WO2020014992A1 - 一种虚拟现实显示装置 - Google Patents

一种虚拟现实显示装置 Download PDF

Info

Publication number
WO2020014992A1
WO2020014992A1 PCT/CN2018/096548 CN2018096548W WO2020014992A1 WO 2020014992 A1 WO2020014992 A1 WO 2020014992A1 CN 2018096548 W CN2018096548 W CN 2018096548W WO 2020014992 A1 WO2020014992 A1 WO 2020014992A1
Authority
WO
WIPO (PCT)
Prior art keywords
plano
polarized light
display panel
quarter
virtual reality
Prior art date
Application number
PCT/CN2018/096548
Other languages
English (en)
French (fr)
Inventor
牛磊
刘波
Original Assignee
上海视欧光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海视欧光电科技有限公司 filed Critical 上海视欧光电科技有限公司
Priority to US16/728,222 priority Critical patent/US11022796B2/en
Publication of WO2020014992A1 publication Critical patent/WO2020014992A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to the field of display technology, and in particular, to a virtual reality display device.
  • VR Virtual Reality, virtual reality
  • VR Virtual Reality, virtual reality
  • Creating a virtual information environment on the information space can make users have an immersive sense of immersion, have the ability to interact with the environment, and help inspire ideas.
  • the virtual reality display device in the prior art generally includes a computer processing system, an image processing system, a display panel, and an optical system.
  • the computer processing system captures the behavior of the person and the external environment through external sensors, and then performs processing according to the corresponding scene, and then renders the image processing system, and then outputs it to the display panel.
  • the image of the display panel passes the optical system into a
  • the enlarged virtual image is received by the eyes.
  • the optical system is mainly used to enlarge the near image generated by the display panel to a distance, which is almost full of the field of vision of the person, thereby creating an immersive feeling.
  • the existing optical system is mainly composed of various optical lenses and optical films.
  • FIG. 1 it is a schematic diagram of a virtual reality display device provided in a patent application with a publication number of US20180039052A1.
  • a part of the light R1 emitted from the display device 14 passes through the first linear polarizer 16 and the light is lost. This part of the light is perpendicular to the transmission axis of the first linear polarizer 16 because of the vibration direction Therefore, it will absorb and cannot enter the subsequent optical system, resulting in low optical utilization.
  • the present invention provides a virtual reality display device including an OLED display panel and an optical system, the optical system is disposed between the OLED display panel and a user's viewing side; the optical system includes the OLED display panel and an optical system.
  • a first linear polarizer between the user observation side, a first reflective transmissive optical film disposed between the first linear polarizer and the OLED display panel, and disposed on the first reflective transmissive optical film
  • the optical system further includes a plano-convex lens and a plano-concave lens, the plano-convex lens is close to one side of the first linear polarizer, and the plano-concave lens is close to the user observation side.
  • a second quarter-wave plate is disposed between the first linear polarizer and the plano-convex lens.
  • a third quarter-wave plate and a second reflection-transmission optical film are disposed between the plano-convex lens and the plano-concave lens.
  • a transflective film layer is disposed on the side of the plano-convex lens near the second quarter-wave plate.
  • a second linear polarizer is disposed between the plano-concave lens and the user viewing side.
  • the lens system includes a plano-convex lens, a bi-convex lens, and a plano-concave lens, the plano-convex lens is near one side of the first linear polarizer, the plan-concave lens is near the user viewing side, and the double A convex lens is located between the plano-convex lens and the plano-concave lens.
  • a second quarter-wave plate is disposed between the plano-convex lens and the first linear polarizer.
  • a third quarter-wave plate and a second reflection-transmission optical film are disposed between the plano-concave lens and the user observation side.
  • a second linear polarizing plate is disposed between the second reflection-transmission optical film and the user observation side.
  • a transflective film layer is further included, and the transflective film layer is disposed on a side of the plano-convex lens near the second quarter-wave plate.
  • P-type polarized light passes through the first reflective transmissive optical film, and S-type polarized light is reflected through the first reflective transmissive optical film.
  • the first quarter-wave plate is described, and the OLED display panel reflects and becomes P-type polarized light.
  • the OLED display panel is a silicon-based OLED display panel.
  • the first reflective and transmissive optical film is a reflective polarizer; or, the first reflective and transmissive optical film is a metal grating polarizer.
  • the present invention also provides a virtual reality display device including an OLED display panel and an optical system.
  • the optical system is disposed between the OLED display panel and a user viewing side.
  • the optical system includes an OLED display panel and an optical system.
  • the first quarter-wave plate, the first reflection-transmission optical film, the first linear polarizer, the second quarter-wave plate, the plano-convex lens, and the third quarter-wave plate are sequentially arranged between the user observation sides.
  • a second reflective transmissive optical film, a plano-concave lens, and a second linear polarizer, the plano-convex lens is provided with a semi-transparent and semi-reflective film layer on the side close to the second quarter-wave plate.
  • P-type polarized light passes through the first reflective transmissive optical film, and S-type polarized light is reflected through the first reflective transmissive optical film.
  • the first quarter-wave plate is reflected by the OLED display panel and becomes P-polarized light.
  • the present invention also provides a virtual reality display device including an OLED display panel and an optical system, the optical system is disposed between the OLED display panel and a user viewing side, and the optical system includes the OLED display panel and The first quarter-wave plate, the first reflection-transmission optical film, the first linear polarizer, the second quarter-wave plate, the plano-convex lens, the bi-convex lens position, and the plano-concave lens are sequentially arranged between the user observation sides.
  • a third quarter-wave plate, a second reflective transmissive optical film, and a second linear polarizer, a transflective film layer is provided on the side of the lenticular lens near the plano-convex lens.
  • P-type polarized light passes through the first reflective transmissive optical film, and S-type polarized light is reflected through the first reflective transmissive optical film.
  • the first quarter-wave plate is reflected by the OLED display panel and becomes P-polarized light.
  • linearly polarized light that could not originally pass through the first linear polarizer is converted into linearly polarized light that can pass through the first linear polarizer.
  • the optical utilization of the virtual reality display device is improved, and the display brightness of the virtual reality display device is also improved.
  • FIG. 1 is a schematic diagram of a virtual reality display device provided by the prior art.
  • FIG. 2 is a schematic diagram of a virtual reality display device according to a first embodiment of the present invention
  • FIG. 3 is a light path diagram from the OLED display panel to the first linear polarizer in the embodiment shown in FIG. 2;
  • FIG. 4 is a light path diagram of the virtual reality display device provided by the embodiment shown in FIG. 2;
  • FIG. 5 is a schematic diagram of a lens system of a virtual reality display device according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a lens system in a virtual reality display device according to another embodiment of the embodiment.
  • FIG. 7 is a schematic diagram of a virtual reality display device according to a second embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a virtual reality display device provided in Embodiment 1 of the present invention.
  • the virtual reality display device includes an OLED (Organic Light-Emitting Diode) display panel 10 and an optical system 20 and an optical system 20 It is disposed between the OLED display panel 10 and the user viewing side 30.
  • the OLED display panel 10 is used to generate an image.
  • the light emitted by the OLED display panel 10 is different from the light emitted by the liquid crystal display device.
  • the light emitted by the liquid crystal display device is polarized light, and the light emitted by the OLED display panel is close to natural light.
  • the optical system 20 is used to zoom in the near image generated by the OLED display panel 10 to a distance, which is almost full of the field of view of the person, thereby creating an immersive feeling.
  • the optical system 20 is a polarization refraction optical system, and it is necessary to polarize natural light generated by the OLED display panel 10 before performing subsequent processing.
  • the optical system 20 includes a first linear polarizer 21 provided between the OLED display panel 10 and the user viewing side 30, a lens system provided between the first linear polarizer 21 and the user viewing side 30, and a first linear polarizer A first reflection-transmission optical film 22 between 21 and the OLED display panel 10, and a first quarter-wave plate 23 disposed between the first reflection-transmission optical film 22 and the OLED display panel 10.
  • FIG. 3 is a light path diagram from the OLED display panel to the first linear polarizer.
  • the light R1 emitted from the OLED display panel 10 is natural light, and the light R1 passes through the first quarter-wave plate 23 and the first reflection-transmission optical film 22.
  • the first reflection-transmission type optical film 22 transmits polarized light in one vibration direction and reflects polarized light in an orthogonal vibration direction.
