WO2020013547A2 - Device for simultaneously producing water vapor and electricity - Google Patents

Device for simultaneously producing water vapor and electricity Download PDF

Info

Publication number
WO2020013547A2
WO2020013547A2 PCT/KR2019/008362 KR2019008362W WO2020013547A2 WO 2020013547 A2 WO2020013547 A2 WO 2020013547A2 KR 2019008362 W KR2019008362 W KR 2019008362W WO 2020013547 A2 WO2020013547 A2 WO 2020013547A2
Authority
WO
WIPO (PCT)
Prior art keywords
electricity
water
water vapor
carbon
electrode
Prior art date
Application number
PCT/KR2019/008362
Other languages
French (fr)
Korean (ko)
Other versions
WO2020013547A3 (en
Inventor
최호석
Original Assignee
충남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190076703A external-priority patent/KR102154656B1/en
Application filed by 충남대학교 산학협력단 filed Critical 충남대학교 산학협력단
Priority to AU2019302814A priority Critical patent/AU2019302814B2/en
Publication of WO2020013547A2 publication Critical patent/WO2020013547A2/en
Publication of WO2020013547A3 publication Critical patent/WO2020013547A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention is capable of simultaneous production of steam and electricity without merging separate devices, and relates to a device for simultaneously producing steam and electricity having a simple structure with excellent electricity production efficiency.
  • renewable energy As traditional fossil energy is depleted and interest in environmental issues is raised, pollution-free renewable energy, which acquires energy that is transformed or extinguished in its natural state and converts it into usable energy, has been proposed as an effective solution to the energy crisis.
  • Renewable energy sources include wind, sun, geothermal and water.
  • Solar energy has received the most attention because of its universal, clean, environmentally friendly, and sustainable characteristics, and has been widely used in the production of hydrogen, power generation, photocatalysts, water purification, and desalination.
  • the annual solar energy reaching the Earth's surface is about 2.85 million EJ, which is a vast energy source that is about 10,000 times the world's annual energy consumption. Nevertheless, the use of solar energy is still very limited.
  • Water is a promising and attractive source of energy that is present in a wide and abundant way in our bodies as well as in rivers, lakes, and the sea.
  • large and complex devices such as dams and aberrations have been commonly used to harvest enormous energy from running water.
  • dams and aberrations have been commonly used to harvest enormous energy from running water.
  • they are not applicable to biomedical devices that require personal use, miniaturization, or implantability. Therefore, the development of miniaturized, high-efficiency generators remains a challenge in the field of renewable energy using water.
  • Water evaporation is a very common and natural phenomenon of harvesting heat energy from the atmosphere. Steam production by evaporation of water has also been used in energy harvesting equipment. Traditionally, fossil fuels were used to produce a large amount of water by heating a large amount of water in a steam engine, but recently, a solar-induced steam production system that produces water vapor from sunlight using a highly efficient absorber that converts sunlight into heat. This is attracting attention.
  • a metal air battery using a metal such as iron, zinc, aluminum as a cathode, an anode as an anode, and oxygen in the air as a cathode active material is attracting attention as a high energy density battery.
  • Metal air cells use cheap metal as a negative electrode and use carbon and oxygen instead of metal oxides inside the battery, and have a much higher energy density than conventional secondary batteries, and are light in weight and have high practicality.
  • the capacity of lithium air batteries in metal air batteries is known to reach 5 to 10 times that of lithium ion batteries. However, there is a problem in that 1/3 of the charged electricity is lost due to heat, there is a risk of rising electrode temperature, and the storage period of power is not long.
  • An object of the present invention is to provide an apparatus capable of efficiently producing water vapor and electricity simultaneously in one apparatus having a simple structure even without merging two apparatuses.
  • the present invention for achieving the above object is a metal electrode as a first electrode, a carbon structure layer deposited on a porous hydrophilic polymer substrate having a hollow cone, pyramid, truncated cone or pyramidal structure as a second electrode, And a bottom surface of the hydrophilic polymer substrate in contact with water in which the first electrode is immersed and used in a suspended state.
  • the "top” of the cone and pyramid means the carbon structure layer on the outer surface
  • the “bottom” means the hydrophilic polymer substrate side
  • the "apex angle" of the cone refers to the angle between two lines that form the vertex of the cone at the vertex of the cone
  • the “vertical angle” of the cone refers to the angle between two lines forming the virtual vertex of the cone. do.
  • the "vertical angle” of the pyramid is defined as the average value of the angle between the vertices and two adjacent sides on each oblique plane
  • the “vertical angle” of the pyramid is defined as the average value of the angles between the two sides that form the virtual vertices on each oblique plane.
  • bottom of the polymeric substrate refers to the portion opposite to the (virtual) vertex of the cone (large) or pyramidal (large).
  • the device of the present invention is used in a state of being suspended in water, and is characterized by being able to simultaneously produce steam and electricity in one device without merging separate devices due to the material and structure.
  • the device of the present invention is due to the combined action of a conventional solar induction production system and a nanogenerator and a metal air cell in which electricity is generated by the movement of droplets on a carbon structure.
  • the current is mainly generated by the metal air cell in the state that light is not irradiated, and under light irradiation, the generation of water vapor is increased by the light irradiation by the absorber, thereby increasing the current generation rate of the nanogenerator.
  • the first electrode serves as the first electrode of the nanogenerator and the anode of the metal air electric.
  • the first electrode may be one metal selected from the group consisting of Fe, Zn, Al, Ni, and Mg or an alloy of two or more metals.
  • the second electrode is characterized in that the carbon structure layer formed on the porous hydrophilic polymer substrate, the nano-generator for generating a current on the surface of the carbon structure by the flow of the absorber, droplets of sunlight It serves as the anode of the second electrode and the metal air battery.
  • the porous hydrophilic polymer substrate not only functions as a support for the carbon structure but also serves to continuously provide moisture by capillary action.
  • the paper is exemplified as a hydrophilic polymer material, but any material can be used as long as the water can be moved through the porous structure.
  • the hydrophilic polymer may be a natural polymer or a synthetic polymer, selected from the group consisting of paper or cotton, cellulose resin, polyacrylonitrile, polyvinyl alcohol, polyamide, polyethersulfone, polyethylene glycol and hydrophilic polyurethane It may be made of one or more, but is not limited thereto.
  • the polymer may be in the form of crosslinking with a polymer electrolyte including an ionic liquid polymer.
  • the thickness of the said porous hydrophilic polymer base material is 1 micrometer-5 mm. If the thickness of the substrate is too thin, the stability as a support may be insufficient and the water supply amount may be limited, and if the thickness of the substrate is too thick, heat loss may occur.
  • the optimum thickness may be set in consideration of the porosity, the size of the pore, and the gap between the pores according to the material, which will be easy for those skilled in the art. The pore size, spacing between voids, and porosity can also be easily set to optimum conditions according to the material and the detailed structure.
  • the apparatus of the present invention operates as a metal air cell using a metal as a first electrode and a carbon structure layer as a second electrode to oxidize the metal at the first electrode and generate electricity by reducing oxygen in the air at the second electrode.
  • the heat generated by the operation of the metal air cell evaporates water in the carbon structure layer to produce water vapor, thereby controlling the temperature of the carbon structure layer surface to prevent overheating.
  • the carbon structure formed on the hydrophilic polymer substrate exhibits high absorbance for light of a wide range of wavelengths and has high photothermal conversion efficiency, so that water supplied by the irradiated light can be efficiently evaporated to produce water vapor.
  • the flow of water on the surface of the carbon structure generates electricity as is known in the art
  • the flow of water on the surface of the carbon structure also caused by the evaporation of water vapor, in the apparatus of the present invention further generates electricity. This interaction allows for the simultaneous production of water vapor and electricity in one device without merging a separate device for the flow of water and a separate device for the generation of electricity.
  • the carbon structure increases the light-heat conversion efficiency during light irradiation, induces electricity by introducing an electrolyte by the flow of water, and carbon black, fullerene, carbon nano which can induce a reduction reaction using oxygen as an active material.
  • One or more selected from the group consisting of tubes, graphene, carbon dots, carbon fibers and conductive carbon can be used.
  • carbon nanotubes are exemplified, but other carbon structures may also induce electricity by introducing an electrolyte by the flow of water, and thus may act as a positive electrode of a metal air battery. Applicability is natural.
  • the thickness of the carbon structure layer is 10 to 100 ⁇ m.
  • the photothermal conversion efficiency increases, so that the rate of steam generation increases, and the supply of the electrolyte is accelerated as the rate of steam generation increases. Therefore, if the thickness of the carbon structure layer is too thin, water vapor and electricity production efficiency is reduced, it is preferable that the thickness of 10 ⁇ m or more.
  • the thickness of the carbon structure layer increases, the porosity decreases, and when the thickness is 100 ⁇ m or more, it is difficult to form a uniform carbon structure layer. However, if it is possible to form a uniform layer having a porosity even if thicker than 100 ⁇ m, it is not excluded.
  • Forming the carbon structure layer on the substrate may include, for example, drop coating, screen printing, coating with a doctor blade, spraying, or vacuum depositing a dispersion of the carbon structure, Various methods such as dip coating on the dispersion can be used, and any method may be used as long as the carbon structure layer can be uniformly formed on the substrate.
  • the carbon structure layer is formed only on one side of the substrate, but for example, the carbon structure layer may be formed on both sides of the substrate by immersion coating or by vacuum deposition on both surfaces.
  • the device of the present invention is structurally in the form of a cone, pyramid, cone or pyramid.
  • the cone can also be a staff cone, including the rain cone.
  • Pyramids also include orthogonal pyramids and comb pyramids.
  • the apparatus of the present invention will be described by illustrating a conical structure for convenience of description.
  • the device of the present invention has a wider surface area than a simple absorber having a flat shape, and can absorb a large amount of light regardless of the direction, thereby increasing water vapor production efficiency.
  • the device of the present invention has a higher temperature at the top when irradiated with light than the bottom (the radius of the circle which is the horizontal cross section of the cone), so that the evaporation rate of water is higher near the vertex than the bottom, so that in addition to the capillary force, More water is generated by causing the flow of water from the bottom to the vertex, facilitating the introduction of electrolyte into the pores between the two electrodes.
  • the more the movement of water is the more efficient electricity production is. Therefore, when the second electrode is connected to the electric wire, it is more preferable to connect the vertex side of the cone or the pyramid, and the near side of the truncated cone or the pyramid to the smaller cross section.
  • the cone angle of the cone also affects the water vapor and electricity production efficiency. If the vertex angle is too large or too small, the effect of the conical structure is reduced, reducing the efficiency of water vapor and electricity production. Therefore, it is preferable that the vertex angle of a cone is 10-170 degrees.
  • the cone has the additional advantage of being able to stably float in water due to the air filled in the lower space.
  • the truncated cone has a truncated vertex of the cone, which reduces the evaporation area of water vapor compared to the cone, while vaporization of water vapor may occur on both sides of the substrate, so that water vapor and electricity can be effectively produced simultaneously.
  • Orthogonal pyramids or polygonal pyramids can be produced simultaneously with water vapor and electricity by the same principle.
  • the device of the present invention operates as a metal air cell to generate electricity, and at the same time, water moved through the porous structure of the substrate, the carbon structure layer, and the hydrophilic polymer layer acts as an electrolyte by evaporation of water absorbed in the water. Electricity is generated due to the potential difference between the carbon structure electrode and the metal wire. Due to the characteristics of the conical structure described above, it is possible to produce electricity regardless of light irradiation because it is possible to produce water and electricity even under dark conditions. Since the evaporation of water vapor is more active under light irradiation conditions and the movement of water on the surface of the carbon structure is increased compared to the dark conditions, the device of the present invention is characterized by It is expected that the contribution will increase.
  • the device of the present invention when the electrolyte is dissolved in the suspended water, it is more excellent in electricity production capacity.
  • the type of the electrolyte also affects the electrical output of the device according to the present invention, and the output was excellent as the size of the anion increased.
  • the cation output was high in the order of K + > Ca 2+ > Na + when irradiated with light and Ca 2+ > K + > Na + under dark conditions. It will be easy to set the optimal concentration according to the type of electrolyte.
  • the output power at 1 sun brightness was 505.69 mW / m 2, which was higher than that of any hybrid system of the prior art.
  • the hydrophilic porous structure of cellulose and carbon nanotubes while acting as a metal air cell, provides an ideal channel for the flow of water, and is located above the lower portion of the conical structure. Because of the high speed of steam generation at, the flow of water from the lower part of the conical structure to the upper part is induced. Therefore, it does not need to consume extra energy to induce water flow. And electricity can be produced simultaneously with excellent efficiency.
  • the device for simultaneous production of water vapor and electricity of the present invention can produce steam and electricity even in dark conditions because energy lost by heat in the conventional metal ion battery contributes to water vapor production, thus enabling operation without distinction between night and day, and producing steam. Due to this, the temperature of the electrode surface can be maintained at a constant temperature, and thus can be used more safely.
  • the water vapor and electric simultaneous production apparatus of the present invention has a simple structure without a complicated device, economical mass production, free to scale, stable to a wide range of light, does not use toxic substances, biodegradable It is excellent and can be used as an environmentally friendly alternative energy production means.
  • Figure 1 is a photograph of a device for the simultaneous production of carbon nanotubes deposited cellulose structure and conical structure vapor and electricity produced by an embodiment of the present invention.
  • Figure 2 is a SEM, TEM image and XPS, Raman and UV spectrum showing the physical and chemical properties of the cellulose structure deposited carbon nanotubes according to an embodiment of the present invention.
  • Figure 3 is a photograph and infrared photographs of the experiment for evaluating the steam production efficiency of the steam and electricity simultaneous production apparatus according to an embodiment of the present invention.
  • Figure 4 is a photograph of a cellulose structure prepared according to the thickness of the carbon nanotube layer in one embodiment of the present invention.
  • 5 and 6 are photographs and graphs showing the water vapor production efficiency of the device for simultaneous production of water vapor and electricity according to the thickness of the carbon nanotube layer.
  • 7 and 8 are graphs showing the steam production efficiency according to the vertex angle of the conical structure of the device for simultaneous production of steam and electricity.
  • 9 is an experimental photograph and a result graph for evaluating the electrical production efficiency of the steam and the apparatus for the simultaneous production of electricity according to an embodiment of the present invention.
  • Figure 10 is a photograph and graph showing the three-dimensional structural efficacy of the apparatus for simultaneous production of water vapor and electricity of the present invention.
  • 11 is a graph showing the electricity production efficiency of the device for simultaneous production of water vapor and electricity in various electrolyte solutions.
  • FIG. 12 is a graph and an experimental photograph showing the electricity production efficiency of the device for the simultaneous production of water vapor and electricity connected in series and parallel connected.
  • Multi-walled carbon nanotubes (MWCNTs, Hanwha Nanotech) were heat-treated in air at 300 ° C. for 60 minutes. Thereafter, after mixing with 37% hydrochloric acid and sonicating for 1 hour, the process of filtering and washing with distilled water until the pH of the filtrate became neutral was repeated five times. Then purified by drying for 24 hours in a 70 °C oven.
  • MWCNTs were coated on cellulose filter paper by vacuum assisted deposition using a solution of 20 mg of purified MWCNTs in 200 ml DI water and dried at 70 ° C. for 24 hours.
  • the MWCNT-coated cellulose was used to make a cone structure from a 2/3 circle to a cone angle of 60 ° and a bottom diameter of 18 mm, and the interface was bonded using epoxy resin. Electrodes were connected to the vertices of the cone through wires and floated in water, and the wires to be used as the first electrode were limited to cellulose to limit their movement to prevent contact with the carbon structure layer, which is the second electrode. Fixed to filter paper. As a result, the first electrode is in contact with water, but is insulated from the carbon structure layer.
  • Figure 1 a) and b) is a picture of the cellulose coated with MWCNT and the conical structure using the same and the apparatus for the simultaneous production of electricity.
  • Morphology and thickness of carbon nanotubes adsorbed on cellulose filter paper were measured by high resolution scanning electron microscope (HRSEM; Hitachi S-4800, Hitachi) and transmission electron microscope (TEM; JEM-2100F HR, JEOL).
  • HRSEM high resolution scanning electron microscope
  • TEM transmission electron microscope
  • the binding energy scale was calibrated to the binding energy position of Au 4f 7/2 core level at 83.98 eV.
  • Raman spectra were recorded with a 532 nm DPSS laser.
  • FIG. 2 shows the results, in which the SEM image of a) shows that a 72 ⁇ m thick MWCNT film is obtained on a cellulose fiber film. b) shows the surface image of MWCNT, suggesting that the porous structure is formed by both MWCNT cellulose papers and can act as an ideal channel for water supply.
  • X-ray photoelectron (XPS) spectra of c) show the presence of O—C ⁇ O, C ⁇ O, and C—O bonds on the surface of the MWCNT, which was also confirmed by FTIR (Thermo Scientific) (data not shown). Guo et al. Reported that charge rearrangement is caused by the adsorption of water onto graphene flakes with different functionalities through calculations using density function theory (DFT).
  • DFT density function theory
  • the MWCNT consists of loosely stacked disordered graphene flakes can be seen in the TEM image of d), which can also be seen in the Raman spectra of e).
  • the MWCNT thin film exhibits hydrophilicity, which means that water may move by capillary phenomenon along the porous structure of the MWCNT in addition to the cellulose support.
  • the interaction of water with MWCNTs in particular the flow of water induced by the evaporation of water inside the porous MWCNT film, is considered the main reason for the generation of electricity. Therefore, when the conical structure is manufactured using the structure manufactured according to the above embodiment, the water flows to the upper portion of the structure by capillary action as the water is evaporated by sunlight or by self-evaporation. It is expected to be able to generate steam and electricity at the same time without using a separate device because it can generate electricity.
  • a 50 mL container coated with polystyrene foam was placed on a scale connected to a computer and simulated with sunlight (350-1800 nm, solar simulator, Hal 320 W, ASAHI). ).
  • EPS polystyrene foam
  • the device of conical structure was placed on paper and water was placed in the cup so that both ends of the paper were submerged while the water level was below the EPS dish.
  • the top of the vessel was covered with polystyrene foam to minimize evaporation of water in the gap between the apparatus and the vessel.
  • the height above the water surface of the conical device was 16 mm, and the distance from the top of the cone to the interface between water and air was 8 mm.
  • the simulated sunlight was turned on and weighed every 10 seconds to calculate the amount of evaporation.
  • Temperature changes during evaporation were measured using a thermal imaging camera (SEEK) and K thermocouple temperature probe (Testo735).
  • Figure 3 a) is a representative optical image of the experimental apparatus for evaluating the steam production capacity
  • b) and c) is a representative infrared image of the cone structure device when irradiated with light of 1 sun intensity for 30 minutes.
  • the ambient temperature was 22 °C and the relative humidity was 40%.
  • the surface temperature of the device during self-evaporation was similar to the ambient temperature.
  • the temperature of the device increased to 34 ° C., and the temperature decreased as the top of the conical structure was the highest and lowered. Therefore, the evaporation rate of water increases as the conical structure is moved upward, thereby facilitating the movement of water from the lower part of the absorber to the upper part.
  • Example 1 100 mg of MWCNT purified in Example 1 was suspended in 1000 ml DI water, and then each solution was coated with MWCNT on a cellulose filter paper by vacuum assisted deposition using 50, 100, 200 or 300 ml, and 70 ° C. After drying for 24 hours at the same manner as in Example 1 to prepare a cone structure device for the simultaneous production of water vapor and electricity.
  • FIGS. 5 and 6 are photographs of a structure in which MWCNTs are deposited by the above method, and when a 300 ml solution is used, a uniform MWCNT layer is not formed.
  • the water vapor production capacity was evaluated by the same method as 1) using conical structures prepared using 50, 100 and 200 ml of solutions, respectively, and the results are shown in FIGS. 5 and 6.
  • f is the temperature of the top of the cone structure when the cone structure is irradiated with 1 sun luminescence in the absence of water.
  • the temperature of the equilibrium temperature is 45 ⁇ 50 °C within 3 minutes when the MWCNT layer is formed. Shows rising.
  • b) identifies the inflection point of the temperature-time graph, showing the presence of energy balance values for water heating and evaporation. It can be predicted that the thicker the MWCNT layer, the lower the inflection temperature will increase, thus increasing the evaporation efficiency of water.
  • c) and d) are graphs showing the amount of steam produced and the rate of production, showing that the amount of vapor produced or the rate of vaporization increases as the thickness of the MWCNT layer increases. As the thickness of the MWCNT layer increased from 0 to 72 ⁇ m, the evaporation rate increased from 0.439 to 1.651 kg / m 2 .h at 1 sun light irradiation.
  • 7 a) shows the temperature change when the water vapor and the device for the simultaneous production of light at 1 sun light intensity
  • the internal view shows the temperature change (left) and the inflection point (right) without water ) Is shown.
  • the angle of vertex is 60 °
  • the inflection temperature is the lowest, so it can be predicted that the steam production rate will be the highest.
  • 7 b) and 8 a) of the actual measurement results it can be seen that the water vapor production capacity of the cone structure device having a vertex angle of 60 ° is the highest, and the dark condition and 1 in the cone structure device having a vertex angle of 60 °.
  • the evaporation rates during sun light irradiation were 0.618 and 1.651 kg / m 2 .h, respectively.
  • FIG. 8B shows the evaporation rates according to the thickness of the MWCNT layer and the vertex angle of the cone structure during light irradiation.
  • the internal figure shows the evaporation rate at the time of self evaporation.
  • the cone structure device prepared in Example 1 was floated in a Petri dish containing DI water. After connecting the electrodes to the bottom and top wires, current and voltage signals were collected and recorded on the potentiometer (IVIUMSTAT) through the J-t curve (interval: 10 seconds) and V-t curve (interval: 10 seconds), respectively.
  • IVIUMSTAT potentiometer
  • 9 a) is a schematic diagram of the present experiment
  • b) is an actual experimental photograph
  • 9 c is an output curve calculated from an I-V curve and an I-V curve at light conditions of 1 sun light and dark conditions measured by the experiment of b).
  • the output power at 1 sun light intensity of the device of Example 1 was 13.18 mW / m 2, which is 8.24 mW / m 2. It is 1.6 times higher than.
  • the output under dark conditions contributes to the production of electricity by operation as an air ion cell, and to the electricity generation of the nanogenerator due to the movement of water due to the generation of water vapor due to heat and natural drying generated during operation of the air ion cell. It is interpreted as.
  • the output by the nano-generator increases as the movement of water due to the generation of water vapor increases, it can be seen that the total output increases in the light irradiation conditions compared to the dark conditions.
  • the cone structure and the rectangular device were used to further verify the effect of the cone structure on the electrical production capacity.
  • MWCNT was vacuum-deposited on cellulose by the same method as in Example 1, and a rectangular and triangular structure was prepared using the same height and base diameter of the cone.
  • the upper and lower portions of the rectangular and triangular metal-air batteries were connected to the electrodes through wires, respectively.
  • the iron wire connected to the bottom was first coated with epoxy resin on the MWCNT so that the iron wire was in contact with water but not directly with MWCNT.
  • the rectangular and triangular devices manufactured by the above method were used to evaluate the electrical production capacity under dark conditions.
  • 10 is a graph showing the actual experiment and the resulting voltage over time.
  • the triangular device produces electricity of about 2 times higher voltage even though the total area is only 1/2 of the rectangular device.
  • a three-dimensional structure such as a cone, a truncated cone, a pyramid, and a truncated pyramid plays an important role in the apparatus for simultaneously producing water vapor and electricity.
  • FIG. 11 is a graph showing the output of the device in various electrolytes. a) shows the output according to the concentration of NaCl. As the concentration of NaCl increases to 0.6 M, the output also increases, but decreases as the concentration of NaCl increases. This may be because NaCl precipitates as the water evaporates at the top of the cone structure when the NaCl concentration is too high. The power at 0.6 M NaCl was 107.79 mW / m 2, which is more than eight times better than the power at water.
  • the electrolyte was advantageous for the improvement of the output
  • the concentration of the electrolyte was fixed at 0.6 M.
  • 11 b) shows the effect of anions
  • c) shows the effect of cations
  • the output of the anion is improved as the size is increased
  • the output was improved to 255.67 mW / m2 using 0.6M NaBr.
  • the cations did not show a trend in size, and showed a higher power than the conventional hybrid system at 505.69 mW / m 2 when 0.6M KCl was used. It is remarkable that the output under dark conditions also increases greatly with cations, resulting in 252.4 mW / m 2 using 0.6M KCl and 266.2 mW / m 2 using 0.6M CaCl 2 .
  • Pond water and sea water are known to contain various ions.
  • the output was measured using water and seawater collected from Chungnam National University pond. d) shows the results, which also showed higher output than water.
  • the output of the water vapor and the device for the simultaneous production of electricity is expected to be amplified through a series connection and a parallel connection, and confirmed through the examples.
  • each of the four devices has excellent reproducibility with an open circuit voltage of 0.65 V and a short circuit current of 27 mA.
  • the open circuit voltage of the device was amplified to 2.3V by the series connection, and the short circuit current increased to 120 mA by the parallel connection.
  • c) is a photograph of a series-connected device and a graph showing the open-circuit voltage as a function of time, showing that the open-circuit voltage is maintained at 2.3 V for 55,000 seconds so that the device of the present invention can produce both substantially water vapor and electricity for long-term electricity production. It can be used as a device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to a device for simultaneously producing water vapor and electricity, which has a simple structure and an excellent electricity generation efficiency and can simultaneously produce water vapor and electricity even if a separate device is not added, and, more specifically, to a device for simultaneously producing water vapor and electricity, which has a metal electrode as a first electrode and has, as a second electrode, a carbon structure layer deposited on a porous hydrophilic polymer base material with the structure of a hollow cone, pyramid, truncated cone, or truncated pyramid, and which is used in a state in which the bottom surface of the hydrophilic polymer base material is in contact with and floats on the water in which the first electrode is submerged.

