WO2020015685A1 - 一种开关电源及充电器 - Google Patents

一种开关电源及充电器 Download PDF

Info

Publication number
WO2020015685A1
WO2020015685A1 PCT/CN2019/096407 CN2019096407W WO2020015685A1 WO 2020015685 A1 WO2020015685 A1 WO 2020015685A1 CN 2019096407 W CN2019096407 W CN 2019096407W WO 2020015685 A1 WO2020015685 A1 WO 2020015685A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
power supply
preset
switching device
switching
Prior art date
Application number
PCT/CN2019/096407
Other languages
English (en)
French (fr)
Inventor
陆宁远
温春洋
李新朋
Original Assignee
上海棱式工业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海棱式工业科技有限公司 filed Critical 上海棱式工业科技有限公司
Publication of WO2020015685A1 publication Critical patent/WO2020015685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components

Definitions

  • the invention relates to the fields of power supply technology, PWM technology and the like, and in particular to a switching power supply and a charger.
  • the power supply may lose some of the energy, and this energy will The form loss is dissipated, and in view of the limited heat dissipation capacity of the component itself, when the heat is accumulated to a certain degree, that is, the component's own temperature is exceeded, the component will be damaged, which will cause the entire system to collapse.
  • the problem solved by the invention is how to reduce the volume of the power supply and improve the efficiency of the whole product.
  • an object of the present invention is to provide a switching power supply, which includes a PCB board, a first filter, a rectifier bridge circuit, a PWM controller, a switching device, a transformer, a feedback circuit, and a second filter.
  • the transformer and the second filter are disposed on one side of the PCB board, and the first filter, rectifier bridge circuit, PWM controller, switching device, and feedback circuit are disposed on the other side of the PCB board, And:
  • the first filter is adapted to filter the input AC current
  • the rectifier bridge circuit is adapted to receive filtered AC power, rectify the filtered AC power into DC power, and supply the DC power to the switching device as a power source;
  • the PWM controller is adapted to control providing a modulated PWM signal to the switching device to control the switching of the switching device accordingly, and at the same time control the current flowing through the transformer;
  • the transformer has a thickness not exceeding a preset thickness threshold and a magnetic circuit not lower than a preset magnetic circuit threshold, and is suitable for outputting a reduced voltage to the second filter when the switching device is turned off. ;
  • the second filter is adapted to rectify and filter the reduced voltage to output a DC voltage of a preset size
  • the feedback circuit is adapted to sample the DC voltage of the deviation and feed it back to the PWM controller when the output DC voltage deviation exceeds the preset threshold by the preset magnitude;
  • the PWM controller is further adapted to output a PWM signal corresponding to a duty cycle to the switching device after receiving the biased DC voltage fed back by the feedback circuit, until the second filter outputs a preset size of DC voltage.
  • the switching device is a MOS tube having an internal resistance lower than a preset internal resistance threshold, and the switching device is a surface-mounted package mounted on the PCB.
  • the thickness of the copper clad on the PCB is a copper clad wire that exceeds a preset thickness threshold.
  • the electrolytic capacitor in the second filter, and the loss of the electrolytic capacitor during the energy storage charging and discharging process is lower than a preset loss threshold.
  • the electrolytic capacitor is disposed on the PCB board by a sinker process.
  • the transformer is disposed on the PCB board by a sinker process.
  • An embodiment of the present invention provides a charger, and the charger includes any one of the switching power supplies described above.
  • the switching power supply provided by the present invention adopts a transformer whose thickness does not exceed a preset thickness threshold and whose magnetic circuit is not lower than a preset magnetic circuit threshold, that is, a transformer using an ultra-thin and large magnetic circuit. While reducing the thickness of the power supply, it can reduce the size of the power supply and improve the efficiency of the whole product.
  • the switching device of the present invention is a MOS tube with an internal resistance lower than a preset internal resistance threshold, and is directly mounted on the PCB board, it can dissipate heat while conducting by the PCB board, thereby achieving ultra-low thermal resistance
  • the heat control of the switching tube is within the range required by the safety regulations and a sufficient margin is left, so the efficiency of the whole product can be improved.
  • FIG. 1 is a schematic structural diagram of a switching power supply according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another switching power supply according to an embodiment of the present invention.
