WO2020013488A1 - Method for preparing iron oxide - Google Patents

Method for preparing iron oxide Download PDF

Info

Publication number
WO2020013488A1
WO2020013488A1 PCT/KR2019/007846 KR2019007846W WO2020013488A1 WO 2020013488 A1 WO2020013488 A1 WO 2020013488A1 KR 2019007846 W KR2019007846 W KR 2019007846W WO 2020013488 A1 WO2020013488 A1 WO 2020013488A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
lithium
sulfur
drying
heat treatment
Prior art date
Application number
PCT/KR2019/007846
Other languages
French (fr)
Korean (ko)
Inventor
한승훈
예성지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2020013488A1 publication Critical patent/WO2020013488A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing iron oxide applicable to the positive electrode additive of a lithium-sulfur battery.
  • Secondary batteries unlike primary batteries that can only be discharged once, have become an important electronic component of portable electronic devices since the 1990s as an electrical storage device capable of continuous charging and discharging.
  • the lithium ion secondary battery was commercialized by Sony, Japan in 1992, it has led the information age as a core component of portable electronic devices such as smartphones, digital cameras, and notebook computers.
  • lithium ion secondary batteries have been widely used in applications such as vacuum cleaners, power tools for electric tools, electric bicycles and electric scooters, and electric vehicles (EVs) and hybrid electric vehicles (hybrid electric vehicles).
  • EVs electric vehicles
  • hybrid electric vehicles hybrid electric vehicles
  • HEV vehicles
  • PHEVs Plug-in hybrid electric vehicles
  • ESS Electric Storage Systems
  • Lithium secondary battery is basically composed of materials such as positive electrode, electrolyte, negative electrode, etc. Among them, since positive and negative electrode materials determine the capacity of battery, lithium ion secondary battery is due to material limitations of positive and negative electrodes. Limited by capacity In particular, the secondary battery to be used for applications such as electric vehicles, PHEVs, so that the use of as long as possible after a single charge, the discharge capacity of the secondary battery is very important.
  • One of the biggest constraints on the sale of electric vehicles is that the distance that can be driven after a single charge is much shorter than that of a normal gasoline engine.
  • Lithium-sulfur secondary battery goes beyond the capacity limit determined by the insertion / decalation reaction of lithium ion layered metal oxide and graphite, which is the basic principle of conventional lithium ion secondary battery, and transition metal replacement and cost reduction It is a new high-capacity, low-cost battery system that can bring about.
  • a lithium-sulfur secondary battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical capacity resulting from (S 8 + 16Li + + 16e ⁇ 8Li 2 S) reached 1,675 mAh / g anode is lithium metal (theoretical capacity: 3,860 mAh / g) enables ultra high capacity battery systems.
  • the discharge voltage is about 2.2 V, it theoretically shows an energy density of 2,600 Wh / kg based on the amount of the positive electrode and the negative electrode active material. This value is 6 to 7 times higher than the energy theoretical energy density of 400 Wh / kg of a commercial lithium secondary battery (LiCoO 2 / graphite) using a layered metal oxide and graphite.
  • Lithium-sulfur secondary battery has been attracting attention as a new high-capacity, eco-friendly and low-cost lithium secondary battery since it is known that the battery performance can be dramatically improved by forming nanocomposites around 2010. Is being done.
  • the particle size is tens of nanometers. It is necessary to reduce the size to the following and conduct surface treatment with conductive materials. For this purpose, various chemicals (melt impregnation of nano-sized porous carbon nanostructures or metal oxide structures) and physical methods (high energy ball milling) are reported. It is becoming.
  • lithium-sulfur secondary batteries Another major problem associated with lithium-sulfur secondary batteries is the dissolution of lithium polysulfide, an intermediate of sulfur produced during discharge, into the electrolyte.
  • sulfur (S 8 ) continuously reacts with lithium ions such that S 8 ⁇ Li 2 S 8 ⁇ (Li 2 S 6 ) ⁇ Li 2 S 4 ⁇ Li 2 S 2 ⁇ Li 2 S, etc. (Phase) is continuously changed.
  • long chains of sulfur such as Li 2 S 8 and Li 2 S 4 (lithium polysulfide) are easily dissolved in general electrolytes used in lithium ion batteries. When this reaction occurs, not only the reversible cathode capacity is greatly reduced, but also the dissolved lithium polysulfide diffuses to the cathode, causing various side reactions.
  • Lithium polysulfide in particular, causes a shuttle reaction during the charging process, which causes the charging capacity to continuously increase, thereby rapidly decreasing the charge and discharge efficiency.
  • various methods have been proposed to solve this problem, and can be classified into a method of improving the electrolyte, a method of improving the surface of the negative electrode, and a method of improving the characteristics of the positive electrode.
  • the method of improving the electrolyte is to prevent the dissolution of polysulfide into the electrolyte using new electrolytes such as a functional liquid electrolyte, a polymer electrolyte, and an ionic liquid of a new composition, or to control the viscosity and the like to disperse the negative electrode. This is to control the shuttle reaction as much as possible.
  • electrolyte additives such as Li x NO y and Li x SO y are added to the surface of the lithium anode by adding an electrolyte additive such as LiNO 3 .
  • electrolyte additive such as LiNO 3 .
  • a method of forming a thick functional SEI layer on the surface of the lithium metal is actively conducted to control the shuttle reaction by improving the characteristics of the SEI formed on the surface of the anode.
  • methods to improve the characteristics of the anode include forming a coating layer on the surface of the anode particles to prevent the dissolution of polysulfide or adding a porous material that can catch the dissolved polysulfide.
  • a method of adding to the method, attaching a functional group capable of adsorbing lithium polysulfide to the surface of the carbon structure, and encapsulating sulfur particles using graphene or graphene oxide and the like have been proposed.
  • the present inventors have conducted various studies to solve the above problems, but as a raw material of iron oxide, Fe (NO 3 ) 3 ⁇ 9H 2 O is heat-treated, by controlling the heat treatment temperature and process time to selectively iron oxide of high purity It was confirmed that it could be manufactured.
  • It provides a method for producing iron oxide comprising a.
  • One embodiment of the present invention is that the concentration of Fe (NO 3 ) 3 ⁇ 9H 2 O aqueous solution of step (1) is 0.5 to 5.0 M.
  • step (2) is that the drying of step (2) is carried out at a temperature of 70 to 90 °C.
  • step (2) is that the drying of step (2) is carried out for 4 to 12 hours.
  • step (3) is that the heat treatment of step (3) is carried out at 120 to 170 °C.
  • One embodiment of the invention is that the heat treatment of step (3) is carried out for 16 to 36 hours.
  • One embodiment of the present invention is to form the secondary particles by the primary particles of the iron oxide aggregated.
  • the primary particles have a particle diameter of 10 to 80 nm.
  • the secondary particles have a particle diameter of 1 to 5 ⁇ m.
  • Fe (NO 3 ) 3 ⁇ 9H 2 O can be produced by a simple process comprising the step of drying and heat treatment, and can be produced iron oxide of high purity, and control the temperature and time of the drying and heat treatment There is an advantage in that it is possible to control the shape and purity of the iron oxide to be produced.
  • the manufactured iron oxide may increase the life characteristics and the discharge capacity of the lithium-sulfur battery when applied as a positive electrode additive of the lithium-sulfur battery.
  • Figure 5 shows the change in chromaticity of the lithium polysulfide adsorption reaction according to the preparation and comparative examples of the present invention as a UV absorbance measurement results.
  • FIG. 6 shows discharge capacity measurement results of a lithium-sulfur battery including a positive electrode according to Examples and Comparative Examples of the present invention.
  • the present invention relates to a method for manufacturing iron oxide, and relates to a method for producing iron oxide having a form and properties that can be applied as a positive electrode additive of a lithium-sulfur battery to improve the discharge capacity and life characteristics of the battery.
  • Method of producing iron oxide according to the present invention is (1) Fe (NO 3) 3 ⁇ by dissolving 9H 2 O in distilled water, Fe (NO 3) 3 ⁇ preparing a 9H 2 O solution, (2) the Fe (NO 3 ) drying the 3 ⁇ 9H 2 O aqueous solution and (3) heat treating the dried Fe (NO 3 ) 3 ⁇ 9H 2 O to obtain iron oxide represented by the following Chemical Formula 1.
  • the Fe (NO 3 ) 3 ⁇ 9H 2 O can be prepared in the form of an aqueous solution by dissolving in an aqueous solvent, preferably Fe (NO 3 ) 3 ⁇ 9H 2 O can be dissolved in DIW (deionized water) and the like. .
  • the concentration of the aqueous solution may be 0.5 to 5.0 M, preferably 1.0 to 2.0 M. If it is less than 0.5 M, the evaporation rate of the aqueous solution may be slowed to increase the crystal of iron oxide to be produced or the yield of iron oxide may be lowered. If it is more than 5.0 M, the iron oxide may be agglomerated. It may not be suitable for application as a positive electrode additive.
  • the Fe (NO 3 ) 3 .9H 2 O aqueous solution may be further subjected to a pretreatment step of drying prior to heat treatment for iron oxide production.
  • the drying may be carried out at 70 to 90 °C, preferably at 75 to 85 °C.
  • the drying may be performed for 4 to 12 hours in the above temperature range, and preferably for 5 to 8 hours. If less than the temperature or the drying time is short, excess water of the reactant Fe (NO 3 ) 3 ⁇ 9H 2 O may remain, after which the water may evaporate unevenly during the heat treatment process according to the present invention.
  • Iron oxide represented by Formula 1 may not be synthesized.
  • the oxidation reaction by heat treatment may proceed in part after all of the reactants Fe (NO 3 ) 3 ⁇ 9H 2 O evaporated.
  • a non-uniform oxidation reaction may occur through the heat treatment process, and the material represented by Chemical Formula 1 may not be synthesized, so it is properly adjusted within the above range.
  • the drying pretreatment step may be performed using a convection oven in an environment where sufficient air is introduced.
  • the Fe (NO 3 ) 3 ⁇ 9H 2 O may be heat-treated after the drying pretreatment to produce iron oxide represented by Chemical Formula 1.
  • the heat treatment may be performed at 120 to 170 ° C, preferably at 150 to 160 ° C.
  • the heat treatment may be performed for 16 to 36 hours in the above temperature range, and preferably for 18 to 24 hours. If the heat treatment temperature is less than 120 ° C or shorter than the heat treatment time, the reaction may not be terminated and a reaction residue such as Fe (OH) 2 NO 3 , which is not the structure of Chemical Formula 1, may remain.
  • a stable material such as and the size of the particles that the heat treatment temperature exceeds 170 °C or is generated if longer than the annealing time may be increased bundle is expressed in the form, and Fe 2 O 3, unlike the iron oxide of the formula (1) Can be generated. Therefore, it may be difficult to synthesize the iron oxide of the desired physical properties according to the present invention, so it is appropriately adjusted within the temperature and time of the above range.
  • the heat treatment step may be performed using a convection oven in an environment in which sufficient air is introduced.
  • the Fe (NO 3 ) 3 ⁇ 9H 2 O is HNO 3 (g) is degassed during the heat treatment step, to produce a material represented by the formula (1).
  • Oxidized water of iron in Formula 1 may have a variety of oxidation water according to the heat treatment time and temperature, preferably x is 1.7 ⁇ x ⁇ 1.9, more preferably 1.7 ⁇ x ⁇ 1.8, preferred one of the present invention In some embodiments, in Chemical Formula 1, x may be 1.766.
  • the prepared iron oxide may be one of the primary particles to form a secondary particle.
  • the primary particles may have a particle diameter of 10 to 80 nm, preferably 20 to 50 nm.
  • the secondary particles formed by agglomeration of the primary particles may have a particle diameter of 1 to 5 ⁇ m, and preferably 2 to 3 ⁇ m.
  • the particle diameter of the secondary particles decreases within the above range, it is suitable as a cathode material of a lithium-sulfur secondary battery, and when the particle diameter of the secondary particles is larger than the above range, the particle size is large and may not be suitable as a cathode additive of a lithium-sulfur battery. have.
  • lithium polysulfide eluted during charging and discharging of the lithium-sulfur battery can be adsorbed, thereby improving the performance of the lithium-sulfur secondary battery. You can.
  • Fe (NO 3 ) 3 .9H 2 O Sigma-Aldrich
  • DIW deionized water
  • the prepared aqueous solution was dried at 80 ° C. for 6 hours in a convection oven. Thereafter, heat treatment was performed at 155 ° C. for 18 hours in a convection oven to produce iron oxide represented by Fe 1.766 O 3 .
  • Iron oxide was prepared in the same manner as in Preparation Example 1, except that the heat treatment time was performed for 24 hours.
  • FIG 3 is an XRD analysis of Fe 1.766 O 3 prepared in Preparation Example 1
  • Figure 4 is a graph showing the XRD analysis of the iron oxide prepared in Preparation Example 2.
  • the lithium polysulfide adsorption capacity of Fe 1.766 O 3 and carbon nanotubes (CNT) according to Preparation Examples 1 and 2 was confirmed by absorbance analysis of ultraviolet rays (UV, Agilent 8453 UV-visible spectrophotometer), and is shown in FIG. 5. It was.
  • the iron oxide Fe 1.766 O 3 and CNT according to the present invention in the range of 300 to 700nm wavelength adsorbed lithium polysulfide was confirmed that the intensity of the ultraviolet absorbance (intensity) is reduced, the CNT It was found that the iron oxides of Preparation Examples 1 and 2 were more excellent in adsorption capacity of lithium polysulfide.
  • the discharge capacity was measured after configuring the positive electrode and the negative electrode of the lithium-sulfur battery as shown in Table 1 below.
  • the positive electrode of Comparative Example (1) is a sulfur-carbon composite
  • the positive electrode of Example (1) comprises a sulfur-carbon composite and Fe 1.766 O 3 of Preparation Example 1
  • the positive electrode of Example (2) is a sulfur-carbon composite And Fe 1.766 O 3 In Preparation Example 2 It was included.
  • the measurement current was 0.1C
  • the voltage range was 1.8 to 2.6V, and the result is shown through FIG. 6.
  • Example to which Fe 1.766 O 3 was added has a higher initial discharge capacity, and the Fe 1.766 O 3 which is iron oxide according to Preparation Example (2) was included.
  • the initial discharge capacity further increased compared to Example (1). Therefore, it can be seen that the iron oxide according to the present invention is effective in increasing the initial discharge capacity of the lithium-sulfur battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a method for preparing iron oxide and, more specifically, provides a method for selectively preparing high-purity iron oxide by drying and heat-treating Fe(NO3)3·9H2O, wherein the temperature and the time of the drying and heat-treatment are controlled.