Description

수증기 및 전기 동시 생산용 장치Equipment for the simultaneous production of steam and electricity
본 발명은 별개의 장치를 병합하지 않더라도 수증기 및 전기의 동시 생산이 가능하며, 전기 생산 효율이 우수한 단순한 구조의 수증기 및 전기 동시 생산용 장치에 관한 것이다.The present invention is capable of simultaneous production of steam and electricity without merging separate devices, and relates to a device for simultaneously producing steam and electricity having a simple structure with excellent electricity production efficiency.
전통적인 화석 에너지가 고갈되고 환경문제에 대한 관심이 고조되면서, 자연상태에서 변형 또는 소멸되는 에너지를 획득하여 가용의 에너지로 변환시키는 무공해 재생에너지가 에너지 위기에 대한 효율적인 해결책으로 제시되고 있다. 재생에너지원으로는 바람, 태양, 지열 및 물을 예로 들 수 있다. 태양에너지는 이 중에서도 보편적이고, 깨끗하며, 친환경적이고, 지속가능한 특성으로 인하여 가장 많은 관심을 받고 있으며, 수소의 생산이나, 발전, 광촉매, 정수, 담수화 등에 폭넓게 사용되어 왔다. 연간 지구 표면에 도달하는 태양에너지는 약 285만 EJ로 그 양에 있어서도 세계 연간 에너지 소비량의 약 10,000배에 달하는 광대한 에너지원이다. 그럼에도 불구하고 아직까지 태양에너지의 사용량은 매우 제한적이다. 물은 우리 체내 뿐 아니라 강, 호수, 바다 등에 광범위하고 풍부하게 존재하는 유망하고 매력적인 에너지원이다. 종래 흐르는 물로부터 막대한 에너지를 수확하기 위해서는 댐이나 수차와 같은 크고 복잡한 장치들이 통상적으로 사용되었다. 그러나 이들은 개인적인 사용이나 소형화 또는 이식 가능성을 요하는 생물 의학 장치들에는 적용이 불가능하다. 따라서 소형화된 고효율의 발전기를 개발하는 것은 현재 물을 이용한 재생에너지 분야에서 여전히 도전 과제로 남아있다.As traditional fossil energy is depleted and interest in environmental issues is raised, pollution-free renewable energy, which acquires energy that is transformed or extinguished in its natural state and converts it into usable energy, has been proposed as an effective solution to the energy crisis. Renewable energy sources include wind, sun, geothermal and water. Solar energy has received the most attention because of its universal, clean, environmentally friendly, and sustainable characteristics, and has been widely used in the production of hydrogen, power generation, photocatalysts, water purification, and desalination. The annual solar energy reaching the Earth's surface is about 2.85 million EJ, which is a vast energy source that is about 10,000 times the world's annual energy consumption. Nevertheless, the use of solar energy is still very limited. Water is a promising and attractive source of energy that is present in a wide and abundant way in our bodies as well as in rivers, lakes, and the sea. Conventionally, large and complex devices such as dams and aberrations have been commonly used to harvest enormous energy from running water. However, they are not applicable to biomedical devices that require personal use, miniaturization, or implantability. Therefore, the development of miniaturized, high-efficiency generators remains a challenge in the field of renewable energy using water.
2001년 Kral과 Shapiro(Phys. Rev. Lett. 2001, 86, 131-134)는 이론적 계산을 통하여 흐르는 액체에 담긴 금속 카본 나노튜브(CNT)에서 전류가 생성될 수 있음을 제안하였다. 이후 2003년 Sood 등(Science 2003, 299, 1042-1044)이 단일벽 CNT 번들 상의 액체의 흐름 방향을 따라 시료에서 전압이 유도되는 것을 발견하였으며, Guo 등(Nat. Nanotechnol. 2014, 9, 378-383)은 대기 조건에서 단층의 그래핀 조각 위에 움직이는 바닷물 또는 이온용액의 액적의 이동에 의해 수 mV의 전압이 생성되는 것을 보고하였다. 이를 기반으로 거시적으로 배열된 CNT 사(絲), 꼬임 및 인장 고분자 근육, 배열된 다중벽 CNT 시트, 초친수성 3차원 그래핀 산화물(GO) 골조, GO-금속 나노하이브리드 물질 등에 기반한 나노발전기(nanogenerator)들이 개발되었다. 그러나, 상기 나노발전기들이 전기를 생성하기 위해서는 물이 흐를 수 있도록 별도의 에너지 및/또는 복잡한 장비를 필요로 할 뿐만 아니라 전기 전도도가 작은 탄소물질을 사용해야 하는 문제로 인하여 발생되는 낮은 전류 밀도를 더 증가시킬 수 없는 근본적인 문제를 갖고 있다. 따라서, 이들 나노발전기들은 매우 적은 전력을 생산하는데 적합하다.In 2001, Kral and Shapiro (Phys. Rev. Lett. 2001, 86, 131-134) proposed that current could be generated from metallic carbon nanotubes (CNTs) contained in flowing liquid through theoretical calculations. Later, in 2003, Sood et al. (Science 2003, 299, 1042-1044) discovered that voltage was induced in the sample along the flow direction of the liquid on a single-walled CNT bundle. Guo et al. (Nat. Nanotechnol. 2014, 9, 378- 383) reported that a voltage of several mV was generated by the movement of droplets of seawater or ionic solution moving on a single layer of graphene under atmospheric conditions. Nanogenerators based on macroscopically arranged CNT yarns, twisted and stretched polymer muscles, arrayed multiwalled CNT sheets, superhydrophilic 3D graphene oxide (GO) frameworks, and GO-metal nanohybrid materials ) Were developed. However, in order to generate electricity, the nanogenerators need not only separate energy and / or complicated equipment for water to flow, but also further increase the low current density generated by the problem of using a carbon material having low electrical conductivity. It has a fundamental problem that cannot be solved. Thus, these nanogenerators are suitable for producing very little power.
한편 물의 증발은 대기 환경으로부터 열 에너지를 수확하는 아주 흔하고 자연적인 현상이다. 에너지 하베스팅 장치에서도 물의 증발에 의한 수증기 생산이 이용되어져 왔다. 전통적으로는 화석연료를 사용하여 수증기 엔진에서 대량의 물을 가열하여 수증기를 생산하였으나, 최근에는 태양광을 열로 변환하는 효율이 높은 흡수체를 이용하여 태양광으로부터 수증기를 생산하는 태양광 유도 수증기 생산 시스템이 주목을 받고 있다.Water evaporation, on the other hand, is a very common and natural phenomenon of harvesting heat energy from the atmosphere. Steam production by evaporation of water has also been used in energy harvesting equipment. Traditionally, fossil fuels were used to produce a large amount of water by heating a large amount of water in a steam engine, but recently, a solar-induced steam production system that produces water vapor from sunlight using a highly efficient absorber that converts sunlight into heat. This is attracting attention.
그러나 이러한 태양광 유도 수증기 생산 시스템을 사용한다고 하더라도 물의 증발로부터 전기를 얻기 위해서는, 태양광으로부터 수증기를 생성하는 장치가 전기 생산을 위한 별도의 장치와 통합되어야 하며, 얻어지는 전기의 양 역시 제한적이다. 예를 들면, Ho 등(Adv. Energy Mater. 2018, 1702149)은 탄소 스폰지 태양광-증발로부터 열기계 반응을 수확하기 위하여 강유전성 불화고분자인 polyvinylidene fluoride(PVDF)를 사용하였다. Ma 등(Nano Energy 2016, 22, 19-26)은 다른 에너지 장치 없이 수증기에 의한 자급의 고분자 초전(pyroelectric) 나노발전기를 보고하였다. Zhou 등(Adv. Energy Mater. 2018, 1702149)은 CNT에 의해 수식된 여과지와 상용 Nafion 막에 기반한 하이브리드 시스템을 채용하는 것에 의해 1 sun의 조사 시에 최대 광열 효율 75%을 달성하였으며, 1 W/㎡의 전력을 유도하였다. 그럼에도 불구하고 이들은 두 개의 장비를 결합하여야 하므로 시스템이 복잡하다는 문제가 있다. 이에 더하여 상기 시스템들은 빛에 의해서만 수증기의 생성이 가능하기 때문에 암조건에서는 전기를 생산할 수 없거나, 생산된다고 하더라도 전기 생산량이 상대적으로 낮다. However, even with such a solar-induced steam production system, in order to obtain electricity from evaporation of water, a device for generating water vapor from sunlight must be integrated with a separate device for electricity production, and the amount of electricity obtained is also limited. For example, Ho et al. (Adv. Energy Mater. 2018, 1702149) used a ferroelectric polyvinylidene fluoride (PVDF) to harvest thermomechanical reactions from carbon sponge photo-evaporation. Ma et al. (Nano Energy 2016, 22, 19-26) reported a self-contained polymer pyroelectric nanogenerator by steam without other energy devices. Zhou et al. (Adv. Energy Mater. 2018, 1702149) achieved a maximum photothermal efficiency of 75% at 1 sun irradiation by employing a CNT-modified filter paper and a hybrid system based on commercial Nafion membranes. Induced power of m 2. Nevertheless, they have a problem in that the system is complicated because two devices must be combined. In addition, since these systems can generate water vapor only by light, electricity cannot be produced under dark conditions, or even relatively low electricity is produced.
한편 철, 아연, 알루미늄과 같은 금속을 음극으로 사용하고, 공기극을 양극으로, 공기 중의 산소를 양극 활성물질로 사용하는 금속 공기전지가 고에너지 밀도 전지로 주목받고 있다. 금속 공기전지는 음극으로 값싼 금속을 사용하고, 전지 내부에 금속산화물 대신 탄소와 산소를 이용하여 기존 2차전지보다 에너지 밀도가 훨씬 높으며, 무게가 가벼워 실용성이 높다. 금속 공기전지 중 리튬 공기전지의 용량은 리튬 이온전지의 5~10배에 달하는 것으로 알려져 있다. 하지만 열로 인해 충전된 전기 중 1/3이 손실되고, 전극 온도 상승에 따른 위험요소가 있으며, 전력의 저장 기간이 길지 않다는 문제가 있다. On the other hand, a metal air battery using a metal such as iron, zinc, aluminum as a cathode, an anode as an anode, and oxygen in the air as a cathode active material is attracting attention as a high energy density battery. Metal air cells use cheap metal as a negative electrode and use carbon and oxygen instead of metal oxides inside the battery, and have a much higher energy density than conventional secondary batteries, and are light in weight and have high practicality. The capacity of lithium air batteries in metal air batteries is known to reach 5 to 10 times that of lithium ion batteries. However, there is a problem in that 1/3 of the charged electricity is lost due to heat, there is a risk of rising electrode temperature, and the storage period of power is not long.
본 발명은 두 개의 장치를 병합하지 않더라도, 간단한 구조의 하나의 장치에서 수증기와 전기를 동시에 효율적으로 생산할 수 있는 장치를 제공하는 것을 목적으로 한다. An object of the present invention is to provide an apparatus capable of efficiently producing water vapor and electricity simultaneously in one apparatus having a simple structure even without merging two apparatuses.
전술한 목적을 달성하기 위한 본 발명은 금속 전극을 제1전극으로, 속이 빈 원뿔, 각뿔, 원뿔대 또는 각뿔대의 구조를 갖는 다공성의 친수성 고분자 기재 상에 증착된 탄소구조체층을 제2전극으로 하며, 상기 제1전극이 잠겨진 물에 상기 친수성 고분자 기재의 밑면이 접촉하여 부유된 상태로 사용되는 것을 특징으로 하는 수증기와 전기 동시 생산용 장치에 관한 것이다.The present invention for achieving the above object is a metal electrode as a first electrode, a carbon structure layer deposited on a porous hydrophilic polymer substrate having a hollow cone, pyramid, truncated cone or pyramidal structure as a second electrode, And a bottom surface of the hydrophilic polymer substrate in contact with water in which the first electrode is immersed and used in a suspended state.
본 명세서에서 원뿔, 각뿔의 "상부"는 겉 표면에 있는 탄소구조체층 쪽을, "하부"는 그 친수성 고분자 기재 쪽을 의미한다. In the present specification, the "top" of the cone and pyramid means the carbon structure layer on the outer surface, and the "bottom" means the hydrophilic polymer substrate side.
또한 본 명세서에서 원뿔의 "꼭지각(apex angle)"이란 원뿔의 꼭지점에서 원뿔의 꼭지점을 이루는 두 선 사이의 각도를, 원뿔대의 "꼭지각"은 원뿔대의 가상의 꼭지점을 이루는 두 선 사이의 각도를 의미한다. 각뿔의 "꼭지각"은 각 빗면에서 꼭지점과 이웃한 두 변사이의 각도의 평균값을, 각뿔대의 "꼭지각"은 각 빗면에서 가상의 꼭지점을 이루는 두 변사이의 각도의 평균값으로 정의한다.In addition, in the present specification, the "apex angle" of the cone refers to the angle between two lines that form the vertex of the cone at the vertex of the cone, and the "vertical angle" of the cone refers to the angle between two lines forming the virtual vertex of the cone. do. The "vertical angle" of the pyramid is defined as the average value of the angle between the vertices and two adjacent sides on each oblique plane, and the "vertical angle" of the pyramid is defined as the average value of the angles between the two sides that form the virtual vertices on each oblique plane.
본 명세서에서 상기 고분자 기재의 "밑면"은 원뿔(대) 또는 각뿔(대)의 (가상의) 꼭지점과 반대부분을 일컫는다. As used herein, the "bottom" of the polymeric substrate refers to the portion opposite to the (virtual) vertex of the cone (large) or pyramidal (large).
본 발명의 장치는 물에 부유한 상태로 사용되는 것으로서 소재와 구조로 인하여 별개의 장치를 병합하지 않고 하나의 장치에서 수증기와 전기를 동시에 생산할 수 있는 것에 특징이 있다. 본 발명의 장치는 종래의 태양광 유도 생산 시스템과, 탄소구조물 상의 액적의 이동에 의해 전기가 발생되는 나노발전기 및 금속 공기전지의 복합적인 작용에 의한 것이다. 본 발명의 장치는 빛이 조사되지 않는 상태에서는 금속 공기전지에 의해 주로 전류가 발생하며, 광조사하에서는 흡수체에 의한 광조사에 의해 수증기 발생이 증가하고 이로 인한 나노발전기의 전류 발생 비율이 증가한다.The device of the present invention is used in a state of being suspended in water, and is characterized by being able to simultaneously produce steam and electricity in one device without merging separate devices due to the material and structure. The device of the present invention is due to the combined action of a conventional solar induction production system and a nanogenerator and a metal air cell in which electricity is generated by the movement of droplets on a carbon structure. In the apparatus of the present invention, the current is mainly generated by the metal air cell in the state that light is not irradiated, and under light irradiation, the generation of water vapor is increased by the light irradiation by the absorber, thereby increasing the current generation rate of the nanogenerator.
