JPWO2004041011A1 - Fiber gloves - Google Patents

Fiber gloves Download PDF

Info

Publication number
JPWO2004041011A1
JPWO2004041011A1 JP2004549562A JP2004549562A JPWO2004041011A1 JP WO2004041011 A1 JPWO2004041011 A1 JP WO2004041011A1 JP 2004549562 A JP2004549562 A JP 2004549562A JP 2004549562 A JP2004549562 A JP 2004549562A JP WO2004041011 A1 JPWO2004041011 A1 JP WO2004041011A1
Authority
JP
Japan
Prior art keywords
yarn
glove
fiber
back surface
appearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004549562A
Other languages
Japanese (ja)
Inventor
山本 勉
勉 山本
波多野 武
武 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Publication of JPWO2004041011A1 publication Critical patent/JPWO2004041011A1/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/22Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
    • D04B1/24Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration wearing apparel
    • D04B1/28Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration wearing apparel gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • A41D19/01505Protective gloves resistant to mechanical aggressions, e.g. cutting. piercing
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • A41D19/01529Protective gloves with thermal or fire protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Gloves (AREA)

Abstract

手袋の表面に表れる糸条と裏面に表れる糸条とが実質的に異なり、かつ、裏面に対する表面の吸水拡散面積の比を1.3以上である手袋とすることにより、肌からの汗を速やかに手袋内側から外側に移動させ大気中に蒸散させることができ、手袋着用者の蒸れ感を大幅に軽減させることができる。この結果、長時間にわたって手袋着用する場合でも着用快適性に優れた手袋が得られる。そのためには、手袋の表面に表れる糸条及び裏面に表れる糸条のうち、どちらか一方の糸条の繊維空間率を88〜98%とすることが好ましく、また、どちらか一方がフィラメント捲縮糸から主として構成され、他方が紡績糸から主として構成されることが好ましい。By using a glove in which the yarn appearing on the surface of the glove is substantially different from the yarn appearing on the back surface, and the ratio of the water absorption / diffusion area of the front surface to the back surface is 1.3 or more, sweat from the skin is quickly It can be moved from the inside of the glove to the outside to evaporate into the atmosphere, and the feeling of stuffiness of the glove wearer can be greatly reduced. As a result, a glove excellent in wearing comfort can be obtained even when the glove is worn for a long time. For that purpose, it is preferable that the fiber space ratio of either one of the yarn appearing on the front surface of the glove and the yarn appearing on the back surface is 88 to 98%, and either one is a filament crimp. It is preferable that the yarn is mainly composed of yarn and the other is mainly composed of spun yarn.

Description

本発明は、繊維製手袋の改良に関するものである。さらに詳しくは、優れた汗処理性を有し、長時間着用した時でも良好な着用快適性を有する繊維製手袋に関するものである。  The present invention relates to an improvement in a fiber glove. More specifically, the present invention relates to a fiber glove having excellent sweat treatment properties and good wearing comfort even when worn for a long time.

手袋は、防寒用の他、スポーツ用、作業用等、種々の用途で用いられ、その用途に応じた機能を有するように改良されているので、多くの種類がある。従って、手袋に使用される原糸素材の種類は非常に多い。
例えば、作業用手袋では、綿等の天然繊維やナイロン、ポリエステル、アラミド等の合成繊維が使用され、それらのスパン糸のみで編成された手袋が多く使われている。なかでも、肌の保護機能を重視する作業用手袋では、アラミド繊維のような高引張り強度かつ高耐熱の合成繊維が使用されることが多い。
これら手袋は一般に肌に直接接触するように装着されて使用され、しかも作業用手袋では長時間着用したままで作業が行われることが多いが、手袋を着用した作業者の着用快適性にはあまり配慮されてなく、手袋表面も裏面も同じ糸条から構成される手袋が使われてきた。
このような従来の作業用手袋では、長時間の手袋着用中に肌から発生した汗は手袋内に留まって、肌に蒸れやベトツキ感を感じさせ、手袋を着用している者に不快感を与える。この不快感は、作業者の作業効率を低下させる一因となるので、作業用手袋においても、手袋内の着用快適性を高めることが望ましい。そのためには、肌から発汗する汗を長時間にわたり連続的に吸収すると共に、速やかに外気中に蒸散させて乾燥できる機能を有することが好ましい。また、用途によっては優れた機械強度、耐熱性または耐薬品性等を有することが好ましく、さらに、頻繁に行われる洗濯にも対応できる優れたウォッシュアンドウェア性を有することが好ましい。
しかし、これら特性を具備し着用快適性に優れることは、従来の手袋、特に作業用手袋においては、得られていないものであった。
例えば、防寒用等で汎用的に使用されている手袋として、木綿、ウール等の天然繊維のみからなる手袋、これら天然繊維に合成繊維を混紡した糸からなる手袋、又は、天然繊維糸に合成繊維糸を交編もしくは交織して得られる手袋がある。これら手袋は、吸水性や保水性に優れていて汗を良く吸い取るが、一旦吸い取った汗は容易に外に蒸散されず、蒸散・速乾性が劣っている。さらに、かかる手袋は、洗濯後の脱水が十分にできず、繊維内部にかなりの水が残って乾燥に長時間を要するため、ウォッシュアンドウェア性に劣るという欠点もある。また、かかる手袋は、合繊繊維製手袋に比べ機械強度、耐熱性、耐薬品性などに劣るため、作業用手袋としては使用しにくいものである。
他方、合成繊維のスパン糸使い又はフィラメント糸使いで編成された従来の合成繊維製手袋は、一般的にウォッシュアンドウェア性に優れ、機械強度、耐熱性または耐薬品性などにも優れているので、作業用手袋として多用されているが、水と接触したときの吸水速度が遅く、透水能力にも劣るので、汗の吸汗・移動が不十分であり、汗による蒸れ感、それに伴う不快感がある、という問題がある。
このように、従来の手袋では、吸水・透水性及び蒸散・速乾性を有し、長時間着用時でも着用快適性に優れるものは得られてなく、特に、使用用途に応じた機械強度、耐熱性または耐薬品性などの性質を備えることが要求される作業用手袋においては、着用快適性は不満足なものであった。
そこで、本発明の目的は、裏面で吸収した汗を表面側へ移動させるための吸水・透水性に優れ、かつ、表面での蒸散・速乾性にも優れ、汗による蒸れ感およびそれに伴う不快感を大幅に軽減させることができる繊維製手袋を提供することにある。
本発明の他の目的は、着用快適性に優れた作業用手袋でありながら、さらに、使用用途に応じて要求される機械強度、耐熱性または耐薬品性などの性質を必要に応じて具備させることができ、また、必要に応じて優れたウォッシュアンドウェア性をも具備させることができることにある。
なお、ここで、手袋の裏面(うらめん)とは肌に接する面、つまり手袋の内側の面、内表面のことであり、表面(おもてめん)とは肌に接しない面、つまり手袋の外側の面、外表面のことである。
Gloves are used for various purposes such as sports, work, etc. in addition to cold protection, and there are many types of gloves because they are improved so as to have a function corresponding to the use. Therefore, there are many types of raw material used for gloves.
For example, for work gloves, natural fibers such as cotton and synthetic fibers such as nylon, polyester, and aramid are used, and gloves knitted only with these spun yarns are often used. In particular, for work gloves that place importance on the skin protection function, synthetic fibers with high tensile strength and high heat resistance such as aramid fibers are often used.
In general, these gloves are worn and used in direct contact with the skin, and work gloves are often worn for a long time, but this is not very comfortable for workers wearing gloves. Gloves composed of the same thread on the front and back of the glove have been used.
With such conventional work gloves, sweat generated from the skin while wearing gloves for a long time stays in the glove, causing the skin to feel stuffy or sticky, causing discomfort to the person wearing the gloves. give. Since this discomfort is one factor that reduces the work efficiency of the operator, it is desirable to improve the wearing comfort in the gloves even for work gloves. For this purpose, it is preferable to have a function of continuously absorbing sweat perspiring from the skin over a long period of time and quickly evaporating it into the outside air for drying. Moreover, it is preferable to have excellent mechanical strength, heat resistance, chemical resistance, and the like depending on the application, and it is preferable to have excellent wash and wear properties that can cope with frequent washing.
However, having these characteristics and being excellent in wearing comfort has not been obtained in conventional gloves, particularly work gloves.
For example, as gloves commonly used for cold protection etc., gloves made only of natural fibers such as cotton and wool, gloves made by blending synthetic fibers with these natural fibers, or synthetic fibers made of natural fibers There are gloves obtained by knitting or weaving yarn. These gloves are excellent in water absorption and water retention, and absorb sweat well. However, once sweat is absorbed, the sweat is not easily evaporated to the outside, and transpiration and quick drying are inferior. Furthermore, such a glove cannot be sufficiently dehydrated after washing, and a considerable amount of water remains inside the fiber, which requires a long time for drying. Further, such gloves are inferior in mechanical strength, heat resistance, chemical resistance and the like as compared with synthetic fiber gloves, and thus are difficult to use as work gloves.
On the other hand, conventional synthetic fiber gloves knitted with spun yarns or filament yarns of synthetic fibers are generally excellent in wash-and-wear properties and mechanical strength, heat resistance or chemical resistance. Although it is frequently used as a work glove, its water absorption speed is slow when it comes into contact with water and its water permeability is inferior, so sweat perspiration and movement are inadequate, sweating due to sweat, and discomfort associated with it. There is a problem that there is.
As described above, conventional gloves have water absorption / water permeability and transpiration / fast drying properties, and have no wear comfort even when worn for a long time, and in particular, mechanical strength and heat resistance according to the intended use. In work gloves required to have properties such as safety or chemical resistance, the wearing comfort is unsatisfactory.
Therefore, the object of the present invention is excellent in water absorption and water permeability for moving sweat absorbed on the back side to the surface side, and also excellent in transpiration and quick drying on the surface. An object of the present invention is to provide a fiber glove that can significantly reduce the above-mentioned problem.
Another object of the present invention is to provide a work glove having excellent wearing comfort, and further, if necessary, have properties such as mechanical strength, heat resistance or chemical resistance required according to the intended use. It is also possible to provide excellent wash and wear properties as required.
Here, the back of the glove is the surface that touches the skin, that is, the inner surface of the glove, and the inner surface, and the surface that does not touch the skin, that is, the glove. This is the outer surface or outer surface.

