WO2020013350A1 - 전기활성 물질을 이용한 에너지 하베스팅 장치 및 변형용 전극 유닛 - Google Patents
전기활성 물질을 이용한 에너지 하베스팅 장치 및 변형용 전극 유닛 Download PDFInfo
- Publication number
- WO2020013350A1 WO2020013350A1 PCT/KR2018/007767 KR2018007767W WO2020013350A1 WO 2020013350 A1 WO2020013350 A1 WO 2020013350A1 KR 2018007767 W KR2018007767 W KR 2018007767W WO 2020013350 A1 WO2020013350 A1 WO 2020013350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deformation
- generating unit
- unit
- electrode
- electroactive material
- Prior art date
Links
- 239000011263 electroactive material Substances 0.000 title claims abstract description 50
- 238000003306 harvesting Methods 0.000 title claims abstract description 50
- 230000005611 electricity Effects 0.000 claims abstract description 85
- 239000000463 material Substances 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims description 30
- 230000006399 behavior Effects 0.000 claims description 13
- 230000035939 shock Effects 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 9
- 239000012781 shape memory material Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000002657 fibrous material Substances 0.000 claims description 3
- 238000004080 punching Methods 0.000 claims description 2
- 230000000638 stimulation Effects 0.000 claims description 2
- 230000003252 repetitive effect Effects 0.000 abstract description 7
- 239000010408 film Substances 0.000 description 25
- 230000008901 benefit Effects 0.000 description 13
- 239000002033 PVDF binder Substances 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 229920001746 electroactive polymer Polymers 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 241001124569 Lycaenidae Species 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229920000431 shape-memory polymer Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- -1 copper-zinc-aluminum Chemical compound 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/183—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators using impacting bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/50—Piezoelectric or electrostrictive devices having a stacked or multilayer structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/857—Macromolecular compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/871—Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
Definitions
- the present invention relates to an energy harvesting apparatus using an electroactive material, and more particularly, to improve the energy harvesting efficiency by converting a static load or a weak impact into a large dynamic load or a shock load, thereby improving the energy harvesting efficiency.
- the present invention relates to a deformation electrode unit, and more particularly, to prevent damage to or damage to the electrode provided on the substrate by repeated deformation of the substrate (including electroactive material) for energy harvesting,
- the present invention relates to a deformation electrode unit having an improved structure.
- the electroactive material refers to a material that is capable of generating electricity by deformation or vice versa when electricity is passed, and has been commercialized in the field of sensors and energy harvesting.
- a sensor or energy harvester using such an electroactive material does not provide accurate sensing or efficient energy harvesting of deformation information due to the static behavior mainly caused by small deformation rather than dynamic behavior due to external force applied from the outside. There was a problem.
- Patent Document 1 Registered Patent Publication No. 10-1653061
- the electroactive material refers to a material that is capable of generating electricity by deformation or vice versa when electricity is passed, and has been commercialized in the field of sensors and energy harvesting.
- a sensor or energy harvester using such an electroactive material uses the PVDF film layer 101 to generate electrical energy and the electricity generated from the PVDF film layer 101. Since the electrode layer 102, which allows harvesting, is bonded in a curing manner after coating, repeated deformation of the PVDF film layer 101 is applied to the electrode layer 102, resulting in damage or breakage of the electrode layer 102. .
- the present invention has been made to solve the above problems, the object of the present invention is to enable the induction of large dynamic load or impact load even in the weak static load and to enable repeated deformation and recovery, it is possible to increase the energy harvesting efficiency It is an object of the present invention to provide an energy harvesting apparatus using an electroactive material.
- an object of the present invention is to provide a deformation electrode unit that allows the relative deformation can be made smoothly while maintaining contact between the electricity generating unit and the electrode unit. will be.
- the electricity generating unit comprising an electroactive material, so as to generate a voltage by deformation by external stimulation;
- a shock generation unit made of a material capable of repetitive deformation and restoration, and generating a dynamic behavior by the repeated deformation and restoration operation. It is characterized by enabling the energy harvest by the stimulus for.
- the electricity generating unit comprising an electroactive material so as to generate a voltage by deformation by an external stimulus; And an electrode part electrically connected to at least one surface of the electricity generating unit and made of a material capable of elastic deformation so that relative deformation can be made in contact with the electricity generating unit.
- the impact generating unit comprising a material capable of repeated deformation and restoration, the generation of electricity to enable the generation of electrical energy by deformation It is configured to apply a repetitive dynamic load to the part, it is possible to induce dynamic loads or impact loads that cause repetitive and large deformation even by the static load applied to the impact generating portion, it is possible to increase the energy harvesting efficiency You can expect benefits.
- the deformation electrode unit according to the present invention having the above-described configuration is configured to allow relative deformation while maintaining the state in which the electrode portion is in contact with the electricity generation portion even when repeated large deformation by the electricity generation portion occurs.
- the strain force (shear force) caused by the electricity generating portion can be suppressed from being continuously applied to the electrode portion as in the prior art, thereby improving the durability of the electrode portion and enabling large deformation design of the electricity generating portion to harvest energy. Or it can derive the advantage to increase the sensing efficiency.
- FIG. 1 is an exploded perspective view of an energy harvesting apparatus using an electroactive material according to an embodiment of the present invention.
- Figure 2 is a cross-sectional view showing the structure and operation state of an embodiment of the present invention.
- Figure 3 is an exploded perspective view of another embodiment of the present invention.
- FIG. 4 is a cross-sectional view of another embodiment of the present invention.
- FIG. 5 is a cross-sectional view of another embodiment of the present invention.
- FIG. 6 is a plan view of another embodiment of the present invention.
- FIG. 7 is a partially cutaway perspective view showing an enlarged portion A of FIG.
- FIG. 8 is a cross-sectional view of another embodiment of the present invention.
- Figure 9 is a plan view showing a variety of structures of the impact generating unit employed in another embodiment of the present invention.
- FIG. 10 is a view for explaining the structure and the molding method of the impact generating unit employed in another embodiment of the present invention.
- FIG. 11 is a cross-sectional view showing the structure of an electrode unit according to the prior art.
- FIG. 12 is a block diagram illustrating a coupling process of an electrode unit according to the prior art.
- FIG. 13 is a cross-sectional view of a deformation electrode unit according to an embodiment of the present invention.
- FIG. 14 is a block diagram illustrating a coupling process between components of an embodiment of the present invention.
- FIG. 15 is a cross-sectional view of a deformation electrode unit according to another embodiment of the present invention.
- 16 is a cross-sectional view of a deformation electrode unit according to another embodiment of the present invention.
- 17 is a cross-sectional view of a deformation electrode unit according to another embodiment of the present invention.
- FIG. 18 is a cross-sectional view of a deformation electrode unit according to another embodiment of the present invention.
- FIG. 1 is an exploded perspective view of an energy harvesting apparatus using an electroactive material according to an embodiment of the present invention
- Figure 2 is a cross-sectional view showing the structure and operation of the embodiment of the present invention.
- the energy harvesting apparatus using the electroactive material to increase the energy harvesting efficiency by using the electroactive material and the material that can be modified and restored, And an electric generator 12 made of a material containing an electroactive material, and an impact generator 14 made of a material including a material capable of repeated deformation and restoration.
- the electricity generating unit 12 may be formed of, for example, a film including an electroactive polymer material operating on a ferroelectric behavior principle, and includes electrodes on both sides of the weave or both sides of the fibers having electrodes made of the same material.
- the ribbon can be produced in the form of a weave.
- the ferroelectric electroactive polymer which is a material of the electricity generating unit 12, has excellent characteristics to be used as a sensor for detecting deformation such as fast mechanical / electrical kinetic reaction rate, high reliability and stability against mechanical / chemical behavior, and low impedance. It may be, for example, PVDF that operates on the principle of ferroelectric behavior, but is not limited thereto.
- the electricity generation unit 12 may include an electrode for transmitting the generated electrical energy to the outside and a capacitor for temporarily storing the energy harvested through the electrode.
- the impact generating unit 14 may be formed of various materials that can be repeatedly deformed and restored, of course, made of a material that can be deformed and restored, such as a shape memory material, and the electricity generating unit 12 To generate repetitive dynamic behavior.
- the impact generator 14 is not only deformed due to the material properties, but also restored to its original position, thereby enabling repeated deformation to enable continuous energy harvesting.
- the shock generating unit 14 made of a material capable of repeated deformation and restoration, the electrical By being configured to apply a repetitive dynamic load to the electricity generating unit 12 that enables energy generation, the dynamic load or the impact load causing repeated deformation and large deformation even by the static load applied to the impact generating unit 14 By enabling induction, it is possible to expect the advantage of increasing the energy harvesting efficiency.
- Examples of the material that can be deformed and restored by the impact generating unit 14 include a spring or a snap dome, but, for example, the original shape is memorized even when a deformation is applied by force, and is restored to its original shape.
- the material may be a shape memory material for the alloy or polymer generically.
- shape memory materials include shape memory alloys such as nickel-titanium alloys or copper-zinc-aluminum alloys, and shape memory polymers that are restored to their original shape under certain conditions even if the shape is changed by external impacts.
- shape memory polymer shape memory polymer
- the impact generator 14 employed in the present embodiment includes a plurality of deformation parts 14a arranged vertically and horizontally at regular intervals and made of a material that can be deformed and restored, such as the shape memory material.