본 발명의 장치에서 상기 제1전극은 나노발전기의 제1전극이자 금속 공기전기의 양극으로 작용한다. 상기 제1전극은 Fe, Zn, Al, Ni, Mg으로 이루어진 군으로부터 선택된 하나의 금속 또는 둘 이상의 금속의 합금일 수 있다. In the device of the present invention, the first electrode serves as the first electrode of the nanogenerator and the anode of the metal air electric. The first electrode may be one metal selected from the group consisting of Fe, Zn, Al, Ni, and Mg or an alloy of two or more metals.
본 발명의 장치에서 상기 제2전극은 다공성의 친수성 고분자 기재 상에 형성되어 있는 탄소구조체층인 것을 특징으로 하며, 상기 태양광의 흡수체, 액적의 흐름에 의해 탄소구조체의 표면에서 전류를 발생시키는 나노발전기의 제2전극 및 금속 공기전지의 양극으로 작용한다. 본 발명의 장치에서 다공성의 친수성 고분자 기재는 탄소구조체의 지지체로 작용할 뿐 아니라 모세관 현상에 의해 지속적으로 수분을 제공하는 역할을 한다. 하기 실시예에서는 친수성 고분자 소재로서 종이만을 예시하였으나, 다공성 구조를 통하여 물의 이동이 가능한 것이라면 어떤 것이라도 무관하다. 즉, 상기 친수성 고분자는 천연 고분자 또는 합성 고분자일 수 있으며, 종이나 면, 셀룰로오스계 수지, 폴리아크릴로니트릴, 폴리비닐알콜, 폴리아미드, 폴리에테르설폰, 폴리에틸렌글리콜 및 친수성 폴리우레탄으로 이루어진 군으로부터 선택된 하나 이상으로 이루어질 수 있으나, 이에 한정되지 않는다. 전도성을 더욱 증가시키기 위해서 상기 고분자는 이온성 액체 고분자를 포함한 고분자 전해질과 가교된 형태일 수 있다. In the device of the present invention, the second electrode is characterized in that the carbon structure layer formed on the porous hydrophilic polymer substrate, the nano-generator for generating a current on the surface of the carbon structure by the flow of the absorber, droplets of sunlight It serves as the anode of the second electrode and the metal air battery. In the device of the present invention, the porous hydrophilic polymer substrate not only functions as a support for the carbon structure but also serves to continuously provide moisture by capillary action. In the following examples, only the paper is exemplified as a hydrophilic polymer material, but any material can be used as long as the water can be moved through the porous structure. That is, the hydrophilic polymer may be a natural polymer or a synthetic polymer, selected from the group consisting of paper or cotton, cellulose resin, polyacrylonitrile, polyvinyl alcohol, polyamide, polyethersulfone, polyethylene glycol and hydrophilic polyurethane It may be made of one or more, but is not limited thereto. In order to further increase conductivity, the polymer may be in the form of crosslinking with a polymer electrolyte including an ionic liquid polymer.
상기 다공성의 친수성 고분자 기재의 두께는 1 ㎛ ~ 5 ㎜ 인 것이 바람직하다. 기재의 두께가 너무 얇으면 지지체로서의 안정성이 부족하고 수분 공급량이 제한될 수 있으며, 기재의 두께가 너무 두꺼우면 열손실이 일어날 수 있다. 최적의 두께는 재질에 따라 공극율이나 공극의 크기, 공극간 간격을 고려하여 설정될 수 있을 것이며, 이는 당업자에게는 용이할 것이다. 공극의 크기나, 공극간 간격, 공극율 역시 재질 및 세부 구조에 따라 용이하게 최적의 조건을 설정할 수 있을 것이다. It is preferable that the thickness of the said porous hydrophilic polymer base material is 1 micrometer-5 mm. If the thickness of the substrate is too thin, the stability as a support may be insufficient and the water supply amount may be limited, and if the thickness of the substrate is too thick, heat loss may occur. The optimum thickness may be set in consideration of the porosity, the size of the pore, and the gap between the pores according to the material, which will be easy for those skilled in the art. The pore size, spacing between voids, and porosity can also be easily set to optimum conditions according to the material and the detailed structure.
본 발명의 장치는 금속을 제1전극, 탄소구조체층을 제2전극으로 금속 공기전지로 작동하여 제1전극에서 금속을 산화시키고, 제2전극에서 공기 중의 산소를 환원시키는 것에 의해 전기를 발생시킨다. 이에 더하여, 금속 공기전지의 작동에 의해 발생되는 열은 탄소구조체층에서 물을 증발시켜 수증기를 생산시키며, 이로 인해 탄소구조체층 표면 온도가 과열되지 않도록 제어하는 역할을 한다. 또한 상기 친수성 고분자 기재 상에 형성된 탄소구조체는 광범위한 파장의 빛에 대해 높은 흡광율을 나타내며 광열변환 효율이 높으므로, 조사된 빛에 의해 공급된 물이 효율적으로 증발되어 수증기를 생산할 수 있도록 한다. 탄소구조체의 표면에서의 물의 흐름은 종래기술에서 알려진 바와 같이 전기를 발생시키므로, 본 발명의 장치에서 역시 수증기의 증발에 의해 야기된 탄소구조체 표면에서의 물의 흐름이 추가적으로 전기를 발생시키게 된다. 이와 같은 상호작용에 의해 물의 흐름을 위한 장치와 전기 발생을 위한 별도의 장치를 병합하지 않고도 하나의 장치에서 수증기와 전기를 동시에 생산할 수 있게 된다.The apparatus of the present invention operates as a metal air cell using a metal as a first electrode and a carbon structure layer as a second electrode to oxidize the metal at the first electrode and generate electricity by reducing oxygen in the air at the second electrode. . In addition, the heat generated by the operation of the metal air cell evaporates water in the carbon structure layer to produce water vapor, thereby controlling the temperature of the carbon structure layer surface to prevent overheating. In addition, the carbon structure formed on the hydrophilic polymer substrate exhibits high absorbance for light of a wide range of wavelengths and has high photothermal conversion efficiency, so that water supplied by the irradiated light can be efficiently evaporated to produce water vapor. Since the flow of water on the surface of the carbon structure generates electricity as is known in the art, the flow of water on the surface of the carbon structure, also caused by the evaporation of water vapor, in the apparatus of the present invention further generates electricity. This interaction allows for the simultaneous production of water vapor and electricity in one device without merging a separate device for the flow of water and a separate device for the generation of electricity.
상기 탄소구조체로는 광조사 시 광열 변환 효율을 증가시키고, 물의 흐름에 의해 전해질을 유입시켜 전기를 유도할 수 있으며, 산소를 활성물질로 하여 환원반응을 유도할 수 있는 카본블랙, 풀러렌, 카본나노튜브, 그래핀, 카본닷, 탄소섬유 및 전도성 카본으로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있다. 하기 실시예에서는 카본나노튜브만을 예시하였으나, 다른 탄소구조체 역시 물의 흐름에 의해 전해질을 유입시켜 전기를 유도할 수 있고, 금속 공기전지의 양극으로 작용할 수 있으므로 본 발명의 수증기 및 전기 동시 생산용 장치에 적용이 가능함은 당연하다.The carbon structure increases the light-heat conversion efficiency during light irradiation, induces electricity by introducing an electrolyte by the flow of water, and carbon black, fullerene, carbon nano which can induce a reduction reaction using oxygen as an active material. One or more selected from the group consisting of tubes, graphene, carbon dots, carbon fibers and conductive carbon can be used. In the following examples, only carbon nanotubes are exemplified, but other carbon structures may also induce electricity by introducing an electrolyte by the flow of water, and thus may act as a positive electrode of a metal air battery. Applicability is natural.
상기 탄소구조체층의 두께는 10~100 ㎛인 것이 바람직하였는데, 탄소구조체층의 두께가 증가할수록 광열변환 효율이 증가하여 수증기 생성 속도가 증가하고, 수증기 생성 속도가 증가할수록 전해질의 공급이 촉진된다. 따라서 탄소구조체층의 두께가 너무 얇으면 수증기와 전기 생산 효율이 감소하므로 10 ㎛ 이상인 것이 바람직하다. 반면 탄소구조체층의 두께가 증가할수록 다공성이 감소하며, 두께가 100 ㎛ 이상인 경우에는 균일한 탄소구조체층의 형성이 어려웠다. 그러나 100 ㎛보다 두껍더라도 다공성을 갖는 균일한 층의 형성이 가능하다면, 제외되는 것은 아니다.It is preferable that the thickness of the carbon structure layer is 10 to 100 μm. As the thickness of the carbon structure layer increases, the photothermal conversion efficiency increases, so that the rate of steam generation increases, and the supply of the electrolyte is accelerated as the rate of steam generation increases. Therefore, if the thickness of the carbon structure layer is too thin, water vapor and electricity production efficiency is reduced, it is preferable that the thickness of 10 ㎛ or more. On the other hand, as the thickness of the carbon structure layer increases, the porosity decreases, and when the thickness is 100 μm or more, it is difficult to form a uniform carbon structure layer. However, if it is possible to form a uniform layer having a porosity even if thicker than 100 μm, it is not excluded.
기재 상에 탄소구조체층을 형성하는 것은 예를 들면, 탄소구조체의 분산액을 드랍코팅하거나, 스크린 인쇄하거나, 닥터 블레이드(doctor blade)로 코팅하거나, 스프레이로 뿌려주거나, 실시예와 같이 진공증착하거나, 분산액에 침지 코팅하는 등의 여러 가지 방법을 사용할 수 있으며, 기재에 탄소구조체층을 균일하게 형성할 수 있다면 어떠한 방법을 사용하여도 무방하다.Forming the carbon structure layer on the substrate may include, for example, drop coating, screen printing, coating with a doctor blade, spraying, or vacuum depositing a dispersion of the carbon structure, Various methods such as dip coating on the dispersion can be used, and any method may be used as long as the carbon structure layer can be uniformly formed on the substrate.
하기 실시예에서 사용한 진공증착법은 기재의 일측에만 탄소구조체층이 형성되지만, 예를 들면 침지 코팅에 의하거나, 양면에 진공증착하는 것에 의해 탄소구조체층을 기재의 양면에 형성할 수도 있다. In the vacuum deposition method used in the following examples, the carbon structure layer is formed only on one side of the substrate, but for example, the carbon structure layer may be formed on both sides of the substrate by immersion coating or by vacuum deposition on both surfaces.
본 발명의 장치는 구조적으로는 원뿔, 각뿔, 원뿔대 또는 각뿔대의 형태를 갖는다. 원뿔은 직원뿔일 수도 있으며, 빗원뿔 역시 포함한다. 각뿔 역시 직각뿔과 빗각뿔을 포함한다. 하기에서는 설명의 편의를 위하여 원뿔 구조로 예시하여 본 발명의 장치를 설명한다. The device of the present invention is structurally in the form of a cone, pyramid, cone or pyramid. The cone can also be a staff cone, including the rain cone. Pyramids also include orthogonal pyramids and comb pyramids. In the following, the apparatus of the present invention will be described by illustrating a conical structure for convenience of description.
입체적인 원뿔구조로 인하여 본 발명의 장치는 편평한 형태의 단순 흡수체에 비해 표면적이 넓고, 방향과 무관하게 많은 양의 빛을 흡수할 수 있기 때문에 수증기 생산 효율이 높다. Due to the three-dimensional cone structure, the device of the present invention has a wider surface area than a simple absorber having a flat shape, and can absorb a large amount of light regardless of the direction, thereby increasing water vapor production efficiency.
이에 더하여, 본 발명의 장치는 광조사 시 꼭대기의 온도가 바닥(원뿔의 수평 단면인 원의 반지름이 넓은 쪽)에 비해 높기 때문에, 바닥보다 꼭지점 부근에서 물의 증발 속도가 높아 모세관력에 더하여 원뿔의 바닥으로부터 꼭지점으로의 물의 흐름을 야기하여 두 전극 사이의 공극내로 전해질의 유입을 촉진함으로써 더 많은 전기가 발생하도록 해준다. 본 발명의 장치에서 물의 이동이 많을수록 전기 생산이 효율적이므로, 제2전극을 전선과 연결할 때에는 원뿔이나 각뿔의 경우 꼭지점 쪽, 원뿔대나 각뿔대의 경우 단면적이 작은 쪽과 가까운 곳에 연결하는 것이 더욱 바람직하다. In addition, the device of the present invention has a higher temperature at the top when irradiated with light than the bottom (the radius of the circle which is the horizontal cross section of the cone), so that the evaporation rate of water is higher near the vertex than the bottom, so that in addition to the capillary force, More water is generated by causing the flow of water from the bottom to the vertex, facilitating the introduction of electrolyte into the pores between the two electrodes. In the apparatus of the present invention, the more the movement of water is, the more efficient electricity production is. Therefore, when the second electrode is connected to the electric wire, it is more preferable to connect the vertex side of the cone or the pyramid, and the near side of the truncated cone or the pyramid to the smaller cross section.
원뿔의 꼭지각도 수증기 및 전기 생산 효율에 영향을 미친다. 꼭지각이 너무 크거나 작은 경우에는 원뿔 구조로 인한 효과가 감소하여 수증기 및 전기 생산의 효율성이 저하된다. 따라서 원뿔의 꼭지각은 10~170°인 것이 바람직하다. The cone angle of the cone also affects the water vapor and electricity production efficiency. If the vertex angle is too large or too small, the effect of the conical structure is reduced, reducing the efficiency of water vapor and electricity production. Therefore, it is preferable that the vertex angle of a cone is 10-170 degrees.
원뿔은 하부 공간에 채워진 공기로 인하여 안정적으로 물에 부유할 수 있는 추가적인 장점을 갖는다. 원뿔대는 원뿔의 꼭지점 부분이 잘린 것으로 원뿔에 비해 수증기의 증발 면적이 감소하는 반면, 기재의 양면에서 수증기의 증발이 일어날 수 있어 역시 수증기와 전기가 효과적으로 동시에 생산될 수 있다. 밑면이 원이 아니라 다각형인 직뿔이나, 직뿔대 역시 동일한 원리에 의해 수증기와 전기를 동시에 생산할 수 있다.The cone has the additional advantage of being able to stably float in water due to the air filled in the lower space. The truncated cone has a truncated vertex of the cone, which reduces the evaporation area of water vapor compared to the cone, while vaporization of water vapor may occur on both sides of the substrate, so that water vapor and electricity can be effectively produced simultaneously. Orthogonal pyramids or polygonal pyramids can be produced simultaneously with water vapor and electricity by the same principle.