本発明者らは、上記目的を達成すべく鋭意検討した結果、手袋の表面に表れる糸条と裏面に表れる糸条とが実質的に異なるものとなるようにし、かつ、裏面に対する表面の吸水拡散面積の比を1.3以上とすることにより、手袋裏面に付着した水滴が毛細管現象により表面に移動され易くなり、着用快適性に優れた手袋になるという知見が得られ、本発明をなすに至った。即ち、かかる手袋は、肌表面からの汗を速やかに手袋内側から外側に移動させ、水分を大気中に放出して蒸れ感を除くことができるのである。
本発明の繊維製手袋は、手袋の表面に表れる糸条と裏面に表れる糸条とが実質的に異なり、かつ、裏面に対する表面の吸水拡散面積の比(以下、吸水表裏拡散面積比という)が1.3以上であることを特徴とするものである。
そのためには、例えば、手袋の裏面に表れる糸条として、又は、表面に表れる糸条として、繊維空間率が88〜98%と十分に高い高空間率糸条を用いることが好ましい。さらに、上記高空間率糸条を用いた以外の糸条(他の糸条)には、繊維空間率が49〜90%とやや低目の糸条を用いることが好ましい。また、表面に表れる糸条及び裏面に表れる糸条のうち、どちらか一方がフィラメント捲縮糸から主として構成され、他方が紡績糸から主として構成されることが好ましく、少なくともどちらかが合成繊維からなる糸条であることが好ましい。さらにまた、異なる種類の糸条からなる引揃え糸でもって編み目が構成された編手袋の場合は、引揃え糸を構成する各糸条がそれぞれ手袋表面又は裏面に表れるように編成されていることが好ましい。
また、手袋に、耐切創性、耐熱性等の機能をもたせるためには、手袋の表面に表れる糸条、及び/又は、裏面に表れる糸条を、パラ系アラミド繊維、全芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリビニルアルコール系繊維、超高分子量ポリエチレン繊維、メタ系アラミド繊維からなる群から選ばれる少なくとも1種の繊維から主として構成することが好ましく、特に、ポリパラフェニレンテレフタルアミド繊維から主として構成することが好ましい。もしくは、手袋の表面に表れる糸条、及び/又は、裏面に表れる糸条を、8cN/dTex以上の引張り強度を有する高強度繊維から主として構成すること、及び/又は、限界酸素指数が25以上の難燃性と示差走査熱量測定法による熱分解点が400℃以上の耐熱性とを有する高耐熱繊維から主として構成することが好ましい。
手袋の表面に表れる糸条も裏面に表れる糸条も、その糸条繊度や単糸繊度が同一であっても、また、単糸の横断面形状が丸や楕円等の円形であっても、本発明の手袋を作製することは可能であるが、手袋における吸水表裏拡散面積比を高めるための手段の一例として、次のような糸条繊度条件や単糸繊度条件や単糸断面形状条件も挙げられる。
手袋の裏面に表れる糸条と、表面に表れる糸条との総繊度が異なり、かつ、そのうちの細い方の糸条総繊度と太い方の糸条総繊度との比を1:1.2〜5.0という糸条繊度条件を採用する。
また、手袋の裏面に表れる糸条を構成する単糸と、表面に表れる糸条を構成する単糸との繊度が異なり、かつ、そのうちの細い方の単糸繊度と太い方の単糸繊度との比が1:1.2〜6.0という単糸繊度条件を採用する。
さらにまた、手袋の表面に表れる糸条、及び、裏面に表れる糸条のうち、どちらか一方を、繊維長手方向に沿って1または複数の凹溝が形成された繊維横断面形状の変形断面合成繊維が含まれる糸条とし、かつ、他方の糸条が、繊維長手方向に沿って1または複数の凹溝が形成された繊維横断面形状の変形断面合成繊維が実質的に含まれない糸条とする単糸断面形状条件を採用する。
As a result of intensive studies to achieve the above object, the present inventors have made the yarn appearing on the surface of the glove substantially different from the yarn appearing on the back surface, and the surface absorbs and diffuses water on the back surface. By making the area ratio 1.3 or more, water droplets adhering to the back surface of the glove are easily moved to the surface by capillary action, and the knowledge that the glove has excellent wearing comfort can be obtained. It came. That is, such a glove can quickly remove sweat from the skin surface from the inside of the glove to the outside, and release moisture into the atmosphere.
In the fiber glove of the present invention, the yarn appearing on the surface of the glove and the yarn appearing on the back surface are substantially different, and the ratio of the water absorption diffusion area of the surface to the back surface (hereinafter referred to as the water absorption front / back diffusion area ratio) is It is characterized by being 1.3 or more.
For that purpose, for example, it is preferable to use a yarn having a sufficiently high fiber space ratio of 88 to 98% as the yarn appearing on the back surface of the glove or the yarn appearing on the surface. Furthermore, it is preferable to use a slightly lower yarn having a fiber space ratio of 49 to 90% for the yarn other than the above-described high-space-rate yarn (other yarn). Further, it is preferable that one of the yarn appearing on the front surface and the yarn appearing on the back surface is mainly composed of filament crimped yarn, and the other is mainly composed of spun yarn, and at least one of them is composed of synthetic fiber. It is preferably a yarn. Furthermore, in the case of a knitted glove with stitches made of aligned yarns made of different types of yarns, the yarns constituting the aligned yarns are knitted so that they appear on the front or back surface of the gloves. Is preferred.
In addition, in order to give the gloves functions such as cut resistance and heat resistance, the yarn appearing on the surface of the glove and / or the yarn appearing on the back surface is made of para-aramid fiber, wholly aromatic polyester fiber, It is preferably mainly composed of at least one fiber selected from the group consisting of polyparaphenylene benzobisoxazole fiber, polyvinyl alcohol fiber, ultrahigh molecular weight polyethylene fiber and meta-aramid fiber, and in particular, polyparaphenylene terephthalamide fiber It is preferable to construct mainly from the above. Alternatively, the yarn appearing on the surface of the glove and / or the yarn appearing on the back surface is mainly composed of high-strength fibers having a tensile strength of 8 cN / dTex or more, and / or the limiting oxygen index is 25 or more. It is preferably mainly composed of highly heat-resistant fibers having flame retardancy and heat resistance of 400 ° C. or higher as determined by differential scanning calorimetry.
Even if the yarn appearing on the surface of the glove and the yarn appearing on the back surface have the same yarn fineness or single yarn fineness, and the cross-sectional shape of the single yarn is a circle such as a circle or an ellipse, Although it is possible to produce the glove of the present invention, as an example of means for increasing the water absorption front / back diffusion area ratio in the glove, the following yarn fineness condition, single yarn fineness condition, and single yarn cross-sectional shape condition are also included. Can be mentioned.
The total fineness of the yarn appearing on the back surface of the glove is different from the yarn appearing on the front surface, and the ratio of the fineness of the finer yarn to the fineness of the thicker yarn is 1: 1.2 to A yarn fineness condition of 5.0 is adopted.
Also, the fineness of the single yarn constituting the yarn appearing on the back surface of the glove is different from the single yarn constituting the yarn appearing on the surface, and the fineness of the single yarn fineness of the thinner one and the fineness of the single yarn A single yarn fineness condition of 1: 1.2 to 6.0 is adopted.
Furthermore, one of the yarn appearing on the front surface of the glove and the yarn appearing on the back surface is composed of a modified cross-section having a fiber cross-sectional shape in which one or a plurality of concave grooves are formed along the fiber longitudinal direction. A yarn containing a fiber, and the other yarn is substantially free of a modified cross-section synthetic fiber having a fiber cross-sectional shape in which one or a plurality of concave grooves are formed along the longitudinal direction of the fiber. The single yarn cross-sectional shape condition is adopted.

本発明に係る手袋は、手袋の表面に表れる糸条と裏面に表れる糸条とが実質的に異なるものであり、かつ、吸水表裏拡散面積比が1.3以上であることを要する。吸水表裏拡散面積比は2倍以上が好ましく、さらには4倍以上が好ましい。その上限は30倍程度が好ましい。
ここで、吸水表裏拡散面積比は、裏面に付着した水が表面まで到達した後における、裏面の拡散面積に対する表面の拡散面積の比であり、以下の方法によって測定される。
ガラス板上に市販の水性インクを2倍に水で希釈したインク液を0.1cc滴下し、その上に、手袋又は手袋から採取したサンプル編織物(以下、この欄において「サンプル」という)の裏面が下になるように、即ちインク液に接するように載せ、60秒間放置してインク液を吸収させる。次いで、何も載っていない別のガラス板上に移動し、ここでもサンプルの裏面を下にして3分間放置した後、サンプルの表面におけるインク液の拡散面積、及び、裏面におけるインク液の拡散面積をそれぞれ測定する。その測定値から、面積比(=表面の拡散面積/裏面の拡散面積)の値を算出する。この測定を、サンプル3枚について行い、その各サンプルについて算出された上記面積比の値の平均値を、本発明における「吸水表裏拡散面積比」の値とする。
拡散面積の大小はインク液の吸収・拡散状態を示すものであり、裏面の拡散面積に比して表面の拡散面積が大きい場合、即ち前記した吸水表裏拡散面積比が大きい場合は、滴下されたインク液を効率よく表面側に移動すること、いわゆる吸水・透水・拡散能力に優れていることを表すものである。また、表面側の拡散面積が大きいことは、大気との接触面積が大きく水分の蒸発効率が良くなるので乾燥性に優れていることを示す。
ここで、手袋の表面に表れる糸条(以下、「表面糸条」という)、及び、裏面に表れる糸条(以下、「裏面糸条」という)とは、手袋製造時に、表面に表れる糸条となるように配された糸条、及び、裏面に表れる糸条となるように配された糸条をそれぞれ意味するものであり、本発明の手袋では、それら両糸条が実質的に異なるものである。従って、製造された手袋において、手袋の表面に表れた糸条の全部ないしは殆どが「表面糸条」であり、手袋の裏面に表れた糸条の全部ないし殆どが「裏面糸条」であることが望ましいが、本発明の効果を損なわない範囲内ならば、手袋表面に表れた全糸条の約40重量%以下が「表面糸条」以外の糸条であってもよいし、また、手袋裏面に表れた全糸条の約40重量%以下が「裏面糸条」以外の糸条であってもよい。
本発明に係る手袋では、前記した吸水表裏拡散面積比が約1.3以上である。この拡散面積比の値を得るための手段は特に限定されないが、好ましい手段として、例えば、以下に説明するような糸条の形態や構成をとることが挙げられる。
本発明に係る手袋の好ましい態様としては、裏面糸条が繊維空間率88〜98%と繊維空間の多い糸条で構成されている手袋、または、表面糸条が繊維空間率88〜98%と繊維空間の多い糸条で構成されている手袋が挙げられる。即ち、裏面糸条、表面糸条のいずれか一方が上記した高空間率糸条でもって構成されている手袋である。かかる手袋では、毛細管現象により、裏面に付着した汗を速やかに内側から外側に移動させ、水分を大気中に放出することができるので、吸水表裏拡散面積比を1.3以上とすることができ、手袋着用時の蒸れ感を除くことができるのである。
以下に、この毛細管現象による作用効果について説明する。水面に毛細管を立てた場合、重力に抗して水は毛細管を上昇するが、その高さ(h)は次式で表される。

