WO2020013217A1 - Cut-resistant polyvinyl alcohol fiber - Google Patents

Cut-resistant polyvinyl alcohol fiber Download PDF

Info

Publication number
WO2020013217A1
WO2020013217A1 PCT/JP2019/027286 JP2019027286W WO2020013217A1 WO 2020013217 A1 WO2020013217 A1 WO 2020013217A1 JP 2019027286 W JP2019027286 W JP 2019027286W WO 2020013217 A1 WO2020013217 A1 WO 2020013217A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard component
yarn
polyvinyl alcohol
fiber
pva
Prior art date
Application number
PCT/JP2019/027286
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 竹本
章弘 笹島
片山 隆
頼光 周平
憲秀 榎本
喜一 小渕
正裕 松井
Original Assignee
株式会社クラレ
ミドリ安全株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, ミドリ安全株式会社 filed Critical 株式会社クラレ
Priority to JP2020530221A priority Critical patent/JP7370325B2/en
Publication of WO2020013217A1 publication Critical patent/WO2020013217A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/14Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/38Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn

Definitions

  • the present invention relates to a polyvinyl alcohol-based fiber, a composite yarn including the fiber as at least a part of a constituent yarn, and a glove including the fiber or the composite yarn as at least a part of a constituent material.
  • Patent Document 1 discloses a cut resistant yarn containing a filament containing a hard component and / or a staple fiber.
  • the hard component is a plurality of hard fibers having an average diameter of at most 25 microns.
  • polymers for producing cut resistant yarn include aramid, ultra-high molecular weight polyethylene and polybenzoxazole, and specifically describe an example using ultra-high molecular weight polyethylene.
  • Patent Document 2 discloses a fiber made of polyethylene having an intrinsic viscosity of 0.8 or more and less than 4.9 dl / g, and an aspect ratio of less than 3. Highly functional polyethylene fibers characterized by containing a plurality of hard particles have been proposed. The document describes that the shape of the hard particles is preferably polygonal, and specifically describes an example using polygonal hard particles (polygonal hard component).
  • polyethylene is weak to fire and heat because of its low heat resistance, and has low adhesiveness to, for example, a coating resin because it has no functional group.
  • an organic solvent is used in the gel spinning method employed for producing ultra-high molecular weight polyethylene, special measures must be taken in consideration of adverse effects on the environment and health.
  • a fibrous hard component is used as the hard component, a problem of a decrease in fiber productivity due to clogging of a filter or a problem of safety (skin irritation or inhalation) may occur.
  • a polygonal or spherical hard component is used as the hard component, insufficient cut resistance and fiber strength, the likelihood of fluff and thread breakage, dust generation during the manufacturing process or during use (easiness of falling off) ).
  • the present invention solves the above-mentioned problems in the prior art, and provides flexibility (feeling of wearing protective equipment, touch, comfort, ease of movement of a body part wearing protective equipment), sweat absorption (hygroscopicity), and handling. It is an object of the present invention to provide a polyvinyl alcohol-based fiber which has sufficient (easy processability of the fiber and hardly wears processing equipment) and excellent cut resistance.
  • the present inventors have studied in detail in order to solve the above problems, and have completed the present invention. That is, the present invention includes the following preferred embodiments.
  • Polyvinyl alcohol-based fibers containing a hard component wherein the hard component is a plate-shaped hard component having a Mohs hardness of 3 or more, and has a maximum length a in a direction perpendicular to the main surface of the plate-shaped hard component.
  • [5] The polyvinyl alcohol fiber according to any one of [1] to [4], wherein the content of the hard component is 0.1% by mass or more.
  • [6] A composite yarn containing the polyvinyl alcohol-based fiber according to any one of [1] to [5] as at least a part of a constituent yarn.
  • a glove comprising the polyvinyl alcohol-based fiber according to any one of [1] to [5] or the cloth containing the composite yarn according to [6] or [7] as at least a part of a constituent material.
  • the present invention solves the above-mentioned problems in the prior art, and provides flexibility (feeling of wearing protective equipment, touch, comfort, ease of movement of a body part wearing protective equipment), sweat absorption (moisture absorption), and handling ( It is possible to provide a polyvinyl alcohol-based fiber having excellent cut resistance while sufficiently providing the fiber with easy processability and a property that the processing equipment is hardly worn.
  • the present invention relates to a polyvinyl alcohol (hereinafter sometimes referred to as “PVA”) fiber containing a hard component.
  • PVA polyvinyl alcohol
  • the hard component is a plate-shaped hard component having a Mohs hardness of 3 or more, and the average of the ratio (b / a) of the maximum length b of the main surface to the maximum length a in the direction perpendicular to the main surface of the plate-shaped hard component.
  • the value is 5 or more.
  • the “principal surface” of the plate-like hard component means a surface having the largest area among the surfaces of the plate-like hard component, and a plurality of principal surfaces may exist.
  • the plate-shaped hard component has a plurality of “principal surfaces” such as a rectangular parallelepiped
  • the ratio (b / a) of the maximum length b of the principal surface to the maximum length a in the direction perpendicular to each principal surface is obtained.
  • the PVA-based fiber of the present invention has excellent cut resistance while having sufficient flexibility, sweat absorption and handling properties. Can be provided. Although the reason is not clear, the following mechanism of action is presumed.
  • the number of hard component particles per unit volume is larger than that of a spherical hard component or a polygonal hard component having an average value of the ratio (b / a) of less than 5, Since the probability of contact between the hard component and the cutting blade used for the cut resistance test increases, sufficient cut resistance is exhibited even with a smaller amount of the hard component, and as a result, a decrease in fiber strength and flexibility is prevented, and handling is achieved. The property is hardly reduced, and it is hard to fall off during the manufacturing process. In addition, since the test blade is received on the plate-shaped surface when pressed from directly above the hard component, the test blade is difficult to escape (hard to slide), and the test blade is easily received by the hard component.
  • the shearing force can be dispersed and received over the entire plate-like surface, excellent cut resistance is exhibited. Furthermore, since the hard component having a specific shape hardly moves in the fiber and hardly penetrates, it can be stably present in the PVA-based polymer constituting the PVA-based fiber. It is presumed to contribute to the expression of creativity. In addition, the hard component having a specific shape is less likely to form an aggregate (flock, lumps) as compared with the fibrous hard component having a large aspect ratio, and is hardly used in a solvent or a spinning solution used for producing fibers.
  • the PVA-based fiber of the present invention can have high cut resistance, and the clogging of a filter or the like hardly occurs, and the productivity is also excellent.
  • the reason why the PVA-based fiber of the present invention is excellent in the above-mentioned effects (action mechanism) is within the scope of the present invention even if it is different from the above-mentioned reason.
  • the Mohs hardness of the hard component is 3 or more, preferably 4 or more, and more preferably 5 or more.
  • Mohs hardness is the hardness of a substance divided into 10 levels. If the Mohs hardness of the hard component is less than 3, it is difficult for the PVA-based fiber to have excellent cut resistance. Since the Rockwell hardness of the stainless steel cutting tool used for measurement of cut resistance described later is 45 HRC or more (about 5 to 5.5 or more in Mohs hardness), the Mohs hardness of the hard component is 6 or more. It is particularly preferred that there is.
  • the average value of the ratio (b / a) of the hard component is 5 or more, preferably 10 or more, and more preferably 15 or more. If the average of the ratio (b / a) is less than 5, it is difficult for the PVA-based fiber to have excellent cut resistance.
  • the average of the ratio (b / a) is usually 150 or less, preferably 100 or less.
  • the average value of the ratio (b / a) is measured by a method described in Examples below.
  • Average value of the ratio (c / a) of the maximum length c of the main surface in the direction perpendicular to the direction of the maximum length b of the main surface to the maximum length a in the direction perpendicular to the main surface of the plate-shaped hard component Is preferably 1.5 or more, more preferably 3 or more, and particularly preferably 5 or more.
  • the average value of the ratio (c / a) is usually 100 or less, preferably 50 or less. When the average value of the ratio (c / a) is equal to or greater than the lower limit and equal to or less than the upper limit, the PVA-based fiber tends to have excellent cut resistance.
  • the average value of the ratio (c / a) is measured by a method described in Examples described later.
  • the average particle size of the hard component is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and particularly preferably 2.0 ⁇ m or more.
  • the average particle diameter of the hard component is not less than the lower limit, and the larger the average particle diameter, the more easily the PVA-based fiber has more excellent cut resistance.
  • the average particle size of the hard component is usually 200 ⁇ m or less, preferably 100 ⁇ m or less. When the average particle size of the hard component is equal to or less than the upper limit value, it is easy to achieve both the sufficient fiber strength, flexibility, or handleability of the PVA-based fiber and the more excellent cut resistance of the PVA-based fiber.
  • the average particle diameter of the hard component is measured by a method described in Examples described later.
  • the raw material constituting the hard component is not particularly limited as long as it is chemically stable in the production process of the PVA-based fiber and hardly aggregates in the PVA-based polymer constituting the PVA-based fiber.
  • the hard component may for example comprise or consist of the following materials: ceramics, metals, metal oxides, metal carbides, metal nitrides, metal borides, metal silicides, glasses and minerals, etc. More specifically, aluminum oxide, iron oxide, ferrite, zinc oxide, potassium titanate, potassium magnesium titanate, lithium potassium titanate, silicon dioxide, silica, zirconium oxide, magnesium oxide, cerium oxide, titanium oxide, oxide Cobalt, zinc oxide, diamond, silicon carbide, tungsten carbide, titanium alloy, chrome steel, etc.
  • a hard component composed of zinc oxide is preferable.
  • commercially available plate-like hard components can be used, and examples thereof include Seraph (registered trademark) (manufactured by Kinsei Matech Co., Ltd.), Terraces (registered trademark) TF-S (manufactured by Otsuka Chemical Co., Ltd.), and Sun Outdoor (registered trademark).
  • the content of the hard component in the PVA-based fiber of the present invention is preferably 0.1% by mass or more, more preferably 0.3% by mass or more.
  • the content of the hard component is usually 30% by mass or less, preferably 20% by mass or less.
  • the content of the hard component is equal to or less than the above upper limit, sufficient fiber strength of the PVA-based fiber, flexibility, handling properties or low dusting properties, and more excellent cut resistance of the PVA-based fiber are compatible.
  • Cheap The content of the hard component is measured by a method described in Examples described later.
  • the PVA-based polymer constituting the polyvinyl alcohol-based fiber of the present invention is not particularly limited as long as it has a vinyl alcohol unit as a main component, and other constituent units (modified units) may be optionally used as long as the effects of the present invention are not impaired. ) May be included.
  • modified units include, for example, olefins (eg, ethylene, propylene, butylene, etc.), acrylic acids (eg, acrylic acid and salts thereof, acrylates such as methyl acrylate, etc.), methacrylic acids (eg, Methacrylic acid and its salts, methacrylic esters such as methyl methacrylate, etc., acrylamides (eg, acrylamide, N-methylacrylamide), methacrylamides (eg, methacrylamide, N-methylol methacrylamide, etc.), N -Vinyllactams (eg, N-vinylpyrrolidone), N-vinylamides (eg, N-vinylformamide, N-vinylacetamide), vinyl ethers (eg, allyl ethers having a polyalkylene oxide in the side chain) , Methyl vinyl ether, etc.), nitriles (eg, acrylonitrile), vinyl halide compounds
  • the molar ratio of the modified unit to the vinyl alcohol unit is, for example, 85/15 to 100/0, preferably 88/12 to 100/0, more preferably 90/10 to 100. / 0.
  • additives such as a flame retardant, an antifreezing agent, a pH adjuster, a concealing agent, a coloring agent, an oil agent, and a special functional agent are included in the polymer according to the purpose. May be. In addition, these additives may be included alone or in combination.
  • the degree of polymerization of the PVA-based polymer can be appropriately selected according to the purpose, and is not particularly limited.
  • the viscosity average degree of polymerization determined from the viscosity of the aqueous solution at 30 ° C. is preferably 500 to 20,000, more preferably 800 to 15,000, and particularly preferably 1,000 to 10,000.
  • the viscosity average polymerization degree is preferably 1200 or more and 2500 or less, more preferably 1300 or more and 2400 or less.
  • the saponification degree of the PVA-based polymer can also be appropriately selected according to the purpose, and is not particularly limited.
  • the degree of saponification is, for example, 88 mol% or more, preferably 90 mol% or more, and more preferably 95 mol% or more, from the viewpoint of the mechanical properties, process passability, or production cost of the obtained fiber.
  • the PVA-based polymer may be one PVA-based polymer, and one or more of the types of the modified unit, the molar ratio of the modified unit to the vinyl alcohol unit, the viscosity average polymerization degree and the saponification degree are different from each other.
  • One or more PVA-based polymers may be used.
  • the method for producing the PVA-based fiber of the present invention is not particularly limited, and a commonly used method for producing a PVA-based fiber can be employed.