  • the function of the first quarter-wave plate 23 is to convert the linearly polarized light that passes through it to circularly polarized light, or to convert the circularly polarized light that passes through it to linearly polarized light.
  • the axis direction can be at an angle of 45 degrees to the X axis.
  • the P-type polarized light R2 is transparent, and the S-polarized light R3 is reflected by the first reflective transmissive optical film 22.
  • the P-type polarized light R2 then propagates in the direction of the first linear polarizer 21.
  • the first linear polarizer 21 is a linear polarizer that can transmit the P-polarized light.
  • the light transmission axis of the first linear polarizer 21 can be equal to X The axes are parallel.
  • the P-type polarized light R2 in the light R1 passes through the first reflective transmissive optical film 22, it passes through the first linear polarizer 21 and then enters the lens system, and finally reaches the user observation side 30, creating a sense of immersion in virtual reality.
  • the S-shaped polarized light R3 in the light R1 is reflected by the first reflective transmissive optical film 22 and passes through the first 1/4 wave plate 23 to be converted into left-handed polarized light R4.
  • the left-handed polarized light R4 is reflected by the OLED display panel 10 and changes. It is a right-handed polarized light R5.
  • the right-handed polarized light R5 passes through the first quarter-wave plate 23 and becomes P-type polarized light R6.
  • the P-type polarized light R6 can then pass through the first reflective and transmissive optical film 22 and the first linear polarizer 21, then enter the lens system, and finally reach the user observation side 30, creating a sense of immersion in virtual reality.
  • the first reflective and transmissive optical film 22 and the first quarter-wave plate 23 are not provided, only the P-type polarized light R2 in the light R1 can pass through the first linear polarizer 21, and the S-type polarized light R3 cannot enter the subsequent optics.
  • the system causes optical loss and the display brightness of the virtual reality display device is low.
  • the first reflective transmissive optical film 22 and the first quarter-wave plate 23 are provided to convert the S-type polarized light R3 into the P-type polarized light R6 and enter the subsequent optical system, thereby improving the virtual reality display.
  • the optical utilization ratio of the device also improves the display brightness of the virtual reality display device.
  • the first reflective transmissive optical film may be a reflective polarizer that transmits S-polarized light and reflects the P-polarized light
  • the first linear polarizer may be provided that transmits S-polarized light.
  • the linear polarizer, the reflected P-type polarized light is reflected by the OLED display panel through the first quarter-wave plate, and then converted into the S-polarized light through the first quarter-wave plate, which can be used by the optical system. Use it to increase the display brightness of the virtual reality display device.
  • the optical system includes a plano-convex lens 241 and a plano-concave lens 242. 242 is close to the user observation side 30 side.
  • a second quarter-wave plate 25 is provided between the first linear polarizer 21 and the convex lens 241.
  • a third quarter-wave plate 26 and a second reflection-transmission optical film 27 are provided between the plano-convex lens 241 and the flat-concave lens 242.
  • a transflective film layer 29 is plated on the side of the plano-convex lens 241 near the second quarter-wave plate 25.
  • FIG. 4 is a light path diagram of the virtual reality display device according to the first embodiment of the present invention.
  • the light R2 is still linearly polarized after passing through the first linear polarizer 21, and then passes through the second quarter-wave plate 25 to become circularly polarized light R21.
  • the circularly polarized light R21 passes through the plano-convex lens.
  • the third quarter-wave plate 26 becomes linearly polarized light R22 and is still P-polarized light.
  • the second reflective transmissive optical film 27 is configured as a reflective polarizer that transmits S-polarized light and reflects P-polarized light. Therefore, the P-polarized light R22 cannot be reflected through the second reflective transmissive optical film 27.
  • the P-type polarized light R22 is converted into circularly polarized light R23 through the third quarter-wave plate 26, and the circularly polarized light R23 is left-handed polarized light. Because the transflective layer 29 is plated on the side of the plano-convex lens 241 near the second quarter-wave plate 25, part of the left-handed polarized light R23 is reflected to form right-handed polarized light R24, and the right-handed polarized light R24 passes through the third 1
  • the / 4 wave plate 26 becomes linearly polarized light R25, and the linearly polarized light R25 is S-type polarized light, and can pass through the second reflection-transmission optical film 27.
  • the linearly polarized light R25 passes through the second reflective transmissive optical film 27 and then passes through the plano-concave lens 242, and then reaches the user observation side 30.
  • a second linear polarizer 28 is further provided between the user viewing side 30 and the plano-concave lens 242.
  • the second linear polarizer 28 can filter out a small amount of polarization directions in the linearly polarized light R25 and the second linear polarizer 28 passes through.
  • Linearly polarized light with different axes allows all light rays reaching the user's viewing side 30 to be linearly polarized light in the same direction as the axis of transmission of the second linear polarizer 28 to improve the display effect.
  • the light R6 passes through the first linear polarizer 21 and remains linearly polarized, and then passes through the second quarter-wave plate 25 to become circularly polarized light R61.
  • the circularly polarized light R61 passes through the plano-convex lens 241, the first
  • the third quarter-wave plate 26 becomes linearly polarized light R62, and is still P-type polarized light.
  • the second reflective transmissive optical film 27 is configured as a reflective polarizer that transmits S-polarized light and reflects P-polarized light. Therefore, the P-polarized light R62 cannot be reflected through the second reflective transmissive optical film 27. Fold back the third quarter-wave plate 26.
  • the P-type polarized light R62 is converted into circularly polarized light R63 through the third quarter-wave plate 26, and the circularly polarized light R63 is left-handed polarized light. Because the transflective film layer 29 is plated on the side of the plano-convex lens 241 near the second quarter-wave plate 25, part of the left-handed polarized light R63 is reflected to form right-handed polarized light R64, and the right-handed polarized light R64 passes through the third 1
  • the / 4 wave plate 26 becomes linearly polarized light R65, and the linearly polarized light R65 is S-type polarized light, and can pass through the second reflection-transmission optical film 27.
  • the linearly polarized light R65 passes through the second reflective transmissive optical film 27, then passes through the plano-concave lens 242, and then passes through the second linear polarizer 28.
  • the second linear polarizer 28 can filter out a small amount of polarization in the linearly polarized light R65.
  • the second linear polarizer 28 transmits linearly polarized light having different axes. In this way, the light R3, which was originally unable to pass through the first linear polarizer, is converted into an energy that can be converted by the first reflective transmissive optical film and the first quarter-wave plate disposed between the first linear polarizer and the OLED display device.
  • the light R6 passing through the first linear polarizer is further used in the subsequent light system, which improves the optical utilization ratio and brightness of the entire virtual reality display device.
  • the specific optical system 20 of the entire virtual reality display device shown in FIG. 2 is only an implementation manner provided by the present invention, as long as a first reflective transmissive optical film is provided between the first linear polarizer in the optical system and the OLED display panel. And the first quarter-wave plate, the optical utilization rate can be improved, and the optical system from the first linear polarizer can be set to any optical system.
  • FIG. 5 is a schematic diagram of an optical system in a virtual reality display device according to another embodiment of the present invention.
  • the plano-convex lens 241 and the third quarter wave The air layer is different between the sheet 26, the second reflective transmissive optical film 27, and the plano-concave lens 242.
  • the plano-convex lens 2411, the third quarter-wave plate 261, and the second reflective transmission Both the type optical film 271 and the plano-concave lens 2421 are closely attached to each other, so that light can be prevented from spreading in the air layer and causing losses.
  • FIG. 6 is a schematic diagram of an optical system in a virtual reality display device provided by the embodiment.
  • the plano-convex lens 2412 and the plano-concave lens 2422 both have corresponding curved structures.
  • the 4-wave plate 262 and the second reflection-transmission optical film 272 are also curved and assembled between the plano-convex lens 2412 and the plano-concave lens 2422.
  • the structure shown in FIG. 6 can eliminate the air layer, reduce the thickness of the optical system, and reduce the thickness of the optical system. The loss caused by the small light propagation in the light system, and by providing plano-convex lenses and plano-concave lenses with corresponding curved structures, the size of the light system is reduced, and a more compact virtual reality display device is provided.
  • the first reflective transmissive optical film may be a reflective polarizer or a metal grating polarizer. Both reflective polarizers and metal grating polarizers can transmit polarized light in one polarization direction and reflect polarized light in other polarization directions.
  • the second reflective transmissive optical film may also be a reflective polarizer or a metal grating polarizer.
  • FIG. 7 is a schematic diagram of a virtual reality display device provided in Embodiment 2 of the present invention.
  • the virtual reality display device includes an OLED display panel 40 and an optical system 50.
