WO2020013438A1 - Luminescent nanocrystals using electronically delocalized carbamate derivative - Google Patents

Luminescent nanocrystals using electronically delocalized carbamate derivative Download PDF

Info

Publication number
WO2020013438A1
WO2020013438A1 PCT/KR2019/005991 KR2019005991W WO2020013438A1 WO 2020013438 A1 WO2020013438 A1 WO 2020013438A1 KR 2019005991 W KR2019005991 W KR 2019005991W WO 2020013438 A1 WO2020013438 A1 WO 2020013438A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nanocrystals
carbamate derivative
carbamate
aryl
Prior art date
Application number
PCT/KR2019/005991
Other languages
French (fr)
Korean (ko)
Inventor
김장섭
이칠원
한관영
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Publication of WO2020013438A1 publication Critical patent/WO2020013438A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Definitions

  • the present invention relates to luminescent nanocrystals, and more particularly to electronically delocalized carbamate derivatives capable of precisely controlling the size of nanocrystals by substituting carbamate ligands having strong coordination ability and having an electrically resonant structure. It relates to a light emitting nanocrystal using.
  • Nanocrystalline materials are nano-sized semiconductor crystals made of inorganic semiconductor materials.
  • Ligands which are organic materials on the surface of nanocrystalline shells in order to increase their solubility in cores, shells and organic solvents Consists of a structure that is combined.
  • Nanocrystalline materials generally have the characteristic that the energy band gap (Eg) between the valence band and the conduction band varies with size.
  • the nanocrystalline material has various material advantages such as excellent absorption coefficient, high electron mobility, and emission wavelength control function according to particle size control.
  • nanocrystalline materials are in the spotlight as next-generation display device materials having excellent light stability because the luminescent core is an inorganic material rather than an organic material.
  • the size of the nanocrystals is determined by the reaction temperature and time at which the crystals are made. For example, InPZnS nanocrystals that emit green light are produced at 150 ° C reaction temperature and 30 minutes reaction time, and red light is emitted. InPZnS nanocrystals are made at 210 ° C reaction temperature and 1 hour reaction time. The green and red InPZnS nanocrystals produced at this time were 3.31 ⁇ 0.22 nm and 3.83 ⁇ 0.22 nm, respectively, with an average size difference of only 0.5 nm. Since nanocrystalline materials vary greatly in the wavelength of light emitted by the size change, it is difficult to finely control the wavelength of emitted light only by controlling the size of nanocrystals.
  • the present invention has been proposed to solve the above problems, and an object of the present invention is to replace a carbamate ligand having a strong coordination ability and an electrically resonant structure, and thus the active region of excitons formed by energy transfer is nanocrystalline.
  • the present invention provides a light emitting nanocrystal using an electronically delocalized carbamate derivative which can be expanded to a ligand to obtain an effect of increasing nanocrystals.
  • the ligand in the light-emitting nanocrystals consisting of a core (Core), a shell (Shell) and a ligand (Ligand) bonded to the shell (Shell) surface, the ligand has an electrical resonance structure It has a carbamate derivative of the formula (1), the size of the nanocrystals are determined according to the carbamate derivatives, the light emitting nanocrystals using an electronically unlocalized carbamate derivative, characterized in that for controlling the wavelength of the emitted light May be provided.
  • R 1 and R 2 are each hydrogen, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, and X 1 and X 2 are each O, S, Se or Te, M is a main group metal, a base metal or a transition metal, n is an integer from 1 to 8, and m is an integer from 0 to 18.
  • luminescent nanocrystals using an electronically delocalized carbamate derivative, wherein M is an alkali metal or an alkaline earth metal can be provided.
  • luminescent nanocrystals using electronically delocalized carbamate derivatives can be provided wherein the alkali metal is H, Li, Na or K and the alkaline earth metal is Be, Mg or Ca. have.
  • a light emitting nanocrystal using an electronically delocalized carbamate derivative characterized in that R 1 and R 2 is a cyclic saturated or unsaturated hydrocarbon linked to each other as shown in the formula (2).
  • an alkyl group, alkenyl group, alkynyl group or aryl group is selected from -NR, wherein at least one hydrogen imparts electrical and steric properties.
  • -NHR, -NH 3 , -OR, -CH 3 , -CF 3 , -CCl 3 , -CN, -NO 2 , -COR and -CONH 2 is substituted with one selected from the group wherein R is each hydrogen
  • a light emitting nanocrystal using an electronically delocalized carbamate derivative, which is an alkyl group, an alkenyl group, an alkynyl group or an aryl group, may be provided.
  • the core portion and the shell portion respectively, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS 2 , AgGaSe 2 , AgGaTe 2 , AgInS 2 , AgInSe 2 , AgInTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 and CuGaTe 2
  • Light-emitting nanocrystals using electronically delocalized carbamate derivatives are provided. Can be.
  • the light emitting nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can precisely control the emission wavelength depending on the elements or functional groups to be bonded.
  • the luminescent nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can be applied to non-Cd-based nanocrystals that satisfy a policy of restricting certain harmful substances (RoHS, Restriction of Hazardous Substances).
  • RoHS Restriction of Hazardous Substances
  • the luminescent nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can be applied to solar cells as well as displays by controlling the electrical properties of ligands.
  • 1 is a schematic diagram showing that the ligand according to an embodiment of the present invention is substituted on the surface of the nanocrystals.
  • Figure 2 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with para- toluidine dithio carbamate according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with normal hexyl aniline carbamate according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing that the fluorescence spectrum of the nanocrystals substituted with 4-trifluoromethylaniline carbamate according to an embodiment of the present invention is changed.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • all terms used herein, including technical or scientific terms have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
  • the emission wavelength of the nanocrystals is determined by the size of the bohr radius of the exciton (electron-hole pair) formed in the valence and conduction bands of the nanocrystals, the energy band gap between the valence band and the conduction band is controlled. The wavelength of light emitted from the crystal can be controlled.
  • the nanocrystalline material can control the wavelength of the emitted light due to the change in particle size, unlike conventional fluorescent materials.
  • 1 is a schematic diagram showing that the ligand according to an embodiment of the present invention is substituted on the surface of the nanocrystals.
  • the present invention relates to a technology for controlling the emission color of the nanocrystalline material, the light emitting nanocrystal according to an embodiment of the present invention, the core (Core), shell (shell) and the shell (Shell) surface (Shell) surface Ligand is a light-emitting nanocrystal consisting of a ligand, the ligand has an electrical resonance structure, the carbamate derivative of Formula 1 or Formula 2, the size of the nanocrystals are determined according to the carbamate derivative It is a light emitting nanocrystal using an electronically delocalized carbamate derivative characterized by controlling the wavelength of emitted light.
  • R 1 and R 2 are each hydrogen, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, and X 1 and X 2 are each O, S, Se or Te, M is a main group metal, a base metal or a transition metal, n is an integer from 1 to 8, and m is an integer from 0 to 18.
  • M may be a main group metal, a base metal or a transition metal having a positive oxidation state.
  • n may be 1 to 8 and depends on the oxidation state of M. For example, n is 1 when M is an alkali metal such as H, Li, Na, or K, and n is 2 when M is an alkaline earth metal such as Be, Mg, or Ca. When n is 2 or more, the carbamate derivative may be the same or different.
  • m in the formula (2) is an integer of 0 to 18, when 0 is a form in which R 1 and R 2 are directly connected.
  • Formula 2 is a carbon atom in which R 1 and R 2 each form a covalent bond with a nitrogen atom, and include a ring hydrocarbone group composed of a nitrogen atom and m + 2 carbons.
  • Cyclic hydrocarbon groups consist of aryl rings or exist as carbon-carbon single bonds, double bonds, or triple bonds.
  • an alkyl group refers to a straight or branched monovalent hydrocarbon composed of 1 to 50 carbon atoms, for example methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, n-octyl, n-decyl, and the like.
  • Alkenyl group as used herein refers to a straight or branched unsaturated hydrocarbon composed of 2 to 50 carbon atoms having one or more carbon-carbon double bonds, for example, ethyleneyl, propenyl, butenyl, pentenyl, etc. Include but are not limited to.
  • an alkynyl group refers to a straight or branched unsaturated hydrocarbon composed of 2 to 50 carbon atoms having one or more carbon-carbon triple bonds, including, for example, acetylenyl, propynyl, butynyl and the like. It is not limited to this.
  • aryl groups include both aromatic and heteroaromatic groups and their partially reduced derivatives.
  • the aromatic group is a simple or fused cyclic cyclic consisting of 5 to 15 (please check the range possible in the present technology)
  • a heteroaromatic group means an aromatic group containing one or more oxygen, sulfur or nitrogen.
  • representative aryl groups include phenyl, naphthyl, pyridinyl, furanyl, thiophenyl, indolyl, quinolinyl, imidazolinyl, Oxazolyl, thiazolyl, tetrahydronaphthyl, and the like, but are not limited thereto.
  • the emission color can be easily adjusted finely and finely than the conventional method of controlling color through size.
  • the reason that color control is possible with ligands bound to the surface of nanocrystals is because of the resonance structure of carbamate derivatives, which results in delocalization of excitons formed in nanocrystals, resulting in the effect of increasing nanocrystal size. That is, due to ligand delocalization, the bore radius of the excitons formed inside the nanocrystals is increased, and as a result, a long wavelength (Bathochromic shift) light is emitted from the nanocrystal matrix.
  • Carbamate derivatives are compounds having various types of resonant molecular structures, and the carbamate derivatives used in the present invention are hydrogen atoms, alkyl groups, alkenyl groups, alkynyl groups, or aryls. It is a compound in which an amine functional group having two group substituents and two group 6 atoms are bonded to carbon.
  • the light emitting nanocrystal using the electronically delocalized carbamate derivative according to the embodiment of the present invention is characterized in that R 1 and R 2 are cyclic saturated or unsaturated hydrocarbons connected to each other as shown in Chemical Formula 2.
  • R 1 and R 2 are connected to each other, various electrical and three-dimensional characteristics can be imparted.
  • Formula 3 below is a carbamate derivative exhibits various electrical resonance structures.
  • the active region of excitons formed by energy transfer can be extended to ligands as well as nanocrystals.
  • the delocalization of exciton can be obtained, the effect of increasing the size of the nanocrystals.
  • the exciton bore radius increases according to the ligand delocalization characteristics, thereby obtaining the effect of long wavelength light emission compared to the nanocrystalline matrix.
  • the luminescent nanocrystal according to the embodiment of the present invention implements the emission color control function of the nanocrystalline material by replacing the existing monodentate ligand bound to the nanocrystalline matrix with a carbamate derivative ligand having excellent coordination ability and various resonance structures. .
  • the light emitting nanocrystals according to the embodiment of the present invention, the core portion and the shell portion, respectively, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS 2 , AgGaSe 2 , AgGaTe 2 , AgInS 2 , AgInSe 2 , AgInTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 and CuGaTe 2 .
  • the light emitting nanocrystals according to an embodiment of the present invention are made of metal and nonmetal, and nanocrystals of each group can be applied as a single material, and can also be used as double and multiple structure nanocrystals composed of a core part and a shell part.
  • the nanocrystals of the InP core portion and the ZnS shell multiple structure were used.
  • X 1 and X 2 of the light emitting nanocrystals according to an embodiment of the present invention are O, S, Se, Te, which can be bonded to the central carbon in the form of homonuclear diatomic or heteronuclear diatom. .
  • At least one hydrogen imparts electrical characteristics and three-dimensional characteristics Is substituted with one selected from the group consisting of -NR, -NHR, NH 3 , -OR, -CH 3, -CF 3 , -CCl 3 , -CN, -NO 2 , -COR and -CONH 2 , wherein R is Are hydrogen, an alkyl group, an akenyl group, an alkynyl group, or an aryl group, respectively.
  • Formulas 4 to 6 are electronically delocalized carbamate derivatives according to one embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with para- toluidine dithio carbamate according to an embodiment of the present invention.
  • the light emitting nanocrystal according to the embodiment of the present invention is characterized in that R 1 is H, R 2 is an aryl group, and the hydrogen of the aryl group is substituted with -CH 3 .
  • Figure 3 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with normal hexyl aniline carbamate according to an embodiment of the present invention.
  • the light emitting nanocrystal according to the embodiment of the present invention R 1 is an alkyl group, R 2 is an aryl group, the alkyl group is -C 6 H 13 , The aryl group is -C 6 It is characterized in that H 5 .
  • Figure 4 is a schematic diagram showing that the fluorescence spectrum of the nanocrystals substituted with 4-trifluoromethylaniline carbamate according to an embodiment of the present invention is changed.
  • the light emitting nanocrystal according to the embodiment of the present invention is characterized in that R 1 is H, R 2 is an aryl group, and the hydrogen of the aryl group is substituted with -CF 3 .
  • the luminescent nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can be finely controlled in wavelength, and thus used in the display industry as a display display material that is required to control red, green, and blue color coordinates and finely control white balance. Most likely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to luminescent nanocrystals and, to luminescent nanocrystals using an electronically delocalized carbamate derivative, the luminescent nanocrystals being substituted with a carbamate ligand, which has a strong coordination ability and has an electrically resonant structure, so as to adjust an exciton Bohr radius, thereby enabling the size of the nanocrystals to be precisely controlled.