  • the entire power supply system is bulky, which further limits the size and even the use of the entire product.
  • the embodiment of the present invention provides a switching power supply.
  • a transformer whose thickness does not exceed a preset thickness threshold and whose magnetic circuit is not lower than the preset magnetic circuit threshold, that is, a transformer using an ultra-thin large magnetic circuit Therefore, it is possible to reduce the heat while reducing the thickness of the switching power supply, thereby reducing the size of the power supply and improving the efficiency of the whole product.
  • FIG. 1 shows a schematic structural diagram of a switching power supply according to an embodiment of the present invention.
  • the switching power supply may include a PCB board (Not shown), a first filter 11, a rectifier bridge circuit 12, a PWM controller, a switching device 13, a transformer 14, a feedback circuit 16, and a second filter 15.
  • the transformer 14 and the second filter 15 are disposed on one side of the PCB board, and the first filter 11, rectifier bridge circuit 12, PWM controller, switching device 13, and feedback circuit 16 are disposed on the PCB
  • the PCB board in the embodiment of the present invention is provided on both sides, that is, components can be provided on both sides.
  • the first filter 11 may be adapted to filter an input AC current.
  • the rectifier bridge circuit 12 is adapted to receive filtered AC power, rectify the filtered AC power into DC power, and supply the DC power to the switching device 13 as a power source.
  • the PWM controller is adapted to control the modulation signal provided to the switching device 13 to complete the on-off of the switching device 13 and control the current flowing through the transformer 14 at the same time.
  • the transformer 14 has a thickness not exceeding a preset thickness threshold and a magnetic circuit not lower than a preset magnetic circuit threshold, and is suitable for outputting the reduced voltage to the second voltage when the switching device 13 is turned off.
  • Filter 15 In other words, the present invention adopts an ultra-thin, large magnetic circuit high-frequency transformer 14, which can achieve small thickness and high efficiency, and therefore can play a key role in the process of high-voltage to low-voltage conversion of the power supply.
  • the second filter 15 is adapted to rectify and filter the reduced voltage to output a DC voltage of a preset size.
  • the PWM controller is further adapted to output a PWM signal corresponding to a duty cycle to the switching device 13 after receiving the biased DC voltage fed back by the feedback circuit 16 until the second filtering
  • the controller 15 outputs a DC voltage of a preset magnitude. Therefore, the entire switching power supply can form a closed-loop control loop, which can improve the control accuracy.
  • the first filter 11 may be an electromagnetic interference (EMI) filter.
  • EMI electromagnetic interference
  • the switching device 13 is the main component of the loss.
  • the switching component may be a MOS tube.
  • the switching power supply also has a built-in soft start circuit or a protection circuit.
  • the soft-start circuit or the protection circuit may include an over-voltage protection circuit, an over-current protection circuit, an over-temperature protection circuit, a short-circuit protection circuit, and the like.
  • the switching power supply in the embodiment of the present invention may use a fixed 65KHz working frequency, and use frequency dithering technology to optimize the electromagnetic compatibility (EMC) circuit.
  • the switching power supply may have a built-in intermittent working mode, thereby optimizing light-load efficiency and reducing no-load power consumption.
  • the switching device 13 is a MOS tube whose internal resistance is lower than a preset internal resistance threshold, so it can generate low switching loss and low temperature under the low internal resistance during the switching process.
  • the switching device 13 is a surface-mounted package and is directly mounted on the PCB board, so it can dissipate heat while conducting by the PCB board, so that the heat of the switching tube can be controlled to meet safety requirements under ultra-low thermal resistance. There is sufficient margin within the range, so the efficiency of the whole product can be improved.
  • the thickness of the copper clad on the PCB is a copper clad wire that exceeds a preset thickness threshold, and because a thick copper foil is used as the PCB, although Double the thickness compared to ordinary power supplies, but the effect is many times that of ordinary PCB boards. Therefore, it can not only reduce the internal resistance loss of the current carrying, but also can be used as an aluminum heat sink for ordinary switching power supply for heat conduction and heat dissipation.
  • the thermal conductivity of aluminum is 380W / MK and 238W / MK, so a small thickness increase brings a great efficiency improvement.
  • the preset thickness threshold may be 2Oz. Those skilled in the art may also select other suitable thicknesses as the thickness threshold according to actual needs.