  • the optical system 50 is disposed on the OLED display panel 40 and the user viewing side 30. between.
  • the OLED display panel 40 is used to generate an image, and the light emitted by the OLED display panel 40 is close to natural light.
  • the optical system 50 is used for zooming in the near image generated by the OLED display panel 40 to a distance, which is almost full of the field of view of the person, thereby creating an immersive feeling.
  • the optical system 50 is a polarization refraction optical system, and it is necessary to polarize natural light generated by the OLED display panel 40 before performing subsequent processing.
  • the optical system 50 includes a first linear polarizer 51 provided between the OLED display panel 40 and the user viewing side 30, a lens system provided between the first linear polarizer 51 and the user viewing side 30, and a first linear polarizer A first reflection-transmission optical film 52 between 51 and the OLED display panel 40, and a first quarter-wave plate 53 disposed between the first reflection-transmission optical film 52 and the OLED display panel 40.
  • the light path diagram of the light emitted by the OLED display panel 40 is the same as that of the first embodiment.
  • the virtual reality display device provided in the second embodiment can convert the polarization direction of the OLED display panel 40 and the first linear polarizer in the light.
  • the light with different axial directions of 51 is converted and used.
  • the light R1 emitted from the OLED display panel 40 is natural light, and the light R1 passes through the first quarter-wave plate 53 and the first reflective transmissive optical film 52.
  • the function of the first reflection-transmission optical film 52 is to transmit polarized light in one vibration direction and to reflect polarized light in an orthogonal vibration direction.
  • the function of the first quarter-wave plate 53 is to convert the linearly polarized light that passes through it to circularly polarized light, or to convert the circularly polarized light that passes through it to linearly polarized light.
  • the axis direction can be at an angle of 45 degrees to the X axis.
  • the P-type polarized light R2 is transparent, and the S-polarized light R3 is reflected by the first reflective transmissive optical film 52. After the S-shaped polarized light R3 is reflected by the first reflective transmissive optical film 52, it passes through the first 1/4 wave plate 53 and is converted into left-handed polarized light R4.
  • the left-handed polarized light R4 is reflected by the OLED display panel 40 and becomes right-handed.
  • the polarized light R5 and the right-handed polarized light R5 pass through the first quarter-wave plate 53 and become P-type polarized light R6.
  • the P-type polarized light R6 can then pass through the first reflective and transmissive optical film 52 and the first linear polarizer 51, then enter the lens system, and finally reach the user observation side 30, creating a sense of immersion in virtual reality.
  • the lens system includes a plano-convex lens 541, a lenticular lens 543, and a plano-concave lens 542.
  • the plano-convex lens 541 is close to the first linear polarizer 51.
  • the plano-concave lens 542 is close to the user viewing side 30, and the lenticular lens 543 is located between the plano-convex lens 541 and the flat-concave lens 542.
  • a second quarter-wave plate 55 is provided between the first linear polarizer 51 and the convex lens 23.
  • a third quarter-wave plate 56 and a second reflection-transmission optical film 57 are provided between the plano-convex lens 542 and the user observation side 30, a third quarter-wave plate 56 and a second reflection-transmission optical film 57 are provided.
  • a transflective film layer 59 is plated on the side of the plano-convex lens 541 near the second quarter-wave plate 55.
  • the P-type polarized light R2 is still P-type polarized light after passing through the first linear polarizer 51, and then passes through the second quarter-wave plate 55 to become circularly polarized light R21.
  • R21 is still circularly polarized light R21.
  • the circularly polarized light R21 passes through the third quarter-wave plate 56 and becomes linearly-polarized light R22. Since the P-type polarized light R2 passes through the two quarter-wave plates continuously, it is converted into S-polarized light.
  • the second reflective transmissive optical film 57 is configured to transmit P-polarized light and reflect S-polarized light.
  • the S-polarized light R22 cannot pass through the second reflective transmissive optical film 57 and be reflected back.
  • the reflected light R23 passes through the third quarter-wave plate 56, the S-polarized light R22 is converted into circularly polarized light R24 through the third quarter-wave plate 56, and the circularly polarized light R24 is left-handed polarized light.
  • the left-handed polarized light R24 passes through the plano-concave lens 542 and is emitted toward the lenticular lens 543. Because the half-transparent reflective layer 59 is plated on the side of the lenticular lens 543 facing the concave lens 541, the left-handed polarized light R24 is reflected to form the right-handed polarized light R25.
  • the right-handed polarized light R25 passes through the third quarter-wave plate 56 and becomes linearly polarized light R26.
  • the linearly polarized light R25 is P-type polarized light and can pass through the second reflection-transmissive optical film 57 to form light R27. , Thereby reaching the user observation side 30.
  • a second linear polarizer 58 is further provided between the user observation side 30 and the second reflective transmissive optical film 57.
  • the second linear polarizer 58 can filter out a small amount of polarization directions and the first polarized light in the linearly polarized light R27.
  • the two linear polarizers 58 transmit linearly polarized light with different axes, so that all the light reaching the user's viewing side 30 is linearly polarized light in the same direction as the second linear polarizer 58's transmission axis, thereby improving the display effect.
  • the light R6 passes through the first linear polarizer 21 and remains linearly polarized, and then passes through the second quarter-wave plate 55 to become circularly polarized light R61.
  • the circularly polarized light R61 passes through the plano-convex lens 541, double The convex lens 543 and the plano-concave lens 542 are still circularly polarized light R61.
  • the circularly polarized light R61 passes through the third quarter-wave plate 56 and becomes linearly polarized light R62. Because the P-type polarized light R6 passes through two quarter-wave plates continuously, it is converted into S-polarized light, so S The polarized light R62 cannot pass through the second reflective transmissive optical film 57 and is reflected back.
  • the reflected light R63 passes through the third quarter-wave plate 56, the S-polarized light R62 passes through the third quarter-wave plate 56 and is converted into circularly polarized light R64, and the circularly polarized light R64 is left-handed polarized light.
  • the left-handed polarized light R64 passes through the plano-concave lens 542 and is emitted toward the lenticular lens 543. Because the half-transparent reflective layer 59 is plated on the side of the lenticular lens 543 facing the concave lens 541, the left-handed polarized light R64 is reflected to form right-handed polarized light R65 The right-handed polarized light R65 passes through the third quarter-wave plate 56 and becomes linearly polarized light R66.
  • the linearly polarized light R66 is P-type polarized light and can pass through the second reflection-transmissive optical film 57 to form light R67. , Thereby reaching the user observation side 30.
  • the light R3 which was originally unable to pass through the first linear polarizer, is converted into an energy that can be converted by the first reflective transmissive optical film and the first quarter-wave plate disposed between the first linear polarizer and the OLED display device.
  • the light R6 passing through the first linear polarizer is further used in the subsequent light system, which improves the optical utilization ratio and brightness of the entire virtual reality display device.
  • the linearly polarized light R66 passes through the second reflective transmissive optical film 57 and then passes through the second linear polarizer 58.
  • the second linear polarizer 58 can filter out a small amount of polarization directions and the second linear polarizer 58 in the linearly polarized light R67.
  • the linearly polarized light having different transmission axes is such that all light rays reaching the user observation side 30 are linearly polarized light in the same direction as the transmission axis of the second linear polarizer 58.
  • the first reflective transmissive optical film may be a reflective polarizer or a metal grating polarizer. Both reflective polarizers and metal grating polarizers can transmit polarized light in one polarization direction and reflect polarized light in other polarization directions.
  • the second reflective transmissive optical film may also be a reflective polarizer or a metal grating polarizer.
  • the virtual reality display device provided in the second embodiment includes three optical lenses. Compared with the structure in which the optical system is two optical lenses in the first embodiment, it has the advantages of eliminating image aberrations and improving image imaging quality.
  • the lens system may also include two or more optical lenses, and the number of lenses used may improve image quality.
  • the OLED display panel is a silicon-based OLED display panel.
  • the silicon-based OLED display panel is made of a single crystal silicon chip with a CMOS driving circuit. It can provide high resolution, high refresh frequency, and small size. It is especially suitable for use in virtual reality display devices.
  • the virtual reality display device provided by the present invention, by providing a first reflective transmissive optical film and a first quarter-wave plate between the first linear polarizer and the OLED display device, the original linear polarized light cannot be passed through.
  • the light of the sheet is converted into light that can pass through the first linear polarizer, which can improve the optical utilization rate and the display brightness of the virtual reality display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)