Description

전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체Luminescent Nanocrystals Using Electronically Unlocalized Carbamate Derivatives
본 발명은 발광 나노결정체에 관한 것으로, 보다 상세하게는 배위 능력이 강하고 전기적으로 공명구조를 갖는 카바메이트 리간드를 치환함으로써, 나노결정체의 크기를 정밀하게 제어할 수 있는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체에 관한 것이다.The present invention relates to luminescent nanocrystals, and more particularly to electronically delocalized carbamate derivatives capable of precisely controlling the size of nanocrystals by substituting carbamate ligands having strong coordination ability and having an electrically resonant structure. It relates to a light emitting nanocrystal using.
나노결정체 물질은 무기물 반도체 소재로 이루어진 수 나노 크기의 반도체 결정체로서, 핵심부(core), 껍질부(shell)와 유기용매에 대한 용해도를 높이기 위해 나노결정체의 껍질부 표면에 유기 물질인 리간드(ligand)가 결합되어 있는 구조로 이루어져 있다. 나노결정체 물질은 일반적으로 크기에 따라 가전자대(valence band)와 전도대(conduction band) 사이의 에너지 밴드 갭(bandgap, Eg)이 변하는 특징을 가지고 있다. 또한 나노결정체 물질은 우수한 흡수 계수, 높은 전자 이동도, 입자 크기 조절에 따른 발광 파장 조절 기능 등 여러 가지 재료적인 장점을 가지고 있다. 특히 나노결정체 물질은 발광 핵심 주체가 유기물질이 아닌 무기물질이기 때문에 광안정성이 우수한 차세대 표시소자 재료로서 각광을 받고 있다.Nanocrystalline materials are nano-sized semiconductor crystals made of inorganic semiconductor materials. Ligands, which are organic materials on the surface of nanocrystalline shells in order to increase their solubility in cores, shells and organic solvents Consists of a structure that is combined. Nanocrystalline materials generally have the characteristic that the energy band gap (Eg) between the valence band and the conduction band varies with size. In addition, the nanocrystalline material has various material advantages such as excellent absorption coefficient, high electron mobility, and emission wavelength control function according to particle size control. In particular, nanocrystalline materials are in the spotlight as next-generation display device materials having excellent light stability because the luminescent core is an inorganic material rather than an organic material.
나노경정체의 크기는 결정체가 만들어지는 반응 온도 및 시간에 의해 결정되는데, 예를 들어 녹색 발광 빛을 내는 InPZnS 나노결정체는 150도 반응 온도 및 30분 반응 시간 조건에서 만들어지며, 적색 발광 빛은 방출하는 InPZnS 나노결정체는 210도 반응 온도 및 1시간 반응 시간 조건에서 만들어 진다. 이때 만들어진 녹색과 적색의 InPZnS 나노결정체의 크기는 각각 3.31 ± 0.22nm와 3.83 ± 0.22nm으로서 크기 차이가 평균 0.5nm 밖에 나지 않는다. 나노결정체 물질은 크기 변화에 의해 방출되는 빛의 파장이 큰 폭으로 변하기 때문에 나노결정체 크기 조절만으로 미세하게 방출 빛 파장을 제어하기에는 많은 어려움이 따르고 있다.The size of the nanocrystals is determined by the reaction temperature and time at which the crystals are made. For example, InPZnS nanocrystals that emit green light are produced at 150 ° C reaction temperature and 30 minutes reaction time, and red light is emitted. InPZnS nanocrystals are made at 210 ° C reaction temperature and 1 hour reaction time. The green and red InPZnS nanocrystals produced at this time were 3.31 ± 0.22 nm and 3.83 ± 0.22 nm, respectively, with an average size difference of only 0.5 nm. Since nanocrystalline materials vary greatly in the wavelength of light emitted by the size change, it is difficult to finely control the wavelength of emitted light only by controlling the size of nanocrystals.
이에 본 발명은 상기와 같은 문제점을 해소하기 위해 제안된 것으로, 본 발명의 목적은 배위 능력이 강하고 전기적으로 공명구조를 갖는 카바메이트 리간드를 치환함으로써, 에너지 전이에 따라 형성된 엑시톤의 활동 영역이 나노결정체뿐만 아니라 리간드로 확대되어, 나노결정체가 커지는 효과를 얻을 수 있는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체를 제공하는데 있다.Accordingly, the present invention has been proposed to solve the above problems, and an object of the present invention is to replace a carbamate ligand having a strong coordination ability and an electrically resonant structure, and thus the active region of excitons formed by energy transfer is nanocrystalline. In addition, the present invention provides a light emitting nanocrystal using an electronically delocalized carbamate derivative which can be expanded to a ligand to obtain an effect of increasing nanocrystals.
본 발명의 일 실시형태에서, 핵심부(Core), 껍질부(Shell) 및 상기 껍질부(Shell) 표면에 결합된 리간드(Ligand)로 구성되는 발광 나노결정체에 있어서, 상기 리간드는 전기적으로 공명구조를 가지고 있는 것으로, 하기 화학식 1의 카바메이트 유도체이고, 상기 카바메이트 유도체에 따라 나노결정체의 크기가 결정되어 방출 빛의 파장을 조절하는 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체가 제공될 수 있다. In one embodiment of the present invention, in the light-emitting nanocrystals consisting of a core (Core), a shell (Shell) and a ligand (Ligand) bonded to the shell (Shell) surface, the ligand has an electrical resonance structure It has a carbamate derivative of the formula (1), the size of the nanocrystals are determined according to the carbamate derivatives, the light emitting nanocrystals using an electronically unlocalized carbamate derivative, characterized in that for controlling the wavelength of the emitted light May be provided.
[화학식 1][Formula 1]
Figure PCTKR2019005991-appb-I000001
Figure PCTKR2019005991-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2019005991-appb-I000002
Figure PCTKR2019005991-appb-I000002
상기 식에서, R1 및 R2는 각각 수소, 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹이고, X1 및 X2는 각각 O, S, Se 또는 Te이고, M은 주족금속, 비금속 또는 전이금속이고, n은 1 내지 8의 정수이며, m은 0 내지 18의 정수이다.Wherein R 1 and R 2 are each hydrogen, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, and X 1 and X 2 are each O, S, Se or Te, M is a main group metal, a base metal or a transition metal, n is an integer from 1 to 8, and m is an integer from 0 to 18.
본 발명의 일 실시형태에서, M은, 알칼리 금속 또는 알칼리 토금속인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체가 제공될 수 있다.In one embodiment of the present invention, luminescent nanocrystals using an electronically delocalized carbamate derivative, wherein M is an alkali metal or an alkaline earth metal, can be provided.
본 발명의 일 실시형태에서, 알칼리 금속은 H, Li, Na 또는 K 이고, 알칼리 토금속은 Be, Mg 또는 Ca 인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체가 제공될 수 있다.In one embodiment of the present invention, luminescent nanocrystals using electronically delocalized carbamate derivatives can be provided wherein the alkali metal is H, Li, Na or K and the alkaline earth metal is Be, Mg or Ca. have.
본 발명의 일 실시형태에서, 화학식 2와 같이 R1 및 R2이 서로 연결된 고리형 포화 또는 불포화 탄화수소인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체가 제공될 수 있다.In one embodiment of the present invention, a light emitting nanocrystal using an electronically delocalized carbamate derivative, characterized in that R 1 and R 2 is a cyclic saturated or unsaturated hydrocarbon linked to each other as shown in the formula (2).