  • the electrolytic capacitor is a short-life accessory in a switching power supply. Research and experiments show that every 10 ° C reduction in the temperature of an electrolytic capacitor doubles its life. Therefore, in an embodiment of the present invention, by using an electrolytic capacitor whose loss during the energy storage charging and discharging process is lower than a preset loss threshold, that is, the electrolytic capacitor in the present invention reduces the internal resistance during the capacitor energy storage charging and discharging process. It can reduce the occurrence of heat and improve the conversion efficiency, so the life of the switching power supply can be improved.
  • the electrolytic capacitor is disposed on the PCB board by a sinker process. Specifically, a hole is formed in the bottom of the component body corresponding to the PCB through a sinker process, and then a part or all of the component body is sunk into the PCB with respect to the first filter 11, the rectifier bridge circuit 12, and the PWM controller. , The other side of the switching device 13 and the feedback circuit 16, thereby reducing the exposed height of the high transformer 14 from 10mm to 9mm, which not only reduces the thickness but also facilitates the heat dissipation of the transformer 14.
  • the transformer 14 may also be disposed on the PCB board by a sinker process.
  • the bottom of the electrolytic capacitor body can be opened on the PCB, and then half of the electrolytic capacitor body is sunk into the PCB with respect to the first filter 11, the rectifier bridge circuit 12, the PWM controller, the switching device 13 and On the other side of the feedback circuit 16, 3.5 mm of the electrolytic capacitor body can be exposed on the top of the PCB board, and 5.5 mm of the electrolytic capacitor body can be exposed on the bottom of the PCB board, thereby reducing the thickness of the front and ground of the switching power supply by 5 mm respectively.
  • FIG. 2 shows a schematic structural diagram of another switching power supply according to an embodiment of the present invention.
  • the working principle of the switching power supply shown in FIG. 2 is described in detail below.
  • the switching power supply includes an EMI filter 21, a rectifier bridge circuit 22, a MOS tube 23, a transformer 24, a filter 25, a feedback circuit 26, and a PWM controller 27.
  • the working principle is:
  • the AC power is input to the EMI filter 21.
  • the rectifier bridge circuit 22 rectifies the DC power to be used as a power supply for switching.
  • the PWM controller 27 controls the integrated circuit (IC) device in the PCB to provide the modulated pulse-width-adjusted signal to the MOS tube 23 to control the on-off of the MOS tube 23 and at the same time control the primary flow through the transformer 24
  • the current of the coil because the current flowing in the inductor will not change suddenly, so the output voltage of the secondary coil in the transformer 24 when the switch is turned off can be rectified and filtered by the filter 25, and finally output a preset size DC Voltage.
  • the preset size may be 15V, and those skilled in the art may set the size of the DC voltage according to actual needs.
  • the feedback circuit 26 may feed back the sampled voltage signal to the PWM controller 27, and the PWM controller 27 Through comparison and calculation, a PWM signal with a corrected duty cycle is output to the MOS tube 23 until a stable 15V voltage is output. This can form a closed-loop control.
  • the embodiment of the present invention uses a PCB thick copper foil with thermal conductivity and surface mount technology to reduce heat loss and improve production efficiency.
  • the use of a sinker process to reduce the thickness of the power supply can improve the heat dissipation effect.
  • the use of low internal resistance and low height components can reduce heat loss and space height. The low loss brings high efficiency, and the small volume reduces the amount of materials used, so it makes more contributions to reducing environmental pollution and energy saving and environmental protection.
  • the invention also provides a charger, which may specifically include any one of the above-mentioned switching power supplies. Moreover, because the present invention reduces the current-carrying and internal resistance of the switching components, and adopts an ultra-thin, large magnetic circuit conversion transformer 24, etc., the thickness of the power supply can be reduced while reducing the heat, thereby reducing the volume of the power supply, and further Reduce the size of the whole product such as a charger, so the temperature of the whole machine can be reduced, and the efficiency of the whole machine can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种开关电源及充电器,所述开关电源包括:PCB板、第一滤波器、整流桥电路、PWM控制器、开关器件、变压器、反馈电路及第二滤波器。第一滤波器适于滤波;整流桥电路,适于整流;PWM控制器,适于控制流过变压器的电流;变压器,厚度不超过预设的厚度阈值,且磁路不低于预设的磁路阈值,适于在开关器件关断时,输出降压后的电压至第二滤波器;第二滤波器,适于整流、滤波;反馈电路,适于采样偏差的直流电压并反馈至PWM控制器;PWM控制器,还适于输出对应占空比的PWM信号至开关器件,直至第二滤波器输出预设大小的直流电压。采用上述的方案,可以缩小电源的体积及提高整机产品的效率。

Description

一种开关电源及充电器 技术领域
本发明涉及电源技术、PWM技术等领域,尤其涉及一种开关电源及充电器。
背景技术
在电源自身工作的能量转换过程中,因诸如转换器件自身效率低下或电流流过载流元件在元件内阻上产生的功率损耗等原因,均可能导致电源损失一部分能量,而这些能量会以热量的形式损失散发掉,且鉴于元件自身散热能力有限,故当这些热量积累到一定程度,也即超过元器件自身耐温时就会造成元器件损坏,从而导致整个系统崩溃。
为了避免这种崩溃的发生,当前的开关电源都专门设置有散热片、散热窗口或风扇等,以用来带走有害热量,从而可以达到散热的目的。
但这些散热片、散热窗口和风扇造成了整个电源系统体积庞大,进而限制了整机产品的体积甚至用途。
发明内容
本发明解决的问题是如何缩小电源的体积及提高整机产品的效率。
为了解决上述问题,本发明的目的在于提供一种开关电源,所述开关电源包括:PCB板、第一滤波器、整流桥电路、PWM控制器、开关器件、变压器、反馈电路及第二滤波器,其中:所述变压器及第二滤波器设置于所述PCB板的一面,所述第一滤波器、整流桥电路、PWM控制器、开关器件及反馈电路设置于所述PCB板的另一面,且:
所述第一滤波器适于对输入的交流电流进行滤波;
所述整流桥电路,适于接收滤波后的交流电,将所述滤波后的交流电整流成直流电,且将所述直流电作为电源供给至所述开关器件;
所述PWM控制器,适于控制向所述开关器件提供完成调制的PWM信号以相应控制所述开关器件的通断,同时控制流过所述变压器的电流;
所述变压器,厚度不超过预设的厚度阈值,且磁路不低于预设的磁路阈值,适于在所述开关器件关断时,输出降压后的电压至所述第二滤波器;
所述第二滤波器,适于对所述降压后的电压进行整流、滤波,以输出预设大小的直流 电压;
所述反馈电路,适于当所述输出的直流电压偏差所述预设大小超过预设的阈值时,采样偏差的直流电压并反馈至所述PWM控制器;
所述PWM控制器,还适于在接收到所述反馈电路反馈的偏差的直流电压后,输出对应占空比的PWM信号至所述开关器件,直至所述第二滤波器输出预设大小的直流电压。
可选地,所述开关器件为内阻低于预设内阻阈值的MOS管,且所述开关器件为贴面封装、安装于所述PCB板上。
可选地,所述PCB板覆铜厚度为超过预设的厚度阈值的覆铜导线。
可选地,所述第二滤波器中的电解电容,所述电解电容在储能充放电过程中的损耗低于预设的损耗阈值。
可选地,所述电解电容通过沉板工艺设置于所述PCB板。
可选地,所述变压器通过沉板工艺设置于所述PCB板。
本发明实施例提供了一种充电器,所述充电器包括以上任一种所述的开关电源。
如上,本发明提供的开关电源,采用厚度不超过预设的厚度阈值,且磁路不低于预设的磁路阈值的变压器,也即采用超薄大磁路的变压器,因此可以在降低开关电源厚度的同时减少热量,从而可以缩小电源的体积,提高整机产品的效率。
进一步,由于本发明的开关器件为内阻低于预设内阻阈值的MOS管,且直接贴装在PCB板上,因此可在靠PCB板导电的同时散热,从而在超低的热阻下使得开关管的热量控制在安全规范要求范围内并留有足够余量,因此可以提高整机产品的效率。
进一步,通过采用加厚的铜箔作为PCB板,不仅降低了载流内阻损耗,还充当了普通开关器件的散热片,因此可以提高整机产品的效率。
为让本发明的上述内容能更明显易懂,下文特举优选实施例并结合附图详细说明。
附图说明
图1是本发明实施例中的一种开关电源的结构示意图;
图2是本发明实施例中的另一种开关电源的结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
如上所述,目前,由于散热片、散热窗口和风扇等的设置,造成了整个电源系统体积庞大,进而限制了整机产品的体积甚至用途。
