WO2020013321A1 - State detection device, state detection system, and state detection method - Google Patents

State detection device, state detection system, and state detection method Download PDF

Info

Publication number
WO2020013321A1
WO2020013321A1 PCT/JP2019/027738 JP2019027738W WO2020013321A1 WO 2020013321 A1 WO2020013321 A1 WO 2020013321A1 JP 2019027738 W JP2019027738 W JP 2019027738W WO 2020013321 A1 WO2020013321 A1 WO 2020013321A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
state detection
state
cord
control unit
Prior art date
Application number
PCT/JP2019/027738
Other languages
French (fr)
Japanese (ja)
Inventor
健智 城
土田 真也
和也 古川
薫 杉江
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2020013321A1 publication Critical patent/WO2020013321A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to a conveyor belt state detection device, a state detection system, and a state detection method.
  • the conveyor belt is constituted by joining both ends of a single belt, for example, and this joining portion is called a splice.
  • Patent Literature 1 discloses a method for measuring the elongation of a conveyor belt by detecting a pair of magnetic marks arranged on a conveyor belt at intervals with a magnetic sensor.
  • Patent Document 2 discloses that a magnetic permeable metal cord embedded in a conveyor belt is provided with magnetism, and a magnetic image generated by the magnetic permeable metal cord is monitored by a magnetic sensor, so that the splice of the conveyor belt is reduced. A method of monitoring is disclosed.
  • Patent Document 2 The method disclosed in Patent Document 2 is complicated because it is necessary to embed a magnetically permeable metal cord in the inside of the conveyor belt or to impart magnetism to the magnetically permeable metal cord. Further, with the method disclosed in Patent Document 2, it is difficult to perform a quantitative measurement, such as measuring the amount of pull-out of a splice of a conveyor belt.
  • a state detection device is a sensor unit having a coil therein, the sensor unit scanning a conveyor belt having a code having a metal part at least partially therein, and a vortex generated in the code.
  • a control unit for detecting a state of the cord based on a change in the current of the coil due to a current.
  • a state detection system is a sensor device having a coil therein, wherein the sensor device scans a conveyor belt having a cord having a metal part at least partially therein, and the conveyor by the sensor device.
  • An information processing apparatus including a control unit that detects a state of the cord based on an eddy current generated in the cord due to a current flowing through the coil during scanning of the belt.
  • a state detection method is a state detection method using a state detection device including a sensor unit having a coil therein and a control unit, wherein a code having at least a part of a metal part is formed by the sensor unit. Scanning the conveyor belt provided therein, and the controller controls the state of the cord based on an eddy current generated in the cord by a current flowing through the coil during scanning of the conveyor belt by the sensor unit. Detecting.
  • a state detection device capable of easily detecting the state of a metal cord inside a conveyor belt with high accuracy.
  • FIG. 2 is a functional block diagram illustrating an example of a schematic configuration of the state detection device illustrated in FIG. 1.
  • 4 is a flowchart illustrating an example of a process executed by a control unit illustrated in FIG. 3.
  • FIG. 4 is a diagram schematically illustrating an example of a current value flowing through a coil of the sensor unit in FIG. 3.
  • 4 is a flowchart illustrating another example of the processing executed by the control unit illustrated in FIG. 3.
  • FIG. 8 is a functional block diagram illustrating an example of a schematic configuration of the state detection system illustrated in FIG. 7.
  • FIG. 1 is a schematic diagram showing an example of a usage state of the state detection device according to one embodiment.
  • the state detection device 10 shown in FIG. 1 detects the state of a conveyor belt 21 provided on a belt conveyor 20.
  • the belt conveyor 20 shown in FIG. 1 includes a conveyor belt 21 and two pulleys 22a and 22b.
  • a driving device such as a motor
  • the conveyor belt 21 is rotated by the frictional force between the pulleys 22a and / or 22b and the back surface of the conveyor belt 21, and the belt conveyor 20 operates.
  • the conveyor belt 21 can carry an object placed on the upper surface.
  • the conveyor belt 21 is formed by joining both ends of a single rubber belt, for example.
  • the conveyor belt 21 has a metal cord inside.
  • the conveyor belt 21 has a steel cord inside.
  • the metal cord of the conveyor belt 21 is a steel cord, that is, the conveyor belt 21 is a steel cord conveyor belt.
  • One steel cord has two ends. The two ends of the steel cord are located at the junction of the conveyor belt 21. These two ends extend from two opposite directions at the junction of the conveyor belt 21.
  • the metal cord in this specification includes not only the above-described steel cord but also a steel wire, a metal object, and the like.
  • FIG. 2 is a schematic view showing an example of a joint portion of the conveyor belt 21 shown in FIG.
  • FIG. 2 shows the steel cord inside the conveyor belt 21 for the purpose of explanation, but the steel cord cannot be visually recognized from the outside in the actual conveyor belt 21.
  • the vertical direction is a direction in which the conveyor belt 21 extends (hereinafter, also simply referred to as an “extending direction”).
  • the direction perpendicular to the extending direction is the width direction of the conveyor belt 21.
  • FIG. 2 shows a main body 23 made of rubber in the conveyor belt 21, steel cords 25a, 25b, 25c and 25d provided inside the conveyor belt 21, and steel cords 25a, 25b, 25c and 25d. Ends 24a, 24b, 24c and 24d are shown.
  • the steel cord 25 extends along the direction in which the conveyor belt 21 extends.
  • the ends 24a and 24c are ends of the steel cord 25a and the steel cord 25c extending from the lower side of FIG. 2, respectively.
  • the ends 24b and 24d are ends of the steel cord 25b and the steel cord 25d extending from the upper side in FIG. 2, respectively.
  • the plurality of steel cords 25 extend from opposite directions (up and down in the example shown in FIG. 2) at the joint.
  • one of the four steel cords 25a, 25b, 25c, and 25d shown in FIG. 2 may be a single steel cord.
  • the steel cord 25a may extend downward from the end 24a in FIG. 2 and pass through the inside of the conveyor belt 21 to be connected to the steel cord 25b having the end 24b in FIG. That is, for example, the steel cord 25a and the steel cord 25b may be one steel cord.
  • the two ends of the single steel cord are the end 24a and the end 24b.
  • the belt conveyor 20 is not limited to the one shown in FIG.
  • the belt conveyor 20 may include, for example, three or more pulleys.
  • the belt conveyor 20 may include, for example, rollers for supporting the conveyor belt 21.
  • FIG. 2 shows four ends 24a, 24b, 24c, and 24d, but the number of ends 24 of the steel cord 25 included in the joint of the conveyor belt 21 is four.
  • the conveyor belt 21 may have two or more ends 24 at the joint. In this case, at least one of the two or more ends 24 extends in a direction facing the other end 24.
  • FIG. 3 is a functional block diagram showing an example of a schematic configuration of the state detection device 10 shown in FIG.
  • the state detection device 10 includes a sensor unit 11, a control unit 12, a storage unit 13, and a display unit 14.
  • the sensor unit 11 has a coil inside. For example, an alternating current is supplied to the coil.
  • the sensor unit 11 collects data for detecting a state of a part of the conveyor belt 21.
  • a range in which the sensor unit 11 collects data is indicated by a broken line in FIG.
  • the data collected by the sensor unit 11 is, for example, a change in coil current described later.
  • the sensor unit 11 can collect data on the entire conveyor belt 21 (entire circumference). Scanning here refers to a change in relative position.
  • the sensor unit 11 may scan the conveyor belt 21 by being disposed above the rotating conveyor belt 21.
  • the sensor unit 11 may scan the conveyor belt 21 by, for example, moving above the fixed conveyor belt 21 by the sensor unit 11 itself.
  • the sensor unit 11 may be configured as, for example, a sensor capable of detecting an eddy current based on the same principle as a conventionally known metal piece detector.
  • the metal piece detector is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-12887. However, the metal piece detector disclosed in Patent Document 3 is used to detect the presence or absence of a metal piece in a conveyed object, but the sensor unit 11 according to the present embodiment is used for this purpose. Not used.
  • the control unit 12 is a processor that controls and manages the entire state detection device 10 including the functional blocks of the state detection device 10.
  • the control unit 12 is configured by a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure.
  • a program is stored in, for example, the storage unit 13 or an external storage medium connected to the state detection device 10.
  • the control unit 12 detects the state of the conveyor belt 21 based on the scanning result of the conveyor belt 21 by the sensor unit 11, that is, the data collected by the sensor unit 11. Specifically, the control unit 12 detects the state of the conveyor belt 21 based on the eddy current generated in the steel cord 25 inside the conveyor belt 21.
  • an alternating current is supplied to the sensor unit 11.
  • a magnetic field is generated, and the magnetic field generates an eddy current in the steel cord 25 inside the conveyor belt 21 to be scanned.
  • a magnetic field is generated by the eddy current, and the magnetic field affects a current flowing through a coil inside the sensor unit 11. For example, when the eddy current changes, the magnetic field changes, which changes the current flowing through the coil.
  • the control unit 12 detects the state of the conveyor belt 21 based on a change in the current of the coil of the sensor unit 11 caused by the eddy current generated in the steel cord 25.
  • the control unit 12 detects, for example, an eddy current value generated in a coil of the sensor unit 11, and can detect a state of the conveyor belt 21 based on the eddy current value.
  • the control unit 12 may detect, for example, the state of the steel cord 25 inside the conveyor belt 21 based on a change in the current of the coil of the sensor unit 11 caused by the eddy current generated in the steel cord 25. Note that the state of the conveyor belt 21 may be detected based on a change in voltage as well as a change in coil current.
  • one coil is described as sharing two functions, one for generating an eddy current in the steel cord 25 and the other for detecting the state of the conveyor belt 21.
  • the sensor unit 11 may have a transmitting coil and a detecting coil as separate coils.
  • the storage unit 13 has various memory devices, and stores various types of information according to applications.
  • the storage unit 13 stores data and the like necessary for the operation of the control unit 12.
  • the storage unit 13 may include a device such as a RAM (Random Access Memory) that functions as a work memory.
  • the storage unit 13 may store, for example, information on the conveyor belt 21 to be subjected to the state detection.
  • the storage unit 13 stores a distance in the extending direction of the conveyor belt 21 between the ends 24 of the steel cords 25 inside the conveyor belt 21 as described in detail later. Good.
  • the distance in the extending direction of the conveyor belt 21 is used.
  • the display unit 14 is configured by a known display such as a liquid crystal display (LCD: Liquid Crystal Display), an organic EL display (OELD: Organic Electro-Luminescence Display), or an inorganic EL display (IELD: Inorganic Electro-Luminescence Display). Display device.
  • the display unit 14 displays various information. For example, the display unit 14 displays a detection result of the state of the conveyor belt 21.
  • FIG. 4 is a flowchart illustrating an example of a process executed by the control unit 12, and is a flowchart illustrating an example of a process of storing an initial state of the conveyor belt 21, which is a state detection target. Therefore, the flow shown in FIG. 4 may be executed, for example, when the conveyor belt 21 is first installed. FIG. 4 is executed, for example, in a state where the belt conveyor 20 is operating, that is, in a state where the conveyor belt 21 is rotating.
  • control unit 12 controls so as to apply a current to the coil of the sensor unit 11 (step S11). As a result, a current flows through the coil, and a magnetic field is generated. An eddy current is generated in the steel cord 25 inside the conveyor belt 21 to be scanned by the magnetic field generated by the coil. When the eddy current is generated, a magnetic field is generated by the eddy current, and the current due to the magnetic field flows through the coil.
  • the control unit 12 acquires a current value flowing through the coil of the sensor unit 11 (Step S12).
  • the state of the steel cord 25 extending on the conveyor belt 21 is uniform, so that the eddy current generated in the steel cord 25 is It will be constant. Therefore, the magnetic field generated by the eddy current is also constant. Therefore, the influence of the magnetic field generated by the eddy current on the current flowing through the coil of the sensor unit 11 is constant. Therefore, when the sensor unit 11 is scanning a portion other than the joint portion of the conveyor belt 21, the value of the current flowing through the coil of the sensor unit 11 is constant.
  • the eddy current generated in the steel cord 25 changes at the end 24 of the steel cord 25. Therefore, the magnetic field generated by the eddy current also changes, and accordingly, the current flowing through the coil of the sensor unit 11 changes based on the change.
  • FIG. 5 is a diagram schematically showing a current value flowing through the coil of the sensor unit 11.
  • the horizontal axis represents time
  • the vertical axis represents current value.
  • FIG. 5 shows a change in current value when, for example, the junction shown in FIG. 2 is scanned from above to below.
  • the current flowing through the coil of the sensor unit 11 changes due to the change in the magnetic field due to the eddy current generated at the end 24a. For example, if the sensor unit 11 scans the end portion 24a at time t 1, the current flowing through the coil is changed in the positive direction as shown in FIG. 5, for example.
  • the current flowing through the coil of the sensor unit 11 changes due to the change in the magnetic field due to the eddy current generated at the end 24b.
  • the sensor unit 11 scans the end 24b to the time t 2
  • the current flowing through the coil is changed in the negative direction as shown in FIG. 5, for example.
  • the control unit 12 detects a peak of a change in the current value (Step S13). For example, when a change in current as shown in FIG. 5 is acquired, the control unit 12 detects peak times shown at times t 1 , t 2 , t 3, and t 4 in FIG. For example, the control unit 12 may detect the peak time using a known peak detection algorithm.