본 발명의 일 실시형태에서, 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹은, 하나 이상의 수소가 전기적 특성 및 입체적인 특성을 부여하는 -NR, -NHR, -NH3, -OR, -CH3, -CF3, -CCl3, -CN, -NO2, -COR 및 -CONH2로 구성된 군으로부터 선택된 하나로 치환되고, 상기 식에서 R은 각각 수소, 알킬(alkyl) 그룹, 아케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체가 제공될 수 있다. In one embodiment of the invention, an alkyl group, alkenyl group, alkynyl group or aryl group is selected from -NR, wherein at least one hydrogen imparts electrical and steric properties. -NHR, -NH 3 , -OR, -CH 3 , -CF 3 , -CCl 3 , -CN, -NO 2 , -COR and -CONH 2 is substituted with one selected from the group wherein R is each hydrogen A light emitting nanocrystal using an electronically delocalized carbamate derivative, which is an alkyl group, an alkenyl group, an alkynyl group or an aryl group, may be provided.
본 발명의 일 실시형태에서, 상기 핵심부 및 껍질부는 각각, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS2, AgGaSe2, AgGaTe2, AgInS2, AgInSe2, AgInTe2, CuInS2, CuInSe2, CuInTe2, CuGaS2, CuGaSe2 및 CuGaTe2로 구성된 군에서 선택되는 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체가 제공될 수 있다.In one embodiment of the present invention, the core portion and the shell portion, respectively, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS 2 , AgGaSe 2 , AgGaTe 2 , AgInS 2 , AgInSe 2 , AgInTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 and CuGaTe 2 Light-emitting nanocrystals using electronically delocalized carbamate derivatives are provided. Can be.
본 발명에 의한 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체는 결합되는 원소나 기능기에 따라 방출 파장을 정밀하게 제어할 수 있다.The light emitting nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can precisely control the emission wavelength depending on the elements or functional groups to be bonded.
본 발명에 의한 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체는 특정 유해물질을 규제(RoHS, Restriction of Hazardous Substances)하는 정책을 만족하는 비 Cd 계열의 나노결정체 적용이 가능하다.The luminescent nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can be applied to non-Cd-based nanocrystals that satisfy a policy of restricting certain harmful substances (RoHS, Restriction of Hazardous Substances).
본 발명에 의한 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체는 리간드의 전기적 특성 조절이 가능하여 디스플레이 뿐 아니라 태양전지에도 적용이 가능하다.The luminescent nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can be applied to solar cells as well as displays by controlling the electrical properties of ligands.
도 1은 본 발명의 일 실시예에 따른 리간드가 나노결정체 표면에 치환되는 것을 나타내는 개략도이다.1 is a schematic diagram showing that the ligand according to an embodiment of the present invention is substituted on the surface of the nanocrystals.
도 2는 본 발명의 일 실시예에 따른 파라-톨루이딘다이사이오카바메이트로 치환된 나노결정체의 형광 스펙트럼이 변화되는 것을 나타내는 개략도이다.Figure 2 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with para- toluidine dithio carbamate according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 노말헥실아닐린카바메이트로 치환된 나노결정체의 형광 스펙트럼이 변화되는 것을 나타내는 개략도이다.Figure 3 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with normal hexyl aniline carbamate according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 4-트리플루오르메틸아닐린카바메이트로 치환된 나노결정체의 형광 스펙트럼이 변화되는 것을 나타내는 개략도이다.Figure 4 is a schematic diagram showing that the fluorescence spectrum of the nanocrystals substituted with 4-trifluoromethylaniline carbamate according to an embodiment of the present invention is changed.
첨부한 도면을 참조하여 본 발명의 실시예들에 의한 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체에 대하여 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나, 개략적인 구성을 이해하기 위하여 실제보다 축소하여 도시한 것이다.With reference to the accompanying drawings will be described in detail with respect to the light emitting nanocrystals using the electronically delocalized carbamate derivatives according to the embodiments of the present invention. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific form disclosed, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structure is shown to be larger than the actual size for clarity of the invention, or to reduce the actual size to understand the schematic configuration.
또한, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. On the other hand, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
나노결정체 물질을 나노미터 크기로 줄이면 전자 및 홀의 움직임이 공간적으로 제한받게 되어 양자역학적 현상에 의해 벌크 반도체와 다른 독특한 에너지구조 및 광학적 특성을 보여준다. 나노결정체의 가전자대와 전도대에서 형성된 엑시톤(exciton, electron-hole pair)의 보어 반지름(Bohr radius) 크기에 따라 나노결정체의 방출 빛 파장이 결정되기 때문에 가전자대와 전도대 사이의 에너지 밴드 갭 조절로 나노결정체에서 방출되는 빛 파장 조절이 가능하다.Reducing the nanocrystalline material to nanometer size limits the movement of electrons and holes spatially, demonstrating quantum mechanical phenomena to the unique energy structures and optical properties of bulk semiconductors. Since the emission wavelength of the nanocrystals is determined by the size of the bohr radius of the exciton (electron-hole pair) formed in the valence and conduction bands of the nanocrystals, the energy band gap between the valence band and the conduction band is controlled. The wavelength of light emitted from the crystal can be controlled.
나노결정체 물질의 코어의 크기가 작아질수록 양자 구속효과(quantum confinement effect)로 전도대와 가전자대의 불연속 에너지준위가 높아져(에너지 밴드 갭이 커짐) 청색 파장대의 빛(blue shift)을 방출하며, 반대로 코어의 지름이 커지면 불연속 에너지 준위가 낮아져(에너지 밴드 갭이 작아짐) 장파장 빛(bathochromic shift)을 방출한다. 즉, 나노결정체 물질은 일반적인 형광재료와 달리 입자 크기 변화로 방출 빛의 파장 조절이 가능하다.As the core size of the nanocrystalline material decreases, the quantum confinement effect increases the discontinuous energy levels of the conduction and valence bands (larger energy band gap) and emits blue shift light. Larger core diameters lead to lower discrete energy levels (smaller energy band gaps), which emit bathochromic shifts. That is, the nanocrystalline material can control the wavelength of the emitted light due to the change in particle size, unlike conventional fluorescent materials.
도 1은 본 발명의 일 실시예에 따른 리간드가 나노결정체 표면에 치환되는 것을 나타내는 개략도이다.1 is a schematic diagram showing that the ligand according to an embodiment of the present invention is substituted on the surface of the nanocrystals.