Description

산화철의 제조방법Method of manufacturing iron oxide
본 출원은 2018년 7월 10일자 한국 특허 출원 제10-2018-0079821호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0079821 dated July 10, 2018, and all content disclosed in the literature of that Korean patent application is incorporated as part of this specification.
본 발명은 리튬-황 전지의 양극 첨가제로 적용 가능한 산화철의 제조방법에 관한 것이다.The present invention relates to a method for producing iron oxide applicable to the positive electrode additive of a lithium-sulfur battery.
이차전지는 1회 방전만 가능한 일차전지와 달리 지속적인 충전 및 방전이 가능한 전기저장기구로서 1990년대 이후 휴대용 전자기기의 중요 전자부품으로 자리를 잡았다. 특히, 리튬 이온 이차전지는 1992년 일본 소니(Sony)사에 의해 상용화된 이후, 스마트폰, 디지털 카메라, 노트북 컴퓨터 등과 같은 휴대용 전자기기의 핵심부품으로 정보화 시대를 이끌어 왔다. Secondary batteries, unlike primary batteries that can only be discharged once, have become an important electronic component of portable electronic devices since the 1990s as an electrical storage device capable of continuous charging and discharging. In particular, since the lithium ion secondary battery was commercialized by Sony, Japan in 1992, it has led the information age as a core component of portable electronic devices such as smartphones, digital cameras, and notebook computers.
근래에 리튬 이온 이차전지는 그 활용 영역을 더욱 넓혀가면서 청소기, 전동공구의 전원과 전기자전거, 전기스쿠터와 같은 분야에 사용될 중형전지에서, 전기자동차(electric vehicle, EV), 하이브리드 전기자동차(hybrid electric vehicle; HEV), 플러그-인 하이브리드 전기자동차(Plug-in hybrid electric vehicle; PHEV), 각종 로봇 및 대형 전력저장장치(Electric Storage System; ESS)와 같은 분야에 사용되는 대용량 전지에 이르기까지 빠른 속도로 수요를 늘려가고 있다.In recent years, lithium ion secondary batteries have been widely used in applications such as vacuum cleaners, power tools for electric tools, electric bicycles and electric scooters, and electric vehicles (EVs) and hybrid electric vehicles (hybrid electric vehicles). to high-capacity batteries used in applications such as vehicles (HEV), Plug-in hybrid electric vehicles (PHEVs), robots, and Electric Storage Systems (ESS). Demand is increasing.
그러나, 현재까지 나와 있는 이차전지 중 가장 우수한 특성을 가진 리튬 이차전지도 전기자동차, PHEV와 같은 수송기구에 활발히 사용되기에는 몇 가지 문제점이 있으며, 그 중 가장 큰 문제점은 용량의 한계이다.However, there are some problems to be actively used in transport equipment such as electric vehicles, PHEVs, and lithium secondary batteries, which have the best characteristics among the secondary batteries, and the biggest problem is the capacity limitation.
리튬 이차전지는 기본적으로 양극, 전해질, 음극 등과 같은 소재들로 구성되며, 그 중에서 양극 및 음극 소재가 전지의 용량(capacity)을 결정하기 때문에 리튬 이온 이차전지는 양극과 음극의 물질적인 한계로 인해 용량의 제약을 받는다. 특히, 전기자동차, PHEV와 같은 용도에 사용될 이차전지는 한 번 충전 후 최대한 오래 사용할 수 있어야 하므로, 이차전지의 방전용량이 매우 중요시된다. 전기자동차의 판매에 가장 큰 제약점으로 지적되는 것은 1회 충전 후 주행할 수 있는 거리가 일반 가솔린엔진의 자동차보다 매우 짧다는 점이다.Lithium secondary battery is basically composed of materials such as positive electrode, electrolyte, negative electrode, etc. Among them, since positive and negative electrode materials determine the capacity of battery, lithium ion secondary battery is due to material limitations of positive and negative electrodes. Limited by capacity In particular, the secondary battery to be used for applications such as electric vehicles, PHEVs, so that the use of as long as possible after a single charge, the discharge capacity of the secondary battery is very important. One of the biggest constraints on the sale of electric vehicles is that the distance that can be driven after a single charge is much shorter than that of a normal gasoline engine.
이와 같은 리튬 이차전지의 용량 한계는 많은 노력에도 불구하고 리튬 이차전지의 구조 및 재료적인 제약으로 인해 완전한 해결이 어렵다. 따라서, 리튬 이차전지의 용량 문제를 근본적으로 해결하기 위해서는 기존의 이차전지 개념을 뛰어 넘는 신개념의 이차전지 개발이 요구된다.The capacity limit of such a lithium secondary battery is difficult to solve completely due to structural and material constraints of the lithium secondary battery despite many efforts. Therefore, in order to fundamentally solve the capacity problem of the lithium secondary battery, it is required to develop a new concept of a secondary battery that goes beyond the existing secondary battery concept.
리튬-황 이차전지는 기존의 리튬 이온 이차전지의 기본원리인 리튬 이온의 층상구조의 금속산화물 및 흑연으로의 삽입/탈리(intercalation) 반응에 의해 결정되는 용량 한계를 뛰어넘고 전이금속 대체 및 비용 절감 등을 가져올 수 있는 새로운 고용량, 저가 전지 시스템이다. Lithium-sulfur secondary battery goes beyond the capacity limit determined by the insertion / decalation reaction of lithium ion layered metal oxide and graphite, which is the basic principle of conventional lithium ion secondary battery, and transition metal replacement and cost reduction It is a new high-capacity, low-cost battery system that can bring about.
리튬-황 이차전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8 + 16Li+ + 16e- → 8Li2S)으로부터 나오는 이론 용량이 1,675 mAh/g에 이르고 음극은 리튬 금속(이론용량: 3,860 mAh/g)을 사용하여 전지 시스템의 초고용량화가 가능하다. 또한 방전전압은 약 2.2 V이므로 이론적으로 양극, 음극 활물질의 양을 기준으로 2,600 Wh/kg의 에너지 밀도를 나타낸다. 이는 층상구조의 금속 산화물 및 흑연을 사용하는 상용 리튬 이차전지(LiCoO2/graphite)의 에너지 이론적 에너지 밀도인 400 Wh/kg보다도 6배 내지 7배 가량이 높은 수치이다. A lithium-sulfur secondary battery is a lithium ion and the sulfur conversion (conversion) reaction at the anode - the theoretical capacity resulting from (S 8 + 16Li + + 16e → 8Li 2 S) reached 1,675 mAh / g anode is lithium metal (theoretical capacity: 3,860 mAh / g) enables ultra high capacity battery systems. In addition, since the discharge voltage is about 2.2 V, it theoretically shows an energy density of 2,600 Wh / kg based on the amount of the positive electrode and the negative electrode active material. This value is 6 to 7 times higher than the energy theoretical energy density of 400 Wh / kg of a commercial lithium secondary battery (LiCoO 2 / graphite) using a layered metal oxide and graphite.
리튬-황 이차전지는 2010년경 나노 복합체 형성을 통해 전지성능이 획기적으로 개선될 수 있다는 것이 알려진 이후 새로운 고용량, 친환경성, 저가의 리튬 이차전지로 주목받고 있으며 현재 차세대 전지 시스템으로 세계적으로 집중적인 연구가 이루어지고 있다.Lithium-sulfur secondary battery has been attracting attention as a new high-capacity, eco-friendly and low-cost lithium secondary battery since it is known that the battery performance can be dramatically improved by forming nanocomposites around 2010. Is being done.
현재까지 밝혀진 리튬-황 이차전지의 주요한 문제점 중에 하나는 황의 전기전도도가 5.0 x 10-14 S/cm가량으로 부도체에 가까워 전극에서 전기화학반응이 용이하지 않고, 매우 큰 과전압으로 인해 실제 방전용량 및 전압이 이론에 훨씬 미치지 못한다는 점이다. 초기 연구자들은 황과 카본의 기계적인 볼밀링이나 카본을 이용한 표면 코팅과 같은 방법으로 성능을 개선해보고자 하였으나 큰 실효가 없었다.One of the major problems of the lithium-sulfur secondary battery that has been discovered so far is that the electrical conductivity of sulfur is about 5.0 x 10 -14 S / cm, which is close to the non-conductor, so that the electrochemical reaction is not easy at the electrode. The voltage is far below theory. Early researchers tried to improve the performance by methods such as mechanical ball milling of sulfur and carbon or surface coating with carbon, but it was not effective.