  • the control unit 12 calculates the distance between the ends 24 in the extending direction of the conveyor belt 21 based on the timing of the peak of the current change. Specifically, the control unit 12 calculates the distance on the conveyor belt 21 between the ends 24 corresponding to the positions indicating the two peaks, based on the time between the two peaks (Step S14). For example, the control unit 12 calculates the distance between the ends 24 of the steel cords 25 extending from the facing direction. In the example shown in FIG. 2, the ends 24 of the steel cords 25 extending from the opposite direction are the ends 24a and 24b, the ends 24a and 24d, the ends 24c and 24b, and the ends. 24c and the end 24d. For example, the control unit 12 may calculate the distance between the end portions 24 for all of the four patterns, or may calculate the distance between the end portions 24 for a part of the four patterns. .
  • control unit 12 calculates the distance between the end 24a and the end 24b.
  • the control unit 12 corresponding respectively to the peak generated by the end 24a and the end 24b, to identify the time t 1 and time t 2.
  • Control unit 12 for example, based on the input signals from the outside to the state detection device 10, corresponding respectively to the peak generated by the end 24a and the end portion 24b, and identifies the time t 1 and time t 2
  • the time t 1 and the time t 2 may be automatically specified by a predetermined algorithm executed inside.
  • control unit 12 When the control unit 12 automatically specifies the times t 1 and t 2 , for example, the number of the ends 24 of the conveyor belt 21 to be detected is input to the state detection device 10 and stored in the storage unit 13 in advance. May have been. In this case, the control unit 12 associates the times of the detected peaks with the positions of the end portions 24 in order, so that the time t 1 and the time t 2 corresponding to the peaks generated by the end portions 24a and 24b, respectively. May be specified.
  • Control unit 12 calculates the difference (i.e. time) between the time t 1 and time t 2 when specified. Then, the controller 12 calculates the product of the calculated time and the speed of the conveyor belt 21 to be scanned, thereby calculating the distance between the end 24a and the end 24b.
  • the speed of the conveyor belt 21 may be detected by, for example, the state detection device 10 or may be input to the state detection device 10 from the outside, for example.
  • the control unit 12 causes the storage unit 13 to store the distance calculated in step S14 (step S15).
  • the initial state of the conveyor belt 21 is stored in the storage unit 13.
  • the storage unit 13 stores the distance between the ends 24a and 24b of the conveyor belt 21 in the initial state.
  • the state detection device 10 executes a state detection process of the conveyor belt 21. After storing the initial state, the state detection device 10 may execute the state detection process continuously, or may execute the state detection periodically or irregularly.
  • FIG. 6 is a flowchart illustrating an example of a process executed by the control unit 12, and is a flowchart illustrating an example of a state detection process of the conveyor belt 21, which is a state detection target.
  • the flow shown in FIG. 6 is executed after the initial state is stored. 6 is executed, for example, in a state where the belt conveyor 20 is operating, that is, in a state where the conveyor belt 21 is rotating, as in the case of FIG.
  • Steps S21 to S24 in FIG. 6 are the same as Steps S11 to S14 in FIG. 4, respectively, and thus detailed description is omitted here.
  • the controller 12 calculates the change in the distance between the ends 24 from the initial state by using the distance between the ends 24 calculated in step S24, thereby calculating the amount of pull-out at the joint of the conveyor belt 21. I do. That is, the controller 12 compares the distance between the ends 24 calculated in step S24 with the distance between the ends 24 in the initial state stored in step S15 in FIG. Is calculated (step S25). The control unit 12 can calculate the pull-out amount, for example, by calculating the difference between the distance between the ends 24 calculated in step S24 and the distance between the ends 24 in the initial state. This is because, when the joint is pulled out, the distance between the end portions 24 also changes with the pullout at the joint.
  • the control unit 12 displays information on the amount of pull-out calculated in step S25 on the display unit 14 (step S26).
  • the information relating to the pull-out amount may be the pull-out amount (length) calculated in step S25 or the degree of the pull-out amount.
  • the degree of the withdrawal amount may be, for example, a value that indicates the withdrawal amount in a stepwise manner. For example, when the withdrawal amount exceeds a predetermined threshold value, the control unit 12 may display information indicating a warning on the display unit 14. In this case, the control unit 12 may notify the warning using means other than the display, such as an alarm sound.
  • control unit 12 may cause the storage unit 13 to store the withdrawal amount calculated in step S25.
  • the control unit 12 can record a change in the pull-out amount.
  • the control unit 12 may predict a future change in the withdrawal amount of the joint based on the change in the withdrawal amount.
  • the state detection device 10 scans the conveyor belt 21 by the sensor unit 11 having the coil inside, and detects the change in the coil current due to the eddy current generated in the metal cord of the conveyor belt 21. Based on this, the state of the conveyor belt 21 is detected. That is, the state detection device 10 detects the state of the conveyor belt 21 using the eddy current generated in the metal cord inside the conveyor belt 21. Since the eddy current responds to the metal in a peak-like manner, the state detection device 10 can easily detect the state of the metal cord of the conveyor belt 21 with higher accuracy than the conventional method. Further, according to the state detection device 10, since the state detection of the conveyor belt 21 can be performed without performing any operation on the conveyor belt 21, the state detection can be easily performed.
  • the state detection device 10 can particularly detect the state of the metal cord at the joint of the conveyor belt 21. Since the joining portion is a place where the metal cord can be pulled out in the conveyor belt 21, the state detecting device 10 can detect the pulling out of the metal cord by detecting the state of the joining portion.
  • the state detection device 10 since the eddy current responds to the metal in a peaky manner, the state detection device 10 according to the present embodiment detects the peak timing of the change in the current flowing through the coil inside the sensor unit 11. The distance between the ends 24 of the steel cord 25 can be calculated based on the timing of the peak. Therefore, according to the state detection device 10 of the present embodiment, the state of the steel cord 25 can be quantitatively detected.
  • the state detection device 10 can calculate the amount of pull-out at the joint by calculating the change in the distance between the ends. Therefore, according to the state detection device 10 of the present embodiment, it is possible to quantitatively detect a change in the amount of metal cord pulled out.
  • the sensor unit 11 can scan the conveyor belt 21 while the conveyor belt 21 is rotating. Therefore, the state detection device 10 according to the present embodiment can detect the state of the conveyor belt 21 while the belt conveyor 20 is operating. That is, since there is no need to stop the belt conveyor 20 to perform state detection, the state is continuously detected without generating a stop time (also referred to as downtime) that may occur when the belt conveyor 20 is stopped. it can. It is of course possible to stop the belt conveyor 20 and detect the state.
  • a stop time also referred to as downtime
  • the state detection of the conveyor belt 21 does not necessarily have to be executed by one device (the state detection device 10).
  • the detection of the state of the conveyor belt 21 may be executed by, for example, a system having a plurality of devices.
  • FIG. 7 is a schematic diagram illustrating an example of a usage state of the state detection system according to the embodiment.
  • the state detection system 30 shown in FIG. 7 detects the state of the conveyor belt 21 provided on the belt conveyor 20, similarly to the state detection device 10 shown in FIG.
  • the state detection system 30 includes two devices, a sensor device 40 and an information processing device 50.
  • the sensor device 40 and the information processing device 50 are connected to each other so as to be able to communicate with each other by wire or wirelessly.
  • description of the same contents as those of the state detection device 10 shown in FIG. 1 will be appropriately omitted, and different contents will be mainly described.
  • FIG. 8 is a functional block diagram showing an example of a schematic configuration of the state detection system 30 shown in FIG.
  • the sensor device 40 collects data for state detection, and transmits the collected data to the information processing device 50.
  • the information processing device 50 executes a state detection process of the conveyor belt 21 based on the data.
  • the sensor device 40 includes a sensor unit 41, a control unit 42, and a communication unit 45.
  • the function and configuration of the sensor unit 41 may be the same as, for example, the sensor unit 11 shown in FIG.
  • the control unit 42 is a processor that controls and manages the entire sensor device 40 including the functional blocks of the sensor device 40.
  • the control unit 42 executes a data collection process based on a control signal received from the outside of the information processing device 50 or the like, for example.
  • the control unit 42 applies a current to the coil of the sensor unit 41 based on a control signal received from the outside.
  • the control unit 42 executes a process of transmitting the collected data to the information processing device 50 via the communication unit 45.
  • the communication unit 45 can communicate with an external device using a network that is wireless, wired, or a combination of wireless and wired.
  • the communication unit 45 can transmit and receive information via, for example, a network.
  • the communication unit 45 communicates by, for example, a communication method of a wireless communication standard.
  • wireless communication standards include WiMAX (Worldwide Interoperability for Microwave Access), IEEE802.11, Bluetooth (registered trademark), IrDA (Infrared Data Association), NFC (Near Field Communication), and ARIB STD-T109 (for example, Rev.1.2). ), Communication standards conforming to ITS FORUM RC-010, etc.
  • the communication unit 45 can support one or more of the communication standards described above as an example.
  • the communication unit 45 When the communication unit 45 supports a plurality of communication standards, the communication unit 45 may include a plurality of communication modules corresponding to the respective wireless communication standards. In the examples shown in FIGS. 7 and 8, the communication unit 45 shows a state in which communication with the information processing device 50 is performed by wire.
  • the information processing device 50 includes a control unit 52, a storage unit 53, a display unit 54, and a communication unit 55.
  • the control unit 52 is a processor that controls and manages the entire information processing device 50, including the functional blocks of the information processing device 50.
  • the control unit 52 is configured by a processor such as a CPU that executes a program defining a control procedure.
  • a program is stored in, for example, the storage unit 53 or an external storage medium connected to the information processing device 50.
  • the control unit 52 detects the state of the conveyor belt 21 based on data acquired from the sensor device 40 via the communication unit 55.
  • the details of the process of detecting the state of the conveyor belt 21 may be the same as those described for the control unit 12, and thus detailed description thereof will be omitted.
  • the functions and configurations of the storage unit 53 and the display unit 54 may be the same as, for example, the storage unit 13 and the display unit 14 illustrated in FIG. 3, respectively, and thus detailed description thereof will not be repeated.
  • the communication unit 55 can communicate with an external device using a network based on wireless, wired, or a combination of wireless and wired.
  • the communication unit 55 can transmit and receive information via, for example, a network.
  • the communication unit 55 communicates by, for example, a communication method of a wireless communication standard.
  • wireless communication standards include a communication standard based on WiMAX, IEEE802.11, Bluetooth, IrDA, NFC, ARIB @ STD-T109 (for example, Rev.1.2), a communication standard based on ITS @ FORUM @ RC-010, and the like.
  • the communication unit 55 can support one or more of the communication standards described above as an example. When supporting a plurality of communication standards, the communication unit 55 may include a plurality of communication modules corresponding to the respective wireless communication standards. In the examples shown in FIGS. 7 and 8, the communication unit 55 is in a state of communicating with the sensor device 40 by wire.
  • the same effects as those of the above-described state detection device 10 can be achieved by executing the same processing as that of the state detection device 10.
  • the state detection device 10 and the state detection system 30 have been described as detecting the pull-out amount at the joint as the state of the conveyor belt 21.
  • the state to be detected is the pull-out amount at the joint.
  • the state detection device 10 and the state detection system 30 may detect other states of the conveyor belt 21.
  • the state detection device 10 and the state detection system 30 can detect a break in the steel cord 25 inside the conveyor belt 21 as the state of the conveyor belt 21. Specifically, when the breakage of the steel cord 25 occurs, the eddy current in the steel cord 25 changes at the location of the breakage before the breakage.
  • the current flowing through the coil of the sensor unit 11 or 41 changes before and after the disconnection.
  • a peak occurs at a position where no peak exists before disconnection, and after the disconnection.
  • the state detection device 10 and the state detection system 30 can detect a disconnection based on such a change in the current value.
  • the conveyor belt 21 in the present invention does not necessarily have to have a metal cord.
  • the present invention can be used for scanning a conveyor belt 21 having a cord formed of organic fibers.
  • a metal object is provided on the organic fiber by being attached, coated, or attached as a mark.
  • the sensor unit can detect a metal object disposed on the organic fiber. That is, the state of the cord can be detected by detecting a change in the eddy current due to the influence of the metal object disposed on the organic fiber. That is, the present invention can be used as long as the cord has a metal part at least in part.