본 발명은 나노결정체 물질의 발광 색을 조절하는 기술에 관한 것으로, 본 발명의 일 실시예에 의한 발광 나노결정체는, 핵심부(Core), 껍질부(Shell) 및 상기 껍질부(Shell) 표면에 결합된 리간드(Ligand)로 구성되는 발광 나노결정체이고, 상기 리간드는 전기적으로 공명구조를 가지고 있는 것으로, 하기 화학식 1 또는 화학식 2의 카바메이트 유도체이고, 상기 카바메이트 유도체에 따라 나노결정체의 크기가 결정되어 방출 빛의 파장을 조절하는 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체이다.The present invention relates to a technology for controlling the emission color of the nanocrystalline material, the light emitting nanocrystal according to an embodiment of the present invention, the core (Core), shell (shell) and the shell (Shell) surface (Shell) surface Ligand is a light-emitting nanocrystal consisting of a ligand, the ligand has an electrical resonance structure, the carbamate derivative of Formula 1 or Formula 2, the size of the nanocrystals are determined according to the carbamate derivative It is a light emitting nanocrystal using an electronically delocalized carbamate derivative characterized by controlling the wavelength of emitted light.
[화학식 1][Formula 1]
Figure PCTKR2019005991-appb-I000003
Figure PCTKR2019005991-appb-I000003
[화학식 2][Formula 2]
Figure PCTKR2019005991-appb-I000004
Figure PCTKR2019005991-appb-I000004
상기 식에서, R1 및 R2는 각각 수소, 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹이고, X1 및 X2는 각각 O, S, Se 또는 Te이고, M은 주족금속, 비금속 또는 전이금속이고, n은 1 내지 8의 정수이며, m은 0 내지 18의 정수이다. Wherein R 1 and R 2 are each hydrogen, an alkyl group, an alkenyl group, an alkynyl group or an aryl group, and X 1 and X 2 are each O, S, Se or Te, M is a main group metal, a base metal or a transition metal, n is an integer from 1 to 8, and m is an integer from 0 to 18.
M은 양의 산화상태를 가지는 주족금속, 비금속 또는 전이금속일 수 있다. n은 1 내지 8 일 수 있고 M의 산화상태에 따라 결정된다. 예를 들어, M이 H, Li, Na, K 등의 알칼리 금속일 경우 n은 1이며, M이 Be, Mg, Ca 등의 알칼리 토금속 일 경우 n은 2가 된다. n이 2 이상일 경우 카바메이트 유도체는 같거나 다를 수 있다. 또한 화학식 2의 m은 0 내지 18의 정수이고, 0인 경우는 R1과 R2가 직접 연결된 형태이다. 화학식 2는 R1과 R2가 각각 질소 원자와 공유 결합을 형성하는 탄소 원자로써 질소 원자 및 m+2개 탄소로 구성된 고리형 탄화수소(ring hydrocarbone) 그룹을 포함한다. 고리형 탄화수소 그룹은 아릴(aryl)고리로 구성되거나 탄소-탄소 단일 결합, 이중결합, 또는 삼중결합으로 존재한다.M may be a main group metal, a base metal or a transition metal having a positive oxidation state. n may be 1 to 8 and depends on the oxidation state of M. For example, n is 1 when M is an alkali metal such as H, Li, Na, or K, and n is 2 when M is an alkaline earth metal such as Be, Mg, or Ca. When n is 2 or more, the carbamate derivative may be the same or different. In addition, m in the formula (2) is an integer of 0 to 18, when 0 is a form in which R 1 and R 2 are directly connected. Formula 2 is a carbon atom in which R 1 and R 2 each form a covalent bond with a nitrogen atom, and include a ring hydrocarbone group composed of a nitrogen atom and m + 2 carbons. Cyclic hydrocarbon groups consist of aryl rings or exist as carbon-carbon single bonds, double bonds, or triple bonds.
본 명세서에서 사용되는 알킬 그룹은 탄소수 1 내지 50개로 구성된 직쇄형 또는 분지형의 1가 탄화수소를 의미하며, 예를 들어 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, t-부틸, n-펜틸, n-헥실, n-옥틸, n-데실 등이 포함되나 이에 한정되는 것은 아니다.As used herein, an alkyl group refers to a straight or branched monovalent hydrocarbon composed of 1 to 50 carbon atoms, for example methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, n-hexyl, n-octyl, n-decyl, and the like.
본 명세서에서 사용되는 알케닐 그룹은 하나 이상의 탄소-탄소 이중결합을 갖는 탄소수 2 내지 50개로 구성된 직쇄형 또는 분지형 불포화 탄화수소를 의미하며, 예를 들어 에틸렌일, 프로펜일, 부텐일, 펜텐일 등이 포함되나 이에 한정되는 것은 아니다.Alkenyl group as used herein refers to a straight or branched unsaturated hydrocarbon composed of 2 to 50 carbon atoms having one or more carbon-carbon double bonds, for example, ethyleneyl, propenyl, butenyl, pentenyl, etc. Include but are not limited to.
본 명세서에서 사용되는 알키닐 그룹은 하나 이상의 탄소-탄소 삼중결합을 갖는 탄소수 2 내지 50개로 구성된 직쇄형 또는 분지형 불포화 탄화수소를 의미하며, 예를 들어 아세틸렌일, 프로핀일, 부틴일 등이 포함되나 이에 한정되는 것은 아니다.As used herein, an alkynyl group refers to a straight or branched unsaturated hydrocarbon composed of 2 to 50 carbon atoms having one or more carbon-carbon triple bonds, including, for example, acetylenyl, propynyl, butynyl and the like. It is not limited to this.
본 명세서에서 사용되는 아릴 그룹은 아로메틱기와 헤테로아로메틱기 및 그들의 부분적으로 환원된 유도체를 모두 포함한다. 상기 아로메틱기는 5 내지 15(본 기술에서 가능한 범위 확인 부탁드립니다.)각형으로 이루어진 단순 또는 융합 고리형이며, 헤테로아로메틱기는 산소, 황 또는 질소를 하나 이상 포함하는 아로메틱기를 의미한다. 대표적인 아릴기의 예로는 페닐, 나프틸, 피리디닐(pyridinyl), 푸라닐(furanyl), 티오페닐(thiophenyl), 인돌릴(indolyl), 퀴놀리닐(quinolinyl), 이미다졸리닐(imidazolinyl), 옥사졸릴(oxazolyl), 티아졸릴(thiazolyl), 테트라히드로나프틸 등이 있으나 이에 한정되는 것은 아니다.As used herein, aryl groups include both aromatic and heteroaromatic groups and their partially reduced derivatives. The aromatic group is a simple or fused cyclic cyclic consisting of 5 to 15 (please check the range possible in the present technology), a heteroaromatic group means an aromatic group containing one or more oxygen, sulfur or nitrogen. Examples of representative aryl groups include phenyl, naphthyl, pyridinyl, furanyl, thiophenyl, indolyl, quinolinyl, imidazolinyl, Oxazolyl, thiazolyl, tetrahydronaphthyl, and the like, but are not limited thereto.
본 발명은 나노결정체의 껍질부 표면에 결합된 유기 물질 리간드를 카바메이트 유도체로 치환하면 크기를 통한 종래의 색을 조절하는 방법보다 정교하고 미세하게 발광 색을 쉽게 조절할 수 있다. 나노결정체 표면에 결합된 리간드로 색조절이 가능한 이유는 카바메이트 유도체의 공명구조 특성 때문에 나노결정체에서 형성된 엑시톤의 비편재화(delocalization)가 일어나 결과적으로 나노결정체 크기가 커지는 효과를 얻을 수 있기 때문이다. 즉 리간드 비편재화 특성으로 나노결정체 내부에서 형성된 엑시톤의 보어 반지름이 커지고 결과적으로 나노결정체 모체 대비 장파장(Bathochromic shift) 빛이 방출되는 효과를 얻을 수 있다.According to the present invention, when the organic material ligand bound to the shell surface of the nanocrystals is replaced with a carbamate derivative, the emission color can be easily adjusted finely and finely than the conventional method of controlling color through size. The reason that color control is possible with ligands bound to the surface of nanocrystals is because of the resonance structure of carbamate derivatives, which results in delocalization of excitons formed in nanocrystals, resulting in the effect of increasing nanocrystal size. That is, due to ligand delocalization, the bore radius of the excitons formed inside the nanocrystals is increased, and as a result, a long wavelength (Bathochromic shift) light is emitted from the nanocrystal matrix.
