WO2020013032A1 - Lighting circuit and vehicle light - Google Patents

Lighting circuit and vehicle light Download PDF

Info

Publication number
WO2020013032A1
WO2020013032A1 PCT/JP2019/026304 JP2019026304W WO2020013032A1 WO 2020013032 A1 WO2020013032 A1 WO 2020013032A1 JP 2019026304 W JP2019026304 W JP 2019026304W WO 2020013032 A1 WO2020013032 A1 WO 2020013032A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light emitting
semiconductor light
circuit
emitting elements
Prior art date
Application number
PCT/JP2019/026304
Other languages
French (fr)
Japanese (ja)
Inventor
知幸 市川
正人 原崎
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Publication of WO2020013032A1 publication Critical patent/WO2020013032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/44Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating braking action or preparation for braking, e.g. by detection of the foot approaching the brake pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant

Definitions

  • the present disclosure relates to a lighting circuit and a vehicular lamp provided with the lighting circuit.
  • Light bulbs have been widely used as light sources for vehicle lamps, but in recent years, semiconductor light sources such as LEDs (light emitting diodes) have been widely adopted.
  • FIG. 1 is a block diagram of a conventional vehicle lamp 1.
  • the vehicle lamp 1 receives a DC voltage (input voltage V IN ) from the battery 2 via the switch 4.
  • the light source 10 includes a plurality of n LEDs 12 connected in series. The brightness of the light source 10 is controlled according to the drive current I LED flowing through the light source 10.
  • the lighting circuit 20 includes an LED driver 22 that stabilizes the drive current I LED to a target amount I REF according to the target luminance.
  • the LED driver 22 is configured by a constant current series regulator or a constant current output switching converter.
  • the output voltage V OUT of the LED driver 22 becomes lower than the input voltage VIN .
  • the input voltage VIN is 13 V when the battery is fully charged, but it is not uncommon for the input voltage VIN to drop to 10 V or less as the discharge proceeds. Therefore, when the battery voltage decreases (hereinafter, referred to as a reduced voltage state), a situation occurs in which the output voltage V OUT falls below the minimum lighting voltage V MIN , and the LED 12 may be turned off.
  • a bypass switch 24 and a bypass control circuit 26 are provided in the lighting circuit 20 to prevent the light source 10 from being turned off in the reduced voltage state.
  • the bypass switch 24 is connected in parallel with one LED 12_n.
  • the present inventors have studied the lighting circuit 20 of FIG. 1 and have come to recognize the following problem.
  • the forward voltage Vf 0 when the drive current I LED stabilized to the target amount I REF flows has a negative temperature coefficient, and the forward voltage Vf 0 increases as the temperature decreases.
  • the threshold value V TH is constant, the forward voltage Vf 0 ( ⁇ 40) at the lowest temperature ( ⁇ 40 ° C.) in an assumed temperature range (operation guarantee temperature range as a lamp, for example, ⁇ 40 ° C. to 125 ° C.) C), it is necessary to determine the threshold value V TH .
  • the threshold value V TH is defined based on the minimum temperature, at room temperature or high temperature, the LEDs are bypassed and the brightness is reduced although all the LEDs can be turned on without bypass.
  • the present disclosure has been made in view of such a problem, and one of exemplary purposes of one embodiment thereof is to suppress unnecessary reduction in luminance of a semiconductor light source.
  • the lighting circuit lights a first semiconductor light source including a plurality of light emitting elements connected in series.
  • the lighting circuit is connected to a first driving circuit that receives an input voltage and supplies a driving current to the first semiconductor light source, and is connected to at least one of the plurality of light emitting elements, is enabled in a reduced voltage state, and bypasses the driving current.
  • a circuit The determination threshold value of the reduced voltage state has a negative correlation with the temperature of the first semiconductor light source.
  • FIG. 3A shows a temperature characteristic of the threshold value V TH in the lighting circuit of FIG. 2, and FIG. 3B shows a threshold value V TH ′ based on a conventional design method.
  • FIG. 3 It is a block diagram of a vehicular lamp provided with a lighting circuit according to a first embodiment.
  • FIG. 3 is a circuit diagram illustrating a specific configuration example of a lighting circuit.
  • FIG. 8A to 8D are views showing an LED socket which is an example of a vehicular lamp.
  • One embodiment disclosed in the present specification provides a lighting circuit configured to light a first semiconductor light source including a plurality of light emitting elements connected in series.
  • the lighting circuit A first drive circuit configured to receive an input voltage and to supply a drive current to the first semiconductor light source according to the input voltage;
  • the at least one light emitting device is connected to at least one of the plurality of light emitting elements and according to a relationship between a threshold value having a negative correlation with a temperature of the first semiconductor light source and the input voltage.
  • a bypass circuit configured to turn off the at least one light emitting element by diverting the drive current supplied to the element, Is provided.
  • the bypass circuit includes: Receiving the input voltage; According to a detection voltage obtained by multiplying the input voltage by a coefficient having a positive correlation with the temperature of the first semiconductor light source, the driving current supplied to the at least one light emitting element is bypassed. You may.
  • bypass circuit includes: A first resistor and a second resistor provided in series between an input line where the input voltage appears and a ground line; A thermistor having a negative temperature coefficient provided in parallel with the first resistor; May be included.
  • the detection voltage may appear at a connection node between the first resistor and the second resistor.
  • One embodiment disclosed in the present specification provides a lighting circuit configured to light a first semiconductor light source including a plurality of light emitting elements connected in series.
  • the lighting circuit A first drive circuit configured to receive an input voltage and to supply a drive current to the first semiconductor light source according to the input voltage; While being connected in parallel with at least one of the plurality of light emitting elements, it is configured to turn off the at least one light emitting element by bypassing the drive current supplied to the at least one light emitting element.
  • a bypass circuit Is provided. The bypass circuit bypasses the drive current supplied to the at least one light emitting element according to a comparison between a detection voltage that changes according to a temperature of the first semiconductor light source and a predetermined reference voltage. Is configured.
  • One embodiment disclosed in the present specification provides a vehicular lamp including a first semiconductor light source including a plurality of light emitting elements connected in series, and a lighting circuit that drives the first semiconductor light source. You may.
  • the bypass circuit of the lighting circuit may be connected to two light emitting elements of the plurality of light emitting elements. When the bypass circuit turns off the two light emitting elements, symmetry of a light emitting pattern output from the first semiconductor light source may be maintained.
  • the vehicle lighting device may further include a second semiconductor light source that can be turned on and off independently of the first semiconductor light source.
  • the plurality of light emitting elements of the first semiconductor light source may be arranged to surround the second semiconductor light source.
  • the two light emitting elements may be provided symmetrically with respect to the second semiconductor light source.
  • the lighting circuit may further include a second driving circuit configured to supply a driving current to the second semiconductor light source.
  • the second driving circuit may include a third resistor provided in series with the second semiconductor light source.
  • the state in which the member A is connected to the member B refers to the case where the member A and the member B are physically directly connected to each other. Indirect connection via another member that does not substantially affect the basic connection state or impair the function or effect provided by the combination thereof.
  • the state in which the member C is provided between the member A and the member B means that the member A and the member C or the member B and the member C are directly connected, Indirect connection via another member that does not substantially affect the basic connection state or impair the function or effect provided by the combination thereof.
  • electric signals such as voltage signals and current signals, or symbols attached to circuit elements such as resistors and capacitors denote the respective voltage values, current values, or resistance values and capacitance values as necessary. Shall be represented.
  • FIG. 2 is a block diagram of a vehicle lamp 500 including a lighting circuit 600 according to the embodiment.
  • the DC voltage (input voltage) VIN from the battery 2 is supplied to the vehicle lamp 500 via the switch 4.
  • the vehicle lamp 500 includes a semiconductor light source 502 and a lighting circuit 600.
  • the semiconductor light source 502 includes a plurality of n (n ⁇ 2) light emitting elements 504_1, 504_2,... 504_n connected in series.
  • the light emitting element 504 is preferably, for example, an LED, but is not limited thereto, and an LD (laser diode), an organic EL element, or the like may be employed.
  • the vehicle lamp 500 is, for example, a stop lamp or a tail lamp, and the semiconductor light source 502 may be a red LED.
  • the vehicle lamp 500 is an LED socket in which the semiconductor light source 502 and the lighting circuit 600 are housed in one package, and has a shape that can be attached to and detached from a lamp body (not shown).
  • the LED socket is not only required to have a long service life, but is also a consumable item, so that a low cost is strongly required.
  • the lighting circuit 600 includes a drive circuit 610 and a bypass circuit 620.
  • Driving circuit 610 receives an input voltage V IN, and supplies the stabilized drive current I LED to the target amount I REF to the semiconductor light source 502 in response to the input voltage V IN.
  • the drive circuit 610 may be configured by any one of (i) a constant current linear regulator, (ii) a step-down switching converter with a constant current output, or (iii) a combination of a step-down switching converter with a constant voltage output and a constant current circuit. it can.
  • the bypass circuit 620 is connected to at least one of the light emitting elements 504 504_3.
  • the bypass circuit 620 includes a warming element 622 provided so that the electrical state changes according to the temperature of the semiconductor light source 502.
  • the electrical state refers to the impedance of the warming element, its voltage drop, the current flowing through it, the voltage at one end thereof, and the like.
  • the warming element 622 can directly or indirectly monitor the temperature of the semiconductor light source 502.