- This embodiment having such a configuration enables the multi-point stimulus transmission through each contact point between each deformable portion 14a and the electricity generating portion 12, thereby deriving an advantage of further increasing the energy harvesting efficiency.
- the impact generator 14 employed in the present embodiment is made of a material that can be deformed and restored, such as a spring, and has a structure including a plurality of deformable parts 14a that are restored to its original shape after deformation.
- a snap dome structure including a portion that is turned over when a critical load is applied may be formed.
- the impact generating portion 14 having the snap dome structure is turned over when a critical load is applied, and is disposed between the plurality of deformation portions 14a arranged at regular intervals and between the adjacent deformation portions 14a. It comprises a plurality of connecting portions (14b) for connecting the.
- the snap generating structure is suddenly inverted when the load of the critical load is applied to the impact generating unit 14 so that the instantaneous dynamic load is simultaneously applied to a plurality of points of the electricity generating unit 12. It is possible to harvest electrical energy more efficiently.
- the electricity generation unit 12 employed in the present embodiment includes the first film layer 12a and the second film layer 12b positioned on opposite sides with the impact generator 14 therebetween. .
- the first film layer 12a and the second film layer 12b each include an electroactive material, are manufactured in a thin film form, and then cut into a desired size as needed.
- the first film layer 12a and the second film layer 12b may be arranged to be in selective contact with the deformable portion 14a of the impact generator 14, but another embodiment of the present invention
- the impact generating unit 14 may be formed in a pocket structure to accommodate the inside.
- the impact generator 14 When the deformable portion 14a of FIG. 2 is deformed as shown in FIG. 2A, electrical energy generation by the first film layer 12a is enabled, and the deformable portion 14a is different from that of FIG. 2B. In the case of deformation as described above, the first film layer 12a and the second film layer 12b may simultaneously generate electric energy.
- the electricity generating unit 12 includes the first film layer 12a, the second film layer 12b, and a connection layer connecting the respective film layers, so that the impact generator 14 is provided.
- the coupling between the electricity generating unit 12 and the impact generating unit 14 can be made relatively smoothly.
- the first film layer 12a and the second film layer 12b are separately formed from the impact generating unit 14 and then selectively formed with the impact generating unit 14.
- contact is possible, of course, in another embodiment of the present invention can be formed in the impact generating unit 14 in a coating manner.
- Figure 3 is an exploded perspective view of another embodiment of the present invention
- Figure 4 is a cross-sectional view of another embodiment of the present invention.
- the impact generator 34 employed in the present embodiment includes a plurality of unit impact units that can be formed separately from each other and then form a size required by a combination, and each The unit impact unit includes a deformable portion 34a that is turned over when a critical load or more is applied, and a connection portion 34b that connects the adjacent deformable portions 34a.
- the present embodiment includes a locking hole 341a formed in any one of the pair of connection parts 34b disposed adjacent to each other, and a locking pin 341b formed at the other, so that the locking hole 341a is formed. ) And the locking pins 341b to smoothly connect the unit shock units.
- the impact generating unit is implemented by vertically and horizontally arranged unit shock units in a plane unit, but the impact generating unit employed in another embodiment of the present invention includes, for example, a beam having a long length and a small width.
- the unit shock unit of the form a plurality of deformation parts arranged along the longitudinal direction may be formed, and the beam unit shock unit may be implemented by crossing each other.
- FIG. 5 is a cross-sectional view of another embodiment of the present invention.
- the impact generating unit employed in the present embodiment includes a unit impact unit 54 arranged to correspond to the total area of the electricity generating unit so that the multi-point magnetic pole is possible in the electricity generating unit.
- Each of the unit impact unit 54, the deformation portion 54a is formed of a material that can be deformed and restored, and the sliding unit is formed integrally with the deformation portion 54a and sliding in accordance with the deformation portion 54a It comprises a portion 54b.
- the deformable portion 54a is a portion where repetitive deforming and restoring operations are performed, and the sliding portion 54b is slid according to the deformation of the deformable portion 54a to cause friction with the second film layer 62.
- the deformable portion 54a may be formed of a shape memory material.
- the deformed portion 54a of the unit impact unit 54 is continuously stimulated in the first film layer 61 and the second film layer 62 including the electroactive polymer material.
- the sliding portion 54b causes the frictional charge with the second film layer 62 to enable additional energy harvesting by the frictional charging.
- reference numeral G denotes a guide member for guiding the movement of the sliding portion 54b
- S denotes a stopper for limiting the movement range of the sliding portion 54b.
- FIG. 6 is a plan view of another embodiment of the present invention
- Figure 7 is a partially cutaway perspective view showing an enlarged portion A of FIG.
- the impact generating unit employed in the present embodiment includes a frame unit 72 having a lattice-shaped frame structure and a deformation and restoration located in each space of the frame unit 72 so as to form a plurality of partitioned spaces. It comprises a deformable portion 74 made of this possible material.
- the deformable portion 54a may be formed of a shape memory material.
- a groove-shaped slot into which an edge of the deformable portion 74 is fitted is formed on a surface defining each space of the frame portion 72.
- the plurality of deformation parts 74 for generating dynamic loads in the electricity generating part (C: structure for accommodating the frame part inside in the form of a cover) are fitted into each slot of the frame part 72.
- FIG. 8 is a cross-sectional view of yet another embodiment of the present invention.
- the impact generating unit 92 made of a material that can be repeatedly deformed and restored, such as a shape memory material, and the deformation caused by the dynamic load applied from the impact generating unit 92.
- the first generation unit 94 and the second generation unit 96 is made to include.
- the first generator 94 and the second generator 96 include an electroactive material so as to generate a voltage by deformation caused by an external stimulus, and shape memory to enable repeated deformation and restoration. It is preferable to comprise a raw material.
- the impact generator 92 is to apply a stimulus for deformation of the first and second generators 94 and 96, and is located between the first and second generators 94 and 96. As the first and second generators 94 and 96 can be simultaneously stimulated, the energy harvesting efficiency can be further improved.
- the impact generator 92 may be made of a snap dome structure as in the above-described embodiments, but in the present embodiment, the impact generating unit 92 includes a plurality of uneven parts capable of flat spreading and bending. Structure was adopted.
- the velcro portion is formed on each of the surfaces facing the impact generator 92 and the first generator 94 and the surfaces facing the shock generator 92 and the second generator 96.
- 92a) 94a) 96a are provided.
- the time difference until the restoration process after deformation of the first and second generation units 94 and 96 in the process of separating after the Velcro portions 92a, 94a and 96a facing each other are combined.
- the gradual deformation of the first and second generation (94, 96) has the advantage that the energy can be harvested more continuously.
- the impact generator and the first and second generators are configured to separately perform dynamic behavior induction and electrical energy generation, respectively, which are inherent functions, but the present invention is not limited thereto. It can be implemented to include the electroactive material to enable the energy harvesting function, or the first and second generation part to include a material capable of deformation and restoration of shape to also exhibit the function of dynamic behavior induction.
- both the first and second electric generators and the impact generator may have a structure as shown in FIG. 1 independently.
- FIG. 9 is a plan view showing various structures of the impact generating unit employed in another embodiment of the present invention.
- the shape of the deformation portion may be implemented in the form of a membrane of a hexagonal structure as shown in Fig. 9 (a) or a circular structure as shown in Fig. 9 (b).
- the present invention is not limited thereto.
- the present invention may be formed in a different polygonal structure or may be implemented in a strip form instead of a membrane.
- FIG. 10 is a view for explaining the structure and the molding method of the impact generating unit employed in another embodiment of the present invention.
- the impact generating unit employed in the present embodiment passes the metal thin plate 140 between the pair of forming rollers 101 and 102, thereby forming the forming rollers 101 and 102 on the metal thin plate 140. It may be implemented by forming the deformation part 140a having a shape corresponding to the outer surface. That is, a groove 101a is formed in one of the pair of forming rollers 101 and a protrusion 102a having a shape corresponding to the groove 101a is formed in the other 102. When the metal thin plate 140 is passed between the pair of forming rollers 101 and 102, the plurality of deformation parts 140a may be formed on the metal thin plate 140.
- FIG. 13 is a cross-sectional view of a modified electrode unit according to an embodiment of the present invention
- FIG. 14 is a block diagram illustrating a coupling process between components constituting an embodiment of the present invention.
- the deformation electrode unit according to an embodiment of the present invention, by harvesting energy using an electroactive material or to function as a sensor, the electricity generating unit 11 and the electrode unit ( 12) is made.
- the electricity generation unit 11 includes an electroactive material to generate a voltage at the time of deformation due to external stimulus to generate electrical energy, and the electrode unit 12 is formed from the electricity generation unit 11. It enables the collection of generated electricity.
- the electricity generating unit 11 may be made of, for example, a film containing an electroactive polymer material operating on a ferroelectric behavior principle, and may be manufactured in the form of weaving or ribbon weaving of fibers made of the material. to be.
- the ferroelectric electroactive polymer which is a material of the electricity generating unit 11, has excellent characteristics to be used as a sensor for detecting deformation such as fast mechanical / electrical cyclic reaction rate, high reliability and stability of mechanical / chemical behavior, and low impedance. It may be, for example, PVDF that operates on the principle of ferroelectric behavior, but is not limited thereto.
- the present embodiment may include a capacitor for temporarily storing energy harvested through the electrode unit 12.