  • a commonly used method for producing a PVA-based fiber can be employed.
  • examples thereof include aqueous dry spinning and aqueous wet spinning using water or an aqueous solution as a solvent, and solvent wet spinning using an organic solvent as a solvent. From the viewpoint of productivity and quality, aqueous or solvent-based wet spinning is suitably employed, and from the viewpoint of environment and health, aqueous wet-spinning using no organic solvent is particularly preferred.
  • a spinning dope containing a PVA-based polymer constituting a PVA-based fiber, a hard component, a solvent, and optionally an additive is prepared.
  • the solvent for the spinning dope various polar solvents capable of dissolving the PVA-based polymer can be used.
  • water an organic solvent
  • sulfoxides such as dimethyl sulfoxide (hereinafter, referred to as “DMSO”); dimethylacetamide, dimethylformamide, Nitrogen-containing polar solvents such as N-methylpyrrolidone; polyhydric alcohols such as glycerin and ethylene glycol], and mixtures thereof with swellable metal salts such as rhodanate, lithium chloride, calcium chloride and zinc chloride.
  • DMSO dimethyl sulfoxide
  • dimethylacetamide dimethylformamide
  • Nitrogen-containing polar solvents such as N-methylpyrrolidone
  • polyhydric alcohols such as glycerin and ethylene glycol
  • swellable metal salts such as rhodanate, lithium chloride, calcium chloride and zinc chloride.
  • water or DMSO is preferred from the viewpoint of cost or process passability such as recovery.
  • the concentration of the PVA-based polymer in the spinning dope varies depending on the composition of the spinning dope, the viscosity-average degree of polymerization of the PVA-based polymer, and the type of solvent. For example, if the viscosity-average degree of polymerization of the PVA-based polymer is 1500 to 2500, And about 10 to 20% by mass (preferably about 12 to 18% by mass) from the viewpoint of spinnability.
  • the hard component may be added in advance to the solvent of the spinning dope before dissolving the PVA-based polymer, or a dispersion or a hard component in which the hard component is dispersed in a solvent may be dissolved in the PVA-based polymer. It may be added to and mixed with the spinning solution.
  • the amount of the hard component added is preferably 0.1 to 30% by mass, more preferably 0.3 to 20% by mass, and particularly preferably 0.5 to 10% by mass, based on the mass of the PVA-based polymer.
  • the additive When adding an additive, the additive may be added in advance to the solvent of the spinning dope before dissolving the PVA-based polymer, or a solution or dispersion obtained by dissolving or dispersing the additive in the solvent or The additives may be added to and mixed with the spinning solution in which the PVA-based polymer is dissolved. Further, an additive may be added to the PVA-based fiber once completed up to the drying step by a technique such as dipping or spraying.
  • the cross-linking agent may be added to a spinning solution, spun into a coagulation bath containing a reaction catalyst, and subjected to a cross-linking treatment in a process up to drying, or a coagulation bath. It is also possible to cause a reaction catalyst to act in a subsequent subsequent step (for example, a stretching bath or the like) and to perform a crosslinking treatment in a step until drying. Furthermore, even if the fiber is once dried, a crosslinking treatment may be performed by adding a liquid containing a crosslinking agent to the fiber by a technique such as immersion or spraying, if necessary.
  • the obtained spinning dope is discharged from a nozzle into a coagulation bath having a solidifying ability for the PVA-based polymer.
  • the coagulation bath differs when the solvent is water (in the case of aqueous wet spinning) and when the solvent is an organic solvent (in the case of solvent wet spinning).
  • the solvent is water
  • the solidifying solvent constituting the coagulation bath is not particularly limited as long as it has a solidifying ability with respect to the PVA-based polymer, and examples thereof include inorganic salts such as sodium sulfate (Glauber's salt), ammonium sulfate, and sodium carbonate. Aqueous solution.
  • an alkaline coagulation bath in which an alkali such as sodium sulfate or sodium hydroxide is added to the coagulation bath may be used.
  • the solvent is an organic solvent, for example, an organic solvent having a solidifying ability for PVA-based polymers such as alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. It can be used as a coagulation bath.
  • the solution may be passed through an extraction bath to extract and remove the solvent of the spinning dope from the solidified raw yarn.
  • an organic solvent such as DMSO can be removed from the yarn by washing the fiber with an extraction bath of an alcohol such as methanol.
  • a process such as wet stretching may be performed by a known or commonly used method. Thereafter, the raw yarn or drawn yarn is usually subjected to a drying step. Further, if necessary, the dried raw yarn or drawn yarn may be subjected to a heat treatment such as dry heat drawing (normally 100 ° C. or more, preferably 1.5 to 15 times at a temperature of 150 to 240 ° C.). Good. Further, the PVA-based fiber thus obtained is subjected to acetalization treatment with a monoaldehyde such as formaldehyde, a dialdehyde such as glutaraldehyde or nonandial, or a derivative such as an acetalized product to impart water resistance. You may.
  • a monoaldehyde such as formaldehyde
  • a dialdehyde such as glutaraldehyde or nonandial
  • a derivative such as an acetalized product to impart water resistance. You may.
  • the fineness of a single PVA-based fiber is preferably 1 to 20 dtex, more preferably 2 to 15 dtex.
  • the average diameter of a single yarn of the PVA-based fiber is preferably 9 to 45 ⁇ m, more preferably 14 to 40 ⁇ m.
  • the fineness and the average diameter of the single yarn of the PVA-based fiber are measured by the methods described in Examples described later.
  • the average diameter of the single yarn of the PVA-based fiber is preferably 3 to 25 times, more preferably 3.5 to 25 times, particularly preferably 4 to 20 times the average particle diameter of the hard component. .
  • the average diameter of the single yarn of the PVA-based fiber and the average particle size of the hard component satisfy the above relationship, sufficient fiber strength, flexibility or handleability of the PVA-based fiber, and more excellent cut resistance of the PVA-based fiber can be obtained. It is easy to balance with nature.
  • the yarn fineness is preferably 100 to 1500 dtex, more preferably 200 to 1200 dtex, and particularly preferably 400 to 1000 dtex.
  • the yarn fineness is within the above range, it is easy to produce a composite yarn or a protective article as described later.
  • the yarn fineness is measured by a method described in Examples described later.
  • the multifilament may be subjected to a crimping process.
  • the count is preferably 60 to 4 s, more preferably 30 to 5 s, and particularly preferably 15 to 6 s.
  • the count is within the above range, it is easy to manufacture a composite yarn or a protective article described later.
  • the count is measured in accordance with JIS L 1095: 2010.
  • the fiber strength (tensile strength) of the PVA-based fiber is preferably 12 cN / dtex or less, more preferably 10 cN / dtex or less, and particularly preferably less than 10 cN / dtex.
  • the lower limit of the fiber strength of the PVA-based fiber may be any value as long as it can pass through the spinning step. Therefore, the fiber strength of the PVA-based fiber is usually at least 2 cN / dtex, preferably at least 3 cN / dtex.
  • the PVA-based fiber of the present invention contains a hard component having a specific shape, unlike the ultra-high molecular weight polyethylene or Kevlar (registered trademark) generally used for cut resistant gloves and the like, even if the fiber strength is small, it is excellent. Has cut wound resistance.
  • the fiber strength of the PVA-based fiber is determined by the viscosity average polymerization degree of the PVA-based polymer, the content of the hard component in the PVA-based fiber, the fineness of the PVA-based fiber, the average diameter or the cross-sectional shape, or the drawing conditions (wet drawing ratio, dry drawing) Magnification, dry drawing temperature). The fiber strength of the PVA-based fiber is measured by a method described in Examples described later.
  • the present invention also relates to a composite yarn containing the polyvinyl alcohol-based fiber as at least a part of a constituent yarn.
  • the composite yarn is preferably selected from the group consisting of a plied yarn, a single covering yarn and a double covering yarn.
  • the ply-twisted yarn is a composite yarn obtained by twisting a plurality of single yarns. For example, in the case of a typical ply twist, two or more yarns are twisted one by one in the same direction, and then they are combined in the opposite direction to improve the stability of the torque of the yarn. .
  • the single covering yarn is a kind of covering yarn, in which a sheath yarn such as a nylon yarn is wound around a core yarn such as a polyurethane elastic yarn in a single direction in an S direction or a Z direction.
  • the double covering yarn is a kind of covering yarn similar to a single covering yarn, and is a yarn obtained by winding a sheath yarn twice in the S direction and the Z direction when a core yarn is stretched. .
  • the present invention also relates to a protective article (for example, gloves, work clothes, apron and arm covers, especially gloves) including the cloth containing the polyvinyl alcohol fiber or the composite yarn as at least a part of a constituent material.
  • a protective article for example, gloves, work clothes, apron and arm covers, especially gloves
  • the cloth containing the polyvinyl alcohol fiber or the composite yarn as at least a part of a constituent material.
  • the form of the cloth include a woven fabric and a knitted fabric.
  • the gauge may be a normal gauge, for example, 7 gauge or more and 26 gauge or less.
  • the basis weight is about 250 to 400 g / m 2 .
  • Protective articles can be manufactured by knitting the polyvinyl alcohol-based fiber or composite yarn of the present invention on a knitting machine.
  • the protective article can be manufactured by making the polyvinyl alcohol-based fiber or the composite yarn of the present invention through a loom to produce the cloth, and cutting and sewing the cloth.
  • At least a part of the cloth may be impregnated or coated with a coat resin or rubber for providing an additional function (for example, non-slip).
  • a coating resin include a urethane-based resin and an ethylene-based resin, but are not particularly limited to these examples.
  • the rubber include natural rubber and synthetic rubber (NBR, SBR), but are not particularly limited to these examples.
  • the coating resin or rubber may be applied to the cloth before sewing, or may be applied to the cloth contained in the protective article.
  • the protective article of the present invention may be woven or knitted with another spun yarn or filament in addition to the polyvinyl alcohol-based fiber or the composite yarn of the present invention.
  • ⁇ Fineness and average diameter of single yarn As the fineness of the single yarn, an average value of fineness measured at 15 points or more by a vibration method was obtained in accordance with JIS L1015: 2010. In addition, as an average diameter of a single yarn, an average value of diameters obtained by observing 15 or more points of a single yarn cross section with a scanning electron microscope was obtained.
  • ⁇ Fiber strength and yarn fineness of polyvinyl alcohol fiber> As the fiber strength (tensile strength) of the polyvinyl alcohol-based fiber, an average value (n 10) of the fiber strength measured according to JIS L 1013: 2010 was determined.
  • the absolute dry mass (m) of about 10 g of the fiber sample was determined, put in a crucible, gradually burned, incinerated at 600 ° C. for about 2 hours, cooled in a desiccator, and weighed. Heating was further continued for 30 minutes, and the mass was repeated until the weight loss became 0.5 mg or less.
  • the cut resistance was evaluated by determining the cut power (unit: N) using a test device TDM-100 (Tonodynamometer) in accordance with ISO 13997: 1999 [JIS T 8052: 2005 (MOD)].
  • Example 1 Manufacture of polyvinyl alcohol fiber> Polyvinyl alcohol (viscosity average degree of polymerization: 1700, saponification degree: 99.9 mol%) was dissolved in water to prepare a 15% by mass aqueous solution of polyvinyl alcohol. Next, plate-like alumina and boric acid having the physical properties shown in Table 1 were added at a ratio of 5% by mass and 2% by mass with respect to the mass of polyvinyl alcohol, respectively, to prepare a spinning dope.
  • the spinning solution was discharged from a spinneret having 40 holes and a hole diameter of 200 ⁇ m ⁇ (circular) into a coagulation bath comprising a saturated aqueous solution of sodium sulfate and an alkali at 45 ° C. to form a yarn.
  • the obtained yarn was wet-drawn four times, and then dried at 130 ° C. with hot air. Subsequently, the film was stretched 3.5 times with hot air at 230 ° C., the total stretching ratio was set to 14 times, and a multifilament having a yarn fineness of 520 dtex was obtained.
  • the single yarn fineness was 13.0 dtex, and the average diameter (converted to a perfect circle) was 36 ⁇ m.
  • a double covering yarn was produced using the obtained multifilament as an upper yarn, using a nylon yarn (156 dtex) as a lower yarn, and using a polyurethane yarn (spandex, 78 dtex) as a core yarn.
  • Knitted gloves having a basis weight of about 250 to 400 g / m 2 were produced using a 13 gauge glove knitting machine (model New-SFG) manufactured by Shima Seiki Seisaku-Sho, Ltd. The degree of knitting was based on the degree of appropriateness based on the fineness of the fiber.
  • the cut resistance of the obtained glove was evaluated by the method described above. Table 1 shows the results.
  • Examples 2-3 and Comparative Examples 2-3 and 5 A polyvinyl alcohol fiber and gloves were manufactured and evaluated in the same manner as in Example 1 except that the hard component was changed to another hard component having the physical properties shown in Table 1 and the amount added was as shown in Table 1. . Table 1 shows the results.
  • Comparative Example 1 A polyvinyl alcohol fiber and gloves were produced and evaluated in the same manner as in Example 1 except that no hard component was added. Table 1 shows the results.
  • Comparative Example 4 A polyvinyl alcohol fiber was produced in the same manner as in Example 1 except that the hard component was changed to fibrous potassium titanate (fiber diameter: 0.5 ⁇ m, fiber length: 17 ⁇ m). The spinning was impossible due to clogging.
  • the polyvinyl alcohol-based fiber of the present invention has sufficient cut resistance in addition to sufficient flexibility, sweat absorption and handling properties, it has high cut-resistant protective articles (eg, gloves, work clothes, foreheads and arm covers). It is useful as a fiber for producing