  • the warming element 622 may be directly attached to the semiconductor light source 502 or may be mounted on the same substrate as the semiconductor light source 502.
  • the semiconductor light source 502 may be mounted adjacent or close to the heat sink.
  • the bypass circuit 620 is enabled based on the relationship between the threshold voltage V TH having a negative correlation with the temperature T of the semiconductor light source 502 and the input voltage VIN, and bypasses the drive current I LED . Thus, the bypass circuit 620 can turn off the light emitting element 504_3.
  • FIG. 3A is a diagram illustrating a temperature characteristic of the threshold value V TH in the lighting circuit 600 of FIG.
  • V MIN is the lowest lighting voltage of the light source 502, has a negative correlation with the temperature T, and decreases as the temperature T increases.
  • the threshold value V TH is defined to be slightly higher than the minimum lighting voltage V MIN , and is represented by the following equation (1), for example.
  • V TH V MIN + ⁇ V (1)
  • ⁇ V is the sum of the voltage drop of the drive circuit 610 and the design margin.
  • the threshold value V TH and the minimum lighting voltage V MIN are drawn in parallel while ⁇ V is kept constant, but this is not the only option, and ⁇ V may have temperature dependence.
  • the threshold value V TH and the minimum lighting voltage V MIN may be non-parallel.
  • FIG. 3B shows a threshold value V TH ′ based on a conventional design method, and is a constant value independent of temperature.
  • the bypass switch is off in the region of VIN > VTH '(hatched), and all the LEDs 12 can be turned on. In the region of V IN ⁇ V TH ′, the bypass switch is turned on and one LED 12 is turned off, so that the light amount of the light source 10 decreases.
  • the bypass circuit 620 is in a disabled state in a range satisfying V IN > V TH (indicated by hatching), and all the light-emitting elements 504_1 to 504_3 can be turned on.
  • V IN > V TH indicated by hatching
  • the voltage range in which the lighting of all the light emitting elements 504 can be maintained can be widened.
  • the present invention extends to various devices and methods grasped as the block diagram or circuit diagram of FIG. 2 or derived from the above description, and is not limited to a specific configuration.
  • more specific configuration examples and embodiments will be described not to narrow the scope of the present invention but to help understand the essence and operation of the present invention and to clarify them.
  • FIG. 4 is a block diagram of a vehicle lamp 500A including a lighting circuit 600A according to the first embodiment.
  • the bypass circuit 620A includes a thermistor 622a corresponding to the warming element 622 in FIG.
  • the state of the bypass circuit 620A is such that the detection voltage Vd is generated by multiplying the input voltage VIN by a coefficient K (T) having a positive correlation with the temperature T of the semiconductor light source 502 (refer to the following equation (2)).
  • Vd V IN ⁇ K (T) (2)
  • the bypass circuit 620A includes a voltage dividing circuit 621 that generates the detection voltage Vd.
  • the voltage dividing circuit 621 includes a first resistor R1 and a second resistor R2 provided in series between an input line 624 where an input voltage VIN appears and a ground line 626, and a negative temperature coefficient provided in parallel with the first resistor R1. And a thermistor Ra.
  • the detection voltage Vd appears at a connection node between the first resistor R1 and the second resistor R2.
  • the coefficient K (T) is represented by the following equation (3).
  • K (T) (Ra // R1) / (Ra // R1 + R2) (3) “//” is an operator representing a combined resistance of two resistors connected in parallel.
  • the bypass circuit 620A further includes a bypass transistor M1 and a current bypass control unit 628.
  • the bypass transistor M1 is connected in parallel with the light emitting element 504_3.
  • the current bypass circuit 628 controls the bypass transistor M1 based on the detection voltage Vd.
  • FIG. 5 is a circuit diagram showing a specific configuration example of the lighting circuit 600A.
  • Current bypass control section 628 includes a voltage comparator 630 that compares detected voltage Vd with a predetermined reference voltage VREF . When vd ⁇ V REF, the output of the voltage comparator 630 becomes high, the bypass transistor M1 is turned on, the bypass circuit 620B becomes the enable state.
  • the bypass transistor M1 functions as a switch controlled in two states, ON and OFF.
  • the configuration of the current bypass control unit 628 is not limited to the voltage comparator, and the current of the drive current I LED is partially changed while the bypass transistor M1 is switched from the off state to the on state or from the on state to the off state.
  • a state may be provided in which the detour is performed. That is, the enabled state of the bypass circuit 620B may include not only a state in which the entire drive current I LED is bypassed, but also a state in which a part thereof is bypassed.
  • FIG. 6 is a block diagram of a vehicle lamp 500B including a lighting circuit 600B according to the second embodiment.
  • the vehicle lamp 500B includes a first semiconductor light source 502A, a second semiconductor light source 502B, and a lighting circuit 600B.
  • the turning on and off of the second semiconductor light source 502B can be controlled independently of the first semiconductor light source 502A.
  • the lighting circuit 600B supplies the driving current I LED1 to the first semiconductor light source 502A to turn on the first semiconductor light source 502A.
  • the lighting circuit 600B supplies the driving current I LED2 to the second semiconductor light source 502B to turn on the second semiconductor light source 502B.
  • the first semiconductor light source 502A is a lamp that should emit light with relatively high luminance, for example, a stop lamp.
  • the second semiconductor light source 502B is a lamp that should emit light with relatively low luminance, for example, a tail lamp.
  • the vehicular lamp 500B may be a socket LED serving as both a stop lamp and a tail lamp.
  • the combination of the first drive circuit 610A and the bypass circuit 620 is suitable for driving the first semiconductor light source 502A.
  • the first drive circuit 610A and the bypass circuit 620 may employ the configuration described in the first embodiment.
  • the first semiconductor light source 502A includes four light emitting elements 504_1 to 504_4.
  • the bypass circuit 620 is connected in parallel with the two light emitting elements 504_3 and 504_4. When the bypass circuit 620 is enabled, the light emitting elements 504_3 and 504_4 are bypassed and turned off.
  • the bypass circuit 620 may be configured similarly to the first embodiment.
  • the first drive circuit 610A preferably has a temperature derating function of reducing the drive current I LED1 when the temperature of the first semiconductor light source 502A exceeds a certain threshold.
  • the second semiconductor light source 502B it is sufficient to supply a driving current I LED2 of several tens mA in order to obtain a required light amount, and the second semiconductor light source 502B can be composed of a relatively small number of light emitting elements 508. Therefore, the power consumption of the second semiconductor light source 502B is relatively small, so that the temperature derating function is not required. Further, since the number of the light emitting elements 508 is small (one in FIG. 6), the minimum lighting voltage is sufficiently lower than the input voltage VIN2 , so that the bypass control in the reduced voltage state is unnecessary.
  • the second driving circuit 640 that drives the second semiconductor light source 502B can be configured more simply than the first driving circuit 610A, and in the present embodiment, the second driving circuit 640 A third resistor (current limiting resistor) R3 provided in series with the light source 502B is included.
  • a diode D1 for power supply reverse connection protection and a zener diode D2 for load dump protection may be provided.
  • a diode D3 for power supply reverse connection protection is provided between the input terminal of the second drive circuit 640 and the second input terminal IN2 of the vehicle lamp 500B.
  • a Zener diode for load dump protection can be omitted. This contributes to downsizing and cost reduction of the vehicle lamp 500B.
  • FIG. 7 is a diagram showing a layout of the vehicle lamp 500B.
  • the two light emitting elements 504_3 and 504_4 to be bypassed in the reduced voltage state have the symmetry of the light emitting pattern of the first semiconductor light source 502 when the bypass circuit 620 is enabled, that is, when they are turned off. It is laid out to be maintained.
  • the plurality of light emitting elements 504_1 to 504_4 of the first semiconductor light source 502A are arranged so as to surround the light emitting element 508 of the second semiconductor light source 502.
  • the two light emitting elements 504_3 and 504_4 to be turned off in the reduced voltage state are provided at symmetrical positions with respect to the light emitting element 508.
  • the two light emitting elements to be turned off in the reduced voltage state may be arranged so as not to be adjacent to each other.
  • FIGS. 8A to 8D are views showing an LED socket 700 which is an example of the vehicle lamp 500B.
  • FIG. 8A is a perspective view of the appearance of the LED socket 700.
  • 8B is a front view of the LED socket 700
  • FIG. 8C is a plan view of the LED socket 700
  • FIG. 8C is a bottom view of the LED socket 700.
  • the housing 702 has a shape that can be attached to and detached from a lamp body (not shown).
  • a plurality of light emitting elements 504 are mounted at the center of the housing 702, and the light emitting elements 504 are covered with a transparent cover 704.
  • the components of the lighting circuit 600 are mounted on the substrate 710.
  • the plurality of light emitting elements 504 are, for example, red LED chips and are used as stop lamps.
  • a light emitting element 508 for the tail lamp is mounted in the center of the plurality of light emitting elements 504, and a lighting circuit for the tail lamp is provided on the substrate 710.
  • the pin 721 is supplied with a first input voltage V IN1 via a switch, and the pin 722 is supplied with a ground voltage.
  • the pin 723 is supplied with the second input voltage V IN2 which becomes high when the tail lamp is turned on.
  • the pins 721 to 723 pass through the inside of the housing 702, and one ends of the pins 721 to 723 are connected to the wiring pattern of the substrate 710.
  • the detection voltage Vd is generated by multiplying the input voltage VIN by a coefficient K (T) having temperature dependency, and based on the relationship between the detection voltage Vd and a predetermined reference voltage VREF ,
  • a threshold V TH is generated by multiplying a predetermined reference voltage V REF by a coefficient having a negative correlation with temperature, and then the threshold V TH and the input voltage VIN (or a predetermined threshold V TH).
  • the state of the bypass circuit may be controlled based on the relationship with the voltage multiplied by the coefficient.
  • the stop LED and the socket LED serving as the tail lamp have been described, but the present embodiment is not limited to this.
  • a layout of light emitting elements in consideration of symmetry may be introduced in a socket LED of a stop lamp alone.
  • the layout of the light-emitting elements in this case corresponds to the layout of the light-emitting elements in which the light-emitting element 508 is omitted in FIG.