- the electrode part 12 is made of a material capable of conducting electricity with the electricity generating unit 11, and is electrically connected to at least one surface of the electricity generating unit 11 by a non-chemical binding method such as consolidation. After the deformation, the material may be restored to its original shape so that the relative deformation may be made even in a state of being in contact with the electricity generating unit 11.
- the electrode unit 12 may generate the electricity generating unit 11.
- the electrode unit 12 By being configured to perform relative deformation while maintaining the state in contact with the, it is possible to suppress the continuous application of the deformation force (shear force) by the electricity generating unit 11 to the electrode portion 12 as in the prior art
- the durability of the electrode unit 12 as well as the large deformation design of the electricity generating unit 11 can be derived to derive the advantage of increasing the energy harvesting or sensing efficiency.
- the electrode part 12 employed in the present embodiment is sufficient to be formed of a material capable of elastic deformation, so that it can be restored to its original shape after deformation, but is formed of a fabric material such as a conductive fiber material to improve deformation. It is desirable to be.
- the woven fabric refers to the overall material of the textile product, such as woven fabrics, knitted fabrics, non-woven fabrics.
- FIG. 15 is a cross-sectional view of a deformation electrode unit according to another exemplary embodiment.
- the electrode portion 22 employed in the present embodiment has a conductive fabric material in which the electrode portion (see FIG. 13; 12) of the above-described embodiment is not distinguished from the conductive portion performing the energizing function and the deformation portion causing the deformation. Unlike being configured to perform deformation and energization at the same time, it is composed of the base layer 22a and the stitching electrode layer 22b so that deformation and energization are implemented separately by each configuration.
- the electrode portion 22 includes a base layer 22a that causes deformation together with the electricity generating portion 21, and a stitching electrode layer 22b that energizes the electricity generating portion 21.
- the base layer 22a is formed of an elastically deformable material so that the base layer 22a may be deformed together with the electricity generator 21 when the electricity generator 21 is deformed, and the stitching electrode layer 22b is energized.
- a fibrous yarn of a possible material is provided on the base layer 22a by successively penetrating at intervals a surface disposed on the opposite side to the surface opposite to the base layer 22a in a sewing-like manner.
- the base layer 22a constituting the electrode portion 22 is configured to be deformed together with the electricity generating portion 21, whereby the shear force due to the deformation of the electricity generating portion 21 is reduced.
- the stitching electrode layer 22b provided to the base layer 22a by a sewing method can be configured to maintain contact with the electricity generating unit 21, thereby providing a smooth electric energy. Enable harvesting.
- the base layer 22a may be formed of an elastically deformable material.
- the base layer 22a may be formed of a PVDF material similarly to the electricity generating unit 21, and the contact with the electricity generating unit 21 may be maintained. Because of the relative deformation in the state, it can be formed of a material that enables the energy harvesting by the frictional charge with the electricity generating unit 21, of course.
- 16 is a cross-sectional view of a deformation electrode unit according to yet another exemplary embodiment.
- the electrode portion 32 employed in this embodiment has the same basic configuration as the embodiment shown in FIG. 15, but the size of the through hole 321 formed in the base layer 32a and the method of forming the stitching electrode layer 32b. There is a difference in.
- the base layer 32a employed in the present embodiment includes a plurality of through holes 321 through which the stitching electrode layer 32b in the form of fiber yarn is loosely passed.
- the base layer 32a is formed between the stitching electrode layer 32b and the base layer 32a by forming a through hole 321 having a size at which both elements can be more freely deformed. This makes it possible to expect the advantage of minimizing the disturbance by the stitching electrode layer 32b.
- the through hole 321 may be implemented by various methods, but for example, before the stitching electrode layer 32b having a relatively small diameter passes through the base layer 32a, the through hole 321 may have a relatively small diameter. It is also possible for a large fiber yarn portion to be formed by passing through the base layer 32a.
- the through hole may be formed in advance by punching the base layer 32a before passing the stitching electrode layer 32b through the base layer 32a. According to this embodiment, an advantage of forming the through hole in a desired size is expected.
- 17 is a cross-sectional view of a deformation electrode unit according to yet another exemplary embodiment.
- the embodiment shown in this figure comprises a stitching member 43 for binding passing between the electricity generating portion 41 and the electrode portion 42, so that the electricity generating portion 41 and the electrode portion 42. Relative deformation between the two is possible and can be bound without separation.
- the electricity generating unit 41 and the electrode unit 42 are bound together without being separated from each other by the stitching member 43, thereby forming the electricity generating unit 41 and the electrode unit 42. It also derives the advantage of maintaining the energized state smoothly in the relative deformation of the liver.
- the electrode part made of the fiber material may be implemented by stitching together with the electrode part.
- the electrode portion and the fibrous capacitor may be implemented in a multi-layered layer as necessary.
- FIG. 18 is a cross-sectional view of a deformation electrode unit according to yet another exemplary embodiment.
- the embodiment shown in this figure comprises Velcro portions 51a and 52a formed on opposite surfaces between the electricity generating portion 51 and the electrode portion 52, so that the electricity generating portion 51 and the electrode portion are formed. Allowing the relative deformation between the (52), it is possible to secure the binding force without separation.
- This embodiment having such a configuration has the advantage of smoothly maintaining the energized state even when the relative deformation between the electricity generating unit 51 and the electrode unit 52 faces each other.
- the progressive generation of the electricity generation unit 51 is performed by making a gradual deformation with a time difference until the restoration process after the deformation of the electricity generation unit 51. This has the advantage that the energy can be harvested more continuously.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
본 발명에 의한 전기활성 물질을 이용한 에너지 하베스팅 장치는, 외부자극에 의한 변형에 의해 전압을 발생시킬 수 있도록, 전기활성 물질을 포함하여 이루어지는 전기 생성부; 및 반복적인 변형 및 복원이 가능한 재질로 이루어지고, 상기 전기 생성부에, 상기 반복적인 변형 및 복원 동작에 의한 동적 거동을 발생시키는 충격 발생부;를 포함하여 이루어져서, 상기 충격 발생부의 전기 생성부에 대한 자극에 의해 에너지 수확을 가능하게 하는 것을 특징으로 한다. 그리고, 본 발명에 의한 변형용 전극 유닛은, 외부자극에 의한 변형에 의해 전압을 발생시킬 수 있도록, 전기활성 물질을 포함하여 이루어지는 전기 생성부; 및 상기 전기 생성부의 적어도 일면에 통전 가능하게 연결되고, 그 전기 생성부에 접촉된 상태로 상대 변형이 이루어질 수 있도록, 탄성 변형이 가능한 재질로 이루어지는 전극부;를 포함하여 이루어지는 것을 특징으로 한다.
Description
본 발명은 전기활성 물질을 이용한 에너지 하베스팅 장치에 관한 것으로, 더욱 상세하게는 정적하중이나 약한 충격을 대규모 동하중 또는 충격하중으로 전환시켜 줄 수 있게 하여 에너지 수확 효율을 높일 수 있도록, 구조가 개선된 전기활성 물질을 이용한 에너지 하베스팅 장치에 관한 것이다.
그리고, 본 발명은 변형용 전극 유닛에 관한 것으로, 더욱 상세하게는 에너지 수확을 위한 기판(전기활성 물질 포함)의 반복적인 변형에 의해 그 기판에 마련된 전극이 손상되거나 파손되는 것을 억제시킬 수 있도록, 구조가 개선된 변형용 전극 유닛에 관한 것이다.
근자에는 전기활성 물질을 이용한 센서 또는 에너지 하베스터가 활발하게 연구되고 있다. 여기서, 전기활성 물질이라 함은, 전기가 통하면 변형을 하거나 반대로 변형에 의해 전기를 생성할 수 있게 하는 물질을 의미하는 것으로, 센서나 에너지 수확 분야에서 상용화되고 있다.
이러한 전기활성 물질을 이용한 센서의 예가, 등록특허공보 등록번호 제10-1653061호에 개시되어 있다. 이와 같이, 전기활성 물질을 이용한 센서 또는 에너지 하베스터는 다양한 산업 분야에서 활용되고 있는 실정이다.
그러나, 이러한 전기활성 물질을 이용한 센서 또는 에너지 하베스터는, 외부에서 가해지는 외력에 의해 주로 동적 거동이 아니라 작은 변형이 발생하는 정적 거동이 이루어짐에 따라, 변형 정보의 정밀한 센싱 또는 효율적인 에너지 수확을 하지 못하는 문제점이 있었다.
[선행기술문헌]
(특허문헌 1) 등록특허공보 등록번호 제10-1653061호
한편, 근자에는 전기활성 물질을 이용한 센서 또는 에너지 하베스터가 활발하게 연구되고 있다. 여기서, 전기활성 물질이라 함은, 전기가 통하면 변형을 하거나 반대로 변형에 의해 전기를 생성할 수 있게 하는 물질을 의미하는 것으로, 센서나 에너지 수확 분야에서 상용화되고 있다.
이러한 전기활성 물질을 이용한 센서의 예가, 등록특허공보 등록번호 제10-1653061호에 개시되어 있다. 이와 같이, 전기활성 물질을 이용한 센서 또는 에너지 하베스터는 다양한 산업 분야에서 활용되고 있는 실정이다.