본 발명의 장치는 금속 공기전지로 작동하여 전기가 발생하는 것과 동시에, 물에 부유하여 흡수되는 물의 증발에 의해 기재와 탄소구조체층과 친수성고분자층의 다공구조를 통해 이동한 물이 전해질로 작용하여 탄소구조체 전극과 금속선 간의 전위차이로 인해 전기가 발생하는 것으로, 전술한 원뿔 구조의 특성으로 인하여 암조건에서도 수증기와 전기의 생산이 가능하기 때문에 광조사 여부와 무관하게 전기를 생산하는 것이 가능하다. 암조건에 비해 광조사 조건에서 수증기의 증발이 더 활발하게 이루어지고 그에 따른 탄소구조체 표면에서 물의 이동이 증가할 것이므로, 본 발명의 장치에서는 암조건에 비해 광조사 조건에서 전기 생산에 대한 나노발전기의 기여가 증가할 것으로 사료된다. The device of the present invention operates as a metal air cell to generate electricity, and at the same time, water moved through the porous structure of the substrate, the carbon structure layer, and the hydrophilic polymer layer acts as an electrolyte by evaporation of water absorbed in the water. Electricity is generated due to the potential difference between the carbon structure electrode and the metal wire. Due to the characteristics of the conical structure described above, it is possible to produce electricity regardless of light irradiation because it is possible to produce water and electricity even under dark conditions. Since the evaporation of water vapor is more active under light irradiation conditions and the movement of water on the surface of the carbon structure is increased compared to the dark conditions, the device of the present invention is characterized by It is expected that the contribution will increase.
이때, 본 발명의 장치는 부유되는 상기 물에 전해질이 용해되어 있는 경우, 전기 생산 능력이 더욱 우수하다. 상기 전해질의 종류 역시 본 발명에 의한 장치의 전기 출력에 영향을 미치는데, 음이온의 크기가 증가할수록 출력이 우수하였다. 양이온은 광조사 시에는 K +>Ca 2+>Na + 순서로, 암조건에서는 Ca 2+>K +>Na + 순서로 출력이 높았다. 전해질의 종류에 따라 최적의 농도를 설정하는 것은 용이할 것이다. 하기 일실시예에 의한 금속-공기 전지에서 0.6M NaBr을 전해질로 사용한 경우 1 sun 광도에서의 출력은 505.69 mW/㎡으로 종래기술의 어떠한 하이브리드 시스템에 비해서도 높은 출력을 나타내었다.At this time, the device of the present invention, when the electrolyte is dissolved in the suspended water, it is more excellent in electricity production capacity. The type of the electrolyte also affects the electrical output of the device according to the present invention, and the output was excellent as the size of the anion increased. The cation output was high in the order of K + > Ca 2+ > Na + when irradiated with light and Ca 2+ > K + > Na + under dark conditions. It will be easy to set the optimal concentration according to the type of electrolyte. When 0.6M NaBr was used as an electrolyte in the metal-air battery according to the following example, the output power at 1 sun brightness was 505.69 mW / m 2, which was higher than that of any hybrid system of the prior art.
본 발명의 장치의 출력이나 전압을 더욱 향상시키기 위해서는 통상의 배터리와 마찬가지로 직렬연결이나 병렬연결에 의해 복수의 장치를 전기적으로 연결하여 사용할 수 있음은 당연하다. 직렬연결에 의해 4개의 장치를 연결한 실시예에서 55,000초(~15.3시간) 동안 개로전압을 관측한 결과, 안정적인 전압의 공급이 가능함을 확인할 수 있었다. In order to further improve the output or voltage of the device of the present invention, it is natural that a plurality of devices can be electrically connected and used in series or parallel connection as in a conventional battery. In the embodiment of connecting four devices by series connection, the open circuit voltage was observed for 55,000 seconds (~ 15.3 hours), and it was confirmed that stable voltage supply was possible.
이상과 같이 본 발명의 수증기와 전기 동시 생산용 장치에 의하면, 금속 공기전지로 작동됨과 동시에, 셀룰로오스와 카본나노튜브의 친수성 다공구조가 물의 흐름을 위한 이상적인 채널을 제공하며, 원뿔구조의 하부보다 상부에서 수증기 생성 속도가 빠르기 때문에 원뿔구조의 하부에서 상부로의 물의 흐름이 유도되므로, 물의 흐름을 유도하기 위하여 별도의 에너지를 소모할 필요가 없이 나노발전기로도 작동하므로 별도의 장치와 병합하지 않고도 수증기와 전기를 동시에 우수한 효율로 생산할 수 있다. As described above, according to the apparatus for simultaneously producing water vapor and electricity, the hydrophilic porous structure of cellulose and carbon nanotubes, while acting as a metal air cell, provides an ideal channel for the flow of water, and is located above the lower portion of the conical structure. Because of the high speed of steam generation at, the flow of water from the lower part of the conical structure to the upper part is induced. Therefore, it does not need to consume extra energy to induce water flow. And electricity can be produced simultaneously with excellent efficiency.
또한 본 발명의 수증기와 전기 동시 생산용 장치는 종래 금속 이온전지에서 열로 손실되는 에너지가 수증기 생산에 기여하여 암조건에서도 수증기와 전기를 생산할 수 있어 밤과 낮의 구분없이 동작이 가능하며, 수증기 생산으로 인해 전극 표면의 온도를 일정 온도로 유지할 수 있어 더욱 안전하게 사용될 수 있다.In addition, the device for simultaneous production of water vapor and electricity of the present invention can produce steam and electricity even in dark conditions because energy lost by heat in the conventional metal ion battery contributes to water vapor production, thus enabling operation without distinction between night and day, and producing steam. Due to this, the temperature of the electrode surface can be maintained at a constant temperature, and thus can be used more safely.
또한 본 발명의 수증기와 전기 동시 생산용 장치는 복잡한 장치 없이 간단한 구조를 갖기 때문에 경제적으로 대량생산이 가능하고, 크기 조절이 자유로우며, 광범위한 빛에 대해 안정하고, 독성 물질을 사용하지 않으며, 생분해성이 우수하여 친환경적인 대체 에너지 생산 수단으로 사용될 수 있다. In addition, the water vapor and electric simultaneous production apparatus of the present invention has a simple structure without a complicated device, economical mass production, free to scale, stable to a wide range of light, does not use toxic substances, biodegradable It is excellent and can be used as an environmentally friendly alternative energy production means.
도 1은 본 발명의 일실시예에 의해 제조된 탄소나노튜브가 증착된 셀룰로오스 구조체 및 원뿔구조 수증기와 전기 동시 생산용 장치의 사진.Figure 1 is a photograph of a device for the simultaneous production of carbon nanotubes deposited cellulose structure and conical structure vapor and electricity produced by an embodiment of the present invention.
도 2는 본 발명의 일실시예에 의한 탄소나노튜브가 증착된 셀룰로오스 구조체의 물리·화학적 특성을 보여주는 SEM, TEM 이미지 및 XPS, 라만 및 UV 스펙트럼.Figure 2 is a SEM, TEM image and XPS, Raman and UV spectrum showing the physical and chemical properties of the cellulose structure deposited carbon nanotubes according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 의한 수증기와 전기 동시 생산용 장치의 수증기 생산 효율 평가를 위한 실험의 사진 및 적외선 사진.Figure 3 is a photograph and infrared photographs of the experiment for evaluating the steam production efficiency of the steam and electricity simultaneous production apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에서 탄소나노튜브 층의 두께에 따라 제조된 셀룰로오스 구조체의 사진.Figure 4 is a photograph of a cellulose structure prepared according to the thickness of the carbon nanotube layer in one embodiment of the present invention.
도 5 및 도 6은 탄소나노튜브 층의 두께에 따른 수증기와 전기 동시 생산용 장치의 수증기 생산 효율을 보여주는 사진 및 그래프.5 and 6 are photographs and graphs showing the water vapor production efficiency of the device for simultaneous production of water vapor and electricity according to the thickness of the carbon nanotube layer.
도 7 및 도 8은 수증기와 전기 동시 생산용 장치의 원뿔구조의 꼭지각에 따른 수증기 생산 효율을 보여주는 그래프.7 and 8 are graphs showing the steam production efficiency according to the vertex angle of the conical structure of the device for simultaneous production of steam and electricity.
도 9는 본 발명의 일실시예에 의한 수증기와 전기 동시 생산용 장치의 전기 생산 효율 평가를 위한 실험 사진 및 결과 그래프.9 is an experimental photograph and a result graph for evaluating the electrical production efficiency of the steam and the apparatus for the simultaneous production of electricity according to an embodiment of the present invention.
도 10은 본 발명의 수증기와 전기 동시 생산용 장치의 삼차원 구조적 효능을 보여주는 사진 및 그래프.Figure 10 is a photograph and graph showing the three-dimensional structural efficacy of the apparatus for simultaneous production of water vapor and electricity of the present invention.
도 11은 각종 전해질 용액에서의 수증기와 전기 동시 생산용 장치의 전기 생산 효율을 보여주는 그래프.11 is a graph showing the electricity production efficiency of the device for simultaneous production of water vapor and electricity in various electrolyte solutions.
도 12는 직렬연결 및 병렬연결된 수증기와 전기 동시 생산용 장치의 전기 생산 효율을 보여주는 그래프 및 실험 사진.12 is a graph and an experimental photograph showing the electricity production efficiency of the device for the simultaneous production of water vapor and electricity connected in series and parallel connected.
이하 첨부된 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나 이러한 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다. Hereinafter, the present invention will be described in more detail with reference to the accompanying examples. However, such an embodiment is only an example for easily describing the content and scope of the technical idea of the present invention, whereby the technical scope of the present invention is not limited or changed. It will be apparent to those skilled in the art that various modifications and variations are possible within the scope of the present invention based on these examples.
[실시예]EXAMPLE
실시예 1 : 수증기와 전기 동시 생산용 원뿔구조 장치의 제조Example 1 Preparation of a Cone Structure Device for Simultaneous Production of Steam and Electricity
다중벽 탄소나노튜브(MWCNTs, 한화나노테크)를 300℃ 공기 중에서 60분간 열처리하였다. 이후 37% 염산과 혼합하여 1시간 동안 초음파 처리한 후, 여액의 pH가 중성이 될 때까지 여과하고 증류수로 세척하는 공정을 5회 반복하였다. 이후 70℃ 오븐에서 24시간 건조하여 정제하였다.Multi-walled carbon nanotubes (MWCNTs, Hanwha Nanotech) were heat-treated in air at 300 ° C. for 60 minutes. Thereafter, after mixing with 37% hydrochloric acid and sonicating for 1 hour, the process of filtering and washing with distilled water until the pH of the filtrate became neutral was repeated five times. Then purified by drying for 24 hours in a 70 ℃ oven.
정제된 MWCNT 20 ㎎을 200 ㎖ DI수에 현탁한 용액을 사용하여 진공 보조 증착에 의해 셀룰로오스 여과지에 MWCNT를 코팅하고, 70℃에서 24시간 건조하였다. MWCNTs were coated on cellulose filter paper by vacuum assisted deposition using a solution of 20 mg of purified MWCNTs in 200 ml DI water and dried at 70 ° C. for 24 hours.
상기 MWCNT가 코팅된 셀룰로오스를 사용하여 2/3 원으로부터 원뿔의 꼭지각이 60°, 바닥 직경이 18 ㎜가 되도록 원뿔구조를 만들고 경계면은 에폭시 레진을 사용하여 접착시켰다. 원뿔의 꼭지점에 철선을 통해 전극을 연결하고 물에 부유시켰으며, 제1전극으로 사용할 철선은 물에 담궜을 때 제2전극인 탄소구조체층과 접촉하는 것을 방지하기 위하여 움직임을 제한하도록 셀롤로오스 여과지에 고정시켰다. 이에 의해, 제1전극은 물과 접촉하지만, 탄소구조체층과는 절연된 상태이다.The MWCNT-coated cellulose was used to make a cone structure from a 2/3 circle to a cone angle of 60 ° and a bottom diameter of 18 mm, and the interface was bonded using epoxy resin. Electrodes were connected to the vertices of the cone through wires and floated in water, and the wires to be used as the first electrode were limited to cellulose to limit their movement to prevent contact with the carbon structure layer, which is the second electrode. Fixed to filter paper. As a result, the first electrode is in contact with water, but is insulated from the carbon structure layer.
도 1의 a)와 b)는 각각 MWCNT가 코팅된 셀룰로오스 및 이를 이용한 원뿔구조 수증기와 전기 동시 생산용 장치의 사진이다. Figure 1 a) and b) is a picture of the cellulose coated with MWCNT and the conical structure using the same and the apparatus for the simultaneous production of electricity.
실시예 2 : 탄소나노튜브가 코팅된 셀룰로오스 구조체의 구조적 특성 분석Example 2 Structural Characterization of Cellulose Structures Coated with Carbon Nanotubes
셀룰로오스 여과지에 흡착된 탄소나노튜브의 모폴로지와 두께를 고해상도 주사전자현미경(HRSEM; Hitachi S-4800, Hitachi) 및 투과전자현미경(TEM; JEM-2100F HR, JEOL)으로 측정하였으며, 표면 화학 상태와 전자 구조는 monochromatic Al Kα (1486.65 eV) X-ray radiation이 장착된 Multilab 2000 spectrometer로 10 -10 Torr하에서 관측하였다. 결합 에너지 스케일은 83.98 eV에서의 Au 4f 7/2 core level의 결합 에너지 위치로 보정하였다. 라만 스펙트라는 532 nm DPSS laser로 기록하였다.Morphology and thickness of carbon nanotubes adsorbed on cellulose filter paper were measured by high resolution scanning electron microscope (HRSEM; Hitachi S-4800, Hitachi) and transmission electron microscope (TEM; JEM-2100F HR, JEOL). The structure was observed at 10 -10 Torr with a Multilab 2000 spectrometer equipped with monochromatic Al Kα (1486.65 eV) X-ray radiation. The binding energy scale was calibrated to the binding energy position of Au 4f 7/2 core level at 83.98 eV. Raman spectra were recorded with a 532 nm DPSS laser.