Abstract

In the present invention, a semiconductor light source (502) includes a plurality of light-emitting elements (504_1-504_3) connected in series. A drive circuit (610) receives an input voltage (VIN) and supplies a drive current (ILED) to the semiconductor light source (502) according to the input voltage. A bypass circuit (620) is connected to at least one (504_3) of the plurality of light-emitting elements (504_1-504_3) and, according to the relationship between a threshold value (VTH) and the input voltage (VIN) having a negative correlation with the temperature of the semiconductor light source (502), turns OFF the light-emitting element (504_3) by bypassing the drive current (ILED) supplied to the light emitting element (504_3).

Description

点灯回路および車両用灯具Lighting circuit and vehicle lighting
 本開示は、点灯回路及び当該点灯回路を備える車両用灯具に関する。 The present disclosure relates to a lighting circuit and a vehicular lamp provided with the lighting circuit.
 車両用灯具に用いられる光源として、従来は電球が多く用いられてきたが、近年では、LED(発光ダイオード)などの半導体光源が広く採用されるようになっている。 電 球 Light bulbs have been widely used as light sources for vehicle lamps, but in recent years, semiconductor light sources such as LEDs (light emitting diodes) have been widely adopted.
 図1は、従来の車両用灯具1のブロック図である。車両用灯具1は、スイッチ4を介してバッテリ2からの直流電圧(入力電圧VIN)を受ける。光源10は、直列に接続される複数n個のLED12を含む。光源10の輝度は、光源10に流れる駆動電流ILEDに応じて制御される。点灯回路20は、駆動電流ILEDを目標輝度に応じた目標量IREFに安定化するLEDドライバ22を含む。 FIG. 1 is a block diagram of a conventional vehicle lamp 1. The vehicle lamp 1 receives a DC voltage (input voltage V IN ) from the battery 2 via the switch 4. The light source 10 includes a plurality of n LEDs 12 connected in series. The brightness of the light source 10 is controlled according to the drive current I LED flowing through the light source 10. The lighting circuit 20 includes an LED driver 22 that stabilizes the drive current I LED to a target amount I REF according to the target luminance.
 LED12に、目標量IREFに安定化された駆動電流IREFが流れているときの順方向電圧をVfとすると、光源10の両端間電圧(最低点灯電圧という)VMINは、Vf×nとなる。n=3とすると、白色LEDではVMIN≒11Vであり、赤色LEDではVMIN≒9Vである。言い換えると、LEDドライバ22の出力電圧VOUTが、この最低点灯電圧VMINを下回ると、駆動電流ILEDが目標量IREFを維持できなくなり、複数のLED12が消灯する。 The LED 12, when a forward voltage when the driving current I REF stabilized to the target amount I REF flows and Vf 0, the voltage across (referred lowest lighting voltage) V MIN of the light source 10, Vf 0 × n. Assuming n = 3, V MIN V11 V for a white LED and V MIN ≒ 9 V for a red LED. In other words, when the output voltage V OUT of the LED driver 22 falls below the minimum lighting voltage V MIN , the drive current I LED cannot maintain the target amount I REF and the plurality of LEDs 12 are turned off.
 LEDソケットのように低コスト化が求められる点灯回路20では、LEDドライバ22は、定電流シリーズレギュレータあるいは定電流出力のスイッチングコンバータで構成される。この場合、LEDドライバ22の出力電圧VOUTは、入力電圧VINより低くなる。入力電圧VINは、バッテリの満充電状態で13Vであるが、放電が進むと、10V以下まで低下することも珍しくない。したがって、バッテリ電圧が低下すると(以下、減電圧状態という。)、出力電圧VOUTが最低点灯電圧VMINを下回る状況が生じ、LED12が消灯する虞がある。 In the lighting circuit 20 that requires low cost like an LED socket, the LED driver 22 is configured by a constant current series regulator or a constant current output switching converter. In this case, the output voltage V OUT of the LED driver 22 becomes lower than the input voltage VIN . The input voltage VIN is 13 V when the battery is fully charged, but it is not uncommon for the input voltage VIN to drop to 10 V or less as the discharge proceeds. Therefore, when the battery voltage decreases (hereinafter, referred to as a reduced voltage state), a situation occurs in which the output voltage V OUT falls below the minimum lighting voltage V MIN , and the LED 12 may be turned off.
 減電圧状態における光源10の消灯を防止するためにバイパススイッチ24およびバイパス制御回路26が点灯回路20に設けられる。バイパススイッチ24は、1個のLED12_nと並列に接続される。バイパス制御回路26は、入力電圧VINがあるしきい値VTHより低くなると減電圧状態と判定し、バイパススイッチ24をオンする。この状態では、最低点灯電圧VMIN=Vf×(n-1)となり、VIN>VMINが保たれる。つまり、LED12_nの消灯と引き換えに、残りのLED12_1~12_n-1の点灯を維持することができる。 A bypass switch 24 and a bypass control circuit 26 are provided in the lighting circuit 20 to prevent the light source 10 from being turned off in the reduced voltage state. The bypass switch 24 is connected in parallel with one LED 12_n. When the input voltage VIN becomes lower than a certain threshold value VTH , the bypass control circuit 26 determines that the voltage is in the reduced voltage state, and turns on the bypass switch 24. In this state, the minimum lighting voltage V MIN = Vf 0 × (n−1), and V IN > V MIN is maintained. That is, it is possible to maintain the lighting of the remaining LEDs 12_1 to 12_n-1 in exchange for turning off the LED 12_n.
日本国特開2016-197711号公報Japanese Patent Application Laid-Open No. 2016-197711 日本国特開2014-148253号公報JP 2014-148253 A
 本発明者らは図1の点灯回路20について検討した結果、以下の課題を認識するに至った。目標量IREFに安定化された駆動電流ILEDが流れるときの順方向電圧Vfは負の温度係数を有しており、低温になるほど順方向電圧Vfは増大する。しきい値VTHを一定とする場合、想定される温度範囲(ランプとしての動作保証温度範囲、たとえば-40℃~125℃)の最低温度(-40℃)における順方向電圧Vf(-40℃)にもとづいて、しきい値VTHを定める必要がある。 The present inventors have studied the lighting circuit 20 of FIG. 1 and have come to recognize the following problem. The forward voltage Vf 0 when the drive current I LED stabilized to the target amount I REF flows has a negative temperature coefficient, and the forward voltage Vf 0 increases as the temperature decreases. When the threshold value V TH is constant, the forward voltage Vf 0 (−40) at the lowest temperature (−40 ° C.) in an assumed temperature range (operation guarantee temperature range as a lamp, for example, −40 ° C. to 125 ° C.) C), it is necessary to determine the threshold value V TH .
 最低温度にもとづいてしきい値VTHを規定すると、常温や高温では、本来、バイパスしなくてもすべてのLEDを点灯できるにもかかわらず、LEDがバイパスされ、輝度が低下する。 When the threshold value V TH is defined based on the minimum temperature, at room temperature or high temperature, the LEDs are bypassed and the brightness is reduced although all the LEDs can be turned on without bypass.
 現実的には、LED12は発熱するため、その温度が動作保証温度範囲の最低温度(-40℃)で維持されることは実際にはまれである。この観点からも、最低温度にもとづくしきい値VTHの設計は、灯具の性能を必要以上に低下させていると言える。 In reality, since the LED 12 generates heat, its temperature is rarely maintained at the lowest temperature (-40 ° C.) of the operation guarantee temperature range. From this point of view, it can be said that the design of the threshold value V TH based on the minimum temperature lowers the performance of the lamp more than necessary.
 本開示はかかる課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、半導体光源の輝度の不要な低下を抑制するものである。 The present disclosure has been made in view of such a problem, and one of exemplary purposes of one embodiment thereof is to suppress unnecessary reduction in luminance of a semiconductor light source.
 本発明のある態様は、点灯回路に関する。点灯回路は、直列に接続される複数の発光素子を含む第1半導体光源を点灯する。点灯回路は、入力電圧を受け、第1半導体光源に駆動電流を供給する第1駆動回路と、複数の発光素子の少なくともひとつと接続され、減電圧状態においてイネーブル状態となり、駆動電流を迂回させるバイパス回路と、を備える。減電圧状態の判定しきい値は、第1半導体光源の温度と負の相関を有する。 One embodiment of the present invention relates to a lighting circuit. The lighting circuit lights a first semiconductor light source including a plurality of light emitting elements connected in series. The lighting circuit is connected to a first driving circuit that receives an input voltage and supplies a driving current to the first semiconductor light source, and is connected to at least one of the plurality of light emitting elements, is enabled in a reduced voltage state, and bypasses the driving current. And a circuit. The determination threshold value of the reduced voltage state has a negative correlation with the temperature of the first semiconductor light source.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 In addition, any combination of the above-described components, and any replacement of the components and expressions of the present invention between methods, apparatuses, systems, and the like are also effective as embodiments of the present invention.
 本開示のある態様によれば、半導体光源の輝度の不要な低下を抑制できる。 According to an embodiment of the present disclosure, it is possible to suppress an unnecessary decrease in the luminance of the semiconductor light source.
従来の車両用灯具のブロック図である。It is a block diagram of the conventional vehicle lamp. 実施の形態に係る点灯回路を備える車両用灯具のブロック図である。It is a block diagram of a vehicular lamp provided with a lighting circuit according to an embodiment. 図3の(a)は、図2の点灯回路におけるしきい値VTHの温度特性を示す図であり、図3の(b)は、従来の設計手法にもとづくしきい値VTH’を示す図である。FIG. 3A shows a temperature characteristic of the threshold value V TH in the lighting circuit of FIG. 2, and FIG. 3B shows a threshold value V TH ′ based on a conventional design method. FIG. 第1実施例に係る点灯回路を備える車両用灯具のブロック図である。It is a block diagram of a vehicular lamp provided with a lighting circuit according to a first embodiment. 点灯回路の具体的な構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a specific configuration example of a lighting circuit. 第2実施例に係る点灯回路を備える車両用灯具のブロック図である。It is a block diagram of a vehicular lamp provided with a lighting circuit according to a second embodiment. 車両用灯具のレイアウトを示す図である。It is a figure showing the layout of the vehicular lamp. 図8の(a)~(d)は、車両用灯具の一例であるLEDソケットを示す図である。FIGS. 8A to 8D are views showing an LED socket which is an example of a vehicular lamp.
 本明細書に開示される一実施の形態は、直列に接続される複数の発光素子を含む第1半導体光源を点灯するように構成された点灯回路が提供される。
 前記点灯回路は、
 入力電圧を受け、前記入力電圧に応じて前記第1半導体光源に駆動電流を供給するように構成された第1駆動回路と、
 前記複数の発光素子のうちの少なくとも一つと接続されると共に、前記第1半導体光源の温度と負の相関を有するしきい値と前記入力電圧との間の関係に応じて、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させることで前記少なくとも一つの発光素子を消灯させるように構成されたバイパス回路と、
 を備える。
One embodiment disclosed in the present specification provides a lighting circuit configured to light a first semiconductor light source including a plurality of light emitting elements connected in series.
The lighting circuit,
A first drive circuit configured to receive an input voltage and to supply a drive current to the first semiconductor light source according to the input voltage;
The at least one light emitting device is connected to at least one of the plurality of light emitting elements and according to a relationship between a threshold value having a negative correlation with a temperature of the first semiconductor light source and the input voltage. A bypass circuit configured to turn off the at least one light emitting element by diverting the drive current supplied to the element,