为解决上述问题,本发明实施例提供了开关电源,通过采用厚度不超过预设的厚度阈值,且磁路不低于预设的磁路阈值的变压器,也即采用超薄大磁路的变压器,因此可以在降低开关电源厚度的同时减少热量,从而可以缩小电源的体积,提高整机产品的效率。
为使得本领域技术人员更好地理解和实现本发明,图1示出了本发明实施例中的一种开关电源的结构示意图,如图1所示,所述开关电源可以包括:PCB板(未示出)、第一滤波器11、整流桥电路12、PWM控制器、开关器件13、变压器14、反馈电路16及第二滤波器15。
其中:所述变压器14及第二滤波器15设置于所述PCB板的一面,所述第一滤波器11、整流桥电路12、PWM控制器、开关器件13及反馈电路16设置于所述PCB板的另一面,换句话说,本发明实施例中的PCB板为双面设置,也即两面均可设置元器件。
在具体实施中,所述第一滤波器11可以适于对输入的交流电流进行滤波。
所述整流桥电路12,适于接收滤波后的交流电,将所述滤波后的交流电整流成直流电,且将所述直流电作为电源供给至所述开关器件13。
所述PWM控制器,适于控制向所述开关器件13提供完成调制的PWM信号以相应控制所述开关器件13的通断,同时控制流过所述变压器14的电流。
所述变压器14,厚度不超过预设的厚度阈值,且磁路不低于预设的磁路阈值,适于在所述开关器件13关断时,输出降压后的电压至所述第二滤波器15。换言之,本发明采用超薄、大磁路的高频变压器14,可以实现小薄与高效,因此可以在电源高压到低压转换过程中起到关键作用。
所述第二滤波器15,适于对所述降压后的电压进行整流及滤波,以输出预设大小的直 流电压。
所述反馈电路16,适于当所述输出的直流电压偏差所述预设大小超过预设的阈值时,采样偏差的直流电压并反馈至所述PWM控制器。比如,预设大小的电压为15V,输出的直流电压的瞬态值为15.4V,预设的阈值为0.2V,则此时的直流电压与所述预设大小的电压的偏差为0.4V=15.4V-15V,该偏差0.4V超过预设的阈值0.2V。相对应地,所述PWM控制器,还适于在接收到所述反馈电路16反馈的偏差的直流电压后,输出对应占空比的PWM信号至所述开关器件13,直至所述第二滤波器15输出预设大小的直流电压。因此整个开关电源可以形成一个闭环控制的环路,从而可以提高控制的精确性。
在本发明一实施例中,所述第一滤波器11可以为电磁干扰(Electromagnetic Interference,EMI)滤波器。
对于一个开关电源而言,开关器件13是损耗的主要部件,为了提高开关部件的寿命,在具体实施中,所述开关部件可以为MOS管。
为了减小开机冲击电流对元器件的损伤,在本发明一实施例中,所述开关电源还内置有软启动电路或保护电路。具体而言,所述软启动电路或保护电路可以包括过压保护电路、过流保护电路、过温保护电路及短路保护电路等。并且,本发明实施例中的开关电源可以采用固定的65KHz的工作频率,采用频率抖动技术优化电磁兼容(Electro Magnetic Compatibility,EMC)电路。
在本发明一实施例中,开关电源可以内置间歇工作模式,因此可以优化轻载效率,且减少空载功耗。
在本发明一实施例中,所述开关器件13为内阻低于预设内阻阈值的MOS管,故可以在开关过程中低的内阻下产生低的开关损耗和低的温度。并且,所述开关器件13为贴面封装、直接安装于所述PCB板上,因此可在靠PCB板导电的同时散热,从而在超低的热阻下使得开关管的热量控制在安全规范要求范围内并留有足够余量,因此可以提高整机产品的效率。
为了提高整机产品的效率,在本发明另一实施例中,所述PCB板覆铜厚度为超过预设的厚度阈值的覆铜导线,而因为通过采用加厚的铜箔作为PCB板,虽然比普通电源增加一倍厚度,但是效果却是普通PCB板的很多倍,因此不仅可以降低载流内阻损耗,还可以充当普通开关电源的铝散热片进行导热及散热,因为100℃时铜和铝导热系数分别是380W/M.K和238W/M.K,故微小的厚度增加却带来很大的效率提升。