전기전도도에 의해 전기화학반응이 제한되는 문제를 효과적으로 해결하기 위해서는 다른 양극 활물질 중의 하나인 LiFePO4의 예와 같이(전기전도도: 10-9 내지 10-10 S/cm) 입자의 크기를 수십 나노미터 이하의 크기로 줄이고 전도성 물질로 표면처리를 할 필요가 있는데, 이를 위하여 여러 가지 화학적(나노 크기의 다공성 탄소 나노 구조체 혹은 금속산화물 구조체로의 melt impregnation), 물리적 방법(high energy ball milling) 등이 보고되고 있다.In order to effectively solve the problem that the electrochemical reaction is limited by electrical conductivity, as in the example of LiFePO 4 , one of the other cathode active materials (electric conductivity: 10 -9 to 10 -10 S / cm), the particle size is tens of nanometers. It is necessary to reduce the size to the following and conduct surface treatment with conductive materials. For this purpose, various chemicals (melt impregnation of nano-sized porous carbon nanostructures or metal oxide structures) and physical methods (high energy ball milling) are reported. It is becoming.
다른 한 가지 리튬-황 이차전지와 관련된 주요 문제점은 방전도중 생성되는 황의 중간생성체인 리튬 폴리설파이드(lithium polysulfide)의 전해질로의 용해이다. 방전이 진행됨에 따라 황(S8)은 리튬 이온과 연속적으로 반응하여 S8 → Li2S8 → (Li2S6) → Li2S4 → Li2S2 → Li2S 등으로 그 상(phase)이 연속적으로 변하게 되는데 그 중 황이 길게 늘어선 체인형태인 Li2S8, Li2S4(리튬 폴리설파이드) 등은 리튬 이온전지에서 쓰이는 일반적인 전해질에서 쉽게 용해되는 성질이 있다. 이러한 반응이 발생하면 가역 양극용량이 크게 줄어들 뿐만 아니라 용해된 리튬 폴리설파이드가 음극으로 확산되어 여러 가지 부반응(side reaction)을 일으키게 된다.Another major problem associated with lithium-sulfur secondary batteries is the dissolution of lithium polysulfide, an intermediate of sulfur produced during discharge, into the electrolyte. As the discharge proceeds, sulfur (S 8 ) continuously reacts with lithium ions such that S 8 → Li 2 S 8 → (Li 2 S 6 ) → Li 2 S 4 → Li 2 S 2 → Li 2 S, etc. (Phase) is continuously changed. Among them, long chains of sulfur such as Li 2 S 8 and Li 2 S 4 (lithium polysulfide) are easily dissolved in general electrolytes used in lithium ion batteries. When this reaction occurs, not only the reversible cathode capacity is greatly reduced, but also the dissolved lithium polysulfide diffuses to the cathode, causing various side reactions.
리튬 폴리설파이드는 특히 충전과정 중 셔틀반응(shuttle reaction)을 일으키는데 이로 인하여 충전용량이 계속 증가하게 되어 충방전 효율이 급격히 저하된다. 최근 이러한 문제를 해결하기 위하여 다양한 방법이 제시되었는데 크게 전해질을 개선하는 방법, 음극의 표면을 개선하는 방법, 양극의 특성을 개선하는 방법 등으로 나눌 수 있다.Lithium polysulfide, in particular, causes a shuttle reaction during the charging process, which causes the charging capacity to continuously increase, thereby rapidly decreasing the charge and discharge efficiency. Recently, various methods have been proposed to solve this problem, and can be classified into a method of improving the electrolyte, a method of improving the surface of the negative electrode, and a method of improving the characteristics of the positive electrode.
전해질을 개선하는 방법은 신규 조성의 기능성 액체전해질, 고분자 전해질, 이온성 액체(ionic liquid) 등 새로운 전해질을 사용하여 폴리설파이드의 전해질로의 용해를 억제하거나 점도 등의 조절을 통하여 음극으로의 분산 속도를 제어하여 셔틀반응을 최대한 억제하는 방법이다.The method of improving the electrolyte is to prevent the dissolution of polysulfide into the electrolyte using new electrolytes such as a functional liquid electrolyte, a polymer electrolyte, and an ionic liquid of a new composition, or to control the viscosity and the like to disperse the negative electrode. This is to control the shuttle reaction as much as possible.
음극표면에 형성되는 SEI의 특성을 개선하여 셔틀반응을 제어하는 연구가 활발히 이루어지고 있는데 대표적으로 LiNO3과 같은 전해질 첨가제를 투입하여 리튬 음극의 표면에 LixNOy, LixSOy 등의 산화막을 형성하여 개선하는 방법, 리튬 금속의 표면에 두꺼운 기능형 SEI 층을 형성하는 방법 등이 있다.Research is actively conducted to control the shuttle reaction by improving the characteristics of the SEI formed on the surface of the anode. Typically, electrolyte additives such as Li x NO y and Li x SO y are added to the surface of the lithium anode by adding an electrolyte additive such as LiNO 3 . And a method of forming a thick functional SEI layer on the surface of the lithium metal.
마지막으로 양극의 특성을 개선하는 방법은 폴리설파이드의 용해를 막을 수 있도록 양극입자 표면에 코팅층을 형성하거나 용해된 폴리설파이드를 잡을 수 있는 다공성 물질을 첨가하는 방법 등이 있는데 대표적으로 전도성 고분자로 황 입자가 들어있는 양극 구조체의 표면을 코팅하는 방법, 리튬 이온이 전도되는 금속산화물로 양극 구조체의 표면을 코팅하는 방법, 리튬 폴리설파이드를 다량 흡수할 수 있는 비표면적이 넓고 기공이 큰 다공성 금속산화물을 양극에 첨가하는 방법, 탄소 구조체의 표면에 리튬 폴리설파이드를 흡착할 수 있는 작용기(functional group)를 부착하는 방법, 그래핀 혹은 그래핀 옥사이드 등을 이용하여 황 입자를 감싸는 방법 등이 제시되었다. Finally, methods to improve the characteristics of the anode include forming a coating layer on the surface of the anode particles to prevent the dissolution of polysulfide or adding a porous material that can catch the dissolved polysulfide. A method of coating the surface of the positive electrode structure containing the electrode, a method of coating the surface of the positive electrode structure with a metal oxide conducting lithium ions, and a porous metal oxide having a large specific surface area and large pores capable of absorbing a large amount of lithium polysulfide. A method of adding to the method, attaching a functional group capable of adsorbing lithium polysulfide to the surface of the carbon structure, and encapsulating sulfur particles using graphene or graphene oxide and the like have been proposed.
이와 같은 노력이 진행되고는 있으나, 이러한 방법이 다소 복잡할 뿐만 아니라 활물질인 황을 넣을 수 있는 양이 제한된다는 문제가 있다. 따라서 이러한 문제들을 복합적으로 해결하고 리튬-황 전지의 성능을 개선하기 위한 새로운 기술의 개발이 필요한 실정이다.While such efforts are underway, there is a problem that the method is not only complicated but also limited in the amount of sulfur as an active material. Therefore, it is necessary to develop new technologies to solve these problems in combination and to improve the performance of lithium-sulfur batteries.
본 발명자들은 상기 문제점을 해결하기 위해 다각적으로 연구를 수행한 결과, 산화철의 원료물질로 Fe(NO3)3·9H2O 를 열처리하되, 열처리 온도와 공정 시간을 제어하여 선택적으로 고순도의 산화철을 제조할 수 있다는 것을 확인하였다.The present inventors have conducted various studies to solve the above problems, but as a raw material of iron oxide, Fe (NO 3 ) 3 · 9H 2 O is heat-treated, by controlling the heat treatment temperature and process time to selectively iron oxide of high purity It was confirmed that it could be manufactured.
따라서, 본 발명의 목적은 간소한 공정을 통해 높은 순도의 산화철의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for producing high purity iron oxide through a simple process.
상기 목적을 달성하기 위해, 본 발명은,In order to achieve the above object, the present invention,