그러나, 이러한 전기활성 물질을 이용한 센서 또는 에너지 하베스터는, 도 11 및 도 12에 잘 도시된 바와 같이, 전기 에너지를 생성하는 PVDF 필름층(101)과 그 PVDF 필름층(101)으로부터 생성된 전기를 수확할 수 있게 하는 전극층(102)이 코팅 후 경화 방식으로 결합되기 때문에, PVDF 필름층(101)의 반복적인 변형력이 전극층(102)에 가해짐으로써 전극층(102)의 손상이나 파손을 초래하여 왔다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 약한 정적하중에도 큰 동하중 또는 충격하중 유도를 가능하게 하고 반복적인 변형 및 복원을 가능하게 하여, 에너지 수확 효율을 높일 수 있게 하는 전기활성 물질을 이용한 에너지 하베스팅 장치를 제공하고자 하는 것이다.
그리고, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 전기 생성부와 전극부 간의 접촉이 유지되면서도 상대 변형이 원활하게 이루어질 수 있게 하는 변형용 전극 유닛을 제공하고자 하는 것이다.
상기 목적을 달성하기 위한 본 발명에 의한 전기활성 물질을 이용한 에너지 하베스팅 장치는, 외부자극에 의한 변형에 의해 전압을 발생시킬 수 있도록, 전기활성 물질을 포함하여 이루어지는 전기 생성부; 및 반복적인 변형 및 복원이 가능한 재질로 이루어지고, 상기 전기 생성부에, 상기 반복적인 변형 및 복원 동작에 의한 동적 거동을 발생시키는 충격 발생부;를 포함하여 이루어져서, 상기 충격 발생부의 전기 생성부에 대한 자극에 의해 에너지 수확을 가능하게 하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명에 의한 변형용 전극 유닛은, 외부자극에 의한 변형에 의해 전압을 발생시킬 수 있도록, 전기활성 물질을 포함하여 이루어지는 전기 생성부; 및 상기 전기 생성부의 적어도 일면에 통전 가능하게 연결되고, 그 전기 생성부에 접촉된 상태로 상대 변형이 이루어질 수 있도록, 탄성 변형이 가능한 재질로 이루어지는 전극부;를 포함하여 이루어지는 것을 특징으로 한다.
상술한 바와 같은 구성을 가지는 본 발명에 의한 전기활성 물질을 이용한 에너지 하베스팅 장치는, 반복적인 변형 및 복원이 가능한 소재를 포함하여 이루어지는 충격 발생부가, 변형에 의해 전기 에너지 생성을 가능하게 하는 전기 생성부에, 반복적인 동적 하중을 인가시켜 줄 수 있도록 구성됨으로써, 충격 발생부에 가해지는 정적 하중에 의해서도 반복적이면서 큰 변형을 일으키는 동하중 또는 충격하중 유도를 가능하게 함에 따라, 에너지 수확 효율을 높일 수 있는 장점을 기대할 수 있게 한다.
상술한 바와 같은 구성을 가지는 본 발명에 의한 변형용 전극 유닛은, 전기 생성부에 의한 반복적인 대변형이 발생하는 경우에도 전극부가 전기 생성부에 접촉된 상태를 유지하면서 상대 변형을 할 수 있도록 구성됨으로써, 종래기술과 같이 전기 생성부에 의한 변형력(전단력)이 전극부에 지속적으로 가해지는 것을 억제시킬 수 있게 됨에 따라, 전극부의 내구성 개선은 물론, 전기 생성부의 대변형 설계를 가능하게 하여 에너지 수확 또는 센싱 효율을 높일 수 있는 장점을 도출한다.
도 1은 본 발명의 일실시예에 따른 전기활성 물질을 이용한 에너지 하베스팅 장치의 분리 사시도.
도 2는 본 발명 일실시예의 구조 및 동작상태를 보인 단면도.
도 3은 본 발명 다른 실시예의 분리 사시도.
도 4는 본 발명 다른 실시예의 단면도.
도 5는 본 발명 또 다른 실시예의 단면도.
도 6은 본 발명 또 다른 실시예의 평면도.
도 7은 도 6의 A부분을 확대하여 보인 부분절개 사시도.
도 8은 본 발명 또 다른 실시예의 단면도.
도 9는 본 발명 또 다른 실시예에 채용되는 충격 발생부의 다양한 구조를 보인 평면도.
도 10은 본 발명의 또 다른 실시예에 채용되는 충격 발생부의 구조 및 성형방법을 설명하기 위한 도면.
도 11은 종래기술에 의한 전극 유닛의 구조를 보인 단면도.
도 12는 종래기술에 의한 전극 유닛의 결합과정을 설명하기 위한 블럭도.
도 13은 본 발명의 일실시예에 따른 변형용 전극 유닛의 단면도.
도 14는 본 발명의 일실시예를 이루는 구성들 간의 결합과정을 설명하기 위한 블럭도.
도 15는 본 발명의 다른 실시예에 따른 변형용 전극 유닛의 단면도.
도 16은 본 발명의 또 다른 실시예에 따른 변형용 전극 유닛의 단면도.
도 17은 본 발명의 또 다른 실시예에 따른 변형용 전극 유닛의 단면도.
도 18은 본 발명의 또 다른 실시예에 따른 변형용 전극 유닛의 단면도.
이하에서는 본 발명의 일실시예에 따른 전기활성 물질을 이용한 에너지 하베스팅 장치를 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 전기활성 물질을 이용한 에너지 하베스팅 장치의 분리 사시도이고, 도 2는 본 발명 일실시예의 구조 및 동작상태를 보인 단면도.
이들 도면에 도시된 바와 같이, 본 발명의 일실시예에 따른 전기활성 물질을 이용한 에너지 수확 장치는, 전기활성 물질과 변형 및 복원이 가능한 소재를 이용하여 에너지 수확 효율을 증가시킬 수 있게 하는 것으로, 전기활성 물질을 포함한 재질로 이루어지는 전기 생성부(12)와, 반복적인 변형 및 복원이 가능한 소재를 포함한 재질로 이루어지는 충격 발생부(14)를 포함하여 형성된다.
상기 전기 생성부(12)는, 예컨대, 강유전성(Ferroelectric) 거동 원리로 작동하는 전기활성 고분자 물질을 포함한 필름으로 이루어질 수 있고, 동일 재료로 구성된 전극을 구비한 섬유들의 직조 혹은 양면에 전극을 구비한 리본의 직조 형태로 제작될 수 있음은 물론이다.
상기 전기 생성부(12)의 재질인 강유전성 전기활성 고분자는, 빠른 기계/전기적 연성 반응속도, 기계/화학적 거동에 대한 높은 신뢰성 및 안정도와, 낮은 임피던스 등 변형을 감지하는 센서로 활용하기에 우수한 특성을 가지는 것으로, 예들 들어 강유전성 거동 원리로 작동하는 PVDF 등이 될 수 있으나, 이에 제한되지는 않는다.
이러한 전기 생성부(12)는, 도시되지는 않았으나, 생성된 전기 에너지를 외부에 전달하기 위한 전극과 그 전극을 통해 수확된 에너지를 일시적으로 저장하기 위한 커패시터를 포함하여 이루어질 수 있음은 물론이다.
상기 충격 발생부(14)는, 반복적인 변형 및 복원이 가능한 다양한 재질로 형성될 수 있음은 물론이나, 예컨대, 형상기억소재와 같은 변형 및 복원이 가능한 재질로 이루어져서, 상기 전기 생성부(12)에 반복적인 동적 거동을 발생시키는 역할을 한다.
즉, 상기 충격 발생부(14)는, 재료적 물성 때문에, 변형에 그치지 않고 다시 원래의 위치로 복원됨에 따라, 반복적인 변형을 가능하게 하여 지속적인 에너지 수확을 가능하게 한다.
상술한 바와 같은 구성을 가지는 본 발명의 일실시예에 따른 전기활성 물질을 이용한 에너지 하베스팅 장치는, 반복적인 변형 및 복원이 가능한 소재를 포함하여 이루어지는 충격 발생부(14)가, 변형에 의해 전기 에너지 생성을 가능하게 하는 전기 생성부(12)에, 반복적인 동적 하중을 인가시켜 줄 수 있도록 구성됨으로써, 충격 발생부(14)에 가해지는 정적 하중에 의해서도 반복적이면서 큰 변형을 일으키는 동하중 또는 충격하중 유도를 가능하게 함에 따라, 에너지 수확 효율을 높일 수 있는 장점을 기대할 수 있게 한다.
상기 충격 발생부(14)에 채용된 변형 및 복원이 가능한 소재로는 스프링이나 스냅돔을 예로 들 수 있으나, 예컨대, 힘을 가해서 변형을 시켜도 본래의 형상을 기억하고 있어 곧 원래의 형상으로 복원되는 합금 또는 고분자를 총칭하는 형상기억소재일 수 있음은 물론이다.
이러한 형상기억소재는, 니켈-티타늄 합금 또는 구리-아연-알루미늄 합금과 같은 형상기억합금(shape memory alloy)과, 외부 충격에 의해 모양이 달라졌다 하더라도 일정 조건하에서 원래의 형상으로 복원되는 형상기억고분자(shape memory polymer;SMP)를 포함한다.
본 실시예에 채용된 충격 발생부(14)는, 일정 간격으로 종횡으로 배열되고 상기 형상기억소재와 같이 변형 및 복원이 가능한 재질로 이루어지는 복수의 변형부들(14a)들을 포함하여 이루어진다. 이러한 구성을 가지는 본 실시예는, 각 변형부(14a)들과 전기 생성부(12) 간의 각 접촉점을 통한 다중 포인트 자극 전달을 가능하게 하여, 에너지 수확 효율을 더욱 높일 수 있는 장점을 도출한다.