카바메이트 유도체는 다양한 형태의 공명 분자 구조를 갖는 화합물로서 본 발명에서 사용된 카바메이트 유도체는 수소 원자, 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹 치환체를 갖고 있는 아민(amine) 작용기와 두 개의 6족 원자가 탄소에 결합된 화합물이다. 나노결정체 모체 표면에 결합된 기존 리간드를 카바메이트 유도체로 치환하면(ligand exchange) 나노결정체의 가전자대와 전도대에서 형성된 엑시톤의 보어 반지름 크기가 변하게 되어 가전자대와 전도대 사이의 에너지 밴드 갭이 바뀌게 된다. 그리고 아민 작용기에 결합된 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹작용기의 전기적 그리고 입체적 특성과 공명구조를 이루는 6족 원자의 특성에 따라 용이하게 나노결정체 물질의 발광 스펙트럼을 조절할 수 있다.Carbamate derivatives are compounds having various types of resonant molecular structures, and the carbamate derivatives used in the present invention are hydrogen atoms, alkyl groups, alkenyl groups, alkynyl groups, or aryls. It is a compound in which an amine functional group having two group substituents and two group 6 atoms are bonded to carbon. When the existing ligand bound to the surface of the nanocrystalline matrix is replaced with a carbamate derivative (ligand exchange), the bore radius of the exciton formed in the valence and conduction bands of the nanocrystals is changed, thereby changing the energy band gap between the valence band and the conduction band. And depending on the characteristics of the Group 6 atoms, which form a resonance structure with the electrical and steric properties of the alkyl, alkenyl, alkynyl, or aryl group groups bonded to the amine functional group. It is possible to control the emission spectrum of the nanocrystalline material.
본 발명의 일 실시예에 따른 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체에는, 화학식 2와 같이 상기 R1 및 R2이 서로 연결된 고리형 포화 또는 불포화 탄화수소인 것을 특징으로 한다. The light emitting nanocrystal using the electronically delocalized carbamate derivative according to the embodiment of the present invention is characterized in that R 1 and R 2 are cyclic saturated or unsaturated hydrocarbons connected to each other as shown in Chemical Formula 2.
R1 및 R2이 서로 연결되는 형태를 통해 전기적인 특성과 입체적인 특성을 다양하게 부여할 수 있다.Through the form in which R 1 and R 2 are connected to each other, various electrical and three-dimensional characteristics can be imparted.
하기 화학식 3은 카바메이트 유도체가 다양한 전기적 공명구조를 나타내는 것이다.Formula 3 below is a carbamate derivative exhibits various electrical resonance structures.
[화학식 3][Formula 3]
Figure PCTKR2019005991-appb-I000005
Figure PCTKR2019005991-appb-I000005
나노결정체 표면에 전기적으로 공명구조를 가지고 있는 리간드를 결합시키면 에너지 전이에 따라 형성된 엑시톤의 활동 영역이 나노결정체뿐만 아니라 리간드로 확대될 수 있다. 즉 엑시톤의 비편재화가 일어나 나노결정체 크기가 커지는 효과를 얻을 수 있게 된다. 결과적으로 리간드 비편재화 특성에 따라 엑시톤 보어 반지름이 커지게 되어 나노결정체 모체 대비 장파장 빛이 방출되는 효과를 얻을 수 있다. By binding ligands with electrically resonant structures to the surface of nanocrystals, the active region of excitons formed by energy transfer can be extended to ligands as well as nanocrystals. In other words, the delocalization of exciton can be obtained, the effect of increasing the size of the nanocrystals. As a result, the exciton bore radius increases according to the ligand delocalization characteristics, thereby obtaining the effect of long wavelength light emission compared to the nanocrystalline matrix.
본 발명의 일 실시예에 따른 발광 나노결정체는, 나노결정체 모체에 결합된 기존 한자리 리간드를 배위 능력이 뛰어나고 다양한 공명 구조를 갖는 카바메이트 유도체 리간드로 치환하여 나노결정체 물질의 발광 색 조절 기능을 구현한다.The luminescent nanocrystal according to the embodiment of the present invention implements the emission color control function of the nanocrystalline material by replacing the existing monodentate ligand bound to the nanocrystalline matrix with a carbamate derivative ligand having excellent coordination ability and various resonance structures. .
본 발명의 일 실시예에 따른 발광 나노결정체는, 핵심부 및 껍질부가 각각, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS2, AgGaSe2, AgGaTe2, AgInS2, AgInSe2, AgInTe2, CuInS2, CuInSe2, CuInTe2, CuGaS2, CuGaSe2 및 CuGaTe2로 구성된 군에서 선택된다.The light emitting nanocrystals according to the embodiment of the present invention, the core portion and the shell portion, respectively, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS 2 , AgGaSe 2 , AgGaTe 2 , AgInS 2 , AgInSe 2 , AgInTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 and CuGaTe 2 .
본 발명의 일 실시예에 따른 발광 나노결정체는 금속 및 비금속으로 이루어 졌으며 각 족의 나노결정체는 단일 소재로 적용 가능하며, 핵심부와 껍질부로 구성된 이중 및 다중 구조의 나노결정체로도 사용 가능하다. 본 발명의 실시예 1 내지 3에서는 InP 핵심부와 ZnS 껍질부 다중 구조의 나노결정체를 사용하였다.The light emitting nanocrystals according to an embodiment of the present invention are made of metal and nonmetal, and nanocrystals of each group can be applied as a single material, and can also be used as double and multiple structure nanocrystals composed of a core part and a shell part. In Examples 1 to 3 of the present invention, the nanocrystals of the InP core portion and the ZnS shell multiple structure were used.
본 발명의 일 실시예에 따른 발광 나노결정체의 X1 및 X2 은 O, S, Se, Te이고, 이는 동핵 이원자(homonuclear diatomic) 또는 이핵 이원자 (heteronuclear diatom) 형태로 중심 탄소에 결합할 수 있다.X 1 and X 2 of the light emitting nanocrystals according to an embodiment of the present invention are O, S, Se, Te, which can be bonded to the central carbon in the form of homonuclear diatomic or heteronuclear diatom. .
본 발명의 일 실시예에 따른 발광 나노결정체의 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹은, 하나 이상의 수소가 전기적 특성 및 입체적인 특성을 부여하는 -NR, -NHR, NH3, -OR, -CH3, -CF3, -CCl3, -CN, -NO2, -COR 및 -CONH2로 구성된 군으로부터 선택된 하나로 치환되고, 상기 식에서 R은 각각 수소, 알킬(alkyl) 그룹, 아케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹인 것을 특징으로 한다. 이때 -NR, -NHR, NH3, -OR은 전자 주게 그룹(electron donating group)이고, -CF3, -CCl3, -CN, -NO2, -COR, -CONH2 은 전자를 잡아 당기는 그룹(electron withdrawing group)으로써, 발광 나노결정체에 전기적인 특성과 입체적인 특성이 부여할 수 있다. 하기 화학식 4 내지 6은, 본 발명의 일 실시예에 따른 전자적으로 비편재화된 카바메이트 유도체이다.In the alkyl group, the alkenyl group, the alkynyl group, or the aryl group of the light emitting nanocrystal according to the embodiment of the present invention, at least one hydrogen imparts electrical characteristics and three-dimensional characteristics Is substituted with one selected from the group consisting of -NR, -NHR, NH 3 , -OR, -CH 3, -CF 3 , -CCl 3 , -CN, -NO 2 , -COR and -CONH 2 , wherein R is Are hydrogen, an alkyl group, an akenyl group, an alkynyl group, or an aryl group, respectively. Wherein -NR, -NHR, NH 3 and -OR are electron donating groups, and -CF 3 , -CCl 3 , -CN, -NO 2 , -COR and -CONH 2 are groups that pull electrons As an electron withdrawing group, electrical and three-dimensional characteristics can be imparted to the light emitting nanocrystals. Formulas 4 to 6 are electronically delocalized carbamate derivatives according to one embodiment of the present invention.
[화학식 4][Formula 4]
Figure PCTKR2019005991-appb-I000006
Figure PCTKR2019005991-appb-I000006
[화학식 5][Formula 5]
Figure PCTKR2019005991-appb-I000007
Figure PCTKR2019005991-appb-I000007
[화학식 6] [Formula 6]
Figure PCTKR2019005991-appb-I000008
Figure PCTKR2019005991-appb-I000008
도 2는 본 발명의 일 실시예에 따른 파라-톨루이딘다이사이오카바메이트로 치환된 나노결정체의 형광 스펙트럼이 변화되는 것을 나타내는 개략도이다. 본 발명의 일 실시예에 따른 발광 나노결정체는 R1은 H이고, R2는 아릴(aryl) 그룹이고, 상기 아릴 그룹의 수소가 -CH3로 치환된 것을 특징으로 한다.Figure 2 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with para- toluidine dithio carbamate according to an embodiment of the present invention. The light emitting nanocrystal according to the embodiment of the present invention is characterized in that R 1 is H, R 2 is an aryl group, and the hydrogen of the aryl group is substituted with -CH 3 .
실시예 1 :Example 1:
파라-톨루이딘다이사이오카바메이트 산(p-toluidinedithiocarbamate acid) 2.75g (15mmol)과 클로로포름 5ml를 원넥 유리 플라스크에 넣는다. 위 용액에 5ml 클로로포름 용해된 InPZnS(Oleylamine) 나노결정체 263mg을 적가한 후 4시간 동안 반응 시킨다. 반응이 끝난 용액에 메탄올 20mL를 넣어 주황색 고체를 침전시킨다. 친점된 주황색 고체는 원심 분리기로 이용하여 용액으로부터 분리한다. 분리된 주황색 고체는 크로로포름에 다시 녹이고 메탄올로 침전시켜 순수한 고체 성분만을 분리하고 정제한다. 정제된 고체를 진공 건조하면 83mg의 주황색 나노결정체를 얻을 수 있다. InPZnS(oleylamine) 나노결정체와 파라-톨루이딘다이사이오카바메이트로 치환된 InPZnS 나노 결정체의 형광 스펙트럼(photoluminescence)은 리간드 치환 후 방출 파장이 장파장 쪽으로 22nm 조절되었다.2.75 g (15 mmol) of para-toluidinedithiocarbamate acid and 5 ml of chloroform are placed in a one neck glass flask. 263mg of InPZnS (Oleylamine) nanocrystals dissolved in 5ml chloroform was added dropwise to the solution for 4 hours. 20 mL of methanol is added to the finished solution to precipitate an orange solid. The friendly orange solid is separated from the solution using a centrifuge. The separated orange solid is dissolved again in chloroform and precipitated with methanol to separate and purify only pure solid components. Vacuum drying of the purified solid yields 83 mg of orange nanocrystals. The fluorescence spectra of InPZnS nanocrystals substituted with InPZnS (oleylamine) nanocrystals and para-toluidine dithiocarbamate showed that the emission wavelength after the ligand substitution was 22 nm toward the longer wavelength.
도 3은 본 발명의 일 실시예에 따른 노말헥실아닐린카바메이트로 치환된 나노결정체의 형광 스펙트럼이 변화되는 것을 나타내는 개략도이다. 본 발명의 일 실시예에 따른 발광 나노결정체는 R1은 알킬(alkyl) 그룹이고, R2는 아릴(aryl) 그룹이고, 상기 알킬 그룹은 -C6H13 이고, 상기 아릴 그룹은 -C6H5 인 것을 특징으로 한다.Figure 3 is a schematic diagram showing the change in the fluorescence spectrum of the nanocrystals substituted with normal hexyl aniline carbamate according to an embodiment of the present invention. The light emitting nanocrystal according to the embodiment of the present invention, R 1 is an alkyl group, R 2 is an aryl group, the alkyl group is -C 6 H 13 , The aryl group is -C 6 It is characterized in that H 5 .
실시예 2 :Example 2:
노말헥실아닐린카바메이트 산(n-hexylanilinedithiocarbamate acid) 1.9g (7.5mmol)과 클로로포름 5ml를 원넥 유리 플라스크에 넣는다. 위 용액에 5ml 클로로포름 용해된 InPZnS(Oleylamine) 나노결정체 127mg을 적가한 후 4시간 동안 반응 시킨다. 반응이 끝난 용액에 메탄올 20mL를 넣어 주황색 고체를 침전시킨다. 친점된 주황색 고체는 원심 분리기로 이용하여 용액으로부터 분리한다. 분리된 주황색 고체는 크로로포름에 다시 녹이고 메탄올로 침전시켜 순수한 고체 성분만을 분리하고 정제한다. 정제된 고체를 진공 건조하면 80mg의 주황색 나노결정체를 얻을 수 있다. InPZnS(oleylamine) 나노결정체와 노말헥실아닐린카바메이트로 치환된 InPZnS 나노 결정체의 형광 스펙트럼(photoluminescence)은 리간드 치환 후 방출 파장이 장파장 쪽으로 19nm 조절되었다.1.9 g (7.5 mmol) of n-hexylanilinedithiocarbamate acid and 5 ml of chloroform are placed in a one neck glass flask. 127mg of InPZnS (Oleylamine) nanocrystals dissolved in 5ml chloroform was added dropwise to the solution for 4 hours. 20 mL of methanol is added to the finished solution to precipitate an orange solid. The friendly orange solid is separated from the solution using a centrifuge. The separated orange solid is dissolved again in chloroform and precipitated with methanol to separate and purify only pure solid components. Vacuum drying of the purified solid yields 80 mg of orange nanocrystals. The fluorescence spectra of InPZnS nanocrystals substituted with InPZnS (oleylamine) nanocrystals and normal hexylaniline carbamate showed that the emission wavelength was 19 nm toward long wavelength after ligand replacement.
도 4는 본 발명의 일 실시예에 따른 4-트리플루오르메틸아닐린카바메이트로 치환된 나노결정체의 형광 스펙트럼이 변화되는 것을 나타내는 개략도이다. 본 발명의 일 실시예에 따른 발광 나노결정체는 R1은 H이고, R2는 아릴(aryl) 그룹이고, 상기 아릴 그룹의 수소가 -CF3로 치환된 것을 특징으로 한다.Figure 4 is a schematic diagram showing that the fluorescence spectrum of the nanocrystals substituted with 4-trifluoromethylaniline carbamate according to an embodiment of the present invention is changed. The light emitting nanocrystal according to the embodiment of the present invention is characterized in that R 1 is H, R 2 is an aryl group, and the hydrogen of the aryl group is substituted with -CF 3 .
실시예 3 :Example 3:
4-트리플루오르메틸아닐린카바메이트 산(4-trifluoromethylanilinedithio carbamate acid) 1.47g (6.2mmol)를 원넥 유리 플라스크에 넣는다. 위 용액에 5ml 클로로포름 용해된 InPZnS(Oleylamine) 나노결정체 113mg을 적가한 후 4시간 동안 반응 시킨다. 반응이 끝난 용액에 메탄올 20mL를 넣어 주황색 고체를 침전시킨다. 친점된 주황색 고체는 원심 분리기로 이용하여 용액으로부터 분리한다. 분리된 주황색 고체는 크로로포름에 다시 녹이고 메탄올로 침전시켜 순수한 고체 성분만을 분리하고 정제한다. 정제된 고체를 진공 건조하면 102mg의 주황색 나노결정체를 얻을 수 있다. InPZnS(oleylamine) 나노결정체와 4-트리플루오르메틸아닐린카바메이트 치환된 InPZnS 나노 결정체의 형광 스펙트럼(photoluminescence)은 리간드 치환 후 방출 파장이 장파장 쪽으로 8nm 조절되었다.1.47 g (6.2 mmol) of 4-trifluoromethylanilinedithio carbamate acid is placed in a one neck glass flask. 5 ml chloroform dissolved InPZnS (Oleylamine) nanocrystals were added dropwise to the solution and reacted for 4 hours. 20 mL of methanol is added to the finished solution to precipitate an orange solid. The friendly orange solid is separated from the solution using a centrifuge. The separated orange solid is dissolved again in chloroform and precipitated with methanol to separate and purify only pure solid components. Vacuum drying of the purified solid yields 102 mg of orange nanocrystals. The fluorescence spectra of InPZnS (oleylamine) nanocrystals and 4-trifluoromethylaniline carbamate-substituted InPZnS nanocrystals were controlled by 8 nm emission wavelength after ligand substitution.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정하지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.In the above description of the configuration and features of the present invention based on the embodiment according to the present invention, the present invention is not limited thereto, and various changes or modifications can be made within the spirit and scope of the present invention. It will be apparent to those skilled in the art that such changes or modifications fall within the scope of the appended claims.
본 발명에 따른 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체는 미세하게 파장 조절이 가능하므로 적색, 녹색, 청색 색좌표의 조절과 화이트밸런스의 미세조절이 필수적인 디스플레이 표시 소자 재료로써 디스플레이 산업에 이용 가능성이 높다.The luminescent nanocrystals using the electronically delocalized carbamate derivatives according to the present invention can be finely controlled in wavelength, and thus used in the display industry as a display display material that is required to control red, green, and blue color coordinates and finely control white balance. Most likely.