(1) Fe(NO3)3·9H2O 를 수성 용매에 용해하여 Fe(NO3)3·9H2O 수용액을 준비하는 단계; (1) dissolving Fe (NO 3 ) 3 .9H 2 O in an aqueous solvent to prepare Fe (NO 3 ) 3 .9H 2 O aqueous solution;
(2) 상기 Fe(NO3)3·9H2O 수용액을 건조하는 단계; 및(2) drying the Fe (NO 3 ) 3 .9H 2 O aqueous solution; And
(3) 상기 건조된 Fe(NO3)3·9H2O 를 열처리하여 하기 화학식 1로 표시되는 산화철을 수득하는 단계;(3) heat-treating the dried Fe (NO 3 ) 3 .9H 2 O to obtain iron oxide represented by Chemical Formula 1;
를 포함하는 산화철의 제조방법을 제공한다.It provides a method for producing iron oxide comprising a.
[화학식 1][Formula 1]
FexO3 (단, 1.7 ≤ x <2)Fe x O 3 (where 1.7 ≤ x <2)
본 발명의 일 구체예는 상기 단계 (1)의 Fe(NO3)3·9H2O 수용액의 농도가 0.5 내지 5.0 M 인 것이다.One embodiment of the present invention is that the concentration of Fe (NO 3 ) 3 · 9H 2 O aqueous solution of step (1) is 0.5 to 5.0 M.
본 발명의 일 구체예는 상기 단계 (2)의 건조가 70 내지 90 ℃의 온도에서 수행되는 것이다.One embodiment of the invention is that the drying of step (2) is carried out at a temperature of 70 to 90 ℃.
본 발명의 일 구체예는 상기 단계 (2)의 건조가 4 내지 12 시간동안 수행되는 것이다.One embodiment of the invention is that the drying of step (2) is carried out for 4 to 12 hours.
본 발명의 일 구체예는 상기 단계 (3)의 열처리가 120 내지 170 ℃에서 진행되는 것이다.One embodiment of the present invention is that the heat treatment of step (3) is carried out at 120 to 170 ℃.
본 발명의 일 구체예는 상기 단계 (3)의 열처리가 16 내지 36 시간동안 수행되는 것이다.One embodiment of the invention is that the heat treatment of step (3) is carried out for 16 to 36 hours.
본 발명의 일 구체예는 상기 산화철의 1차 입자가 뭉쳐서 2차 입자를 형성하는 것이다.One embodiment of the present invention is to form the secondary particles by the primary particles of the iron oxide aggregated.
본 발명의 일 구체예는 상기 1차 입자는 입경 10 내지 80 nm 인 것이다.In one embodiment of the present invention, the primary particles have a particle diameter of 10 to 80 nm.
본 발명의 일 구체예는 상기 2차 입자는 입경 1 내지 5 ㎛ 인 것이다.In one embodiment of the present invention, the secondary particles have a particle diameter of 1 to 5 μm.
본 발명에 따르면, Fe(NO3)3·9H2O 를 건조하고 열처리하는 단계를 포함하는 간소한 공정에 의해 선택적이며 고순도의 산화철을 제조할 수 있으며, 상기 건조와 열처리의 온도 및 시간을 조절하는 것만으로도 제조되는 산화철의 형상 및 순도를 조절할 수 있는 장점이 있다.According to the present invention, Fe (NO 3 ) 3 · 9H 2 O can be produced by a simple process comprising the step of drying and heat treatment, and can be produced iron oxide of high purity, and control the temperature and time of the drying and heat treatment There is an advantage in that it is possible to control the shape and purity of the iron oxide to be produced.
또한, 제조된 산화철은 리튬-황 전지의 양극 첨가제로 적용할 경우 리튬-황 전지의 수명특성 및 방전용량을 증가시킬 수 있다.In addition, the manufactured iron oxide may increase the life characteristics and the discharge capacity of the lithium-sulfur battery when applied as a positive electrode additive of the lithium-sulfur battery.
도 1은 본 발명의 제조예 1에 따른 산화철(Fe1.766O3)의 주사전자현미경(SEM) 이미지를 나타낸 것이다.1 shows a scanning electron microscope (SEM) image of iron oxide (Fe 1.766 O 3 ) according to Preparation Example 1 of the present invention.
도 2는 본 발명의 제조예 2에 따른 산화철(Fe1.766O3)의 주사전자현미경(SEM) 이미지를 나타낸 것이다.2 shows a scanning electron microscope (SEM) image of iron oxide (Fe 1.766 O 3 ) according to Preparation Example 2 of the present invention.
도 3은 본 발명의 제조예 1에 따른 산화철(Fe1.766O3)의 X-선 회절분석(XRD)결과를 나타낸 것이다.3 shows X-ray diffraction analysis (XRD) results of iron oxide (Fe 1.766 O 3 ) according to Preparation Example 1 of the present invention.
도 4는 본 발명의 제조예 2에 따른 산화철(Fe1.766O3)의 X-선 회절분석(XRD)결과를 나타낸 것이다.4 shows the results of X-ray diffraction analysis (XRD) of iron oxide (Fe 1.766 O 3 ) according to Preparation Example 2 of the present invention.
도 5는 본 발명의 제조예 및 비교예에 따른 리튬 폴리설파이드 흡착 반응의 색도 변화를 UV 흡광도 측정 결과로 나타낸 것이다.Figure 5 shows the change in chromaticity of the lithium polysulfide adsorption reaction according to the preparation and comparative examples of the present invention as a UV absorbance measurement results.
도 6은 본 발명의 실시예 및 비교예에 따른 양극을 포함하는 리튬-황 전지의 방전용량 측정 결과를 나타낸다.6 shows discharge capacity measurement results of a lithium-sulfur battery including a positive electrode according to Examples and Comparative Examples of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.Hereinafter, with reference to the accompanying drawings to be easily carried out by those skilled in the art will be described in detail. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the scope of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명은 산화철의 제조방법에 관한 것으로서, 리튬-황 전지의 양극 첨가제로 적용하여 전지의 방전용량 및 수명특성을 향상시킬 수 있는 형태 및 물성을 가지는 산화철을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for manufacturing iron oxide, and relates to a method for producing iron oxide having a form and properties that can be applied as a positive electrode additive of a lithium-sulfur battery to improve the discharge capacity and life characteristics of the battery.
본 발명에 따른 산화철의 제조방법은 (1) Fe(NO3)3·9H2O 를 증류수에 용해하여 Fe(NO3)3·9H2O 수용액을 준비하는 단계, (2) 상기 Fe(NO3)3·9H2O 수용액을 건조하는 단계 및 (3) 상기 건조된 Fe(NO3)3·9H2O 를 열처리하여 하기 화학식 1로 표시되는 산화철을 수득하는 단계를 포함할 수 있다.Method of producing iron oxide according to the present invention is (1) Fe (NO 3) 3 · by dissolving 9H 2 O in distilled water, Fe (NO 3) 3 · preparing a 9H 2 O solution, (2) the Fe (NO 3 ) drying the 3 · 9H 2 O aqueous solution and (3) heat treating the dried Fe (NO 3 ) 3 · 9H 2 O to obtain iron oxide represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
FexO3 (단, 1.7 ≤ x <2)Fe x O 3 (where 1.7 ≤ x <2)
상기 Fe(NO3)3·9H2O 는 수성 용매에 용해시켜 수용액 형태로 제조할 수 있으며, 바람직하게는 Fe(NO3)3·9H2O 를 DIW (deionized water)등에 용해하여 사용할 수 있다. 수용액의 농도는 0.5 내지 5.0 M일 수 있으며, 바람직하게는 1.0 내지 2.0 M 일 수 있다. 만일 0.5 M 미만이면 수용액의 증발속도가 느리게 되어 제조되는 산화철의 결정이 커지거나 산화철의 제조 수율이 낮아질 수 있고, 5.0 M 초과이면 제조되는 산화철이 뭉칠 가능성이 있어 산화철의 물성이 리튬-황 전지의 양극 첨가제로 적용하기에 적합하지 않을 수 있다.The Fe (NO 3 ) 3 · 9H 2 O can be prepared in the form of an aqueous solution by dissolving in an aqueous solvent, preferably Fe (NO 3 ) 3 · 9H 2 O can be dissolved in DIW (deionized water) and the like. . The concentration of the aqueous solution may be 0.5 to 5.0 M, preferably 1.0 to 2.0 M. If it is less than 0.5 M, the evaporation rate of the aqueous solution may be slowed to increase the crystal of iron oxide to be produced or the yield of iron oxide may be lowered. If it is more than 5.0 M, the iron oxide may be agglomerated. It may not be suitable for application as a positive electrode additive.