그리고, 본 실시예에 채용된 충격 발생부(14)는, 스프링과 같이 변형 및 복원이 가능한 소재로 이루어져서, 변형 후 원래의 형상으로 복원되는 복수의 변형부(14a)들을 포함하여 이루어지는 구조인 것으로 족하나, 상기 전기 생성부(12)에 상대적으로 큰 동하중 인가가 가능하도록, 예컨대, 임계하중 이상이 가해지면 뒤집어지게 되는 부분을 포함하여 이루어지는 스냅돔 구조(snap dome)로 이루어지는 것도 가능하다.
이러한 스냅돔 구조로 이루어지는 충격 발생부(14)는, 임계하중 이상이 가해지면 뒤집어지게 되고 일정 간격을 두고 배열되는 복수의 변형부(14a)들과, 인접하게 배치된 변형부(14a)들 사이를 연결시키는 복수의 연결부(14b)를 포함하여 이루어진다.
이러한 구성을 가지는 본 실시예는, 임계하중 이상이 가해지면 순식간에 뒤집어지는 스냅돔 구조가 충격 발생부(14)에 채용됨으로써, 순간적인 동적 하중이 전기 생성부(12)의 복수 포인트에 동시에 인가될 수 있게 하여, 전기 에너지를 더욱 효율적으로 수확할 수 있게 한다.
한편, 본 실시예에 채용된 전기 생성부(12)는, 상기 충격 발생부(14)를 사이에 두고 서로 반대측에 위치한 제1필름층(12a)과 제2필름층(12b)을 포함하여 이루어진다.
상기 제1필름층(12a)과 제2필름층(12b)은, 각각 전기활성 물질을 포함하여 이루어지고, 얇은 필름 형태로 제작된 후 필요에 따라 원하는 크기로 절개되어 사용된다.
이러한 제1필름층(12a)과 제2필름층(12b)은, 상기 충격 발생부(14)의 변형부(14a)와 선택적인 접촉이 가능하도록 배치되는 것으로 족하나, 본 발명의 다른 실시예에서는 상기 충격 발생부(14)를 내측에 수용할 수 있도록 포켓 구조로 형성될 수 있음은 물론이다.
본 실시예에서와 같이, 상기 제1필름층(12a)과 제2필름층(12b)이 상기 충격 발생부(14)를 사이에 두고 서로 반대측에 위치한 구조에 의하면, 상기 충격 발생부(14)의 변형부(14a)가 도 2의 (a)과 같이 변형된 경우에는 제1필름층(12a)에 의한 전기 에너지 생성을 가능하게 하고, 그 변형부(14a)가 도 2의 (b)와 같이 변형된 경우에는 제1필름층(12a)과 제2필름층(12b)에서 동시에 전기 에너지 생성을 가능하게 한다.
도시되지는 않았으나, 전기 생성부(12)가, 상기 제1필름층(12a), 제2필름층(12b) 및 각 필름층 사이를 연결하는 연결층을 구비하여서, 상기 충격 발생부(14)를 내측에 수용되게 하는 포켓 구조로 이루어지는 경우에는, 전기 생성부(12)와 충격 발생부(14) 간의 결합이 상대적으로 원활하게 이루어질 수 있게 한다.
그리고, 본 실시예에서 상기 제1필름층(12a)과 제2필름층(12b)은, 상기 충격 발생부(14)와 별개로 필름 형태로 제작된 이후 그 충격 발생부(14)와 선태적인 접촉이 가능하게 배치되나, 본 발명의 다른 실시예에서는 충격 발생부(14)에 코팅 방식으로 형성될 수 있음은 물론이다.
도 3은 본 발명 다른 실시예의 분리 사시도이고, 도 4는 본 발명 다른 실시예의 단면도이다.
이들 도면에 도시된 바와 같이, 본 실시예에 채용된 충격 발생부(34)는, 서로 분리 제작된 후 결합에 의해 요구되는 크기를 형성시킬 수 있는 복수의 단위 충격유닛을 포함하여 이루어지고, 각 단위 충격유닛은, 임계하중 이상이 가해지면 뒤집어지게 되는 변형부(34a)와, 인접하게 배치된 변형부(34a)들 사이를 연결시키는 연결부(34b)를 포함하여 이루어진다.
그리고, 본 실시예는, 인접하게 배치되는 한 쌍의 연결부(34b)들 중 어느 하나에 형성된 걸림공(341a)과, 다른 하나에 형성된 걸림핀(341b)을 포함하여 이루어져서, 상기 걸림공(341a)과 걸림핀(341b) 간의 걸림을 통해 단위 충격유닛들 간의 연결이 원활하게 이루어지게 한다.
이러한 구성을 가지는 본 실시예는, 스냅돔 구조를 가지는 단위 충격유닛을 서로 연결하여 줌으로써, 충격 발생부(34)를 요구되는 면적으로 용이하게 제작할 수 있게 됨에 따라, 제품의 양산성을 향상시킬 수 있는 장점을 기대할 수 있게 한다.
한편, 본 실시예에서 상기 충격 발생부는 면 단위의 단위 충격유닛을 종횡으로 배열 형성하는 것에 의해 구현되었으나, 본 발명의 다른 실시예에 채용된 충격 발생부는, 예컨대 길이는 길고 폭은 작은 형태의 빔 형태의 단위 충격유닛에, 그 길이방향을 따라 배열된 복수의 변형부들을 형성시키고, 그 빔 형태의 단위 충격유닛을 서로 교차시켜 구현할 수도 있다.
도 5는 본 발명 또 다른 실시예의 단면도이다.
본 실시예에 채용된 충격 발생부는, 상기 전기 생성부에 다중 포인트 자극이 가능하도록, 상기 전기 생성부의 전체면적에 대응되게 배열되는 단위 충격유닛(54)을 포함하여 이루어진다.
상기 각 단위 충격유닛(54)은, 변형 및 복원이 가능한 재질로 형성되는 변형부(54a)와, 상기 변형부(54a)와 일체로 형성되고 그 변형부(54a)에 변형에 따라 슬라이딩되는 슬라이딩부(54b)를 포함하여 이루어진다. 상기 변형부(54a)는, 반복적인 변형 및 복원 동작이 이루어지는 부분이고, 상기 슬라이딩부(54b)는, 그 변형부(54a)의 변형에 따라 슬라이딩 됨으로써 제2필름층(62)과 마찰을 일으키는 부분이다. 상기 변형부 (54a)는 형상기억소재로 구성될 수 있다.
이러한 구성을 가지는 본 실시예는, 전기활성고분자 물질을 포함하여 이루어지는 제1필름층(61)과 제2필름층(62)에, 상기 단위 충격유닛(54)의 변형부(54a)가 지속적인 자극을 가해 줄 수 있도록 구성됨으로써, 전기 에너지 수확을 가능하게 하고, 상기 슬라이딩부(54b)가 제2필름층(62)과 마찰대전을 일으켜 마찰대전에 의한 추가적인 에너지 수확을 가능하게 한다.
도면 중 미설명 부호 G는, 상기 슬라이딩부(54b)의 이동을 가이드하는 가이드부재이고, S는 상기 슬라이딩부(54b)의 이동범위를 제한하는 스토퍼이다.
도 6은 본 발명 또 다른 실시예의 평면도이고, 도 7은 도 6의 A부분을 확대하여 보인 부분절개 사시도이다.
본 실시예에 채용된 충격 발생부는, 복수의 구획된 공간을 형성시킬 수 있도록, 격자 모양의 틀 구조를 가지는 프레임부(72)와, 상기 프레임부(72)의 각 공간에 위치되고 변형 및 복원이 가능한 소재로 이루어지는 변형부(74)를 포함하여 이루어진다. 상기 변형부 (54a)는 형상기억소재로 구성될 수도 있다.
그리고, 상기 프레임부(72)의 각 공간을 한정하는 면에는, 상기 변형부(74)의 가장자리가 끼워지는 홈 형태의 슬롯이 형성되어 있다.
이러한 구성을 가지는 본 실시예는, 전기 생성부(C:커버 형태로 프레임부를 내측에 수용하는 구조)에 동하중을 발생시키는 복수의 변형부(74)들을, 프레임부(72)의 각 슬롯에 끼워지게 함으로써, 결국 충격 발생부의 구조를 요구되는 설계사양대로 원활하게 구현할 수 있게 됨에 따라, 제품의 양산성을 향상시킬 수 있는 장점을 도출한다.
도 8은 본 발명 또 다른 실시예의 단면도이다.
본 실시예는, 형상기억소재와 같이 반복적인 변형 및 복원이 가능한 재질로 이루어지는 충격 발생부(92)와, 그 충격 발생부(92)로부터 가해진 동적 하중에 의한 변형으로 전기 에너지를 생성할 수 있게 하는 제1생성부(94) 및 제2생성부(96)를 포함하여 이루어진다.
상기 제1생성부(94)와 제2생성부(96)는, 외부자극에 의한 변형에 의해 전압을 발생시킬 수 있도록 전기활성 물질을 포함하여 이루어지고, 반복적인 변형 및 복원이 가능하도록 형상기억소재를 포함하여 이루어지는 것이 바람직하다.