Abstract

This state detection device comprises: a sensor unit that has a coil therein and that scans a conveyor belt having a cord therein, at least a portion of the cord being metal; and a control unit that detects the state of the cord on the basis of variations in the current in the coil due to an eddy current generated in the cord.

Description

状態検出装置、状態検出システム及び状態検出方法State detection device, state detection system, and state detection method
 本発明は、コンベヤベルトの状態検出装置、状態検出システム及び状態検出方法に関する。 The present invention relates to a conveyor belt state detection device, a state detection system, and a state detection method.
 従来、コンベヤベルトのスプライスの状態を検出する方法が知られている。コンベヤベルトは、例えば1枚のベルトの両端を接合することにより構成され、この接合部をスプライスという。 Conventionally, a method of detecting a splice state of a conveyor belt is known. The conveyor belt is constituted by joining both ends of a single belt, for example, and this joining portion is called a splice.
 例えば、特許文献1には、コンベヤベルト上に間隔をおいて配置された一対の磁気マークを磁気センサで検出することにより、コンベヤベルトの伸びを測定する方法が開示されている。 For example, Patent Literature 1 discloses a method for measuring the elongation of a conveyor belt by detecting a pair of magnetic marks arranged on a conveyor belt at intervals with a magnetic sensor.
 また、例えば、特許文献2には、コンベヤベルトの内部に埋め込んだ磁気透過性金属コードに磁性を与え、磁気透過性金属コードにより生じる磁気像を磁気センサで監視することにより、コンベヤベルトのスプライスを監視する方法が開示されている。 In addition, for example, Patent Document 2 discloses that a magnetic permeable metal cord embedded in a conveyor belt is provided with magnetism, and a magnetic image generated by the magnetic permeable metal cord is monitored by a magnetic sensor, so that the splice of the conveyor belt is reduced. A method of monitoring is disclosed.
特開2006-44853号公報JP 2006-44853 A 特開2015-101488号公報JP-A-2015-101488
 しかしながら、特許文献1に開示された方法では、磁気マークを磁気センサで検出するため、磁気マークの検出が十分にピーキーではなく、コンベヤベルトの伸び量を定量的に測定することが難しい場合がある。 However, in the method disclosed in Patent Document 1, since the magnetic mark is detected by the magnetic sensor, the detection of the magnetic mark is not sufficiently peaky, and it may be difficult to quantitatively measure the elongation of the conveyor belt. .
 また、引用文献2に開示された方法では、コンベヤベルトの内部に磁気透過性金属コードを埋め込んだり、当該磁気透過性金属コードに磁性を与えたりする必要があるため、煩雑である。また、引用文献2に開示された方法では、例えばコンベヤベルトのスプライスの引抜け量を測定する等、定量的な測定を行うことが難しい。 The method disclosed in Patent Document 2 is complicated because it is necessary to embed a magnetically permeable metal cord in the inside of the conveyor belt or to impart magnetism to the magnetically permeable metal cord. Further, with the method disclosed in Patent Document 2, it is difficult to perform a quantitative measurement, such as measuring the amount of pull-out of a splice of a conveyor belt.
 そこで、本発明は、簡便に、高い精度でコンベヤベルトの内部の金属コードの状態を検出可能な、状態検出装置、状態検出システム及び状態検出方法を提供することを目的とする。 Accordingly, it is an object of the present invention to provide a state detection device, a state detection system, and a state detection method capable of easily detecting the state of a metal cord inside a conveyor belt with high accuracy.
(1)本発明の状態検出装置は、内部にコイルを有するセンサ部であって、少なくとも一部に金属部を有するコードを内部に有するコンベヤベルトを走査するセンサ部と、前記コードに発生する渦電流による前記コイルの電流の変化に基づいて、前記コードの状態を検出する制御部と、を備える。 (1) A state detection device according to the present invention is a sensor unit having a coil therein, the sensor unit scanning a conveyor belt having a code having a metal part at least partially therein, and a vortex generated in the code. A control unit for detecting a state of the cord based on a change in the current of the coil due to a current.
(2)本発明の状態検出システムは、内部にコイルを有するセンサ装置であって、少なくとも一部に金属部を有するコードを内部に有するコンベヤベルトを走査するセンサ装置と、前記センサ装置による前記コンベヤベルトの走査中に、前記コイルに流れる電流により前記コードに発生する渦電流に基づいて、前記コードの状態を検出する制御部を備える情報処理装置と、を有する。 (2) A state detection system according to the present invention is a sensor device having a coil therein, wherein the sensor device scans a conveyor belt having a cord having a metal part at least partially therein, and the conveyor by the sensor device. An information processing apparatus including a control unit that detects a state of the cord based on an eddy current generated in the cord due to a current flowing through the coil during scanning of the belt.
(3)本発明の状態検出方法は、内部にコイルを有するセンサ部と制御部とを備える状態検出装置による状態検出方法であって、前記センサ部により、少なくとも一部に金属部を有するコードを内部に有するコンベヤベルトを走査するステップと、前記制御部により、前記センサ部による前記コンベヤベルトの走査中に、前記コイルに流れる電流により前記コードに発生する渦電流に基づいて、前記コードの状態を検出するステップと、を含む。 (3) A state detection method according to the present invention is a state detection method using a state detection device including a sensor unit having a coil therein and a control unit, wherein a code having at least a part of a metal part is formed by the sensor unit. Scanning the conveyor belt provided therein, and the controller controls the state of the cord based on an eddy current generated in the cord by a current flowing through the coil during scanning of the conveyor belt by the sensor unit. Detecting.
 本発明によれば、簡便に、高い精度でコンベヤベルトの内部の金属コードの状態を検出可能な状態検出装置、状態検出システム及び状態検出方法を提供することができる。 According to the present invention, it is possible to provide a state detection device, a state detection system, and a state detection method capable of easily detecting the state of a metal cord inside a conveyor belt with high accuracy.
本発明の一実施形態に係る状態検出装置の使用態様の一例を示す模式図である。It is a mimetic diagram showing an example of the mode of use of the state detecting device concerning one embodiment of the present invention. 図1に示すコンベヤベルトの接合部の一例を示す模式図である。It is a schematic diagram which shows an example of the junction part of the conveyor belt shown in FIG. 図1に示す状態検出装置の概略構成の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram illustrating an example of a schematic configuration of the state detection device illustrated in FIG. 1. 図3に示す制御部が実行する処理の一例を示すフローチャートである。4 is a flowchart illustrating an example of a process executed by a control unit illustrated in FIG. 3. 図3のセンサ部のコイルに流れる電流値の一例を模式的に示す図である。FIG. 4 is a diagram schematically illustrating an example of a current value flowing through a coil of the sensor unit in FIG. 3. 図3に示す制御部が実行する処理の他の例を示すフローチャートである。4 is a flowchart illustrating another example of the processing executed by the control unit illustrated in FIG. 3. 本発明の一実施形態に係る状態検出システムの使用態様の一例を示す模式図である。It is a mimetic diagram showing an example of the mode of use of the state detection system concerning one embodiment of the present invention. 図7に示す状態検出システムの概略構成の一例を示す機能ブロック図である。FIG. 8 is a functional block diagram illustrating an example of a schematic configuration of the state detection system illustrated in FIG. 7.
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、一実施形態に係る状態検出装置の使用態様の一例を示す模式図である。図1に示す状態検出装置10は、ベルトコンベヤ20に設けられるコンベヤベルト21の状態を検出する。 FIG. 1 is a schematic diagram showing an example of a usage state of the state detection device according to one embodiment. The state detection device 10 shown in FIG. 1 detects the state of a conveyor belt 21 provided on a belt conveyor 20.
 図1に示すベルトコンベヤ20は、コンベヤベルト21と、2つのプーリ22a及び22bとを備える。2つのプーリ22a及び22bの少なくともいずれかがモータ等の駆動装置により回転すると、プーリ22a及び/又は22bとコンベヤベルト21の裏面との摩擦力によりコンベヤベルト21が回転し、ベルトコンベヤ20が稼働する。ベルトコンベヤ20の稼働状態において、コンベヤベルト21は、上面に載置された物を運搬することができる。 The belt conveyor 20 shown in FIG. 1 includes a conveyor belt 21 and two pulleys 22a and 22b. When at least one of the two pulleys 22a and 22b is rotated by a driving device such as a motor, the conveyor belt 21 is rotated by the frictional force between the pulleys 22a and / or 22b and the back surface of the conveyor belt 21, and the belt conveyor 20 operates. . In the operating state of the belt conveyor 20, the conveyor belt 21 can carry an object placed on the upper surface.
 コンベヤベルト21は、例えば1枚のゴム製のベルトの両端を接合することにより構成される。コンベヤベルト21は、内部に金属コードを有する。例えば、コンベヤベルト21は、内部にスチールコードを有する。本明細書において、以下、コンベヤベルト21が有する金属コードはスチールコードであり、すなわちコンベヤベルト21がスチールコードコンベヤベルトであるとして、以下説明する。1本のスチールコードは、2つの端部を有する。スチールコードの2つの端部は、コンベヤベルト21の接合部に位置する。これらの2つの端部は、コンベヤベルト21の接合部において、2つの対向する方向から延びている。なお、本明細書における金属コードは、上述したスチールコードだけでなく、スチールワイヤや金属物等も含む。 The conveyor belt 21 is formed by joining both ends of a single rubber belt, for example. The conveyor belt 21 has a metal cord inside. For example, the conveyor belt 21 has a steel cord inside. Hereinafter, in the present specification, a description will be given assuming that the metal cord of the conveyor belt 21 is a steel cord, that is, the conveyor belt 21 is a steel cord conveyor belt. One steel cord has two ends. The two ends of the steel cord are located at the junction of the conveyor belt 21. These two ends extend from two opposite directions at the junction of the conveyor belt 21. In addition, the metal cord in this specification includes not only the above-described steel cord but also a steel wire, a metal object, and the like.
 図2は、図1に示すコンベヤベルト21の接合部の一例を示す模式図である。図2には、説明のため、コンベヤベルト21の内部のスチールコードを記載しているが、実際のコンベヤベルト21では、外部からスチールコードを視認することはできない。図2において、縦方向が、コンベヤベルト21が延在する方向(以下、単に「延在方向」ともいう)である。また、延在方向に垂直な方向が、コンベヤベルト21の幅方向である。図2には、コンベヤベルト21においてゴムで構成される本体部23と、コンベヤベルト21の内部に設けられるスチールコード25a、25b、25c及び25dと、スチールコード25a、25b、25c及び25dのそれぞれの端部24a、24b、24c及び24dと、が示されている。なお、図2では、説明のため、4つのスチールコード25a、25b、25c及び25dのみを図示しており、コンベヤベルト21に含まれる他のスチールコードについては、図示を省略している。本明細書において、4つの端部24a、24b、24c及び24dのそれぞれを区別しない場合には、以下「端部24」と記載する。また、本明細書において、4つのスチールコード25a、25b、25c及び25dのそれぞれを区別しない場合には、以下「スチールコード25」と記載する。 FIG. 2 is a schematic view showing an example of a joint portion of the conveyor belt 21 shown in FIG. FIG. 2 shows the steel cord inside the conveyor belt 21 for the purpose of explanation, but the steel cord cannot be visually recognized from the outside in the actual conveyor belt 21. In FIG. 2, the vertical direction is a direction in which the conveyor belt 21 extends (hereinafter, also simply referred to as an “extending direction”). The direction perpendicular to the extending direction is the width direction of the conveyor belt 21. FIG. 2 shows a main body 23 made of rubber in the conveyor belt 21, steel cords 25a, 25b, 25c and 25d provided inside the conveyor belt 21, and steel cords 25a, 25b, 25c and 25d. Ends 24a, 24b, 24c and 24d are shown. In FIG. 2, only four steel cords 25a, 25b, 25c, and 25d are shown for explanation, and other steel cords included in the conveyor belt 21 are not shown. In the present specification, the four ends 24a, 24b, 24c, and 24d are hereinafter referred to as "ends 24" when not distinguished from each other. Further, in the present specification, when the four steel cords 25a, 25b, 25c, and 25d are not distinguished from each other, they will be referred to as "steel cords 25" below.
 図2に示すように、スチールコード25は、コンベヤベルト21の延在方向に沿って延在する。図2に示す例において、端部24a及び端部24cは、それぞれ図2の下側から延びるスチールコード25a及びスチールコード25cの端部である。図2に示す例において、端部24b及び24dは、それぞれ図2の上側から延びるスチールコード25b及びスチールコード25dの端部である。図2に示すように、接合部において、複数のスチールコード25は、対向する方向(図2に示す例では上下方向)から延びている。コンベヤベルト21には使用時に張力がかかるが、接合部はベルトの端部同士を接合した箇所であるため、当該張力により、時間の経過とともに引抜けが生じる場合がある。 ス チ ー ル As shown in FIG. 2, the steel cord 25 extends along the direction in which the conveyor belt 21 extends. In the example shown in FIG. 2, the ends 24a and 24c are ends of the steel cord 25a and the steel cord 25c extending from the lower side of FIG. 2, respectively. In the example shown in FIG. 2, the ends 24b and 24d are ends of the steel cord 25b and the steel cord 25d extending from the upper side in FIG. 2, respectively. As shown in FIG. 2, the plurality of steel cords 25 extend from opposite directions (up and down in the example shown in FIG. 2) at the joint. Although tension is applied to the conveyor belt 21 at the time of use, the joining portion is a portion where the ends of the belt are joined to each other, and thus the tension may cause pull-out with time.
 なお、図2に示す4つのスチールコード25a、25b、25c及び25dのうち、一部は1本のスチールコードであってよい。例えば、スチールコード25aは、図2において端部24aから下側に延び、コンベヤベルト21の内部を通って、図2において端部24bを有するスチールコード25bにつながっていてもよい。すなわち、例えば、スチールコード25aとスチールコード25bとは1本のスチールコードであってもよい。この場合、この1本のスチールコードの2つの端部は、端部24a及び端部24bである。 Note that one of the four steel cords 25a, 25b, 25c, and 25d shown in FIG. 2 may be a single steel cord. For example, the steel cord 25a may extend downward from the end 24a in FIG. 2 and pass through the inside of the conveyor belt 21 to be connected to the steel cord 25b having the end 24b in FIG. That is, for example, the steel cord 25a and the steel cord 25b may be one steel cord. In this case, the two ends of the single steel cord are the end 24a and the end 24b.