Abstract

The present invention pertains to a polyvinyl alcohol fiber containing a hard component, wherein the hard component of the polyvinyl alcohol fiber is a tabular hard component having a Mohs's hardness of 3 or greater, and the average value of the ratio (b/a) of the maximum length b of the principal surface of the tabular hard component to the maximum length a in a direction perpendicular to the principal surface is 5 or greater.

Description

耐切創性ポリビニルアルコール系繊維Cut resistant polyvinyl alcohol fiber
 本発明は、ポリビニルアルコール系繊維、前記繊維を構成糸の少なくとも一部として含む複合糸、および前記繊維または前記複合糸を構成素材の少なくとも一部として含む手袋に関する。 The present invention relates to a polyvinyl alcohol-based fiber, a composite yarn including the fiber as at least a part of a constituent yarn, and a glove including the fiber or the composite yarn as at least a part of a constituent material.
 従来から、食品産業などの刃物を取り扱う職業、金属類を取り扱う職業、山林での伐採作業またはガラスを取り扱う作業などに従事している人達、あるいは自動車産業などの金属板金加工に従事している人達などは、手、腕および足などの身体を切創する危険性が非常に高いことから、安全を確保するために、例えば作業服、手袋、前掛けおよび帽子などの耐切創性に優れる防護用品を着用している。そのような防護用品には、耐切創性に加えて、装着時または着用時の快適性、加工時のハンドリング性、耐薬品性および耐久性などが求められ、さらには防護用品を製造するための繊維には生産性も求められる。 People who have been engaged in cutting knives such as the food industry, occupations handling metals, forestry or glass handling, or metal sheet metal processing such as the automobile industry. Because there is a very high risk of cutting the body such as hands, arms, and feet, in order to ensure safety, use protective clothing with excellent cut resistance, such as work clothes, gloves, aprons, and hats. Wearing. Such protective articles require not only cut resistance, but also comfort when worn or worn, handling during processing, chemical resistance and durability, and the like. Fiber also requires productivity.
 繊維生産性、耐切創性、機械特性、可撓性および手入れ容易性に優れた耐切創糸としては、例えば特許文献1に、硬質成分を含むフィラメントおよび/またはステープル繊維を含む耐切創糸であって、該硬質成分が最大25ミクロンの平均径を有する複数の硬質繊維であることを特徴とする耐切創糸が提案されている。耐切創糸を製造するためのポリマーの例としてはアラミド、超高分子量ポリエチレンおよびポリベンゾオキサゾールが挙げられており、具体的には超高分子量ポリエチレンを使用した例が記載されている。
 また、繊維生産性および耐切創性に優れた繊維としては、例えば特許文献2に、極限粘度が0.8以上4.9dl/g未満のポリエチレンからなる繊維であり、アスペクト比が3未満である複数の硬質粒子を含有することを特徴とする高機能ポリエチレン繊維が提案されている。同文献には、硬質粒子の形状は好ましくは多角状であることが記載されており、具体的には多角状の硬質粒子(多角状硬質成分)を使用した例が記載されている。
As a cut resistant yarn excellent in fiber productivity, cut resistance, mechanical properties, flexibility and easy care, for example, Patent Document 1 discloses a cut resistant yarn containing a filament containing a hard component and / or a staple fiber. Thus, cut resistant yarns have been proposed in which the hard component is a plurality of hard fibers having an average diameter of at most 25 microns. Examples of polymers for producing cut resistant yarn include aramid, ultra-high molecular weight polyethylene and polybenzoxazole, and specifically describe an example using ultra-high molecular weight polyethylene.
Further, as a fiber excellent in fiber productivity and cut resistance, for example, Patent Document 2 discloses a fiber made of polyethylene having an intrinsic viscosity of 0.8 or more and less than 4.9 dl / g, and an aspect ratio of less than 3. Highly functional polyethylene fibers characterized by containing a plurality of hard particles have been proposed. The document describes that the shape of the hard particles is preferably polygonal, and specifically describes an example using polygonal hard particles (polygonal hard component).
特表2010-507026号公報Japanese Patent Publication No. 2010-507026 特開2017-179684号公報JP 2017-179684 A
 しかし、ポリエチレンは耐熱性が低いために火や熱に弱く、官能基を有さないために例えばコート樹脂などに対する接着性が低い。また、超高分子量ポリエチレンを製造するために採用されるゲル紡糸法では有機溶剤を使用するため、環境および健康への悪影響に配慮した特別な対策を講じなければならない。さらに、硬質成分として繊維状硬質成分を使用した場合、フィルター詰まりによる繊維生産性低下の問題または安全性(皮膚刺激性もしくは吸入性)の問題などが起こることがあった。また、硬質成分として多角状もしくは球状硬質成分を使用した場合、不十分な耐切創性および繊維強度、毛羽・糸切れの起こりやすさ、製造工程中または使用中における発塵性(脱落しやすさ)といった問題が起こることがあった。 However, polyethylene is weak to fire and heat because of its low heat resistance, and has low adhesiveness to, for example, a coating resin because it has no functional group. In addition, since an organic solvent is used in the gel spinning method employed for producing ultra-high molecular weight polyethylene, special measures must be taken in consideration of adverse effects on the environment and health. Further, when a fibrous hard component is used as the hard component, a problem of a decrease in fiber productivity due to clogging of a filter or a problem of safety (skin irritation or inhalation) may occur. In addition, when a polygonal or spherical hard component is used as the hard component, insufficient cut resistance and fiber strength, the likelihood of fluff and thread breakage, dust generation during the manufacturing process or during use (easiness of falling off) ).
 そこで本発明は、従来技術における前記問題を解決し、柔軟性(防護用品の装着感、肌触り、快適性、防護用品を装着した身体部位の動かしやすさ)、吸汗性(吸湿性)およびハンドリング性(繊維の易加工性、加工設備を摩耗させにくい性質)を十分に備えつつも耐切創性に優れたポリビニルアルコール系繊維を提供することを目的とする。 Therefore, the present invention solves the above-mentioned problems in the prior art, and provides flexibility (feeling of wearing protective equipment, touch, comfort, ease of movement of a body part wearing protective equipment), sweat absorption (hygroscopicity), and handling. It is an object of the present invention to provide a polyvinyl alcohol-based fiber which has sufficient (easy processability of the fiber and hardly wears processing equipment) and excellent cut resistance.
 本発明者らは、前記課題を解決するため詳細に検討を重ね、本発明の完成に至った。すなわち、本発明は、以下の好適な態様を包含する。
〔1〕硬質成分を含むポリビニルアルコール系繊維であって、硬質成分はモース硬度が3以上の板状硬質成分であり、該板状硬質成分の主面に対して垂直方向の最大長さaに対する、主面の最大長さbの比率(b/a)の平均値が5以上である、ポリビニルアルコール系繊維。
〔2〕前記長さaに対する、前記長さbの方向と直交する方向の主面の最大長さcの比率(c/a)の平均値が1.5以上である、前記〔1〕に記載のポリビニルアルコール系繊維。
〔3〕単糸の平均直径が硬質成分の平均粒子径の3倍以上25倍以下である、前記〔1〕または〔2〕に記載のポリビニルアルコール系繊維。
〔4〕繊維強度が12cN/dtex以下である、前記〔1〕~〔3〕のいずれかに記載のポリビニルアルコール系繊維。
〔5〕硬質成分の含有量が0.1質量%以上である、前記〔1〕~〔4〕のいずれかに記載のポリビニルアルコール系繊維。
〔6〕前記〔1〕~〔5〕のいずれかに記載のポリビニルアルコール系繊維を構成糸の少なくとも一部として含む、複合糸。
〔7〕前記複合糸は合撚糸、シングルカバーリング糸およびダブルカバーリング糸からなる群から選択される、前記〔6〕に記載の複合糸。
〔8〕前記〔1〕~〔5〕のいずれかに記載のポリビニルアルコール系繊維または前記〔6〕もしくは〔7〕に記載の複合糸を含む布を、構成素材の少なくとも一部として含む手袋。
The present inventors have studied in detail in order to solve the above problems, and have completed the present invention. That is, the present invention includes the following preferred embodiments.
[1] Polyvinyl alcohol-based fibers containing a hard component, wherein the hard component is a plate-shaped hard component having a Mohs hardness of 3 or more, and has a maximum length a in a direction perpendicular to the main surface of the plate-shaped hard component. A polyvinyl alcohol-based fiber, wherein the average value of the ratio (b / a) of the maximum length b of the main surface is 5 or more.
[2] The method according to [1], wherein an average value of a ratio (c / a) of a maximum length c of the main surface in a direction orthogonal to the direction of the length b to the length a is 1.5 or more. The polyvinyl alcohol-based fiber according to the above.
[3] The polyvinyl alcohol fiber according to [1] or [2], wherein the average diameter of the single yarn is 3 times or more and 25 times or less of the average particle diameter of the hard component.
[4] The polyvinyl alcohol-based fiber according to any one of [1] to [3], wherein the fiber strength is 12 cN / dtex or less.
[5] The polyvinyl alcohol fiber according to any one of [1] to [4], wherein the content of the hard component is 0.1% by mass or more.
[6] A composite yarn containing the polyvinyl alcohol-based fiber according to any one of [1] to [5] as at least a part of a constituent yarn.
[7] The composite yarn according to [6], wherein the composite yarn is selected from the group consisting of a plied yarn, a single covering yarn, and a double covering yarn.
[8] A glove comprising the polyvinyl alcohol-based fiber according to any one of [1] to [5] or the cloth containing the composite yarn according to [6] or [7] as at least a part of a constituent material.
 本発明により、従来技術における前記問題を解決し、柔軟性(防護用品の装着感、肌触り、快適性、防護用品を装着した身体部位の動かしやすさ)、吸汗性(吸湿性)およびハンドリング性(繊維の易加工性、加工設備を摩耗させにくい性質)を十分に備えつつも耐切創性に優れたポリビニルアルコール系繊維を提供することができる。 The present invention solves the above-mentioned problems in the prior art, and provides flexibility (feeling of wearing protective equipment, touch, comfort, ease of movement of a body part wearing protective equipment), sweat absorption (moisture absorption), and handling ( It is possible to provide a polyvinyl alcohol-based fiber having excellent cut resistance while sufficiently providing the fiber with easy processability and a property that the processing equipment is hardly worn.
 本発明は、硬質成分を含むポリビニルアルコール(以下において、「PVA」と称することもある)系繊維に関する。 The present invention relates to a polyvinyl alcohol (hereinafter sometimes referred to as “PVA”) fiber containing a hard component.
<硬質成分>
 硬質成分はモース硬度が3以上の板状硬質成分であり、板状硬質成分の主面に対して垂直方向の最大長さaに対する主面の最大長さbの比率(b/a)の平均値は5以上である。ここで、板状硬質成分の「主面」とは、板状硬質成分の表面のうち面積が最も大きい面を意味し、複数の主面が存在していてもよい。例えば直方体のように、板状硬質成分が「主面」を複数有する場合は、それぞれの主面に対して垂直方向の最大長さaに対する、主面の最大長さbの比率(b/a)の平均値が5以上であればよい。
<Hard component>
The hard component is a plate-shaped hard component having a Mohs hardness of 3 or more, and the average of the ratio (b / a) of the maximum length b of the main surface to the maximum length a in the direction perpendicular to the main surface of the plate-shaped hard component. The value is 5 or more. Here, the “principal surface” of the plate-like hard component means a surface having the largest area among the surfaces of the plate-like hard component, and a plurality of principal surfaces may exist. For example, when the plate-shaped hard component has a plurality of “principal surfaces” such as a rectangular parallelepiped, the ratio (b / a) of the maximum length b of the principal surface to the maximum length a in the direction perpendicular to each principal surface is obtained. ) Should be 5 or more.
 上記した特定の形状およびモース硬度を有する硬質成分がPVA系繊維に含まれることにより、本発明のPVA系繊維は、柔軟性、吸汗性およびハンドリング性を十分に備えつつも、優れた耐切創性を有することができる。その理由は明らかではないが、下記作用機構が推定される。硬質成分が特定の形状を有することにより、例えば球状硬質成分または上記比率(b/a)の平均値が5未満である多角状硬質成分と比べて単位体積当たりの硬質成分粒子数が多くなり、硬質成分と耐切創性試験に用いる試験用刃物との接触確率が上がるため、硬質成分がより少量でも十分な耐切創性が発現され、その結果、繊維強度および柔軟性の低下が防止され、ハンドリング性も低下しにくく、製造工程中に脱落しにくい。また、試験用刃物を硬質成分の真上から押し当てた際に板状面で受け止めるため試験用刃物が逃げにくく(横滑りしにくく)試験用刃物を硬質成分で受け止めやすいこと、および試験用刃物による剪断力を板状面全体で分散して受けられることから、優れた耐切創性が発現される。さらに、特定の形状を有する硬質成分は繊維内を動きにくく、食い込みにくいため、PVA系繊維を構成するPVA系ポリマー中に安定に存在できることからも、後続の工程中に脱落しにくく、優れた耐切創性の発現に寄与する、と推定される。また、特定の形状を有する硬質成分は、大きなアスペクト比を有する繊維状の硬質成分と比べて凝集体(フロック、だま)を形成しにくく、繊維を製造する際に用いる溶媒または紡糸原液中での分散性に優れるため、本発明のPVA系繊維の高い耐切創性が得られ、また、濾過フィルターなどの目詰りが起こりにくく生産性にも優れる。ただし、本発明のPVA系繊維が上記効果に優れる理由(作用機構)について、仮に上記理由とは異なっていたとしても、本発明の範囲内であることをここで明記する。 By including the above-mentioned hard component having the specific shape and the Mohs hardness in the PVA-based fiber, the PVA-based fiber of the present invention has excellent cut resistance while having sufficient flexibility, sweat absorption and handling properties. Can be provided. Although the reason is not clear, the following mechanism of action is presumed. When the hard component has a specific shape, for example, the number of hard component particles per unit volume is larger than that of a spherical hard component or a polygonal hard component having an average value of the ratio (b / a) of less than 5, Since the probability of contact between the hard component and the cutting blade used for the cut resistance test increases, sufficient cut resistance is exhibited even with a smaller amount of the hard component, and as a result, a decrease in fiber strength and flexibility is prevented, and handling is achieved. The property is hardly reduced, and it is hard to fall off during the manufacturing process. In addition, since the test blade is received on the plate-shaped surface when pressed from directly above the hard component, the test blade is difficult to escape (hard to slide), and the test blade is easily received by the hard component. Since the shearing force can be dispersed and received over the entire plate-like surface, excellent cut resistance is exhibited. Furthermore, since the hard component having a specific shape hardly moves in the fiber and hardly penetrates, it can be stably present in the PVA-based polymer constituting the PVA-based fiber. It is presumed to contribute to the expression of creativity. In addition, the hard component having a specific shape is less likely to form an aggregate (flock, lumps) as compared with the fibrous hard component having a large aspect ratio, and is hardly used in a solvent or a spinning solution used for producing fibers. Because of the excellent dispersibility, the PVA-based fiber of the present invention can have high cut resistance, and the clogging of a filter or the like hardly occurs, and the productivity is also excellent. However, it is specified here that the reason why the PVA-based fiber of the present invention is excellent in the above-mentioned effects (action mechanism) is within the scope of the present invention even if it is different from the above-mentioned reason.