상기 Fe(NO3)3·9H2O 수용액은 산화철 제조를 위한 열처리에 앞서 건조하는 전처리 단계를 더 거칠 수 있다. 상기 건조는 70 내지 90 ℃에서 수행될 수 있으며, 바람직하게는 75 내지 85 ℃에서 수행될 수 있다. 또한 상기 건조는 상기의 온도 범위에서 4 내지 12 시간동안 수행될 수 있으며, 바람직하게는 5 내지 8 시간동안 수행될 수 있다. 만일 상기 온도 미만이거나 건조 시간이 짧은 경우, 반응물인 Fe(NO3)3·9H2O 의 수분이 과량 잔존할 수 있고, 이후 상기 수분이 열처리 과정을 거치며 불균일하게 증발할 수 있어 본 발명에 따른 상기 화학식 1로 표시되는 산화철이 합성되지 않을 수 있다. 또한 상기 온도를 초과하거나 건조 시간이 길 경우 반응물인 Fe(NO3)3·9H2O 의 수분이 모두 증발한 후 열처리에 의한 산화반응이 일부 진행될 수 있다. 이 경우 열처리 과정을 통해 불균일한 산화반응이 일어날 수 있고, 상기 화학식 1로 표시되는 물질이 합성되지 않을 수 있으므로 상기 범위 내에서 적절히 조절한다. 상기 건조 전처리 단계는 충분한 공기가 유입되는 환경에서 컨벡션 오븐을 이용하여 진행할 수 있다.The Fe (NO 3 ) 3 .9H 2 O aqueous solution may be further subjected to a pretreatment step of drying prior to heat treatment for iron oxide production. The drying may be carried out at 70 to 90 ℃, preferably at 75 to 85 ℃. In addition, the drying may be performed for 4 to 12 hours in the above temperature range, and preferably for 5 to 8 hours. If less than the temperature or the drying time is short, excess water of the reactant Fe (NO 3 ) 3 · 9H 2 O may remain, after which the water may evaporate unevenly during the heat treatment process according to the present invention. Iron oxide represented by Formula 1 may not be synthesized. In addition, when the temperature exceeds or the drying time is long, the oxidation reaction by heat treatment may proceed in part after all of the reactants Fe (NO 3 ) 3 · 9H 2 O evaporated. In this case, a non-uniform oxidation reaction may occur through the heat treatment process, and the material represented by Chemical Formula 1 may not be synthesized, so it is properly adjusted within the above range. The drying pretreatment step may be performed using a convection oven in an environment where sufficient air is introduced.
상기 Fe(NO3)3·9H2O 는 건조 전처리 과정을 거친 뒤 열처리하여 상기 화학식 1로 표시되는 산화철을 생성할 수 있다. 상기 열처리는 120 내지 170 ℃에서 수행될 수 있으며, 바람직하게는 150 내지 160 ℃에서 수행될 수 있다.The Fe (NO 3 ) 3 · 9H 2 O may be heat-treated after the drying pretreatment to produce iron oxide represented by Chemical Formula 1. The heat treatment may be performed at 120 to 170 ° C, preferably at 150 to 160 ° C.
또한 상기 열처리는 상기의 온도 범위에서 16 내지 36 시간 동안 수행될 수 있으며, 바람직하게는 18 내지 24 시간 동안 수행될 수 있다. 만일 열처리 온도가 120 ℃ 미만이거나 상기 열처리 시간보다 짧은 경우 반응이 종결되지 못하고 상기 화학식 1의 구조가 아닌 Fe(OH)2NO3 등과 같은 반응 잔여물이 남아있을 수 있다. 또한 열처리 온도가 170 ℃를 초과하거나 상기 열처리 시간보다 길 경우에는 생성되는 입자의 크기가 커지고 뭉치는 형태로 발현될 수 있으며, 상기 화학식 1로 표시되는 산화철과 달리 Fe2O3 와 같은 안정한 물질이 생성될 수 있다. 따라서 본 발명에 따른 원하고자 하는 물성의 산화철을 합성하기 어려울 수 있으므로 상기 범위의 온도와 시간 내에서 적절히 조절한다. 상기 열처리 단계는 충분한 공기가 유입되는 환경에서 컨벡션 오븐을 이용하여 진행할 수 있다.In addition, the heat treatment may be performed for 16 to 36 hours in the above temperature range, and preferably for 18 to 24 hours. If the heat treatment temperature is less than 120 ° C or shorter than the heat treatment time, the reaction may not be terminated and a reaction residue such as Fe (OH) 2 NO 3 , which is not the structure of Chemical Formula 1, may remain. In addition, a stable material, such as and the size of the particles that the heat treatment temperature exceeds 170 ℃ or is generated if longer than the annealing time may be increased bundle is expressed in the form, and Fe 2 O 3, unlike the iron oxide of the formula (1) Can be generated. Therefore, it may be difficult to synthesize the iron oxide of the desired physical properties according to the present invention, so it is appropriately adjusted within the temperature and time of the above range. The heat treatment step may be performed using a convection oven in an environment in which sufficient air is introduced.
상기 Fe(NO3)3·9H2O 는 상기 열처리 단계를 거치면서 HNO3(g)가 탈기되고, 상기 화학식 1로 표시되는 물질을 생성하게 된다. 상기 화학식 1에서 철의 산화수는 열처리 시간 및 온도에 따라 다양한 산화수를 가질 수 있으며, 바람직하게는 x가 1.7 ≤ x <1.9, 더욱 바람직하게는 1.7 ≤ x <1.8 일 수 있으며, 본 발명의 바람직한 일 구현예에 의하면 상기 화학식 1에서 x=1.766일 수 있다.The Fe (NO 3 ) 3 · 9H 2 O is HNO 3 (g) is degassed during the heat treatment step, to produce a material represented by the formula (1). Oxidized water of iron in Formula 1 may have a variety of oxidation water according to the heat treatment time and temperature, preferably x is 1.7 ≤ x <1.9, more preferably 1.7 ≤ x <1.8, preferred one of the present invention In some embodiments, in Chemical Formula 1, x may be 1.766.
상기 제조된 산화철은 1차 입자가 뭉쳐 2차 입자를 형성하는 것일 수 있다. 이때, 상기 1차 입자는 입경이 10 내지 80 nm 일 수 있고, 바람직하게는 20 내지 50 nm 일 수 있다. 상기 1차 입자가 뭉쳐서 이루어지는 2차 입자는 그 입경이 1 내지 5 ㎛ 일 수 있으며, 바람직하게는 2 내지 3 ㎛일 수 있다. 상기 범위 내에서 2차 입자의 입경이 감소할수록 리튬-황 이차전지의 양극재로서 적합하고, 2차 입자의 입경이 상기 범위 초과이면 입자 크기가 커 리튬-황 전지의 양극 첨가제로 적합하지 않을 수 있다.The prepared iron oxide may be one of the primary particles to form a secondary particle. In this case, the primary particles may have a particle diameter of 10 to 80 nm, preferably 20 to 50 nm. The secondary particles formed by agglomeration of the primary particles may have a particle diameter of 1 to 5 μm, and preferably 2 to 3 μm. As the particle diameter of the secondary particles decreases within the above range, it is suitable as a cathode material of a lithium-sulfur secondary battery, and when the particle diameter of the secondary particles is larger than the above range, the particle size is large and may not be suitable as a cathode additive of a lithium-sulfur battery. have.
전술한 바와 같은 산화철의 제조방법에 의해 제조된 산화철을 리튬-황 전지에 적용할 경우, 리튬-황 전지의 충방전시 용출되는 리튬 폴리설파이드를 흡착할 수 있어 리튬-황 이차전지의 성능을 향상시킬 수 있다.When the iron oxide prepared by the method of manufacturing iron oxide as described above is applied to a lithium-sulfur battery, lithium polysulfide eluted during charging and discharging of the lithium-sulfur battery can be adsorbed, thereby improving the performance of the lithium-sulfur secondary battery. You can.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the scope and contents of the present invention may not be interpreted as being reduced or limited by the following examples. In addition, if it is based on the disclosure of the present invention including the following examples, it will be apparent that those skilled in the art can easily carry out the present invention, the results of which are not specifically presented experimental results, these modifications and modifications are attached to the patent It goes without saying that it belongs to the claims.
제조예 1: 산화철의 제조 (1)Preparation Example 1 Preparation of Iron Oxide (1)