在本发明一实施例中,所述预设的厚度阈值可以为2Oz,本领域技术人员根据实际需 要,也可以选用其他合适厚度作为厚度阈值。
需要说明的是,电解电容正是开关电源中寿命较短的配件,研究和试验表明,电解电容温度每降低10℃,其寿命增加一倍。因此在本发明一实施例中,通过采用在储能充放电过程中的损耗低于预设的损耗阈值的电解电容,也即本发明中的电解电容在电容储能充放电过程中降低内阻上的损耗,可以减少热量发生,提升转换效率,因此可以提升开关电源的寿命。
在本发明一实施例中,所述电解电容通过沉板工艺设置于所述PCB板。具体而言,通过沉板工艺在PCB板上对应元器件本体底部开孔,接着把元器件本体的一部分或全部沉入PCB板上相对于第一滤波器11、整流桥电路12、PWM控制器、开关器件13及反馈电路16的另一面,从而使高变压器14的外露高度从10mm降低到外露9mm,不仅降低了厚度而且有利于变压器14散热。
为了缩小开关电源的体积,在具体实施中,还可以通过沉板工艺将变压器14也设置于PCB板上。
详细地说,可以在PCB板上对应电解电容本体底部开孔,进而把电解电容本体的一半沉入PCB板上相对于第一滤波器11、整流桥电路12、PWM控制器、开关器件13及反馈电路16的另一面,从而可以使电解电容本体的3.5mm裸露在PCB板的顶部,而另外5.5mm裸露在PCB板的底部,进而可以使开关电源的正面和地面厚度分别降低5mm。
为便于本领域技术人员更好地理解本发明,图2示出了本发明实施例中的另一种开关电源的结构示意图,下面对图2中示出的开关电源的工作原理进行详细介绍,在图2中,所述开关电源包括EMI滤波器21,整流桥电路22、MOS管23、变压器24、滤波器25、反馈电路26及PWM控制器27。工作原理为:
首先交流电源输入至EMI滤波器21,当交流电源经过EMI滤波器21被滤除干扰后,由整流桥电路22整流成直流电,以作为开关转换的电源供给。
接着,PWM控制器27控制PCB板中的集成电路(Integrated Circuit,IC)器件向MOS管23提供调制好的脉冲调宽信号,以控制MOS管23的通断,同时控制流过变压器24的初级线圈的电流,因为流过电感里的电流不会突变,因此变压器24内的次级线圈在开关关断时输出降压后的电压可以经滤波器25整流及滤波,最终输出预设大小的直流电压。在本发明一实施例中,所述预设大小可以为15V,本领域技术人员根据实际需要,可以设置直流电压的大小。
为了提高调节的精确性,在本发明一实施例中,当因负载变动导致输出的15V电压发 生变动时,反馈电路26可以将采样到变动的电压信号反馈给PWM控制器27,PWM控制器27通过比较、运算后输出一个纠正占空比后的PWM信号至MOS管23,直到输出稳定的15V电压,如此可以构成一个闭环控制。
综上,本发明实施例采用PCB加厚铜箔导热导电配合表面贴装技术,可以降低热损耗,提高生产效率。同时,采用沉板工艺降低电源厚度,可以提高散热效果,采用低内阻、低高度的元器件,可以降低热损耗和空间高度。而低的损耗带来高的效率,小的体积降低了材料的用量,因此为当今倡导的减少环境污染和节能环保发面做出更多的贡献。
本发明还提供了一种充电器,具体可以包括上述的任一种开关电源。而且,由于本发明通过降低载流及开关元器件的内阻,采用超薄、大磁路的转换变压器24等方法,可以在降低电源厚度的同时减少热量,从而可以缩小电源的体积,进而可以缩小比如充电器的整机产品的体积,因此可以降低整机的温度,提高整机的效率。
综上所述,本发明提供的上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (7)

