemical impedance spectroscopy apparatus (EISA) measurements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289096A2 (de) 2001-08-29 2003-03-05 Hitachi, Ltd. Batterievorrichtung zur Steuerung einer Vielzahl von Batterien und Steuerungsverfahren einer Vielzahl von Batterien
WO2010118310A2 (en) 2009-04-10 2010-10-14 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system
EP2355229A1 (de) * 2010-02-08 2011-08-10 Fortu Intellectual Property AG Hochstrombatteriesystem und Verfahren zur Steuerung eines Hochstrombatteriesystems
DE102014208543A1 (de) * 2014-05-07 2015-11-12 Robert Bosch Gmbh Batteriezelleinrichtung mit einer Batteriezelle und einer Überwachungselektronik zum Überwachen der Batteriezelle und entsprechendes Verfahren zum Betreiben und Überwachen einer Batteriezelle
WO2016012247A1 (de) 2014-07-23 2016-01-28 Universität der Bundeswehr München Modulares energiespeicher-direktumrichtersystem
WO2018086787A1 (de) * 2016-11-11 2018-05-17 Robert Bosch Gmbh Mos-bauelement, elektrische schaltung sowie batterieeinheit für ein kraftfahrzeug

Also Published As

Publication number Publication date
US20210288358A1 (en) 2021-09-16
EP3824507A1 (de) 2021-05-26
CN112714974A (zh) 2021-04-27
DE102018211834A1 (de) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2016131802A1 (de) Batteriezelle für eine batterie eines kraftfahrzeugs, batterie und kraftfahrzeug
DE112012000652T5 (de) Entladesteuerungsschaltung
DE102013204510A1 (de) Elektrisch eigensicheres Batteriemodul mit ultraschneller Entladeschaltung und Verfahren zur Überwachung eines Batteriemoduls
DE102013204526A1 (de) Batteriezelleinheit mit einer Batteriezelle und einer Überwachungs- und Ansteuerungseinheit zur Überwachung der Batteriezelle und Verfahren zur Überwachung einer Batteriezelle
DE102013218077A1 (de) Batteriezelleinrichtung und Verfahren zur Bestimmung einer komplexen Impedanz einer in einer Batteriezelleinrichtung angeordneten Batteriezelle
DE102013204534A1 (de) Batteriezelleinrichtung mit Kurzschlusssicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
EP3669432A1 (de) Abschaltvorrichtung für ein elektrisches versorgungsnetz
DE102012018321A1 (de) Verfahren zum Abschalten eines Batteriesystems unter Last sowie Batteriesystem
DE102019202164A1 (de) Schutzvorrichtung, Batterie, Kraftfahrzeug und Verfahren zum Abschalten einer Batteriezelle
DE102013204532A1 (de) Batteriezelleinrichtung mit Überhitzungssicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
DE102013013170A1 (de) Batterie mit Temperiereinrichtung und Verfahren zum Temperieren einer Batterie
DE102013204527A1 (de) Batteriezelleinrichtung mit Lithiumablagerungssicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
DE102013204539A1 (de) Batteriezelleinrichtung mit Feinschlusssicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
WO2014139740A1 (de) Verfahren und vorrichtung zur erhöhung der sicherheit beim gebrauch von batteriemodulen
DE102016008057A1 (de) Elektrischer Energiespeicher mit Entladeschaltung
EP2779354B1 (de) Elektrisch eigensicheres Batteriemodul mit umpolbarer Ausgangsspannung und Verfahren zur Überwachung eines Batteriemoduls
WO2019137670A1 (de) Batterie, insbesondere für ein kraftfahrzeug, und verfahren zum betreiben einer batterie
DE102013204538A1 (de) Batteriezellmodul und Verfahren zum Betreiben eines Batteriezellmoduls
DE102014208543A1 (de) Batteriezelleinrichtung mit einer Batteriezelle und einer Überwachungselektronik zum Überwachen der Batteriezelle und entsprechendes Verfahren zum Betreiben und Überwachen einer Batteriezelle
DE102013204524A1 (de) Batteriezelleinrichtung mit Überladungssicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
DE102013204529A1 (de) Batteriezelleinrichtung mit Überdrucksicherheitsfunktion und Verfahren zum Überwachen einer Batteriezelle
WO2020016175A1 (de) Schaltungsanordnung für ein batteriesystem
DE102013204509A1 (de) Batteriemodul und Verfahren zum Überwachen eines Batteriemoduls
EP3925835A1 (de) Bordnetz für ein fahrzeug
DE102011053728A1 (de) Batteriesystem und Verfahren zum Abschalten von in Serie geschalteten Energiespeichermodulen einer Batterie eines Batteriesystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019748753

Country of ref document: EP

Effective date: 20210217