Fe(NO3)3·9H2O (Sigma-Aldrich 社)를 DIW(deionized water)에 용해시켜 2.0 M 수용액을 제조하였다. 상기 제조된 수용액을 컨벡션 오븐에서 80 ℃, 6시간 동안 건조시켰다. 이후, 컨벡션 오븐에서 155 ℃, 18 시간동안 열처리를 하여 Fe1.766O3로 표시되는 산화철을 제조하였다.Fe (NO 3 ) 3 .9H 2 O (Sigma-Aldrich) was dissolved in DIW (deionized water) to prepare a 2.0 M aqueous solution. The prepared aqueous solution was dried at 80 ° C. for 6 hours in a convection oven. Thereafter, heat treatment was performed at 155 ° C. for 18 hours in a convection oven to produce iron oxide represented by Fe 1.766 O 3 .
제조예 2: 산화철의 제조 (2)Preparation Example 2 Preparation of Iron Oxide (2)
열처리 시간을 24 시간동안 수행한 것을 제외하고는 상기 제조예 1과 동일하게 하여 산화철을 제조하였다.Iron oxide was prepared in the same manner as in Preparation Example 1, except that the heat treatment time was performed for 24 hours.
실험예 1: SEM (scanning electron microscope) 분석Experimental Example 1: SEM (scanning electron microscope) analysis
제조예 1 및 2에서 각각 제조된 산화철인 Fe1.766O3에 대하여 SEM 분석(Hitachi社의 S-4800 FE-SEM)을 실시하였다. 도 1은 제조예 1에서 제조된 Fe1.766O3에 대한 SEM 분석결과이고, 도 2는 제조예 2에서 제조된 산화철에 대한 SEM 분석결과를 나타낸 그래프이다.SEM analysis (S-4800 FE-SEM by Hitachi, Ltd.) was performed on Fe 1.766 O 3 , which is iron oxide prepared in Preparation Examples 1 and 2, respectively. 1 is a SEM analysis results of Fe 1.766 O 3 prepared in Preparation Example 1, Figure 2 is a graph showing the SEM analysis results for the iron oxide prepared in Preparation Example 2.
도 1 및 2을 참조하면, 배율을 100k로 하여 SEM 분석을 실시한 결과, 입경 수십 nm의 입자가 뭉쳐 1 내지 5 ㎛의 2차 입자를 형성하는 것을 확인할 수 있었다.Referring to FIGS. 1 and 2, SEM analysis was performed at a magnification of 100 k. As a result, it was confirmed that particles of several tens of nm in diameter were aggregated to form secondary particles having a size of 1 to 5 μm.
실험예 2: XRD (X-ray Diffraction) 분석Experimental Example 2: XRD (X-ray Diffraction) Analysis
제조예 1 및 2에서 각각 제조된 산화철인 Fe1.766O3에 대하여 XRD 분석(Bruker社의 D4 Endeavor)을 실시하였다.XRD analysis (D4 Endeavor from Bruker) was performed on Fe 1.766 O 3 , which is iron oxide prepared in Preparation Examples 1 and 2, respectively.
도 3은 제조예 1에서 제조된 Fe1.766O3에 대한 XRD 분석결과이고, 도 4는 제조예 2에서 제조된 산화철에 대한 XRD 분석결과를 나타낸 그래프이다. 3 is an XRD analysis of Fe 1.766 O 3 prepared in Preparation Example 1, Figure 4 is a graph showing the XRD analysis of the iron oxide prepared in Preparation Example 2.
도 3 및 4를 참조하면, 안정한 상의 Fe2O3에 비해 산소의 포함량이 많은 Fe1.766O3가 제조된 것을 확인할 수 있었으며, 실시예의 2θ = 24.2±0.1°, 33.8±0.1°, 36.0±0.1°, 40.8±0.1°, 49.4±0.1° 및 53.8±0.1°의 XRD 피크를 확인하여 순수한 상의 산화철(Fe1.766O3)이 선택적으로 제조된 것을 알 수 있었다.3 and 4, it was confirmed that Fe 1.766 O 3 containing a large amount of oxygen compared to Fe 2 O 3 of the stable phase was prepared, 2θ = 24.2 ± 0.1 °, 33.8 ± 0.1 °, 36.0 ± 0.1 The XRD peaks of °, 40.8 ± 0.1 °, 49.4 ± 0.1 ° and 53.8 ± 0.1 ° showed that the pure phase iron oxide (Fe 1.766 O 3 ) was selectively prepared.
실험예 3: 폴리설파이드 흡착능력 실험Experimental Example 3: Polysulfide Adsorption Capacity Experiment
상기 제조예 1 및 2에 따른 Fe1.766O3 및 탄소나노튜브(CNT)의 리튬 폴리설파이드 흡착 능력을 자외선(UV, Agilent社의 Agilent 8453 UV-visible spectrophotometer) 흡광도 분석을 통해 확인하여 도 5에 나타내었다.The lithium polysulfide adsorption capacity of Fe 1.766 O 3 and carbon nanotubes (CNT) according to Preparation Examples 1 and 2 was confirmed by absorbance analysis of ultraviolet rays (UV, Agilent 8453 UV-visible spectrophotometer), and is shown in FIG. 5. It was.
도 5에 나타난 것과 같이, 300 내지 700nm 파장의 범위에서 본 발명에 따 른 산화철인 Fe1.766O3 및 CNT가 리튬 폴리설파이드를 흡착한 결과 자외선 흡광도의 세기(intensity)가 줄어든 것을 확인하였으며, CNT에 비해 제조예 1 및 2의 산화철이 리튬 폴리설파이드의 흡착능력이 더욱 뛰어난 것을 알 수 있었다.As shown in Figure 5, the iron oxide Fe 1.766 O 3 and CNT according to the present invention in the range of 300 to 700nm wavelength adsorbed lithium polysulfide was confirmed that the intensity of the ultraviolet absorbance (intensity) is reduced, the CNT It was found that the iron oxides of Preparation Examples 1 and 2 were more excellent in adsorption capacity of lithium polysulfide.
실험예 4: 리튬-황 전지의 방전용량 비교 실험Experimental Example 4 Comparative Experiment of Discharge Capacity of Lithium-Sulfur Battery
양극재 종류에 따른 리튬-황 전지의 방전용량을 실험하기 위하여, 하기 표 1에 기재된 바와 같이 리튬-황 전지의 양극 및 음극을 구성한 후 방전용량을 측정하였다.In order to test the discharge capacity of the lithium-sulfur battery according to the type of cathode material, the discharge capacity was measured after configuring the positive electrode and the negative electrode of the lithium-sulfur battery as shown in Table 1 below.
비교예 (1)의 양극은 황-탄소 복합체, 실시예 (1)의 양극은 황-탄소 복합체와 제조예 1의 Fe1.766O3를 포함하고, 실시예 (2)의 양극은 황-탄소 복합체와 제조예 2의 Fe1.766O3를 포함하도록 하였다. 이때, 측정전류는 0.1C, 전압 범위 1.8 내지 2.6V로 하였고, 그 결과를 도 6을 통해 나타내었다.The positive electrode of Comparative Example (1) is a sulfur-carbon composite, the positive electrode of Example (1) comprises a sulfur-carbon composite and Fe 1.766 O 3 of Preparation Example 1, the positive electrode of Example (2) is a sulfur-carbon composite And Fe 1.766 O 3 In Preparation Example 2 It was included. At this time, the measurement current was 0.1C, the voltage range was 1.8 to 2.6V, and the result is shown through FIG. 6.
리튬-황 전지Lithium-sulfur battery
음극cathode 양극anode
비교예(1)Comparative Example (1) 금속 리튬Metal lithium 황-탄소 복합체 + 도전재 + 바인더 (90:5:5, 중량비)Sulfur-carbon composite + conductive material + binder (90: 5: 5, weight ratio)
실시예(1)Example (1) 금속 리튬Metal lithium 황-탄소 복합체 + 도전재 + 바인더 + 제조예 1의 Fe1.766O3 (10중량부) (90:5:5:10, 중량비)Sulfur-carbon composite + conductive material + binder + Fe 1.766 O 3 (10 parts by weight) of Preparation Example 1 (90: 5: 5: 10, weight ratio)
실시예(2)Example (2) 금속 리튬Metal lithium 황-탄소 복합체 + 도전재 + 바인더 + 제조예 2의 Fe1.766O3 (10중량부) (90:5:5:10, 중량비)Sulfur-carbon composite + conductive material + binder + Fe 1.766 O 3 (10 parts by weight) of Preparation Example 2 (90: 5: 5: 10, weight ratio)
도 6에 나타난 바와 같이, 비교예 (1)에 비하여 Fe1.766O3 가 첨가된 실시예가 초기 방전용량이 더 높은 것을 확인할 수 있으며, 제조예 (2)에 따른 산화철인 Fe1.766O3를 포함하는 실시예 (2)의 경우가 실시예 (1)에 비해 초기 방전용량이 더욱 증가한 것을 확인할 수 있었다. 따라서 본 발명에 따른 산화철이 리튬-황 전지의 초기 방전용량 증가에 효과가 있음을 알 수 있다.As shown in FIG. 6, compared to Comparative Example (1), it was confirmed that the Example to which Fe 1.766 O 3 was added has a higher initial discharge capacity, and the Fe 1.766 O 3 which is iron oxide according to Preparation Example (2) was included. In the case of Example (2), it was confirmed that the initial discharge capacity further increased compared to Example (1). Therefore, it can be seen that the iron oxide according to the present invention is effective in increasing the initial discharge capacity of the lithium-sulfur battery.