Figure 2004041011
(式中、rは液体の表面張力、θは接触角、vは毛細管の半径、pは液体の密度、gは重力加速度を表す。)
つまり、液体の種類が一定であれば、毛細管の半径に反比例して液体は管内に吸引される。ここで、本発明に係る手袋の裏面糸条又は表面糸条には、繊維空間率が88〜98%と高空間率糸条が用いられる。この高空間率糸条の繊維空間率は好ましくは90〜96%である。
手袋を構成する糸条は、通常の衣料用繊維と同様に単糸繊度が細い繊維でもって構成されているので、糸条内の繊維間に形成された空間は、毛細管現象を発生させるに十分な細さを有している。本発明では、糸条内の繊維空間率が十分に大きい糸条を、裏面糸条又は表面糸条として用いているので、その糸条内空間の多くが、手袋に編成された後でも途切れることなく連通していて、毛細管現象による水分の移動・拡散を速やかに行わせることに寄与している。
即ち、手袋の裏面から表面への水分の吸収・移動・拡散は次のように進行すると考えられる。裏面糸条内の毛細管現象によって手袋裏面から裏面糸条内へと移動・拡散された水分は、手袋内で裏面糸条内や表面糸条内を伝って手袋表面方向へと移動するとともに、手袋内で裏面糸条内から表面糸条内へと移動し、次いで、手袋表面において表面糸条内から外気へと蒸散していく。この際、例えば、裏面糸条と表面糸条との引揃え糸でもって編み目が構成された編み手袋のように、通常の手袋においては、裏面糸条も表面糸条も、手袋裏面又はその近傍から表面又はその近傍まで達するように配されているので、そのいずれかを高空間率糸条とすることにより、手袋裏面側から表面側へと連通する空隙が多くなり、水分の移動・拡散が促進されるものと推定される。
この毛細管現象による水分の移動・拡散を定常的に行わせるためには、合成繊維製糸条を、少なくとも一方に用いることが好ましい。これは、合成繊維の場合、水分吸収による繊維自体の体積膨張が実質的に生じず、十分な容積の毛細管が糸条内に定常的に確保できるからと推定される。
このためには、高空間率糸条を用いなかった他の糸条にも、相応の繊維空間が存在することが好ましく、例えば、繊維空間率49〜90%の糸条が好ましく用いられる。この他の糸条の繊維空間率はさらに好ましくは60〜88%である。
また、手袋内の空間の快適性を保ち、手袋表面での蒸散を促進させるためには、手袋裏面から表面へと移動・拡散された水分が、手袋裏面側へと逆流しないようにすることも好ましく、このためには、表面糸条内の繊維空間率の方が、裏面糸条内の繊維空間率よりも小さくなるようにすることが好ましく、例えば、表面糸条と裏面糸条との繊維空間率の比が1:1.0〜2.0となるようにすればよい。
ここで、糸条内の繊維空間率は次のようにして算出される。
(1)繊度がほぼ2200dTexになるように原糸(フィラメント糸、加工糸、ステープル糸など)を必要本数引き揃え、試料とする。
(2)試料の一方の糸端を検撚器のチャック部に取り付け、試料繊度(dTex)の1/200に相当する初荷重(g)をかけた状態で試長500mmの長さとなるように、他の糸端をもう一方のチャックに固定する。
(3)試料に25回/50cmの撚りをかけ、その状態のままで台紙に固定し、チャックから外す。
(4)台紙に固定した状態で拡大鏡を用い試料の直径を測定する。この際、試料表面から飛び出している手羽の長さは含めない。測定数nは10以上とする。
(5)試料を30cm長さに切り、電子天秤を用いて重量A(g)を測定する。
(6)次式により繊維空間率を求める。
繊維空間率(%)={1−(A/B)}×100
(式中、Aは上記(5)で測定された実測重量(g)を表す。Bは、次式により算出される計算重量(g)を表す。)
計算重量(g)=πr×30×繊維の比重
(式中、rは(4)で測定された繊維直径から算出される試料半径(cm)を表す。)
本発明にかかる手袋において、表面糸条および裏面糸条を構成する繊維素材は、本発明の要件を満足するように表面糸条及び裏面糸条の組合せができるならば、例えぱポリエステル、ポリアミド、ポリアクリルニトリル、ポリビニルアルコール、アラミドなどの合成繊維、または、例えば木綿や麻などの天然繊維など、従来から衣料用に使用されている繊維がいずれも使用可能である。中でも、手袋に、耐切創性、耐熱性、耐薬品性等の機能を付与するためには高性能合成繊維を用いることが好ましい。また、表面糸条および裏面糸条には、上記繊維のうち1種類からなる紡績糸、フィラメント糸又は捲縮加工糸等が用いられるが、かかる紡績糸、フィラメント糸又は捲縮加工糸としてはそれらを複数本用いた引き揃え糸や撚り糸を用いてもよい。上記繊維の2種以上を混紡または混繊した糸条を使用してもよい。さらに、該糸条はコアスパン糸のような他の加工糸であってもよい。
ここで、手袋内の快適性を高めるためには、表面糸条及び裏面糸条のうちの片方もしくは両方が合成繊維であることが好ましく、特に、裏面糸条が合成繊維であることが好ましい。
また、特に合成繊維製手袋の場合、表面糸条、裏面糸条のうちの片方がフィラメント捲縮糸から構成され、他方が紡績糸から主として構成されていることが好ましい。即ち、フィラメント捲縮糸も紡績糸も、その糸構成や製造条件を調整することによって繊維空間率を任意に制御し易いので、表面糸条と裏面糸条との繊維空間率比を所望水準に制御するためには、フィラメント捲縮糸と紡績糸との組合せで手袋を編成することが好ましい。例えば、フィラメント捲縮糸の場合、構成単糸の捲縮度を高くするほど嵩高となり繊維空間率が大きくなる。また、紡績糸の場合、撚係数が大きいほど構成ステープル間は緊密になるので繊維空間率は小さくなる。このような手段によって繊維空間率を所望水準にしたフィラメント捲縮糸と紡績糸とを組合せる際、フィラメント捲縮糸を表面糸条とし、紡績糸を裏面糸条としてもよいし、また、紡績糸を表面糸条としフィラメント捲縮糸を裏面糸条としてもよい。
本発明に係る手袋の表面糸条又は裏面糸条を構成するフィラメント捲縮糸としては、公知の捲縮糸を用いればよい。具体的には、例えばナイロンやポリエステルのマルチフィラメント糸を仮撚り加工した捲縮糸や、嵩高加工によって捲縮を付与した捲縮糸などが挙げられる。それら加工法としては、公知の方法、例えば一般的な旋回仮撚法あるいは非旋回法である押込み法、擦過法、賦型法などを用いればよい。中でも、例えば、ポリパラフェニレンテレフタルアミド繊維の捲縮糸、ポリメタフェニレンイソフタルアミド繊維の捲縮糸または超高分子量ポリエチレン繊維の捲縮糸などのような高性能合成繊維の捲縮糸が、耐切創性や耐熱性等の機能を備えた手袋とするために好ましい。本発明で用いるフィラメント捲縮糸としては、上記捲縮糸の1種類を単独で用いてもよいし、2種類以上を混繊、合糸、あるいは交編などにより混合して用いてもよい。また、ポリウレタン弾性糸を混合して伸縮性を高めるなど、所望により他の合成繊維を混合して用いることもできる。
本発明に係る手袋の表面糸条又は裏面糸条を構成する紡績糸としては、ポリエステル、ポリアミド、ポリアクリルニトリルもしくはポリプロピレン等の汎用合成繊維のステープルや、アラミド繊維等の高性能合成繊維のステープルからなる紡績糸、これらステープルに綿等の天然繊維、ポリノジックやレーヨンなどの再生繊維やアセテート、トリアセテートなどの半合成繊維のステープルを混紡した紡績糸、又は、上記天然繊維、再生繊維、半合成繊維からなる紡績糸が挙げられる。綿本来の吸水特性を利用する場合には、綿を少なくとも50重量%含有している混紡糸を用いることが好ましい。また、再生繊維や半合成繊維の吸水性や風合いを利用する場合には、それら繊維を混紡して用いることが好ましい。但し、手袋内の快適性を高めるためには、少なくとも裏面糸条には、吸水によって体積膨張する天然繊維は好ましくない。また、耐切創性、耐熱性、耐薬品性等の機能を付与するためには前記した高性能合成繊維のステープルからなる紡績糸や混紡糸が好ましい。
なお、フィラメント捲縮糸と紡績糸とを組合せて用いる場合、手袋の表面糸条、裏面糸条のうちのどちらか一方が、フィラメント捲縮糸のみで構成され、他方が紡績糸のみで構成されることが好ましいが、本発明の条件を満足し、本発明の効果を損なわない範囲内ならば、例えば混合率が約40重量%程度以下ならば、他の糸条が一部合糸または交編されていてもよい。
本発明の手袋を製造するために用いられる糸条の、他の好ましい一実施態様としては、裏面糸条と表面糸条とで、構成する単糸の繊度を異ならせる場合が挙げられる。具体的には、単糸繊度が小さい方の糸条の単糸繊度と大きい方の糸条の単糸繊度との比を1:1.2〜6.0とすることが好ましく、さらには、1:1.5〜5.5とすることが好ましい。
糸条を構成する繊維(単糸)間の隙間は毛細管と同様に機能するので、単糸繊度が小さいほど繊維間の隙間が小さくなって、毛細管現象による水分吸引力が大きくなるので、上記単糸繊度条件をとる場合、一方の糸条の水分移動・拡散機能を高めることができる。
また、抗ピリング性の低下や、抗スナッグ性等の機械強度の低下を極力抑えつつ、汗の透水・拡散性を十分に発揮し、かつ、風合いが粗硬になるのを抑えるためには、表面糸条を構成する単糸の繊度は約1.0dTex未満程度が好ましい。また、裏面糸条を構成する単糸の繊度は、約1.0〜2.0dTex程度にすることが、裏面における吸水能力または肌触りの観点から好ましい。具体的な態様としては、例えば、1.67dTexのポリパラフェニレンテレフタルアミド繊維を裏面糸条において主として用い、表面糸条においては0.67dTexのポリパラフェニレンテレフタルアミド繊維を主として用いる手袋が挙げられる。
ここで、糸条を構成する単糸の繊度は、糸条から単糸1本を取り出し、JIS L 1015の8.5の繊度測定法(振動法)に従って測定する方法により求めることができる。また、複数の単糸を引き揃えた状態でその表示繊度(dTex)の1/10に相当する初荷重(g)をかけ、その状態で9cm長さに切断し、株式会社島津製作所製のトーションバランスを用いてその重量を測定する方法によって求めることもできる。
なお、手袋の表面糸条を構成する単糸、裏面糸条を構成する単糸の全てが上記条件を満足することが好ましいが、本発明の条件を満足し、本発明の効果を損なわない範囲内ならば、例えば混合率が約40重量%程度以下ならば、それ以外の単糸繊度の単糸が混合されていてもよい。
本発明の手袋を製造するために用いられる糸条の、他の好ましい一実施態様として、表面糸条及び裏面糸条のうちのいずれか一方が、単糸の繊維横断面において繊維長手方向に沿って1または複数の凹溝が形成された変形断面合成繊維を含む糸条であり、かつ、他方が、上記変形断面合成繊維が実質的に含まれない糸条でもって作製された手袋が挙げられる。この変形断面合成繊維における繊維横断面形状は、文字もしくは記号等でモデル的に示すと、E,F,H,K,M,N,T,W,X,Y,Z、十等の形状が挙げられる。なかでもH型、X型、Y型などのような高変形の形状を有する場合が好ましい。このような変形断面形状の繊維からなる糸条には、糸条内部に小さな隙間が多く存在し、毛細管現象作用を示すので、より優れた汗処理性を達成することができる。
毛細管現象による水分の移動をより効率良く行うために、上記凹溝を形成された変形断面合成繊維の糸条中における含有割合は、約30重量%程度以上であることが好ましく、約50重量%程度以上であることがより好まLい。
この場合、他方の糸条には、構成単糸として、上記した変形断面合成繊維が実施的に含まれないものであり、この糸条を構成する単糸には、例えば丸型、三角型、五角型、八角型などの横断面形状をもつ繊維が用いられる。
手袋の裏面と表面とにおいて、上述したような糸条を組合せて配置することにより、毛細管現象がより促進され、手袋着用時の蒸れ感がより軽減される。
本発明の手袋を製造するために用いられる糸条の、他の好ましい一実施態様として、表面糸条と裏面糸条との糸条繊度を異ならせ、そのうちの細い方の糸条総繊度と太い方の糸条総繊度との比を1:1.2〜5.0とする場合が挙げられる。この場合も、単糸繊度を異ならせた場合と同様、一方の糸条の水分移動・拡散機能を高めることができる。
ここで、裏面糸条や表面糸条として用いられる糸条の総繊度は、編物や織物が製造できる太さであれば特に制限されないが、手袋編成工程の点からは約5〜5000Tex程度が好ましい。
なお、本発明における単糸繊度、糸条繊度は、JIS L 0101(1999)に規定されるTexの単位による表示であり、Texで表される数値が大きいほど単糸や糸条は太いものである。
本発明の手袋に耐切創性や耐熱性等の機能を付加するために、裏面糸条や表面糸条として好適に用いられる高性能合成繊維としては、8cN/dTex以上、好ましくは10cN/dTex以上、さらに好ましくは17cN/dTex以上の引張り強度を有する高強度繊維、限界酸素指数が約25以上の難燃性と示差走査熱量測定法による熱分解点が約400℃以上の耐熱性とを有する高耐熱繊維、又は、それら特性をともに具備する高強度・高耐熱繊維が好ましい。
ここで、引張り強度は、ステープルの場合は、JIS L 1095(1999)化学繊維ステープル試験方法7.7に従って、またフィラメントの場合は、JIS L 1013(1999)化学繊維フィラメント糸試験方法の8.5.1記載の方法に従って測定される値である。
限界酸素指数は、JIS K 7201(1999)酸素指数法による高分子材料の燃焼試験方法に従って、また、熱分解点は、JIS K 7120(1987)プラスチックスの熱重量測定方法に従って測定される値である。
上記高性能繊維のうち、高強度および高耐熱性を兼ね備えている繊維としては、例えば、ポリパラフェニレンテレフタルアミド繊維(東レ・デュポン株式会社製、商品名ケブラー)およびコポリパラフェニレン−3,4’−ジフェニルエーテルテレフタルアミド繊維(帝人株式会社製、商品名テクノーラ)などのパラ系全芳香族ポリアミド繊維などのパラ系アラミド繊維、全芳香族ポリエステル繊維(例えば株式会社クラレ製、商品名ベクトラン)、ポリパラフェニレンベンゾビスオキサゾール繊維(例えば東洋紡株式会社製、商品名ザイロン)などが挙げられる。本発明においては、中でも、パラ系アラミド繊維を用いるのが好ましく、ポリパラフェニレンテレフタルアミド繊維を用いるのがより好ましい。
また、上記高性能繊維としては、耐熱性は上述の繊維に比べやや劣るが引っ張り強度に優れた繊維も挙げられる。具体的には、例えば、超高分子量ポリエチレン繊維(例えば東洋紡株式会社製、商品名ダイニーマ)、ポリビニルアルコール系繊維(例えば株式会社クラレ製、商品名クラロンKII(高強力タイプ))などが挙げられる。
また、上記高性能繊維としては、引っ張り強度は上述の繊維に比べやや劣るが耐熱性に優れた繊維も挙げられる。具体的には、例えばポリメタフェニレンイソフタルアミド繊維(デュボン社製、商品名ノーメックス)などのメタ系全芳香族ポリアミド繊維などのメタ系アラミド繊維、ポリベンズイミダゾール繊維、ポリアミドイミド繊維(例えばローヌプーラン社製、商品名ケルメル)、ポリイミド繊維などが挙げられる。
本発明に係る手袋は、表面糸条が手袋の表面に表れ、裏面糸条が手袋の裏面に表れるように作製することができれば、公知の任意の方法で製造することができる。具体的には、公知の手袋編機を用いて糸条から手袋を編み上げる方法、または織編物を公知の方法に従って手袋の形に切断して縫い上げる方法などが挙げられる。
前者の編成による方法としては、前述した表面糸条と裏面糸条とを糸条繊度比が所望の値となるような割合で引き揃えた引き揃え糸でもって編み目が構成されるように、かつ、その表面糸条と裏面糸条とがそれぞれ手袋表面と裏面とに配されるように手袋編成する方法が挙げられる。これは、例えば市販のコンピュータ手袋編機SFGやSJF(株式会社島精機製作所製)のような手袋編機を用い、表面糸条と裏面糸条とをそれぞれの所定のガイド部に分けて挿入し、手袋を編成する方法などにより行うことができる。この編成による製造方法によれば1工程で本発明に係る手袋を製造できるので、手袋製造工程が簡略であって、製造コストを抑制できるという利点がある。
後者の縫製による方法においては、表面糸条と裏面糸条とがそれぞれ表面と裏面とに配されるように、公知の生地製造方法に従って作製された編職物を用い、この編織物を所定形状に裁断して縫製する方法が挙げられる。この編織物としては、例えば、シングルジャージもしくはダブルジャージなどの丸編地、シングルトリコット、ダブルトリコット、シングルラッセルもしくはダブルラッセル等の経編地などのような編物が挙げられる。また、平二重、二重ツイル、二重サテンに代表される通常の二重織物、また、ツイル、サテンに代表される通常の一重織物のような織物が挙げられる。編織物の表裏形態としては、両面フラット形態、片面フラット・他面凹凸形態、両面凹凸形態、片面パイル形態、両面パイル形態、メッシュ形態等、特に限定されるものではない。また、起毛形態にしてもよい。
本発明に係る手袋に用いる上記織編物においては、表面と裏面とが接結糸条で連結された織編構造になっていてもよい。例えば、かかる編物としては、表面地と裏面地が両面タックニットをなす接結された両面丸編地や両面横編地、または、片面を形成しつつ他の片面とをタックニットにより接結をなす両面丸編地や両面横編地などが挙げられる。また、かかる織物としては、ダブルベルベット織機で得られるような単独の接結糸条で表面地と裏面地が接結された織物、片面を形成する経糸もしくは緯糸のどちらか一方の糸条が他面とを接結点において接結する経緯2重織物、または片面を形成する経糸(緯糸)と他面を形成する経糸(緯糸)を、緯糸(経糸)の接結点において接結する経2重織物(緯2重織物)などが挙げられる。
この際、接結糸条は裏面を主として構成している糸条と実質的に同一の糸条を用いることが好ましい。また、3種の糸使いとなる場合には、接結糸条として、裏面を主として構成している糸条と表面を主として構成している糸条の中間の物性(例えば、繊維空間や単糸繊度)を有する糸条を用いてもよい。
本発明に係る手袋を構成する上記織編物は、表面を形成する織編物と裏面を形成する織編物とが密着した状態で隣接することなく、中層部に空気層を介在するように構成されたものでもよい。また、本発明に係る手袋を構成する上記織編物は、表面と裏面との間に中間層を有し、3〜5層程度、好ましくは3層の多層構造体からなるものであってもよい。
本発明に係る手袋は、裏面の形状を凹凸形状にすることも好ましい。この場合、手袋を装着した場合、その凸部が肌と点接触するため、液状の汗を発汗してもベタツキ感が少なくなる。また、裏面に凹凸部があることにより、肌と凹部問で空気層ができ、手の動きを止めてからの冷感に伴う不快感を軽減することもできる。かかる凹凸部の形状は特に限定されるものではないが、たてストライプ状、よこボーダー状、格子状、ツイル状、杉綾状、ドット状または鹿の子状などが挙げられる。この凹凸状の高低差を形成させるには、編組織、織組織による方法、太い糸と細い糸の組合せによる方法、またはこの両者を組合わせる方法等があり、特に限定されるものではない。
また、本発明に係る手袋は、裏面が起毛されていてもよい。裏面を起毛することにより裏面層の繊維拘束度が粗になるため、毛細管現象作用をより促進させ、汗の吸水・透水・拡散効果をより増大させることができると同時に、肌触り性と保温性を向上させることもできる。起毛の方法としては、公知の起毛工程を通せばよく、例えば針布起毛やバフ加工などいずれの方法を用いてもよい。
本発明に係る手袋に対しては、例えば、染色加工または吸水加工などの機能性付与加工など公知の処理を施してもよい。染色加工の方法は特に限定されるものではない。また、吸水加工を付与すれば、さらに優れた吸水・透水・拡散性が得られ、本発明に係る手袋をより好ましい性能にすることができる。さらに、吸水加工以外の機能性付与加工としては、帯電防止、消臭、擦水、防汚、抗菌、防カビ、再帰反射、蓄光加工などが挙げられ、手袋の風合いを損なわず、かつ本発明の効果を損なわない範囲内で施すものであれば、これらの加工は何ら限定なく行うことができる。
以下に、本発明を実施例、比較例に基づいて説明する。The glove according to the present invention requires that the yarn appearing on the surface of the glove and the yarn appearing on the back surface are substantially different, and the water absorption front / back diffusion area ratio is 1.3 or more. The water absorption front / back diffusion area ratio is preferably 2 times or more, and more preferably 4 times or more. The upper limit is preferably about 30 times.
Here, the water absorption front / back diffusion area ratio is the ratio of the diffusion area of the surface to the diffusion area of the back surface after the water adhering to the back surface reaches the surface, and is measured by the following method.
0.1 cc of an ink solution obtained by diluting a commercially available aqueous ink twice with water on a glass plate is dropped, and a glove or a sample knitted fabric collected from the glove (hereinafter referred to as “sample” in this column) It is placed so that the back side is down, that is, in contact with the ink liquid, and left for 60 seconds to absorb the ink liquid. Next, the sample was moved onto another glass plate on which nothing was placed, and also after being left for 3 minutes with the back surface of the sample facing down, the ink liquid diffusion area on the sample surface and the ink liquid diffusion area on the back surface Measure each. From the measured value, the value of the area ratio (= surface diffusion area / back surface diffusion area) is calculated. This measurement is performed for three samples, and the average value of the area ratio values calculated for each sample is set as the “water absorption front / back diffusion area ratio” in the present invention.
The size of the diffusion area indicates the absorption / diffusion state of the ink liquid. When the diffusion area on the front surface is larger than the diffusion area on the back surface, that is, when the above-mentioned water absorption front / back diffusion area ratio is large, the ink was dropped. This means that the ink liquid is efficiently moved to the surface side, that is, excellent in so-called water absorption / water permeability / diffusion ability. Further, the large diffusion area on the surface side means that the contact area with the atmosphere is large and the evaporation efficiency of moisture is improved, so that the drying property is excellent.
Here, the yarn appearing on the surface of the glove (hereinafter referred to as “surface yarn”) and the yarn appearing on the back surface (hereinafter referred to as “back surface yarn”) are the yarn appearing on the surface when the glove is manufactured. Means a yarn arranged so as to become a yarn and a yarn arranged so as to appear on the back surface, and in the glove of the present invention, both the yarns are substantially different. It is. Therefore, in the manufactured glove, all or most of the yarn appearing on the surface of the glove is “surface yarn”, and all or most of the yarn appearing on the back surface of the glove is “back yarn”. However, within a range not impairing the effect of the present invention, about 40% by weight or less of the total yarn appearing on the surface of the glove may be yarn other than “surface yarn”, and the glove About 40% by weight or less of all the yarns appearing on the back surface may be yarns other than the “back surface yarn”.
In the glove according to the present invention, the above-described water absorption front / back diffusion area ratio is about 1.3 or more. The means for obtaining the value of the diffusion area ratio is not particularly limited, but a preferable means is, for example, taking the form and configuration of the yarn as described below.
As a preferable aspect of the glove according to the present invention, the back surface yarn has a fiber space ratio of 88 to 98% and the fiber having a fiber space ratio of 88 to 98%, or the surface yarn has a fiber space ratio of 88 to 98%. For example, gloves composed of yarn with a lot of fiber space. That is, it is a glove in which either one of the back surface yarn and the front surface yarn is configured with the above-described high space ratio yarn. In such a glove, sweat adhering to the back surface can be quickly moved from the inside to the outside by the capillary phenomenon, and moisture can be released into the atmosphere, so that the water absorption front / back diffusion area ratio can be 1.3 or more. The feeling of stuffiness when wearing gloves can be eliminated.
Below, the effect by this capillary phenomenon is demonstrated. When a capillary is erected on the water surface, water rises against the gravity against the gravity, and its height (h) is expressed by the following equation.
Figure 2004041011
(Where r is the surface tension of the liquid, θ is the contact angle, v is the radius of the capillary, p is the density of the liquid, and g is the acceleration of gravity.)
That is, if the type of liquid is constant, the liquid is sucked into the tube in inverse proportion to the radius of the capillary. Here, a high space rate yarn having a fiber space ratio of 88 to 98% is used for the back surface yarn or the front surface yarn of the glove according to the present invention. The fiber space ratio of the high space ratio yarn is preferably 90 to 96%.
The yarns that make up gloves are made up of fibers with fine single yarn fineness, just like normal clothing fibers, so the space formed between the fibers in the yarn is sufficient to cause capillary action. It has a fineness. In the present invention, the yarn having a sufficiently large fiber space ratio in the yarn is used as the back surface yarn or the front surface yarn, so that most of the space in the yarn is interrupted even after being knitted into a glove. It communicates and contributes to the rapid movement and diffusion of moisture by capillary action.
That is, it is considered that the absorption, movement, and diffusion of moisture from the back surface to the front surface of the glove proceed as follows. Moisture moved and diffused from the back surface of the glove into the back surface yarn due to the capillary phenomenon in the back surface thread travels along the back surface yarn and the front surface thread in the glove and moves toward the glove surface. It moves from the inside of the back surface yarn to the inside of the front surface yarn, and then transpires from the inside of the surface yarn to the outside air on the glove surface. In this case, for example, in a normal glove such as a knitted glove in which stitches are formed by a back-and-forth surface yarn and an aligned yarn of the front surface yarn, both the back surface yarn and the front surface yarn are the back surface of the glove or the vicinity thereof. Since it is arranged so as to reach the surface or the vicinity thereof, by making one of them a high space factor yarn, there are more voids communicating from the back side of the glove to the surface side, and movement and diffusion of moisture Presumed to be promoted.
In order to constantly move and diffuse moisture due to this capillary phenomenon, it is preferable to use synthetic fiber yarns for at least one of them. This is presumed that in the case of a synthetic fiber, the volume of the fiber itself does not substantially expand due to moisture absorption, and a capillary having a sufficient volume can be constantly secured in the yarn.
For this purpose, it is preferable that a corresponding fiber space also exists in other yarns that did not use the high space rate yarn, and for example, a yarn having a fiber space rate of 49 to 90% is preferably used. The fiber space ratio of the other yarn is more preferably 60 to 88%.
In addition, in order to maintain the comfort of the space in the glove and promote evaporation on the surface of the glove, it is also possible to prevent the water that has been transferred or diffused from the back of the glove to flow back to the back of the glove. Preferably, for this purpose, it is preferable that the fiber space ratio in the surface yarn is smaller than the fiber space ratio in the back surface yarn, for example, fibers of the front surface yarn and the back surface yarn. What is necessary is just to make it the ratio of a space ratio be 1: 1.0-2.0.
Here, the fiber space ratio in the yarn is calculated as follows.
(1) A necessary number of original yarns (filament yarns, processed yarns, staple yarns, etc.) are aligned so that the fineness becomes approximately 2200 dTex and used as a sample.
(2) One of the yarn ends of the sample is attached to the chuck portion of the tester, and the sample length is 500 mm with an initial load (g) corresponding to 1/200 of the sample fineness (dTex). Then, fix the other yarn end to the other chuck.
(3) The sample is twisted 25 times / 50 cm, fixed to the mount in that state, and removed from the chuck.
(4) The diameter of the sample is measured using a magnifying glass while being fixed to the mount. At this time, the length of the wing protruding from the sample surface is not included. The number of measurements n is 10 or more.
(5) A sample is cut into a length of 30 cm, and a weight A (g) is measured using an electronic balance.
(6) The fiber space ratio is obtained by the following equation.
Fiber space ratio (%) = {1- (A / B)} × 100
(In the formula, A represents the actual weight (g) measured in the above (5). B represents the calculated weight (g) calculated by the following formula.)
Calculated weight (g) = πr 2 × 30 × specific gravity of fiber (wherein r represents the sample radius (cm) calculated from the fiber diameter measured in (4)).
In the glove according to the present invention, if the fiber material constituting the surface yarn and the back surface yarn can be combined with the surface yarn and the back surface yarn so as to satisfy the requirements of the present invention, for example, polyester, polyamide, Any fiber conventionally used for clothing such as synthetic fibers such as polyacrylonitrile, polyvinyl alcohol, and aramid, or natural fibers such as cotton and hemp can be used. Among them, it is preferable to use high-performance synthetic fibers in order to give the gloves functions such as cut resistance, heat resistance, and chemical resistance. Further, for the front surface yarn and the back surface yarn, spun yarn, filament yarn or crimped yarn made of one of the above-mentioned fibers is used, and as such spun yarn, filament yarn or crimped yarn, these are used. You may use the draw yarn and the twist yarn which used two or more. A yarn obtained by blending or blending two or more of the above fibers may be used. Further, the yarn may be another processed yarn such as a core spun yarn.
Here, in order to improve the comfort in the gloves, it is preferable that one or both of the front surface yarn and the back surface yarn are synthetic fibers, and it is particularly preferable that the back surface yarn is a synthetic fiber.
In particular, in the case of synthetic fiber gloves, it is preferable that one of the front surface yarn and the back surface yarn is composed of a filament crimped yarn, and the other is composed mainly of a spun yarn. That is, both the filament crimped yarn and the spun yarn can easily control the fiber space ratio by adjusting the yarn configuration and production conditions, so that the fiber space ratio between the front surface yarn and the back surface yarn can be set to a desired level. In order to control, it is preferable to knit gloves with a combination of filament crimped yarn and spun yarn. For example, in the case of a filament crimped yarn, the higher the degree of crimp of the constituent single yarn, the higher the bulk and the fiber space ratio. In the case of a spun yarn, the greater the twisting coefficient, the closer the constituent staples, and the smaller the fiber space ratio. When combining a filament crimped yarn and a spun yarn having a fiber space ratio of a desired level by such means, the filament crimped yarn may be a surface yarn and the spun yarn may be a backside yarn. The yarn may be a front surface yarn and the filament crimped yarn may be a back surface yarn.
A known crimped yarn may be used as the filament crimped yarn constituting the surface yarn or the back yarn of the glove according to the present invention. Specifically, for example, a crimped yarn obtained by false twisting a nylon or polyester multifilament yarn, or a crimped yarn imparted with a crimp by a bulky process. As these processing methods, a known method, for example, a general swirling false twisting method or a non-turning method such as an indentation method, a rubbing method, or a molding method may be used. Among them, for example, crimped yarns of high-performance synthetic fibers such as crimped yarns of polyparaphenylene terephthalamide fibers, crimped polymetaphenylene isophthalamide fibers, or crimped yarns of ultrahigh molecular weight polyethylene fibers are resistant to cutting. It is preferable to obtain a glove having functions such as creativity and heat resistance. As the filament crimped yarn used in the present invention, one type of the above crimped yarn may be used alone, or two or more types may be mixed and used by blending, synthetic yarn, knit or the like. Also, other synthetic fibers can be mixed and used as desired, for example, by mixing polyurethane elastic yarns to increase stretchability.
As the spun yarn constituting the surface yarn or the back yarn of the glove according to the present invention, staples of general-purpose synthetic fibers such as polyester, polyamide, polyacrylonitrile or polypropylene, and staples of high-performance synthetic fibers such as aramid fibers are used. A spun yarn obtained by blending these staples with natural fibers such as cotton, recycled fibers such as polynosic and rayon, and staples of semi-synthetic fibers such as acetate and triacetate, or the above natural fibers, regenerated fibers and semi-synthetic fibers The spun yarn becomes. When utilizing the inherent water absorption characteristics of cotton, it is preferable to use a blended yarn containing at least 50% by weight of cotton. Moreover, when utilizing the water absorption and the texture of a regenerated fiber or a semi-synthetic fiber, it is preferable to mix and use these fibers. However, in order to enhance the comfort in the glove, natural fibers that are volume-expanded by water absorption are not preferred at least for the back yarn. Further, in order to impart functions such as cut resistance, heat resistance, and chemical resistance, a spun yarn or a blended yarn made of the above-described high-performance synthetic fiber staple is preferable.
When using a combination of filament crimped yarn and spun yarn, either the front yarn or the back yarn of the glove is composed only of the filament crimped yarn, and the other is composed only of the spun yarn. However, if it satisfies the conditions of the present invention and does not impair the effects of the present invention, for example, if the mixing ratio is about 40% by weight or less, the other yarns are partially mixed or mixed. It may be knitted.
As another preferred embodiment of the yarn used for producing the glove of the present invention, there is a case where the fineness of the single yarn constituting the back surface yarn and the front surface yarn is different. Specifically, the ratio of the single yarn fineness of the yarn having the smaller single yarn fineness to the single yarn fineness of the larger yarn is preferably 1: 1.2 to 6.0, It is preferable to set it as 1: 1.5-5.5.
Since the gap between the fibers (single yarn) constituting the yarn functions in the same way as the capillary tube, the smaller the single yarn fineness, the smaller the gap between the fibers and the greater the water suction force due to the capillary phenomenon. When the yarn fineness condition is taken, the moisture movement / diffusion function of one yarn can be enhanced.
In addition, in order to suppress the deterioration of mechanical strength such as anti-pilling property and anti-snugging property as much as possible, to fully demonstrate the water permeability and diffusibility of sweat, and to suppress the texture from becoming rough, The fineness of the single yarn constituting the surface yarn is preferably less than about 1.0 dTex. In addition, the fineness of the single yarn constituting the back surface yarn is preferably about 1.0 to 2.0 dTex from the viewpoint of water absorption capability or touch on the back surface. As a specific embodiment, for example, a glove that mainly uses 1.67 dTex polyparaphenylene terephthalamide fiber in the back yarn and mainly uses 0.67 dTex polyparaphenylene terephthalamide fiber in the surface yarn.
Here, the fineness of the single yarn constituting the yarn can be obtained by a method in which one single yarn is taken out from the yarn and measured according to the fineness measurement method (vibration method) of 8.5 of JIS L 1015. In addition, an initial load (g) corresponding to 1/10 of the displayed fineness (dTex) is applied in a state where a plurality of single yarns are aligned, and in that state, the yarn is cut into a length of 9 cm, torsion manufactured by Shimadzu Corporation It can also be determined by a method of measuring its weight using a balance.
In addition, although it is preferable that all of the single yarn constituting the surface yarn of the glove and the back yarn of the glove satisfy the above conditions, the range satisfying the conditions of the present invention and not impairing the effects of the present invention If it is within the range, for example, if the mixing rate is about 40% by weight or less, other single yarn fineness may be mixed.
As another preferable embodiment of the yarn used for producing the glove of the present invention, either one of the front surface yarn and the back surface yarn is along the fiber longitudinal direction in the fiber cross section of the single yarn. And a glove made of a yarn containing a modified cross-section synthetic fiber in which one or a plurality of concave grooves are formed, and the other is a yarn substantially free of the modified cross-section synthetic fiber. . The cross-sectional shape of the fiber in this deformed cross-section synthetic fiber is modeled by letters or symbols as follows: E, F, H, K, M, N, T, W, X, Y, Z, and tenths Can be mentioned. In particular, a case of having a highly deformed shape such as an H type, an X type, or a Y type is preferable. A yarn composed of fibers having such a deformed cross-sectional shape has many small gaps inside the yarn and exhibits a capillary action, so that it is possible to achieve better sweat treatment.
In order to more efficiently move moisture due to capillary action, the content of the modified cross-section synthetic fiber formed with the concave groove in the yarn is preferably about 30% by weight or more, and about 50% by weight. It is more preferable that it is more than about.
In this case, the other yarn does not practically include the above-described deformed cross-section synthetic fiber as a constituent single yarn. For the single yarn constituting this yarn, for example, a round shape, a triangular shape, A fiber having a cross-sectional shape such as pentagonal or octagonal is used.
By arranging the above-described yarns in combination on the back surface and the front surface of the glove, the capillary phenomenon is further promoted, and the feeling of stuffiness when the glove is worn is further reduced.
As another preferred embodiment of the yarn used for producing the glove of the present invention, the fineness of the surface yarn and that of the back yarn are made different from each other. A case where the ratio to the total yarn fineness is set to 1: 1.2 to 5.0 is mentioned. In this case as well, as in the case where the single yarn fineness is varied, the moisture movement / diffusion function of one yarn can be enhanced.
Here, the total fineness of the yarn used as the back surface yarn or the front surface yarn is not particularly limited as long as it is a thickness capable of producing a knitted fabric or woven fabric, but is preferably about 5 to 5000 Tex from the point of the glove knitting process. .
The single yarn fineness and the yarn fineness in the present invention are expressed in units of Tex defined in JIS L 0101 (1999), and the larger the numerical value represented by Tex, the thicker the single yarn or yarn. is there.
In order to add functions such as cut resistance and heat resistance to the glove of the present invention, the high-performance synthetic fiber suitably used as the back surface yarn or the front surface yarn is 8 cN / dTex or more, preferably 10 cN / dTex or more. More preferably, a high-strength fiber having a tensile strength of 17 cN / dTex or higher, a flame resistance having a critical oxygen index of about 25 or higher, and a high heat resistance having a thermal decomposition point by a differential scanning calorimetry of about 400 ° C. or higher. A heat-resistant fiber or a high-strength and high-heat-resistant fiber having both of these characteristics is preferable.
Here, in the case of staples, the tensile strength is in accordance with JIS L 1095 (1999) chemical fiber staple test method 7.7. In the case of filaments, the tensile strength is 8.5 according to JIS L 1013 (1999) chemical fiber filament yarn test method. .1 is a value measured according to the method described in 1.
The limiting oxygen index is a value measured according to a combustion test method of a polymer material according to JIS K 7201 (1999) oxygen index method, and the thermal decomposition point is a value measured according to a thermogravimetry method of JIS K 7120 (1987) plastics. is there.
Among the above-mentioned high-performance fibers, examples of fibers having high strength and high heat resistance include, for example, polyparaphenylene terephthalamide fiber (trade name Kevlar manufactured by Toray DuPont Co., Ltd.) and copolyparaphenylene-3,4 ' -Para-aramid fibers such as para-type wholly aromatic polyamide fibers such as diphenyl ether terephthalamide fiber (manufactured by Teijin Ltd., trade name Technora), wholly aromatic polyester fibers (for example, Kuraray Co., Ltd., trade name Vectran), polypara Examples thereof include phenylene benzobisoxazole fibers (for example, trade name Zylon manufactured by Toyobo Co., Ltd.). In the present invention, it is preferable to use para-aramid fibers, and it is more preferable to use polyparaphenylene terephthalamide fibers.
Further, examples of the high-performance fiber include a fiber that is slightly inferior in heat resistance to the above-mentioned fiber but has excellent tensile strength. Specifically, for example, ultra high molecular weight polyethylene fibers (for example, trade name Dyneema manufactured by Toyobo Co., Ltd.), polyvinyl alcohol fibers (for example, manufactured by Kuraray Co., Ltd., trade name Claron KII (high strength type)) and the like can be mentioned.
Further, examples of the high-performance fiber include a fiber that is slightly inferior in tensile strength to the above-mentioned fiber but has excellent heat resistance. Specifically, for example, meta-aramid fibers such as poly-metaphenylene isophthalamide fibers (manufactured by Dubon, trade name Nomex) such as meta-aromatic polyamide fibers, polybenzimidazole fibers, polyamide-imide fibers (for example, Rhone-Poulenc) Manufactured, trade name Kelmel), polyimide fiber and the like.
The glove according to the present invention can be manufactured by any known method as long as it can be produced so that the surface yarn appears on the surface of the glove and the back surface yarn appears on the back surface of the glove. Specifically, a method of knitting a glove from a yarn using a known glove knitting machine, a method of cutting a woven or knitted fabric into a glove shape according to a known method, and the like can be mentioned.
As a method by the former knitting, the stitches are constituted by an aligned yarn in which the above-mentioned front surface yarn and the back surface yarn are aligned at a ratio such that the yarn fineness ratio becomes a desired value, and A method of knitting gloves so that the front surface yarn and the back surface yarn are arranged on the front surface and the back surface of the glove, respectively. For example, a glove knitting machine such as a commercially available computer glove knitting machine SFG or SJF (manufactured by Shima Seiki Seisakusho Co., Ltd.) is used, and the front surface yarn and the back surface yarn are divided into predetermined guide portions and inserted. It can be performed by a method of knitting gloves. According to the manufacturing method by this knitting, the glove according to the present invention can be manufactured in one process, so that the glove manufacturing process is simple and the manufacturing cost can be suppressed.
In the latter method by sewing, a knitted fabric produced in accordance with a known fabric manufacturing method is used so that the front surface yarn and the back surface yarn are arranged on the front surface and the back surface, respectively. And a method of cutting and sewing. Examples of the knitted fabric include a knitted fabric such as a circular knitted fabric such as a single jersey or a double jersey, a warp knitted fabric such as a single tricot, a double tricot, a single raschel or a double raschel. Further, a normal double woven fabric represented by flat double, double twill, and double satin, and a normal single woven fabric represented by twill and satin are also exemplified. The front and back forms of the knitted fabric are not particularly limited, such as a double-sided flat form, a single-sided flat / other-side uneven form, a double-sided uneven form, a single-sided pile form, a double-sided pile form, and a mesh form. Moreover, you may use a raised form.
The woven or knitted fabric used in the glove according to the present invention may have a woven or knitted structure in which the front surface and the back surface are connected by a binding yarn. For example, as such a knitted fabric, a double-sided circular knitted fabric or a double-sided flat knitted fabric in which the front surface and the back surface form a double-sided tack knit, or the other side of the single-sided surface is connected by a tack knit. Examples include double-sided circular knitted fabrics and double-sided flat knitted fabrics. In addition, as such a woven fabric, a single ligature yarn obtained by a double velvet weaving machine, a woven fabric in which the front surface and the back surface are connected, and either one of the warp yarn or the weft yarn forming one side, etc. A warp double woven fabric that connects the surface at the connection point, or a warp 2 that connects the warp yarn (weft) that forms one side and the warp yarn (weft) that forms the other surface at the connection point of the weft (warp yarn). Heavy fabrics (double weft fabrics) and the like can be mentioned.
At this time, it is preferable that the binding yarn is substantially the same as the yarn mainly constituting the back surface. When three types of yarn are used, the physical properties (for example, fiber space and single yarn) between the yarn mainly constituting the back surface and the yarn mainly constituting the surface are used as the binding yarn. A yarn having a fineness) may be used.
The woven or knitted fabric constituting the glove according to the present invention is configured such that an air layer is interposed in the middle layer portion without adjoining the woven or knitted fabric forming the front surface and the woven or knitted fabric forming the back surface in close contact with each other. It may be a thing. Moreover, the woven or knitted fabric constituting the glove according to the present invention may have an intermediate layer between the front surface and the back surface, and may be composed of a multilayer structure of about 3 to 5 layers, preferably 3 layers. .
In the glove according to the present invention, it is also preferable that the shape of the back surface is an uneven shape. In this case, when a glove is worn, the convex portion makes point contact with the skin, so that even when liquid sweat is perspired, the sticky feeling is reduced. In addition, since there is an uneven portion on the back surface, an air layer is formed between the skin and the recessed portion, and the discomfort associated with the cold feeling after stopping the movement of the hand can be reduced. The shape of the concavo-convex portion is not particularly limited, and examples thereof include a vertical stripe shape, a horizontal border shape, a lattice shape, a twill shape, a cedar shape, a dot shape, and a deer shape. In order to form the uneven height difference, there are a knitting structure, a method using a woven structure, a method using a combination of a thick yarn and a thin yarn, a method combining these both, and the like.
Moreover, the back surface of the glove according to the present invention may be raised. By raising the back side, the fiber restraint degree of the back side layer becomes rough, so that the capillary action can be further promoted and the water absorption / permeation / diffusion effect of sweat can be further increased, while at the same time the touch and heat retention are improved. It can also be improved. As a raising method, a known raising step may be performed, and any method such as needle raising and buffing may be used.
The glove according to the present invention may be subjected to a known process such as a functional process such as a dyeing process or a water absorption process. The dyeing method is not particularly limited. Moreover, if water absorption processing is given, the further outstanding water absorption, water permeability, and diffusibility will be obtained, and the glove which concerns on this invention can be made more preferable performance. Furthermore, examples of functional processing other than water absorption processing include antistatic, deodorant, water rub, antifouling, antibacterial, antifungal, retroreflective, and phosphorescent processing, and without impairing the texture of the glove. These processes can be performed without any limitation as long as they are performed within a range that does not impair the effect.
Below, this invention is demonstrated based on an Example and a comparative example.