 また、ベルトコンベヤ20は、図1に示すものに限られない。ベルトコンベヤ20は、例えば3つ以上のプーリを備えていてもよい。ベルトコンベヤ20は、例えばコンベヤベルト21を支持するためのローラを備えていてもよい。また、例えば、図2には、4つの端部24a、24b、24c及び24dが図示されているが、コンベヤベルト21の接合部に含まれるスチールコード25の端部24の数は、4つに限られない。コンベヤベルト21は、接合部に2つ以上の端部24を有していればよい。この場合、2つ以上の端部24は、少なくとも1つが、他の端部24とは対向する方向から延びている。 ベ ル ト Further, the belt conveyor 20 is not limited to the one shown in FIG. The belt conveyor 20 may include, for example, three or more pulleys. The belt conveyor 20 may include, for example, rollers for supporting the conveyor belt 21. Also, for example, FIG. 2 shows four ends 24a, 24b, 24c, and 24d, but the number of ends 24 of the steel cord 25 included in the joint of the conveyor belt 21 is four. Not limited. The conveyor belt 21 may have two or more ends 24 at the joint. In this case, at least one of the two or more ends 24 extends in a direction facing the other end 24.
 図3は、図1に示す状態検出装置10の概略構成の一例を示す機能ブロック図である。図3に示すように、本実施形態に係る状態検出装置10は、センサ部11と、制御部12と、記憶部13と、表示部14とを備える。 FIG. 3 is a functional block diagram showing an example of a schematic configuration of the state detection device 10 shown in FIG. As shown in FIG. 3, the state detection device 10 according to the present embodiment includes a sensor unit 11, a control unit 12, a storage unit 13, and a display unit 14.
 センサ部11は、内部にコイルを有する。コイルには、例えば交流電流が供給される。センサ部11は、コンベヤベルト21の一部の範囲について、状態検出のためのデータの収集を行う。センサ部11がデータの収集を行う範囲は、図1において破線で示されている。センサ部11が収集するデータは、例えば後述するコイルの電流の変化である。センサ部11は、コンベヤベルト21を走査することにより、コンベヤベルト21の全体(全周)について、データを収集することができる。ここでいう走査は、相対的な位置の変化を言う。例えば、センサ部11は、回転するコンベヤベルト21の上方に配置されることにより、コンベヤベルト21を走査してよい。センサ部11は、例えば固定されたコンベヤベルト21の上方を、センサ部11自身が移動することによって、コンベヤベルト21を走査してもよい。 The sensor unit 11 has a coil inside. For example, an alternating current is supplied to the coil. The sensor unit 11 collects data for detecting a state of a part of the conveyor belt 21. A range in which the sensor unit 11 collects data is indicated by a broken line in FIG. The data collected by the sensor unit 11 is, for example, a change in coil current described later. By scanning the conveyor belt 21, the sensor unit 11 can collect data on the entire conveyor belt 21 (entire circumference). Scanning here refers to a change in relative position. For example, the sensor unit 11 may scan the conveyor belt 21 by being disposed above the rotating conveyor belt 21. The sensor unit 11 may scan the conveyor belt 21 by, for example, moving above the fixed conveyor belt 21 by the sensor unit 11 itself.
 センサ部11は、例えば、従来公知の金属片検出器と同様の原理により渦電流を検出可能なセンサとして構成されていてよい。金属片検出器は、例えば、特開昭62-12887号公報等に開示されている。ただし、特許文献3に開示される金属片検出器は搬送物の中にある金属片の有無を探知するために使用されるものであるが、本実施形態に係るセンサ部11は、この目的で使用されるものではない。 The sensor unit 11 may be configured as, for example, a sensor capable of detecting an eddy current based on the same principle as a conventionally known metal piece detector. The metal piece detector is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-12887. However, the metal piece detector disclosed in Patent Document 3 is used to detect the presence or absence of a metal piece in a conveyed object, but the sensor unit 11 according to the present embodiment is used for this purpose. Not used.
 制御部12は、状態検出装置10の各機能ブロックをはじめとして、状態検出装置10の全体を制御及び管理するプロセッサである。制御部12は、制御手順を規定したプログラムを実行するCPU(Central Processing Unit)等のプロセッサで構成される。このようなプログラムは、例えば記憶部13、又は状態検出装置10に接続された外部の記憶媒体等に格納される。 The control unit 12 is a processor that controls and manages the entire state detection device 10 including the functional blocks of the state detection device 10. The control unit 12 is configured by a processor such as a CPU (Central Processing Unit) that executes a program defining a control procedure. Such a program is stored in, for example, the storage unit 13 or an external storage medium connected to the state detection device 10.
 制御部12は、センサ部11によるコンベヤベルト21の走査結果、すなわちセンサ部11が収集したデータに基づいて、コンベヤベルト21の状態を検出する。具体的には、制御部12は、コンベヤベルト21の内部のスチールコード25に発生する渦電流に基づいて、コンベヤベルト21の状態を検出する。 The control unit 12 detects the state of the conveyor belt 21 based on the scanning result of the conveyor belt 21 by the sensor unit 11, that is, the data collected by the sensor unit 11. Specifically, the control unit 12 detects the state of the conveyor belt 21 based on the eddy current generated in the steel cord 25 inside the conveyor belt 21.
 ここで、状態検出装置10によるコンベヤベルト21の状態検出の原理について説明する。センサ部11によるコンベヤベルト21の走査中に、センサ部11に、例えば交流電流が供給される。センサ部11のコイルに交流電流が供給されることによって磁界が発生し、当該磁界により、走査対象であるコンベヤベルト21の内部のスチールコード25に渦電流が発生する。この渦電流により磁界が発生し、当該磁界により、センサ部11の内部のコイルに流れる電流に影響を与える。例えば、渦電流が変化すると、磁界が変化し、これによってコイルに流れる電流も変化する。制御部12は、スチールコード25に発生する渦電流によって生じるセンサ部11のコイルの電流の変化に基づいて、コンベヤベルト21の状態を検出する。制御部12は、例えばセンサ部11のコイルに発生する渦電流値を検出し、渦電流値に基づいてコンベヤベルト21の状態を検出できる。制御部12は、スチールコード25に発生する渦電流によって生じるセンサ部11のコイルの電流の変化に基づいて、例えばコンベヤベルト21の内部のスチールコード25の状態を検出してよい。なお、コイルの電流の変化だけでなく、電圧の変化に基づいてコンベヤベルト21の状態を検出してもよい。 Here, the principle of the state detection of the conveyor belt 21 by the state detection device 10 will be described. During the scanning of the conveyor belt 21 by the sensor unit 11, for example, an alternating current is supplied to the sensor unit 11. When an alternating current is supplied to the coil of the sensor unit 11, a magnetic field is generated, and the magnetic field generates an eddy current in the steel cord 25 inside the conveyor belt 21 to be scanned. A magnetic field is generated by the eddy current, and the magnetic field affects a current flowing through a coil inside the sensor unit 11. For example, when the eddy current changes, the magnetic field changes, which changes the current flowing through the coil. The control unit 12 detects the state of the conveyor belt 21 based on a change in the current of the coil of the sensor unit 11 caused by the eddy current generated in the steel cord 25. The control unit 12 detects, for example, an eddy current value generated in a coil of the sensor unit 11, and can detect a state of the conveyor belt 21 based on the eddy current value. The control unit 12 may detect, for example, the state of the steel cord 25 inside the conveyor belt 21 based on a change in the current of the coil of the sensor unit 11 caused by the eddy current generated in the steel cord 25. Note that the state of the conveyor belt 21 may be detected based on a change in voltage as well as a change in coil current.
 本実施形態では、1つのコイルが、スチールコード25に渦電流を発生させるための発信用と、コンベヤベルト21の状態検出を行うための検出用との、2つの機能を共用するとして説明する。しかしながら、センサ部11は、発信用のコイルと検出用のコイルとを、それぞれ別のコイルとして有していてもよい。 In the present embodiment, one coil is described as sharing two functions, one for generating an eddy current in the steel cord 25 and the other for detecting the state of the conveyor belt 21. However, the sensor unit 11 may have a transmitting coil and a detecting coil as separate coils.
 記憶部13は、多様なメモリデバイスを有し、用途に応じてそれぞれ各種情報を記憶する。例えば、記憶部13は、制御部12の動作に必要なデータ等を記憶する。また、記憶部13は、ワークメモリとして機能するRAM(Random Access Memory)等のデバイスを有していてもよい。記憶部13は、例えば、状態検出の対象となるコンベヤベルト21に関する情報を記憶していてよい。具体的には、例えば、記憶部13は、詳細については後述するように、コンベヤベルト21の内部のスチールコード25の端部24間の、コンベヤベルト21の延在方向における距離を記憶していてよい。以下、本明細書において、端部24間の距離について言及する場合には、コンベヤベルト21の延在方向における距離であるものとして理解されたい。 The storage unit 13 has various memory devices, and stores various types of information according to applications. For example, the storage unit 13 stores data and the like necessary for the operation of the control unit 12. The storage unit 13 may include a device such as a RAM (Random Access Memory) that functions as a work memory. The storage unit 13 may store, for example, information on the conveyor belt 21 to be subjected to the state detection. Specifically, for example, the storage unit 13 stores a distance in the extending direction of the conveyor belt 21 between the ends 24 of the steel cords 25 inside the conveyor belt 21 as described in detail later. Good. Hereinafter, in this specification, when referring to the distance between the end portions 24, it should be understood that the distance in the extending direction of the conveyor belt 21 is used.
 表示部14は、例えば液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro-Luminescence Display)、又は無機ELディスプレイ(IELD:Inorganic Electro-Luminescence Display)等の周知のディスプレイにより構成される表示デバイスである。表示部14は、各種情報を表示する。例えば、表示部14は、コンベヤベルト21の状態の検出結果を表示する。 The display unit 14 is configured by a known display such as a liquid crystal display (LCD: Liquid Crystal Display), an organic EL display (OELD: Organic Electro-Luminescence Display), or an inorganic EL display (IELD: Inorganic Electro-Luminescence Display). Display device. The display unit 14 displays various information. For example, the display unit 14 displays a detection result of the state of the conveyor belt 21.
 次に、状態検出装置10の制御部12が実行する状態検出処理の詳細について、図4乃至図6を参照して説明する。 Next, details of the state detection processing executed by the control unit 12 of the state detection device 10 will be described with reference to FIGS.
 図4は、制御部12が実行する処理の一例を示すフローチャートであり、状態検出対象であるコンベヤベルト21の初期状態を記憶する処理の一例を示すフローチャートである。従って、図4に示すフローは、例えばコンベヤベルト21が最初に設置されたときに実行されてよい。図4は、例えば、ベルトコンベヤ20が稼働している状態、すなわちコンベヤベルト21が回転している状態で実行される。 FIG. 4 is a flowchart illustrating an example of a process executed by the control unit 12, and is a flowchart illustrating an example of a process of storing an initial state of the conveyor belt 21, which is a state detection target. Therefore, the flow shown in FIG. 4 may be executed, for example, when the conveyor belt 21 is first installed. FIG. 4 is executed, for example, in a state where the belt conveyor 20 is operating, that is, in a state where the conveyor belt 21 is rotating.
 まず、制御部12は、センサ部11のコイルに電流を印加するように制御する(ステップS11)。これにより、コイルに電流が流れ、磁界が発生する。コイルにより発生する磁界により、走査対象であるコンベヤベルト21の内部のスチールコード25に渦電流が発生する。渦電流が発生すると、渦電流による磁界が発生し、当該磁界による電流がコイルに流れる。 First, the control unit 12 controls so as to apply a current to the coil of the sensor unit 11 (step S11). As a result, a current flows through the coil, and a magnetic field is generated. An eddy current is generated in the steel cord 25 inside the conveyor belt 21 to be scanned by the magnetic field generated by the coil. When the eddy current is generated, a magnetic field is generated by the eddy current, and the current due to the magnetic field flows through the coil.
 制御部12は、センサ部11のコイルに流れる電流値を取得する(ステップS12)。 (4) The control unit 12 acquires a current value flowing through the coil of the sensor unit 11 (Step S12).
 例えば、センサ部11がコンベヤベルト21の接合部以外の箇所を走査している場合、コンベヤベルト21に延在するスチールコード25の状態は一様であるため、スチールコード25に発生する渦電流は一定となる。従って、渦電流により発生する磁界も一定となる。そのため、渦電流により発生する磁界による、センサ部11のコイルに流れる電流への影響も一定である。従って、センサ部11がコンベヤベルト21の接合部以外の箇所を走査している場合、センサ部11のコイルに流れる電流値は、一定値となる。 For example, when the sensor unit 11 scans a portion other than the joint portion of the conveyor belt 21, the state of the steel cord 25 extending on the conveyor belt 21 is uniform, so that the eddy current generated in the steel cord 25 is It will be constant. Therefore, the magnetic field generated by the eddy current is also constant. Therefore, the influence of the magnetic field generated by the eddy current on the current flowing through the coil of the sensor unit 11 is constant. Therefore, when the sensor unit 11 is scanning a portion other than the joint portion of the conveyor belt 21, the value of the current flowing through the coil of the sensor unit 11 is constant.
 一方、センサ部11がコンベヤベルト21の接合部を走査している場合、スチールコード25の端部24において、スチールコード25に発生する渦電流が変化する。従って、渦電流により発生する磁界も変化し、これにより、当該変化に基づいて、センサ部11のコイルに流れる電流が変化する。 On the other hand, when the sensor unit 11 scans the joint of the conveyor belt 21, the eddy current generated in the steel cord 25 changes at the end 24 of the steel cord 25. Therefore, the magnetic field generated by the eddy current also changes, and accordingly, the current flowing through the coil of the sensor unit 11 changes based on the change.
 図5は、センサ部11のコイルに流れる電流値を模式的に示す図である。図5において、横軸は時刻、縦軸は電流値を示す。図5は、例えば図2に示す接合部を上方から下方に向かって走査した場合の電流値の変化を示す。 FIG. 5 is a diagram schematically showing a current value flowing through the coil of the sensor unit 11. In FIG. 5, the horizontal axis represents time, and the vertical axis represents current value. FIG. 5 shows a change in current value when, for example, the junction shown in FIG. 2 is scanned from above to below.
 図2に示す接合部を上方から下方に向かって走査した場合、まず、端部24aにおいて発生する渦電流による磁界の変化により、センサ部11のコイルに流れる電流が変化する。例えばセンサ部11が時刻t1に端部24aを走査した場合、コイルに流れる電流が、例えば図5に示すように正方向に変化する。 When scanning the joint shown in FIG. 2 from above to below, first, the current flowing through the coil of the sensor unit 11 changes due to the change in the magnetic field due to the eddy current generated at the end 24a. For example, if the sensor unit 11 scans the end portion 24a at time t 1, the current flowing through the coil is changed in the positive direction as shown in FIG. 5, for example.