Is provided.
 また、前記バイパス回路は、
 前記入力電圧を受け、
 前記入力電圧に前記第1半導体光源の温度と正の相関を有する係数を乗じて得られる検出電圧に応じて、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させる、ように構成されてもよい。
Further, the bypass circuit includes:
Receiving the input voltage;
According to a detection voltage obtained by multiplying the input voltage by a coefficient having a positive correlation with the temperature of the first semiconductor light source, the driving current supplied to the at least one light emitting element is bypassed. You may.
 また、前記バイパス回路は、
 前記入力電圧が現れる入力ラインと接地ラインの間に直列に設けられる第1抵抗および第2抵抗と、
 前記第1抵抗と並列に設けられる負温度係数を有するサーミスタと、
を含んでもよい。
 前記検出電圧は、前記第1抵抗と前記第2抵抗の接続ノードに現れてもよい。
Further, the bypass circuit includes:
A first resistor and a second resistor provided in series between an input line where the input voltage appears and a ground line;
A thermistor having a negative temperature coefficient provided in parallel with the first resistor;
May be included.
The detection voltage may appear at a connection node between the first resistor and the second resistor.
 本明細書に開示される一実施の形態は、直列に接続される複数の発光素子を含む第1半導体光源を点灯するように構成された点灯回路が提供される。
 前記点灯回路は、
 入力電圧を受け、前記入力電圧に応じて前記第1半導体光源に駆動電流を供給するように構成された第1駆動回路と、
 前記複数の発光素子のうちの少なくとも一つと並列に接続されると共に、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させることで前記少なくとも一つの発光素子を消灯させるように構成されたバイパス回路と、
 を備える。
 前記バイパス回路は、前記第1半導体光源の温度に応じて変化する検出電圧と所定の基準電圧との間の比較に応じて、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させるように構成されている。
One embodiment disclosed in the present specification provides a lighting circuit configured to light a first semiconductor light source including a plurality of light emitting elements connected in series.
The lighting circuit,
A first drive circuit configured to receive an input voltage and to supply a drive current to the first semiconductor light source according to the input voltage;
While being connected in parallel with at least one of the plurality of light emitting elements, it is configured to turn off the at least one light emitting element by bypassing the drive current supplied to the at least one light emitting element. A bypass circuit;
Is provided.
The bypass circuit bypasses the drive current supplied to the at least one light emitting element according to a comparison between a detection voltage that changes according to a temperature of the first semiconductor light source and a predetermined reference voltage. Is configured.
 本明細書に開示される一実施の形態は、直列に接続される複数の発光素子を含む第1半導体光源と、前記第1半導体光源を駆動する点灯回路と、を備える車両用灯具が提供されてもよい。 One embodiment disclosed in the present specification provides a vehicular lamp including a first semiconductor light source including a plurality of light emitting elements connected in series, and a lighting circuit that drives the first semiconductor light source. You may.
 また、前記点灯回路の前記バイパス回路は、前記複数の発光素子のうちの2個の発光素子に接続されてもよい。前記バイパス回路が前記2個の発光素子を消灯させたときに、前記第1半導体光源から出力される発光パターンの対称性が維持されてもよい。 The bypass circuit of the lighting circuit may be connected to two light emitting elements of the plurality of light emitting elements. When the bypass circuit turns off the two light emitting elements, symmetry of a light emitting pattern output from the first semiconductor light source may be maintained.
 また、前記車両用灯具は、前記第1半導体光源から独立して点消灯可能な第2半導体光源をさらに備えてもよい。前記第1半導体光源の前記複数の発光素子は、前記第2半導体光源を取り囲むように配置されてもよい。前記2個の発光素子は、前記第2半導体光源に対して対称となるように設けられてもよい。 The vehicle lighting device may further include a second semiconductor light source that can be turned on and off independently of the first semiconductor light source. The plurality of light emitting elements of the first semiconductor light source may be arranged to surround the second semiconductor light source. The two light emitting elements may be provided symmetrically with respect to the second semiconductor light source.
 また、前記点灯回路は、前記第2半導体光源に駆動電流を供給するように構成された第2駆動回路をさらに備えてもよい。前記第2駆動回路は、前記第2半導体光源と直列に設けられる第3抵抗を含んでもよい。 The lighting circuit may further include a second driving circuit configured to supply a driving current to the second semiconductor light source. The second driving circuit may include a third resistor provided in series with the second semiconductor light source.
(実施の形態)
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, the present disclosure will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in each drawing are denoted by the same reference numerals, and the repeated description will be omitted as appropriate. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, “the state in which the member A is connected to the member B” refers to the case where the member A and the member B are physically directly connected to each other. Indirect connection via another member that does not substantially affect the basic connection state or impair the function or effect provided by the combination thereof.
 同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, “the state in which the member C is provided between the member A and the member B” means that the member A and the member C or the member B and the member C are directly connected, Indirect connection via another member that does not substantially affect the basic connection state or impair the function or effect provided by the combination thereof.
 また本明細書において、電圧信号、電流信号などの電気信号、あるいは抵抗、キャパシタなどの回路素子に付された符号は、必要に応じてそれぞれの電圧値、電流値、あるいは抵抗値、容量値を表すものとする。 In this specification, electric signals such as voltage signals and current signals, or symbols attached to circuit elements such as resistors and capacitors denote the respective voltage values, current values, or resistance values and capacitance values as necessary. Shall be represented.
 図2は、実施の形態に係る点灯回路600を備える車両用灯具500のブロック図である。車両用灯具500には、スイッチ4を介してバッテリ2からの直流電圧(入力電圧)VINが供給される。車両用灯具500は、半導体光源502および点灯回路600を備える。半導体光源502は、直列に接続される複数n個(n≧2)の発光素子504_1,504_2,…504_nを含む。図2にはn=3の場合が示される。発光素子504はたとえばLEDが好適であるが、その限りでなく、LD(レーザダイオード)や有機EL素子などが採用されてもよい。車両用灯具500は、たとえばストップランプやテールランプであり、半導体光源502は赤色LEDであってもよい。車両用灯具500の好適な一態様は、半導体光源502と点灯回路600とが1パッケージに収容されたLEDソケットであり、図示しないランプボディに着脱可能な形状を有する。LEDソケットは、長寿命化はもちろんのこと、消耗品であるが故に低コスト化が強く求められる。 FIG. 2 is a block diagram of a vehicle lamp 500 including a lighting circuit 600 according to the embodiment. The DC voltage (input voltage) VIN from the battery 2 is supplied to the vehicle lamp 500 via the switch 4. The vehicle lamp 500 includes a semiconductor light source 502 and a lighting circuit 600. The semiconductor light source 502 includes a plurality of n (n ≧ 2) light emitting elements 504_1, 504_2,... 504_n connected in series. FIG. 2 shows a case where n = 3. The light emitting element 504 is preferably, for example, an LED, but is not limited thereto, and an LD (laser diode), an organic EL element, or the like may be employed. The vehicle lamp 500 is, for example, a stop lamp or a tail lamp, and the semiconductor light source 502 may be a red LED. One preferred embodiment of the vehicle lamp 500 is an LED socket in which the semiconductor light source 502 and the lighting circuit 600 are housed in one package, and has a shape that can be attached to and detached from a lamp body (not shown). The LED socket is not only required to have a long service life, but is also a consumable item, so that a low cost is strongly required.
 点灯回路600は、駆動回路610およびバイパス回路620を備える。駆動回路610は入力電圧VINを受け、入力電圧VINに応じて半導体光源502に目標量IREFに安定化された駆動電流ILEDを供給する。駆動回路610は、(i)定電流リニアレギュレータ、(ii)定電流出力の降圧スイッチングコンバータあるいは、(iii)定電圧出力の降圧スイッチングコンバータと定電流回路の組み合わせ、のいずれかで構成することができる。 The lighting circuit 600 includes a drive circuit 610 and a bypass circuit 620. Driving circuit 610 receives an input voltage V IN, and supplies the stabilized drive current I LED to the target amount I REF to the semiconductor light source 502 in response to the input voltage V IN. The drive circuit 610 may be configured by any one of (i) a constant current linear regulator, (ii) a step-down switching converter with a constant current output, or (iii) a combination of a step-down switching converter with a constant voltage output and a constant current circuit. it can.
 バイパス回路620は、複数の発光素子504の少なくともひとつ504_3と接続される。バイパス回路620は、半導体光源502の温度に応じて電気的状態が変化するように設けられた温感素子622を含む。電気的状態とは、温感素子のインピーダンス、その電圧降下、それに流れる電流や、その一端の電圧などをいう。温感素子622は、半導体光源502の温度を、直接的あるいは間接的に監視することができ、たとえば温感素子622を半導体光源502に直接取り付けてもよいし、半導体光源502と同一基板上に隣接あるいは近接して取り付けてもよいし、あるいは半導体光源502が取り付けられるヒートシンクに取り付けてもよい。バイパス回路620は、半導体光源502の温度Tと負の相関を有するしきい値VTHと入力電圧VINとの関係にもとづいてイネーブル状態となり、駆動電流ILEDを迂回させる。このように、バイパス回路620は、発光素子504_3を消灯することができる。 The bypass circuit 620 is connected to at least one of the light emitting elements 504 504_3. The bypass circuit 620 includes a warming element 622 provided so that the electrical state changes according to the temperature of the semiconductor light source 502. The electrical state refers to the impedance of the warming element, its voltage drop, the current flowing through it, the voltage at one end thereof, and the like. The warming element 622 can directly or indirectly monitor the temperature of the semiconductor light source 502. For example, the warming element 622 may be directly attached to the semiconductor light source 502 or may be mounted on the same substrate as the semiconductor light source 502. The semiconductor light source 502 may be mounted adjacent or close to the heat sink. The bypass circuit 620 is enabled based on the relationship between the threshold voltage V TH having a negative correlation with the temperature T of the semiconductor light source 502 and the input voltage VIN, and bypasses the drive current I LED . Thus, the bypass circuit 620 can turn off the light emitting element 504_3.
 以上が点灯回路600の構成である。続いて点等回路600の動作を説明する。図3の(a)は、図2の点灯回路600におけるしきい値VTHの温度特性を示す図である。VMINは、光源502の最低点灯電圧であり、温度Tと負の相関を有し、温度Tが増大するにしたがって低下する。しきい値VTHは、最低点灯電圧VMINよりわずかに高く規定され、たとえば以下の式(1)で表される。
 