도 2는 그 결과를 보여주는 도면으로 a)의 SEM 이미지는 셀룰로오스 섬유 필름 상에 72 ㎛ 두께의 MWCNT 필름이 얻어짐을 보여준다. b)는 MWCNT의 표면 이미지를 보여주는 것으로 MWCNT 셀룰로오스 종이 모두에 의해 다공성 구조가 형성되어 물의 공급을 위한 이상적인 채널로 작용할 수 있음을 시사한다. c)의 X-선 광전자(XPS) 스펙트럼은 MWCNT 표면에 O-C=O, C=O, C-O 결합이 존재함을 보여주며, 이는 FTIR(Thermo Scientific)에서도 확인할 수 있었다(데이터 미도시). Guo 등은 밀도함수이론(DFT)을 이용한 계산을 통하여 다른 작용기를 갖는 그래핀 플레이크에 물이 흡착되는 것에 의해 전하 재배열이 야기됨을 보고하였다. 계산 결과에 의하면, 물과 그래핀의 계면에 전하 이중층이 형성되며, C-O-C기에 3층의 물이 덮이면 약 0.7e가 소모되며, C-O-C기가 제거되면 이는 0.003e로 떨어진다. 따라서 상기와 같은 MWCNT의 작용기들은 전기의 생성에 필수적이다. FIG. 2 shows the results, in which the SEM image of a) shows that a 72 μm thick MWCNT film is obtained on a cellulose fiber film. b) shows the surface image of MWCNT, suggesting that the porous structure is formed by both MWCNT cellulose papers and can act as an ideal channel for water supply. X-ray photoelectron (XPS) spectra of c) show the presence of O—C═O, C═O, and C—O bonds on the surface of the MWCNT, which was also confirmed by FTIR (Thermo Scientific) (data not shown). Guo et al. Reported that charge rearrangement is caused by the adsorption of water onto graphene flakes with different functionalities through calculations using density function theory (DFT). According to the calculation result, a charge double layer is formed at the interface between water and graphene. When three layers of water are covered in the C-O-C group, about 0.7e is consumed, and when the C-O-C group is removed, it falls to 0.003e. Therefore, such functional groups of MWCNTs are essential for the generation of electricity.
MWCNT는 느슨하게 쌓여진 무질서한 그래핀 플레이크(flakes)로 구성됨은 d)의 TEM 이미지에서 확인할 수 있는데, 이는 e)의 라만 스펙트럼에서도 확인할 수 있다. 실시예 1에서 제조한 구조체의 접촉각을 측정한 결과 MWCNT 박막은 친수성을 나타냄을 확인할 수 있었는데, 이는 셀룰로오스 지지체에 더하여 MWCNT의 다공구조를 따라 모세관 현상에 의해 물이 이동할 수 있음을 의미한다. The MWCNT consists of loosely stacked disordered graphene flakes can be seen in the TEM image of d), which can also be seen in the Raman spectra of e). As a result of measuring the contact angle of the structure prepared in Example 1, it was confirmed that the MWCNT thin film exhibits hydrophilicity, which means that water may move by capillary phenomenon along the porous structure of the MWCNT in addition to the cellulose support.
종래기술에 의하면, 물과 MWCNT의 상호작용, 특히 다공성 MWCNT 필름 내부에서 물의 증발에 의해 유도된 물의 흐름이 전기 생성의 주된 이유로 간주된다. 따라서, 상기 실시예에 의해 제조된 구조체를 이용하여 원뿔구조체를 제조하면, 태양광에 의하거나 혹은 자가 증발(self-evaporation)에 의해 물이 증발됨에 따라 모세관현상에 의해 구조체의 상부로 물이 흐름을 유발하여 전기를 생성할 수 있으므로 별도의 장치를 사용하지 않더라도 수증기와 전기를 동시에 생성할 수 있을 것으로 기대된다.According to the prior art, the interaction of water with MWCNTs, in particular the flow of water induced by the evaporation of water inside the porous MWCNT film, is considered the main reason for the generation of electricity. Therefore, when the conical structure is manufactured using the structure manufactured according to the above embodiment, the water flows to the upper portion of the structure by capillary action as the water is evaporated by sunlight or by self-evaporation. It is expected to be able to generate steam and electricity at the same time without using a separate device because it can generate electricity.
도 2의 f)는 태양광 흡수 효능을 평가하기 위하여 상기 흡수체의 굴절 및 투과 특성을 UV-Vis-NIR 스펙트로미터(Solidspec-3700, Shimadzu)를 사용하여 측정하고 그 결과를 도시한 것이다. 상기 도면에서 본 구조체는 250~800 nm의 투과율이 0으로 광범위한 파장의 빛이 MWCNT에 의해 차단됨을 알 수 있다. 2) shows the results of measuring the refractive and transmissive properties of the absorber using a UV-Vis-NIR spectrometer (Solidspec-3700, Shimadzu) to evaluate the solar absorption efficiency. In this figure, the structure has a transmittance of 250 to 800 nm, and it can be seen that light of a wide range of wavelengths is blocked by MWCNT.
실시예 3 : 수증기와 전기 동시 생산용 장치의 실험실 내 수증기 생산능 평가 Example 3 Evaluation of Steam Production Capacity in the Laboratory of Simultaneous Production of Steam and Electricity
1) 수증기 생산능 평가 장치1) Steam production capacity evaluation device
실시예 1에서 제조된 수증기와 전기 동시 생산용 장치의 광열변환 효율을 계산하기 위하여, 1 sun 조사에 의한 수증기 생산능을 실시간 무게 변화로 평가하기 위한 장치를 설계하였다. In order to calculate the photothermal conversion efficiency of the steam and the device for the simultaneous production of electricity produced in Example 1, a device for evaluating the steam production capacity by 1 sun irradiation as a real-time weight change was designed.
수증기와 전기 동시 생산용 장치의 물 증발 속도를 측정을 위하여 폴리스티렌 폼으로 코팅된 50 mL 용기를 컴퓨터에 연결된 저울 위에 올려놓고 상부에 모의 태양광(350~1800 ㎚, solar simulator, Hal 320 W, ASAHI)을 위치시켰다. 2×2 ㎝ 크기로 확장시킨 폴리스티렌폼(EPS) 접시를 내벽이 폴리스티렌폼으로 코팅된 컵에 넣고, 2×4 ㎝의 하얀 셀룰로오스 종이를 EPS 접시의 가운데에 올려놓고 양 말단을 안으로 접어 추후 물에 잠길 수 있도록 하였다. 종이 위에 원뿔구조의 상기 장치를 올리고, 수위가 EPS 접시보다 아래에 있으면서 종이의 양 말단이 물에 잠길만큼 컵 안에 물을 넣었다. 상기 장치와 용기 사이의 틈에서 물의 증발을 최소화하기 위하여 용기의 상면은 폴리스티렌폼으로 덮어주었다. 상기 원뿔구조 장치의 수면 위의 높이는 16 ㎜이고, 원뿔의 꼭대기에서 물과 공기의 경계면까지의 거리는 8 ㎜ 였다. 상기 장치가 완전히 젖으면 모의 태양광을 켜고 10초마다 무게를 측정하여 증발량을 계산하였다. 증발과정에서의 온도변화는 열화상 카메라(SEEK)와 K 써모커플 온도 프로브(Testo735)를 사용하여 측정하였다.To measure the water evaporation rate of water vapor and electrical co-production equipment, a 50 mL container coated with polystyrene foam was placed on a scale connected to a computer and simulated with sunlight (350-1800 nm, solar simulator, Hal 320 W, ASAHI). ). Place a polystyrene foam (EPS) dish expanded to 2 × 2 cm into a cup coated with polystyrene foam on the inner wall, place a 2 × 4 cm white cellulose paper in the center of the EPS dish, and fold both ends inwards. It can be locked. The device of conical structure was placed on paper and water was placed in the cup so that both ends of the paper were submerged while the water level was below the EPS dish. The top of the vessel was covered with polystyrene foam to minimize evaporation of water in the gap between the apparatus and the vessel. The height above the water surface of the conical device was 16 mm, and the distance from the top of the cone to the interface between water and air was 8 mm. When the device was completely wet the simulated sunlight was turned on and weighed every 10 seconds to calculate the amount of evaporation. Temperature changes during evaporation were measured using a thermal imaging camera (SEEK) and K thermocouple temperature probe (Testo735).
도 3의 a)는 수증기 생산능 평가를 위한 실험 장치의 대표적인 광학 이미지이고, b)와 c)는 1 sun 광도의 빛을 30분 조사하였을 때의 원뿔구조 장치에 대한 대표적인 적외선 이미지이다. 실험 시 주변 온도는 22℃, 상대습도는 40%였으며, 자가증발 시의 장치의 표면온도는 주변온도와 유사하였다. 그러나 1 sun 광도의 광조사 시에는 광조사 30분 후, 상기 장치의 온도는 34℃로 증가하였으며, 원뿔구조의 꼭대기가 가장 온도가 높고 아래로 내려갈수록 온도가 감소하였다. 따라서 원뿔구조체의 위로 갈수록 물의 증발속도가 증가하며, 흡수체의 하부에서 상부로의 물의 이동을 촉진하게 된다. Figure 3 a) is a representative optical image of the experimental apparatus for evaluating the steam production capacity, b) and c) is a representative infrared image of the cone structure device when irradiated with light of 1 sun intensity for 30 minutes. At the experiment, the ambient temperature was 22 ℃ and the relative humidity was 40%. The surface temperature of the device during self-evaporation was similar to the ambient temperature. However, at 1 sun light irradiation, after 30 minutes of light irradiation, the temperature of the device increased to 34 ° C., and the temperature decreased as the top of the conical structure was the highest and lowered. Therefore, the evaporation rate of water increases as the conical structure is moved upward, thereby facilitating the movement of water from the lower part of the absorber to the upper part.
2) CNT 층의 두께에 따른 수증기 생산능 평가2) Evaluation of water vapor production capacity according to the thickness of CNT layer
1)에서 설계한 장치를 사용하여 CNT 층의 두께가 수증기 생산에 미치는 영향을 평가하였다. 이를 위하여 실시예 1에서 정제된 MWCNT 100 ㎎을 1000 ㎖ DI수에 현탁한 후, 각 용액을 50, 100, 200 또는 300 ㎖를 사용하여 진공 보조 증착에 의해 셀룰로오스 여과지에 MWCNT를 코팅하고, 70℃에서 24시간 건조한 후 실시예 1과 동일한 방법에 의해 수증기와 전기 동시 생산용 원뿔구조 장치를 제조하였다. Using the device designed in 1), the effect of the thickness of the CNT layer on the steam production was evaluated. To this end, 100 mg of MWCNT purified in Example 1 was suspended in 1000 ml DI water, and then each solution was coated with MWCNT on a cellulose filter paper by vacuum assisted deposition using 50, 100, 200 or 300 ml, and 70 ° C. After drying for 24 hours at the same manner as in Example 1 to prepare a cone structure device for the simultaneous production of water vapor and electricity.
도 4는 상기 방법에 의해 MWCNT가 증착된 구조체의 사진으로 300 ㎖ 용액을 사용한 경우에는 균일한 MWCNT 층이 형성되지 않았다. 이에 50, 100 및 200 ㎖의 용액을 사용하여 각각 제조한 원뿔구조체를 사용하여 1)과 동일한 방법에 의해 수증기 생산능을 평가하고 그 결과를 도 5 및 도 6에 도시하였다. 4 is a photograph of a structure in which MWCNTs are deposited by the above method, and when a 300 ml solution is used, a uniform MWCNT layer is not formed. Thus, the water vapor production capacity was evaluated by the same method as 1) using conical structures prepared using 50, 100 and 200 ml of solutions, respectively, and the results are shown in FIGS. 5 and 6.
도 5의 a)~d)는 셀룰로오스와 MWCNT가 증착된 셀룰로오스의 SEM 이미지로, MWCNT 용액의 사용량이 증가할수록 MWCNT 층의 두께가 31, 50 및 72 ㎛로 점차 증가하는 반면, 다공성은 감소함을 보여준다. e)는 태양광스펙트럼과 각 샘플들의 흡광도를 보여주는 것으로, 31, 50 및 72 ㎛ 두께의 MWCNT 층이 형성된 셀룰로오스의 흡광도는 각각 98.1, 98.5 및 98.4%로 모든 두께에서 광범위한 파장에 대해 우수한 흡광도를 나타내었다. 반면 MWCNT 층이 형성되지 않은 셀룰로오스의 흡광도는 매우 낮았다. f)는 물이 없는 상태에서 원뿔구조체에 1 sun 광도의 빛을 조사하였을 때 본 장치에서 원뿔구조 꼭대기의 온도를 측정한 것으로, MWCNT 층이 형성된 경우 3분이내에 평형온도인 45~50℃로 온도가 상승함을 보여준다. 5 a) to d) are SEM images of cellulose and cellulose on which MWCNTs are deposited. As the amount of MWCNT solution increases, the thickness of the MWCNT layer gradually increases to 31, 50, and 72 μm, while the porosity decreases. Shows. e) shows the solar spectrum and absorbance of each sample. The absorbance of cellulose with MWCNT layers with thicknesses of 31, 50 and 72 μm was 98.1, 98.5 and 98.4%, respectively, showing good absorbance for a wide range of wavelengths at all thicknesses. It was. On the other hand, the absorbance of cellulose without MWCNT layer was very low. f) is the temperature of the top of the cone structure when the cone structure is irradiated with 1 sun luminescence in the absence of water. The temperature of the equilibrium temperature is 45 ~ 50 ℃ within 3 minutes when the MWCNT layer is formed. Shows rising.
수증기와 전기 동시 생산용 장치를 물에 띄웠을 때는 도 6의 a)에 도시하였듯이 최고 온도가 다소 감소하였는데, 이는 물이 없는 경우에는 흡수된 에너지가 열로 방출되지만, 물이 있는 경우에는 수증기 생성에 사용되기 때문으로 사료된다. 물에 띄어진 장치에서는 온도 평형에 약 200~300초가 소요되었다. Zhao 등(Nat. Nanotech., 2018, doi: 10.1038/s41565-018-0097-z)은 다른 에너지 소비 형태에서 표면온도와 시간 사이의 상관관계가 상이함을 보고한 바 있다. 따라서 초반의 빠른 온도 상승 구간에서는 대부분의 에너지가 온도를 상승시키는 것에 사용되었으며, 이후 평형 구간에서는 에너지가 주로 증발에 사용된 것으로 해석된다. MWCNT 층의 두께가 두꺼워질수록 표면 온도는 증가하였다. b)는 온도-시간 그래프의 변곡점을 확인한 것으로, 물의 가열과 증발에 에너지 균형 값이 존재함을 보여준다. MWCNT 층의 두께가 두꺼울수록 변곡 온도 역시 감소하여, 물의 증발 효율이 증가할 것임을 예측할 수 있다. c)와 d)는 수증기 생성량과 생성속도를 보여주는 그래프로, MWCNT 층의 두께가 증가함에 따라 수증기 생성량이나 증발속도가 증가함을 보여준다. MWCNT 층의 두께가 0에서 72㎛로 증가함에 따라 1 sun 광도의 광조사 시 증발속도는 0.439에서 1.651 kg/㎡.h로 증가하였다. When the water vapor and electric co-production apparatus was floated in water, the maximum temperature was slightly decreased, as shown in FIG. 6 a). In the absence of water, the absorbed energy was released as heat, but in the presence of water, It is believed to be used. In the floated device, it took about 200 to 300 seconds to equilibrate the temperature. Zhao et al. (Nat. Nanotech., 2018, doi: 10.1038 / s41565-018-0097-z) reported that the correlation between surface temperature and time in different energy consumption patterns differs. Therefore, most of the energy was used to increase the temperature in the early rapid temperature rise period, and then it was interpreted that energy was mainly used for evaporation in the equilibrium period. The thicker the MWCNT layer, the higher the surface temperature. b) identifies the inflection point of the temperature-time graph, showing the presence of energy balance values for water heating and evaporation. It can be predicted that the thicker the MWCNT layer, the lower the inflection temperature will increase, thus increasing the evaporation efficiency of water. c) and d) are graphs showing the amount of steam produced and the rate of production, showing that the amount of vapor produced or the rate of vaporization increases as the thickness of the MWCNT layer increases. As the thickness of the MWCNT layer increased from 0 to 72 μm, the evaporation rate increased from 0.439 to 1.651 kg / m 2 .h at 1 sun light irradiation.