 図2に示す接合部を上方から下方に向かって走査した場合、次に、端部24bにおいて発生する渦電流による磁界の変化により、センサ部11のコイルに流れる電流が変化する。例えばセンサ部11が時刻t2に端部24bを走査した場合、コイルに流れる電流が、例えば図5に示すように負方向に変化する。 When the junction shown in FIG. 2 is scanned from above to below, the current flowing through the coil of the sensor unit 11 changes due to the change in the magnetic field due to the eddy current generated at the end 24b. For example, if the sensor unit 11 scans the end 24b to the time t 2, the current flowing through the coil is changed in the negative direction as shown in FIG. 5, for example.
 同様にして、端部24c及び端部24dにおいて発生する渦電流による磁界の変化により、それぞれ時刻t3及びt4において、コイルに流れる電流が変化する。 Similarly, the change in magnetic field due to eddy current generated in the end portion 24c and the end portion 24d, at time t 3 and t 4, respectively, the current flowing through the coil changes.
 再び図4を参照すると、次に、制御部12は、電流値の変化のピークを検出する(ステップS13)。例えば、図5のような電流の変化が取得された場合、制御部12は、図5の時刻t1、t2、t3及びt4に示すピークの時刻を検出する。例えば、制御部12は、公知のピーク検出アルゴリズムを用いて、ピークの時刻を検出してよい。 Referring to FIG. 4 again, next, the control unit 12 detects a peak of a change in the current value (Step S13). For example, when a change in current as shown in FIG. 5 is acquired, the control unit 12 detects peak times shown at times t 1 , t 2 , t 3, and t 4 in FIG. For example, the control unit 12 may detect the peak time using a known peak detection algorithm.
 そして、制御部12は、電流の変化のピークのタイミングに基づいて、コンベヤベルト21の延在方向における端部24間の距離を算出する。具体的には、制御部12は、2つのピーク間の時間に基づいて、当該2つのピークを示す位置に相当する端部24間の、コンベヤベルト21での距離を算出する(ステップS14)。例えば、制御部12は、対向する方向から延びるスチールコード25の端部24間の距離を算出する。対向する方向から延びるスチールコード25の端部24とは、図2に示す例では、端部24aと端部24b、端部24aと端部24d、端部24cと端部24b、及び、端部24cと端部24dの4パターンをいう。制御部12は、例えば、この4パターンの全てについて、端部24間の距離を算出してもよいし、この4パターンのうちの一部について、端部24間の距離を算出してもよい。 制 御 Then, the control unit 12 calculates the distance between the ends 24 in the extending direction of the conveyor belt 21 based on the timing of the peak of the current change. Specifically, the control unit 12 calculates the distance on the conveyor belt 21 between the ends 24 corresponding to the positions indicating the two peaks, based on the time between the two peaks (Step S14). For example, the control unit 12 calculates the distance between the ends 24 of the steel cords 25 extending from the facing direction. In the example shown in FIG. 2, the ends 24 of the steel cords 25 extending from the opposite direction are the ends 24a and 24b, the ends 24a and 24d, the ends 24c and 24b, and the ends. 24c and the end 24d. For example, the control unit 12 may calculate the distance between the end portions 24 for all of the four patterns, or may calculate the distance between the end portions 24 for a part of the four patterns. .
 ここで、一例として、制御部12が、端部24aと端部24bとの間の距離を算出する場合について説明する。この場合、制御部12は、端部24a及び端部24bにより発生するピークにそれぞれ対応する、時刻t1及び時刻t2を特定する。制御部12は、例えば、状態検出装置10に対して外部から入力された信号に基づいて、端部24a及び端部24bにより発生するピークにそれぞれ対応する、時刻t1及び時刻t2を特定してもよく、内部で実行される所定のアルゴリズムにより、自動的に時刻t1及び時刻t2を特定してもよい。制御部12が自動的に時刻t1及び時刻t2を特定する場合、例えば、予め検出対象のコンベヤベルト21が有する端部24の数が、状態検出装置10に入力され、記憶部13に記憶されていてよい。この場合、制御部12は、検出したピークの時刻を、順に端部24の位置と対応付けることにより、端部24a及び端部24bにより発生するピークにそれぞれ対応する、時刻t1及び時刻t2を特定してよい。 Here, as an example, a case where the control unit 12 calculates the distance between the end 24a and the end 24b will be described. In this case, the control unit 12, corresponding respectively to the peak generated by the end 24a and the end 24b, to identify the time t 1 and time t 2. Control unit 12, for example, based on the input signals from the outside to the state detection device 10, corresponding respectively to the peak generated by the end 24a and the end portion 24b, and identifies the time t 1 and time t 2 Alternatively, the time t 1 and the time t 2 may be automatically specified by a predetermined algorithm executed inside. When the control unit 12 automatically specifies the times t 1 and t 2 , for example, the number of the ends 24 of the conveyor belt 21 to be detected is input to the state detection device 10 and stored in the storage unit 13 in advance. May have been. In this case, the control unit 12 associates the times of the detected peaks with the positions of the end portions 24 in order, so that the time t 1 and the time t 2 corresponding to the peaks generated by the end portions 24a and 24b, respectively. May be specified.
 制御部12は、特定した時刻t1と時刻t2との差(つまり時間)を算出する。そして、制御部12は、算出した時間と、走査されるコンベヤベルト21の速度との積を算出することにより、端部24aと端部24bとの間の距離を算出する。コンベヤベルト21の速度は、例えば状態検出装置10が検出してもよく、例えば外部から状態検出装置10に入力されてもよい。 Control unit 12 calculates the difference (i.e. time) between the time t 1 and time t 2 when specified. Then, the controller 12 calculates the product of the calculated time and the speed of the conveyor belt 21 to be scanned, thereby calculating the distance between the end 24a and the end 24b. The speed of the conveyor belt 21 may be detected by, for example, the state detection device 10 or may be input to the state detection device 10 from the outside, for example.
 制御部12は、ステップS14で算出した距離を記憶部13に記憶させる(ステップS15)。このようにして、記憶部13に、コンベヤベルト21の初期状態が記憶される。具体的には、ここで説明した例では、記憶部13に、コンベヤベルト21における端部24aと24bとの初期状態における距離が記憶される。 The control unit 12 causes the storage unit 13 to store the distance calculated in step S14 (step S15). Thus, the initial state of the conveyor belt 21 is stored in the storage unit 13. Specifically, in the example described here, the storage unit 13 stores the distance between the ends 24a and 24b of the conveyor belt 21 in the initial state.
 このようにして、初期状態が記憶された後、状態検出装置10はコンベヤベルト21の状態検出処理を実行する。状態検出装置10は、初期状態を記憶した後、継続的に状態検出処理を実行してもよく、定期的又は不定期的に状態検出を実行してもよい。 後 After the initial state is stored in this way, the state detection device 10 executes a state detection process of the conveyor belt 21. After storing the initial state, the state detection device 10 may execute the state detection process continuously, or may execute the state detection periodically or irregularly.
 図6は、制御部12が実行する処理の一例を示すフローチャートであり、状態検出対象であるコンベヤベルト21の状態検出処理の一例を示すフローチャートである。図6に示すフローは、初期状態が記憶された後、実行される。図6は、図4の場合と同様に、例えば、ベルトコンベヤ20が稼働している状態、すなわちコンベヤベルト21が回転している状態で実行される。 FIG. 6 is a flowchart illustrating an example of a process executed by the control unit 12, and is a flowchart illustrating an example of a state detection process of the conveyor belt 21, which is a state detection target. The flow shown in FIG. 6 is executed after the initial state is stored. 6 is executed, for example, in a state where the belt conveyor 20 is operating, that is, in a state where the conveyor belt 21 is rotating, as in the case of FIG.
 図6におけるステップS21乃至ステップS24は、それぞれ図4におけるステップS11乃至ステップS14と同様であるため、ここでは詳細な説明を省略する。 Steps S21 to S24 in FIG. 6 are the same as Steps S11 to S14 in FIG. 4, respectively, and thus detailed description is omitted here.
 制御部12は、ステップS24で算出した端部24間の距離を用いて、端部24間の距離の初期状態からの変化を算出することにより、コンベヤベルト21の接合部における引抜け量を算出する。すなわち、制御部12は、ステップS24で算出した端部24間の距離と、図4のステップS15で記憶した初期状態における端部24間の距離とを比較することにより、接合部における引抜け量を算出する(ステップS25)。制御部12は、例えば、ステップS24で算出した端部24間の距離と、初期状態における端部24間の距離との差を算出することにより、引抜け量を算出することができる。接合部における引抜けが発生している場合には、端部24間の距離も、接合部における引抜けに伴って変化するためである。 The controller 12 calculates the change in the distance between the ends 24 from the initial state by using the distance between the ends 24 calculated in step S24, thereby calculating the amount of pull-out at the joint of the conveyor belt 21. I do. That is, the controller 12 compares the distance between the ends 24 calculated in step S24 with the distance between the ends 24 in the initial state stored in step S15 in FIG. Is calculated (step S25). The control unit 12 can calculate the pull-out amount, for example, by calculating the difference between the distance between the ends 24 calculated in step S24 and the distance between the ends 24 in the initial state. This is because, when the joint is pulled out, the distance between the end portions 24 also changes with the pullout at the joint.
 制御部12は、ステップS25で算出した引抜け量に関する情報を、表示部14に表示する(ステップS26)。引抜け量に関する情報は、ステップS25で算出した引抜け量(長さ)であってもよく、引抜け量の程度であってもよい。引抜け量の程度は、例えば引抜け量を段階的に示すものであってよい。制御部12は、例えば引抜け量が、予め定められた所定の閾値を超えた場合、警告を示す情報を表示部14に表示してもよい。この場合、制御部12は、例えばアラーム音等のように、表示以外の他の手段を用いて警告を通知してもよい。 The control unit 12 displays information on the amount of pull-out calculated in step S25 on the display unit 14 (step S26). The information relating to the pull-out amount may be the pull-out amount (length) calculated in step S25 or the degree of the pull-out amount. The degree of the withdrawal amount may be, for example, a value that indicates the withdrawal amount in a stepwise manner. For example, when the withdrawal amount exceeds a predetermined threshold value, the control unit 12 may display information indicating a warning on the display unit 14. In this case, the control unit 12 may notify the warning using means other than the display, such as an alarm sound.
 図6に示すフローにおいて、制御部12は、ステップS25で算出した引抜け量を、記憶部13に記憶させてもよい。引抜け量を記憶部13に記憶させ、引抜け量に関するデータを蓄積することにより、制御部12は、引抜け量の変化を記録することができる。制御部12は、引抜け量の変化に基づいて、接合部の引抜け量の未来における変化を予測してもよい。 In the flow shown in FIG. 6, the control unit 12 may cause the storage unit 13 to store the withdrawal amount calculated in step S25. By storing the pull-out amount in the storage unit 13 and accumulating data relating to the pull-out amount, the control unit 12 can record a change in the pull-out amount. The control unit 12 may predict a future change in the withdrawal amount of the joint based on the change in the withdrawal amount.
 このように、本実施形態に係る状態検出装置10は、内部にコイルを有するセンサ部11によりコンベヤベルト21の走査を行い、コンベヤベルト21の金属コードに発生する渦電流によるコイルの電流の変化に基づいて、コンベヤベルト21の状態を検出する。すなわち、状態検出装置10は、コンベヤベルト21の内部の金属コードに発生する渦電流を用いてコンベヤベルト21の状態を検出している。渦電流は金属に対してピーキーに反応するため、状態検出装置10によれば、従来の方法と比較して、コンベヤベルト21の金属コードの状態を、より高い精度で検出しやすい。また、状態検出装置10によれば、コンベヤベルト21に対して何らの操作を行うことなく、コンベヤベルト21の状態検出を実行することができるため、簡便に状態検出を行うことができる。 As described above, the state detection device 10 according to the present embodiment scans the conveyor belt 21 by the sensor unit 11 having the coil inside, and detects the change in the coil current due to the eddy current generated in the metal cord of the conveyor belt 21. Based on this, the state of the conveyor belt 21 is detected. That is, the state detection device 10 detects the state of the conveyor belt 21 using the eddy current generated in the metal cord inside the conveyor belt 21. Since the eddy current responds to the metal in a peak-like manner, the state detection device 10 can easily detect the state of the metal cord of the conveyor belt 21 with higher accuracy than the conventional method. Further, according to the state detection device 10, since the state detection of the conveyor belt 21 can be performed without performing any operation on the conveyor belt 21, the state detection can be easily performed.
 また、本実施形態に係る状態検出装置10は、特にコンベヤベルト21の接合部における金属コードの状態を検出できる。接合部は、コンベヤベルト21において金属コードの引抜けが発生し得る箇所であるため、状態検出装置10が接合部の状態を検出することにより、金属コードの引抜けを検出可能である。 状態 In addition, the state detection device 10 according to the present embodiment can particularly detect the state of the metal cord at the joint of the conveyor belt 21. Since the joining portion is a place where the metal cord can be pulled out in the conveyor belt 21, the state detecting device 10 can detect the pulling out of the metal cord by detecting the state of the joining portion.
 また、上述のように、渦電流は金属に対してピーキーに反応するため、本実施形態に係る状態検出装置10は、センサ部11の内部のコイルに流れる電流の変化のピークのタイミングを検出し、当該ピークのタイミングに基づいて、スチールコード25の端部24間の距離を算出することができる。そのため、本実施形態に係る状態検出装置10によれば、スチールコード25の状態を定量的に検出可能である。 Further, as described above, since the eddy current responds to the metal in a peaky manner, the state detection device 10 according to the present embodiment detects the peak timing of the change in the current flowing through the coil inside the sensor unit 11. The distance between the ends 24 of the steel cord 25 can be calculated based on the timing of the peak. Therefore, according to the state detection device 10 of the present embodiment, the state of the steel cord 25 can be quantitatively detected.
 また、本実施形態に係る状態検出装置10は、端部間の距離の変化を算出することにより、接合部における引抜け量を算出することができる。そのため、本実施形態に係る状態検出装置10によれば、金属コードの引抜け量の変化を定量的に検出可能である。 状態 Moreover, the state detection device 10 according to the present embodiment can calculate the amount of pull-out at the joint by calculating the change in the distance between the ends. Therefore, according to the state detection device 10 of the present embodiment, it is possible to quantitatively detect a change in the amount of metal cord pulled out.