Abstract

一种虚拟现实显示装置,包括OLED显示面板(10)和光学系统(20),光学系统(20)设置于OLED显示面板(10)和用户观察侧(30)之间;光学系统(20)包括设置在OLED显示面板(10)和用户观察侧(30)之间第一线性偏光片(21),设置在第一线性偏光片(21)和OLED显示面板(10)之间的第一反射透射式光学膜片(22),设置于第一反射透射式光学膜片(22)和OLED显示面板(10)之间的第一1/4波片(23)。通过设置第一反射透射式光学膜片(22)和第一1/4波片(23),将原本不能通过第一线性偏光片(21)的线性偏振光转化为可以通过第一线性偏光片(21)的线性偏振光,进入后续光学系统(20),提高了虚拟现实显示装置的光学利用率,也提高了虚拟现实显示装置的显示亮度。

Description

一种虚拟现实显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种虚拟现实显示装置。
背景技术
VR(Virtual Reality,虚拟现实)显示是由美国VPL公司创建人Jaron Lanier在20世纪80年代提出的,综合了计算机图形技术,计算机仿真技术、传感器技术、显示技术等多种科学技术,它在多维信息空间上创建一个虚拟信息环境,能使用户具有身临其境的沉浸感,具有与环境完善的交互作用能力,并有助于启发构思。
现有技术中的虚拟现实显示装置,一般包括计算机处理系统、图像处理系统、显示面板、光学系统。其中,计算机处理系统通过外部传感器对人物行为及外界环境进行捕捉,然后根据相应场景做出处理,再由图像处理系统进行渲染处理,然后输出到显示面板,显示面板的像经光学系统,成一个放大的虚像,被眼睛接收,光学系统主要用于将显示面板产生的近处影像通过拉到远处放大,近乎充满人的视野范围,从而产生沉浸感。现有的光学系统主要由各种光学透镜及光学膜片组成,光学透镜和光学膜片对显示面板射出的光线会有一定的选择透过作用,这样就造成了亮度的损失,整个虚拟现实显示装置的光效率低,显示的画面较暗。如图1所示,为公开号为US20180039052A1的专利申请所提供的虚拟现实显示装置的示意图。在图1所示结构中,显示装置14发出的光线R1,透过第一线性偏光片16就用有一部分和光线损失,这部分光线因为振动方向和第一线性偏光片16的透过轴垂直,从而将吸收,不能进入后续的光学系统,造成光学利用率低。
发明内容
本发明提供一种虚拟现实显示装置,包括OLED显示面板和光学系统,所述光学系统设置于所述OLED显示面板和用户观察侧之间;所述光学系统包括设置在所述OLED显示面板和所述用户观察侧之间第一线性偏光片,设置在所述 第一线性偏光片和所述OLED显示面板之间的第一反射透射式光学膜片,设置于所述第一反射透射式光学膜片和所述OLED显示面板之间的第一1/4波片。
可选地,所述光学系统还包括一个平凸透镜和一个平凹透镜,所述平凸透镜靠近所述第一线性偏光片一侧,所述平凹透镜靠近所述用户观察侧。
可选地,所述第一线性偏光片和所述平凸透镜之间设置有第二1/4波片。
可选地,所述平凸透镜和所述平凹透镜之间设置有第三1/4波片、第二反射透射式光学膜片。
可选地,所述平凸透镜靠近所述第二1/4波片一侧设置有半透半反膜层。
可选地,所述平凹透镜和所述用户观察侧之间设置有第二线性偏振片。
可选地,所述透镜系统包括一个平凸透镜、一个双凸透镜和一个平凹透镜,所述平凸透镜靠近所述第一线性偏光片一侧,所述平凹透镜靠近所述用户观察侧,所述双凸透镜位于所述平凸透镜和所述平凹透镜之间。
可选地,所述平凸透镜和所述第一线性偏光片之间设置有第二1/4波片。
可选地,所述平凹透镜和所述用户观察侧之间设置有第三1/4波片、第二反射透射式光学膜片。
可选地,所述第二反射透射式光学膜片和所述用户观察侧之间设置有第二线性偏振片。
可选地,还包括一半透半反膜层,所述半透半反膜层设置在所述平凸透镜的靠近所述第二1/4波片一侧。
可选地,所述OLED显示面板发射的自然光中,P型偏振光透过所述第一反射透射式光学膜片,S型偏振光被所述第一反射透射式光学膜片反射穿过所述第一1/4波片,并所述OLED显示面板反射,变为P型偏振光。
可选地,所述OLED显示面板为硅基OLED显示面板。
可选地,所述第一反射透射式光学膜片为反射式偏光片;或者,所述第一反射透射式光学膜片为金属光栅偏振器。
本发明还一种虚拟现实显示装置,包括OLED显示面板和光学系统,所述光学系统设置于所述OLED显示面板和用户观察侧之间,所述光学系统包括设置在所述OLED显示面板和所述用户观察侧之间依次设置的第一1/4波片、第一反射透射式光学膜片、第一线性偏光片、第二1/4波片、平凸透镜、第三1/4波片、第二反射透射式光学膜片、平凹透镜、第二线性偏光片,所述平凸透镜 靠近所述第二1/4波片一侧设置有半透半反膜层。
可选地,所述OLED显示面板发射的自然光中,P型偏振光透过所述第一反射透射式光学膜片,S型偏振光被所述第一反射透射式光学膜片反射穿过所述第一1/4波片,并经所述OLED显示面板反射,变为P型偏振光。
本发明还提供一种虚拟现实显示装置,包括OLED显示面板和光学系统,所述光学系统设置于所述OLED显示面板和用户观察侧之间,所述光学系统包括设置在所述OLED显示面板和所述用户观察侧之间依次设置的第一1/4波片、第一反射透射式光学膜片、第一线性偏光片、第二1/4波片、平凸透镜、双凸透镜位、平凹透镜、第三1/4波片、第二反射透射式光学膜片、第二线性偏光片,所述双凸透镜靠近所述平凸透镜一侧设置有半透半反膜层。
可选地,所述OLED显示面板发射的自然光中,P型偏振光透过所述第一反射透射式光学膜片,S型偏振光被所述第一反射透射式光学膜片反射穿过所述第一1/4波片,并经所述OLED显示面板反射,变为P型偏振光。
在本发明中,通过设置第一反射透射式光学膜片和第一1/4波片,将原本不能通过第一线性偏光片的线性偏振光转化为可以通过第一线性偏光片的线性偏振光,进入后续光学系统,提高了虚拟现实显示装置的光学利用率,也提高了虚拟现实显示装置的显示亮度。
附图说明
图1为现有技术所提供的虚拟现实显示装置的示意图
图2为本发明实施例一提供的虚拟现实显示装置的示意图;
图3为图2所示实施例中从OLED显示面板至第一线性偏光片之间的光路图;
图4为图2所示实施例提供的虚拟现实显示装置的光路图;
图5为实施例一又一实施方式中虚拟现实显示装置透镜系统的示意图;
图6为实施例一再一实施方式中虚拟现实显示装置中透镜系统的示意图;
图7为本发明实施例二提供的虚拟现实显示装置的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方 式使得本发明将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本发明的各方面。