또한 도 6의 d)에서는 광조사 시 뿐 아니라 암조건에서 역시 수증기의 증발이 일어남을 확인할 수 있었는데, 이는 금속 공기전지로 작동함에 의해 낮과 밤 모두 수증기가 생성될 수 있음을 의미한다.In addition, in Figure 6 d) it was confirmed that the vapor evaporation occurs not only at the time of light irradiation but also in the dark conditions, which means that the steam can be generated both day and night by operating as a metal air cell.
3) 수증기와 전기 동시 생산용 장치의 꼭지각에 따른 수증기 생산능 평가3) Evaluation of steam production capacity according to the vertex angle of the device for simultaneous production of steam and electricity
수증기와 전기 동시 생산용 장치의 원뿔구조가 수증기 생산에 미치는 영향을 확인하기 위하여 실시예 1에서 제조한 MWCNT가 증착된 셀룰로오스를 사용하여, 꼭지각이 45, 60 및 90°인 원뿔구조 금속-공기 전지를 제조하였다.Conical metal-air battery with vertices of 45, 60 and 90 ° using cellulose deposited with MWCNT prepared in Example 1 to determine the effect of conical structure of steam and electricity co-production apparatus on steam production Was prepared.
도 7의 a)는 상기 수증기와 전기 동시 생산용 장치에 1 sun 광도의 빛을 조사하였을 때의 온도변화를 도시한 것으로, 내부 도면은 물이 없는 상태에서의 온도변화(좌)와 변곡점(우)을 도시한 것이다. a)에 의하면, 꼭지각이 60°인 경우 변곡온도가 가장 낮아 수증기 생산 속도가 가장 높을 것으로 예측할 수 있다. 실제 측정 결과인 도 7의 b)와 도 8의 a)에서 역시 꼭지각이 60°인 원뿔구조 장치의 수증기 생산능이 가장 높은 것을 확인할 수 있으며, 꼭지각이 60°인 원뿔구조 장치에서의 암조건 및 1 sun 광도 광조사 시의 증발 속도는 각각 0.618 및 1.651 kg/㎡.h였다. 7 a) shows the temperature change when the water vapor and the device for the simultaneous production of light at 1 sun light intensity, the internal view shows the temperature change (left) and the inflection point (right) without water ) Is shown. According to a), when the angle of vertex is 60 °, the inflection temperature is the lowest, so it can be predicted that the steam production rate will be the highest. 7 b) and 8 a) of the actual measurement results, it can be seen that the water vapor production capacity of the cone structure device having a vertex angle of 60 ° is the highest, and the dark condition and 1 in the cone structure device having a vertex angle of 60 °. The evaporation rates during sun light irradiation were 0.618 and 1.651 kg / m 2 .h, respectively.
도 8의 b)에 광조사 시 MWCNT 층의 두께와 원뿔구조의 꼭지각에 따른 증발속도를 정리하여 도시하였다. 내부 도면은 자가 증발 시의 증발속도를 나타낸다.8B shows the evaporation rates according to the thickness of the MWCNT layer and the vertex angle of the cone structure during light irradiation. The internal figure shows the evaporation rate at the time of self evaporation.
실시예 4 : 수증기와 전기 동시 생산용 장치의 실험실 내 전기 생산능 평가Example 4 Evaluation of Electric Production Capacity in the Laboratory of Simultaneous Production of Water Vapor and Electricity
1) 전기 생산능 평가1) Electricity Production Evaluation
실시예 1에서 제조한 원뿔구조체의 전기 생산능을 평가하기 위하여 실시예 1에서 제조한 원뿔구조 장치를 DI수가 들어 있는 페트리디쉬에 띄웠다. 바닥과 꼭대기에 장착된 철선에 전극을 연결한 후 전류 및 전압 신호를 각각 J-t 곡선(간격 : 10 초) 및 V-t 곡선(간격 : 10 초)을 통해 전위차계 (IVIUMSTAT)에 수집하여 기록하였다. In order to evaluate the electrical production capacity of the cone structure prepared in Example 1, the cone structure device prepared in Example 1 was floated in a Petri dish containing DI water. After connecting the electrodes to the bottom and top wires, current and voltage signals were collected and recorded on the potentiometer (IVIUMSTAT) through the J-t curve (interval: 10 seconds) and V-t curve (interval: 10 seconds), respectively.
도 9의 a)는 본 실험의 모식도이며, b)는 실제 실험 사진이다. 도 9의 c)는 b)의 실험에 의해 측정된 암조건 및 1 sun 광도의 광조사 시의 I-V 곡선 및 I-V 곡선으로부터 계산된 출력 곡선이다. 1 sun 광도의 광조사 시에는 암조건에 비해 개로전압과 단락전류가 모두 증가함에 따라 실시예 1의 장치의 1 sun 광도에서의 출력은 13.18 mW/㎡으로 암조건에서의 출력인 8.24 mW/㎡에 비해 1.6배 정도 증가하였다. 9 a) is a schematic diagram of the present experiment, b) is an actual experimental photograph. 9 c is an output curve calculated from an I-V curve and an I-V curve at light conditions of 1 sun light and dark conditions measured by the experiment of b). As the open-circuit voltage and the short-circuit current increased in the case of 1 sun light irradiation, the output power at 1 sun light intensity of the device of Example 1 was 13.18 mW / m 2, which is 8.24 mW / m 2. It is 1.6 times higher than.
암조건에서의 출력은 공기 이온전지로서의 작동에 의한 전기의 생산과 함께, 공기 이온전지의 작동 시 발생하는 열 및 자연 건조에 따른 수증기 생성에 기인한 물의 이동에 따른 나노발전기의 전기 생산에 기여하는 것으로 해석된다. 광조사 조건에서는 수증기 생성에 의한 물의 이동이 증가함에 따라 나노발전기에 의한 출력이 증가하게 되므로, 암조건에 비해 광조사 조건에서 전체 출력이 증가함을 확인할 수 있다. The output under dark conditions contributes to the production of electricity by operation as an air ion cell, and to the electricity generation of the nanogenerator due to the movement of water due to the generation of water vapor due to heat and natural drying generated during operation of the air ion cell. It is interpreted as. In the light irradiation conditions, the output by the nano-generator increases as the movement of water due to the generation of water vapor increases, it can be seen that the total output increases in the light irradiation conditions compared to the dark conditions.
2) 수증기와 전기 동시 생산용 장치에서의 구조에 의한 효능 평가2) Efficacy evaluation by structure in the device for simultaneous production of water vapor and electricity
콘 구조체와 장방형의 장치를 사용하여 전기 생산능에서 콘 구조체가 미치는 영향을 추가적으로 확인하였다.The cone structure and the rectangular device were used to further verify the effect of the cone structure on the electrical production capacity.
이를 위하여 실시예 1에서와 동일한 방법에 의해 셀룰로오스 상에 MWCNT를 진공증착하고, 이를 사용하여 원뿔의 높이 및 밑면 직경과 동일하게 장방형 및 삼각형 구조를 제작하였다. 장방형 및 삼각형 금속-공기 전지의 상부와 하부를 각각 철선을 통해 전극을 연결하였다. 실시예 1에서와 마찬가지로 하부에 연결된 철선은 먼저 MWCNT 상에 에폭시 레진을 도포하여 철선이 물과는 접촉하되 MWCNT와는 직접 접촉하지 않도록 하였다.To this end, MWCNT was vacuum-deposited on cellulose by the same method as in Example 1, and a rectangular and triangular structure was prepared using the same height and base diameter of the cone. The upper and lower portions of the rectangular and triangular metal-air batteries were connected to the electrodes through wires, respectively. As in Example 1, the iron wire connected to the bottom was first coated with epoxy resin on the MWCNT so that the iron wire was in contact with water but not directly with MWCNT.
상기 방법으로 제조된 장방형 장치와 삼각형 장치를 사용하여 암조건에서 전기 생산능을 평가하였다. 도 10은 실제 실험을 보여주는 사진과 그 결과 시간에 따른 전압을 보여주는 그래프이다. The rectangular and triangular devices manufactured by the above method were used to evaluate the electrical production capacity under dark conditions. 10 is a graph showing the actual experiment and the resulting voltage over time.
도 10에서 삼각형 장치는 전체 면적이 장방형 장치의 1/2에 불과함에도 불구하고, 약 2배 가량 높은 전압의 전기를 생산함을 확인할 수 있다. 이는 본 발명의 수증기와 전기 동시 생산용 장치에서 원뿔, 원뿔대, 각뿔, 각뿔대와 같은 3차원 구조가 중요한 역할을 담당함을 의미한다. In FIG. 10, it can be seen that the triangular device produces electricity of about 2 times higher voltage even though the total area is only 1/2 of the rectangular device. This means that a three-dimensional structure such as a cone, a truncated cone, a pyramid, and a truncated pyramid plays an important role in the apparatus for simultaneously producing water vapor and electricity.
3) 전해질 용액을 사용한 전기 생산능 평가3) Evaluation of electricity production capacity using electrolyte solution
물은 이온 농도가 매우 낮기 때문에 전해질 용액을 사용하여 이온이 본 수증기와 전기 동시 생산용 장치의 출력을 향상시킬 수 있는 지 확인하였다. 실험은 물 대신 전해질 용액을 사용한 것을 제외하고는 1)과 동일한 방법에 의해 실시하였다.Since water has a very low ion concentration, an electrolyte solution was used to determine whether the ions could improve the output of this steam and the apparatus for simultaneous production of electricity. The experiment was conducted by the same method as 1) except that the electrolyte solution was used instead of water.
도 11은 각종 전해질에서의 본 장치의 출력을 보여주는 그래프이다. a)는 NaCl의 농도에 따른 출력을 보여주는 것으로, NaCl의 농도가 0.6 M까지 증가함에 따라 출력 역시 증가하다가 NaCl의 농도가 더 증가하면 오히려 출력은 감소하였다. 이는 NaCl의 농도가 너무 높은 경우 원뿔구조의 상부에서 물이 증발함에 따라 NaCl이 석출되기 때문으로 사료된다. 0.6 M NaCl에서의 출력은 107.79 mW/㎡으로 물에서의 출력에 비해 8배 이상 향상되었다.11 is a graph showing the output of the device in various electrolytes. a) shows the output according to the concentration of NaCl. As the concentration of NaCl increases to 0.6 M, the output also increases, but decreases as the concentration of NaCl increases. This may be because NaCl precipitates as the water evaporates at the top of the cone structure when the NaCl concentration is too high. The power at 0.6 M NaCl was 107.79 mW / m 2, which is more than eight times better than the power at water.
전해질이 출력 향상에 유리한 것을 확인함에 따라 양이온 또는 음이온의 종류가 출력에 미치는 영향을 파악하였다. 이때 전해질의 농도는 0.6 M로 고정하였다. 도 11의 b)는 음이온의 영향을, c)는 양이온의 영향을 보여주는 것으로, 음이온은 크기가 증가할수록 출력이 향상되어 0.6M NaBr을 사용한 경우 출력이 255.67 mW/㎡까지 향상되었다. 양이온은 크기에 따른 경향성을 나타내지는 않았으며, 0.6M KCl을 사용한 경우 505.69 mW/㎡으로 종래기술의 하이브리드 시스템에 비해서도 높은 출력을 나타내었다. 더욱 괄목할만한 점은 양이온에 따라 암조건에서의 출력 역시 크게 증가하여 0.6M KCl을 사용한 경우 252.4 mW/㎡, 0.6M CaCl 2를 사용한 경우 266.2 mW/㎡의 값을 나타내었다.As it was confirmed that the electrolyte was advantageous for the improvement of the output, the influence of the type of cation or anion on the output was identified. At this time, the concentration of the electrolyte was fixed at 0.6 M. 11 b) shows the effect of anions, c) shows the effect of cations, the output of the anion is improved as the size is increased, the output was improved to 255.67 mW / ㎡ using 0.6M NaBr. The cations did not show a trend in size, and showed a higher power than the conventional hybrid system at 505.69 mW / m 2 when 0.6M KCl was used. It is remarkable that the output under dark conditions also increases greatly with cations, resulting in 252.4 mW / m 2 using 0.6M KCl and 266.2 mW / m 2 using 0.6M CaCl 2 .
연못 물이나 바닷물은 다양한 이온을 함유하는 것으로 알려져 있다. 이에 충남대학교 연못에서 채취한 물과, 바닷물을 사용하여 출력을 측정하였다. d)는 그 결과를 보여준 것으로 이들 역시 물 보다는 높은 출력을 나타내었다.Pond water and sea water are known to contain various ions. The output was measured using water and seawater collected from Chungnam National University pond. d) shows the results, which also showed higher output than water.
4) 직렬연결 및 병렬연결에 의한 전기 생산능 평가4) Evaluation of electricity production capacity by series connection and parallel connection
수증기와 전기 동시 생산용 장치의 출력을 직렬연결과 병렬연결을 통해 증폭시킬 수 있을 것으로 예상하고, 이를 실시예를 통하여 확인하였다. The output of the water vapor and the device for the simultaneous production of electricity is expected to be amplified through a series connection and a parallel connection, and confirmed through the examples.
실시예 1에 기재된 방법에 의해 동일한 원뿔구조의 장치 4개를 제조한 후, 각각의 장치와 4개의 장치를 직렬로 연결한 장치 및 4개의 장치를 병렬로 연결한 장치에 대해 암조건에서 I-V 곡선 및 I-V 곡선으로부터 계산된 출력 곡선를 얻었다. 도 12의 a)와 b)는 그 결과를 보여주는 그래프로, 먼저 4개의 장치 각각은 개로전압이 0.65 V, 단락전류가 27 ㎂로 재현성이 우수함을 확인할 수 있다. 직렬연결에 의해 장치의 개로전압은 2.3V로 증폭되었으며, 병렬연결에 의해 단락전류가 120 ㎂로 증가하였다. c)는 직렬연결된 장치의 사진과 개로전압을 시간의 함수로 나타낸 그래프로, 55,000초 동안 일정한 개로전압 2.3 V를 유지하는 것을 보여주어 본 발명의 장치가 장기간 전기 생산을 위한 실질적인 수증기와 전기 동시 생산용 장치로 사용될 수 있음을 보여준다.After manufacturing four devices of the same conical structure by the method described in Example 1, IV curves under dark conditions for each device and four devices connected in series and four devices connected in parallel And the calculated output curve from the IV curve. 12A and 12B are graphs showing the results. First, each of the four devices has excellent reproducibility with an open circuit voltage of 0.65 V and a short circuit current of 27 mA. The open circuit voltage of the device was amplified to 2.3V by the series connection, and the short circuit current increased to 120 mA by the parallel connection. c) is a photograph of a series-connected device and a graph showing the open-circuit voltage as a function of time, showing that the open-circuit voltage is maintained at 2.3 V for 55,000 seconds so that the device of the present invention can produce both substantially water vapor and electricity for long-term electricity production. It can be used as a device.