 硬質成分のモース硬度は3以上、好ましくは4以上、より好ましくは5以上である。モース硬度は、物質の硬さを10段階で分けたものである。硬質成分のモース硬度が3未満であると、PVA系繊維が優れた耐切創性を有することは困難である。後述の耐切創性の測定に用いるステンレス鋼からなる試験用刃物のロックウェル硬さが45HRC以上(モース硬度で約5~5.5以上)であることから、硬質成分のモース硬度は6以上であることが特に好ましい。 The Mohs hardness of the hard component is 3 or more, preferably 4 or more, and more preferably 5 or more. Mohs hardness is the hardness of a substance divided into 10 levels. If the Mohs hardness of the hard component is less than 3, it is difficult for the PVA-based fiber to have excellent cut resistance. Since the Rockwell hardness of the stainless steel cutting tool used for measurement of cut resistance described later is 45 HRC or more (about 5 to 5.5 or more in Mohs hardness), the Mohs hardness of the hard component is 6 or more. It is particularly preferred that there is.
 硬質成分の上記比率(b/a)の平均値は5以上、好ましくは10以上、より好ましくは15以上である。上記比率(b/a)の平均値が5未満であると、PVA系繊維が優れた耐切創性を有することは困難である。上記比率(b/a)の平均値は、通常150以下、好ましくは100以下である。上記比率(b/a)の平均値の測定方法は、後述の実施例に記載の方法で測定される。 平均 The average value of the ratio (b / a) of the hard component is 5 or more, preferably 10 or more, and more preferably 15 or more. If the average of the ratio (b / a) is less than 5, it is difficult for the PVA-based fiber to have excellent cut resistance. The average of the ratio (b / a) is usually 150 or less, preferably 100 or less. The average value of the ratio (b / a) is measured by a method described in Examples below.
 板状硬質成分の主面に対して垂直方向の最大長さaに対する、主面の最大長さbの方向と直交する方向の主面の最大長さcの比率(c/a)の平均値は、好ましくは1.5以上、より好ましくは3以上、特に好ましくは5以上である。上記比率(c/a)の平均値は、通常100以下、好ましくは50以下である。上記比率(c/a)の平均値が前記下限値以上であり前記上限値以下であると、PVA系繊維が優れた耐切創性を有しやすい。上記比率(c/a)の平均値の測定方法は、後述の実施例に記載の方法で測定される。 Average value of the ratio (c / a) of the maximum length c of the main surface in the direction perpendicular to the direction of the maximum length b of the main surface to the maximum length a in the direction perpendicular to the main surface of the plate-shaped hard component Is preferably 1.5 or more, more preferably 3 or more, and particularly preferably 5 or more. The average value of the ratio (c / a) is usually 100 or less, preferably 50 or less. When the average value of the ratio (c / a) is equal to or greater than the lower limit and equal to or less than the upper limit, the PVA-based fiber tends to have excellent cut resistance. The average value of the ratio (c / a) is measured by a method described in Examples described later.
 硬質成分の平均粒子径は、好ましくは0.5μm以上、より好ましくは1.0μm以上、特に好ましくは2.0μm以上である。硬質成分の平均粒子径が前記下限値以上であり、また、大きい程、PVA系繊維がより優れた耐切創性を有しやすい。硬質成分の平均粒子径は通常は200μm以下、好ましくは100μm以下である。硬質成分の平均粒子径が前記上限値以下であると、PVA系繊維の十分な繊維強度、柔軟性またはハンドリング性などと、PVA系繊維のより優れた耐切創性とを両立しやすい。硬質成分の平均粒子径は、後述の実施例に記載の方法で測定される。 The average particle size of the hard component is preferably 0.5 μm or more, more preferably 1.0 μm or more, and particularly preferably 2.0 μm or more. The average particle diameter of the hard component is not less than the lower limit, and the larger the average particle diameter, the more easily the PVA-based fiber has more excellent cut resistance. The average particle size of the hard component is usually 200 μm or less, preferably 100 μm or less. When the average particle size of the hard component is equal to or less than the upper limit value, it is easy to achieve both the sufficient fiber strength, flexibility, or handleability of the PVA-based fiber and the more excellent cut resistance of the PVA-based fiber. The average particle diameter of the hard component is measured by a method described in Examples described later.
 硬質成分を構成する原料は、PVA系繊維の製造工程において化学的に安定であり、PVA系繊維を構成するPVA系ポリマー中で凝集しにくいものであれば特に限定されない。硬質成分は例えば、下記物質を含んでなるか、または下記物質で構成されていてよい:セラミック、金属、金属酸化物、金属炭化物、金属窒化物、金属ホウ化物、金属ケイ化物、ガラスおよび鉱物など、より具体的には、酸化アルミニウム、酸化鉄、フェライト、酸化亜鉛、チタン酸カリウム、チタン酸マグネシウムカリウム、チタン酸リチウムカリウム、二酸化ケイ素、シリカ、酸化ジルコニウム、酸化マグネシウム、酸化セリウム、酸化チタン、酸化コバルト、酸化亜鉛、ダイヤモンド、炭化ケイ素、炭化タングステン、チタン合金、クロム鋼など。これらの中でも、板状体の入手容易性の観点から、酸化アルミニウム、チタン酸カリウム、シリカ、ガラス、フェライトもしくは酸化亜鉛を含んでなる硬質成分、または酸化アルミニウム、チタン酸カリウム、シリカ、ガラス、フェライトもしくは酸化亜鉛で構成されている硬質成分が好ましい。本発明では市販の板状硬質成分を使用でき、その例としてはセラフ(登録商標)(キンセイマテック株式会社製)、テラセス(登録商標)TF-S(大塚化学株式会社製)、サンラブリー(登録商標)(AGCエスアイテック株式会社製)、ガラスフレーク(登録商標)(日本板硝子株式会社製)、板状フェライト(パウダーテック株式会社)および六角板状酸化亜鉛(堺化学工業株式会社製)などが挙げられる。これらの硬質成分は、単独でまたは組み合わせて使用できる。 原料 The raw material constituting the hard component is not particularly limited as long as it is chemically stable in the production process of the PVA-based fiber and hardly aggregates in the PVA-based polymer constituting the PVA-based fiber. The hard component may for example comprise or consist of the following materials: ceramics, metals, metal oxides, metal carbides, metal nitrides, metal borides, metal silicides, glasses and minerals, etc. More specifically, aluminum oxide, iron oxide, ferrite, zinc oxide, potassium titanate, potassium magnesium titanate, lithium potassium titanate, silicon dioxide, silica, zirconium oxide, magnesium oxide, cerium oxide, titanium oxide, oxide Cobalt, zinc oxide, diamond, silicon carbide, tungsten carbide, titanium alloy, chrome steel, etc. Among these, aluminum oxide, potassium titanate, silica, glass, a hard component containing ferrite or zinc oxide, or aluminum oxide, potassium titanate, silica, glass, ferrite Alternatively, a hard component composed of zinc oxide is preferable. In the present invention, commercially available plate-like hard components can be used, and examples thereof include Seraph (registered trademark) (manufactured by Kinsei Matech Co., Ltd.), Terraces (registered trademark) TF-S (manufactured by Otsuka Chemical Co., Ltd.), and Sun Lovely (registered trademark). (Trademark) (AGC S-Tech Co., Ltd.), glass flake (registered trademark) (Nippon Sheet Glass Co., Ltd.), plate ferrite (Powder Tech Co., Ltd.) and hexagonal plate zinc oxide (Sakai Chemical Industry Co., Ltd.) No. These hard components can be used alone or in combination.
 本発明のPVA系繊維における硬質成分の含有量は、好ましくは0.1質量%以上、より好ましくは0.3質量%以上である。硬質成分の含有量が前記下限値以上であると、PVA系繊維がより優れた耐切創性を有しやすい。硬質成分の含有量は、通常は30質量%以下、好ましくは20質量%以下である。硬質成分の含有量が前記上限値以下であると、PVA系繊維の十分な繊維強度、柔軟性、ハンドリング性または低い発塵性などと、PVA系繊維のより優れた耐切創性とを両立しやすい。硬質成分の含有量は、後述の実施例に記載の方法で測定される。 硬 質 The content of the hard component in the PVA-based fiber of the present invention is preferably 0.1% by mass or more, more preferably 0.3% by mass or more. When the content of the hard component is not less than the lower limit, the PVA-based fiber tends to have more excellent cut resistance. The content of the hard component is usually 30% by mass or less, preferably 20% by mass or less. When the content of the hard component is equal to or less than the above upper limit, sufficient fiber strength of the PVA-based fiber, flexibility, handling properties or low dusting properties, and more excellent cut resistance of the PVA-based fiber are compatible. Cheap. The content of the hard component is measured by a method described in Examples described later.
<ポリビニルアルコール系繊維を構成するポリビニルアルコール系ポリマー>
 本発明のポリビニルアルコール系繊維を構成するPVA系ポリマーは、ビニルアルコールユニットを主成分とするものであれば特に限定されず、本発明の効果を損なわない限り、所望により他の構成単位(変性ユニット)を有していてもよい。このような変性ユニットとしては、例えば、オレフィン類(例えば、エチレン、プロピレン、ブチレンなど)、アクリル酸類(例えば、アクリル酸およびその塩、アクリル酸メチルなどのアクリル酸エステルなど)、メタクリル酸類(例えば、メタクリル酸およびその塩、メタクリル酸メチルなどのメタクリル酸エステル類など)、アクリルアミド類(例えば、アクリルアミド、N-メチルアクリルアミドなど)、メタクリルアミド類(例えば、メタクリルアミド、N-メチロールメタクリルアミドなど)、N-ビニルラクタム類(例えばN-ビニルピロリドンなど)、N-ビニルアミド類(例えば、N-ビニルホルムアミド、N-ビニルアセトアミドなど)、ビニルエーテル類(例えば、ポリアルキレンオキシドを側鎖に有するアリルエーテル類、メチルビニルエーテルなど)、ニトリル類(例えばアクリロニトリルなど)、ハロゲン化ビニル化合物(塩化ビニルなど)、不飽和ジカルボン酸類(例えば、イタコン酸、マレイン酸、その塩、その無水物およびそのエステルなど)、酢酸ビニル、ピバリン酸ビニル、スルホン酸含有ビニル化合物などが挙げられる。これらの変性ユニットは、単独でまたは組み合わせて使用できる。このような変性ユニットの導入法は共重合による方法でも、後反応による方法でもよい。
<Polyvinyl alcohol-based polymer constituting polyvinyl alcohol-based fiber>
The PVA-based polymer constituting the polyvinyl alcohol-based fiber of the present invention is not particularly limited as long as it has a vinyl alcohol unit as a main component, and other constituent units (modified units) may be optionally used as long as the effects of the present invention are not impaired. ) May be included. Examples of such modified units include, for example, olefins (eg, ethylene, propylene, butylene, etc.), acrylic acids (eg, acrylic acid and salts thereof, acrylates such as methyl acrylate, etc.), methacrylic acids (eg, Methacrylic acid and its salts, methacrylic esters such as methyl methacrylate, etc., acrylamides (eg, acrylamide, N-methylacrylamide), methacrylamides (eg, methacrylamide, N-methylol methacrylamide, etc.), N -Vinyllactams (eg, N-vinylpyrrolidone), N-vinylamides (eg, N-vinylformamide, N-vinylacetamide), vinyl ethers (eg, allyl ethers having a polyalkylene oxide in the side chain) , Methyl vinyl ether, etc.), nitriles (eg, acrylonitrile), vinyl halide compounds (eg, vinyl chloride), unsaturated dicarboxylic acids (eg, itaconic acid, maleic acid, salts thereof, anhydrides and esters thereof) , Vinyl acetate, vinyl pivalate, and sulfonic acid-containing vinyl compounds. These denaturing units can be used alone or in combination. The method for introducing such a modified unit may be a method by copolymerization or a method by post-reaction.
 ビニルアルコールユニットに対する変性ユニットのモル比〔(ビニルアルコールユニット)/(変性ユニット)〕は、例えば85/15~100/0、好ましくは88/12~100/0、より好ましくは90/10~100/0である。もちろん本発明の効果を損なわない範囲であれば、目的に応じてポリマー中に、難燃剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤、特殊機能剤などの添加剤が含まれていてもよい。なお、これらの添加剤は、単独でまたは組み合わせて含まれていてもよい。 The molar ratio of the modified unit to the vinyl alcohol unit [(vinyl alcohol unit) / (modified unit)] is, for example, 85/15 to 100/0, preferably 88/12 to 100/0, more preferably 90/10 to 100. / 0. Of course, as long as the effects of the present invention are not impaired, additives such as a flame retardant, an antifreezing agent, a pH adjuster, a concealing agent, a coloring agent, an oil agent, and a special functional agent are included in the polymer according to the purpose. May be. In addition, these additives may be included alone or in combination.
 PVA系ポリマーの重合度は、目的に応じて適宜選択でき、特に限定されない。得られる繊維の機械的特性または生産性などを考慮すると、30℃水溶液の粘度から求めた粘度平均重合度は好ましくは500~20000、より好ましくは800~15000、特に好ましくは1000~10000である。ポリマー製造コストまたは繊維化コストなどの観点からは、粘度平均重合度は好ましくは1200以上2500以下、より好ましくは1300以上2400以下であってもよい。 重合 The degree of polymerization of the PVA-based polymer can be appropriately selected according to the purpose, and is not particularly limited. In consideration of the mechanical properties or productivity of the obtained fiber, the viscosity average degree of polymerization determined from the viscosity of the aqueous solution at 30 ° C. is preferably 500 to 20,000, more preferably 800 to 15,000, and particularly preferably 1,000 to 10,000. From the viewpoint of polymer production cost or fiberization cost, the viscosity average polymerization degree is preferably 1200 or more and 2500 or less, more preferably 1300 or more and 2400 or less.
 PVA系ポリマーのケン化度も、目的に応じて適宜選択でき、特に限定されない。得られる繊維の機械的特性、工程通過性または製造コストなどの観点から、ケン化度は例えば88モル%以上、好ましくは90モル%以上、より好ましくは95モル%以上である。 (4) The saponification degree of the PVA-based polymer can also be appropriately selected according to the purpose, and is not particularly limited. The degree of saponification is, for example, 88 mol% or more, preferably 90 mol% or more, and more preferably 95 mol% or more, from the viewpoint of the mechanical properties, process passability, or production cost of the obtained fiber.