  1. 一种开关电源,其特征在于,包括:PCB板、第一滤波器、整流桥电路、PWM控制器、开关器件、变压器、反馈电路及第二滤波器,其中:所述变压器及第二滤波器设置于所述PCB板的一面,所述第一滤波器、整流桥电路、PWM控制器、开关器件及反馈电路设置于所述PCB板的另一面,且:
    所述第一滤波器适于对输入的交流电流进行滤波;
    所述整流桥电路,适于接收滤波后的交流电,将所述滤波后的交流电整流成直流电,且将所述直流电作为电源供给至所述开关器件;
    所述PWM控制器,适于控制向所述开关器件提供完成调制的PWM信号以相应控制所述开关器件的通断,同时控制流过所述变压器的电流;
    所述变压器,厚度不超过预设的厚度阈值,且磁路不低于预设的磁路阈值,适于在所述开关器件关断时,输出降压后的电压至所述第二滤波器;
    所述第二滤波器,适于对所述降压后的电压进行整流、滤波,以输出预设大小的直流电压;
    所述反馈电路,适于当所述输出的直流电压偏差所述预设大小超过预设的阈值时,采样偏差的直流电压并反馈至所述PWM控制器;
    所述PWM控制器,还适于在接收到所述反馈电路反馈的偏差的直流电压后,输出对应占空比的PWM信号至所述开关器件,直至所述第二滤波器输出预设大小的直流电压。
  2. 如权利要求1所述的开关电源,其特征在于,所述开关器件为内阻低于预设内阻阈值的MOS管,且所述开关器件为贴面封装、安装于所述PCB板上。
  3. 如权利要求1所述的开关电源,其特征在于,所述PCB板覆铜厚度为超过预设的厚度阈值的覆铜导线。
  4. 如权利要求1所述的开关电源,其特征在于,所述第二滤波器中的电解电容,所述电解电容在储能充放电过程中的损耗低于预设的损耗阈值。
  5. 如权利要求4所述的开关电源,其特征在于,所述电解电容通过沉板工艺设置于所述PCB板。
  6. 如权利要求1所述的开关电源,其特征在于,所述变压器通过沉板工艺设置于所述PCB板。
  7. 一种充电器,其特征在于,包括权利要求1~6任一项所述的开关电源。
PCT/CN2019/096407 2018-07-20 2019-07-17 一种开关电源及充电器 WO2020015685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810806695.0A CN110739853A (zh) 2018-07-20 2018-07-20 一种开关电源及充电器
CN201810806695.0 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020015685A1 true WO2020015685A1 (zh) 2020-01-23