限界酸素指数29、熱分解点537℃、引張強さ20.3cN/dTex、引張弾性率499cN/dTex、糸条繊度292dTex、単糸繊度1.65dTexのポリパラフェニレンテレフタルアミド繊維フィラメント糸条(商品名ケブラー、東レ・デュポン株式会社製)を使用して、この糸条にリング撚糸機(株式会社柿木製作所製の複合撚糸機タイプKCT)で、撚り係数K=6308に相当する第1の撚りを加え、その状態で、180℃の飽和水蒸気による熱処理を30分間行った。次いで、上記撚糸機により第1の撚りとは逆方向に第2の撚りを加えて、撚り数が0になるまで解撚し、ポリパラフェニレンテレフタルアミド繊維からなるフィラメント捲縮糸を作製した。なお、上記撚り係数Kは、K=t×D1/2(ただし、tは撚り数(回/m)、Dは繊度(dTex)を示す)による値である。
上記した繊度292dTexのフィラメント捲縮糸の4本を集束させた糸条を裏面糸条として用いた。また、表面糸条としては、糸条繊度292dTex、単糸繊度1.65dTexでZ方向13.0回/インチの下撚りをかけたポリパラフェニレンテレフタルアミド紡績糸(商品名ケブラー、東レ・デュポン株式会社製)の2本をS方向8.4回/インチで撚り合わせて双糸とし、この双糸の3本を集束させた糸条を用いた。かかる表面糸条と裏面糸条とを引き揃えた引き揃え糸でもって、7ゲージ手袋用のコンピュータ手袋編機SFG−7G(株式会社島精機製作所製)を用いて、7ゲージ手袋を作製した。この際、表面糸条と裏面糸条とをそれぞれの所定のガイド部に分けて挿入し、表面糸条が手袋表面に配され、裏面糸条が手袋裏面に配されるように編成した。
得られた手袋は表面に上記紡績糸が表れ、裏面に上記捲縮糸が表れたものであった。その特性は表1に示す通りであり、長時間手袋着用して作業した後でも手袋内の蒸れ感がなく、着用快適性に優れていた。さらに、機械強度及び耐熱性に優れた高性能繊維を用いたことにより、耐切創性及び耐熱性に優れていた。
Polyparaphenylene terephthalamide fiber filament yarn having a limiting oxygen index of 29, a thermal decomposition point of 537 ° C., a tensile strength of 20.3 cN / dTex, a tensile modulus of elasticity of 499 cN / dTex, a yarn fineness of 292 dTex, and a single yarn fineness of 1.65 dTex Using a name Kevlar, manufactured by Toray DuPont Co., Ltd., a ring twisting machine (composite twisting machine type KCT manufactured by Kashiwagi Seisakusho Co., Ltd.) is used for this yarn, and a first twist corresponding to a twisting coefficient K = 6308 is applied. In addition, in that state, heat treatment with saturated steam at 180 ° C. was performed for 30 minutes. Next, a second twist was applied in the direction opposite to the first twist by the above twisting machine, and the twist was untwisted until the number of twists became 0, to produce a filament crimped yarn made of polyparaphenylene terephthalamide fiber. The twist coefficient K is a value based on K = t × D 1/2 (where t is the number of twists (times / m) and D is the fineness (dTex)).
A yarn obtained by converging four filament crimped yarns having a fineness of 292 dTex was used as a back yarn. The surface yarn is a polyparaphenylene terephthalamide spun yarn (trade name Kevlar, Toray DuPont Co., Ltd.) with a yarn fineness of 292 dTex, a single yarn fineness of 1.65 dTex and a Z twist of 13.0 times / inch. Two yarns (manufactured by the company) were twisted together in the S direction at 8.4 times / inch to form a twin yarn, and a yarn in which the three yarns were converged was used. A 7-gauge glove was produced by using a computer glove knitting machine SFG-7G (manufactured by Shima Seiki Seisakusho Co., Ltd.) for 7-gauge gloves with an aligned yarn obtained by aligning the front surface yarn and the back surface yarn. At this time, the front surface yarn and the back surface yarn were divided into respective predetermined guide portions and inserted, and knitted so that the front surface yarn was disposed on the glove surface and the back surface yarn was disposed on the glove back surface.
The obtained glove showed the above spun yarn on the front surface and the above crimped yarn on the back surface. The characteristics are as shown in Table 1. Even after working with gloves for a long time, there was no stuffiness in the gloves, and the wearing comfort was excellent. Furthermore, it was excellent in cut resistance and heat resistance by using the high-performance fiber excellent in mechanical strength and heat resistance.

表面糸条に用いたポリパラフェニレンテレフタルアミド紡績糸の代わりに、下記の高強力ポリビニルアルコール系繊維からなる紡績糸を用いた以外は上記実施例1と全く同様な方法で手袋を製造した。即ち、表面糸条には、糸条繊度292dTex、単糸繊度2.78dTexの、高強力ポリビニルアルコール系繊維からなる紡績糸の2本を撚り合わせた双糸を3本集束させた糸条を用いた。
ここで、高強力ポリビニルアルコール系繊維からなる紡績糸は、以下の方法で製造した。重合度2600の完全ケン化型ポリビニルアルコールをジメチルスルホキシドに溶解した紡出原液を口金吐出孔から押出してメタノールからなる凝固浴中で凝固させるという乾湿式紡糸を行い、連続してメタノール液中で洗浄し、浴延伸し、乾燥した後、雰囲気温度240℃で有効全延伸倍率が20倍となるように加熱延伸し、1500d/600f(引張り強度17cN/dTex,切断伸度4.6%)の原糸を製造した。得られた原糸を所定本数合糸して、10.8万dのトウとした。得られたトウを50℃に温水加熱した後、押込み捲縮機により捲縮を付与し、乾熱ヒートセッタにより70℃で5分間熱固定した。その後、仕上油剤を付与し、定長カッティング法により51mm長にカットして紡績用の綿を作り、通常のスフ紡績方法によって292dTex(20番手)の紡績糸を作製した。
得られた手袋は表面に上記紡績糸が表れ、裏面に実施例1と同じく捲縮糸が表れたものであった。その特性は表1に示す通りであり、長時間手袋着用して作業した後でも手袋内の蒸れ感がなく、着用快適性に優れていた。さらに耐切創性等も良好であった。
A glove was produced in the same manner as in Example 1 except that a spun yarn comprising the following high-strength polyvinyl alcohol fiber was used in place of the polyparaphenylene terephthalamide spun yarn used for the surface yarn. That is, for the surface yarn, a yarn in which three twin yarns obtained by twisting two spun yarns made of high-strength polyvinyl alcohol fibers having a yarn fineness of 292 dTex and a single yarn fineness of 2.78 dTex are used. It was.
Here, a spun yarn comprising a high-strength polyvinyl alcohol fiber was produced by the following method. Dry and wet spinning is performed by extruding a spinning stock solution in which saponified polyvinyl alcohol having a polymerization degree of 2600 dissolved in dimethyl sulfoxide is extruded from a nozzle discharge hole and coagulating in a coagulation bath made of methanol, and continuously washed in methanol solution. Then, the film is stretched in a bath, dried, and heated and stretched at an atmospheric temperature of 240 ° C. so that the effective total stretch ratio is 20 times. The raw material has a strength of 1500 d / 600 f (tensile strength: 17 cN / dTex, cutting elongation: 4.6%). Yarn was produced. A predetermined number of the obtained raw yarns were combined to obtain a 108,000 d tow. The obtained tow was heated with hot water to 50 ° C., then crimped with an indentation crimper, and heat-set at 70 ° C. for 5 minutes with a dry heat setter. Thereafter, a finishing oil was applied, and a cotton for spinning was produced by cutting to a length of 51 mm by a constant length cutting method, and a spun yarn of 292 dTex (20th) was produced by a normal sufu spinning method.
The obtained glove showed the above spun yarn on the surface and the crimped yarn on the back as in Example 1. The characteristics are as shown in Table 1. Even after working with gloves for a long time, there was no stuffiness in the gloves, and the wearing comfort was excellent. Furthermore, the cut resistance and the like were also good.

裏面糸条には、糸条繊度292dTex、単糸繊度1.29dTexの超高分子量ポリエチレン繊維フィラメント捲縮糸の4本を集束させた糸条を用いた。また、表面糸条には、糸条繊度292dTex、単糸繊度1.65dTexでZ方向16.0回/インチの下撚りをかけたポリパラフェニレンテレフタルアミド紡績糸(商品名ケブラー、東レ・デュポン株式会社製)の2本をS方向10.5回/インチで撚り合わせて双糸とし、この双糸の3本を集束させた糸条を用いた。それ以外は、実施例1と全く同様な方法で手袋を製造した。
ここで、超高分子量ポリエチレン繊維からなるフィラメント捲縮糸は、以下の方法で製造した。原糸繊度292dTexの超高分子量ポリエチレン糸(商品名ダイニーマ、東洋紡績株式会社製)を、加工時の温度147℃、加工速度50m/分、仮撚り数1700T/m、加工フイード率−23.5%、スピナ巻き数1回、仮撚り方向S方向の条件で、スピンドル式仮撚り加工を行ない、捲縮糸を作製した。
得られた手袋は表面に実施例1と同じく紡績糸が表れ、裏面に上記捲縮糸が表れたものであった。その特性は表1に示す通りであり、長時間手袋着用して作業した後でも手袋内の蒸れ感がなく、着用快適性に優れていた。さらに耐切創性等も良好であった。
As the back yarn, a yarn in which four ultrahigh molecular weight polyethylene fiber filament crimped yarns having a yarn fineness of 292 dTex and a single yarn fineness of 1.29 dTex were converged was used. The surface yarn is a polyparaphenylene terephthalamide spun yarn (trade name Kevlar, Toray DuPont Co., Ltd.) with a yarn fineness of 292 dTex and a single yarn fineness of 1.65 dTex and a lower twist of 16.0 times / inch in the Z direction. Two yarns (manufactured by the company) were twisted together in the S direction at 10.5 times / inch to form a twin yarn, and a yarn in which the three yarns were bundled was used. Other than that, gloves were produced in the same manner as in Example 1.
Here, a filament crimped yarn made of ultrahigh molecular weight polyethylene fiber was produced by the following method. Ultra high molecular weight polyethylene yarn having a fineness of 292 dTex (trade name Dyneema, manufactured by Toyobo Co., Ltd.), processing temperature 147 ° C., processing speed 50 m / min, false twist number 1700 T / m, processing feed rate −23.5 %, The number of spinners was one, and the spindle type false twisting was performed under the conditions of the false twisting direction S to produce a crimped yarn.
The obtained gloves had spun yarn appearing on the front surface as in Example 1, and the above crimped yarn appeared on the back surface. The characteristics are as shown in Table 1. Even after working with gloves for a long time, there was no stuffiness in the gloves, and the wearing comfort was excellent. Furthermore, the cut resistance and the like were also good.

裏面糸条には、実施例1で用いたポリパラフェニレンテレフタルアミド紡績糸の双糸(糸条繊度292×2dTex)の1本をそのまま用いた。また、表面糸条には、実施例1で作製したポリパラフェニレンテレフタルアミド繊維からなるフィラメント捲縮糸(糸条繊度292dTex)の2本を集束させた糸条を用いた。
かかる表面糸条と裏面糸条とを引き揃えた引き揃え糸でもって、10ゲージ手袋用のコンピュータ手袋編機SJF−10G(株式会社島精機製作所製)を用いて、10ゲージ手袋を作製した。この際、表面糸条と裏面糸条とをそれぞれの所定のガイド部に分けて挿入し、表面糸条が手袋表面に配され、裏面糸条が手袋裏面に配されるように編成した。
得られた手袋は表面に上記紡績糸が表れ、裏面に上記捲縮糸が表れたものであった。その特性は表1に示す通りであり、長時間手袋着用して作業した後でも手袋内の蒸れ感がなく、着用快適性に優れていた。さらに、耐切創性及び耐熱性も良好であった。
〔比較例1〕
裏面糸条にも、実施例1で表面糸条に用いたと同じポリパラフェニレンテレフタルアミド紡績糸(商品名ケブラー、東レ・デュポン株式会社製)を用いた以外は、前記実施例1と全く同様な方法で手袋を製造した。即ち、裏面糸条には、糸条繊度292dTex、単糸繊度1.65dTexのポリパラフェニレンテレフタルアミド紡績糸の2本を撚り合わせた双糸を2本集束させた糸条を用いた。
得られた手袋は表面にも裏面にも同種の紡績糸が表れたものであって、吸水拡散面積が両面とも同じであり、その特性は表1に示す通りであった。この手袋は長時間手袋着用して作業した後、手袋内の蒸れ感があり、着用快適性に劣っていた。
〔比較例2〕
表面糸条には、糸条繊度292dTexの綿紡績糸の2本を撚り合わせた双糸を3本集束させた糸条を用い、裏面糸条には、同じ糸条繊度292dTexの綿紡績糸の2本を撚り合わせた双糸を2本集束させた糸条を用いた以外は、前記実施例1と全く同様な方法で手袋を製造した。
得られた手袋は表面にも裏面にも綿紡績糸が表れたものであって、吸水拡散面積が両面とも同じであり、その特性は表1に示す通りであった。この手袋は長時間手袋着用して作業した後、手袋内の蒸れ感があり、着用快適性に劣っていた。さらに、耐切創性や耐熱性も劣っていた。
〔比較例3〕
表面糸条には、糸条繊度295dTexのポリエチレンテレフタレート繊維製紡績糸の2本を撚り合わせた双糸を3本集束させた糸条を用い、裏面糸条には、同じく糸条繊度278dTexのポリエチレンテレフタレートフィラメント糸の2本を撚り合わせた双糸を2本集束させた糸条を用いた以外は、前記実施例1と全く同様な方法で手袋を製造した。
得られた手袋は表面に紡績糸、裏面にフィラメント糸が表れたものであったが、吸水表裏拡散面積比が小さく、その特性は表1に示す通りであった。この手袋は長時間手袋着用して作業した後、手袋内の蒸れ感があり、着用快適性に劣っていた。さらに、耐切創性や耐熱性も劣っていた。
〔測定方法〕
上記実施例1〜4および比較例1〜3で得られた手袋について、吸水表裏拡散面積比を、前述した方法によって測定した。併せて耐切創性及び耐熱性を、下記の方法で評価した。また、表面糸条、裏面糸条の繊維空間率は、前述した方法によって測定した。
耐切創性については、ASTM F1790−97に従って、規定の刃(American Safety Razer Co.,品番No.88−0121)を用いて、切創抵抗を測定して評価した。規定の試料台上に測定試料を置き、規定刃を25.4mm(1インチ)水平に移動させたとき刃がサンプルを切断して貫通するために必要な荷重を測定し、測定値はN(ニュートン)で示した。この数値が大きいほど切れにくいことを示す。
非熱可塑性繊維製の手袋の場合の耐熱性は、JIS K 7120(1987)プラスチックスの熱重量測定方法により測定した熱分解温度により評価した。また、熱可塑性繊維を用いた手袋の場合の耐熱性は、融点により評価した。
各測定結果は、3つのサンプルから求めた測定値の平均値でもって、表1に示す。

Figure 2004041011
For the back yarn, one of the double paraffin terephthalamide spun yarn (yarn fineness 292 × 2 dTex) used in Example 1 was used as it was. As the surface yarn, a yarn in which two filament crimped yarns (yarn fineness 292 dTex) made of the polyparaphenylene terephthalamide fiber produced in Example 1 were bundled was used.
A 10-gauge glove was produced using a computer glove knitting machine SJF-10G (manufactured by Shima Seiki Seisakusho Co., Ltd.) for 10-gauge gloves with an aligned yarn obtained by aligning the front surface yarn and the back surface yarn. At this time, the front surface yarn and the back surface yarn were divided into respective predetermined guide portions and inserted, and knitted so that the front surface yarn was disposed on the glove surface and the back surface yarn was disposed on the glove back surface.
The obtained glove showed the above spun yarn on the front surface and the above crimped yarn on the back surface. The characteristics are as shown in Table 1. Even after working with gloves for a long time, there was no stuffiness in the gloves, and the wearing comfort was excellent. Furthermore, the cut resistance and heat resistance were also good.
[Comparative Example 1]
Except for using the same polyparaphenylene terephthalamide spun yarn (trade name: Kevlar, manufactured by Toray DuPont Co., Ltd.) used for the surface yarn in Example 1 for the back yarn, it is exactly the same as Example 1 above. Gloves were manufactured by the method. That is, as the back yarn, a yarn in which two twin yarns obtained by twisting two polyparaphenylene terephthalamide spun yarns having a yarn fineness of 292 dTex and a single yarn fineness of 1.65 dTex were used.
The obtained glove showed the same kind of spun yarn on both the front and back surfaces, the water absorption and diffusion area was the same on both sides, and the characteristics were as shown in Table 1. After wearing the gloves for a long time, the gloves had a feeling of stuffiness in the gloves and were inferior in wearing comfort.
[Comparative Example 2]
For the surface yarn, a yarn obtained by concentrating three twin yarns obtained by twisting two cotton spun yarns having a yarn fineness of 292 dTex, and for the back yarn, a cotton spun yarn having the same yarn fineness of 292 dTex is used. A glove was produced in the same manner as in Example 1 except that a yarn in which two twisted yarns were bundled was used.
The obtained gloves had cotton spun yarn appearing on the front and back surfaces, the water absorption and diffusion areas were the same on both sides, and the characteristics were as shown in Table 1. After wearing the gloves for a long time, the gloves had a feeling of stuffiness in the gloves and were inferior in wearing comfort. Furthermore, cut resistance and heat resistance were also inferior.
[Comparative Example 3]
For the front yarn, a yarn obtained by converging three twin yarns made by twisting two spun yarns of polyethylene terephthalate fiber having a yarn fineness of 295 dTex, and for the back yarn, polyethylene having the same yarn fineness of 278 dTex is used. A glove was produced in the same manner as in Example 1 except that a yarn in which two twin yarns obtained by twisting two terephthalate filament yarns were bundled was used.
The obtained glove had spun yarn on the front surface and filament yarn on the back surface, but the water absorption front / back diffusion area ratio was small, and the characteristics were as shown in Table 1. After wearing the gloves for a long time, the gloves had a feeling of stuffiness in the gloves and were inferior in wearing comfort. Furthermore, cut resistance and heat resistance were also inferior.
〔Measuring method〕
About the glove obtained in the said Examples 1-4 and Comparative Examples 1-3, the water absorption front / back diffusion area ratio was measured by the method mentioned above. In addition, cut resistance and heat resistance were evaluated by the following methods. Further, the fiber space ratio of the front surface yarn and the back surface yarn was measured by the method described above.
The cut resistance was evaluated by measuring the cut resistance according to ASTM F1790-97, using a specified blade (American Safety Razer Co., Part No. 88-0121). When a measurement sample is placed on a specified sample table and the specified blade is moved horizontally by 25.4 mm (1 inch), the load necessary for the blade to cut and penetrate the sample is measured, and the measured value is N ( Newton). The larger this value, the harder it is to cut.
The heat resistance in the case of gloves made of non-thermoplastic fibers was evaluated based on the thermal decomposition temperature measured by the thermogravimetric method of JIS K 7120 (1987) plastics. Moreover, the heat resistance in the case of the glove using a thermoplastic fiber was evaluated by melting | fusing point.
Each measurement result is shown in Table 1 as an average value of measurement values obtained from three samples.
Figure 2004041011

本発明の手袋によると、手袋着用時に肌から発生する汗を、手袋内から外側に素早く吸水・透水・拡散させることができるので、着用時の蒸れ感が大幅に軽減され、長時間着用後においても蒸れ感が実質的にない、良好な着用快適性を得ることができる。さらに、本発明の手袋の素材として速乾性に優れた合成繊維を用いれば、優れたウォッシュアンドウェア性をも具備した手袋とすることができる。また、使用用途に応じて手袋素材に高性能繊維を用いれば、さらに機械強度、耐熱性または耐薬品性などの性質をも具備した手袋とすることができる。
このように、本発明に係る手袋は、着用快適性に優れたものであり、しかも、他の所望の特性を必要に応じて具備させることもできるので、特に、長時間着用されることの多い作業用手袋として有用である。即ち、作業用手袋に要求される機械強度、耐熱性または耐薬品性などを備えつつ、長時間装着時の汗による蒸れ感、それに伴う不快感が大幅に軽減される手袋とすることができ、この結果、作業効率の向上を図ることも可能となる。
また、本発明の手袋は、上記した作業用手袋以外でも、着用快適性が要求される他の用途用の手袋としても有用であり、肌に接して着用される手袋一般において広く適用できる。
According to the glove of the present invention, sweat generated from the skin when wearing the glove can be quickly absorbed, permeated and diffused from inside the glove to the outside. It is possible to obtain good wearing comfort with substantially no stuffiness. Furthermore, if synthetic fibers excellent in quick-drying properties are used as the material of the glove of the present invention, a glove having excellent wash and wear properties can be obtained. Moreover, if a high performance fiber is used for the glove material according to the intended use, a glove having properties such as mechanical strength, heat resistance or chemical resistance can be obtained.
As described above, the glove according to the present invention is excellent in wearing comfort, and can be provided with other desired characteristics as required, so that it is often worn for a long time. Useful as work gloves. That is, while having the mechanical strength, heat resistance or chemical resistance required for work gloves, it can be a glove that drastically reduces the feeling of stuffiness due to sweat when worn for a long time, and the associated discomfort. As a result, it is possible to improve work efficiency.
Moreover, the glove of this invention is useful also as a glove for other uses as which the wearing comfort is requested | required besides the above-mentioned work glove, and it can apply widely in the glove generally worn in contact with skin.

Claims (14)

手袋の表面に表れる糸条と裏面に表れる糸条とが実質的に異なり、かつ、裏面に対する表面の吸水拡散面積の比が1.3以上であることを特徴とする繊維製手袋。A fiber glove characterized in that the yarn appearing on the surface of the glove and the yarn appearing on the back surface are substantially different, and the ratio of the water absorption / diffusion area of the surface to the back surface is 1.3 or more. 手袋の表面に表れる糸条、及び、裏面に表れる糸条のうち、どちらか一方の糸条の繊維空間率が88〜98%であることを特徴とする請求項1に記載の繊維製手袋。2. The fiber glove according to claim 1, wherein a fiber space ratio of either one of the yarn appearing on the surface of the glove and the yarn appearing on the back surface is 88 to 98%. 手袋の表面に表れる糸条、及び、裏面に表れる糸条のうち、どちらか一方の糸条の繊維空間率が88〜98%であり、かつ、他方の糸条の繊維空間率が49〜90%であることを特徴とする請求項1に記載の繊維製手袋。Of the yarn appearing on the surface of the glove and the yarn appearing on the back surface, the fiber space ratio of either one of the yarns is 88 to 98%, and the fiber space ratio of the other thread is 49 to 90. The fiber glove according to claim 1, wherein the fiber glove is%. 手袋の表面に表れる糸条、及び、裏面に表れる糸条のうち、どちらか一方がフィラメント捲縮糸から主として構成され、他方が紡績糸から主として構成されることを特徴とする請求項1又は2に記載の繊維製手袋。3. The yarn according to claim 1, wherein either one of the yarn appearing on the surface of the glove and the yarn appearing on the back surface is mainly composed of filament crimped yarn, and the other is mainly composed of spun yarn. Fiber gloves as described in 1. 手袋を表面に表れる糸条、及び/又は、裏面に表れる糸条が、合成繊維であることを特徴とする請求項1又は2に記載の繊維性手袋。The fibrous glove according to claim 1 or 2, wherein the yarn appearing on the surface of the glove and / or the yarn appearing on the back surface is a synthetic fiber. 異なる種類の糸条からなる引揃え糸でもって編み目が構成された編手袋であって、引き揃え糸を構成する各糸条がそれぞれ手袋表面又は裏面に表れるように編成されていることを特徴とする請求項1又は2に記載の繊維製手袋。A knitted glove with stitches composed of assortment yarns made of different types of yarns, wherein each yarn constituting the assortment yarns is knitted so as to appear on the front surface or back surface of the glove, respectively. The fiber glove according to claim 1 or 2. 手袋の表面に表れる糸条、及び/又は、裏面に表れる糸条が、パラ系アラミド繊維、全芳香族ポリエステル繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリビニルアルコール系繊維、超高分子量ポリエチレン繊維、メタ系アラミド繊維からなる群から選ばれる少なくとも1種の繊維から主として構成されることを特徴とする請求項1又は2に記載の繊維製手袋。The yarn appearing on the surface of the glove and / or the yarn appearing on the back surface is para-aramid fiber, wholly aromatic polyester fiber, polyparaphenylene benzobisoxazole fiber, polyvinyl alcohol fiber, ultrahigh molecular weight polyethylene fiber, meta The fiber glove according to claim 1 or 2, wherein the fiber glove is mainly composed of at least one fiber selected from the group consisting of a system aramid fibers. 手袋の表面に表れる糸条、及び/又は、裏面に表れる糸条が、ポリパラフェニレンテレフタルアミド繊維から主として構成されることを特徴とする請求項1又は2に記載の繊維製手袋The fiber glove according to claim 1 or 2, wherein the yarn appearing on the surface of the glove and / or the yarn appearing on the back surface is mainly composed of polyparaphenylene terephthalamide fiber. 手袋の表面に表れる糸条、及び/又は、裏面に表れる糸条が、8cN/dTex以上の引張り強度を有する高強度繊維から主として構成されることを特徴とする請求項1に記載の繊維製手袋。The fiber glove according to claim 1, wherein the yarn appearing on the surface of the glove and / or the yarn appearing on the back surface is mainly composed of high-strength fibers having a tensile strength of 8 cN / dTex or more. . 手袋の表面に表れる糸条、及び/又は、裏面に表れる糸条が、限界酸素指数が25以上の難燃性と示差走査熱量測定法による熱分解点が400℃以上の耐熱性とを有する高耐熱繊維から主として構成されることを特徴とする請求項1又は9に記載の繊維製手袋。The yarn that appears on the surface of the glove and / or the yarn that appears on the back surface has high flame resistance with a limiting oxygen index of 25 or more and heat resistance with a thermal decomposition point of 400 ° C. or more by differential scanning calorimetry. The fiber glove according to claim 1 or 9, which is mainly composed of heat-resistant fibers. 耐切創性及び/又は耐熱性に優れた作業用手袋であることを特徴とする請求項1又は2に記載の繊維製手袋。The fiber glove according to claim 1 or 2, which is a work glove excellent in cut resistance and / or heat resistance. 手袋の裏面に表れる糸条を構成する単糸と、表面に表れる糸条を構成する単糸との繊度が異なり、かつ、そのうちの細い方の単糸繊度と太い方の単糸繊度との比が1:1.2〜6.0であることを特徴とする請求項1又は2に記載の繊維製手袋。The fineness of the single yarn constituting the yarn appearing on the back of the glove is different from that of the single yarn constituting the yarn appearing on the surface, and the ratio of the fineness of the finer yarn to the finer of the single yarn The fiber glove according to claim 1 or 2, wherein is 1: 1.2 to 6.0. 手袋の表面に表れる糸条、及び、裏面に表れる糸条のうち、どちらか一方が、繊維長手方向に沿って1または複数の凹溝が形成された繊維横断面形状の変形断面合成繊維が含まれる糸条であり、かつ、他方の糸条が、繊維長手方向に沿って1または複数の凹溝が形成された繊維横断面形状の変形断面合成繊維が実質的に含まれない糸条であることを特徴とする請求項1又は2に記載の繊維製手袋。One of the yarn appearing on the surface of the glove and the yarn appearing on the back surface includes a modified cross-section synthetic fiber having a fiber cross-sectional shape in which one or a plurality of concave grooves are formed along the fiber longitudinal direction. And the other yarn is a yarn that does not substantially contain a modified cross-section synthetic fiber having a fiber cross-sectional shape in which one or a plurality of concave grooves are formed along the longitudinal direction of the fiber. The fiber glove according to claim 1 or 2, characterized by things. 手袋の裏面に表れる糸条と表面に表れる糸条との総繊度が異なり、かつ、そのうちの細い方の糸条総繊度と太い方の糸条総繊度との比が1:1.2〜5.0であることを特徴とする請求項1又は2に記載の繊維製手袋。The total fineness of the yarn appearing on the back surface of the glove is different from the yarn appearing on the front surface, and the ratio of the fineness of the thin yarn to the fineness of the thick yarn is 1: 1.2 to 5 The fiber glove according to claim 1 or 2, wherein the fiber glove is 0.0.
JP2004549562A 2002-11-06 2002-11-06 Fiber gloves Pending JPWO2004041011A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/011557 WO2004041011A1 (en) 2002-11-06 2002-11-06 Fiber-made gloves

Publications (1)

Publication Number Publication Date
JPWO2004041011A1 true JPWO2004041011A1 (en) 2006-03-02

Family

ID=32310232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004549562A Pending JPWO2004041011A1 (en) 2002-11-06 2002-11-06 Fiber gloves

Country Status (3)

Country Link
JP (1) JPWO2004041011A1 (en)
AU (1) AU2002344462A1 (en)
WO (1) WO2004041011A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874336B2 (en) * 2003-06-25 2005-04-05 E.I. Du Pont De Nemours And Company Cut resistant, wicking and thermoregulating fabric and articles made therefrom
JP2008144288A (en) * 2006-12-07 2008-06-26 Teijin Fibers Ltd Polyester warp knitted fabric, method for producing the same, and fiber product
KR101287377B1 (en) 2011-10-14 2013-07-19 주식회사 마이다스 A cut-resistance glove that is improvement of warmth retaining
JP6144794B2 (en) * 2015-05-25 2017-06-07 株式会社東和コーポレーション Gloves substrate and gloves
WO2016189936A1 (en) * 2015-05-25 2016-12-01 株式会社東和コーポレーション Base material for glove, and glove

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557415Y2 (en) * 1992-03-05 1997-12-10 モリト株式会社 Insole
JP3038460U (en) * 1996-11-26 1997-06-20 大法紡績有限会社 Gloves and socks
JP2001279507A (en) * 2000-03-28 2001-10-10 Hirohisa Kida Glove and method for producing the same
JP2002020916A (en) * 2000-07-11 2002-01-23 Japan Gore Tex Inc Film glove and composite glove using the same
JP2002327323A (en) * 2001-05-08 2002-11-15 Du Pont Toray Co Ltd Glove

Also Published As

Publication number Publication date
WO2004041011A1 (en) 2004-05-21
AU2002344462A1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
TWI762645B (en) Multilayer fabrics and fiber products
JP6388659B2 (en) Fabrics and textile products
USRE44108E1 (en) Method of producing flame retardant textile fabric
TW201934825A (en) Spun yarn, method for producing same, and cloth containing same
US20170198417A1 (en) Jade-containing fiber, yarn, and moisture wicking, cooling fabric
JP2009523194A (en) Flame and heat resistant stretch fabric with improved chemical resistance and durability
JP5759761B2 (en) Knitted fabric and textile products using the same
JP2016132841A (en) Blended yarn
JP2006225784A (en) Knitted fabric having anisotropically water-absorbing and diffusing property, and clothes
JP2005256212A (en) Heat resistant compound yarn and fabric using the same
JP7441670B2 (en) Synthetic leather
JPWO2004041011A1 (en) Fiber gloves
JP2012007273A (en) Coated stretch knitted fabric
JP3631685B2 (en) Water-absorbing / water-repellent two-layer woven fabric and method for producing the same
JP2002327323A (en) Glove
JP2003147651A (en) Heat-resistant composite spun yarn and fabric using the same
JP4149703B2 (en) Protective clothing or sports clothing
JPS59204939A (en) Synthetic fiber multi-layer knitted fabric
JP2003253508A (en) Glove
JP6744687B2 (en) Mixed knit and mixed gloves
JP4228112B2 (en) Fabrics and textiles with excellent moisture absorption / release properties
CN217733394U (en) Blended yarn and fabric thereof
JP2020051008A (en) Free-cut warp knitted fabric
US20130232671A1 (en) Thread Based On High-Tenacity Meta-Aramid And Textile Using This Thread
JP7438519B2 (en) Flame retardant knitted fabric

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014