附图中所示的图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并、部分合并或调整执行步骤,因此实际执行的顺序有可能根据实际情况改变。
实施例一
图2为本发明实施例一提供的虚拟现实显示装置的示意图,如图所示,虚拟现实显示装置,包括OLED(有机发光二极管,Organic Light-EmittingDiode)显示面板10和光学系统20,光学系统20设置于OLED显示面板10和用户观察侧30之间。OLED显示面板10用于产生图像,OLED显示面板10发出的光不同于液晶显示装置发出的光线,液晶显示装置发出的光为偏振光,而OLED显示面板发出的光线接近于自然光。光学系统20用于将OLED显示面板10产生的近处影像拉到远处放大,近乎充满人的视野范围,从而产生沉浸感。该光学系统20为偏振折反光学系统,需要先对OLED显示面板10产生的自然光进行偏振,然后再进行后续处理。光学系统20包括设置在OLED显示面板10和用户观察侧30之间第一线性偏光片21,设置在第一线性偏光片21和用户观察侧30之间的透镜系统,设置在第一线性偏光片21和OLED显示面板10之间的第一反射透射式光学膜片22、设置于第一反射透射式光学膜片22和OLED显示面板之间10的第一1/4波片23。
请参考图3,为从OLED显示面板至第一线性偏光片之间的光路图。从OLED显示面板10发出的光线R1为自然光,光线R1经过第一1/4波片23和第一反射透射式光学膜片22。第一反射透射式光学膜片22的作用是透过一个振动方向的偏振 光,反射正交振动方向的偏振光。第一1/4波片23的作用是将透过其的线性偏振光转为圆偏振光,或者将透过其的圆偏振光转为线性偏振光,第一1/4波片23的光轴方向可以和X轴呈45度夹角。在实施例一中,发射到第一反射透射式光学膜片22上的光线中,P型偏振光R2可透过,S型偏振光R3被第一反射透射式光学膜片22反射。P型偏振光R2接着向第一线性偏光片21方向传播,第一线性偏光片21为可以让P型偏振光透过的线性偏光片,第一线性偏光片21的光透过轴可以和X轴平行。因此光线R1中P型偏振光R2透过第一反射透射式光学膜片22后,再透过第一线性偏光片21接着进入透镜系统,最终到达用户观察侧30,产生虚拟现实的沉浸感。
光线R1中S型偏振光R3被第一反射透射式光学膜片22反射后,穿过第一1/4波片23,转化为左旋偏振光R4,左旋偏振光R4被OLED显示面板10反射变为右旋偏振光R5,右旋偏振光R5经过第一1/4波片23后变为P型偏振光R6。P型偏振光R6就可以穿过第一反射透射式光学膜片22和第一线性偏光片21,接着进入透镜系统,最终到达用户观察侧30,产生虚拟现实的沉浸感。如果没有设置第一反射透射式光学膜片22和第一1/4波片23,光线R1中只有P型偏振光R2可以透过第一线性偏光片21,S型偏振光R3不能进入后续光学系统,造成光学损失,虚拟现实显示装置的显示亮度低。在本发明中,通过设置第一反射透射式光学膜片22和第一1/4波片23,将S型偏振光R3转换为P型偏振光R6,进入后续光学系统,提高了虚拟现实显示装置的光学利用率,也提高了虚拟现实显示装置的显示亮度。在其他实施方式中,也可以设置第一反射透射式光学膜片为透过S型偏振光、反射P型偏振光的反射式偏光片,同时设置第一线性偏光片为透过S型偏振光的线性偏光片,被反射的P型偏振光,经过第一1/4波片被OLED显示面板反射后,再经过第一1/4波片被转化为S型偏振光,可以被光学系统所利用,提高虚拟现实显示装置的显示亮度。
请接着参考图2,优选地,本发明实施例一提供的虚拟现实显示装置中,光学系统包括一个平凸透镜241和一个平凹透镜242,平凸透镜241靠近第一线性偏光片21一侧,平凹透镜242靠近用户观察侧30一侧。在第一线性偏光片21和平凸透镜241之间设置有第二1/4波片25。在平凸透镜241和平凹透镜242之间设置有第三1/4波片26、第二反射透射式光学膜片27。在平凸透镜241靠近第二1/4波片25一侧镀有半透半反膜层29。
请参考图4,为本发明实施例一提供的虚拟现实显示装置的光路图。如图所示,光线R2穿过第一线性偏光片21后仍为线性偏振光,接着穿过第二1/4波片25后变为圆形偏振光R21,圆形偏振光R21通过平凸透镜241、第三1/4波片26后变为线性偏振光R22,并且仍为P型偏振光。第二反射透射式光学膜片27设置为透过S型偏振光、反射P型偏振光的反射式偏光片,因此P型偏振光R22不能透过第二反射透射式光学膜片27而被反射折回第三1/4波片26。P型偏振光R22透过第三1/4波片26转变为圆形偏振光R23,并且圆形偏振光R23为左旋偏振光。因为在平凸透镜241靠近第二1/4波片25一侧镀有半透半反膜层29,左旋偏振光R23部分被反射形成右旋偏振光R24,右旋偏振光R24透过第三1/4波片26后变为线性偏振光R25,并且线性偏振光R25为S型偏振光,可以透过第二反射透射式光学膜片27。线性偏振光R25透过第二反射透射式光学膜片27后接着透过平凹透镜242,进而到达用户观察侧30。
可选地,在用户观察侧30和平凹透镜242之间还设置有第二线性偏光片28,第二线性偏光片28可以滤除线性偏振光R25中少量偏振方向和第二线性偏光片28透过轴不同的线性偏振光,使到达用户观察侧30的光线全部为和第二线性偏光片28透过轴相同方向的线性偏振光,提高显示效果。
同样,光线R6穿过第一线性偏光片21后仍为线性偏振光,接着穿过第二1/4波片25后变为圆形偏振光R61,圆形偏振光R61通过平凸透镜241、第三1/4波片26后变为线性偏振光R62,并且仍为P型偏振光。第二反射透射式光学膜片27设置为透过S型偏振光、反射P型偏振光的反射式偏光片,因此P型偏振光R62不能透过第二反射透射式光学膜片27而被反射折回第三1/4波片26。P型偏振光R62透过第三1/4波片26转变为圆形偏振光R63,并且圆形偏振光R63为左旋偏振光。因为在平凸透镜241靠近第二1/4波片25一侧镀有半透半反膜层29,左旋偏振光R63部分被反射形成右旋偏振光R64,右旋偏振光R64透过第三1/4波片26后变为线性偏振光R65,并且线性偏振光R65为S型偏振光,可以透过第二反射透射式光学膜片27。线性偏振光R65透过第二反射透射式光学膜片27后接着透过平凹透镜242,然后透过第二线性偏光片28,第二线性偏光片28可以滤除线性偏振光R65中少量偏振方向第二线性偏光片28透过轴不同的线性偏振光。这样,原本因不能透过第一线性偏光片的光线R3,通过设置在第一线性偏光片于OLED显示装置之间的第一反射透射式光学膜片和第一 1/4波片转换为能通过第一线性偏光片的光线R6,进而进入后续光线系统被利用,提高了整个虚拟现实显示装置的光学利用率及亮度。
图2所示的整个虚拟现实显示装置的具体光学系统20只是本发明提供的一种实现方式,只要在光学系统中的第一线性偏光片和OLED显示面板之间设置第一反射透射式光学膜片和第一1/4波片,就可以提高光学利用率,而从第一线性偏光片往后的光学系统可以设置为任何光学系统。