 PVA系ポリマーは、1つのPVA系ポリマーであってもよく、変性ユニットの種類、ビニルアルコールユニットに対する変性ユニットのモル比、粘度平均重合度およびケン化度のうちいずれか1つ以上がそれぞれ異なる2つ以上のPVA系ポリマーであってもよい。 The PVA-based polymer may be one PVA-based polymer, and one or more of the types of the modified unit, the molar ratio of the modified unit to the vinyl alcohol unit, the viscosity average polymerization degree and the saponification degree are different from each other. One or more PVA-based polymers may be used.
<ポリビニルアルコール系繊維の製造方法>
 本発明のPVA系繊維の製造方法は特に限定されず、通常使用されているPVA系繊維の製造方法を採用できる。その例としては、溶媒として水もしくは水溶液を用いる水系乾式紡糸および水系湿式紡糸、並びに溶媒として有機溶剤を用いる溶剤系湿式紡糸などが挙げられる。生産性および品質の面からは、水系または溶剤系の湿式紡糸が好適に採用され、環境および健康の面からは、有機溶剤を用いない水系湿式紡糸が特に好ましい。
<Method for producing polyvinyl alcohol fiber>
The method for producing the PVA-based fiber of the present invention is not particularly limited, and a commonly used method for producing a PVA-based fiber can be employed. Examples thereof include aqueous dry spinning and aqueous wet spinning using water or an aqueous solution as a solvent, and solvent wet spinning using an organic solvent as a solvent. From the viewpoint of productivity and quality, aqueous or solvent-based wet spinning is suitably employed, and from the viewpoint of environment and health, aqueous wet-spinning using no organic solvent is particularly preferred.
 上記紡糸法のうち、水系または溶剤系の湿式紡糸について以下に説明する。
 まず、PVA系繊維を構成するPVA系ポリマー、硬質成分、溶媒および任意に添加剤を含む紡糸原液を調製する。紡糸原液の溶媒としては、PVA系ポリマーを溶解できる各種極性溶媒を用いることができ、例えば、水、有機溶剤[ジメチルスルホキシド(以下「DMSO」と称する)などのスルホキシド類;ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドンなどの窒素含有極性溶媒;グリセリン、エチレングリコールなどの多価アルコール類など]、これらとロダン塩、塩化リチウム、塩化カルシウム、塩化亜鉛などの膨潤性金属塩との混合物などが使用できる。これらの溶媒は、単独でまたは組み合わせて使用できる。これらのうち、水またはDMSOがコスト、または回収性などの工程通過性の観点から好ましい。
Among the above spinning methods, water-based or solvent-based wet spinning will be described below.
First, a spinning dope containing a PVA-based polymer constituting a PVA-based fiber, a hard component, a solvent, and optionally an additive is prepared. As the solvent for the spinning dope, various polar solvents capable of dissolving the PVA-based polymer can be used. For example, water, an organic solvent [sulfoxides such as dimethyl sulfoxide (hereinafter, referred to as “DMSO”); dimethylacetamide, dimethylformamide, Nitrogen-containing polar solvents such as N-methylpyrrolidone; polyhydric alcohols such as glycerin and ethylene glycol], and mixtures thereof with swellable metal salts such as rhodanate, lithium chloride, calcium chloride and zinc chloride. . These solvents can be used alone or in combination. Of these, water or DMSO is preferred from the viewpoint of cost or process passability such as recovery.
 紡糸原液中のPVA系ポリマーの濃度は、紡糸原液の組成、PVA系ポリマーの粘度平均重合度、および溶媒の種類によって異なるが、例えば、PVA系ポリマーの粘度平均重合度が1500~2500であれば、10~20質量%程度(好ましくは12~18質量%程度)とするのが紡糸性の観点から好ましい。 The concentration of the PVA-based polymer in the spinning dope varies depending on the composition of the spinning dope, the viscosity-average degree of polymerization of the PVA-based polymer, and the type of solvent. For example, if the viscosity-average degree of polymerization of the PVA-based polymer is 1500 to 2500, And about 10 to 20% by mass (preferably about 12 to 18% by mass) from the viewpoint of spinnability.
 硬質成分は、PVA系ポリマーを溶解する前の紡糸原液の溶媒に対して事前に添加してもよいし、または硬質成分を溶媒に分散させた分散液もしくは硬質成分を、PVA系ポリマーを溶解した紡糸原液に添加混合してもよい。硬質成分の添加量は、PVA系ポリマーの質量に対して好ましくは0.1~30質量%、より好ましくは0.3~20質量%、特に好ましくは0.5~10質量%である。 The hard component may be added in advance to the solvent of the spinning dope before dissolving the PVA-based polymer, or a dispersion or a hard component in which the hard component is dispersed in a solvent may be dissolved in the PVA-based polymer. It may be added to and mixed with the spinning solution. The amount of the hard component added is preferably 0.1 to 30% by mass, more preferably 0.3 to 20% by mass, and particularly preferably 0.5 to 10% by mass, based on the mass of the PVA-based polymer.
 添加剤を加える場合は、PVA系ポリマーを溶解する前の紡糸原液の溶媒に対して事前に添加剤を添加してもよいし、或いは添加剤を溶媒に溶解もしくは分散させた溶液もしくは分散液または添加剤を、PVA系ポリマーを溶解した紡糸原液に添加混合してもよい。さらに、一旦乾燥工程まで終えたPVA系繊維に対して、浸漬や吹きつけなどの手法により添加剤を添加してもよい。 When adding an additive, the additive may be added in advance to the solvent of the spinning dope before dissolving the PVA-based polymer, or a solution or dispersion obtained by dissolving or dispersing the additive in the solvent or The additives may be added to and mixed with the spinning solution in which the PVA-based polymer is dissolved. Further, an additive may be added to the PVA-based fiber once completed up to the drying step by a technique such as dipping or spraying.
 なお、添加剤として架橋剤を用いる場合は、架橋剤を紡糸原液に添加しておき、反応触媒を含む凝固浴に紡糸し、乾燥までの工程で架橋処理を施してもよいし、または凝固浴以降の後続工程(例えば延伸浴など)で反応触媒を作用させ、乾燥までの工程で架橋処理を施すことも可能である。さらに、一旦乾燥した繊維であっても、必要に応じて、架橋剤を含む液体を浸漬や吹きつけなどの手法により繊維に添加して架橋処理を行ってもよい。 When a cross-linking agent is used as an additive, the cross-linking agent may be added to a spinning solution, spun into a coagulation bath containing a reaction catalyst, and subjected to a cross-linking treatment in a process up to drying, or a coagulation bath. It is also possible to cause a reaction catalyst to act in a subsequent subsequent step (for example, a stretching bath or the like) and to perform a crosslinking treatment in a step until drying. Furthermore, even if the fiber is once dried, a crosslinking treatment may be performed by adding a liquid containing a crosslinking agent to the fiber by a technique such as immersion or spraying, if necessary.
 次いで、得られた紡糸原液を、ノズルからPVA系ポリマーに対して固化能を有する凝固浴に吐出させる。凝固浴は、溶媒が水の場合(水系湿式紡糸の場合)と有機溶剤の場合(溶剤系湿式紡糸の場合)とで異なる。溶媒が水の場合、凝固浴を構成する固化溶媒は、PVA系ポリマーに対して固化能を有する限り特に限定されず、その例としては、硫酸ナトリウム(芒硝)、硫酸アンモニウム、炭酸ナトリウムなどの無機塩類の水溶液が挙げられる。また、紡糸原液に架橋剤としてのホウ酸を添加した場合は、上記凝固浴に硫酸ナトリウムもしくは水酸化ナトリウムなどのアルカリを添加したアルカリ性凝固浴を用いてもよい。一方、溶媒が有機溶剤の場合は、例えば、メタノール、エタノール、プロパノールおよびブタノールなどのアルコール類、アセトン、メチルエチルケトンおよびメチルイソブチルケトンなどのケトン類などのPVA系ポリマーに対して固化能を有する有機溶剤を凝固浴として用いることができる。 Next, the obtained spinning dope is discharged from a nozzle into a coagulation bath having a solidifying ability for the PVA-based polymer. The coagulation bath differs when the solvent is water (in the case of aqueous wet spinning) and when the solvent is an organic solvent (in the case of solvent wet spinning). When the solvent is water, the solidifying solvent constituting the coagulation bath is not particularly limited as long as it has a solidifying ability with respect to the PVA-based polymer, and examples thereof include inorganic salts such as sodium sulfate (Glauber's salt), ammonium sulfate, and sodium carbonate. Aqueous solution. When boric acid as a crosslinking agent is added to the spinning dope, an alkaline coagulation bath in which an alkali such as sodium sulfate or sodium hydroxide is added to the coagulation bath may be used. On the other hand, when the solvent is an organic solvent, for example, an organic solvent having a solidifying ability for PVA-based polymers such as alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. It can be used as a coagulation bath.
 凝固浴に続いて、固化された原糸から紡糸原液の溶媒を抽出除去するために、抽出浴を通過させてもよい。例えばDMSOなどの有機溶剤は、メタノールなどのアルコール類の抽出浴で繊維を洗浄することにより原糸から除去できる。 (4) Following the coagulation bath, the solution may be passed through an extraction bath to extract and remove the solvent of the spinning dope from the solidified raw yarn. For example, an organic solvent such as DMSO can be removed from the yarn by washing the fiber with an extraction bath of an alcohol such as methanol.
 さらに、必要に応じて、公知または慣用の方法により湿延伸(通常は1.5~8倍)などの処理を行ってもよい。その後、原糸または延伸糸は通常、乾燥工程に処せられる。さらに、乾燥した原糸もしくは延伸糸に対して、必要に応じて乾熱延伸(通常は100℃以上、好ましくは150~240℃の温度で1.5~15倍)などの熱処理を施してもよい。さらに、このようにして得られたPVA系繊維に、ホルムアルデヒドなどのモノアルデヒド類、グルタルアルデヒドもしくはノナンジアールなどのジアルデヒド類、またはそのアセタール化物などの誘導体によるアセタール化処理を施して耐水性を付与してもよい。 Furthermore, if necessary, a process such as wet stretching (usually 1.5 to 8 times) may be performed by a known or commonly used method. Thereafter, the raw yarn or drawn yarn is usually subjected to a drying step. Further, if necessary, the dried raw yarn or drawn yarn may be subjected to a heat treatment such as dry heat drawing (normally 100 ° C. or more, preferably 1.5 to 15 times at a temperature of 150 to 240 ° C.). Good. Further, the PVA-based fiber thus obtained is subjected to acetalization treatment with a monoaldehyde such as formaldehyde, a dialdehyde such as glutaraldehyde or nonandial, or a derivative such as an acetalized product to impart water resistance. You may.
 PVA系繊維の単糸の繊度は、好ましくは1~20dtex、より好ましくは2~15dtexである。PVA系繊維の単糸の平均直径は、好ましくは9~45μm、より好ましくは14~40μmである。PVA系繊維の単糸の繊度または平均直径が上記範囲内であると、柔軟性が高く良好な装着感、または安定した繊維生産性を得やすい。PVA系繊維の単糸の繊度および平均直径は、後述の実施例に記載の方法により測定される。 繊 The fineness of a single PVA-based fiber is preferably 1 to 20 dtex, more preferably 2 to 15 dtex. The average diameter of a single yarn of the PVA-based fiber is preferably 9 to 45 μm, more preferably 14 to 40 μm. When the fineness or average diameter of the single yarn of the PVA-based fiber is within the above range, it is easy to obtain high flexibility and a good wearing feeling, or stable fiber productivity. The fineness and the average diameter of the single yarn of the PVA-based fiber are measured by the methods described in Examples described later.
 PVA系繊維の単糸の平均直径は、硬質成分の平均粒子径の好ましくは3倍以上25倍以下、より好ましくは3.5倍以上25倍以下、特に好ましくは4倍以上20倍以下である。PVA系繊維の単糸の平均直径と硬質成分の平均粒子径とが上記関係を満たすと、PVA系繊維の十分な繊維強度、柔軟性またはハンドリング性などと、PVA系繊維のより優れた耐切創性とを両立しやすい。 The average diameter of the single yarn of the PVA-based fiber is preferably 3 to 25 times, more preferably 3.5 to 25 times, particularly preferably 4 to 20 times the average particle diameter of the hard component. . When the average diameter of the single yarn of the PVA-based fiber and the average particle size of the hard component satisfy the above relationship, sufficient fiber strength, flexibility or handleability of the PVA-based fiber, and more excellent cut resistance of the PVA-based fiber can be obtained. It is easy to balance with nature.
 PVA系繊維がマルチフィラメントである場合、そのヤーン繊度は好ましくは100~1500dtex、より好ましくは200~1200dtex、特に好ましくは400~1000dtexである。ヤーン繊度が上記範囲内であると、後述の複合糸の製造または防護用品の製造を行いやすい。ヤーン繊度は、後述の実施例に記載の方法により測定される。また、マルチフィラメントは捲縮加工を施されていてもよい。 When the PVA-based fiber is a multifilament, the yarn fineness is preferably 100 to 1500 dtex, more preferably 200 to 1200 dtex, and particularly preferably 400 to 1000 dtex. When the yarn fineness is within the above range, it is easy to produce a composite yarn or a protective article as described later. The yarn fineness is measured by a method described in Examples described later. Further, the multifilament may be subjected to a crimping process.
 PVA系繊維が紡績糸である場合、その番手(綿番手)は好ましくは60~4s、より好ましくは30~5s、特に好ましくは15~6sである。番手が上記範囲内であると、後述の複合糸の製造または防護用品の製造を行いやすい。番手は、JIS L 1095:2010により測定される。 When the PVA-based fiber is a spun yarn, the count (cotton count) is preferably 60 to 4 s, more preferably 30 to 5 s, and particularly preferably 15 to 6 s. When the count is within the above range, it is easy to manufacture a composite yarn or a protective article described later. The count is measured in accordance with JIS L 1095: 2010.
 PVA系繊維の繊維強度(引張強度)は、好ましくは12cN/dtex以下、より好ましくは10cN/dtex以下、特に好ましくは10cN/dtex未満である。繊維強度が前記上限値以下であると、PVA系繊維を含む布を用いて作製した防護用品の肌触りの低下を招きにくい。PVA系繊維の繊維強度の下限値は紡糸工程を通過できる程度であればよい。したがって、PVA系繊維の繊維強度は通常は2cN/dtex以上、好ましくは3cN/dtex以上である。本発明のPVA系繊維は特定の形状を有する硬質成分を含むため、耐切創手袋などに一般に使用されている超高分子量ポリエチレンまたはケブラー(登録商標)とは異なり繊維強度が小さくても、優れた耐切創性を有する。PVA系繊維の繊維強度は、PVA系ポリマーの粘度平均重合度、PVA系繊維における硬質成分の含有量、PVA系繊維の繊度、平均直径もしくは断面形状、または延伸条件(湿延伸倍率、乾熱延伸倍率、乾熱延伸温度)により調整できる。なお、PVA系繊維の繊維強度は、後述の実施例に記載の方法により測定される。 繊 維 The fiber strength (tensile strength) of the PVA-based fiber is preferably 12 cN / dtex or less, more preferably 10 cN / dtex or less, and particularly preferably less than 10 cN / dtex. When the fiber strength is equal to or less than the upper limit value, it is unlikely that the protective article manufactured using the cloth containing the PVA-based fiber will have a soft touch. The lower limit of the fiber strength of the PVA-based fiber may be any value as long as it can pass through the spinning step. Therefore, the fiber strength of the PVA-based fiber is usually at least 2 cN / dtex, preferably at least 3 cN / dtex. Since the PVA-based fiber of the present invention contains a hard component having a specific shape, unlike the ultra-high molecular weight polyethylene or Kevlar (registered trademark) generally used for cut resistant gloves and the like, even if the fiber strength is small, it is excellent. Has cut wound resistance. The fiber strength of the PVA-based fiber is determined by the viscosity average polymerization degree of the PVA-based polymer, the content of the hard component in the PVA-based fiber, the fineness of the PVA-based fiber, the average diameter or the cross-sectional shape, or the drawing conditions (wet drawing ratio, dry drawing) Magnification, dry drawing temperature). The fiber strength of the PVA-based fiber is measured by a method described in Examples described later.
 本発明はまた、前記ポリビニルアルコール系繊維を構成糸の少なくとも一部として含む複合糸に関する。複合糸は好ましくは、合撚糸、シングルカバーリング糸およびダブルカバーリング糸からなる群から選択される。
 合撚糸とは、単糸を複数本組み合わせて撚った複合糸のことである。例えば、代表的な諸撚りの場合、2本またはそれ以上の糸をそれぞれ1本ずつ同一方向に撚り、次にこれらを合わせて逆の方向に撚ることで糸のトルクの安定性を向上させる。
 また、シングルカバーリング糸とは、カバーリング糸の一種であり、ポリウレタン弾性糸などの芯糸を延伸したところに、ナイロン糸などの鞘糸を、S方向またはZ方向に一重に巻きつけた糸であり、ダブルカバーリング糸とは、シングルカバーリング糸と同様カバーリング糸の一種であり、芯糸を延伸したところに、鞘糸をS方向およびZ方向に二重に巻きつけた糸である。
The present invention also relates to a composite yarn containing the polyvinyl alcohol-based fiber as at least a part of a constituent yarn. The composite yarn is preferably selected from the group consisting of a plied yarn, a single covering yarn and a double covering yarn.
The ply-twisted yarn is a composite yarn obtained by twisting a plurality of single yarns. For example, in the case of a typical ply twist, two or more yarns are twisted one by one in the same direction, and then they are combined in the opposite direction to improve the stability of the torque of the yarn. .
Further, the single covering yarn is a kind of covering yarn, in which a sheath yarn such as a nylon yarn is wound around a core yarn such as a polyurethane elastic yarn in a single direction in an S direction or a Z direction. The double covering yarn is a kind of covering yarn similar to a single covering yarn, and is a yarn obtained by winding a sheath yarn twice in the S direction and the Z direction when a core yarn is stretched. .
 本発明はまた、前記ポリビニルアルコール系繊維または前記複合糸を含む布を、構成素材の少なくとも一部として含む防護用品(例えば手袋、作業服、前掛けおよび腕カバーなど、特に手袋)に関する。前記布の形態としては、例えば織物および編物などが挙げられる。防護用品が編み手袋の場合のゲージは通常のゲージであればよく、例えば7ゲージ以上26ゲージ以下である。例えば13ゲージの手袋の場合、その目付けは約250~400g/mである。 The present invention also relates to a protective article (for example, gloves, work clothes, apron and arm covers, especially gloves) including the cloth containing the polyvinyl alcohol fiber or the composite yarn as at least a part of a constituent material. Examples of the form of the cloth include a woven fabric and a knitted fabric. When the protective article is a knitted glove, the gauge may be a normal gauge, for example, 7 gauge or more and 26 gauge or less. For example, in the case of a 13-gauge glove, the basis weight is about 250 to 400 g / m 2 .
 防護用品は、本発明のポリビニルアルコール系繊維または複合糸を編機にかけることで製造できる。または、防護用品は、本発明のポリビニルアルコール系繊維または複合糸を織機にかけて前記布を作製し、それを裁断および縫製することで製造できる。前記布の少なくとも一部には、追加の機能(例えば滑り止めなど)を付与するためのコート樹脂またはゴムが含浸されたり塗布されたりしていてもよい。そのようなコート樹脂の例としてはウレタン系樹脂またはエチレン系樹脂などが挙げられるが、これらの例に特に限定されない。ゴムの例としては、天然ゴム、合成ゴム(NBR、SBR)などが挙げられるが、これらの例に特に限定されない。コート樹脂またはゴムは、縫製前の前記布に適用してもよいし、または防護用品に含まれている状態の前記布に適用してもよい。なお、本発明の防護用品には、本発明のポリビニルアルコール系繊維または複合糸の他に、別の紡績糸またはフィラメントが織り込まれていたり、編み込まれていたりしていてもよい。 護 Protective articles can be manufactured by knitting the polyvinyl alcohol-based fiber or composite yarn of the present invention on a knitting machine. Alternatively, the protective article can be manufactured by making the polyvinyl alcohol-based fiber or the composite yarn of the present invention through a loom to produce the cloth, and cutting and sewing the cloth. At least a part of the cloth may be impregnated or coated with a coat resin or rubber for providing an additional function (for example, non-slip). Examples of such a coating resin include a urethane-based resin and an ethylene-based resin, but are not particularly limited to these examples. Examples of the rubber include natural rubber and synthetic rubber (NBR, SBR), but are not particularly limited to these examples. The coating resin or rubber may be applied to the cloth before sewing, or may be applied to the cloth contained in the protective article. The protective article of the present invention may be woven or knitted with another spun yarn or filament in addition to the polyvinyl alcohol-based fiber or the composite yarn of the present invention.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されない。実施例および比較例における評価は、下記方法により行った。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples. The evaluation in Examples and Comparative Examples was performed by the following method.
<単糸の繊度および平均直径>
 単糸の繊度として、JIS L1015:2010に準拠し、振動法で15点以上測定した繊度の平均値を求めた。また、単糸の平均直径として、単糸断面を走査型電子顕微鏡で15点以上観察した直径の平均値を求めた。
<ポリビニルアルコール系繊維の繊維強度およびヤーン繊度>
 ポリビニルアルコール系繊維の繊維強度(引張強度)として、JIS L 1013:2010に準拠して測定した繊維強度の平均値(n=10)を求めた。
 また、ポリビニルアルコール系繊維のヤーン繊度として、JIS L 1013:2010に準拠してA法(質量法)により測定したヤーン繊度の平均値(n=5)を求めた。
<硬質成分の比率b/aおよびc/aの平均値>
 硬質成分の比率b/aおよびc/aの平均値は電子顕微鏡を用いて求めた。ランダムに選択した15個以上30個以下の硬質成分の電子顕微鏡写真を撮影し、主面の特定並びにa、bおよびcの測長を行い、各々の硬質成分の比率b/aおよびc/aを算出し、これらについて平均値を求めた。なお、硬質成分は加熱しても形状が変化しないと考えられるので、灰分測定後の灰分から採取したものを観察してもよい。
<硬質成分の平均粒子径>
 レーザー回折・散乱式粒径分布測定装置(株式会社堀場製作所製 LA-950V2)を用いて、硬質成分を球に換算して粒径分布(体積基準)を測定し、得た硬質成分の粒径分布において、微粒側からの累積で50%となる粒子径(メジアン径)を平均粒子径として求めた。
<ポリビニルアルコール系繊維中の硬質成分の含有量>
 硬質成分の含有量は、JIS L 1015:2010に準拠し、灰分測定により求めた。繊維試料約10gの絶乾質量(m)を求め、るつぼに入れ徐々に燃焼させた後、600℃で約2時間灰化し、デシケータ中で冷却後、質量を測定した。さらに30分間しゃく熱して、質量減少が0.5mg以下になるまで繰り返し、しゃく熱残渣の質量(m’)を測定し、次の式によって灰分を求めた。
 灰分(A)=(m’/m)×100 (%)
<耐切創性の評価>
 ISO 13997:1999〔JIS T 8052:2005(MOD)〕に準拠して試験装置TDM-100(Tonodynamometer)を用いて切創力(単位:N)を求めることにより耐切創性を評価した。
<Fineness and average diameter of single yarn>
As the fineness of the single yarn, an average value of fineness measured at 15 points or more by a vibration method was obtained in accordance with JIS L1015: 2010. In addition, as an average diameter of a single yarn, an average value of diameters obtained by observing 15 or more points of a single yarn cross section with a scanning electron microscope was obtained.
<Fiber strength and yarn fineness of polyvinyl alcohol fiber>
As the fiber strength (tensile strength) of the polyvinyl alcohol-based fiber, an average value (n = 10) of the fiber strength measured according to JIS L 1013: 2010 was determined.
Further, as the yarn fineness of the polyvinyl alcohol-based fiber, an average value (n = 5) of the yarn fineness measured by the method A (mass method) in accordance with JIS L 1013: 2010 was determined.
<Average value of ratios b / a and c / a of hard components>
The average value of the ratios b / a and c / a of the hard components was determined using an electron microscope. Electron micrographs of 15 to 30 hard components selected at random are taken, the main surface is specified, and a, b and c are measured, and the ratios b / a and c / a of each hard component are determined. Was calculated, and the average value was calculated for these. Since the shape of the hard component is considered not to change even when heated, it may be observed from the ash after the ash measurement.
<Average particle size of hard component>
Using a laser diffraction / scattering type particle size distribution measuring device (LA-950V2 manufactured by Horiba, Ltd.), the hard component was converted into a sphere and the particle size distribution (volume basis) was measured. In the distribution, a particle diameter (median diameter) at which 50% is accumulated from the fine particle side was determined as an average particle diameter.
<Content of hard component in polyvinyl alcohol-based fiber>
The content of the hard component was determined by ash measurement in accordance with JIS L 1015: 2010. The absolute dry mass (m) of about 10 g of the fiber sample was determined, put in a crucible, gradually burned, incinerated at 600 ° C. for about 2 hours, cooled in a desiccator, and weighed. Heating was further continued for 30 minutes, and the mass was repeated until the weight loss became 0.5 mg or less. The mass (m ') of the heated residue was measured, and the ash content was determined by the following equation.
Ash (A) = (m '/ m) x 100 (%)
<Evaluation of cut resistance>
The cut resistance was evaluated by determining the cut power (unit: N) using a test device TDM-100 (Tonodynamometer) in accordance with ISO 13997: 1999 [JIS T 8052: 2005 (MOD)].
実施例1
<ポリビニルアルコール系繊維の製造>
 ポリビニルアルコール(粘度平均重合度:1700、ケン化度:99.9モル%)を水に溶解し、15質量%のポリビニルアルコール水溶液を調製した。次に、表1に示す物性を有する板状アルミナおよびホウ酸をポリビニルアルコールの質量に対して其々5質量%および2質量%の割合で添加し、紡糸原液を調製した。この紡糸原液を穴数40、穴径200μmφ(円形)の紡糸口金より45℃の飽和硫酸ナトリウム水溶液とアルカリとからなる凝固浴中に吐出し、糸条を形成した。得られた糸条に4倍の湿延伸を行い、その後130℃で熱風乾燥を行った。引き続き230℃の熱風で3.5倍の延伸を行い、全延伸倍率を14倍とし、ヤーン繊度が520dtexのマルチフィラメントを得た。単糸繊度は13.0dtexであり、平均直径(真円換算)は36μmであった。
<複合糸の製造>
 得られたマルチフィラメントを上糸として用い、ナイロン糸(156dtex)を下糸として用い、ポリウレタン糸(スパンデックス、78dtex)を芯糸として用い、ダブルカバーリング糸を製造した。
<手袋の製造>
 株式会社島精機製作所製の13ゲージ手袋編機(型式New-SFG)を使用して、約250~400g/mの目付け量となる編み手袋を製造した。度目は繊維の繊度を踏まえ、適性度目で編んだ。
 得られた手袋の耐切創性を、先に述べた方法で評価した。結果を表1に示す。
Example 1
<Manufacture of polyvinyl alcohol fiber>
Polyvinyl alcohol (viscosity average degree of polymerization: 1700, saponification degree: 99.9 mol%) was dissolved in water to prepare a 15% by mass aqueous solution of polyvinyl alcohol. Next, plate-like alumina and boric acid having the physical properties shown in Table 1 were added at a ratio of 5% by mass and 2% by mass with respect to the mass of polyvinyl alcohol, respectively, to prepare a spinning dope. The spinning solution was discharged from a spinneret having 40 holes and a hole diameter of 200 μmφ (circular) into a coagulation bath comprising a saturated aqueous solution of sodium sulfate and an alkali at 45 ° C. to form a yarn. The obtained yarn was wet-drawn four times, and then dried at 130 ° C. with hot air. Subsequently, the film was stretched 3.5 times with hot air at 230 ° C., the total stretching ratio was set to 14 times, and a multifilament having a yarn fineness of 520 dtex was obtained. The single yarn fineness was 13.0 dtex, and the average diameter (converted to a perfect circle) was 36 μm.
<Production of composite yarn>
A double covering yarn was produced using the obtained multifilament as an upper yarn, using a nylon yarn (156 dtex) as a lower yarn, and using a polyurethane yarn (spandex, 78 dtex) as a core yarn.
<Manufacture of gloves>
Knitted gloves having a basis weight of about 250 to 400 g / m 2 were produced using a 13 gauge glove knitting machine (model New-SFG) manufactured by Shima Seiki Seisaku-Sho, Ltd. The degree of knitting was based on the degree of appropriateness based on the fineness of the fiber.
The cut resistance of the obtained glove was evaluated by the method described above. Table 1 shows the results.
実施例2~3、並びに比較例2~3および5
 硬質成分を表1に示す物性を有する別の硬質成分に変更し、添加量を表1の通りとしたこと以外は実施例1と同様にして、ポリビニルアルコール系繊維および手袋を製造して評価した。結果を表1に示す。
Examples 2-3 and Comparative Examples 2-3 and 5
A polyvinyl alcohol fiber and gloves were manufactured and evaluated in the same manner as in Example 1 except that the hard component was changed to another hard component having the physical properties shown in Table 1 and the amount added was as shown in Table 1. . Table 1 shows the results.
比較例1
 硬質成分を添加しなかったこと以外は実施例1と同様にして、ポリビニルアルコール系繊維および手袋を製造して評価した。結果を表1に示す。
Comparative Example 1
A polyvinyl alcohol fiber and gloves were produced and evaluated in the same manner as in Example 1 except that no hard component was added. Table 1 shows the results.
比較例4
 硬質成分を繊維状のチタン酸カリウム(繊維径:0.5μm、繊維長:17μm)に変更したこと以外は実施例1と同様にして、ポリビニルアルコール系繊維を製造しようとしたが、著しい濾過フィルターの目詰りにより紡糸不可能であった。
Comparative Example 4
A polyvinyl alcohol fiber was produced in the same manner as in Example 1 except that the hard component was changed to fibrous potassium titanate (fiber diameter: 0.5 μm, fiber length: 17 μm). The spinning was impossible due to clogging.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のポリビニルアルコール系繊維は十分な柔軟性、吸汗性およびハンドリング性に加えて優れた耐切創性を備えるため、切断抵抗性の高い防護用品(例えば手袋、作業服、前掛けおよび腕カバーなど)を製造するための繊維として有用である。 Since the polyvinyl alcohol-based fiber of the present invention has sufficient cut resistance in addition to sufficient flexibility, sweat absorption and handling properties, it has high cut-resistant protective articles (eg, gloves, work clothes, foreheads and arm covers). It is useful as a fiber for producing