Claims (9)

  1. (1) Fe(NO3)3·9H2O 를 수성 용매에 용해하여 Fe(NO3)3·9H2O 수용액을 준비하는 단계; (1) dissolving Fe (NO 3 ) 3 .9H 2 O in an aqueous solvent to prepare Fe (NO 3 ) 3 .9H 2 O aqueous solution;
    (2) 상기 Fe(NO3)3·9H2O 수용액을 건조하는 단계; 및(2) drying the Fe (NO 3 ) 3 .9H 2 O aqueous solution; And
    (3) 상기 건조된 Fe(NO3)3·9H2O 를 열처리하여 하기 화학식 1로 표시되는 산화철을 수득하는 단계;(3) heat-treating the dried Fe (NO 3 ) 3 .9H 2 O to obtain iron oxide represented by Chemical Formula 1;
    를 포함하는 산화철의 제조방법.Iron oxide manufacturing method comprising a.
    [화학식 1][Formula 1]
    FexO3 (단, 1.7 ≤ x <2)Fe x O 3 (where 1.7 ≤ x <2)
  2. 제1항에 있어서, The method of claim 1,
    상기 단계 (1)의 Fe(NO3)3·9H2O 수용액의 농도는 0.5 내지 5.0 M 인 산화철의 제조방법.The concentration of Fe (NO 3 ) 3 · 9H 2 O aqueous solution of the step (1) is 0.5 to 5.0 M method for producing iron oxide.
  3. 제1항에 있어서, The method of claim 1,
    상기 단계 (2)의 건조는 70 내지 90 ℃의 온도에서 수행되는 것을 특징으로 하는 산화철의 제조방법.The drying of step (2) is a method for producing iron oxide, characterized in that carried out at a temperature of 70 to 90 ℃.
  4. 제3항에 있어서,The method of claim 3,
    상기 단계 (2)의 건조는 4 내지 12 시간동안 수행되는 것을 특징으로 하는 산화철의 제조방법.Drying of step (2) is a method for producing iron oxide, characterized in that carried out for 4 to 12 hours.
  5. 제1항에 있어서, The method of claim 1,
    상기 단계 (3)의 열처리는 120 내지 170 ℃에서 진행되는 것을 특징으로 하는 산화철의 제조방법.The heat treatment of step (3) is a method of producing iron oxide, characterized in that proceeds at 120 to 170 ℃.
  6. 제1항에 있어서,The method of claim 1,
    상기 단계 (3)의 열처리는 16 내지 36 시간 동안 수행되는 것을 특징으로 하는 산화철의 제조방법.The heat treatment of step (3) is a method for producing iron oxide, characterized in that carried out for 16 to 36 hours.
  7. 제1항에 있어서,The method of claim 1,
    상기 산화철은 1차 입자가 뭉쳐서 2차 입자를 형성하는 것을 특징으로 하는 산화철의 제조방법.The iron oxide is a method for producing iron oxide, characterized in that the primary particles are agglomerated to form secondary particles.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 1차 입자는 입경 10 내지 80 nm 인 것을 특징으로 하는 산화철의 제조방법.The primary particle is a manufacturing method of iron oxide, characterized in that the particle size of 10 to 80 nm.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 2차 입자는 입경 1 내지 5 ㎛ 인 것을 특징으로 하는 산화철의 제조방법.The secondary particles are a method for producing iron oxide, characterized in that the particle size of 1 to 5 ㎛.
PCT/KR2019/007846 2018-07-10 2019-06-28 Method for preparing iron oxide WO2020013488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180079821A KR102488678B1 (en) 2018-07-10 2018-07-10 Method for manufacturing iron oxide
KR10-2018-0079821 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020013488A1 true WO2020013488A1 (en) 2020-01-16