 また、本実施形態に係る状態検出装置10では、センサ部11は、コンベヤベルト21が回転している状態においてコンベヤベルト21を走査することができる。そのため、本実施形態に係る状態検出装置10は、ベルトコンベヤ20を稼働させたまま、コンベヤベルト21の状態を検出できる。すなわち、ベルトコンベヤ20を停止させて状態検出を行う必要がないため、ベルトコンベヤ20を停止させることにより発生し得る停止時間(ダウンタイムとも呼ばれる)を、発生させることなく、継続的に状態を検出できる。なお、ベルトコンベヤ20を停止させて状態検出を行うことも、もちろん可能である。 In the state detection device 10 according to the present embodiment, the sensor unit 11 can scan the conveyor belt 21 while the conveyor belt 21 is rotating. Therefore, the state detection device 10 according to the present embodiment can detect the state of the conveyor belt 21 while the belt conveyor 20 is operating. That is, since there is no need to stop the belt conveyor 20 to perform state detection, the state is continuously detected without generating a stop time (also referred to as downtime) that may occur when the belt conveyor 20 is stopped. it can. It is of course possible to stop the belt conveyor 20 and detect the state.
 コンベヤベルト21の状態検出は、必ずしも1つの装置(状態検出装置10)によって実行されなくてもよい。コンベヤベルト21の状態検出は、例えば複数の装置を有するシステムにより実行されてもよい。 状態 The state detection of the conveyor belt 21 does not necessarily have to be executed by one device (the state detection device 10). The detection of the state of the conveyor belt 21 may be executed by, for example, a system having a plurality of devices.
 図7は、一実施形態に係る状態検出システムの使用態様の一例を示す模式図である。図7に示す状態検出システム30は、図1に示す状態検出装置10と同様、ベルトコンベヤ20に設けられるコンベヤベルト21の状態を検出する。状態検出システム30は、センサ装置40及び情報処理装置50という2つの装置を含んで構成されている。センサ装置40と情報処理装置50とは、有線又は無線により、互いに情報通信可能に接続されている。以下、図1に示す状態検出装置10と同様の内容については、適宜説明を省略し、異なる内容について主に説明する。 FIG. 7 is a schematic diagram illustrating an example of a usage state of the state detection system according to the embodiment. The state detection system 30 shown in FIG. 7 detects the state of the conveyor belt 21 provided on the belt conveyor 20, similarly to the state detection device 10 shown in FIG. The state detection system 30 includes two devices, a sensor device 40 and an information processing device 50. The sensor device 40 and the information processing device 50 are connected to each other so as to be able to communicate with each other by wire or wirelessly. Hereinafter, description of the same contents as those of the state detection device 10 shown in FIG. 1 will be appropriately omitted, and different contents will be mainly described.
 図8は、図7に示す状態検出システム30の概略構成の一例を示す機能ブロック図である。状態検出システム30では、センサ装置40が、状態検出のためのデータの収集を行い、収集したデータを情報処理装置50に送信する。情報処理装置50は、データを取得すると、当該データに基づいて、コンベヤベルト21の状態検出処理を実行する。 FIG. 8 is a functional block diagram showing an example of a schematic configuration of the state detection system 30 shown in FIG. In the state detection system 30, the sensor device 40 collects data for state detection, and transmits the collected data to the information processing device 50. Upon acquiring the data, the information processing device 50 executes a state detection process of the conveyor belt 21 based on the data.
 図8に示すように、センサ装置40は、センサ部41と、制御部42と、通信部45とを備える。 セ ン サ As shown in FIG. 8, the sensor device 40 includes a sensor unit 41, a control unit 42, and a communication unit 45.
 センサ部41の機能及び構成は、例えば図3で示したセンサ部11と同様であってよいため、ここではその詳細な説明を省略する。 (4) The function and configuration of the sensor unit 41 may be the same as, for example, the sensor unit 11 shown in FIG.
 制御部42は、センサ装置40の各機能ブロックをはじめとして、センサ装置40の全体を制御及び管理するプロセッサである。制御部42は、例えば情報処理装置50等の外部から受信した制御信号に基づき、データの収集処理を実行する。例えば、制御部42は、外部から受信した制御信号に基づき、センサ部41のコイルに電流を印加する。また、制御部42は、収集したデータを、通信部45を介して情報処理装置50に送信する処理を実行する。 The control unit 42 is a processor that controls and manages the entire sensor device 40 including the functional blocks of the sensor device 40. The control unit 42 executes a data collection process based on a control signal received from the outside of the information processing device 50 or the like, for example. For example, the control unit 42 applies a current to the coil of the sensor unit 41 based on a control signal received from the outside. Further, the control unit 42 executes a process of transmitting the collected data to the information processing device 50 via the communication unit 45.
 通信部45は、無線、有線、又は無線と有線との組合せによるネットワークを用いて外部の機器と通信を行うことができる。通信部45は、例えばネットワークを介して、情報の送受信を行うことができる。通信部45は、例えば無線通信規格の通信方式により通信する。例えば、無線通信規格は、WiMAX(Worldwide Interoperability for Microwave Access)、IEEE802.11、Bluetooth(登録商標)、IrDA(Infrared Data Association)、NFC(Near Field Communication)、ARIB STD-T109(例えば、Rev.1.2)に準拠する通信規格、ITS FORUM RC-010に準拠する通信規格等を含む。通信部45は、一例として上述した通信規格の1つ又は複数をサポートすることができる。通信部45は、複数の通信規格をサポートするとき、それぞれの無線通信規格に対応する複数の通信モジュールを含んで構成されていてもよい。図7及び図8に示す例では、通信部45は、情報処理装置50と有線で通信を行っている状態を示している。 The communication unit 45 can communicate with an external device using a network that is wireless, wired, or a combination of wireless and wired. The communication unit 45 can transmit and receive information via, for example, a network. The communication unit 45 communicates by, for example, a communication method of a wireless communication standard. For example, wireless communication standards include WiMAX (Worldwide Interoperability for Microwave Access), IEEE802.11, Bluetooth (registered trademark), IrDA (Infrared Data Association), NFC (Near Field Communication), and ARIB STD-T109 (for example, Rev.1.2). ), Communication standards conforming to ITS FORUM RC-010, etc. The communication unit 45 can support one or more of the communication standards described above as an example. When the communication unit 45 supports a plurality of communication standards, the communication unit 45 may include a plurality of communication modules corresponding to the respective wireless communication standards. In the examples shown in FIGS. 7 and 8, the communication unit 45 shows a state in which communication with the information processing device 50 is performed by wire.
 図8に示すように、情報処理装置50は、制御部52と、記憶部53と、表示部54と、通信部55とを備える。 As shown in FIG. 8, the information processing device 50 includes a control unit 52, a storage unit 53, a display unit 54, and a communication unit 55.
 制御部52は、情報処理装置50の各機能ブロックをはじめとして、情報処理装置50の全体を制御及び管理するプロセッサである。制御部52は、制御手順を規定したプログラムを実行するCPU等のプロセッサで構成される。このようなプログラムは、例えば記憶部53、又は情報処理装置50に接続された外部の記憶媒体等に格納される。 The control unit 52 is a processor that controls and manages the entire information processing device 50, including the functional blocks of the information processing device 50. The control unit 52 is configured by a processor such as a CPU that executes a program defining a control procedure. Such a program is stored in, for example, the storage unit 53 or an external storage medium connected to the information processing device 50.
 制御部52は、通信部55を介してセンサ装置40から取得したデータに基づいて、コンベヤベルト21の状態を検出する。コンベヤベルト21の状態検出処理の詳細は、制御部12で説明した内容と同様であってよいため、ここではその詳細な説明を省略する。 The control unit 52 detects the state of the conveyor belt 21 based on data acquired from the sensor device 40 via the communication unit 55. The details of the process of detecting the state of the conveyor belt 21 may be the same as those described for the control unit 12, and thus detailed description thereof will be omitted.
 記憶部53及び表示部54の機能及び構成は、それぞれ例えば図3で示した記憶部13及び表示部14と同様であってよいため、ここではその詳細な説明を省略する。 (3) The functions and configurations of the storage unit 53 and the display unit 54 may be the same as, for example, the storage unit 13 and the display unit 14 illustrated in FIG. 3, respectively, and thus detailed description thereof will not be repeated.
 通信部55は、無線、有線、又は無線と有線との組合せによるネットワークを用いて外部の機器と通信を行うことができる。通信部55は、例えばネットワークを介して、情報の送受信を行うことができる。通信部55は、例えば無線通信規格の通信方式により通信する。例えば、無線通信規格は、WiMAX、IEEE802.11、Bluetooth、IrDA、NFC、ARIB STD-T109(例えば、Rev.1.2)に準拠する通信規格、ITS FORUM RC-010に準拠する通信規格等を含む。通信部55は、一例として上述した通信規格の1つ又は複数をサポートすることができる。通信部55は、複数の通信規格をサポートするとき、それぞれの無線通信規格に対応する複数の通信モジュールを含んで構成されていてもよい。図7及び図8に示す例では、通信部55は、センサ装置40と有線で通信を行っている状態を示している。 The communication unit 55 can communicate with an external device using a network based on wireless, wired, or a combination of wireless and wired. The communication unit 55 can transmit and receive information via, for example, a network. The communication unit 55 communicates by, for example, a communication method of a wireless communication standard. For example, wireless communication standards include a communication standard based on WiMAX, IEEE802.11, Bluetooth, IrDA, NFC, ARIB @ STD-T109 (for example, Rev.1.2), a communication standard based on ITS @ FORUM @ RC-010, and the like. The communication unit 55 can support one or more of the communication standards described above as an example. When supporting a plurality of communication standards, the communication unit 55 may include a plurality of communication modules corresponding to the respective wireless communication standards. In the examples shown in FIGS. 7 and 8, the communication unit 55 is in a state of communicating with the sensor device 40 by wire.
 このように、複数の装置を含んで構成される状態検出システム30によっても、状態検出装置10と同様の処理を実行することにより、上述した状態検出装置10と同様の効果を奏することができる。 As described above, even with the state detection system 30 including a plurality of devices, the same effects as those of the above-described state detection device 10 can be achieved by executing the same processing as that of the state detection device 10.
 上記実施形態において、状態検出装置10及び状態検出システム30は、コンベヤベルト21の状態として、接合部における引抜け量を検出すると説明したが、検出の対象となる状態は、接合部における引抜け量に限られない。状態検出装置10及び状態検出システム30は、コンベヤベルト21の他の状態を検出してもよい。例えば、状態検出装置10及び状態検出システム30は、コンベヤベルト21の状態として、コンベヤベルト21の内部のスチールコード25の断線を検出することができる。具体的には、スチールコード25の断線が発生すると、当該断線箇所において、スチールコード25における渦電流が、断線前から変化する。すると、当該渦電流の変化により、センサ部11又は41のコイルに流れる電流が、断線前と断線後とで変化する。例えば、図5に示すようなコイルに流れる電流値について、断線前にピークが存在していない箇所に、断線後にはピークが発生する。状態検出装置10及び状態検出システム30は、このような電流値の変化に基づいて、断線を検出することができる。 In the above-described embodiment, the state detection device 10 and the state detection system 30 have been described as detecting the pull-out amount at the joint as the state of the conveyor belt 21. However, the state to be detected is the pull-out amount at the joint. Not limited to The state detection device 10 and the state detection system 30 may detect other states of the conveyor belt 21. For example, the state detection device 10 and the state detection system 30 can detect a break in the steel cord 25 inside the conveyor belt 21 as the state of the conveyor belt 21. Specifically, when the breakage of the steel cord 25 occurs, the eddy current in the steel cord 25 changes at the location of the breakage before the breakage. Then, due to the change in the eddy current, the current flowing through the coil of the sensor unit 11 or 41 changes before and after the disconnection. For example, with respect to the current value flowing through the coil as shown in FIG. 5, a peak occurs at a position where no peak exists before disconnection, and after the disconnection. The state detection device 10 and the state detection system 30 can detect a disconnection based on such a change in the current value.
 本開示を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部を1つに組み合わせたり、或いは分割したりすることが可能である。 Although the present disclosure has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the functions and the like included in each component can be rearranged so as not to be logically inconsistent, and a plurality of components can be combined into one or divided.
 例えば、上記実施形態では、金属コードを有するコンベヤベルト21を走査する場合について説明した。しかしながら、本発明におけるコンベヤベルト21は、必ずしも金属コードを有していなくてもよい。例えば、本発明は、有機繊維により形成されたコードを有するコンベアベルト21を走査する場合にも用いることができる。この場合、有機繊維には、金属物が、付着されていたり、コーティングされていたり、又は目印として付着されたりする等により、配されている。このようにすることで、センサ部は、有機繊維に配された金属物を検出することができる。つまり、有機繊維に配された金属物の影響による渦電流の変化を検出することにより、コードの状態を検知できる。すなわち、本願発明は、少なくとも一部に金属部を有するコードであれば、使用することができる。 For example, in the above embodiment, the case where the conveyor belt 21 having the metal cord is scanned has been described. However, the conveyor belt 21 in the present invention does not necessarily have to have a metal cord. For example, the present invention can be used for scanning a conveyor belt 21 having a cord formed of organic fibers. In this case, a metal object is provided on the organic fiber by being attached, coated, or attached as a mark. By doing so, the sensor unit can detect a metal object disposed on the organic fiber. That is, the state of the cord can be detected by detecting a change in the eddy current due to the influence of the metal object disposed on the organic fiber. That is, the present invention can be used as long as the cord has a metal part at least in part.
 10:状態検出装置、 11,41:センサ部、 12,42,52:制御部、 13,53:記憶部、 14,54:表示部、 20:ベルトコンベヤ、 21:コンベヤベルト、 22a,22b:プーリ、 23:本体部、 24a,24b,24c,24d:端部、 25a,25b,25c,25d:スチールコード、 30:状態検出システム、 40:センサ装置、 45,55:通信部、 50:情報処理装置 10: state detection device, # 11, 41: sensor unit, # 12, 42, 52: control unit, # 13, 53: storage unit, # 14, 54: display unit, # 20: belt conveyor, # 21: conveyor belt, # 22a, 22b: Pulley, # 23: body, # 24a, 24b, 24c, 24d: end, # 25a, 25b, 25c, 25d: steel cord, # 30: state detection system, # 40: sensor device, # 45, 55: communication unit, # 50: information Processing equipment