Claims (9)

  1. 핵심부(Core), 껍질부(Shell) 및 상기 껍질부(Shell) 표면에 결합된 리간드(Ligand)로 구성되는 발광 나노결정체에 있어서,In the light-emitting nanocrystals consisting of a core (Core), Shell (Shell) and the ligand (Ligand) bonded to the shell (Shell) surface,
    상기 리간드는 전기적으로 공명구조를 가지고 있는 것으로, 하기 화학식 1 또는 화학식 2의 카바메이트 유도체이고,The ligand has an electrical resonance structure, and is a carbamate derivative of Formula 1 or Formula 2,
    상기 카바메이트 유도체에 따라 나노결정체의 크기가 결정되어 방출 빛의 파장을 조절하는 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체. :According to the carbamate derivative, the size of the nanocrystals are determined to control the wavelength of the emitted light, characterized in that the light emitting nanocrystals using an electronically delocalized carbamate derivative. :
    [화학식 1][Formula 1]
    Figure PCTKR2019005991-appb-I000009
    Figure PCTKR2019005991-appb-I000009
    [화학식 2][Formula 2]
    Figure PCTKR2019005991-appb-I000010
    Figure PCTKR2019005991-appb-I000010
    상기 식에서, R1 및 R2는 각각 수소, 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹이고,Wherein R 1 and R 2 are each hydrogen, an alkyl group, an alkenyl group, an alkynyl group or an aryl group,
    X1 및 X2는 각각 O, S, Se 또는 Te이고,X 1 and X 2 are each O, S, Se or Te,
    M은 주족금속, 비금속 또는 전이금속이고,M is a main group metal, a base metal or a transition metal,
    n은 1 내지 8의 정수이며,n is an integer from 1 to 8,
    m은 0 내지 18의 정수이다.m is an integer of 0-18.
  2. 제 1항에 있어서,The method of claim 1,
    상기 M은, 알칼리 금속 또는 알칼리 토금속인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.M is an luminescent nanocrystal using an electronically delocalized carbamate derivative, characterized in that the alkali metal or alkaline earth metal.
  3. 제 2항에 있어서,The method of claim 2,
    상기 알칼리 금속은 H, Li, Na 또는 K 이고, 상기 알칼리 토금속은 Be, Mg 또는 Ca 인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.The alkali metal is H, Li, Na or K, and the alkaline earth metal is Be, Mg or Ca luminescent nanocrystals using an electronically delocalized carbamate derivative.
  4. 제 1항에 있어서,The method of claim 1,
    상기 R1 및 R2이 서로 연결된 고리형 포화 또는 불포화 탄화수소인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.Light-emitting nanocrystals using an electronic delocalized carbamate derivative, characterized in that R 1 and R 2 are cyclic saturated or unsaturated hydrocarbons connected to each other.
  5. 제 1항 또는 제 4항에 있어서,The method according to claim 1 or 4,
    상기 알킬(alkyl) 그룹, 알케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 및 아릴(aryl) 그룹은,The alkyl group, alkenyl group, alkynyl group and aryl group,
    하나 이상의 수소가 전기적 특성 및 입체적인 특성을 부여하는 -NR, -NHR, NH3, -OR, -CH3, -CF3, -CCl3, -CN, -NO2, -COR 및 -CONH2로 구성된 군으로부터 선택된 하나로 치환되고, 상기 식에서 R은 각각 수소, 알킬(alkyl) 그룹, 아케닐(alkenyl) 그룹, 알키닐(alkynyl) 그룹 또는 아릴(aryl) 그룹인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.One or more hydrogens to -NR, -NHR, NH 3 , -OR, -CH 3 , -CF 3 , -CCl 3 , -CN, -NO 2 , -COR and -CONH 2 which impart electrical and steric properties Substituted with one selected from the group consisting of: wherein R is each hydrogen, an alkyl group, an alkenyl group, an alkynyl group, or an aryl group Luminescent nanocrystals using carbamate derivatives.
  6. 제 1항에 있어서,The method of claim 1,
    상기 핵심부 및 껍질부는 각각, The core portion and the shell portion, respectively
    CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS2, AgGaSe2, AgGaTe2, AgInS2, AgInSe2, AgInTe2, CuInS2, CuInSe2, CuInTe2, CuGaS2, CuGaSe2 및 CuGaTe2로 구성된 군에서 선택되는 것을 포함하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, PbS, PbSe, PbTe, InP, InAs GaP, InGaP, AgGaS 2 , AgGaSe 2 , AgGaTe 2 , AgInS 2 , AgInSe 2 , AgInTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 and CuGaTe 2 A light-emitting nanocrystal using an electronically delocalized carbamate derivative comprising one selected from the group consisting of:
  7. 제 5항에 있어서,The method of claim 5,
    R1은 H이고, R2는 아릴(aryl) 그룹이고, 상기 아릴 그룹의 수소가 -CH3로 치환된 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.R 1 is H, R 2 is an aryl (aryl) group, the light emitting nanocrystals using an electronically delocalized carbamate derivative, characterized in that the hydrogen of the aryl group is substituted with -CH 3 .
  8. 제 5항에 있어서,The method of claim 5,
    R1은 알킬(alkyl) 그룹이고, R2는 아릴(aryl) 그룹이고, 상기 알킬 그룹은 -C6H13 이고, 상기 아릴 그룹은 -C6H5 인 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.R 1 is an alkyl group, R 2 is an aryl group, the alkyl group is —C 6 H 13 , and the aryl group is —C 6 H 5 . Luminescent nanocrystals using carbamate derivatives.
  9. 제 5항에 있어서,The method of claim 5,
    R1은 H이고, R2는 아릴(aryl) 그룹이고, 상기 아릴 그룹의 수소가 -CF3로 치환된 것을 특징으로 하는 전자적으로 비편재화된 카바메이트 유도체를 이용한 발광 나노결정체.R 1 is H, R 2 is an aryl (aryl) group, the light emitting nanocrystals using an electronically delocalized carbamate derivative, characterized in that the hydrogen of the aryl group is substituted with -CF 3 .
PCT/KR2019/005991 2018-07-09 2019-05-20 Luminescent nanocrystals using electronically delocalized carbamate derivative WO2020013438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180079441A KR102173712B1 (en) 2018-07-09 2018-07-09 A light emitting nanocrystal using an electronically delocalized carbamate derivative
KR10-2018-0079441 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020013438A1 true WO2020013438A1 (en) 2020-01-16