Claims (9)

  1. 금속 전극을 제1전극으로,The metal electrode as the first electrode,
    속이 빈 원뿔, 각뿔, 원뿔대 또는 각뿔대의 구조를 갖는 다공성의 친수성 고분자 기재 상에 증착된 탄소구조체층을 제2전극으로 하며,The second electrode is a carbon structure layer deposited on a porous hydrophilic polymer substrate having a hollow cone, a pyramid, a truncated cone or a pyramid structure.
    상기 제1전극이 잠겨진 물에 상기 친수성 고분자 기재의 밑면이 접촉하여 부유된 상태로 사용되는 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.Simultaneous production of water vapor and electricity, characterized in that the first electrode is used in a floating state in contact with the bottom surface of the hydrophilic polymer substrate in contact with the water.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1전극은 Fe, Zn, Al, Ni, Mg으로 이루어진 군으로부터 선택된 하나의 금속 또는 둘 이상의 금속의 합금인 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.Wherein the first electrode is one metal selected from the group consisting of Fe, Zn, Al, Ni, and Mg or an alloy of two or more metals.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 친수성 고분자는 종이, 면, 셀룰로오스계 수지, 폴리아크릴로니트릴, 폴리비닐알콜, 폴리아미드, 폴리에테르설폰, 폴리에틸렌글리콜 및 친수성 폴리우레탄으로 이루어진 군으로부터 선택된 하나 이상으로 이루어진 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.The hydrophilic polymer is water and electricity characterized in that at least one selected from the group consisting of paper, cotton, cellulose resin, polyacrylonitrile, polyvinyl alcohol, polyamide, polyethersulfone, polyethylene glycol and hydrophilic polyurethane Equipment for simultaneous production.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 탄소구조체는 카본블랙, 풀러렌, 카본나노튜브, 그래핀, 카본닷, 탄소섬유 및 전도성 카본으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.The carbon structure is at least one selected from the group consisting of carbon black, fullerenes, carbon nanotubes, graphene, carbon dots, carbon fibers and conductive carbon, the apparatus for simultaneous production of water vapor and electricity.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 카본나노튜브층은 10~100 ㎛ 두께인 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.The carbon nanotube layer is a device for the simultaneous production of water vapor and electricity, characterized in that 10 ~ 100 ㎛ thickness.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 원뿔, 각뿔, 원뿔대 또는 각뿔대의 꼭지각은 10~170°인 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.The cone, pyramid, truncated cone or the vertex angle of the pyramid is a device for the simultaneous production of steam and electricity, characterized in that 10 ~ 170 °.
  7. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 수증기와 전기 동시 생산용 장치는 광조사 여부와 무관하게 전기를 생산하는 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.The apparatus for simultaneously producing steam and electricity is characterized in that the apparatus for producing steam and electricity simultaneously, characterized in that it produces electricity regardless of light irradiation.
  8. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 물에는 전해질이 용해되어 있는 것을 특징으로 하는 수증기와 전기 동시 생산용 장치.The device for simultaneous production of water vapor and electricity, characterized in that the electrolyte is dissolved in the water.
  9. 제 1 항 내지 제 4 항 중 어느 한 항에 의한 수증기와 전기 동시 생산용 장치를 직렬 또는 병렬로 연결한 것을 특징으로 하는 수증기와 전기 동시 생산용 장치. An apparatus for simultaneous production of steam and electricity, comprising connecting the steam and the apparatus for simultaneous production of electricity according to any one of claims 1 to 4 in series or in parallel.
PCT/KR2019/008362 2018-07-13 2019-07-08 Device for simultaneously producing water vapor and electricity WO2020013547A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019302814A AU2019302814B2 (en) 2018-07-13 2019-07-08 Device for simultaneously producing water vapor and electricity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0081603 2018-07-13
KR20180081603 2018-07-13
KR1020190076703A KR102154656B1 (en) 2018-07-13 2019-06-27 Device for Simultaneous Production of Steam and Electricity
KR10-2019-0076703 2019-06-27

Publications (2)

Publication Number Publication Date
WO2020013547A2 true WO2020013547A2 (en) 2020-01-16
WO2020013547A3 WO2020013547A3 (en) 2020-03-05

Family

ID=69141975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008362 WO2020013547A2 (en) 2018-07-13 2019-07-08 Device for simultaneously producing water vapor and electricity

Country Status (1)

Country Link
WO (1) WO2020013547A2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1081318A (en) * 1977-12-13 1980-07-08 William A. Armstrong Buoyant metal/air battery

Also Published As

Publication number Publication date
WO2020013547A3 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
Liu et al. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation
Sun et al. Emerging design principles, materials, and applications for moisture-enabled electric generation
KR101434694B1 (en) Highly Accessible, Nanotube Electrodes For Large Surface Area Contact Applications
Liu et al. High performance all-carbon thin film supercapacitors
Zheng et al. Materials for evaporation‐driven hydrovoltaic technology
CN111600511B (en) Preparation method of one-dimensional carboxylated carbon material-based photovoltaic and wet gas power generation device
Gao et al. Versatile origami micro-supercapacitors array as a wind energy harvester
Chen et al. Electrochemically reduced graphene porous material as light absorber for light-driven thermoelectric generator
JP2008522410A (en) High power density supercapacitor using carbon nanotube electrode
Sun et al. Solar-driven simultaneous desalination and power generation enabled by graphene oxide nanoribbon papers
Yin et al. Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films
Singh et al. Electrical and structural properties of ionic liquid doped polymer gel electrolyte for dual energy storage devices
Zhao et al. Narrow-bandgap light-absorbing conjugated polybenzobisthiazole: Massive interfacial synthesis, robust solar-thermal evaporation and thermoelectric power generation
Peng et al. Programmable asymmetric nanofluidic photothermal textile umbrella for concurrent salt management and in situ power generation during long-time solar steam generation
Ma et al. Reduced graphene oxide/FeOOH-based asymmetric evaporator for the simultaneous generation of clean water and electrical power
KR102154656B1 (en) Device for Simultaneous Production of Steam and Electricity
Jiao et al. Graphene oxide as a versatile platform for emerging hydrovoltaic technology
Kumar et al. Hydrovoltaic power generation from multiwalled carbon nanotubes
Sun et al. Engineering of 0D/1D architectures in 3D networks over CDs/PPy-CPP biomass foam with high efficiency on seawater evaporation
Zhang et al. A coal-based multifunctional membrane for solar-driven seawater desalination and power generation
Maleki et al. High-performance solar steam generator using low-cost biomass waste photothermal material and engineering of the structure
WO2014035030A1 (en) Method for producing foam-shaped graphene structure by boiling, and foam-shaped graphene structure using same
Chen et al. Achieving Ultrahigh Voltage Over 100 V and Remarkable Freshwater Harvesting Based on Thermodiffusion Enhanced Hydrovoltaic Generator
CN113292142B (en) Photoelectric synergistic capacitive deionization electrode material and preparation method and application thereof
WO2020013547A2 (en) Device for simultaneously producing water vapor and electricity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834177

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019302814

Country of ref document: AU

Date of ref document: 20190708

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834177

Country of ref document: EP

Kind code of ref document: A2