Family

ID=69164962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096407 WO2020015685A1 (zh) 2018-07-20 2019-07-17 一种开关电源及充电器

Country Status (2)

Country Link
CN (1) CN110739853A (zh)
WO (1) WO2020015685A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014621A (zh) * 2020-08-03 2020-12-01 深圳创维-Rgb电子有限公司 一种电流检测电路、开关电源及电视机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535400B2 (en) * 2001-03-30 2003-03-18 Texas Instruments Incorporated Control circuit for synchronous rectifiers in DC/DC converters to reduce body diode conduction losses
CN2796238Y (zh) * 2005-03-07 2006-07-12 湖南计算机股份有限公司 采用平面变压器的开关电源
CN101814837A (zh) * 2010-04-23 2010-08-25 威海金丰电子有限公司 超薄磁芯pcb板式开关电源
CN208874473U (zh) * 2018-07-20 2019-05-17 上海棱式工业科技有限公司 一种开关电源及充电器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535400B2 (en) * 2001-03-30 2003-03-18 Texas Instruments Incorporated Control circuit for synchronous rectifiers in DC/DC converters to reduce body diode conduction losses
CN2796238Y (zh) * 2005-03-07 2006-07-12 湖南计算机股份有限公司 采用平面变压器的开关电源
CN101814837A (zh) * 2010-04-23 2010-08-25 威海金丰电子有限公司 超薄磁芯pcb板式开关电源
CN208874473U (zh) * 2018-07-20 2019-05-17 上海棱式工业科技有限公司 一种开关电源及充电器

Also Published As

Publication number Publication date
CN110739853A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2016028942A1 (en) Driving circuit, lighting device and method of reducing power dissipation
WO2017193474A1 (zh) 一种环路补偿电路、开关电源电路及开关电源充电器
Yang et al. Design of high efficiency high power density 10.5 kW three phase on-board-charger for electric/hybrid vehicles
KR20150003042A (ko) 대기전력소모를 감소시키는 전력변환장치
WO2020015685A1 (zh) 一种开关电源及充电器
CN112072768B (zh) 一种小体积充电器
CN103887995A (zh) 一种高性能可调直流稳压电源
CN208874473U (zh) 一种开关电源及充电器
CN203554296U (zh) 一种伺服驱动器电源模块及伺服驱动器
CN209787063U (zh) 一种ac-dc适配器
CN206585477U (zh) 一种小型化电源模块
CN207117493U (zh) 五路输出微机监测开关电源
Attanasio et al. A GaN Based LCC Converter for Lithium-Ion Battery Chargers
CN205142027U (zh) 一种直流稳流驱动器
CN204497988U (zh) 一种开关电源驱动电路
EP2552002A1 (en) Transformerless AC to DC power circuit with a voltage divider at its input
CN220732408U (zh) 碳化硅智慧低碳数字电源充电器
CN204597792U (zh) 一种抗干扰稳压电路
WO2022151653A1 (zh) 开关电路、供电设备和电器设备
CN211063857U (zh) 一种电源充电器的电路板热源分散结构
CN220629621U (zh) Led开关电源以及led灯具
CN107465352A (zh) 五路输出微机监测开关电源
CN215897355U (zh) 智能高性能小家电充电器
CN219436872U (zh) 串联稳压二极管降压供电电路
KR20130001031U (ko) 전력 조정가능한 무변압기형 교류―직류 전력 회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19837628

Country of ref document: EP

Kind code of ref document: A1