Claims (8)

  1.  硬質成分を含むポリビニルアルコール系繊維であって、硬質成分はモース硬度が3以上の板状硬質成分であり、該板状硬質成分の主面に対して垂直方向の最大長さaに対する、主面の最大長さbの比率(b/a)の平均値が5以上である、ポリビニルアルコール系繊維。 A polyvinyl alcohol-based fiber containing a hard component, wherein the hard component is a plate-shaped hard component having a Mohs' hardness of 3 or more, and a main surface of the plate-shaped hard component with respect to a maximum length a in a direction perpendicular to the main surface. The average value of the ratio (b / a) of the maximum length b is 5 or more.
  2.  前記長さaに対する、前記長さbの方向と直交する方向の主面の最大長さcの比率(c/a)の平均値が1.5以上である、請求項1に記載のポリビニルアルコール系繊維。 The polyvinyl alcohol according to claim 1, wherein an average value of a ratio (c / a) of a maximum length c of the main surface in a direction orthogonal to the direction of the length b with respect to the length a is 1.5 or more. System fiber.
  3.  単糸の平均直径が硬質成分の平均粒子径の3倍以上25倍以下である、請求項1または2に記載のポリビニルアルコール系繊維。 The polyvinyl alcohol-based fiber according to claim 1 or 2, wherein the average diameter of the single yarn is at least 3 times and at most 25 times the average particle diameter of the hard component.
  4.  繊維強度が12cN/dtex以下である、請求項1~3のいずれかに記載のポリビニルアルコール系繊維。 The polyvinyl alcohol-based fiber according to any one of claims 1 to 3, wherein the fiber strength is 12 cN / dtex or less.
  5.  硬質成分の含有量が0.1質量%以上である、請求項1~4のいずれかに記載のポリビニルアルコール系繊維。 The polyvinyl alcohol-based fiber according to any one of claims 1 to 4, wherein the content of the hard component is 0.1% by mass or more.
  6.  請求項1~5のいずれかに記載のポリビニルアルコール系繊維を構成糸の少なくとも一部として含む、複合糸。 A composite yarn comprising the polyvinyl alcohol-based fiber according to any one of claims 1 to 5 as at least a part of a constituent yarn.
  7.  前記複合糸は合撚糸、シングルカバーリング糸およびダブルカバーリング糸からなる群から選択される、請求項6に記載の複合糸。 The composite yarn according to claim 6, wherein the composite yarn is selected from the group consisting of a plied yarn, a single covering yarn, and a double covering yarn.
  8.  請求項1~5のいずれかに記載のポリビニルアルコール系繊維または請求項6もしくは7に記載の複合糸を含む布を、構成素材の少なくとも一部として含む手袋。 (5) A glove comprising the cloth containing the polyvinyl alcohol-based fiber according to any one of claims 1 to 5 or the composite yarn according to claim 6 or 7 as at least a part of a constituent material.
PCT/JP2019/027286 2018-07-11 2019-07-10 Cut-resistant polyvinyl alcohol fiber WO2020013217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530221A JP7370325B2 (en) 2018-07-11 2019-07-10 Cut-resistant polyvinyl alcohol fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018131830 2018-07-11
JP2018-131830 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020013217A1 true WO2020013217A1 (en) 2020-01-16