请参考图5,为本发明实施例一又一实施方式提供的虚拟现实显示装置中光学系统的示意图,如图所示,和图2所示结构中,平凸透镜241、第三1/4波片26、第二反射透射式光学膜片27、平凹透镜242之间都设置有空气层不同,在图5所示结构中,平凸透镜2411、第三1/4波片261、第二反射透射式光学膜片271、平凹透镜2421都相互紧密贴合设置,这样可以防止光线在空气层传播造成损失。图6为实施例一再一实施方式提供的虚拟现实显示装置中光学系统的示意图,如图所示,平凸透镜2412、平凹透镜2422都形成有对应的曲面结构,两者之间的第三1/4波片262、第二反射透射式光学膜片272也呈弯曲状组装在平凸透镜2412、平凹透镜2422之间,图6所示结构可以消除空气层,减小光学系统的厚度,还可以减小光线在光线系统中传播形成的损失,并且通过设置平凸透镜、平凹透镜有对应的曲面结构,减小光线系统的尺寸,提供更为小型化的提高虚拟现实显示装置。
可选地,第一反射透射式光学膜片可以是反射式偏光片,也可以为金属光栅偏振器。反射式偏光片和金属光栅偏振器都可以透过一个偏振方向的偏振光,反射其他偏振方向的偏振光。同样的,第二反射透射式光学膜片也可以为反射式偏光片或金属光栅偏振器。
实施例二
图7为本发明实施例二提供的虚拟现实显示装置的示意图,如图所示,虚拟现实显示装置包括OLED显示面板40和光学系统50,光学系统50设置于OLED显示面板40和用户观察侧30之间。OLED显示面板40用于产生图像,OLED显示面板40发出的光线接近于自然光。光学系统50用于将OLED显示面板40产生的近处影像拉到远处放大,近乎充满人的视野范围,从而产生沉浸感。该光学系统50为偏振折反光学系统,需要先对OLED显示面板40产生的 自然光进行偏振,然后再进行后续处理。光学系统50包括设置在OLED显示面板40和用户观察侧30之间第一线性偏光片51,设置在第一线性偏光片51和用户观察侧30之间的透镜系统,设置在第一线性偏光片51和OLED显示面板40之间的第一反射透射式光学膜片52、设置于第一反射透射式光学膜片52和OLED显示面板之间40的第一1/4波片53。
参考图7所示的,OLED显示面板40发射的光线的光路图,和实施例一相同,实施例二提供的虚拟现实显示装置可以将OLED显示面板40发出光线中偏振方向和第一线性偏光片51的轴方向不同的光线进行转化后进行利用。从OLED显示面板40发出的光线R1为自然光,光线R1经过第一1/4波片53和第一反射透射式光学膜片52。第一反射透射式光学膜片52的作用是透过一个振动方向的偏振光,反射正交振动方向的偏振光。第一1/4波片53的作用是将透过其的线性偏振光转为圆偏振光,或者将透过其的圆偏振光转为线性偏振光,第一1/4波片53的光轴方向可以和X轴呈45度夹角。在实施例二中,发射到第一反射透射式光学膜片52上的光线中,P型偏振光R2可透过,S型偏振光R3被第一反射透射式光学膜片52反射。S型偏振光R3被第一反射透射式光学膜片52反射后,穿过第一1/4波片53,转化为左旋偏振光R4,左旋偏振光R4被OLED显示面板40反射变为右旋偏振光R5,右旋偏振光R5经过第一1/4波片53后变为P型偏振光R6。P型偏振光R6就可以穿过第一反射透射式光学膜片52和第一线性偏光片51,接着进入透镜系统,最终到达用户观察侧30,产生虚拟现实的沉浸感。
请接着参考图7,进一步地,本发明实施例二提供的虚拟现实显示装置中,透镜系统包括一个平凸透镜541、一个双凸透镜543和一个平凹透镜542,平凸透镜541靠近第一线性偏光片51一侧,平凹透镜542靠近用户观察侧30,双凸透镜543位于平凸透镜541和平凹透镜542之间。在第一线性偏光片51和平凸透镜23之间设置有第二1/4波片55。在平凸透镜542和用户观察侧30之间设置有第三1/4波片56、第二反射透射式光学膜片57。在平凸透镜541靠近第二1/4波片55一侧镀有半透半反膜层59。
如图所示,P型偏振光R2穿过第一线性偏光片51后仍为P型偏振光,接着穿过第二1/4波片55后变为圆形偏振光R21,圆形偏振光R21通过平凸透镜541、双凸透镜543、平凹透镜542之后仍为圆形偏振光R21。圆形偏振光R21穿过第三1/4波 片56后变为线性偏振光R22,因为P型偏振光R2连续穿过两个1/4波片,因此转化为S型偏振光。第二反射透射式光学膜片57设置为透过P型偏振光、反射S型偏振光,因此S型偏振光R22不能透过第二反射透射式光学膜片57而被反射折回。反射光R23穿过第三1/4波片56,S型偏振光R22透过第三1/4波片56被转变为圆形偏振光R24,并且圆形偏振光R24为左旋偏振光。左旋偏振光R24穿过平凹透镜542并向双凸透镜543方向发射,因为在双凸透镜543面向凹透镜541一侧镀有半透半反膜层59,左旋偏振光R24部分被反射形成右旋偏振光R25,右旋偏振光R25透过第三1/4波片56后变为线性偏振光R26,并且线性偏振光R25为P型偏振光,可以透过第二反射透射式光学膜片57形成光线R27,从而到达用户观察侧30。
可选地,在用户观察侧30和第二反射透射式光学膜片57之间还设置有第二线性偏光片58,第二线性偏光片58可以滤除线性偏振光R27中少量偏振方向和第二线性偏光片58透过轴不同的线性偏振光,使到达用户观察侧30的光线全部为和第二线性偏光片58透过轴相同方向的线性偏振光,提高显示效果。
同样,光线R6穿过第一线性偏光片21后仍为线性偏振光,接着穿过第二1/4波片55后变为圆形偏振光R61,圆形偏振光R61通过平凸透镜541、双凸透镜543、平凹透镜542之后仍为圆形偏振光R61。圆形偏振光R61穿过第三1/4波片56后变为线性偏振光R62,因为P型偏振光R6连续穿过两个1/4波片,因此转化为S型偏振光,因此S型偏振光R62不能透过第二反射透射式光学膜片57而被反射折回。反射光R63穿过第三1/4波片56,S型偏振光R62透过第三1/4波片56转变为圆形偏振光R64,并且圆形偏振光R64为左旋偏振光。左旋偏振光R64穿过平凹透镜542并向双凸透镜543方向发射,因为在双凸透镜543面向凹透镜541一侧镀有半透半反膜层59,左旋偏振光R64部分被反射形成右旋偏振光R65,右旋偏振光R65透过第三1/4波片56后变为线性偏振光R66,并且线性偏振光R66为P型偏振光,可以透过第二反射透射式光学膜片57形成光线R67,从而到达用户观察侧30。这样,原本因不能透过第一线性偏光片的光线R3,通过设置在第一线性偏光片于OLED显示装置之间的第一反射透射式光学膜片和第一1/4波片转换为能通过第一线性偏光片的光线R6,进而进入后续光线系统被利用,提高了整个虚拟现实显示装置的光学利用率及亮度。