상기 충격 발생부(92)는, 상기 제1,2생성부들(94)(96)의 변형을 위한 자극을 가해 주기 위한 것으로, 상기 제1,2생성부(94)(96) 사이에 위치되어 제1,2생성부(94)(96)들에 동시에 자극을 가할 수 있게 됨에 따라, 에너지 수확 효율을 더욱 향상시킬 수 있게 한다.
상기 충격 발생부(92)는, 앞에서 설명한 실시예들과 마찬가지로 스냅돔 구조로 이루어질 수 있음은 물론이나, 본 실시예에서는 플랫한 형태의 펼침 및 굴곡진 형태의 구부러짐이 가능한 복수의 요철부들을 포함하여 이루어진 구조가 채택되었다.
본 실시예에서는, 상기 충격 발생부(92)와 제1생성부(94) 간의 마주하는 면과, 충격 발생부(92)와 제2생성부(96)의 마주하는 면들, 각각에 벨크로부(92a)94a)(96a)가 마련되어 있다.
이러한 구성을 가지는 본 실시예는, 서로 마주하는 벨크로부(92a)94a)(96a)들이 결합된 이후 분리되는 과정에서, 제1,2생성부(94)(96)의 변형 후 복원 과정까지 시간차를 두고 점진적인 변형이 이루어지게 함으로써, 그 제1,2생성부(94)(96)의 점진적인 변형에 의해 에너지를 더욱 지속적으로 수확할 수 있게 하는 장점을 가진다.
한편, 본 실시예에서는, 충격 발생부와 제1,2생성부가 각각 본래의 기능인 동적 거동 유도와 전기 에너지 생성을 분리하여 수행할 수 있도록 구성되었으나, 본 발명은 이에 한정되지 않고, 예컨대 충격 발생부가 전기활성 물질을 포함하여 이루어짐으로써 에너지 수확 기능을 할 수 있게 하거나, 제1,2생성부가 형상 변형 및 복원이 가능한 재질을 포함하여 이루어짐으로써 동적 거동 유도의 기능도 발휘할 수 있도록 구현될 수 있음은 물론, 제1,2전기생성부와 충격발생부 모두 도 1과 같은 구조를 독립적으로 가질 수도 있다.
도 9는 본 발명 또 다른 실시예에 채용되는 충격 발생부의 다양한 구조를 보인 평면도이다.
이 도면에 도시된 바와 같이, 본 실시예에 채용된 충격 발생부는, 변형부의 형상이 도 9의 (a)와 같이 육각 구조 또는 도 9의 (b)와 같이 원형 구조의 멤브레인 형태로 구현될 수도 있으나, 본 발명은 이에 한정되지 않고, 예컨대 다른 다각 형태의 구조로 이루어지거나 멤브레인이 아닌 스트립 형태로 구현될 수 있음은 물론이다.
도 10은 본 발명의 또 다른 실시예에 채용되는 충격 발생부의 구조 및 성형방법을 설명하기 위한 도면이다.
본 실시예에 채용된 충격발생부는, 한 쌍의 성형롤러들(101)(102) 사이로 금속박판(140)을 통과시켜서,그 금속박판(140) 상에 성형롤러들(101)(102)의 외면에 대응되는 형상의 변형부(140a)를 형성시키는 것에 의해 구현될 수 있다. 즉, 상기 한 쌍의 성형롤러들 중 어느 하나(101)에는 홈부(101a)를 형성하여 두고, 다른 하나(102)에는 그 홈부(101a)에 대응되는 형상의 돌출부(102a)를 형성하여 둔 상태에서 한 쌍의 성형롤러들(101)(102) 사이로 금속박판(140)을 통과시키면, 그 금속박판(140) 상에 복수의 변형부(140a)들을 형성시킬 수 있게 된다.
이하에서는 본 발명의 일실시예에 따른 변형용 전극 유닛을 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 13은 본 발명의 일실시예에 따른 변형용 전극 유닛의 단면도이고, 도 14는 본 발명 일실시예를 이루는 구성들 간의 결합과정을 설명하기 위한 블럭도이다.
이들 도면에 도시된 바와 같이, 본 발명의 일실시예에 따른 변형용 전극 유닛은, 전기활성 물질을 이용하여 에너지를 수확하거나 센서로서의 기능을 발휘하는 것으로, 전기 생성부(11)와 전극부(12)를 포함하여 이루어진다.
상기 전기 생성부(11)는, 전기활성 물질을 포함하여 이루어져서 외부자극에 의한 변형시 전압을 발생시켜 전기 에너지 생성을 가능하게 하고, 상기 전극부(12)는, 상기 전기 생성부(11)로부터 생성된 전기의 집전을 가능하게 한다.
이러한 전기 생성부(11)는, 예컨대, 강유전성(Ferroelectric) 거동 원리로 작동하는 전기활성 고분자 물질을 포함한 필름으로 이루어질 수 있고, 그 재질로 이루어진 섬유들의 직조 혹은 리본 직조 형태로 제작될 수 있음은 물론이다.
상기 전기 생성부(11)의 재질인 강유전성 전기활성 고분자는, 빠른 기계/전기적 연성 반응속도, 기계/화학적 거동에 대한 높은 신뢰성 및 안정도와, 낮은 임피던스 등 변형을 감지하는 센서로 활용하기에 우수한 특성을 가지는 것으로, 예들 들어 강유전성 거동 원리로 작동하는 PVDF 등이 될 수 있으나, 이에 제한되지는 않는다.
그리고, 본 실시예는, 도시되지는 않았으나, 상기 전극부(12)를 통해 수확된 에너지를 일시적으로 저장하기 위한 커패시터를 포함하여 이루어질 수 있음은 물론이다.
상기 전극부(12)는, 상기 전기 생성부(11)와 통전이 가능한 재질로 이루어지고, 압밀과 같은 비화학적 결속 등의 방식으로 그 전기 생성부(11)의 적어도 일면에 통전 가능하게 연결되며, 변형 후 원래의 형상으로 복원이 가능한 재질로 이루어져서 상기 전기 생성부(11)에 접촉된 상태에서도 상대 변형이 이루어질 수 있게 된다.
상술한 바와 같은 구성을 가지는 본 발명의 일실시예에 따른 변형용 전극 유닛은, 전기 생성부(11)에 의한 반복적인 대변형이 발생하는 경우에도 전극부(12)가 전기 생성부(11)에 접촉된 상태를 유지하면서 상대 변형을 할 수 있도록 구성됨으로써, 종래기술과 같이 전기 생성부(11)에 의한 변형력(전단력)이 전극부(12)에 지속적으로 가해지는 것을 억제시킬 수 있게 됨에 따라, 전극부(12)의 내구성 개선은 물론, 전기 생성부(11)의 대변형 설계를 가능하게 하여 에너지 수확 또는 센싱 효율을 높일 수 있는 장점을 도출한다.
본 실시예에 채용된 전극부(12)는, 변형 후 원래의 형상으로 복원이 될 수 있도록, 탄성 변형이 가능한 재질로 형성되는 것으로 족하나, 변형성 향상을 위해 전도성 섬유 재질과 같은 직물 재질로 형성되는 것이 바람직하다. 여기서, 직물이라 함은 직물, 편물, 부직포 등 섬유제품의 소재 전반을 의미한다.
도 15는 본 발명의 다른 실시예에 따른 변형용 전극 유닛의 단면도이다.
본 실시예에 채용된 전극부(22)는, 앞에서 설명한 실시예의 전극부(도 13 참조; 12)가, 통전 기능을 수행하는 통전부와 변형을 일으키는 변형부가 구별되지 않고 하나의 전도성 직물 재질에 의해 변형과 통전을 동시에 수행할 수 있도록 구성되는 것과는 달리, 베이스층(22a)과 스티칭 전극층(22b)으로 이루어져서 변형과 통전이 각 구성에 의해 별개로 구현되도록 구성되었다.
즉, 상기 전극부(22)는, 전기 생성부(21)와 함께 변형을 일으키는 베이스층(22a)과, 그 전기 생성부(21)와 통전을 하는 스티칭 전극층(22b)을 포함하여 이루어진다.
상기 베이스층(22a)은, 상기 전기 생성부(21)의 변형시에 그 전기 생성부(21)와 함께 변형될 수 있도록, 탄성변형 가능한 재질로 형성되고, 상기 스티칭 전극층(22b)은, 통전 가능한 재질의 섬유사를, 바느질과 유사한 방식으로 상기 베이스층(22a)에 대향하는 면과 반대측에 위치한 면을 간격을 두고 순차로 관통시킴으로써, 상기 베이스층(22a) 상에 마련된다.
이러한 구성을 가지는 본 실시예는, 전극부(22)를 구성하는 베이스층(22a)이 전기 생성부(21)와 함께 변형될 수 있도록 구성됨으로써, 전기 생성부(21)의 변형에 의한 전단력이 베이스층(22a)에 가해지는 것을 억제시킬 수 있게 되고, 그 베이스층(22a)에 바느질 방식으로 마련된 스티칭 전극층(22b)이 전기 생성부(21)와의 접촉을 유지할 수 있도록 구성됨으로써, 원활한 전기 에너지 수확을 가능하게 한다.