Family

ID=69142008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027286 WO2020013217A1 (en) 2018-07-11 2019-07-10 Cut-resistant polyvinyl alcohol fiber

Country Status (2)

Country Link
JP (1) JP7370325B2 (en)
WO (1) WO2020013217A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382836A (en) * 1989-08-25 1991-04-08 Toray Ind Inc Polyvinyl alcohol based spun yarn having excellent cut breakage resistance
JPH10168648A (en) * 1996-11-19 1998-06-23 Hoechst Celanese Corp Cutting resistant fiber containing filler
JPH10212619A (en) * 1997-01-23 1998-08-11 Kuraray Co Ltd Fiber and formed material by using the fiber
JP2003089935A (en) * 2001-09-13 2003-03-28 Kuraray Co Ltd Spun yarn excellent in softness and cutting resistance and protective material
JP2003138410A (en) * 2001-08-20 2003-05-14 Du Pont Toray Co Ltd Waterproof glove excellent in incision-resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811871B2 (en) 2012-01-31 2015-11-11 三菱瓦斯化学株式会社 Polyvinyl alcohol composite fiber and method for producing the same
CN105542685B (en) 2016-02-03 2018-12-11 京东方科技集团股份有限公司 Sealant, liquid crystal display panel, liquid crystal display and preparation method
CN106833442B (en) 2017-02-24 2019-03-12 京东方科技集团股份有限公司 Sealant, liquid crystal display panel, liquid crystal display and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382836A (en) * 1989-08-25 1991-04-08 Toray Ind Inc Polyvinyl alcohol based spun yarn having excellent cut breakage resistance
JPH10168648A (en) * 1996-11-19 1998-06-23 Hoechst Celanese Corp Cutting resistant fiber containing filler
JPH10212619A (en) * 1997-01-23 1998-08-11 Kuraray Co Ltd Fiber and formed material by using the fiber
JP2003138410A (en) * 2001-08-20 2003-05-14 Du Pont Toray Co Ltd Waterproof glove excellent in incision-resistance
JP2003089935A (en) * 2001-09-13 2003-03-28 Kuraray Co Ltd Spun yarn excellent in softness and cutting resistance and protective material

Also Published As

Publication number Publication date
JPWO2020013217A1 (en) 2021-07-15
JP7370325B2 (en) 2023-10-27

Similar Documents

Publication Publication Date Title
TWI237669B (en) Acrylic composite fiber, the manufacturing method therefor, and the fiber complex by using the same
JP2014210985A (en) Spun yarn and fabric and clothing
JP2016132841A (en) Blended yarn
EP2899302B1 (en) Halogen-containing flame-retardant fibers, method for producing same, and flame-retardant fiber product using same
JP4114112B2 (en) Spun yarn, fiber structure and protective material made of short polyparaphenylene terephthalamide fiber
JP7370325B2 (en) Cut-resistant polyvinyl alcohol fiber
JPWO2015182088A1 (en) Polyamide fiber, fiber structure using the same, and clothing
JPS6132412B2 (en)
TWI739033B (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2015067925A (en) Halogen-containing flame-retardant fiber and method for producing the same, and flame-retardant fiber composite and flame-retardant fiber product
CN111101218A (en) High-strength polyvinyl alcohol fiber for yarn and preparation method and application thereof
WO2021039528A1 (en) Acrylic fiber, and spun yarn and knitted fabric comprising said fiber
JP7253907B2 (en) Spun yarns and woven and knitted fabrics with excellent spinnability and moisture absorption and desorption properties
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2001055631A (en) Antimicrobial polyamide potentially crimpable yarn and its production
JP4624612B2 (en) Spinning yarns and protective materials that are flexible and have excellent cut resistance
JP4815280B2 (en) Compound twisted yarn
JP2013253817A (en) Radiation shielding fiber and fabric
JPWO2004041011A1 (en) Fiber gloves
JP2011256496A (en) Flame-retardant synthetic fiber and method for producing the same, flame-retardant fiber composite and fiber product
JP4351573B2 (en) Para-type wholly aromatic copolyamide extra fine fiber
KR102354951B1 (en) Process Of Producing Antibacterial Composite Melting Yarn Having Excellent Wash―fastness Property
JP2011033311A (en) Cut-resistant cloth and cut-resistant protective garment using the same
JP5183329B2 (en) Wet spinning method of antibacterial acrylic fiber
KR101573563B1 (en) Composite Spun Yarn and Method for Manufacturing The Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833182

Country of ref document: EP

Kind code of ref document: A1