线性偏振光R66透过第二反射透射式光学膜片57后接着透过第二线性偏光片58,第二线性偏光片58可以滤除线性偏振光R67中少量偏振方向和第二线性偏 光片58透过轴不同的线性偏振光,使到达用户观察侧30的光线全部为和第二线性偏光片58透过轴相同方向的线性偏振光。
可选地,第一反射透射式光学膜片可以是反射式偏光片,也可以为金属光栅偏振器。反射式偏光片和金属光栅偏振器都可以透过一个偏振方向的偏振光,反射其他偏振方向的偏振光。同样的,第二反射透射式光学膜片也可以为反射式偏光片或金属光栅偏振器。
在实施例二提供的虚拟现实显示装置包括三个光学透镜,相比于实施例一中光学系统为两个光学透镜的结构,具有消除图像的像差、提高图像成像质量的优点。可选地,透镜系统还可以为包括二个或三个以上的光学透镜,使用的透镜数量可以提高图像质量。
可选地,本发明提供的虚拟现实显示装置中,OLED显示面板为硅基OLED显示面板。硅基OLED显示面板是制作有CMOS驱动电路的单晶硅芯片为基底的,可提供高分辨率、高刷新频率,并且具有尺寸小的特点,特别适合在虚拟现实显示装置使用。
本发明提供的虚拟现实显示装置,通过设置在第一线性偏光片和OLED显示装置之间设置第一反射透射式光学膜片和第一1/4波片,可以将原本不能通过第一线性偏光片的光线进行转化为能通过第一线性偏光片的光线,可以提高光学利用率,提高虚拟现实显示装置的显示亮度。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种虚拟现实显示装置,其特征在于,包括OLED显示面板和光学系统,所述光学系统设置于所述OLED显示面板和用户观察侧之间;
    所述光学系统包括设置在所述OLED显示面板和所述用户观察侧之间第一线性偏光片,设置在所述第一线性偏光片和所述OLED显示面板之间的第一反射透射式光学膜片,设置于所述第一反射透射式光学膜片和所述OLED显示面板之间的第一1/4波片。
  2. 如权利要求1所述的虚拟现实显示装置,其特征在于,所述光学系统还包括一个平凸透镜和一个平凹透镜,所述平凸透镜靠近所述第一线性偏光片一侧,所述平凹透镜靠近所述用户观察侧。
  3. 如权利要求2所述的虚拟现实显示装置,其特征在于,所述第一线性偏光片和所述平凸透镜之间设置有第二1/4波片。
  4. 如权利要求3所述的虚拟现实显示装置,其特征在于,所述平凸透镜和所述平凹透镜之间设置有第三1/4波片、第二反射透射式光学膜片。
  5. 如权利要求4所述的虚拟现实显示装置,其特征在于,所述平凸透镜靠近所述第二1/4波片一侧设置有半透半反膜层。
  6. 如权利要求2所述的虚拟现实显示装置,其特征在于,所述平凹透镜和所述用户观察侧之间设置有第二线性偏振片。
  7. 如权利要求1所述的虚拟现实显示装置,其特征在于,所述透镜系统包括一个平凸透镜、一个双凸透镜和一个平凹透镜,所述平凸透镜靠近所述第一线性偏光片一侧,所述平凹透镜靠近所述用户观察侧,所述双凸透镜位于所述平凸透镜和所述平凹透镜之间。
  8. 如权利要求7所述的虚拟现实显示装置,其特征在于,所述平凸透镜和所述第一线性偏光片之间设置有第二1/4波片。
  9. 如权利要求8所述的虚拟现实显示装置,其特征在于,所述平凹透镜和所述用户观察侧之间设置有第三1/4波片、第二反射透射式光学膜片。
  10. 如权利要求9所述的虚拟现实显示装置,其特征在于,所述第二反射透射式光学膜片和所述用户观察侧之间设置有第二线性偏振片。
  11. 如权利要求9所述的虚拟现实显示装置,其特征在于,还包括一半透半反膜层,所述半透半反膜层设置在所述平凸透镜的靠近所述第二1/4波片一侧。
  12. 如权利要求1所述的虚拟现实显示装置,其特征在于,所述OLED显示面板发射的自然光中,P型偏振光透过所述第一反射透射式光学膜片,S型偏振光被所述第一反射透射式光学膜片反射穿过所述第一1/4波片,并所述OLED显示面板反射,变为P型偏振光。
  13. 如权利要求1所述的虚拟现实显示装置,其特征在于,所述OLED显示面板为硅基OLED显示面板。
  14. 如权利要求1所述的虚拟现实显示装置,其特征在于,所述第一反射透射式光学膜片为反射式偏光片;或者,所述第一反射透射式光学膜片为金属光栅偏振器。
  15. 一种虚拟现实显示装置,其特征在于,包括OLED显示面板和光学系统,所述光学系统设置于所述OLED显示面板和用户观察侧之间,所述光学系统包括设置在所述OLED显示面板和所述用户观察侧之间依次设置的第一1/4波片、第一反射透射式光学膜片、第一线性偏光片、第二1/4波片、平凸透镜、第三1/4波片、第二反射透射式光学膜片、平凹透镜、第二线性偏光片,所述平凸透镜靠近所述第二1/4波片一侧设置有半透半反膜层。
  16. 如权利要求15所述的虚拟现实显示装置,其特征在于,所述OLED显示面板发射的自然光中,P型偏振光透过所述第一反射透射式光学膜片,S型偏振光被所述第一反射透射式光学膜片反射穿过所述第一1/4波片,并经所述OLED显示面板反射,变为P型偏振光。
  17. 一种虚拟现实显示装置,其特征在于,包括OLED显示面板和光学系统,所述光学系统设置于所述OLED显示面板和用户观察侧之间,所述光学系统包括设置在所述OLED显示面板和所述用户观察侧之间依次设置的第一1/4波片、第一反射透射式光学膜片、第一线性偏光片、第二1/4波片、平凸透镜、双凸透镜位、平凹透镜、第三1/4波片、第二反射透射式光学膜片、第二线性偏光片,所述双凸透镜靠近所述平凸透镜一侧设置有半透半反膜层。
  18. 如权利要求17所述的虚拟现实显示装置,其特征在于,所述OLED显示面板发射的自然光中,P型偏振光透过所述第一反射透射式光学膜片,S型偏振光被所述第一反射透射式光学膜片反射穿过所述第一1/4波片,并经所述OLED显示面板反射,变为P型偏振光。
PCT/CN2018/096548 2018-07-16 2018-07-21 一种虚拟现实显示装置 WO2020014992A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/728,222 US11022796B2 (en) 2018-07-16 2019-12-27 Virtual reality display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810774158.2 2018-07-16
CN201810774158.2A CN110161692A (zh) 2018-07-16 2018-07-16 一种虚拟现实显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,222 Continuation-In-Part US11022796B2 (en) 2018-07-16 2019-12-27 Virtual reality display device