Claims (7)

  1.  内部にコイルを有するセンサ部であって、少なくとも一部に金属部を有するコードを内部に有するコンベヤベルトを走査するセンサ部と、
     前記コードに発生する渦電流による前記コイルの電流の変化に基づいて、前記コードの状態を検出する制御部と、
    を備える、状態検出装置。
    A sensor unit having a coil inside, a sensor unit that scans a conveyor belt having a code having a metal part at least in the inside,
    A control unit that detects a state of the cord based on a change in current of the coil due to an eddy current generated in the cord;
    A state detection device comprising:
  2.  前記制御部は、前記コンベヤベルトの接合部における前記コードの状態を検出する、請求項1に記載の状態検出装置。 The state detection device according to claim 1, wherein the control unit detects a state of the cord at a joining portion of the conveyor belt.
  3.  前記制御部は、前記電流の変化のピークのタイミングに基づいて、前記コンベヤベルトの延在方向における前記コードの端部間の距離を算出する、請求項1又は請求項2に記載の状態検出装置。 3. The state detection device according to claim 1, wherein the control unit calculates a distance between ends of the cord in an extending direction of the conveyor belt based on a timing of a peak of the change in the current. 4. .
  4.  前記制御部は、前記コードの端部間の距離の変化を算出することにより、前記コードの引抜け量を算出する、請求項3に記載の状態検出装置。 4. The state detection device according to claim 3, wherein the control unit calculates a change in the distance between the ends of the cord, thereby calculating a pull-out amount of the cord. 5.
  5.  前記センサ部は、前記コンベヤベルトを備えるベルトコンベアの稼働状態において、前記コンベヤベルトを走査する、請求項1乃至請求項4のいずれか一項に記載の状態検出装置。 5. The state detection device according to claim 1, wherein the sensor unit scans the conveyor belt in an operating state of a belt conveyor including the conveyor belt. 6.
  6.  内部にコイルを有するセンサ装置であって、少なくとも一部に金属部を有するコードを内部に有するコンベヤベルトを走査するセンサ装置と、
     前記センサ装置による前記コンベヤベルトの走査中に、前記コイルに流れる電流により前記コードに発生する渦電流に基づいて、前記コードの状態を検出する制御部を備える情報処理装置と、
    を有する、状態検出システム。
    A sensor device having a coil inside, a sensor device that scans a conveyor belt having a code having a metal part at least in the inside,
    An information processing apparatus including a control unit that detects a state of the code based on an eddy current generated in the code by a current flowing through the coil during scanning of the conveyor belt by the sensor device;
    A state detection system.
  7.  内部にコイルを有するセンサ部と制御部とを備える状態検出装置による状態検出方法であって、
     前記センサ部により、少なくとも一部に金属部を有するコードを内部に有するコンベヤベルトを走査するステップと、
     前記制御部により、前記センサ部による前記コンベヤベルトの走査中に、前記コイルに流れる電流により前記コードに発生する渦電流に基づいて、前記コードの状態を検出するステップと、
    を含む、状態検出方法。
    A state detection method by a state detection device including a sensor unit and a control unit having a coil therein,
    By the sensor unit, scanning a conveyor belt having a code having a metal part at least in the inside,
    Detecting a state of the cord based on an eddy current generated in the cord by a current flowing through the coil during scanning of the conveyor belt by the sensor unit;
    And a state detection method.
PCT/JP2019/027738 2018-07-13 2019-07-12 State detection device, state detection system, and state detection method WO2020013321A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133150 2018-07-13
JP2018-133150 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013321A1 true WO2020013321A1 (en) 2020-01-16