   VTH=VMIN+ΔV・・・(1)
 
 ΔVは、駆動回路610の電圧降下と設計マージンの合計である。図3の(a)では、ΔVを一定としてしきい値VTHと最低点灯電圧VMINを平行に描いているが、その限りでなく、ΔVは温度依存性を有してもよく、したがってしきい値VTHと最低点灯電圧VMINは、非平行であってもよい。
The above is the configuration of the lighting circuit 600. Next, the operation of the dot equalization circuit 600 will be described. FIG. 3A is a diagram illustrating a temperature characteristic of the threshold value V TH in the lighting circuit 600 of FIG. V MIN is the lowest lighting voltage of the light source 502, has a negative correlation with the temperature T, and decreases as the temperature T increases. The threshold value V TH is defined to be slightly higher than the minimum lighting voltage V MIN , and is represented by the following equation (1), for example.

V TH = V MIN + ΔV (1)

ΔV is the sum of the voltage drop of the drive circuit 610 and the design margin. In FIG. 3A, the threshold value V TH and the minimum lighting voltage V MIN are drawn in parallel while ΔV is kept constant, but this is not the only option, and ΔV may have temperature dependence. The threshold value V TH and the minimum lighting voltage V MIN may be non-parallel.
 図3の(b)には、従来の設計手法にもとづくしきい値VTH’が示され、温度に依存しない一定値である。従来では、VIN>VTH’の領域(ハッチングを付す)でバイパススイッチはオフであり、すべてのLED12が点灯可能である。VIN<VTH’の領域では、バイパススイッチがオンとなり、1つのLED12が消灯するため、光源10の光量が減少することとなる。 FIG. 3B shows a threshold value V TH ′ based on a conventional design method, and is a constant value independent of temperature. Conventionally, the bypass switch is off in the region of VIN > VTH '(hatched), and all the LEDs 12 can be turned on. In the region of V IN <V TH ′, the bypass switch is turned on and one LED 12 is turned off, so that the light amount of the light source 10 decreases.
 図3の(a)に戻る。本実施の形態では、VIN>VTHを満たす範囲(ハッチングを付す)において、バイパス回路620はディセーブル状態であり、すべての発光素子504_1~504_3が点灯可能である。図3の(b)との比較から分かるように、実施の形態に係る点灯回路600によれば、すべての発光素子504の点灯を維持できる電圧範囲を広げることができる。 Returning to FIG. In this embodiment mode, the bypass circuit 620 is in a disabled state in a range satisfying V IN > V TH (indicated by hatching), and all the light-emitting elements 504_1 to 504_3 can be turned on. As can be seen from the comparison with FIG. 3B, according to the lighting circuit 600 according to the embodiment, the voltage range in which the lighting of all the light emitting elements 504 can be maintained can be widened.
 本発明は、図2のブロック図や回路図として把握され、あるいは上述の説明から導かれるさまざまな装置、方法に及ぶものであり、特定の構成に限定されるものではない。以下、本発明の範囲を狭めるためではなく、発明の本質や動作の理解を助け、またそれらを明確化するために、より具体的な構成例や実施例を説明する。 The present invention extends to various devices and methods grasped as the block diagram or circuit diagram of FIG. 2 or derived from the above description, and is not limited to a specific configuration. Hereinafter, more specific configuration examples and embodiments will be described not to narrow the scope of the present invention but to help understand the essence and operation of the present invention and to clarify them.
(第1実施例)
 図4は、第1実施例に係る点灯回路600Aを備える車両用灯具500Aのブロック図である。バイパス回路620Aは、図2の温感素子622に相当するサーミスタ622aを含む。バイパス回路620Aの状態は、入力電圧VINに半導体光源502の温度Tと正の相関を有する係数K(T)を乗じて、検出電圧Vdを生成する(以下式(2)参照)。
 
   Vd=VIN×K(T)・・・(2)
 
(First embodiment)
FIG. 4 is a block diagram of a vehicle lamp 500A including a lighting circuit 600A according to the first embodiment. The bypass circuit 620A includes a thermistor 622a corresponding to the warming element 622 in FIG. The state of the bypass circuit 620A is such that the detection voltage Vd is generated by multiplying the input voltage VIN by a coefficient K (T) having a positive correlation with the temperature T of the semiconductor light source 502 (refer to the following equation (2)).

Vd = V IN × K (T) (2)
 たとえばバイパス回路620Aは、検出電圧Vdと所定の基準電圧VREFの関係にもとづいて、イネーブル状態/ディセーブル状態が切り替わってもよい。具体的には、Vd=VIN×K(T)<VREFのとき、言い換えれば、VIN<VREF/K(T)のときに、バイパス回路620Aはイネーブル状態となる。したがって第1実施例では、VREF/K(T)を、図3に示すしきい値VTHに対応付けることができる。 For example, bypass circuit 620A may switch between an enable state and a disable state based on the relationship between detection voltage Vd and predetermined reference voltage V REF . Specifically, when Vd = V IN × K (T) <V REF , in other words, when V IN <V REF / K (T), the bypass circuit 620A is enabled. Therefore, in the first embodiment, V REF / K (T) can be associated with the threshold value V TH shown in FIG.
 バイパス回路620Aは、検出電圧Vdを生成する分圧回路621を含む。分圧回路621は、入力電圧VINが現れる入力ライン624と接地ライン626の間に直列に設けられる第1抵抗R1および第2抵抗R2と、第1抵抗R1と並列に設けられる負温度係数を有するサーミスタRaと、を含む。検出電圧Vdは、第1抵抗R1と第2抵抗R2の接続ノードに現れる。この場合、係数K(T)は、以下の式(3)で表される。
 
   K(T)=(Ra//R1)/(Ra//R1+R2)・・・(3)
 
 「//」は並列に接続される2本の抵抗の合成抵抗を表す演算子である。
The bypass circuit 620A includes a voltage dividing circuit 621 that generates the detection voltage Vd. The voltage dividing circuit 621 includes a first resistor R1 and a second resistor R2 provided in series between an input line 624 where an input voltage VIN appears and a ground line 626, and a negative temperature coefficient provided in parallel with the first resistor R1. And a thermistor Ra. The detection voltage Vd appears at a connection node between the first resistor R1 and the second resistor R2. In this case, the coefficient K (T) is represented by the following equation (3).

K (T) = (Ra // R1) / (Ra // R1 + R2) (3)

“//” is an operator representing a combined resistance of two resistors connected in parallel.
 バイパス回路620AはさらにバイパストランジスタM1、電流バイパス制御部628を含む。バイパストランジスタM1は発光素子504_3と並列に接続される。電流バイパス回路628は、検出電圧VdにもとづいてバイパストランジスタM1を制御する。 The bypass circuit 620A further includes a bypass transistor M1 and a current bypass control unit 628. The bypass transistor M1 is connected in parallel with the light emitting element 504_3. The current bypass circuit 628 controls the bypass transistor M1 based on the detection voltage Vd.
 図5は、点灯回路600Aの具体的な構成例を示す回路図である。電流バイパス制御部628は、検出電圧Vdと所定の基準電圧VREFを比較する電圧コンパレータ630を含む。Vd<VREFのとき、電圧コンパレータ630の出力はハイとなり、バイパストランジスタM1がオンし、バイパス回路620Bはイネーブル状態となる。 FIG. 5 is a circuit diagram showing a specific configuration example of the lighting circuit 600A. Current bypass control section 628 includes a voltage comparator 630 that compares detected voltage Vd with a predetermined reference voltage VREF . When vd <V REF, the output of the voltage comparator 630 becomes high, the bypass transistor M1 is turned on, the bypass circuit 620B becomes the enable state.
 図5に示すように、電流バイパス制御部628を電圧コンパレータ630で構成する場合、バイパストランジスタM1は、オン、オフの2状態で制御されるスイッチとして機能する。なお、電流バイパス制御部628の構成は電圧コンパレータには限定されず、バイパストランジスタM1がオフからオン状態に切り替わる途中、あるいは、オンからオフ状態に切り替わる途中に、駆動電流ILEDの一部の電流が迂回する状態を設けてもよい。すなわちバイパス回路620Bのイネーブル状態とは、駆動電流ILEDの全部が迂回する状態のみでなく、その一部が迂回する状態も含みうる。 As shown in FIG. 5, when the current bypass control unit 628 is configured by the voltage comparator 630, the bypass transistor M1 functions as a switch controlled in two states, ON and OFF. Note that the configuration of the current bypass control unit 628 is not limited to the voltage comparator, and the current of the drive current I LED is partially changed while the bypass transistor M1 is switched from the off state to the on state or from the on state to the off state. A state may be provided in which the detour is performed. That is, the enabled state of the bypass circuit 620B may include not only a state in which the entire drive current I LED is bypassed, but also a state in which a part thereof is bypassed.
(第2実施例)
 図6は、第2実施例に係る点灯回路600Bを備える車両用灯具500Bのブロック図である。車両用灯具500Bは、第1半導体光源502A、第2半導体光源502Bおよび点灯回路600Bを備える。
(Second embodiment)
FIG. 6 is a block diagram of a vehicle lamp 500B including a lighting circuit 600B according to the second embodiment. The vehicle lamp 500B includes a first semiconductor light source 502A, a second semiconductor light source 502B, and a lighting circuit 600B.
 第2半導体光源502Bは、第1半導体光源502Aと独立して点消灯が制御可能である。点灯回路600Bは、第1入力電圧VIN1が供給されるとき、第1半導体光源502Aに駆動電流ILED1を供給して点灯させる。また点灯回路600Bは、第2入力電圧VIN2が供給されるとき、第2半導体光源502Bに駆動電流ILED2を供給して第2半導体光源502Bを点灯させる。 The turning on and off of the second semiconductor light source 502B can be controlled independently of the first semiconductor light source 502A. When the first input voltage V IN1 is supplied, the lighting circuit 600B supplies the driving current I LED1 to the first semiconductor light source 502A to turn on the first semiconductor light source 502A. When the second input voltage V IN2 is supplied, the lighting circuit 600B supplies the driving current I LED2 to the second semiconductor light source 502B to turn on the second semiconductor light source 502B.
 たとえば第1半導体光源502Aは、相対的に高輝度で発光すべきランプであり、たとえばストップランプである。第2半導体光源502Bは相対的に低輝度で発光すべきランプであり、たとえばテールランプである。車両用灯具500Bは、ストップランプとテールランプ兼用のソケットLEDであってもよい。 {For example, the first semiconductor light source 502A is a lamp that should emit light with relatively high luminance, for example, a stop lamp. The second semiconductor light source 502B is a lamp that should emit light with relatively low luminance, for example, a tail lamp. The vehicular lamp 500B may be a socket LED serving as both a stop lamp and a tail lamp.
 第1半導体光源502Aに関して、要求される光量を得るために、数百mAの駆動電流ILED1を供給する必要があり、また相対的に多くの発光素子504を含んでいる。したがって、第1半導体光源502Aの駆動には、第1駆動回路610Aとバイパス回路620の組み合わせが好適である。第1駆動回路610Aおよびバイパス回路620は、第1実施例で説明した構成を採用してもよい。 Regarding the first semiconductor light source 502A, it is necessary to supply a drive current I LED1 of several hundred mA in order to obtain a required light amount, and includes a relatively large number of light emitting elements 504. Therefore, the combination of the first drive circuit 610A and the bypass circuit 620 is suitable for driving the first semiconductor light source 502A. The first drive circuit 610A and the bypass circuit 620 may employ the configuration described in the first embodiment.
 この実施例において、第1半導体光源502Aは、4個の発光素子504_1~504_4を含む。バイパス回路620は、2個の発光素子504_3,504_4と並列に接続されており、バイパス回路620がイネーブル状態となると、発光素子504_3,504_4がバイパスされ、消灯する。バイパス回路620は、第1実施例と同様に構成してもよい。第1駆動回路610Aは、第1半導体光源502Aの温度が、あるしきい値を超えると、駆動電流ILED1を低下させる温度ディレーティング機能を有することが好ましい。 In this embodiment, the first semiconductor light source 502A includes four light emitting elements 504_1 to 504_4. The bypass circuit 620 is connected in parallel with the two light emitting elements 504_3 and 504_4. When the bypass circuit 620 is enabled, the light emitting elements 504_3 and 504_4 are bypassed and turned off. The bypass circuit 620 may be configured similarly to the first embodiment. The first drive circuit 610A preferably has a temperature derating function of reducing the drive current I LED1 when the temperature of the first semiconductor light source 502A exceeds a certain threshold.
 一方、第2半導体光源502Bに関して、要求される光量を得るために、数十mAの駆動電流ILED2を供給すれば足り、また相対的に少ない発光素子508で構成できる。したがって第2半導体光源502Bの消費電力は相対的に小さく、したがって温度ディレーティング機能は不要である。また、発光素子508の個数は少ない(図6では1個)ことから、最低点灯電圧も入力電圧VIN2より十分に低いため、減電圧状態におけるバイパス制御も不要である。このことから、第2半導体光源502Bを駆動する第2駆動回路640は、第1駆動回路610Aよりもシンプルに構成することができ、本実施の形態において、第2駆動回路640は、第2半導体光源502Bと直列に設けられる第3抵抗(電流制限抵抗)R3を含む。 On the other hand, with respect to the second semiconductor light source 502B, it is sufficient to supply a driving current I LED2 of several tens mA in order to obtain a required light amount, and the second semiconductor light source 502B can be composed of a relatively small number of light emitting elements 508. Therefore, the power consumption of the second semiconductor light source 502B is relatively small, so that the temperature derating function is not required. Further, since the number of the light emitting elements 508 is small (one in FIG. 6), the minimum lighting voltage is sufficiently lower than the input voltage VIN2 , so that the bypass control in the reduced voltage state is unnecessary. For this reason, the second driving circuit 640 that drives the second semiconductor light source 502B can be configured more simply than the first driving circuit 610A, and in the present embodiment, the second driving circuit 640 A third resistor (current limiting resistor) R3 provided in series with the light source 502B is included.
 第1駆動回路610Aの入力端子と、車両用灯具500Bの第1入力端子IN1の間には、電源逆接保護用のダイオードD1と、ロードダンプ保護用のツェナーダイオードD2を設けるとよい。 (4) Between the input terminal of the first drive circuit 610A and the first input terminal IN1 of the vehicle lamp 500B, a diode D1 for power supply reverse connection protection and a zener diode D2 for load dump protection may be provided.
 一方、第2駆動回路640の入力端子と、車両用灯具500Bの第2入力端子IN2の間には、電源逆接保護用のダイオードD3が設けられる。ただし、第3抵抗R3自体がサージ耐性を有することから、ロードダンプ保護用のツェナーダイオードは省略することができる。これは、車両用灯具500Bの小型化、低コスト化に資する。 On the other hand, a diode D3 for power supply reverse connection protection is provided between the input terminal of the second drive circuit 640 and the second input terminal IN2 of the vehicle lamp 500B. However, since the third resistor R3 itself has surge resistance, a Zener diode for load dump protection can be omitted. This contributes to downsizing and cost reduction of the vehicle lamp 500B.
 図7は、車両用灯具500Bのレイアウトを示す図である。減電圧状態においてバイパスされるべき2個の発光素子504_3,504_4は、バイパス回路620がイネーブル状態となったときに、すなわちそれらが消灯したときに、第1半導体光源502の発光パターンの対称性が維持されるようにレイアウトされる。 FIG. 7 is a diagram showing a layout of the vehicle lamp 500B. The two light emitting elements 504_3 and 504_4 to be bypassed in the reduced voltage state have the symmetry of the light emitting pattern of the first semiconductor light source 502 when the bypass circuit 620 is enabled, that is, when they are turned off. It is laid out to be maintained.
 たとえば第1半導体光源502Aの複数の発光素子504_1~504_4は、第2半導体光源502の発光素子508を取り囲むように配置される。そして、減電圧状態において消灯すべき2個の発光素子504_3,504_4は、発光素子508に関して対称の位置に設けられる。このようなレイアウトを採用することで、灯具を正面から見たときに、出射光の強い方向と弱い方向の差を抑えることができる。別の観点から見ると、減電圧状態において消灯すべき2個の発光素子は、隣接しないように配置すればよい。 {For example, the plurality of light emitting elements 504_1 to 504_4 of the first semiconductor light source 502A are arranged so as to surround the light emitting element 508 of the second semiconductor light source 502. The two light emitting elements 504_3 and 504_4 to be turned off in the reduced voltage state are provided at symmetrical positions with respect to the light emitting element 508. By adopting such a layout, when the lamp is viewed from the front, a difference between a strong direction and a weak direction of the emitted light can be suppressed. From another viewpoint, the two light emitting elements to be turned off in the reduced voltage state may be arranged so as not to be adjacent to each other.
 図8の(a)~(d)は、車両用灯具500Bの一例であるLEDソケット700を示す図である。図8の(a)はLEDソケット700の外観の斜視図である。図8の(b)はLEDソケット700の正面図を、図8の(c)はLEDソケット700の平面図を、図8の(c)はLEDソケット700の底面図を示す。 FIGS. 8A to 8D are views showing an LED socket 700 which is an example of the vehicle lamp 500B. FIG. 8A is a perspective view of the appearance of the LED socket 700. 8B is a front view of the LED socket 700, FIG. 8C is a plan view of the LED socket 700, and FIG. 8C is a bottom view of the LED socket 700.
 筐体702は、図示しないランプボディに着脱可能な形状を有する。筐体702の中央部には、複数の発光素子504が実装され、発光素子504は透明のカバー704で覆われている。基板710には、点灯回路600の部品が実装される。複数の発光素子504は、例えば、赤色のLEDチップであり、ストップランプとして利用される。 The housing 702 has a shape that can be attached to and detached from a lamp body (not shown). A plurality of light emitting elements 504 are mounted at the center of the housing 702, and the light emitting elements 504 are covered with a transparent cover 704. The components of the lighting circuit 600 are mounted on the substrate 710. The plurality of light emitting elements 504 are, for example, red LED chips and are used as stop lamps.
 ストップランプとテールランプの兼用のLEDソケットでは、図7に示したように、複数の発光素子504の中央に、テールランプ用の発光素子508が実装され、基板710上には、テールランプ用の点灯回路が実装される。 In the LED socket serving as both a stop lamp and a tail lamp, as shown in FIG. 7, a light emitting element 508 for the tail lamp is mounted in the center of the plurality of light emitting elements 504, and a lighting circuit for the tail lamp is provided on the substrate 710. Implemented.
 筐体702の底面側には、3本のピン721、722、723が露出している。ピン721には、スイッチを介して第1入力電圧VIN1が供給され、ピン722には接地電圧が供給される。ピン723は、テールランプの点灯時にハイとなる第2入力電圧VIN2が供給される。ピン721~723は、筐体702の内部を貫通しており、ピン721~723の一端は、基板710の配線パターンに接続される。 Three pins 721, 722, 723 are exposed on the bottom side of the housing 702. The pin 721 is supplied with a first input voltage V IN1 via a switch, and the pin 722 is supplied with a ground voltage. The pin 723 is supplied with the second input voltage V IN2 which becomes high when the tail lamp is turned on. The pins 721 to 723 pass through the inside of the housing 702, and one ends of the pins 721 to 723 are connected to the wiring pattern of the substrate 710.
 以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and that such modifications are also within the scope of the present invention. is there. Hereinafter, such modified examples will be described.
(変形例1)
 第1実施例では、入力電圧VINに温度依存性を有する係数K(T)を乗じて検出電圧Vdが生成され、検出電圧Vdと所定の基準電圧VREFとの間の関係にもとづいて、バイパス回路620Aの状態が制御されているが、本実施形態はこれに限定されるものではない。例えば、所定の基準電圧VREFに、温度と負の相関を有する係数を乗算することでしきい値VTHが生成された上で、しきい値VTHと入力電圧VIN(もしくはそれを所定係数倍した電圧)との関係にもとづいて、バイパス回路の状態が制御されてもよい。
(Modification 1)
In the first embodiment, the detection voltage Vd is generated by multiplying the input voltage VIN by a coefficient K (T) having temperature dependency, and based on the relationship between the detection voltage Vd and a predetermined reference voltage VREF , Although the state of the bypass circuit 620A is controlled, the present embodiment is not limited to this. For example, a threshold V TH is generated by multiplying a predetermined reference voltage V REF by a coefficient having a negative correlation with temperature, and then the threshold V TH and the input voltage VIN (or a predetermined threshold V TH). The state of the bypass circuit may be controlled based on the relationship with the voltage multiplied by the coefficient.
(変形例2)
 第2実施例において、ストップランプとテールランプ兼用のソケットLEDが説明されたが、本実施形態はこれに限定されるものではない。例えば、ストップランプ単体のソケットLEDにおいて、対称性を考慮した発光素子のレイアウトが導入されてもよい。この場合の発光素子のレイアウトは、図7において発光素子508が省略された発光素子のレイアウトに対応する。
(Modification 2)
In the second embodiment, the stop LED and the socket LED serving as the tail lamp have been described, but the present embodiment is not limited to this. For example, a layout of light emitting elements in consideration of symmetry may be introduced in a socket LED of a stop lamp alone. The layout of the light-emitting elements in this case corresponds to the layout of the light-emitting elements in which the light-emitting element 508 is omitted in FIG.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific words and phrases based on the embodiments, the embodiments are merely illustrative of the principles and applications of the present invention, and the embodiments are defined in the appended claims. Many modifications and changes in arrangement may be made without departing from the spirit of the present invention.
 本出願は、2018年7月13日に出願された日本国特許出願(特願2018-133095号)に開示された内容を適宜援用する。 In this application, the contents disclosed in Japanese Patent Application No. 2018-133095 filed on July 13, 2018 are appropriately incorporated.
 500 車両用灯具
 502 半導体光源
 504 発光素子
 502A 第1半導体光源
 502B 第2半導体光源
 600 点灯回路
 610 駆動回路
 610A 第1駆動回路
 620 バイパス回路
 622 温感素子
 628 電流バイパス制御部
 630 電圧コンパレータ
 640 第2駆動回路
 700 LEDソケット
 702 筐体
 704 カバー
 710 基板
 721,722,723 ピン
500 vehicle lamp 502 semiconductor light source 504 light emitting element 502A first semiconductor light source 502B second semiconductor light source 600 lighting circuit 610 drive circuit 610A first drive circuit 620 bypass circuit 622 warming element 628 current bypass control unit 630 voltage comparator 640 second drive Circuit 700 LED socket 702 Housing 704 Cover 710 Board 721, 722, 723 pins

Claims (8)

  1.  直列に接続される複数の発光素子を含む第1半導体光源を点灯するように構成された点灯回路であって、
     入力電圧を受け、前記入力電圧に応じて前記第1半導体光源に駆動電流を供給するように構成された第1駆動回路と、
     前記複数の発光素子のうちの少なくとも一つと接続されると共に、前記第1半導体光源の温度と負の相関を有するしきい値と前記入力電圧との間の関係に応じて、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させることで前記少なくとも一つの発光素子を消灯させるように構成されたバイパス回路と、
     を備える、点灯回路。
    A lighting circuit configured to light a first semiconductor light source including a plurality of light emitting elements connected in series,
    A first drive circuit configured to receive an input voltage and to supply a drive current to the first semiconductor light source according to the input voltage;
    The at least one light emitting device is connected to at least one of the plurality of light emitting elements and according to a relationship between a threshold value having a negative correlation with a temperature of the first semiconductor light source and the input voltage. A bypass circuit configured to turn off the at least one light emitting element by diverting the drive current supplied to the element,
    A lighting circuit comprising:
  2.  前記バイパス回路は、
     前記入力電圧を受け、
     前記入力電圧に前記第1半導体光源の温度と正の相関を有する係数を乗じて得られる検出電圧に応じて、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させる、
    ように構成されている、
    請求項1に記載の点灯回路。
    The bypass circuit,
    Receiving the input voltage;
    According to a detection voltage obtained by multiplying the input voltage by a coefficient having a positive correlation with the temperature of the first semiconductor light source, the driving current supplied to the at least one light emitting element is bypassed.
    Is configured as
    The lighting circuit according to claim 1.
  3.  前記バイパス回路は、
     前記入力電圧が現れる入力ラインと接地ラインの間に直列に設けられる第1抵抗および第2抵抗と、
     前記第1抵抗と並列に設けられる負温度係数を有するサーミスタと、
    を含み、
     前記検出電圧は、前記第1抵抗と前記第2抵抗の接続ノードに現れる、
    請求項2に記載の点灯回路。
    The bypass circuit,
    A first resistor and a second resistor provided in series between an input line where the input voltage appears and a ground line;
    A thermistor having a negative temperature coefficient provided in parallel with the first resistor;
    Including
    The detection voltage appears at a connection node between the first resistor and the second resistor.
    The lighting circuit according to claim 2.
  4.  直列に接続される複数の発光素子を含む第1半導体光源を点灯するように構成された点灯回路であって、
     入力電圧を受け、前記入力電圧に応じて前記第1半導体光源に駆動電流を供給するように構成された第1駆動回路と、
     前記複数の発光素子のうちの少なくとも一つと並列に接続されると共に、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させることで前記少なくとも一つの発光素子を消灯させるように構成されたバイパス回路と、
     を備え、
     前記バイパス回路は、前記第1半導体光源の温度に応じて変化する検出電圧と所定の基準電圧との間の比較に応じて、前記少なくとも一つの発光素子に供給される前記駆動電流を迂回させるように構成されている、
    点灯回路。
    A lighting circuit configured to light a first semiconductor light source including a plurality of light emitting elements connected in series,
    A first drive circuit configured to receive an input voltage and to supply a drive current to the first semiconductor light source according to the input voltage;
    While being connected in parallel with at least one of the plurality of light emitting elements, it is configured to turn off the at least one light emitting element by bypassing the drive current supplied to the at least one light emitting element. A bypass circuit;
    With
    The bypass circuit bypasses the drive current supplied to the at least one light emitting element according to a comparison between a detection voltage that changes according to a temperature of the first semiconductor light source and a predetermined reference voltage. Is configured to
    Lighting circuit.
  5.  直列に接続される複数の発光素子を含む第1半導体光源と、
     前記第1半導体光源を駆動する請求項1から4のうちのいずれか一項に記載の点灯回路と、
     を備える車両用灯具。
    A first semiconductor light source including a plurality of light emitting elements connected in series;
    The lighting circuit according to any one of claims 1 to 4, which drives the first semiconductor light source;
    A vehicle lighting device comprising:
  6.  前記点灯回路の前記バイパス回路は、前記複数の発光素子のうちの2個の発光素子に接続され、
     前記バイパス回路が前記2個の発光素子を消灯させたときに、前記第1半導体光源から出力される発光パターンの対称性が維持される、
    請求項5に記載の車両用灯具。
    The bypass circuit of the lighting circuit is connected to two light emitting elements of the plurality of light emitting elements,
    When the bypass circuit turns off the two light emitting elements, symmetry of a light emitting pattern output from the first semiconductor light source is maintained.
    The vehicular lamp according to claim 5.
  7.  前記第1半導体光源から独立して点消灯可能な第2半導体光源をさらに備え、
     前記第1半導体光源の前記複数の発光素子は、前記第2半導体光源を取り囲むように配置され、
     前記2個の発光素子は、前記第2半導体光源に対して対称となるように設けられる、
    請求項6に記載の車両用灯具。
    A second semiconductor light source that can be turned on and off independently of the first semiconductor light source;
    The plurality of light emitting elements of the first semiconductor light source are arranged to surround the second semiconductor light source,
    The two light emitting elements are provided to be symmetric with respect to the second semiconductor light source.
    The vehicular lamp according to claim 6.
  8.  前記点灯回路は、前記第2半導体光源に駆動電流を供給するように構成された第2駆動回路をさらに備え、
     前記第2駆動回路は、前記第2半導体光源と直列に設けられる第3抵抗を含む、
    請求項6に記載の車両用灯具。
    The lighting circuit further includes a second drive circuit configured to supply a drive current to the second semiconductor light source,
    The second drive circuit includes a third resistor provided in series with the second semiconductor light source.
    The vehicular lamp according to claim 6.
PCT/JP2019/026304 2018-07-13 2019-07-02 Lighting circuit and vehicle light WO2020013032A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133095A JP7182925B2 (en) 2018-07-13 2018-07-13 vehicle lamp
JP2018-133095 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013032A1 true WO2020013032A1 (en) 2020-01-16

Family

ID=69142387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026304 WO2020013032A1 (en) 2018-07-13 2019-07-02 Lighting circuit and vehicle light

Country Status (2)

Country Link
JP (1) JP7182925B2 (en)
WO (1) WO2020013032A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149558A1 (en) * 2020-01-20 2021-07-29 株式会社小糸製作所 Ignition circuit and vehicle lamp

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408448B2 (en) * 2020-03-18 2024-01-05 株式会社小糸製作所 Light source module and lighting circuit
CN115804247A (en) * 2020-06-12 2023-03-14 株式会社小糸制作所 Light source module and lighting circuit
KR102529854B1 (en) * 2020-10-28 2023-05-08 주식회사 금경라이팅 intelligent economic LED light
US11653428B2 (en) * 2020-10-28 2023-05-16 Keumkyung Lighting Co., Ltd. Intelligent power-saving LED light
US20240035639A1 (en) * 2020-12-15 2024-02-01 Koito Manufacturing Co., Ltd. Vehicular headlight

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114279A (en) * 2004-10-13 2006-04-27 Koito Mfg Co Ltd Lighting control circuit of vehicular lighting fixture
US20120262074A1 (en) * 2011-04-13 2012-10-18 Wei-Cheng Wang Driving circuit of light emitting diodes having at least one bypass circuit, and driving method thereof
JP2015060753A (en) * 2013-09-19 2015-03-30 スタンレー電気株式会社 Led module, method for manufacturing the same, and vehicular lighting fixture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6812679B2 (en) * 2016-06-30 2021-01-13 カシオ計算機株式会社 Current control device, lighting device and current control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114279A (en) * 2004-10-13 2006-04-27 Koito Mfg Co Ltd Lighting control circuit of vehicular lighting fixture
US20120262074A1 (en) * 2011-04-13 2012-10-18 Wei-Cheng Wang Driving circuit of light emitting diodes having at least one bypass circuit, and driving method thereof
JP2015060753A (en) * 2013-09-19 2015-03-30 スタンレー電気株式会社 Led module, method for manufacturing the same, and vehicular lighting fixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149558A1 (en) * 2020-01-20 2021-07-29 株式会社小糸製作所 Ignition circuit and vehicle lamp

Also Published As

Publication number Publication date
JP2020013642A (en) 2020-01-23
JP7182925B2 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
WO2020013032A1 (en) Lighting circuit and vehicle light
KR101021211B1 (en) Lighting control unit for vehicle lighting fixture
US10375783B2 (en) Lighting circuit and vehicular lamp
US20060220586A1 (en) Array of light emitting diodes
US10426012B2 (en) Lighting circuit and vehicle lamp
JP6757579B2 (en) Light emitting element drive device, light emitting device, vehicle
US8729821B2 (en) Semiconductor light source lighting circuit and control method
JP2019057468A (en) Lightning circuit and lighting fixture for vehicle
JP7295869B2 (en) Lighting circuit and vehicle lamp
US8749143B1 (en) Automotive lighting device and controller
CN110626253A (en) Device for driving the power supply of a light source of a motor vehicle according to its temperature variation
WO2021206145A1 (en) Vehicle lamp fitting, and lighting circuit
JP7353358B2 (en) Vehicle lights and their lighting circuits
US11906123B2 (en) Light source module
US9622302B2 (en) Lighting system
JP2010003810A (en) Light-emitting diode-driving circuit
US20150156835A1 (en) Ac direct drive led power supply capable of handling overvoltage
JP7408448B2 (en) Light source module and lighting circuit
US20230104439A1 (en) Light source module and lighting circuit
JP7393414B2 (en) Vehicle lighting equipment and lighting circuits
JP7180356B2 (en) vehicle lamp
US20220353966A1 (en) Lighting circuit
JP2013201019A (en) Lighting circuit and lighting device
JP7180355B2 (en) vehicle lamp
JP2022152828A (en) Vehicular lighting fixture

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833020

Country of ref document: EP

Kind code of ref document: A1