Publications (1)

Publication Number Publication Date
WO2020014992A1 true WO2020014992A1 (zh) 2020-01-23

Family

ID=67645048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096548 WO2020014992A1 (zh) 2018-07-16 2018-07-21 一种虚拟现实显示装置

Country Status (3)

Country Link
US (1) US11022796B2 (zh)
CN (1) CN110161692A (zh)
WO (1) WO2020014992A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128824A (zh) * 2022-07-19 2022-09-30 上海摩勤智能技术有限公司 一种光学系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817164B (zh) * 2017-11-20 2020-10-27 上海视涯技术有限公司 Amoled显示面板和图像显示装置
JP7480013B2 (ja) * 2020-10-12 2024-05-09 株式会社ジャパンディスプレイ 表示装置
JP2022063533A (ja) * 2020-10-12 2022-04-22 株式会社ジャパンディスプレイ 表示装置
CN112596240B (zh) * 2020-12-21 2022-09-20 歌尔光学科技有限公司 成像光路和头戴显示设备
CN214751119U (zh) * 2021-06-28 2021-11-16 歌尔光学科技有限公司 光学模组和头戴显示设备
CN113448101A (zh) * 2021-06-28 2021-09-28 歌尔股份有限公司 光学模组和头戴显示设备
WO2023176366A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法
WO2023176368A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法
WO2023176367A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法
WO2023176357A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法
WO2023176358A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法
WO2023176365A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 レンズ部、積層体、表示体、表示体の製造方法および表示方法
WO2023176359A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 表示方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104903777A (zh) * 2012-11-21 2015-09-09 拉斯特公司 增强现实光学模块
WO2017136042A1 (en) * 2016-02-04 2017-08-10 Google Inc. Compact near-eye display optics
CN107422480A (zh) * 2017-08-03 2017-12-01 深圳市汇龙天成科技有限公司 一种半透半反曲面透镜显示结构及显示方法
US20180039052A1 (en) * 2016-08-02 2018-02-08 Apple Inc. Optical System for Head-Mounted Display
CN108020920A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置
CN108227209A (zh) * 2017-09-30 2018-06-29 北京蚁视科技有限公司 一种近眼双通道光学系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411953B2 (ja) * 1996-04-24 2003-06-03 シャープ株式会社 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
US20020167645A1 (en) * 2001-05-10 2002-11-14 Johnson Bruce K. System and method for selectively viewing or printing images from a reflective device using an arrangement of polarizers and a polarizing beam splitter
US6779893B2 (en) * 2003-01-24 2004-08-24 Intel Corporation Non-collinear light engine for color imaging systems
KR101106294B1 (ko) * 2008-05-22 2012-01-18 주식회사 엘지화학 유기발광소자용 휘도 향상 편광판
TWI397720B (zh) * 2009-03-17 2013-06-01 Ind Tech Res Inst 立體顯示裝置
JP2011003666A (ja) * 2009-06-17 2011-01-06 Sony Corp 照射装置および半導体素子の製造方法
JP5732348B2 (ja) * 2011-08-12 2015-06-10 株式会社ジャパンディスプレイ 表示装置
US9407906B2 (en) * 2012-06-01 2016-08-02 Koninklijke Philips N.V. Autostereoscopic display device and driving method
TWI534475B (zh) * 2012-12-21 2016-05-21 財團法人工業技術研究院 虛像顯示裝置
CN204496107U (zh) * 2015-04-09 2015-07-22 苏文渊 一种头戴式图像比例修正显示设备
CN107004130B (zh) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
US10445860B2 (en) * 2015-12-08 2019-10-15 Facebook Technologies, Llc Autofocus virtual reality headset
CN105629472A (zh) * 2016-01-28 2016-06-01 深圳多哚新技术有限责任公司 短距离光学放大模组、放大方法及放大系统
CN205485071U (zh) * 2016-03-02 2016-08-17 彭昌兰 一种可浮空的虚拟现实眼镜
CN205862012U (zh) * 2016-07-21 2017-01-04 深圳市维尚境界显示技术有限公司 便携式折叠vr眼镜
US20180313981A1 (en) * 2017-04-28 2018-11-01 Corning Incorporated Virtual and augmented reality devices with structured surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104903777A (zh) * 2012-11-21 2015-09-09 拉斯特公司 增强现实光学模块
WO2017136042A1 (en) * 2016-02-04 2017-08-10 Google Inc. Compact near-eye display optics
US20180039052A1 (en) * 2016-08-02 2018-02-08 Apple Inc. Optical System for Head-Mounted Display
CN108020920A (zh) * 2016-10-31 2018-05-11 株式会社日本显示器 显示装置
CN107422480A (zh) * 2017-08-03 2017-12-01 深圳市汇龙天成科技有限公司 一种半透半反曲面透镜显示结构及显示方法
CN108227209A (zh) * 2017-09-30 2018-06-29 北京蚁视科技有限公司 一种近眼双通道光学系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128824A (zh) * 2022-07-19 2022-09-30 上海摩勤智能技术有限公司 一种光学系统

Also Published As

Publication number Publication date
US20200132994A1 (en) 2020-04-30
US11022796B2 (en) 2021-06-01
CN110161692A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020014992A1 (zh) 一种虚拟现实显示装置
WO2020248329A1 (zh) 一种虚拟现实显示设备
JP7418706B2 (ja) 拡張現実装置及びそのための光学システム
JP6687805B2 (ja) ヘッドマウントディスプレイ用光学システム
TWI668471B (zh) 頭戴顯示器及其光學裝置
US20220252885A1 (en) Optical display system, control method and display device
JP2022009123A (ja) 基材導波光学装置
WO2017128183A1 (zh) 短距离光学放大模组、放大方法及放大系统
WO2020042576A1 (zh) 一种光学成像系统
US8000020B2 (en) Substrate-guided imaging lens
CA3051016C (en) Method and system for display device with integrated polarizer
CN110268301B (zh) 用于头戴式显示器的光学系统
US11415811B2 (en) Optical device
CN110646942A (zh) 一种超薄光学放大模组及其应用
CN108572457A (zh) 一种光学显示系统
TWM576260U (zh) 頭戴顯示器及其光學裝置
US11493800B2 (en) Display panel with backreflection suppression comprising first and second birefringent layers and a reflectivity layer
CN111025638A (zh) 一种ar光学显示模组及增强现实设备
CN110927970B (zh) 一种ar光学显示模组及增强现实显示设备
CN214586228U (zh) 增强现实光学装置
TWI811824B (zh) 短焦光學模組
CN215116991U (zh) 一种增强现实显示系统及增强现实显示设备
CN214669868U (zh) 光学显示系统及头戴式显示设备
CN218122369U (zh) 光学显示模组及近眼显示设备
CN220232114U (zh) 一种光路多次折叠的光学显示系统及头戴显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927087

Country of ref document: EP

Kind code of ref document: A1