Family

ID=69142402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005991 WO2020013438A1 (en) 2018-07-09 2019-05-20 Luminescent nanocrystals using electronically delocalized carbamate derivative

Country Status (2)

Country Link
KR (1) KR102173712B1 (en)
WO (1) WO2020013438A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564200B1 (en) * 2020-10-15 2023-08-08 단국대학교 천안캠퍼스 산학협력단 Quantum dot, preparing method thereof, and qd-led comprising the same
KR102618858B1 (en) * 2020-12-08 2023-12-28 단국대학교 천안캠퍼스 산학협력단 Preparing method for nanocrystals, composition for preparing nanocrystals, and nanocrystals prepared by the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160103068A (en) * 2014-02-07 2016-08-31 나노코 테크놀로지스 리미티드 Quantum Dot Nanoparticles Having Enhanced Stability and Luminescence Efficiency
KR101746336B1 (en) * 2016-03-29 2017-06-13 포항공과대학교 산학협력단 Method for controlling size of Metal halide perovskite nanocrystal particle and optoelectronic device using the same
KR20180059363A (en) * 2016-11-25 2018-06-04 삼성전자주식회사 Light emitting device and display device including quantum dot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160103068A (en) * 2014-02-07 2016-08-31 나노코 테크놀로지스 리미티드 Quantum Dot Nanoparticles Having Enhanced Stability and Luminescence Efficiency
KR101746336B1 (en) * 2016-03-29 2017-06-13 포항공과대학교 산학협력단 Method for controlling size of Metal halide perovskite nanocrystal particle and optoelectronic device using the same
KR20180059363A (en) * 2016-11-25 2018-06-04 삼성전자주식회사 Light emitting device and display device including quantum dot

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, J. S. ET AL.: "Energy level tuning of InP/ZnS nanocrystals by electronically delocalized dithiocarbamate derivatives", MATERIALS TODAY COMMUNICATIONS, vol. 18, pages 149 - 152, XP055675374 *
SHI, X. ET AL.: "Metallurgical leaching of metal powder for facile and generalized synthesis of metal sulfide nanocrystals", COLLOIDS AND SURFACES A PHYSICOCHEM. ENG. ASPECTS, vol. 497, 2016, pages 344 - 351, XP029489585, DOI: 10.1016/j.colsurfa.2016.03.026 *

Also Published As

Publication number Publication date
KR102173712B1 (en) 2020-11-03
KR20200005884A (en) 2020-01-17

Similar Documents

Publication Publication Date Title
US11286421B2 (en) Luminescent crystals and manufacturing thereof
WO2020013438A1 (en) Luminescent nanocrystals using electronically delocalized carbamate derivative
US20080272347A1 (en) Organic Ligands for Semiconductor Nanocrystals
JP2013502047A (en) LIGHTING DEVICE, OPTICAL COMPONENT AND METHOD FOR LIGHTING DEVICE
KR101585430B1 (en) Nanohybrid composite of quantum dot nanoparticle and porous silica for fluorescent body, optical module using the same, and manufacturing method thereof
US20080057342A1 (en) Color conversion substrate
JP2009527099A (en) White light emitting device
WO2017215093A1 (en) Water-soluble quantum dot, preparation method therefor and method for preparing quantum dot film
WO2016129813A1 (en) Indium phosphide based quantum dot and preparation method therefor
JP7325885B2 (en) Photostable Cyano-Substituted Boron-Dipyrromethene Dyes as Green Emitters for Display and Lighting Applications
WO2017047921A1 (en) Photo-conversion complex, and photo-conversion member, display device, and light-emitting device package including the same, and method of fabricating the same
KR20200062664A (en) Perovskite Quantum dot nanocomposite ink capable of inkjet patterning
WO2022050438A1 (en) Method for producing cesium lead halide perovskite particles
WO2019233201A1 (en) Yellow-red band quantum dots, synthesis method therefor and application thereof
WO2012009853A1 (en) White light emitting glass-ceramic and production method thereof
Cho et al. Surface coating of gradient alloy quantum dots with oxide layer in white-light-emitting diodes for display backlights
WO2016006777A1 (en) Light-emitting element comprising anisotropic metal nanoparticle-dielectric core-shell nanostructure
WO2012138068A2 (en) Nanoparticle complex, light conversion member and display device having the same, and method for fabricating the same
KR102618857B1 (en) Preparing method for nanocrystals, composition for preparing nanocrystals, and nanocrystals prepared by the same
CN106367069B (en) Four-footed quantum dot, preparation method thereof and four-footed quantum dot light-emitting film
WO2017204488A1 (en) Method of manufacturing core-shell structure including cdse core based on glyme solvent, and core-shell structure including cdse core manufactured therefrom
KR20220159076A (en) Quantum dot and preparing method thereof
KR102618858B1 (en) Preparing method for nanocrystals, composition for preparing nanocrystals, and nanocrystals prepared by the same
WO2020204284A1 (en) Paint composition comprising quantum dots or manufacturing method therefor
KR20190053548A (en) Novel compound and color conversion film comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833351

Country of ref document: EP

Kind code of ref document: A1