한편, 상기 베이스층(22a)은, 탄성변형 가능한 재질로 형성되는 것으로 족하나, 상기 전기 생성부(21)와 마찬가지로 PVDF 재질로 형성될 수도 있고, 상기 전기 생성부(21)와의 접촉이 유지된 상태로 상대 변형이 가능한 특성 때문에, 상기 전기 생성부(21)와 마찰대전에 의한 에너지 수확을 가능하게 하는 재질로 형성될 수 있음은 물론이다.
도 16은 본 발명의 또 다른 실시예에 따른 변형용 전극 유닛의 단면도이다.
본 실시예에 채용된 전극부(32)는, 도 15에 도시된 실시예와 기본적인 구성에 있어서 동일하나, 베이스층(32a)에 형성된 관통공(321)의 크기와 스티칭 전극층(32b) 형성 방법에 있어서 차이가 있다 .
즉, 본 실시예에 채용된 베이스층(32a)은, 섬유사 형태의 스티칭 전극층(32b)이 헐겁게 통과되게 하는 복수의 관통공(321)들을 포함하여 이루어진다.
이러한 구성을 가지는 본 실시예는, 상기 스티칭 전극층(32b)과 베이스층(32a) 사이에 양 요소가 좀 더 자유롭게 변형할 수 있는 크기의 관통공(321)이 형성되도록 함으로써, 베이스층(32a)의 변형이 스티칭 전극층(32b)에 의해 방해받는 것을 최소화시킬 수 있는 장점을 기대할 수 있게 한다.
이러한 관통공(321)은, 다양한 방법에 의해 구현될 수 있음은 물론이나, 예컨대, 상대적으로 작은 직경을 가진 스티칭 전극층(32b)이 상기 베이스층(32a)을 통과하기 이전에, 상대적으로 직경이 큰 섬유사 부분이 상기 베이스층(32a)을 통과함으로써 형성되는 것도 가능하다.
즉, 직경이 큰 금속 섬유사를 베이스층(32a)에 통과시켜 관통공(321)의 크기를 크게 확보한 이후, 작은 직경의 스티칭 전극층(32b)을 상기 관통공(321)에 통과시키게 되면, 도 16의 확대 부분과 같이, 스티칭 전극층(32b)이 베이스층(32a)에 헐겁게 끼워진 상태로 놓이게 된다.
또한, 본 발명의 다른 실시예에서 상기 관통공은, 상기 스티칭 전극층(32b)을 베이스층(32a)에 통과시키기 이전에, 상기 베이스층(32a)에 펀칭작업을 통해 미리 형성시키는 것도 가능하다. 이러한 실시예에 의하면, 원하는 크기로 상기 관통공을 형성시킬 수 있는 장점이 기대된다.
도 17은 본 발명의 또 다른 실시예에 따른 변형용 전극 유닛의 단면도이다.
이 도면에 도시된 실시예는, 전기 생성부(41)와 전극부(42) 사이를 통과하는 결속용 스티칭부재(43)를 포함하여 이루어져서, 상기 전기 생성부(41)와 전극부(42) 간의 상대변형을 가능하게 하면서 상호 분리됨이 없이 결속시켜 줄 수 있게 된다.
이러한 구성을 가지는 본 실시예는, 상기 전기 생성부(41)와 전극부(42)가 상기 스티칭부재(43)에 의해 상호 분리됨이 없이 결속됨으로써, 전기 생성부(41)와 전극부(42) 간의 상대 변형시에도 통전 상태를 원활하게 유지시킬 수 있는 장점을 도출한다.
한편, 본 발명의 다른 실시예에서는, 도시되지는 않았으나, 상기 섬유 재질로 이루어진 전극부 뿐만 아니라 섬유형 커패시터를 그 전극부와 함께 스티칭하여 구현시킬 수도 있다. 또한, 필요에 따라 전극부와 섬유형 커패시터를 멀티 레이어층으로 구현시킬 수 있음은 물론이다.
도 18은 본 발명의 또 다른 실시예에 따른 변형용 전극 유닛의 단면도이다.
이 도면에 도시된 실시예는, 전기 생성부(51)와 전극부(52) 간의 마주하는 면에 형성된 벨크로부(51a)(52a)를 포함하여 이루어져서, 그 전기 생성부(51)와 전극부(52) 간의 상대변형을 허용하면서 상호 분리됨이 없는 결속력을 확보할 수 있게 된다.
이러한 구성을 가지는 본 실시예는, 도 17에 도시된 실시예와 마찬가지로, 전기 생성부(51)와 전극부(52) 간의 상대 변형시에도 통전 상태를 원활하게 유지시킬 수 있는 장점과, 서로 마주하는 벨크로부(51a)(52a)들이 결합된 이후 분리되는 과정에서, 전기 생성부(51)의 변형 후 복원 과정까지 시간차를 두고 점진적인 변형이 이루어지게 함으로써, 그 전기 생성부(51)의 점진적인 변형에 의해 에너지를 더욱 지속적으로 수확할 수 있게 하는 장점을 가진다.
이상 본 발명의 다양한 실시예에 대하여 설명하였으나, 본 실시예 및 본 명세서에 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 명확하게 나타내고 있는 것에 불과하며, 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시예는 모두 본 발명의 권리범위에 포함되는 것이 자명하다고 할 것이다.
Claims (22)
- 외부자극에 의한 변형에 의해 전압을 발생시킬 수 있도록, 전기활성 물질을 포함하여 이루어지는 전기 생성부; 및반복적인 변형 및 복원이 가능한 재질로 이루어지고, 상기 전기 생성부에, 상기 반복적인 변형 및 복원 동작에 의한 동적 거동을 발생시키는 충격 발생부;를 포함하여 이루어져서,상기 충격 발생부의 전기 생성부에 대한 자극에 의해 에너지 수확을 가능하게 하는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제1항에 있어서,상기 충격 발생부는, 상기 전기 생성부에 다중 포인트 자극이 가능하도록, 상기 전기 생성부의 전체면적에 대응되게 배열되고, 상기 변형 및 복원이 가능한 재질을 포함하여 이루어지는 복수의 변형부들을 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제2항에 있어서,상기 각 변형부는, 상기 반복적인 변형 및 복원이 원활하게 이루어질 수 있도록, 형상기억소재를 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제2항에 있어서,상기 충격 발생부는, 임계하중 이상이 가해지면 뒤집어지게 되는 상기 변형부와, 인접하게 배치된 변형부들 사이를 연결시키는 연결부를 포함하여 이루어지는 스냅돔(snap dome) 구조로 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제4항에 있어서,상기 인접하게 배치된 변형부들 사이를 연결시키는 연결부들 중 어느 하나에는 걸림공이 형성되고, 다른 하나에는 걸림핀이 형성됨으로써, 상기 걸림공과 걸림핀 간의 걸림을 통해 인접한 변형부들이 서로 연결되게 하는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제1항에 있어서,상기 전기 생성부는,상기 충격 발생부와 대향하는 위치에 놓여지고, 전기활성 물질을 포함하여 이루어지며, 필름 형태로 제작되는 제1필름층; 및상기 충격 발생부를 사이에 두고 상기 제1필름층과 반대측에 위치하고, 전기활성 물질을 포함하여 이루어지며, 필름 형태로 제작되는 제2필름층;을 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제6항에 있어서,상기 전기 생성부는, 상기 제1필름층과 제2필름층 사이를 연결하는 연결층이 그 제1필름층 및 제2필름층과 일체로 형성되는 포켓 구조를 가짐으로써, 상기 포켓 내부의 공간에 상기 충격 발생부가 위치되게 하는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제6항에 있어서,상기 충격 발생부는, 상기 전기 생성부에 다중 포인트 자극이 가능하도록, 상기 전기 생성부의 길이 방향을 따라 배열되는 단위 충격유닛;을 포함하여 이루어지고,상기 각 단위 충격유닛은, 반복적인 변형 및 복원이 이루어지는 변형부와, 상기 변형부의 변형에 따라 슬라이딩 됨으로써 상기 제2필름층과 마찰을 일으키는 슬라이딩부를 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제1항에 있어서,상기 충격 발생부는, 복수의 구획된 공간을 형성시킬 수 있도록, 격자 모양의 틀 구조를 가지는 프레임부와, 상기 프레임부의 각 공간에 위치되고 상기 형상기억소재로 이루어지는 변형부를 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제9항에 있어서,상기 프레임부의 각 공간을 한정하는 면은, 상기 변형부의 가장자리가 끼워지는 홈 형태의 슬롯을 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제1항에 있어서,상기 전기 생성부는, 플랫한 형태의 펼침 및 굴곡진 형태의 구부러짐이 가능한 복수의 요철부들을 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제11항에 있어서,상기 전기 생성부와 충격 발생부의 마주하는 면들에 마련된 벨크로부;를 더 포함하여 이루어지는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 제1항에 있어서,상기 충격 발생부는, 반복적인 변형 및 복원이 가능한 복수의 변형부들을 포함하여 이루어지고,상기 각 변형부는, 한 쌍의 성형롤러들 사이로 금속박판을 통과시켜서,그 금속박판 상에 상기 한 쌍의 성형롤러들의 외면에 대응되는 형상으로 형성되는 것을 특징으로 하는 전기활성 물질을 이용한 에너지 하베스팅 장치.
- 외부자극에 의한 변형에 의해 전압을 발생시킬 수 있도록, 전기활성 물질을 포함하여 이루어지는 전기 생성부; 및상기 전기 생성부의 적어도 일면에 통전 가능하게 연결되고, 그 전기 생성부에 접촉된 상태로 상대 변형이 이루어질 수 있도록, 탄성 변형이 가능한 재질로 이루어지는 전극부;를 포함하여 이루어지는 것을 특징으로 하는 변형용 전극 유닛.
- 제14항에 있어서,상기 전극부는 섬유 재질로 형성되는 것을 특징으로 하는 변형용 전극 유닛.
- 제14항에 있어서,상기 전극부는,탄성변형 가능한 재질로 형성되는 베이스층; 및상기 베이스층에 대향하는 면과 반대측에 위치한 면을, 간격을 두고 관통하여 형성된 스티칭 전극층;을 포함하여 이루어지는 것을 특징으로 하는 변형용 전극 유닛.
- 제16항에 있어서,상기 베이스층은, 상기 전기 생성부와 동일한 재질로 형성되는 것을 특징으로 하는 변형용 전극 유닛.
- 제16항에 있어서,상기 스티칭 전극층은, 섬유사 형태로 이루어지고,상기 베이스층은, 상기 섬유사 형태의 스티칭 전극층이 헐겁게 통과되게 하는 복수의 관통공들을 포함하여 이루어지는 것을 특징으로 하는 변형용 전극 유닛.
- 제18항에 있어서,상기 각 관통공은, 상대적으로 작은 직경을 가진 스티칭 전극층이 통과하기 이전에 상대적으로 직경이 큰 섬유사 부분이 통과함으로써 형성되는 것을 특징으로 하는 변형용 전극 유닛.
- 제18항에 있어서,상기 관통공은, 상기 스티칭 전극층을 베이스층에 통과시키기 이전에, 그 베이스층에 펀칭작업을 통해 미리 형성되게 하는 것을 특징으로 하는 변형용 전극 유닛.
- 제14항에 있어서,상기 전기 생성부와 전극부를, 서로 상대변형 허용 가능하게 결속시켜 줄 수 있도록, 상기 전기 생성부와 전극부 사이사이를 통과하는 결속용 스티칭부재;를 더 포함하여 이루어지는 것을 특징으로 하는 변형용 전극 유닛.
- 제14항에 있어서,상기 전기 생성부와 전극부 간의 마주하는 면에는, 그 전기 생성부와 전극부 간의 상대변형을 허용하면서 결속력을 줄 수 있도록, 통전소재의 벨크로부가 마련되어 있는 것을 특징으로 하는 변형용 전극 유닛.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2018/007767 WO2020013350A1 (ko) | 2018-07-10 | 2018-07-10 | 전기활성 물질을 이용한 에너지 하베스팅 장치 및 변형용 전극 유닛 |
US17/257,996 US11901842B2 (en) | 2018-07-10 | 2018-07-10 | Energy harvesting apparatus utilizing electroactive material and electrode unit for deformation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2018/007767 WO2020013350A1 (ko) | 2018-07-10 | 2018-07-10 | 전기활성 물질을 이용한 에너지 하베스팅 장치 및 변형용 전극 유닛 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020013350A1 true WO2020013350A1 (ko) | 2020-01-16 |
Family
ID=69141599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/007767 WO2020013350A1 (ko) | 2018-07-10 | 2018-07-10 | 전기활성 물질을 이용한 에너지 하베스팅 장치 및 변형용 전극 유닛 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11901842B2 (ko) |
WO (1) | WO2020013350A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018140709A1 (en) * | 2017-01-26 | 2018-08-02 | The Trustees Of Dartmouth College | Method and apparatus for energy harvesting using polymeric piezoelectric structures |
CN113674947A (zh) * | 2021-08-23 | 2021-11-19 | 天津大学 | 一种基于机械式铁芯的闭合高温超导线圈全电流运行装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130063365A (ko) * | 2011-12-06 | 2013-06-14 | 한국전자통신연구원 | 에너지 수확 소자 및 이를 제조하는 방법 |
KR20140096644A (ko) * | 2013-01-28 | 2014-08-06 | 삼성전자주식회사 | 자가 동력 터치 센서 겸용 에너지 수확 장치 |
KR101653061B1 (ko) * | 2014-12-05 | 2016-09-01 | 중앙대학교 산학협력단 | 변형 정보 감지를 위한 전기활성고분자 직물 센서 |
KR101714368B1 (ko) * | 2015-02-23 | 2017-03-09 | 한국산업기술대학교산학협력단 | 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치 |
KR20170072810A (ko) * | 2015-12-17 | 2017-06-27 | 삼성전자주식회사 | 전기활성 고분자 나노복합체를 이용한 에너지 하베스팅 장치 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130207793A1 (en) * | 2009-01-21 | 2013-08-15 | Bayer Materialscience Ag | Electroactive polymer transducers for tactile feedback devices |
FR2988911A1 (fr) * | 2012-04-02 | 2013-10-04 | St Microelectronics Crolles 2 | Plaque incurvee et son procede de fabrication |
WO2015106282A1 (en) * | 2014-01-13 | 2015-07-16 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Materials, devices and systems for piezoelectric energy harvesting and storage |
US20160156287A1 (en) * | 2014-11-28 | 2016-06-02 | Zhengbao Yang | Half-tube array vibration energy harvesting method using piezoelectric materials |
PL3329042T3 (pl) * | 2015-10-12 | 2020-10-19 | Sanko Tekstil Isletmeleri San. Ve Tic. A.S. | Tkany materiał włókienniczy |
TWI589111B (zh) * | 2016-05-06 | 2017-06-21 | 中原大學 | 壓電獵能裝置 |
GB201618486D0 (en) * | 2016-11-02 | 2016-12-14 | Johnson Electric Sa | Improvements in or relating to energy generation |
KR101952507B1 (ko) * | 2017-06-08 | 2019-02-27 | 중앙대학교 산학협력단 | 변형용 전극 유닛 |
TW202121706A (zh) * | 2019-11-20 | 2021-06-01 | 中原大學 | 輕型化設計之壓電式獵能裝置及其電壓訊號應用系統 |
-
2018
- 2018-07-10 WO PCT/KR2018/007767 patent/WO2020013350A1/ko active Application Filing
- 2018-07-10 US US17/257,996 patent/US11901842B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130063365A (ko) * | 2011-12-06 | 2013-06-14 | 한국전자통신연구원 | 에너지 수확 소자 및 이를 제조하는 방법 |
KR20140096644A (ko) * | 2013-01-28 | 2014-08-06 | 삼성전자주식회사 | 자가 동력 터치 센서 겸용 에너지 수확 장치 |
KR101653061B1 (ko) * | 2014-12-05 | 2016-09-01 | 중앙대학교 산학협력단 | 변형 정보 감지를 위한 전기활성고분자 직물 센서 |
KR101714368B1 (ko) * | 2015-02-23 | 2017-03-09 | 한국산업기술대학교산학협력단 | 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치 |
KR20170072810A (ko) * | 2015-12-17 | 2017-06-27 | 삼성전자주식회사 | 전기활성 고분자 나노복합체를 이용한 에너지 하베스팅 장치 |
Also Published As
Publication number | Publication date |
---|---|
US20210273588A1 (en) | 2021-09-02 |
US11901842B2 (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020013350A1 (ko) | 전기활성 물질을 이용한 에너지 하베스팅 장치 및 변형용 전극 유닛 | |
EP3329042B1 (en) | A woven textile fabric | |
WO2019117464A1 (ko) | 배터리 팩 | |
WO2016129817A1 (en) | Energy harvester | |
KR101733277B1 (ko) | 압전과 마찰을 이용한 전기에너지 수확소자 | |
WO2018190498A1 (ko) | 배터리 팩 | |
WO2019078553A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩 | |
WO2014193182A1 (ko) | 마찰전기 발생장치 | |
WO2018026154A1 (ko) | 촉각자극 제공 장치 | |
WO2015137532A1 (ko) | 마찰전기 에너지 수확 소자 및 이의 제조 방법 | |
MY105668A (en) | Laminated ceramic device and method of manufacturing the same. | |
WO2018038541A1 (ko) | 피부운동 및 피부케어용 패치 연결장치 | |
WO2012173393A2 (ko) | 전송라인용 슬리브의 지지모듈 | |
WO2021141395A1 (ko) | 전도사 압력센서 | |
KR20120056486A (ko) | 모직형 에너지 포집소자 및 그 제조방법 | |
WO2016137096A1 (ko) | 스마트소재를 이용한 열 및 진동 하이브리드 에너지 하베스팅 장치 | |
WO2017073812A1 (ko) | 압전 에너지 하베스터 | |
WO2016200094A1 (ko) | 압전 진동 모듈 | |
KR101952507B1 (ko) | 변형용 전극 유닛 | |
CN111270407A (zh) | 包括正极组件的可分离式压电贾卡 | |
WO2022045472A1 (ko) | 압전 리니어 모터 기반 점자셀 | |
WO2019059468A1 (ko) | 수직 방향의 압력을 센싱하는 압력 센서, 수평 방향의 인장력을 센싱하는 스트레인 센서 및 이들의 제조 방법 | |
WO2014021529A1 (ko) | 압전 하베스팅 시스템 | |
KR20180134439A (ko) | 전기활성 물질 및 형상기억소재를 이용한 에너지 하베스팅 장치 | |
WO2020040536A9 (ko) | 마찰 대전을 이용한 전력 생성 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18926012 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18926012 Country of ref document: EP Kind code of ref document: A1 |