Family

ID=69142872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007846 WO2020013488A1 (en) 2018-07-10 2019-06-28 Method for preparing iron oxide

Country Status (2)

Country Link
KR (1) KR102488678B1 (en)
WO (1) WO2020013488A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716367A4 (en) * 2018-07-16 2021-04-14 Lg Chem, Ltd. Cathode of lithium secondary battery comprising iron oxide, and lithium secondary battery comprising same
CN112919548A (en) * 2021-03-09 2021-06-08 陕西科技大学 Purple luster iron oxide flaky particles and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038101A (en) * 2001-11-08 2003-05-16 김영도 Synthesis of Iron Oxide Nanoparticles
CN1817801A (en) * 2006-01-19 2006-08-16 清华大学 Synthesis of oliver alpha-ferric oxide nanometer particles
US20130337998A1 (en) * 2012-05-25 2013-12-19 Cerion Enterprises, Llc Iron oxide nanoparticle dispersions and fuel additives for soot combustion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854233B2 (en) 2005-08-15 2012-01-18 独立行政法人産業技術総合研究所 Switching element
JP5704502B2 (en) 2010-03-19 2015-04-22 株式会社豊田中央研究所 Iron oxide porous body, air purification material using the same, and method for producing iron oxide porous body
KR101446840B1 (en) * 2012-11-06 2014-10-08 한국생산기술연구원 Manufacturing method for iron powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038101A (en) * 2001-11-08 2003-05-16 김영도 Synthesis of Iron Oxide Nanoparticles
CN1817801A (en) * 2006-01-19 2006-08-16 清华大学 Synthesis of oliver alpha-ferric oxide nanometer particles
US20130337998A1 (en) * 2012-05-25 2013-12-19 Cerion Enterprises, Llc Iron oxide nanoparticle dispersions and fuel additives for soot combustion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BURUKHIN, ALEXANDER A.: "Hydrothermal synthesis of mesoporous iron oxide powders", PROCEEDINGS OF THE JOINT SIXTH INTERNATIONAL SYMPOSIUM ON HYDROTHERMAL REACTIONS AND FOURTH CONFERENCE ON SOLVO-THERMAL REACTIONS, 25 July 2000 (2000-07-25), Kochi, Japan, pages 561 - 564, XP055674749 *
YUFANYI, DIVINE MBOM: "Effect of Decomposition Temperature on the Crystal linity of a-Fe203(Hematite) Obtained from an Iron(III)-Hexamethylenetetramine Precursor", AMERICAN JOURNAL OF CHEMISTRY, January 2015 (2015-01-01) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716367A4 (en) * 2018-07-16 2021-04-14 Lg Chem, Ltd. Cathode of lithium secondary battery comprising iron oxide, and lithium secondary battery comprising same
US11942633B2 (en) 2018-07-16 2024-03-26 Lg Energy Solution, Ltd. Cathode of lithium secondary battery comprising iron oxide, and lithium secondary battery comprising same
CN112919548A (en) * 2021-03-09 2021-06-08 陕西科技大学 Purple luster iron oxide flaky particles and preparation method thereof
CN112919548B (en) * 2021-03-09 2023-08-08 晶瓷(北京)新材料科技有限公司 Purple glossy iron oxide flaky particles and preparation method thereof

Also Published As

Publication number Publication date
KR102488678B1 (en) 2023-01-13
KR20200006282A (en) 2020-01-20

Similar Documents

Publication Publication Date Title
WO2014182036A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2014088187A1 (en) Surface-modified silicon nanoparticles for negative electrode active material, and method for manufacturing same
WO2013100651A1 (en) Cathode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including same
WO2012165884A2 (en) Method for manufacturing a carbon-sulfur composite, carbon-sulfur composite manufactured thereby, and lithium-sulfur battery including same
WO2014042485A1 (en) Lithium secondary battery having improved electrochemical properties, and method for manufacturing same
WO2015005648A1 (en) Anode active material for lithium secondary battery, composition for anode including same, and lithium secondary battery
CN109792039B (en) Method of preparing iron oxyhydroxide (FeOOH) and lithium-sulfur battery positive electrode including the same
WO2011155781A2 (en) Positive electrode active material for a lithium secondary battery, method for producing same and lithium secondary battery comprising same
WO2015199251A1 (en) Nanoparticle-graphene-carbon composite having graphene network formed therein, preparation method therefor and application thereof
WO2014030853A1 (en) Method for preparing silicon oxide/carbon composite for anode active material of lithium secondary battery
WO2016153136A1 (en) Anode active material for secondary battery, and anode, electrode assembly, and secondary battery comprising same
WO2020013667A1 (en) Lithium secondary battery comprising inorganic electrolyte solution
WO2020013488A1 (en) Method for preparing iron oxide
WO2014193187A1 (en) Conductive material for secondary battery and electrode for lithium secondary battery comprising same
WO2014081269A1 (en) Precursor of electrode active material coated with metal, and method for preparing same
WO2020130181A1 (en) Method for manufacturing high density nickel-cobalt-manganese composite precursor
KR102229460B1 (en) Method for manufacturing iron phosphide
WO2020166871A1 (en) Cathode active material for lithium secondary battery
WO2020013482A1 (en) Method for preparing iron nitrate oxyhydroxide, cathode containing iron nitrate oxyhydroxide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same
KR102315383B1 (en) Method for manufacturing carbon nanostructure comprising molybdenum disulfide
WO2020060199A1 (en) Method for preparing iron sulfide, cathode comprising iron sulfide prepared thereby for lithium secondary battery, and lithium secondary battery comprising same
WO2020111305A1 (en) Method for manufacturing negative electrode material for secondary battery
JP7282116B2 (en) Method for producing iron phosphide, positive electrode for lithium secondary battery containing iron phosphide, and lithium secondary battery having the same
KR102617868B1 (en) Method for manufacturing iron oxyhydroxynitrate
WO2019198949A1 (en) Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834043

Country of ref document: EP

Kind code of ref document: A1