Family

ID=69142706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027738 WO2020013321A1 (en) 2018-07-13 2019-07-12 State detection device, state detection system, and state detection method

Country Status (1)

Country Link
WO (1) WO2020013321A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196412A (en) * 1987-02-10 1988-08-15 Bando Chem Ind Ltd Disconnected position detecting device for steel cord conveyer belt
US5426362A (en) * 1992-09-30 1995-06-20 Ninnis; Ronald M. Damage detection apparatus and method for a conveyor belt having magnetically permeable members
JPH1072111A (en) * 1996-08-30 1998-03-17 Chubu Electric Power Co Inc Method and device for detecting wire break of steel cord in conveyer belt
JP2004340786A (en) * 2003-05-16 2004-12-02 Bridgestone Corp Temperature measuring method for rubber goods and temperature measuring device for rubber goods using the same
CN104016099A (en) * 2014-05-23 2014-09-03 爱德森(厦门)电子有限公司 Online vortex monitoring device and method for longitudinal tearing damage of steel cord conveyor belt
JP2016185879A (en) * 2015-03-27 2016-10-27 バンドー化学株式会社 Vertical split detecting device of steel cord conveyor belt and vertical split detecting system of steel cord conveyor belt
JP2017223633A (en) * 2016-06-17 2017-12-21 住友金属鉱山株式会社 Device and method for measuring condition of reinforcing bar embedded in concrete panel
CN206862959U (en) * 2017-07-13 2018-01-09 山西宏方德泰科技有限公司 Wire rope for mining core conveyer belt failure detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196412A (en) * 1987-02-10 1988-08-15 Bando Chem Ind Ltd Disconnected position detecting device for steel cord conveyer belt
US5426362A (en) * 1992-09-30 1995-06-20 Ninnis; Ronald M. Damage detection apparatus and method for a conveyor belt having magnetically permeable members
JPH1072111A (en) * 1996-08-30 1998-03-17 Chubu Electric Power Co Inc Method and device for detecting wire break of steel cord in conveyer belt
JP2004340786A (en) * 2003-05-16 2004-12-02 Bridgestone Corp Temperature measuring method for rubber goods and temperature measuring device for rubber goods using the same
CN104016099A (en) * 2014-05-23 2014-09-03 爱德森(厦门)电子有限公司 Online vortex monitoring device and method for longitudinal tearing damage of steel cord conveyor belt
JP2016185879A (en) * 2015-03-27 2016-10-27 バンドー化学株式会社 Vertical split detecting device of steel cord conveyor belt and vertical split detecting system of steel cord conveyor belt
JP2017223633A (en) * 2016-06-17 2017-12-21 住友金属鉱山株式会社 Device and method for measuring condition of reinforcing bar embedded in concrete panel
CN206862959U (en) * 2017-07-13 2018-01-09 山西宏方德泰科技有限公司 Wire rope for mining core conveyer belt failure detector

Similar Documents

Publication Publication Date Title
JP5173286B2 (en) Belt monitoring system
KR102488932B1 (en) Vibration-based elevator tension member wear and life monitoring system
US20220032943A1 (en) Road monitoring system, road monitoring device, road monitoring method, and non-transitory computer-readable medium
US20140216735A1 (en) Sandline spooling measurement and control system
JP6642370B2 (en) Rail inspection device and rail inspection system
WO2020079747A1 (en) Magnetic body management system and magnetic body management method
JP2019043707A (en) Monitoring system for conveyor belt
JP5790586B2 (en) Elevator rope tension measuring method and apparatus
JP2010189168A (en) Conveyor belt and failure determining system of guide roller
JP2020169097A (en) Belt conveyor abnormality monitoring device, abnormality monitoring program and abnormality monitoring method
JPWO2016047330A1 (en) Elevator rope elongation detector
CN110894048B (en) Wire rope monitoring device and wire rope monitoring method
WO2020013321A1 (en) State detection device, state detection system, and state detection method
JP2006273549A (en) Elongation sensing device for step chain of man conveyor
JP5455552B2 (en) Conveyor belt vertical tear detection device
JP2013018643A (en) Diagnostic device of elevator
JP7271866B2 (en) Magnetic inspection system and program
JP2011126710A (en) Elongation inspection device of wire rope and elongation inspection method of wire rope
KR102151428B1 (en) Apparatus for detecting abrasion of roll and mehod of detecing abrasion of rolll using the same
JP2021172459A (en) Wire rope monitoring device and crane system
JP2016172258A (en) Coil lift detection method and apparatus for unloader equipment
US20210372828A1 (en) Civil engineering structure monitoring system, civil engineering structure monitoring apparatus, civil engineering structure monitoring method, and non-transitory computer-readable medium
JP2017211272A (en) Abnormality diagnosis method of liquid level indicator
JP5062034B2 (en) Chain conveyor overload position indexing system
EP2815993A1 (en) Splice monitoring system for conveyor belts in mining industry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP