WO2020015556A1 - 一种中小口径厚壁金属管及制备方法 - Google Patents

一种中小口径厚壁金属管及制备方法 Download PDF

Info

Publication number
WO2020015556A1
WO2020015556A1 PCT/CN2019/095282 CN2019095282W WO2020015556A1 WO 2020015556 A1 WO2020015556 A1 WO 2020015556A1 CN 2019095282 W CN2019095282 W CN 2019095282W WO 2020015556 A1 WO2020015556 A1 WO 2020015556A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube blank
blank
tube
metal pipe
small
Prior art date
Application number
PCT/CN2019/095282
Other languages
English (en)
French (fr)
Inventor
韩静涛
郝庆乐
Original Assignee
韩静涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩静涛 filed Critical 韩静涛
Priority to EP19838335.8A priority Critical patent/EP3812056A4/en
Priority to JP2021525350A priority patent/JP7106004B2/ja
Publication of WO2020015556A1 publication Critical patent/WO2020015556A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F23/00Feeding wire in wire-working machines or apparatus
    • B21F23/005Feeding discrete lengths of wire or rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/08Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel having one or more protrusions, i.e. only the mandrel plugs contact the rolled tube; Press-piercing mills
    • B21B17/12Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel having one or more protrusions, i.e. only the mandrel plugs contact the rolled tube; Press-piercing mills in a discontinuous process, e.g. plug-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/18Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling
    • B21H1/20Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling rolled longitudinally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/22Making articles shaped as bodies of revolution characterised by use of rolls having circumferentially varying profile ; Die-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J7/00Hammers; Forging machines with hammers or die jaws acting by impact
    • B21J7/02Special design or construction
    • B21J7/18Forging machines working with die jaws, e.g. pivoted, movable laterally of the forging or pressing direction, e.g. for swaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing

Definitions

  • the invention relates to the technical field of metal pipe material processing, and more particularly, relates to a small-diameter thick-walled metal pipe and a preparation method thereof.
  • the methods for forming small and medium-caliber thick-walled (D / S in the range of 2-20) metal pipes mainly include extrusion and rolling.
  • extrusion molding has low production efficiency, so the product cost is high, and there is no market competitiveness. It is used to produce a very small number of metal pipes that cannot be or is difficult to produce by other processes.
  • Hot rolling forming mainly includes cyclic tube rolling, three-roll oblique rolling forming and tension reducing forming.
  • the cyclic tube rolling machine feeds the tube material into a rolling groove composed of a core rod and a periodically reciprocating hole shape at a certain frequency.
  • the inner wall is supported by the core rod and gradually shrinks and changes the shape of the rolled tube blank.
  • the common type of cyclic tube rolling mill is mainly the two-roller Pilger rolling mill.
  • due to the reciprocating movement of the stand and rolls during the rolling process there are many moving parts and large inertia, which results in poor stability of the rolling process, and the rolling mill structure is complex, Maintenance and adjustment are more difficult; the dimensional accuracy of the tubes rolled by the two-roll mill is low, and the surface quality is poor.
  • the three rolls of the three-roll skew rolling mill are uniformly arranged around the rolling centerline at 120 °, and the roll axis is inclined and crossed at a certain angle (that is, the rolling angle and the feeding angle) to make the tube
  • the billet spirally advances under the action of the roll, and the outer surface of the rolled pipe will form a "spiral line", which affects the surface quality, and the "triangular" defect at the tail is easy to cause rolling.
  • the three-roller tension reducer generally consists of a series of holes with more than 10 frames.
  • the tension is provided by the speed difference between the speeds of the rolls of the adjacent frames, thereby completing the hollow reduction of the billet.
  • due to the large number of frames Therefore, the equipment investment is large, the production line is long, the floor area is large, and the equipment adjustment and control are more complicated.
  • the present invention provides a small-to-medium-caliber thick-walled metal pipe and a preparation method thereof.
  • the invention has the characteristics of both forging and rolling, can realize single-pass and large-deformation processing of metal pipe blanks, short process flow, high dimensional accuracy of products ( ⁇ 0.2mm), good surface quality of inner and outer walls, and low cost.
  • One of the objects of the present invention is to provide a small-diameter thick-walled metal pipe.
  • the cross-sectional diameter of the metal pipe ranges from 30 to 160 mm, the dimensional accuracy is ⁇ 0.2 mm, and the ratio of the outer diameter to the wall thickness of the metal pipe is greater than 2 to less than or equal to 20.
  • the cross-sectional diameter of the metal pipe ranges from 30 to 100 mm;
  • the ratio of the outer diameter to the wall thickness of the metal pipe is greater than 2 to 12 or less; more preferably greater than 2 to 10 or less; most preferably greater than 2 to 5 or less.
  • the material of the metal pipe is preferably steel, copper, aluminum, magnesium, titanium or alloy.
  • Another object of the present invention is to provide a method for preparing a small-to-medium-caliber thick-walled metal pipe.
  • the feeding mechanism feeds the billet at a feed speed of 1 to 3 m / min into 5 to 30 mm, so that it enters the compound forging and rolling forming device for forming;
  • the tube blank is rotated around its central axis by 15 to 90 °;
  • step (1) the outer diameter of the tube blank is 40 to 180 mm, and the length of the fixed length is 0.5 to 10 m.
  • step (3) when cold forming is performed, the billet is fed directly into the compound forging and rolling forming device; when hot forming is performed, the billet is heated to a target temperature by an induction heating device, and then fed into the compound forging and rolling forming. Device.
  • the induction heating device is an intermediate frequency induction heating coil, and the target temperature range is 800 to 1200 ° C.
  • the composite forging and rolling forming device is composed of three oscillating die blocks, which are arranged at an equal distance around the central axis of the tube blank.
  • the die blocks are synchronously oscillated by a crank link mechanism driven by a motor, and the die blocks rotate around their connecting axes.
  • the reciprocating linear motion is performed along with the connecting shaft, and spur gears connected by a flat key are installed at both ends of the connecting shaft.
  • the displacement and rotation angle of the mold are controlled by the spur gear.
  • the process is: (1) selecting a suitable tube blank and cutting the length; (2) installing the tube blank on the feeding frame, the tail end of the tube blank is tightened by the clamping device, the front end is supported by the support roller, and the core is guaranteed
  • the die device passes through the inner hole of the tube blank; (3) before each pass, the feeding mechanism feeds the tube blank at a feed speed of 1 to 3 m / min, 5 to 30 mm.
  • the compound is directly fed into the composite after feeding.
  • Forging and rolling forming device when hot forming, the billet is heated to the target temperature through the induction heating device, and then sent to the compound forging and rolling forming device; (4) after each completion of forming of the tube billet in the compound forging and rolling forming device, Rotate the tube blank by 15 to 90 ° around its central axis, and then feed it into the composite forging and rolling device again for 5 to 30 mm. (5) Repeat the process steps (3) and (4) until the front end of the tube blank enters. Receiving frame, the receiving mechanism clamps the front end of the tube blank, while the feeding frame releases the end of the tube blank, and the tube blank continues to advance under the driving of the receiving device until the entire tube blank is formed; (6) cooling And cut to length
  • the process mainly includes the following steps:
  • the feeding mechanism feeds the tube blank at a feed speed of 1 ⁇ 3m / min. 5 ⁇ 30mm.
  • cold forming it is directly fed into the composite forging and rolling device after feeding.
  • hot forming is performed At this time, the billet is heated to the target temperature by the induction heating device, and then sent to the composite forging and rolling forming device;
  • the blanks selected in the present invention include high-frequency straight seam welded pipes and seamless pipes.
  • the material requirements include steel pipes and non-ferrous metal pipes such as aluminum, copper, magnesium, and titanium.
  • the outer diameter of the pipe blank is 40 to 180 mm, and the length of the fixed length is 0.5 to 10 m. .
  • the forming mold is composed of three swinging mold blocks, which are arranged at an equal distance around the central axis of the tube blank.
  • the mold blocks are synchronously swung by a crank link mechanism driven by a motor, and the mold blocks are rotated around their connecting axes.
  • the connecting shaft is doing a reciprocating linear motion, and its displacement and rotation angle strictly correspond.
  • the feed rate of the blank is 1 to 3 m / min, and the feed amount of each time is 5 to 30 mm;
  • the process in the present invention can be performed in two forms: cold and hot.
  • the induction heating device in step (3) is an intermediate frequency induction heating coil, and the forming temperature range is 800 to 1200 ° C.
  • the invention is applicable to the forming of small and medium caliber metal pipes made of various metal materials.
  • the outer diameter of the product ranges from 30 to 160 mm, and the ratio of the outer diameter to the wall thickness (D / S) of the product is greater than 2 to less than or equal to 20.
  • the dimensional accuracy of the metal pipe product obtained in the present invention is ⁇ 0.2mm;
  • the process has both forging and rolling characteristics, and the deformed mass point is in a three-dimensional compressive stress state, which can be used for cold and hot forming of small and medium caliber metal pipes of various metal materials.
  • FIG. 1 is a schematic diagram of a composite forging and rolling metal pipe forming machine according to the present invention
  • FIG. 2 is a schematic diagram of a transmission device of the present invention
  • FIG. 3 is a schematic diagram of a composite forging and rolling forming apparatus according to the present invention.
  • Figure 4 is a side sectional view of Figure 3;
  • FIG. 5 is a schematic diagram of an induction heating coil of the present invention.
  • FIG. 6 is a schematic diagram of a core mold device according to the present invention.
  • FIG. 7 is a schematic diagram of a feeding device of the present invention.
  • FIG. 8 is a schematic diagram of a receiving device of the present invention.
  • FIG. 9 is a schematic view of a small-caliber thick-walled metal pipe product according to the present invention.
  • FIG. 10 is a schematic cross-sectional view of FIG. 9.
  • the steel pipe 6 is used as the blank, and the pipe blank is installed on the feeding frame 7.
  • the tail end of the pipe blank is tightened by the hydraulic chuck 27, and at the same time, the core mold device 7 is passed through the inner hole of the pipe blank at a feed speed of 1.5 m / min.
  • the blank is fed into 25mm, the tube blank enters the induction heating coil 4 and is heated to 1000 ° C, and then enters the forming frame 3.
  • the tube billet After completing the forming of the tube billet in the compound forging and rolling forming device, the tube billet is rotated by 60 ° around its central axis, and is again fed into 25 mm for forming, until the front end of the tube billet enters the receiving frame 1, and the receiving mechanism moves the tube The front end of the billet is clamped, and at the same time, the feeding rack releases the tail end of the billet, and the billet is driven forward by the receiving mechanism until the entire billet is formed. After the billet is cooled, it is cut to length.
  • the Q235 high frequency straight seam welded pipe is selected as the blank, the original outer diameter of the blank is 86mm, the wall thickness is 4.5mm, and the fixed length is 3m;
  • the feeding mechanism feeds the tube blank to 25mm at a feed speed of 1.5m / min. After the billet is heated to 1000 ° C through an induction heating coil, it is fed into the composite forging and rolling forming device;
  • the outer diameter of the tube blank obtained by this forming process is 65mm, the wall thickness is 5.5mm, the dimensional accuracy of the product is ⁇ 0.2mm, and the inner and outer walls are free of defects such as warping and pits.
  • the feeding mechanism feeds the tube blank to 20mm at a feed speed of 2m / min. After the billet is heated to 900 ° C through an induction heating coil, it is fed into the composite forging and rolling forming device;
  • the outer diameter of the tube blank obtained by this forming process is 35mm, the wall thickness is 5mm, and the dimensional accuracy of the product is ⁇ 0.18mm. There are no defects such as warping, pits, etc. on the inner and outer walls.
  • the feeding mechanism feeds the blank into 10mm at a feed speed of 3m / min, and feeds it into the composite forging and rolling forming device;
  • the outer diameter of the aluminum tube product obtained by the cold forming process is 30mm, the wall thickness is 6.5mm, the inner and outer walls are smooth, and there are no defects such as warping and pits, and the product size accuracy is ⁇ 0.2mm.
  • the pure aluminum pipe is selected as the blank, the original outer diameter of the blank is 140mm, the wall thickness is 10mm, and the length of the fixed length is 8m;
  • the feeding mechanism feeds the tube billet at a feed speed of 3m / min into 8mm and into the compound forging and rolling forming device;
  • the outer diameter of the aluminum tube product obtained by the cold forming process is 110mm, the wall thickness is 12.5mm, the inner and outer walls are smooth, and there are no defects such as warping and pits.
  • the product size accuracy is ⁇ 0.2mm.

Abstract

一种小口径厚壁金属管,所述金属管的横断面直径范围为30~160mm,尺寸精度为±0.2mm,金属管外径与壁厚比为大于2至小于等于20。一种小口径厚壁金属管的制备方法,包括:(1)选择管坯,切定尺;(2)将管坯安装到送料机架上,管坯尾端由夹持装置加紧,前端由支撑辊支撑,并保证芯模装置穿过管坯内孔;(3)每一道次开始前送料机构以1~3m/min进给速度将管坯送进5~30mm,使其进入复合锻轧成形装置进行成形;(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转15-90°;(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形;(6)冷却和定尺剪切。该方法兼具锻压和轧制的特点,可以实现金属管坯的单道次、大变形量加工,工艺流程短,产品尺寸精度高,内外壁表面质量好,成本低。

Description

一种中小口径厚壁金属管及制备方法 技术领域
本发明涉及金属管材料加工技术领域,进一步地说,是涉及一种中小口径厚壁金属管及制备方法。
背景技术
目前成形中小口径厚壁(D/S位于2-20范围内)金属管的方法主要有挤压、轧制等,其中挤压成形生产效率低,因此产品成本高,没有市场竞争力,通常用于生产极少数其它工艺不能或很难生产的金属管。热轧成形主要包括周期式轧管、三辊斜轧成形和张力减径成形等。
周期式轧管机是将管材按一定频率送进由芯棒和周期往复运动的孔型所组成的轧槽内,内壁在芯棒的支撑下,靠逐渐收缩的变断面孔型碾压管坯,实现减径和减壁功能。周期式轧管机常见的主要是二辊皮尔格轧机,但是由于在轧制过程中机架和轧辊往复运动,运动部件多且惯性大,造成轧制过程稳定性较差,且轧机结构复杂、维护调整较为困难;二辊式轧机所轧管材尺寸精度低、表面质量差。
三辊斜轧机的三个轧辊之间呈120°均匀排布在轧制中心线的周围,轧辊轴线与轧制中心线倾斜、交叉成一定角度(即辗轧角与喂入角),使管坯在轧辊作用下螺旋前进,其所轧管材外表面会形成“螺旋线”,影响表面质量,尾部容易出现“三角形”缺陷而造成轧卡。
三辊张力减径机一般由10个以上的机架组成一系列孔型,通过相邻机架轧辊转速的速度差来提供张力,从而完成管坯的空心减径,但由于机架数目较大,因此设备投资很大,生产线较长,占地面积较大,设备调整和控制较为复杂。
发明内容
为解决现有技术中出现的问题,本发明提供了一种中小口径厚壁金属管及制备方法。本发明兼具锻压和轧制的特点,可以实现金属管坯的单道次、大变形量加工,工艺流程短,产品尺寸精度高(±0.2mm),内外壁表面质量好,成本低。
本发明的目的之一是提供一种中小口径厚壁金属管。
所述金属管的横断面直径范围为30~160mm,尺寸精度为±0.2mm,金属管外径与壁厚比为大于2至小于等于20。
优选:
所述金属管的横断面直径范围为30~100mm;
所述金属管外径与壁厚比为大于2至小于等于12;更优选大于2至小于等于10;最优选大于2至小于等于5。
所述金属管的内外壁无起皮、凹痕或裂纹。
所述金属管的材质优选为钢、铜、铝、镁、钛或合金。
本发明的目的之二是提供一种中小口径厚壁金属管的制备方法。
包括:
(1)选择管坯,切定尺;
(2)将管坯安装到送料机架上,管坯尾端由夹持装置加紧,前端由支撑辊支撑,并保证芯模装置穿过管坯内孔;
(3)每一道次开始前送料机构以1~3m/min进给速度将管坯送进5~30mm,使其进入复合锻轧成形装置进行成形;
(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转15~90°;
(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前 进,直至整根管坯完成成形;
(6)冷却和定尺剪切。
其中,优选:
步骤(1),管坯料外径为40~180mm,定尺长度为0.5~10m。
步骤(3),当进行冷成形时,管坯进给后直接送进复合锻轧成形装置;当进行热成形时,通过感应加热装置,将坯料加热到目标温度后,送进复合锻轧成形装置。
步骤(3),热成形时,感应加热装置为中频感应加热线圈,目标温度范围为800~1200℃。
所述复合锻轧成形装置由三个摆动的模具块构成,绕管坯中心轴线呈120°等距布置,模具块通过由电机驱动的曲柄连杆机构进行同步摆动,模具块绕其连接轴旋转的同时随连接轴做往复直线运动,连接轴的两端安装有通过平键连接的直齿轮,模具的移动位移和旋转角度受直齿轮控制。
本发明具体可采用以下技术方案:
该工艺过程为:(1)选择合适的管坯,切定尺;(2)将管坯安装到送料机架上,管坯尾端由夹持装置加紧,前端由支撑辊支撑,并保证芯模装置穿过管坯内孔;(3)每一道次开始前送料机构以1~3m/min进给速度将管坯送进5~30mm,当进行冷成形时,进给后直接送进复合锻轧成形装置,当进行热成形时,通过感应加热装置,将坯料加热到目标温度后,送进复合锻轧成形装置;(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转15~90°,并再次送进5~30mm后再次送入复合锻轧成形装置进行成形;(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形;(6)冷却和定尺剪切
该工艺主要包括以下步骤:
(1)选择合适的管坯,切定尺;
(2)将管坯安装到送料机架上,管坯尾端由夹持装置加紧,前端由支撑辊支撑,并保证芯模装置穿过管坯内孔;
(3)每一道次开始前送料机构以1~3m/min进给速度将管坯送进5~30mm,当进行冷成形时,进给后直接送进复合锻轧成形装置,当进行热成形时,通过感应加热装置,将坯料加热到目标温度后,送进复合锻轧成形装置;
(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转15~90°,并再次送进5~30mm后再次送入复合锻轧成形装置进行成形;
(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形;
(6)冷却和定尺剪切。
本发明中选用的坯料包括高频直缝焊管、无缝管,材质要求包括钢管及铝、铜、镁、钛等有色金属管,管坯外径为40~180mm,定尺长度为0.5~10m。
本发明中成形模具由三个摆动的模具块构成,绕管坯中心轴线呈120°等距布置,模具块通过由电机驱动的曲柄连杆机构进行同步摆动,模具块绕其连接轴旋转的同时连接轴在做往复直线运动,其移动位移和旋转角度严格对应。
本发明中坯料的进给速度为1~3m/min,每次的进给量为5~30mm;
本发明中所述工艺可以进行冷、热两种成形方式,所述步骤(3)中的感应加热装置为中频感应加热线圈,成形温度区间为800~1200℃;
本发明中适用于各种金属材质的中小口径金属管的成形,产品外径范围为30~160mm,产品外径与壁厚之比(D/S)大于2至小于等于20。
本发明中获得的金属管产品尺寸精度为±0.2mm;
本发明上述技术方案的有益效果如下:
(1)可以实现金属管坯的单道次、大变形量变截面加工;
(2)工艺流程短,设备投资小;
(3)产品尺寸精度高(±0.2mm),内外壁表面质量较好;
(4)工艺兼具锻压和轧制特点,变形质点处于三向压应力状态,可用于各种金属材质中小口径金属管的冷热成形。
附图说明
图1是本发明的复合锻轧金属管成形机示意图;
图2是本发明的传动装置示意图;
图3是本发明的复合锻轧成形装置示意图;
图4是图3的侧视剖面图;
图5是本发明的感应加热线圈示意图;
图6是本发明的芯模装置示意图;
图7是本发明的送料装置示意图;
图8是本发明的接料装置示意图;
图9是本发明的小口径厚壁金属管产品示意图;
图10是图9的横截面示意图。
附图标记说明:
1接料机架;2传动机架;3成形机架;4感应加热线圈;5感应加热设备控制柜;6坯料;7芯模;8送料机架;9偏心轮连杆;10成形机架底座;11主传动轴;12相互啮合的传动锥齿轮A;13相互啮合的传动锥齿轮B;14相互啮合的传动锥齿轮C;15相互啮合的传动锥齿轮D;16中间传动轴;17偏心轮轴;18偏心轮;19连接轴;20轴承座连杆;21扇形模具块;22模具轴;23行程直齿轮;24齿条;25模具轨道框;26送料支撑辊;27液压夹头;28伺服电机;29减速小齿轮;30减速大齿轮;31夹头座;32行走小车;33行走小车导轮;34定位导轨;35芯模定位座;36送料平台;37支撑腿;38行走小车电机;39接料支撑辊。
具体实施方式
下面结合实施例,进一步说明本发明。
以钢管6为坯料,将管坯安装在送料机架7上,管坯尾端由液压夹头27加紧,同时保证芯模装置7穿过管坯内孔,以1.5m/min的进给速度将坯料送进25mm,管坯进入感应加热线圈4加热到1000℃后进入成形机架3。管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转60°,并再次送进25mm进行成形,直至管坯前端进入接料机架1,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形,管坯冷却后切定尺。
实施例1
(1)选取Q235高频直缝焊管为坯料,坯料原始外径86mm,壁厚4.5mm,定尺长度为3m;
(2)将管坯安装到送料机架上,前端由支撑辊支撑,管坯尾端由夹持装置加紧,并保证芯模装置穿过管坯内孔,芯棒直线段直径为54mm;
(3)每一道次开始前送料机构以1.5m/min进给速度将管坯送进25mm,通过感应加热线圈,将坯料加热到1000℃后,送进复合锻轧成形装置;
(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转60°,并再次送进25mm,通过感应线圈加热后再次送入复合锻轧成形装置进行成形;
(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形。
(6)冷却和定尺剪切;
采用该成形工艺得到的管坯外径为65mm,壁厚为5.5mm,产品尺寸精度为±0.2mm,内外壁无翘皮、凹坑等缺陷。
实施例2
(1)选取08Al无缝钢管为坯料,坯料原始外径60mm,壁厚3.8mm,定尺 长度为5m;
(2)将管坯安装到送料机架上,前端由支撑辊支撑,管坯尾端由夹持装置加紧,并保证芯模装置穿过管坯内孔,芯棒直线段直径为25mm;
(3)每一道次开始前送料机构以2m/min进给速度将管坯送进20mm,通过感应加热线圈,将坯料加热到900℃后,送进复合锻轧成形装置;
(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转75°,并再次送进20mm,通过感应线圈加热后再次送入复合锻轧成形装置进行成形;
(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形。
(6)冷却和定尺剪切;
采用该成形工艺得到的管坯外径为35mm,壁厚为5mm,产品尺寸精度为±0.18mm,内外壁无翘皮、凹坑等缺陷。
实施例3
(1)选取紫铜管为坯料,坯料原始外径60mm,壁厚4mm,定尺长度为6m;
(2)将管坯安装到送料机架上,前端由支撑辊支撑,管坯尾端由夹持装置加紧,并保证芯模装置穿过管坯内孔,芯棒直线段直径为18mm;
(3)每一道次开始前送料机构以3m/min进给速度将管坯送进10mm,送进复合锻轧成形装置;
(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转45°,并再次送进10mm后再次送入复合锻轧成形装置进行成形;
(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形。
(6)定尺剪切;
采用冷成形工艺得到的铝管产品外径为30mm,壁厚为6.5mm,内外壁光洁,无翘皮、凹坑等缺陷,产品尺寸精度为±0.2mm。
实施例4
(1)选取纯铝管为坯料,坯料原始外径140mm,壁厚10mm,定尺长度为8m;
(2)将管坯安装到送料机架上,前端由支撑辊支撑,管坯尾端由夹持装置加紧,并保证芯模装置穿过管坯内孔,芯棒直线段直径为85mm;
(3)每一道次开始前送料机构以3m/min进给速度将管坯送进8mm,送进复合锻轧成形装置;
(4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转25°,并再次送进8mm后再次送入复合锻轧成形装置进行成形;
(5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形。
(6)定尺剪切;
采用冷成形工艺得到的铝管产品外径为110mm,壁厚为12.5mm,内外壁光洁,无翘皮、凹坑等缺陷,产品尺寸精度为±0.2mm。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术来说,在不脱离本发明所述的原理前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种小口径厚壁金属管,其特征在于:
    所述金属管的横断面直径范围为30~160mm,尺寸精度为±0.2mm,金属管外径与壁厚比为大于2至小于等于20。
  2. 如权利要求1所述的小口径厚壁金属管,其特征在于:
    所述金属管的横断面直径范围为30~100mm;
    所述金属管外径与壁厚比为大于2至小于等于12。
  3. 如权利要求2所述的小口径厚壁金属管,其特征在于:
    所述金属管外径与壁厚比为大于2至小于等于10。
  4. 如权利要求1所述的小口径厚壁金属管,其特征在于:
    所述金属管的内外壁无起皮、凹痕或裂纹。
  5. 如权利要求1~4之一所述的小口径厚壁金属管,其特征在于:
    所述金属管的材质为钢、铜、铝、镁、钛或合金。
  6. 一种如权利要求1~5之一所述的中小口径厚壁金属管的制备方法,其特征在于所述方法包括:
    (1)选择管坯,切定尺;
    (2)将管坯安装到送料机架上,管坯尾端由夹持装置加紧,前端由支撑辊支撑,并保证芯模装置穿过管坯内孔;
    (3)每一道次开始前送料机构以1~3m/min进给速度将管坯送进5~30mm,使其进入复合锻轧成形装置进行成形;
    (4)管坯在复合锻轧成形装置中每完成一次成形后,将管坯绕其中心轴线旋转15-90°;
    (5)重复工艺步骤(3)和(4)直至管坯前端进入接料机架,接料机构将管坯前端夹紧,同时送料机架将管坯尾端松开,管坯在接料机构带动下继续前进,直至整根管坯完成成形;
    (6)冷却和定尺剪切。
  7. 如权利要求6所述的小口径厚壁金属管的制备方法,其特征在于:
    步骤(1),管坯料外径为40~180mm,定尺长度为0.5~10m。
  8. 如权利要求6所述的小口径厚壁金属管的准备方法,其特征在于:
    步骤(3),当进行冷成形时,管坯料进给后直接送进复合锻轧成形装置;当进行热成形时,通过感应加热装置,将坯料加热到目标温度后,再送进复合锻轧成形装置。
  9. 如权利要求8所述的小口径厚壁金属管的准备方法,其特征在于:
    步骤(3),热成形时,感应加热装置为中频感应加热线圈,目标温度范围为800~1200℃。
  10. 如权利要求6所述的小口径厚壁金属管的准备方法,其特征在于:
    所述复合锻轧成形装置由三个摆动的模具块构成,绕管坯中心轴线呈120°等距布置,模具块通过由电机驱动的曲柄连杆机构进行同步摆动,模具块绕其连接轴旋转的同时随连接轴做往复直线运动,连接轴的两端安装有通过平键连接的直齿轮,模具的移动位移和旋转角度受直齿轮控制。
PCT/CN2019/095282 2018-07-17 2019-07-09 一种中小口径厚壁金属管及制备方法 WO2020015556A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19838335.8A EP3812056A4 (en) 2018-07-17 2019-07-09 THICK-WALLED METAL TUBE WITH MEDIUM / SMALL DIAMETER AND METHOD FOR ITS MANUFACTURING
JP2021525350A JP7106004B2 (ja) 2018-07-17 2019-07-09 中小径の厚肉金属管及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810783775.9A CN110722016A (zh) 2018-07-17 2018-07-17 一种中小口径厚壁金属管及制备方法
CN201810783775.9 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020015556A1 true WO2020015556A1 (zh) 2020-01-23

Family

ID=69163483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095282 WO2020015556A1 (zh) 2018-07-17 2019-07-09 一种中小口径厚壁金属管及制备方法

Country Status (4)

Country Link
EP (1) EP3812056A4 (zh)
JP (1) JP7106004B2 (zh)
CN (1) CN110722016A (zh)
WO (1) WO2020015556A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769352A (zh) * 2022-03-21 2022-07-22 温州英特不锈钢有限公司 一种不锈钢管成型方法
CN114833296A (zh) * 2022-05-25 2022-08-02 江苏明越精密高温合金有限公司 一种管坯的制坯设备
CN115608900A (zh) * 2022-12-16 2023-01-17 太原理工大学 一种金属包覆材料波平径向锻造复合设备及其方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260327B (zh) * 2021-12-20 2022-08-30 大连理工大学 径向连续挤压制备轴向变截面管材的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1092718A (en) * 1964-10-21 1967-11-29 Tube Mill Holding Sa Production of seamless tubes
US3404449A (en) * 1965-07-19 1968-10-08 Sharon Tube Company Heavy walled pipe manufacture
CN101249603A (zh) * 2008-04-09 2008-08-27 宝鸡市浩源特种材料有限公司 高强度高硬度合金的轧锻一体化工艺及其轧锻设备
CN101633115A (zh) * 2009-08-06 2010-01-27 刘怀文 一种生产高级合金钢无缝钢管的新方法
CN104475479A (zh) * 2014-09-25 2015-04-01 北京科技大学 一种利用旋锻技术制备小口径厚壁金属管的工艺
CN105710273A (zh) * 2016-01-18 2016-06-29 上海理工大学 轿车等速万向传动轴旋锻周向进给工艺参数确定方法
CN208495380U (zh) * 2018-07-17 2019-02-15 韩静涛 一种复合锻轧金属管成形机
CN208695986U (zh) * 2018-07-17 2019-04-05 韩静涛 一种中小口径厚壁金属管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA403835A (en) * 1942-03-31 B. Tiedemann Julius Pipe swaging machine
US2247863A (en) * 1939-05-27 1941-07-01 Smith Corp A O Pipe swaging machine
US3357223A (en) * 1965-05-28 1967-12-12 Kent Owens Machine Co Tube reducing machine
US4157025A (en) * 1977-12-05 1979-06-05 Berezin Evgeny N Method and mill for rolling metal billets
JPH04319009A (ja) * 1991-04-16 1992-11-10 Nippon Steel Corp 鋼管の高速熱間圧延工程における、圧延ロール表面変位のオンライン測定による鋼管圧延方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1092718A (en) * 1964-10-21 1967-11-29 Tube Mill Holding Sa Production of seamless tubes
US3404449A (en) * 1965-07-19 1968-10-08 Sharon Tube Company Heavy walled pipe manufacture
CN101249603A (zh) * 2008-04-09 2008-08-27 宝鸡市浩源特种材料有限公司 高强度高硬度合金的轧锻一体化工艺及其轧锻设备
CN101633115A (zh) * 2009-08-06 2010-01-27 刘怀文 一种生产高级合金钢无缝钢管的新方法
CN104475479A (zh) * 2014-09-25 2015-04-01 北京科技大学 一种利用旋锻技术制备小口径厚壁金属管的工艺
CN105710273A (zh) * 2016-01-18 2016-06-29 上海理工大学 轿车等速万向传动轴旋锻周向进给工艺参数确定方法
CN208495380U (zh) * 2018-07-17 2019-02-15 韩静涛 一种复合锻轧金属管成形机
CN208695986U (zh) * 2018-07-17 2019-04-05 韩静涛 一种中小口径厚壁金属管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769352A (zh) * 2022-03-21 2022-07-22 温州英特不锈钢有限公司 一种不锈钢管成型方法
CN114833296A (zh) * 2022-05-25 2022-08-02 江苏明越精密高温合金有限公司 一种管坯的制坯设备
CN114833296B (zh) * 2022-05-25 2023-07-25 江苏明越精密高温合金有限公司 一种管坯的制坯设备
CN115608900A (zh) * 2022-12-16 2023-01-17 太原理工大学 一种金属包覆材料波平径向锻造复合设备及其方法

Also Published As

Publication number Publication date
EP3812056A1 (en) 2021-04-28
JP7106004B2 (ja) 2022-07-25
CN110722016A (zh) 2020-01-24
EP3812056A4 (en) 2021-09-22
JP2021530363A (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
WO2020015556A1 (zh) 一种中小口径厚壁金属管及制备方法
US3695076A (en) Method for manufacture of seamless tube
CN106345814B (zh) 一种斜连轧镁合金无缝管生产方法
CN107234443B (zh) 机器人主动牵引的三维变曲率型材在线弯曲成形装置
CN111589871A (zh) 一种小口径厚壁无缝钢管的生产线及其生产工艺
CN108160709B (zh) 一种钛合金热轧无缝管生产系统及其生产工艺
CN105234179B (zh) 利用二辊斜轧机进行厚壁无缝钢管的定径工艺及轧制工艺
AU2019303619B2 (en) Corner-thickened cold/hot composite formation square/rectangular steel pipe and preparation method therefor
US6757976B2 (en) Method for manufacturing alloy wheel for automobile
CN111283006A (zh) 一种双向挤压成形的工艺及装备
JP2003211901A (ja) 自動車用ホイールの製造方法
CN111589869B (zh) 一种2219铝合金管的高强韧二辊斜轧穿孔方法
JP2022136949A (ja) 連続複合変形装置
CN111069333B (zh) 一种铝合金薄壁圆筒精密成形方法
CN208695986U (zh) 一种中小口径厚壁金属管
WO2020015554A1 (zh) 一种复合锻轧金属管成形机
GB1593526A (en) Rolling mill plant
CN212442565U (zh) 一种小口径厚壁无缝钢管的生产线
US20130074563A1 (en) Tube rolling plant
US2083698A (en) Push bench method and apparatus
CN111408624A (zh) 一种金属管材轧制用双芯棒机构及方法
CN111922081B (zh) 一种异型镁合金型材连续铸轧与轧制短流程制备方法
CN101683709B (zh) 薄带连铸连续生产中口径焊管的方法
JPS6035206B2 (ja) 継目無鋼管製造法
RU2268796C2 (ru) Способ производства конусных длинномерных полых металлических изделий горячей прокаткой и устройства для его осуществления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE