JP6812679B2 - Current control device, lighting device and current control method - Google Patents

Current control device, lighting device and current control method Download PDF

Info

Publication number
JP6812679B2
JP6812679B2 JP2016129589A JP2016129589A JP6812679B2 JP 6812679 B2 JP6812679 B2 JP 6812679B2 JP 2016129589 A JP2016129589 A JP 2016129589A JP 2016129589 A JP2016129589 A JP 2016129589A JP 6812679 B2 JP6812679 B2 JP 6812679B2
Authority
JP
Japan
Prior art keywords
current
voltage
analog element
output
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016129589A
Other languages
Japanese (ja)
Other versions
JP2018006105A (en
Inventor
英男 鈴木
英男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2016129589A priority Critical patent/JP6812679B2/en
Publication of JP2018006105A publication Critical patent/JP2018006105A/en
Application granted granted Critical
Publication of JP6812679B2 publication Critical patent/JP6812679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Description

この発明は、電流制御装置、照明装置及び電流制御方法に関する。 The present invention relates to a current control device, a lighting device and a current control method.

従来、発光素子などのアナログ素子に電力、特に、所望の電流を供給して動作させる電流制御装置がある。電池などの電源を用いてこの電流制御装置がアナログ素子を動作させる場合、当該アナログ素子の動作状況に応じて必要な電圧が電源の供給電圧より高くなったり低くなったりする場合があり、このような場合に、必要に応じてチャージポンプ回路により電源電圧を昇圧して電力の供給を行う技術が知られている(特許文献1)。 Conventionally, there is a current control device that supplies electric power, particularly a desired current, to an analog element such as a light emitting element to operate it. When this current control device operates an analog element using a power source such as a battery, the required voltage may be higher or lower than the supply voltage of the power supply depending on the operating condition of the analog element. In such a case, there is known a technique of boosting the power supply voltage by a charge pump circuit to supply electric power as needed (Patent Document 1).

特開2009−21314号公報Japanese Unexamined Patent Publication No. 2009-21314

しかしながら、このような限られた電源を用いる電流制御装置において、アナログ素子の動作に必要な電圧よりも高い電圧を生成して電力の供給を行っている間、アナログ素子の動作に係る消費電力に比して電流制御装置の消費電力が増大し、電力効率が低下するという課題がある。 However, in a current control device using such a limited power supply, while the voltage higher than the voltage required for the operation of the analog element is generated and the power is supplied, the power consumption related to the operation of the analog element is increased. In comparison, there is a problem that the power consumption of the current control device increases and the power efficiency decreases.

この発明の目的は、より電力効率を向上させながら適切に電力供給を行うことが出来る電流制御装置、照明装置及び電流制御方法を提供することにある。 An object of the present invention is to provide a current control device, a lighting device, and a current control method capable of appropriately supplying electric power while further improving power efficiency.

上記目的を達成するため、本発明は、
入力電圧よりも高い電圧を含む複数の異なる出力電圧のうち何れかを選択的に出力してアナログ素子の動作電圧を供給するチャージポンプ回路と、
前記アナログ素子に流す電流を調整する電流調整回路と、
前記電流調整回路により調整された前記アナログ素子に流す電流の電流値に応じた前記動作電圧に基づいて選択される前記出力電圧を前記チャージポンプ回路から出力させ、複数の前記出力電圧ごとにそれぞれ異なる基準で、前記アナログ素子に流す電流に応じたパルス変調制御を行って、当該アナログ素子に電力供給を行う制御部と、
を備え
前記制御部は、複数の前記出力電圧ごとに、前記アナログ素子への電力供給に係る供給電力に対する当該アナログ素子の消費電力の割合を示す電力効率が、前記出力電圧により前記アナログ素子に流すと定められた電流範囲内で最大となる第1の電流値を一つの基準として、それぞれ、前記パルス変調制御を行うことを特徴とする電流制御装置である。
In order to achieve the above object, the present invention
A charge pump circuit that selectively outputs one of several different output voltages, including a voltage higher than the input voltage, to supply the operating voltage of the analog element.
A current adjustment circuit that adjusts the current flowing through the analog element, and
The output voltage selected based on the operating voltage according to the current value of the current flowing through the analog element adjusted by the current adjusting circuit is output from the charge pump circuit, and is different for each of the plurality of output voltages. Based on the reference, a control unit that performs pulse modulation control according to the current flowing through the analog element and supplies power to the analog element.
Equipped with a,
The control unit determines that, for each of the plurality of output voltages, the power efficiency indicating the ratio of the power consumption of the analog element to the supply power related to the power supply to the analog element is passed to the analog element by the output voltage. The current control device is characterized in that the pulse modulation control is performed with the first current value that becomes the maximum within the specified current range as one reference .

本発明に従うと、電流制御装置においてより電力効率を向上させながら適切に電力供給を行うことが出来るという効果がある。 According to the present invention, there is an effect that the current control device can appropriately supply electric power while improving the electric power efficiency.

本発明の実施形態の照明装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the lighting apparatus of embodiment of this invention. LEDの輝度(電流値)と電圧との関係の例を示す図である。It is a figure which shows the example of the relationship between the brightness (current value) of LED, and voltage. 照明動作制御処理の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a lighting operation control process. 温度変化に応じたLEDの電流値(輝度)と電圧との関係の例を示す図である。It is a figure which shows the example of the relationship between the current value (luminance) of LED and the voltage corresponding to the temperature change. 照明動作制御処理の制御手順の変形例を示すフローチャートである。It is a flowchart which shows the modification of the control procedure of a lighting operation control process.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態の照明装置1の機能構成を示すブロック図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a functional configuration of the lighting device 1 of the present embodiment.

この照明装置1は、制御部10と、調光回路20と、チャージポンプ回路30と、電流調整回路40と、LED50(発光ダイオード、発光部、アナログ素子)と、温度計測部60(温度計測手段)などを備える。 The lighting device 1 includes a control unit 10, a dimming circuit 20, a charge pump circuit 30, a current adjusting circuit 40, an LED 50 (light emitting diode, a light emitting unit, an analog element), and a temperature measuring unit 60 (temperature measuring means). ) Etc. are provided.

制御部10は、照明装置1の全体動作を統括制御する。制御部10は、CPU(Central Processing Unit)、RAM(Random Access Memory)や記憶部を備える。これらは、ICチップやマイコン上に一体配置されても良い。制御部10は、電力供給部から電力供給を受け、発振回路や分周回路などの信号生成部から入力されたクロック信号に基づいて動作制御を行う。制御部10は、外部から取得される輝度設定情報、及び電流調整回路40から取得される調整電圧の大きさ情報や、温度計測部60により計測される周辺温度データなどに基づいて、チャージポンプ回路30におけるチャージポンプ動作の有無の切り替えを行い、また、電流調整回路40におけるPWM制御の有無及びPWM制御時のデューティ比の設定を行うことで、LED50に対して適切な電力供給(特に電流)を行う。 The control unit 10 comprehensively controls the overall operation of the lighting device 1. The control unit 10 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), and a storage unit. These may be integrally arranged on an IC chip or a microcomputer. The control unit 10 receives power from the power supply unit and performs operation control based on a clock signal input from a signal generation unit such as an oscillation circuit or a frequency divider circuit. The control unit 10 is a charge pump circuit based on the brightness setting information acquired from the outside, the magnitude information of the adjustment voltage acquired from the current adjustment circuit 40, the ambient temperature data measured by the temperature measurement unit 60, and the like. By switching the presence / absence of charge pump operation in 30 and setting the presence / absence of PWM control in the current adjustment circuit 40 and the duty ratio during PWM control, an appropriate power supply (particularly current) can be supplied to the LED 50. Do.

制御部10は、記憶部に動作テーブル11を有する。動作テーブル11は、チャージポンプ回路30におけるチャージポンプ動作の切り替え条件を温度計測部60の温度データ、LED50の点灯時間や入力電圧Vinの大きさなどの各パラメータと各々及びこれらの組み合わせに対応付けて記憶保持する。 The control unit 10 has an operation table 11 in the storage unit. The operation table 11 associates the charge pump operation switching conditions in the charge pump circuit 30 with each parameter such as the temperature data of the temperature measuring unit 60, the lighting time of the LED 50, and the magnitude of the input voltage Vin, and their combinations. Retain memory.

調光回路20は、制御部10からの制御信号に基づいて、設定される発光量に応じた電流量を得るための定電流回路41の調整動作を行う。 The dimming circuit 20 performs an adjustment operation of the constant current circuit 41 for obtaining a current amount corresponding to a set light emission amount based on a control signal from the control unit 10.

チャージポンプ回路30は、制御部10の制御に応じて電力供給部から入力電圧Vinで供給された電力をそのまま又はチャージポンプにより昇圧した(昇圧動作)何れかの電圧を選択的に出力電圧VoutとしてLED50に出力する。チャージポンプ回路30としては、各種周知の回路を利用可能である。
ここでは、電力供給部から供給する電力に係る電源には、乾電池や充電池などが用いられるが、交流100Vなどの商用電源から取得され、電力供給部で所定の直流電圧に変換されて入力電圧Vinとして入力されても良い。
The charge pump circuit 30 selectively sets the power supplied from the power supply unit at the input voltage Vin according to the control of the control unit 10 as it is or the voltage boosted by the charge pump (boosting operation) as the output voltage Vout. Output to LED50. As the charge pump circuit 30, various well-known circuits can be used.
Here, a dry battery, a rechargeable battery, or the like is used as the power source for the electric power supplied from the power supply unit, but the input voltage is acquired from a commercial power source such as AC 100V and converted into a predetermined DC voltage by the power supply unit. It may be input as Vin.

電流調整回路40は、制御部10及び調光回路20からの入力信号に基づいて、LED50の設定光量に応じて調整した電流を当該LED50に流す。電流調整回路40は、定電流回路41と、スイッチング素子42などを備える。定電流回路41には、各種周知の回路が用いられ、当該定電流回路41を流す電流、即ち、LED50を流れる電流量を変化(調整)させる。また、スイッチング素子42のオンオフを所定の周波数及びデューティ比で切り替えることでPWM(Pulse Width Modulation)動作(パルス変調制御)を行う。 The current adjusting circuit 40 sends a current adjusted according to the set light amount of the LED 50 to the LED 50 based on the input signals from the control unit 10 and the dimming circuit 20. The current adjusting circuit 40 includes a constant current circuit 41, a switching element 42, and the like. Various well-known circuits are used in the constant current circuit 41, and the current flowing through the constant current circuit 41, that is, the amount of current flowing through the LED 50 is changed (adjusted). Further, PWM (Pulse Width Modulation) operation (pulse modulation control) is performed by switching on / off of the switching element 42 at a predetermined frequency and duty ratio.

LED50は、チャージポンプ回路30から入力される供給電圧と電流調整回路40により定められた電流とにより発光して光を出射する。LED50としては、発光量や発光色に応じて適切な周知のものが選択される。温度などの条件に変化がなければ、LED50は、流れる電流量にほぼ比例した輝度(放射光束)で発光する。 The LED 50 emits light by emitting light from the supply voltage input from the charge pump circuit 30 and the current determined by the current adjusting circuit 40. As the LED 50, an appropriate well-known LED 50 is selected according to the amount of light emitted and the color of light emitted. If there is no change in conditions such as temperature, the LED 50 emits light with a brightness (luminous flux) substantially proportional to the amount of flowing current.

温度計測部60は、照明装置1の動作環境の温度、ここでは周辺温度を計測して所定のサンプリング周波数で制御部10に制御結果をデジタル出力する。
これらの構成のうち、アナログ素子としてのLED50を除く各構成要素により電流制御装置2が構成される。
また、温度計測部60及び制御部10により動作環境情報取得手段が構成される。
The temperature measuring unit 60 measures the temperature of the operating environment of the lighting device 1, here the ambient temperature, and digitally outputs the control result to the control unit 10 at a predetermined sampling frequency.
Of these configurations, the current control device 2 is configured by each component except the LED 50 as an analog element.
Further, the temperature measuring unit 60 and the control unit 10 constitute an operating environment information acquisition means.

次に、本実施形態の照明装置1における輝度の制御動作について説明する。
本実施形態の照明装置1では、電流調整回路40の定電流回路41が流す電流量の調整と、スイッチング素子42のオンオフ動作及びデューティ比の調整によるPWM制御とにより、LED50の輝度を調整する。
Next, the brightness control operation in the lighting device 1 of the present embodiment will be described.
In the lighting device 1 of the present embodiment, the brightness of the LED 50 is adjusted by adjusting the amount of current flowing through the constant current circuit 41 of the current adjusting circuit 40, and PWM control by on / off operation of the switching element 42 and adjustment of the duty ratio.

図2は、LED50の輝度(電流値)と電圧との関係の例を示す図である。
LED50は、材料などによって異なるが、所定の閾値電圧Vf0(障壁電圧)以上の印加電圧Vfにより、当該印加電圧Vfの上昇に従って増加する出力電流If、即ち、輝度で発光する。図2(a)に示すように、LED50では、輝度が上昇するにつれて印加電圧Vfが上昇する。チャージポンプ回路30は、この印加電圧Vfと、定電流回路41やスイッチング素子42など電流調整回路40の動作に係る最低限の調整電圧(最低調整電圧Vcmin)との和である動作電圧Va以上の出力電圧Voutを出力供給する必要がある。最低調整電圧Vcminは、電流量(輝度)の上昇に従って大きく変化しない。電流量(輝度)の上昇に伴って、チャージポンプを動作させない状況でのチャージポンプ回路30の第1出力電圧Vout1(第1の電圧)よりも動作電圧Vaが高くなる場合には、チャージポンプを動作させて第2出力電圧Vout2(第2の電圧)を出力させる必要が生じる。
FIG. 2 is a diagram showing an example of the relationship between the brightness (current value) of the LED 50 and the voltage.
The LED 50 emits light with an output current If, that is, brightness, which increases as the applied voltage Vf increases due to an applied voltage Vf equal to or higher than a predetermined threshold voltage Vf0 (barrier voltage), although it varies depending on the material. As shown in FIG. 2A, in the LED 50, the applied voltage Vf increases as the brightness increases. The charge pump circuit 30 is equal to or higher than the operating voltage Va, which is the sum of the applied voltage Vf and the minimum adjustment voltage (minimum adjustment voltage Vcmin) related to the operation of the current adjustment circuit 40 such as the constant current circuit 41 and the switching element 42. It is necessary to output and supply the output voltage Vout. The minimum adjustment voltage Vcmin does not change significantly as the amount of current (luminance) increases. When the operating voltage Va becomes higher than the first output voltage Vout1 (first voltage) of the charge pump circuit 30 in a situation where the charge pump is not operated as the amount of current (brightness) increases, the charge pump is turned on. It becomes necessary to operate and output the second output voltage Vout2 (second voltage).

このとき、出力電圧Voutが動作電圧Vaより大きい場合、この電圧差に応じた電力を定電流回路41の抵抗素子などで熱として消費させると、照明装置1の供給電力、即ち、動作電圧Vaと出力電流Ifとの積に対するLED50の消費電力、即ち、印加電圧Vfと出力電流Ifとの積の割合を示す電力効率が低下する。本実施形態の照明装置1では、出力電圧Vout及びこれに対応する出力電流Ioutを電力効率の高い値に固定して、輝度に応じてその出力時間のPWM制御を行うことで、LED50に流れる電流の平均電流値を予め定められた電流範囲内で変化させる。 At this time, when the output voltage Vout is larger than the operating voltage Va, when the power corresponding to this voltage difference is consumed as heat by the resistance element of the constant current circuit 41 or the like, the supply power of the lighting device 1, that is, the operating voltage Va The power consumption of the LED 50 with respect to the product of the output current If, that is, the power efficiency indicating the ratio of the product of the applied voltage Vf and the output current If is reduced. In the lighting device 1 of the present embodiment, the output voltage Vout and the corresponding output current Iout are fixed to a value having high power efficiency, and the output time is PWM-controlled according to the brightness, so that the current flowing through the LED 50 The average current value of is changed within a predetermined current range.

出力電圧Voutには、上述のように、第1出力電圧Vout1と第2出力電圧Vout2の2種類があり、動作電圧Vaが第1出力電圧Vout1以下の場合には、当該第1出力電圧Vout1を出力電圧Voutとして固定してPWM制御を行い、動作電圧Vaが第1出力電圧Vout1より大きい場合(第2出力電圧Vout2以下)には、第2出力電圧Vout2を出力電圧Voutとして固定してPWM制御を行う。これにより、図2(b)に示すように、必要以上に出力電圧Voutを上昇させず、また、出力電圧Voutと動作電圧Vaの差分が小さい状態に限定する。従って、照明装置1では、平均電流値の低下に伴って出力電圧Voutと動作電圧Vaとの電圧差を発熱消費させる必要がない。
即ち、LED50の輝度(平均輝度)は、チャージポンプを動作させない状況では、第1出力電圧Vout1に応じた出力電流Ioutである閾値電流Ith(第1の電流値)での輝度とPWM制御に係るデューティ比とにより定まり、チャージポンプを動作させた状況では、第2出力電圧Vout2に応じた出力電流Ioutである電流値Imax(第2の電流値)での輝度とPWM制御に係るデューティ比とにより定まる。
このように、2段階の出力電圧について、チャージポンプ動作を行わない低電圧側のLED50の動作において最も電力効率の良い動作電圧Va(=第1出力電圧Vout1)及び閾値電流Ithの位置が、当該2段階のPWM制御の基準(即ち、デューティ比を算出する対象の電流量など)切り替え位置となる。
As described above, there are two types of output voltage Vout, a first output voltage Vout1 and a second output voltage Vout2. When the operating voltage Va is equal to or less than the first output voltage Vout1, the first output voltage Vout1 is used. PWM control is performed by fixing it as the output voltage Vout, and when the operating voltage Va is larger than the first output voltage Vout1 (second output voltage Vout2 or less), the second output voltage Vout2 is fixed as the output voltage Vout and PWM control is performed. I do. As a result, as shown in FIG. 2B, the output voltage Vout is not increased more than necessary, and the difference between the output voltage Vout and the operating voltage Va is limited to a small state. Therefore, in the lighting device 1, it is not necessary to generate heat and consume the voltage difference between the output voltage Vout and the operating voltage Va as the average current value decreases.
That is, the brightness (average brightness) of the LED 50 relates to the brightness at the threshold current Is (first current value), which is the output current Iout corresponding to the first output voltage Vout1, and the PWM control in the situation where the charge pump is not operated. It is determined by the duty ratio, and in the situation where the charge pump is operated, it depends on the brightness at the current value Imax (second current value), which is the output current Iout corresponding to the second output voltage Vout2, and the duty ratio related to PWM control. It is decided.
In this way, with respect to the two-stage output voltage, the positions of the operating voltage Va (= first output voltage Vout1) and the threshold current Is, which have the highest power efficiency in the operation of the LED 50 on the low voltage side where the charge pump operation is not performed, are the relevant. This is the switching position for the two-step PWM control reference (that is, the amount of current for which the duty ratio is calculated).

電流値Imaxとしては、例えば、LED50の順方向電流(絶対最大定格)が用いられるが、第2出力電圧Vout2に比してLED50の輝度制御範囲をこの順方向電流に応じた輝度よりも十分に低い範囲に限る場合には、パルス順方向電流の絶対最大定格であっても良い。或いは、これよりも輝度制御範囲の上限に応じたこれら絶対最大規格に係る値よりも小さい電流値とされても良いが、動作電圧Vaと第2出力電圧Vout2との電圧差が大きくならないことが好ましい。
ここでは、照明装置1により出力可能な電流範囲の最小電流値はゼロとして、当該最小電流値まで所定の間隔又は連続的に輝度を調節することが出来る。
For example, the forward current (absolute maximum rating) of the LED 50 is used as the current value Imax, but the brightness control range of the LED 50 is sufficiently larger than the brightness corresponding to this forward current as compared with the second output voltage Vout2. In the case of limiting to a low range, the absolute maximum rating of the pulse forward current may be used. Alternatively, the current value may be smaller than the value according to these absolute maximum standards according to the upper limit of the brightness control range, but the voltage difference between the operating voltage Va and the second output voltage Vout2 may not be large. preferable.
Here, the minimum current value in the current range that can be output by the lighting device 1 is set to zero, and the brightness can be adjusted at predetermined intervals or continuously up to the minimum current value.

図3は、本実施形態の照明装置1において実行される照明動作制御処理の制御部10による制御手順を示すフローチャートである。
照明動作制御処理が開始されると、制御部10(CPU)は、外部から輝度設定信号を取得する(ステップS111)。この信号は、外部機器からの制御信号であっても良いし、ユーザの入力操作による操作受付信号であっても良い。制御部10は、取得された輝度設定(光量)に応じたLED50の出力電流If(PWMによる平均電流値)及び印加電圧Vfに換算する(ステップS112)。この換算は、特には限られないが、動作テーブル11を参照して行われれば良い。
FIG. 3 is a flowchart showing a control procedure by the control unit 10 of the lighting operation control process executed in the lighting device 1 of the present embodiment.
When the lighting operation control process is started, the control unit 10 (CPU) acquires the brightness setting signal from the outside (step S111). This signal may be a control signal from an external device or an operation reception signal by a user's input operation. The control unit 10 converts the output current If (average current value by PWM) of the LED 50 and the applied voltage Vf according to the acquired luminance setting (light intensity) (step S112). This conversion is not particularly limited, but may be performed with reference to the operation table 11.

制御部10は、電流調整回路40から調整電圧Vcを取得し、印加電圧Vfと合わせて動作電圧Vaを算出する(ステップS113)。制御部10は、動作電圧Vaがチャージポンプ回路30の第1出力電圧Vout1以下であるか否かを判別する(ステップS114)。 The control unit 10 acquires the adjustment voltage Vc from the current adjustment circuit 40, and calculates the operating voltage Va together with the applied voltage Vf (step S113). The control unit 10 determines whether or not the operating voltage Va is equal to or less than the first output voltage Vout1 of the charge pump circuit 30 (step S114).

動作電圧Vaが第1出力電圧Vout1以下である判別された場合には(ステップS114で“YES”)、制御部10は、チャージポンプ動作をオフ設定してチャージポンプ回路30に制御信号を出力し、出力電圧Voutを第1出力電圧Vout1、出力電流Ioutを閾値電流Ithに定める(ステップS115)。それから、制御部10の処理は、ステップS117に移行する。 When it is determined that the operating voltage Va is equal to or less than the first output voltage Vout1 (“YES” in step S114), the control unit 10 sets the charge pump operation to off and outputs a control signal to the charge pump circuit 30. , The output voltage Vout is set to the first output voltage Vout1, and the output current Iout is set to the threshold current Is (step S115). Then, the process of the control unit 10 shifts to step S117.

動作電圧Vaが第1出力電圧Vout1以下ではない(第1出力電圧Vout1より大きい)と判別された場合には(ステップS114で“NO”)、制御部10は、チャージポンプ動作をオン設定してチャージポンプ回路30に制御信号を出力し、出力電圧Voutを第2出力電圧Vout2、出力電流Ioutを電流値Imaxに定める(ステップS116)。それから、制御部10の処理は、ステップS117に移行する。
ステップS113〜S116の処理が電圧設定ステップを構成する。
When it is determined that the operating voltage Va is not equal to or less than the first output voltage Vout1 (greater than the first output voltage Vout1) (“NO” in step S114), the control unit 10 sets the charge pump operation on. A control signal is output to the charge pump circuit 30, and the output voltage Vout is set to the second output voltage Vout2 and the output current Iout is set to the current value Imax (step S116). Then, the process of the control unit 10 shifts to step S117.
The processing of steps S113 to S116 constitutes the voltage setting step.

ステップS117の処理に移行すると、制御部10は、チャージポンプ回路30の出力と、輝度に応じた設定とに基づいて、電流調整回路40のスイッチング素子42によるPWM動作のデューティ比を算出する(ステップS117)。制御部10は、調光回路20に出力電流Ioutを設定して、当該出力電流が得られるように定電流回路41を設定動作させる(ステップS118)。また、制御部10は、算出されたデューティ比でスイッチング素子42のオンオフを切り替えることで、電流調整回路40のPWM制御を行う(ステップS119)。
ステップS117〜S119の処理が電流制御ステップを構成する。
それから、制御部10の処理は、ステップS111に戻る。なお、輝度設定信号の内容に変化が無い場合でも、LED50や電流調整回路40の動作状態、例えば、連続動作時間やその際の発光量などに応じた温度変化などに従って印加電圧Vfと出力電流Ifとの関係が補正され得るものであり、また、調整電圧Vcが随時変更されて帰還されるので、ステップS111からの各処理は、定期的に繰り返し行われる。
When the process proceeds to step S117, the control unit 10 calculates the duty ratio of the PWM operation by the switching element 42 of the current adjustment circuit 40 based on the output of the charge pump circuit 30 and the setting according to the brightness (step). S117). The control unit 10 sets the output current Iout in the dimming circuit 20 and sets and operates the constant current circuit 41 so that the output current can be obtained (step S118). Further, the control unit 10 performs PWM control of the current adjustment circuit 40 by switching the switching element 42 on and off according to the calculated duty ratio (step S119).
The processing of steps S117 to S119 constitutes the current control step.
Then, the process of the control unit 10 returns to step S111. Even if there is no change in the content of the brightness setting signal, the applied voltage Vf and the output current If according to the operating state of the LED 50 and the current adjusting circuit 40, for example, the temperature change according to the continuous operation time and the amount of light emitted at that time. Since the relationship with the above can be corrected and the adjustment voltage Vc is changed at any time and returned, each process from step S111 is periodically repeated.

なお、上述の動作電圧Vaと比較される第1出力電圧Vout1は、厳密にこの値とされるのではなく、多少のマージンを含めた低めの電圧値であっても良い。後述の変形例で示すように、LED50に流れる電流値に対する印加電圧Vfは変動し得るものであり、また、入力電圧Vinの変動によって第1出力電圧Vout1も変化し得る。従って、一時的にこれらの変動が生じた場合でも動作電圧Vaが照明装置1の信頼度などに応じて十分な確率で第1出力電圧Vout1以下となるように低めの電圧値が設定され、当該低めの電圧値に応じて閾値電流Ithより小さい電流値がPWM制御で断続的にLED50に流される。言い換えると、チャージポンプ動作を行わない場合の出力電流(PWM制御による平均電流値)は、閾値電流Ithよりも小さい範囲で予め適宜定めておくことが出来る。 The first output voltage Vout1 to be compared with the above-mentioned operating voltage Va is not strictly set to this value, but may be a low voltage value including some margin. As shown in the modified example described later, the applied voltage Vf with respect to the current value flowing through the LED 50 can fluctuate, and the first output voltage Vout1 can also change due to the fluctuation of the input voltage Vin. Therefore, even if these fluctuations occur temporarily, a low voltage value is set so that the operating voltage Va becomes the first output voltage Vout1 or less with a sufficient probability according to the reliability of the lighting device 1 and the like. A current value smaller than the threshold current Is is intermittently flowed to the LED 50 by PWM control according to the lower voltage value. In other words, the output current (average current value by PWM control) when the charge pump operation is not performed can be appropriately determined in advance within a range smaller than the threshold current Is.

[変形例]
次に、照明装置1の輝度制御動作の変形例について説明する。
LED50を流れる電流値(即ち輝度)と印加電圧Vfとの関係は、LED50の素子ごとにばらつきが大きく、また、更に周辺温度などの周辺環境の状態に応じて変化する。
図4は、温度変化に応じたLED50の電流値(輝度)と電圧との関係の例を示す図である。
[Modification example]
Next, a modified example of the brightness control operation of the lighting device 1 will be described.
The relationship between the current value (that is, the brightness) flowing through the LED 50 and the applied voltage Vf varies greatly depending on the element of the LED 50, and further changes according to the state of the surrounding environment such as the ambient temperature.
FIG. 4 is a diagram showing an example of the relationship between the current value (luminance) and the voltage of the LED 50 according to the temperature change.

周辺温度Tが所定の標準温度T0からこれより高い温度T1に上昇すると、所定の電流値に対応する印加電圧Vf(順方向電圧)が低下し、これに伴って、動作電圧もVa(T0)からVa(T1)に低下する。従って、第1出力電圧Vout1と動作電圧Vaとが等しくなるときの電流、即ち、閾値電流Ithが上昇する。 When the ambient temperature T rises from the predetermined standard temperature T0 to a temperature T1 higher than this, the applied voltage Vf (forward voltage) corresponding to the predetermined current value decreases, and the operating voltage also becomes Va (T0) accordingly. Decreases from to Va (T1). Therefore, the current when the first output voltage Vout1 and the operating voltage Va become equal, that is, the threshold current Is increases.

また、乾電池や充電池などのバッテリからの入力電圧Vinは、バッテリ残量に応じて低下するので、この入力電圧Vinの低下(変化)に伴ってチャージポンプ回路30の出力電圧Voutも変化する。従って、この出力電圧Voutの変化もチャージポンプ動作の有無の切り替え基準を変化させる要因となり得る。 Further, since the input voltage Vin from a battery such as a dry battery or a rechargeable battery decreases according to the remaining battery level, the output voltage Vout of the charge pump circuit 30 also changes as the input voltage Vin decreases (changes). Therefore, this change in the output voltage Vout can also be a factor for changing the reference for switching the presence or absence of the charge pump operation.

本実施形態の照明装置1では、チャージポンプ動作の有無を切り替える基準として閾値電流Ithを温度条件などのパラメータなどと対応付けて動作テーブル11に記憶させる。パラメータ(動作環境情報)としては、温度計測部60が計測する周辺温度や入力電圧Vinの他、照明動作を開始してからの継続時間なども含まれ得る。そして、これらパラメータの一部又は全部を適切な頻度で取得し、取得されたデータ(取得データ)に応じて閾値電流Ithの設定を変化(変更)させながらチャージポンプ動作の有無及びPWM制御の基準の切り替えが行われる。 In the lighting device 1 of the present embodiment, the threshold current Is is stored in the operation table 11 in association with parameters such as temperature conditions as a reference for switching the presence or absence of charge pump operation. The parameters (operating environment information) may include the ambient temperature measured by the temperature measuring unit 60, the input voltage Vin, and the duration after the start of the lighting operation. Then, a part or all of these parameters are acquired at an appropriate frequency, and the presence / absence of charge pump operation and the reference for PWM control are changed (changed) in the setting of the threshold current Is according to the acquired data (acquired data). Is switched.

図5は、本実施形態の照明装置1において実行される照明動作制御処理の制御部10による制御手順の変形例を示すフローチャートである。
この変形例の照明動作制御処理は、図3に示した照明動作制御処理と比較して、ステップS113の処理の代わりにステップS121、S122の処理が追加され、また、ステップS112、S114〜S116の処理がそれぞれステップS112a、S114a〜S116aの処理に置き換えられている。その他の処理については同一であり、同一の処理内容には同一の符号を付して詳しい説明を省略する。
FIG. 5 is a flowchart showing a modified example of the control procedure by the control unit 10 of the lighting operation control process executed in the lighting device 1 of the present embodiment.
In the lighting operation control processing of this modification, as compared with the lighting operation control processing shown in FIG. 3, the processing of steps S121 and S122 is added instead of the processing of step S113, and the processing of steps S112 and S114 to S116 The processing is replaced with the processing of steps S112a and S114a to S116a, respectively. Other processes are the same, and the same processing contents are designated by the same reference numerals and detailed description thereof will be omitted.

ステップS111の処理で輝度設定が取得されると、制御部10は、輝度に応じた出力電流If(PWMによる平均電流値)に換算する(ステップS112a)。制御部10は、電流調整回路40から調整電圧Vcを取得し、また、パラメータとして、温度計測部60から周辺温度を取得し、入力電圧Vinを計測して取得する(ステップS121)。 When the brightness setting is acquired in the process of step S111, the control unit 10 converts the output current If (average current value by PWM) according to the brightness (step S112a). The control unit 10 acquires the adjustment voltage Vc from the current adjustment circuit 40, acquires the ambient temperature from the temperature measurement unit 60 as a parameter, and measures and acquires the input voltage Vin (step S121).

制御部10は、動作テーブル11を参照してこれら取得された調整電圧Vc、入力電圧Vinや周辺温度Tなどのパラメータに応じた閾値電流Ithを取得して設定する(ステップS122)。 The control unit 10 acquires and sets the threshold current Is according to the parameters such as the acquired adjustment voltage Vc, input voltage Vin, and ambient temperature T with reference to the operation table 11 (step S122).

制御部10は、電流調整回路40の制御によりLED50に流す出力電流If(平均電流値)が得られた閾値電流Ith以下であるか否かを判別する(ステップS114a)。出力電流Ifが閾値電流Ith以下であると判別された場合には(ステップS114aで“YES”)、制御部10は、チャージポンプ回路30によるチャージポンプ動作をオフに設定し、電流調整回路40によるPWM制御により電流が流れる期間における出力電流Ioutの電流値を閾値電流Ithに設定する(ステップS115a)。それから、制御部10の処理は、ステップS117に移行する。 The control unit 10 determines whether or not the output current If (average current value) to be passed through the LED 50 is equal to or less than the obtained threshold current Is or less under the control of the current adjustment circuit 40 (step S114a). When it is determined that the output current If is equal to or less than the threshold current Is (“YES” in step S114a), the control unit 10 sets the charge pump operation by the charge pump circuit 30 to off, and the current adjustment circuit 40 sets the charge pump operation to off. The current value of the output current Iout during the period in which the current flows by PWM control is set to the threshold current Is (step S115a). Then, the process of the control unit 10 shifts to step S117.

出力電流Ifが閾値電流Ith以下ではないと判別された場合には(ステップS114aで“NO”)、制御部10は、チャージポンプ回路30によるチャージポンプ動作をオンに設定し、出力電流Ioutの電流値を電流値Imaxに設定する(ステップS116a)。それから、制御部10の処理は、ステップS117に移行する。 When it is determined that the output current If is not equal to or less than the threshold current Is (“NO” in step S114a), the control unit 10 sets the charge pump operation by the charge pump circuit 30 to ON, and the current of the output current Iout. The value is set to the current value Imax (step S116a). Then, the process of the control unit 10 shifts to step S117.

以上のように、本実施形態の照明装置1のアナログ素子であるLED50の電流を制御する電流制御装置2は、入力電圧Vinよりも高い電圧を含む複数の異なる出力電圧Voutのうち何れかを選択的に出力してLED50の動作電圧Vaを供給するチャージポンプ回路30と、LED50に流す出力電流If(平均電流値)を調整する電流調整回路40と、LED50に流す出力電流Ioutの電流値に応じた動作電圧Vaに基づいて選択される出力電圧Voutをチャージポンプ回路30から出力させ、複数の出力電圧Vout(Vout1、Vout2)ごとにそれぞれ異なる基準で、LED50に流す出力電流Ifに応じたPWM制御を行って、当該LED50に電力供給を行う制御部10と、を備える。このように、チャージポンプ回路30における複数の出力電圧に対して電力効率の良い動作電圧Vaとなる閾値電流Ithや電流値Imaxをそれぞれ基準として各々PWM制御を行うことで、電力効率を下げずに広い出力電流範囲で少ない無駄で適切な電流の出力を行うことが出来る。また、これにより、最大出力電圧に応じた電圧を常に出力する必要がなく、乾電池や充電池など出力電圧が限られるバッテリを有効に利用して幅広い電流供給を行うことが出来る。 As described above, the current control device 2 that controls the current of the LED 50, which is the analog element of the lighting device 1 of the present embodiment, selects one of a plurality of different output voltages Vout including a voltage higher than the input voltage Vin. According to the charge pump circuit 30 that outputs the operating voltage Va of the LED 50, the current adjusting circuit 40 that adjusts the output current If (average current value) flowing through the LED 50, and the current value of the output current Iout flowing through the LED 50. The output voltage Vout selected based on the operating voltage Va is output from the charge pump circuit 30, and PWM control is performed according to the output current If flowing through the LED 50 with different standards for each of the plurality of output voltages Vout (Vout1, Vout2). A control unit 10 for supplying power to the LED 50 is provided. In this way, by performing PWM control with reference to the threshold current Is and the current value Imax, which are the operating voltages Va with good power efficiency for the plurality of output voltages in the charge pump circuit 30, the power efficiency is not lowered. It is possible to output an appropriate current with little waste in a wide output current range. Further, as a result, it is not necessary to constantly output a voltage corresponding to the maximum output voltage, and a wide range of current can be supplied by effectively using a battery having a limited output voltage such as a dry battery or a rechargeable battery.

また、制御部10は、複数の出力電圧Vout1、Vout2ごとに、LED50への電力供給に係る供給電力に対するLED50の消費電力の割合を示す電力効率が、出力電圧VoutによりLED50に流すと定められた電流範囲内で最大となる第1の電流値(閾値電流Ith、電流値Imax)を一つの基準として、それぞれ、PWM制御を行う。このように、電力効率が最大の電流及び電圧を基準としてPWM制御を行うことで、これより小さい電流をLED50に流す場合でも広い範囲で電力効率を大きく低下させないので、電力効率の高い状態を広い範囲に亘って維持することが出来る。 Further, the control unit 10 has determined that for each of the plurality of output voltages Vout1 and Vout2, the power efficiency indicating the ratio of the power consumption of the LED50 to the power supply related to the power supply to the LED50 is passed to the LED50 by the output voltage Vout. PWM control is performed using the first current value (threshold current Is, current value Imax), which is the maximum within the current range, as one reference. In this way, by performing PWM control based on the current and voltage having the maximum power efficiency, even when a current smaller than this is passed through the LED 50, the power efficiency is not significantly reduced in a wide range, so that the state of high power efficiency is wide. It can be maintained over a range.

また、複数の出力電圧Vout1、Vout2ごとに定められる電流範囲は、当該電流範囲における最大の電流値で電力効率がそれぞれ最高となるように定められ、制御部10は、当該最大の電流値を複数の出力電圧各々における基準として、LED50に流す電流に応じたPWM制御を行うことによりLED50への電力供給を行う。
これにより、各電流範囲で最大の電流値を基準としてこの電流を絞るPWM制御により電流範囲全体で高い電力効率を保ちながら電流出力を行うことが出来るので、電流出力対象範囲全体について容易に適切な制御を効率良く行うことが出来る。
Further, the current range defined for each of the plurality of output voltages Vout1 and Vout2 is defined so that the power efficiency becomes the maximum at the maximum current value in the current range, and the control unit 10 sets the maximum current value. As a reference for each of the output voltages of the above, power is supplied to the LED 50 by performing PWM control according to the current flowing through the LED 50.
As a result, current output can be performed while maintaining high power efficiency over the entire current range by PWM control that throttles this current based on the maximum current value in each current range, so it is easily appropriate for the entire current output target range. Control can be performed efficiently.

また、チャージポンプ回路30は、入力電圧Vinに対して昇圧動作を行わない第1出力電圧Vout1と、入力電圧Vinから昇圧動作を行った第2出力電圧Vout2とを出力可能であり、電流調整回路40は、第1出力電圧Vout1によりLED50に流す最小電流値(ゼロ)以上閾値電流Ith以下の電流範囲内の電流をLED50に流す場合には、チャージポンプ回路30に第1出力電圧Vout1を出力させて、閾値電流IthとLED50に流す出力電流If(平均電流値)とに基づくデューティ比で閾値電流Ithの電流を流すPWM制御を行い、閾値電流Ithより大きい電流をLED50に流す場合には、チャージポンプ回路30に第2出力電圧Vout2を出力させて、第2出力電圧Vout2に応じて予め定められた電流値ImaxとLED50に流す電流とに基づくデューティ比で電流値Imaxの電流を流すPWM制御を行う。
このように、チャージポンプ動作により出力電圧を二段階に切り替え、低電圧側の出力電圧Voutに対して電力効率の良い閾値電流Ithに応じた動作電圧Vaの位置で当該チャージポンプ動作の切り替えとPWM制御に係る基準電流の切り替えを行うので、容易な制御動作で効率の良い電流出力を行うことが出来る。
Further, the charge pump circuit 30 can output a first output voltage Vout1 that does not boost the input voltage Vin and a second output voltage Vout2 that boosts the input voltage Vin, and is a current adjusting circuit. 40 causes the charge pump circuit 30 to output the first output voltage Vout1 when a current within the current range of the minimum current value (zero) or more and the threshold current Is or less to be passed through the LED 50 by the first output voltage Vout1 is passed through the LED 50. Then, PWM control is performed to flow the current of the threshold current Is at a duty ratio based on the threshold current Is and the output current If (average current value) to be passed through the LED 50, and when a current larger than the threshold current Is is passed to the LED 50, the charge is charged. PWM control is performed by causing the pump circuit 30 to output the second output voltage Vout2 and passing a current with a current value of Imax at a duty ratio based on a predetermined current value Imax and a current flowing through the LED 50 according to the second output voltage Vout2. Do.
In this way, the output voltage is switched in two stages by the charge pump operation, and the charge pump operation is switched and PWMed at the position of the operating voltage Va corresponding to the threshold current Is, which has good power efficiency with respect to the output voltage Vout on the low voltage side. Since the reference current related to control is switched, efficient current output can be performed with a simple control operation.

また、最小電流値はゼロである。このようにPWM制御を用いることで、微小電流まで幅広く安定して効率良く出力させることが出来る。 The minimum current value is zero. By using PWM control in this way, it is possible to output a wide range of small currents stably and efficiently.

また、温度計測部60を備え、また、制御部10が入力電圧Vinを計測する機能を備え、制御部10は、これらの取得データに基づいて閾値電流Ithに係る設定を変更する。電流出力対象のLED50は、特に、温度上昇などにより抵抗値が低下して電流が流れやすくなり、また、乾電池などのバッテリからの入力電圧は、当該バッテリの残量などに応じて変化し得る。従って、これらを考慮して適切な閾値電流Ithを定めることで、より効率良く適切な電流の出力を行うことが出来る。 Further, the temperature measuring unit 60 is provided, and the control unit 10 has a function of measuring the input voltage Vin, and the control unit 10 changes the setting related to the threshold current Is based on these acquired data. In particular, the resistance value of the LED 50 to be output of current decreases due to a temperature rise or the like, so that current easily flows, and the input voltage from a battery such as a dry battery may change depending on the remaining amount of the battery or the like. Therefore, by determining an appropriate threshold current Is in consideration of these, it is possible to output an appropriate current more efficiently.

また、温度計測部60を有するので、周辺温度などからLED50の温度による特性変化をより適切に反映することが出来る。 Further, since the temperature measuring unit 60 is provided, it is possible to more appropriately reflect the characteristic change due to the temperature of the LED 50 from the ambient temperature and the like.

また、パルス変調制御はPWM制御である。クロック周波数を一定に保ったままデューティ比のみを切り替えて光量を制御することで、容易な処理で正確に光量変化の制御を行うことが可能になる。 The pulse modulation control is PWM control. By controlling the amount of light by switching only the duty ratio while keeping the clock frequency constant, it is possible to accurately control the change in the amount of light with simple processing.

また、アナログ素子としてLED50が用いられる。このようにとくに電流値に応じて光量が変化するアナログ素子に対して本実施形態の電流制御装置2を用いて電流を流すことで、より容易且つ正確な電流量を少ない損失で流すことが出来る。 Further, the LED 50 is used as an analog element. As described above, by passing a current through the current control device 2 of the present embodiment to the analog element whose light amount changes according to the current value, a simpler and more accurate current amount can be passed with a small loss. ..

また、本実施形態の照明装置1は、上述の電流制御装置2と、LED50とを備える。
このような照明装置1により、幅広い輝度範囲に亘り低消費電力で正確な明るさでの照明動作を容易に行うことが出来る。また、特に、乾電池などのバッテリを用いても適切な光量が出力になるので、携帯型の照明装置などでのバッテリの利用可能時間を向上させつつ適切な輝度での出力を可能とすることが出来る。特に、輝度を低下させたときの消費電力を低下させることが出来るので、低輝度での利用時には、当該輝度に応じてより長時間の利用が可能になる。
Further, the lighting device 1 of the present embodiment includes the above-mentioned current control device 2 and the LED 50.
With such a lighting device 1, it is possible to easily perform a lighting operation with low power consumption and accurate brightness over a wide range of brightness. In particular, since an appropriate amount of light is output even when a battery such as a dry battery is used, it is possible to output at an appropriate brightness while improving the usable time of the battery in a portable lighting device or the like. You can. In particular, since the power consumption when the brightness is lowered can be reduced, when the product is used at a low brightness, it can be used for a longer time according to the brightness.

また、上述の電流制御方法を用いることで、電力効率を下げずに広い出力電流範囲で無駄の少ない適切な電流出力を行うことが出来る。また、これにより、最大出力電圧に応じた電圧を常に出力する必要がなく、乾電池や充電池など出力電圧が限られるバッテリを有効に利用して効果的な電流供給を行うことが出来る。 Further, by using the above-mentioned current control method, it is possible to perform an appropriate current output with less waste in a wide output current range without lowering the power efficiency. Further, as a result, it is not necessary to always output a voltage corresponding to the maximum output voltage, and an effective current supply can be performed by effectively utilizing a battery having a limited output voltage such as a dry battery or a rechargeable battery.

なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施の形態では、パルス変調制御としてパルス幅制御(PWM制御)により消費電力の削減と安定した輝度の調整とを両立させているが、PWM制御の他、パルス周波数(PFM)の制御などが行われて又は組み合わされても良い。
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, the pulse width control (PWM control) as the pulse modulation control achieves both reduction of power consumption and stable brightness adjustment, but in addition to PWM control, pulse frequency (PFM) control Etc. may be performed or combined.

また、上記実施の形態では、チャージポンプ回路30は、入力電圧を一段階昇圧させるものとして示したが、これに限られるものではない。二段階以上に昇圧可能なチャージポンプ回路が用いられても良く、また、昇圧電圧の入力電圧に対する倍率などは適宜定められる。この場合には、当該二段階以上(N段階)の出力電圧Vout(k)(k=1〜N−1)の各々に応じた異なる閾値電流Ith(k)を電力効率が良くなるようにそれぞれ定めれば良い。 Further, in the above embodiment, the charge pump circuit 30 is shown to boost the input voltage by one step, but the present invention is not limited to this. A charge pump circuit capable of boosting in two or more steps may be used, and the magnification of the boost voltage with respect to the input voltage is appropriately determined. In this case, different threshold currents Is (k) corresponding to each of the output voltages Vout (k) (k = 1 to N-1) of the two or more stages (N stages) are applied so as to improve power efficiency. You just have to decide.

また、上記実施の形態では、各出力電圧でそれぞれ流すことの可能な最大電流を基準として全てPWM制御で電流(平均電流値)の調整を行うこととしたが、これに限られるものではない。最大電流よりも若干低い電圧を基準として小さい電流が流れる場合にPWM制御により平均電流値を絞り、当該基準の電流と最大電流との間では、PWM制御時よりも可変抵抗の値を小さくして発光させることとしても良い。反対に、輝度設定が非常に小さい場合には、パルス変調制御と抵抗値の上昇とを組み合わせてLED50に流す電流を低下させても良い。 Further, in the above embodiment, the current (average current value) is adjusted by PWM control based on the maximum current that can be passed at each output voltage, but the present invention is not limited to this. When a small current flows with reference to a voltage slightly lower than the maximum current, the average current value is narrowed down by PWM control, and the variable resistance value is made smaller between the reference current and the maximum current than during PWM control. It may be made to emit light. On the contrary, when the brightness setting is very small, the pulse modulation control and the increase in the resistance value may be combined to reduce the current flowing through the LED 50.

また、上記実施の形態では、電流(光量)と電圧とが単調増加で変化する場合について示したが、電流増加に比して電圧のピークが途中にある場合、即ち、電力効率が最大になる位置が最大の電流値の位置ではない場合、当該ピーク位置の電流を基準電流として、これより小さい電流についてはPWM制御を行い、これより大きい電流については定電流回路41の調整により電流及び電圧を得るといった切り替えを行っても良い。 Further, in the above embodiment, the case where the current (light amount) and the voltage change with a monotonous increase is shown, but when the voltage peak is in the middle as compared with the current increase, that is, the power efficiency is maximized. If the position is not the position of the maximum current value, the current at the peak position is used as the reference current, PWM control is performed for the current smaller than this, and the current and voltage are adjusted for the current larger than this by adjusting the constant current circuit 41. You may switch such as getting.

また、上記実施の形態では、電流を流すアナログ素子として発光ダイオード(LED)を用いることとして説明したが、その他の発光体(発光部)、例えば、有機発光ダイオード(OLED)などが用いられても良い。また、発光体を発光させる装置は、照明装置に限られず、センサなどその他の用途に用いられても良い。また、この場合、発光体は可視光を出射するものに限られず、赤外光や紫外光が出射されるものであっても良い。また、電流制御装置2は、発光体以外のアナログ素子を動作させる電流を制御するものであっても良く、例えば、アナログ素子は、電熱ヒータ、モータや各種音声発生部などであっても良い。 Further, in the above embodiment, the light emitting diode (LED) is used as the analog element through which the current flows, but other light emitting bodies (light emitting parts), for example, an organic light emitting diode (OLED) may be used. good. Further, the device that emits light from the light emitter is not limited to the lighting device, and may be used for other purposes such as a sensor. Further, in this case, the light emitting body is not limited to one that emits visible light, and may be one that emits infrared light or ultraviolet light. Further, the current control device 2 may control the current for operating an analog element other than the light emitting body. For example, the analog element may be an electric heater, a motor, various sound generators, or the like.

また、上記実施の形態では、単一のLEDに対して電力供給を行う場合を例に挙げて説明したが複数のLEDなどが並列配置され、抵抗素子などを介して略均等に電流が流れるように設けられても良い。或いは、複数のLEDに対して完全に個別に上記電流制御回路を用いて同一の電流が流れるように制御されても良い。
その他、上記実施の形態で示した構成、制御内容や手順などの具体的な細部は、本発明の趣旨を逸脱しない範囲において適宜変更可能である。
Further, in the above embodiment, the case where power is supplied to a single LED has been described as an example, but a plurality of LEDs and the like are arranged in parallel so that the current flows substantially evenly through the resistance element and the like. It may be provided in. Alternatively, the same current may be controlled to flow completely individually for the plurality of LEDs by using the current control circuit.
In addition, specific details such as the configuration, control contents, and procedures shown in the above-described embodiment can be appropriately changed without departing from the spirit of the present invention.

本発明のいくつかの実施形態を説明したが、本発明の範囲は、上述の実施の形態に限定するものではなく、特許請求の範囲に記載された発明の範囲とその均等の範囲を含む。
以下に、この出願の願書に最初に添付した特許請求の範囲に記載した発明を付記する。付記に記載した請求項の項番は、この出願の願書に最初に添付した特許請求の範囲の通りである。
Although some embodiments of the present invention have been described, the scope of the present invention is not limited to the above-described embodiments, but includes the scope of the invention described in the claims and the equivalent scope thereof.
The inventions described in the claims originally attached to the application of this application are added below. The claims in the appendix are as specified in the claims originally attached to the application for this application.

[付記]
<請求項1>
入力電圧よりも高い電圧を含む複数の異なる出力電圧のうち何れかを選択的に出力してアナログ素子の動作電圧を供給するチャージポンプ回路と、
前記アナログ素子に流す電流を調整する電流調整回路と、
前記電流調整回路により調整された前記アナログ素子に流す電流の電流値に応じた前記動作電圧に基づいて選択される前記出力電圧を前記チャージポンプ回路から出力させ、複数の前記出力電圧ごとにそれぞれ異なる基準で、前記アナログ素子に流す電流に応じたパルス変調制御を行って、当該アナログ素子に電力供給を行う制御部と、
を備えることを特徴とする電流制御装置。
<請求項2>
前記制御部は、複数の前記出力電圧ごとに、前記アナログ素子への電力供給に係る供給電力に対する当該アナログ素子の消費電力の割合を示す電力効率が、前記出力電圧により前記アナログ素子に流すと定められた電流範囲内で最大となる第1の電流値を一つの基準として、それぞれ、前記パルス変調制御を行うことを特徴とする請求項1記載の電流制御装置。
<請求項3>
複数の前記出力電圧ごとに定められる前記電流範囲は、当該電流範囲における最大の電流値で前記電力効率がそれぞれ最高となるように定められ、
前記制御部は、当該最大の電流値を前記複数の出力電圧各々における基準として、前記アナログ素子に流す電流に応じた前記パルス変調制御を行うことにより前記アナログ素子への電力供給を行う
ことを特徴とする請求項2記載の電流制御装置。
<請求項4>
前記チャージポンプ回路は、前記入力電圧に対して昇圧動作を行わない第1の電圧と、前記入力電圧から昇圧動作を行った第2の電圧とを出力可能であり、
前記制御部は、
前記第1の電圧により前記アナログ素子に流す最小電流値以上前記第1の電流値以下の電流範囲内の電流を前記アナログ素子に流す場合には、前記チャージポンプ回路に前記第1の電圧を出力させて、前記第1の電流値と前記アナログ素子に流す電流とに基づくデューティ比で前記第1の電流値の電流を流す前記パルス変調制御を行い、
前記第1の電流値より大きい電流を前記アナログ素子に流す場合には、前記チャージポンプ回路に前記第2の電圧を出力させて、前記第2の電圧に応じて予め定められた第2の電流値と前記アナログ素子に流す電流とに基づくデューティ比で前記第2の電流値の電流を流す前記パルス変調制御を行う
ことを特徴とする請求項3記載の電流制御装置。
<請求項5>
前記最小電流値はゼロであることを特徴とする請求項4記載の電流制御装置。
<請求項6>
動作環境情報取得手段を備え、
前記制御部は、前記動作環境情報取得手段の取得データに基づいて前記第1の電流値に係る設定を変更する
ことを特徴とする請求項2〜5の何れか一項に記載の電流制御装置。
<請求項7>
前記動作環境情報取得手段は、温度計測手段を有することを特徴とする請求項6記載の電流制御装置。
<請求項8>
前記パルス変調制御はPWM制御であることを特徴とする請求項1〜7の何れか一項に記載の電流制御装置。
<請求項9>
前記アナログ素子は、発光ダイオードであることを特徴とする請求項1〜8の何れか一項に記載の電流制御装置。
<請求項10>
請求項9記載の電流制御装置と、
前記出力電圧が供給されて電流が流れる発光部と、
を備えることを特徴とする照明装置。
<請求項11>
アナログ素子に流す電流を調整する電流調整回路と、入力電圧よりも高い電圧を含む複数の異なる出力電圧のうち何れかを選択的に出力して前記アナログ素子の動作電圧を供給するチャージポンプ回路と、を備える電流制御装置の電流制御方法であって、
前記アナログ素子に流す電流の電流値に応じた動作電圧に基づいて選択される前記出力電圧を前記チャージポンプ回路から出力させる電圧設定ステップ、
複数の前記出力電圧ごとにそれぞれ異なる基準で、前記アナログ素子に流す電流に応じたパルス変調制御を行って、当該アナログ素子に電力供給を行う電流制御ステップ、
を含むことを特徴とする電流制御方法。
[Additional Notes]
<Claim 1>
A charge pump circuit that selectively outputs one of several different output voltages, including a voltage higher than the input voltage, to supply the operating voltage of the analog element.
A current adjustment circuit that adjusts the current flowing through the analog element, and
The output voltage selected based on the operating voltage according to the current value of the current flowing through the analog element adjusted by the current adjusting circuit is output from the charge pump circuit, and is different for each of the plurality of output voltages. Based on the reference, a control unit that performs pulse modulation control according to the current flowing through the analog element and supplies power to the analog element.
A current control device characterized by comprising.
<Claim 2>
The control unit determines that, for each of the plurality of output voltages, the power efficiency indicating the ratio of the power consumption of the analog element to the supply power related to the power supply to the analog element is passed to the analog element by the output voltage. The current control device according to claim 1, wherein the pulse modulation control is performed using the first current value that becomes the maximum within the obtained current range as one reference.
<Claim 3>
The current range defined for each of the plurality of output voltages is defined so that the maximum current value in the current range has the highest power efficiency.
The control unit is characterized in that power is supplied to the analog element by performing the pulse modulation control according to the current flowing through the analog element, using the maximum current value as a reference for each of the plurality of output voltages. 2. The current control device according to claim 2.
<Claim 4>
The charge pump circuit can output a first voltage that does not perform a boosting operation with respect to the input voltage and a second voltage that performs a boosting operation from the input voltage.
The control unit
When a current within the current range equal to or greater than the minimum current value to be passed through the analog element by the first voltage and equal to or lower than the first current value is passed through the analog element, the first voltage is output to the charge pump circuit. Then, the pulse modulation control for passing the current of the first current value is performed with a duty ratio based on the first current value and the current flowing through the analog element.
When a current larger than the first current value is passed through the analog element, the charge pump circuit is made to output the second voltage, and a second current predetermined according to the second voltage is generated. The current control device according to claim 3, wherein the pulse modulation control for flowing the current of the second current value is performed by a duty ratio based on the value and the current flowing through the analog element.
<Claim 5>
The current control device according to claim 4, wherein the minimum current value is zero.
<Claim 6>
Equipped with operating environment information acquisition means
The current control device according to any one of claims 2 to 5, wherein the control unit changes the setting related to the first current value based on the acquired data of the operating environment information acquisition means. ..
<Claim 7>
The current control device according to claim 6, wherein the operating environment information acquisition means includes a temperature measuring means.
<Claim 8>
The current control device according to any one of claims 1 to 7, wherein the pulse modulation control is PWM control.
<Claim 9>
The current control device according to any one of claims 1 to 8, wherein the analog element is a light emitting diode.
<Claim 10>
The current control device according to claim 9 and
The light emitting part to which the output voltage is supplied and the current flows,
A lighting device characterized by being provided with.
<Claim 11>
A current adjustment circuit that adjusts the current flowing through the analog element, and a charge pump circuit that selectively outputs one of a plurality of different output voltages including a voltage higher than the input voltage to supply the operating voltage of the analog element. A current control method for a current control device comprising,
A voltage setting step of outputting the output voltage selected based on the operating voltage according to the current value of the current flowing through the analog element from the charge pump circuit.
A current control step in which pulse modulation control is performed according to a current flowing through the analog element based on a different reference for each of the plurality of output voltages, and power is supplied to the analog element.
A current control method comprising.

1 照明装置
2 電流制御装置
10 制御部
11 動作テーブル
20 調光回路
30 チャージポンプ回路
40 電流調整回路
41 定電流回路
42 スイッチング素子
50 LED(発光ダイオード)
60 温度計測部
Ith 閾値電流
Va 動作電圧
Vc 調整電圧
Vf 印加電圧
Vin 入力電圧
Vout 出力電圧
1 Lighting device 2 Current control device 10 Control unit 11 Operation table 20 Dimming circuit 30 Charge pump circuit 40 Current adjustment circuit 41 Constant current circuit 42 Switching element 50 LED (light emitting diode)
60 Temperature measuring unit Is threshold current Va Operating voltage Vc Adjustment voltage Vf Applied voltage Vin Input voltage Vout Output voltage

Claims (10)

入力電圧よりも高い電圧を含む複数の異なる出力電圧のうち何れかを選択的に出力してアナログ素子の動作電圧を供給するチャージポンプ回路と、
前記アナログ素子に流す電流を調整する電流調整回路と、
前記電流調整回路により調整された前記アナログ素子に流す電流の電流値に応じた前記動作電圧に基づいて選択される前記出力電圧を前記チャージポンプ回路から出力させ、複数の前記出力電圧ごとにそれぞれ異なる基準で、前記アナログ素子に流す電流に応じたパルス変調制御を行って、当該アナログ素子に電力供給を行う制御部と、
を備え
前記制御部は、複数の前記出力電圧ごとに、前記アナログ素子への電力供給に係る供給電力に対する当該アナログ素子の消費電力の割合を示す電力効率が、前記出力電圧により前記アナログ素子に流すと定められた電流範囲内で最大となる第1の電流値を一つの基準として、それぞれ、前記パルス変調制御を行うことを特徴とする電流制御装置。
A charge pump circuit that selectively outputs one of several different output voltages, including a voltage higher than the input voltage, to supply the operating voltage of the analog element.
A current adjustment circuit that adjusts the current flowing through the analog element, and
The output voltage selected based on the operating voltage according to the current value of the current flowing through the analog element adjusted by the current adjusting circuit is output from the charge pump circuit, and is different for each of the plurality of output voltages. Based on the reference, a control unit that performs pulse modulation control according to the current flowing through the analog element and supplies power to the analog element.
Equipped with a,
The control unit determines that, for each of the plurality of output voltages, the power efficiency indicating the ratio of the power consumption of the analog element to the supply power related to the power supply to the analog element is passed to the analog element by the output voltage. A current control device , each of which performs the pulse modulation control with the first current value that becomes the maximum within the specified current range as a reference .
複数の前記出力電圧ごとに定められる前記電流範囲は、当該電流範囲における最大の電流値で前記電力効率がそれぞれ最高となるように定められ、
前記制御部は、当該最大の電流値を前記複数の出力電圧各々における基準として、前記アナログ素子に流す電流に応じた前記パルス変調制御を行うことにより前記アナログ素子への電力供給を行う
ことを特徴とする請求項記載の電流制御装置。
The current range defined for each of the plurality of output voltages is defined so that the maximum current value in the current range has the highest power efficiency.
The control unit is characterized in that power is supplied to the analog element by performing the pulse modulation control according to the current flowing through the analog element, using the maximum current value as a reference for each of the plurality of output voltages. The current control device according to claim 1 .
前記チャージポンプ回路は、前記入力電圧に対して昇圧動作を行わない第1の電圧と、前記入力電圧から昇圧動作を行った第2の電圧とを出力可能であり、
前記制御部は、
前記第1の電圧により前記アナログ素子に流す最小電流値以上前記第1の電流値以下の電流範囲内の電流を前記アナログ素子に流す場合には、前記チャージポンプ回路に前記第1の電圧を出力させて、前記第1の電流値と前記アナログ素子に流す電流とに基づくデューティ比で前記第1の電流値の電流を流す前記パルス変調制御を行い、
前記第1の電流値より大きい電流を前記アナログ素子に流す場合には、前記チャージポンプ回路に前記第2の電圧を出力させて、前記第2の電圧に応じて予め定められた第2の電流値と前記アナログ素子に流す電流とに基づくデューティ比で前記第2の電流値の電流を流す前記パルス変調制御を行う
ことを特徴とする請求項記載の電流制御装置。
The charge pump circuit can output a first voltage that does not perform a boosting operation with respect to the input voltage and a second voltage that performs a boosting operation from the input voltage.
The control unit
When a current within the current range equal to or greater than the minimum current value to be passed through the analog element by the first voltage and equal to or lower than the first current value is passed through the analog element, the first voltage is output to the charge pump circuit. Then, the pulse modulation control for passing the current of the first current value is performed with a duty ratio based on the first current value and the current flowing through the analog element.
When a current larger than the first current value is passed through the analog element, the charge pump circuit is made to output the second voltage, and a second current predetermined according to the second voltage is generated. The current control device according to claim 2, wherein the pulse modulation control for flowing the current of the second current value is performed with a duty ratio based on the value and the current flowing through the analog element.
前記最小電流値はゼロであることを特徴とする請求項記載の電流制御装置。 The current control device according to claim 3, wherein the minimum current value is zero. 動作環境情報取得手段を備え、
前記制御部は、前記動作環境情報取得手段の取得データに基づいて前記第1の電流値に係る設定を変更する
ことを特徴とする請求項1〜4の何れか一項に記載の電流制御装置。
Equipped with operating environment information acquisition means
The current control device according to any one of claims 1 to 4 , wherein the control unit changes the setting related to the first current value based on the acquired data of the operating environment information acquisition means. ..
前記動作環境情報取得手段は、温度計測手段を有することを特徴とする請求項記載の電流制御装置。 The current control device according to claim 5 , wherein the operating environment information acquisition means includes a temperature measuring means. 前記パルス変調制御はPWM制御であることを特徴とする請求項1〜の何れか一項に記載の電流制御装置。 The current control device according to any one of claims 1 to 6 , wherein the pulse modulation control is PWM control. 前記アナログ素子は、発光ダイオードであることを特徴とする請求項1〜の何れか一項に記載の電流制御装置。 The current control device according to any one of claims 1 to 7 , wherein the analog element is a light emitting diode. 請求項記載の電流制御装置と、
前記出力電圧が供給されて電流が流れる発光部と、
を備えることを特徴とする照明装置。
The current control device according to claim 8 and
The light emitting part to which the output voltage is supplied and the current flows,
A lighting device characterized by being provided with.
アナログ素子に流す電流を調整する電流調整回路と、入力電圧よりも高い電圧を含む複数の異なる出力電圧のうち何れかを選択的に出力して前記アナログ素子の動作電圧を供給するチャージポンプ回路と、を備える電流制御装置の電流制御方法であって、
前記電流調整回路により調整された前記アナログ素子に流す電流の電流値に応じた動作電圧に基づいて選択される前記出力電圧を前記チャージポンプ回路から出力させる電圧設定ステップ、
複数の前記出力電圧ごとにそれぞれ異なる基準で、前記アナログ素子に流す電流に応じたパルス変調制御を行って、当該アナログ素子に電力供給を行う電流制御ステップ、
複数の前記出力電圧ごとに、前記アナログ素子への電力供給に係る供給電力に対する当該アナログ素子の消費電力の割合を示す電力効率が、前記出力電圧により前記アナログ素子に流すと定められた電流範囲内で最大となる第1の電流値を一つの基準として、それぞれ、前記パルス変調制御を行うパルス変調ステップ、
を含むことを特徴とする電流制御方法。
A current adjustment circuit that adjusts the current flowing through the analog element, and a charge pump circuit that selectively outputs one of a plurality of different output voltages including a voltage higher than the input voltage to supply the operating voltage of the analog element. A current control method for a current control device comprising,
A voltage setting step of outputting the output voltage selected based on the operating voltage corresponding to the current value of the current flowing through the analog element adjusted by the current adjusting circuit from the charge pump circuit.
A current control step in which pulse modulation control is performed according to a current flowing through the analog element based on a different reference for each of the plurality of output voltages, and power is supplied to the analog element.
For each of the plurality of output voltages, the power efficiency indicating the ratio of the power consumption of the analog element to the supply power related to the power supply to the analog element is within the current range defined to be passed through the analog element by the output voltage. With the first current value that becomes the maximum in 1 as a reference, the pulse modulation step that performs the pulse modulation control, respectively.
A current control method comprising.
JP2016129589A 2016-06-30 2016-06-30 Current control device, lighting device and current control method Active JP6812679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016129589A JP6812679B2 (en) 2016-06-30 2016-06-30 Current control device, lighting device and current control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016129589A JP6812679B2 (en) 2016-06-30 2016-06-30 Current control device, lighting device and current control method

Publications (2)

Publication Number Publication Date
JP2018006105A JP2018006105A (en) 2018-01-11
JP6812679B2 true JP6812679B2 (en) 2021-01-13

Family

ID=60948037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016129589A Active JP6812679B2 (en) 2016-06-30 2016-06-30 Current control device, lighting device and current control method

Country Status (1)

Country Link
JP (1) JP6812679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182925B2 (en) * 2018-07-13 2022-12-05 株式会社小糸製作所 vehicle lamp

Also Published As

Publication number Publication date
JP2018006105A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US8829817B2 (en) Power supply device and lighting equipment
US10827575B2 (en) Load control device having a wide output range
US8044608B2 (en) Driving circuit with dimming controller for driving light sources
EP2238809B1 (en) Led driver circuit and method, and system and method for estimating the junction temperature of a light emitting diode
US9615413B2 (en) Driver circuit using dynamic regulation and related techniques
JP3755770B2 (en) Load drive device and portable device
TWI510131B (en) Light emitting device driver circuit and control method thereof
US10076010B2 (en) Lighting device, and luminaire
US9192007B2 (en) PWM dimming control method and control circuit and LED driver therefor
JP6152736B2 (en) Lighting device and lighting apparatus
KR102085725B1 (en) Led lighting system of ac direct type and control method thereof
TW201034371A (en) Load driving device and liquid crystal display using such load driving device
US20160366742A1 (en) Controlling dimming ratio and output ripple voltage
US9949329B2 (en) Lighting device and luminaire capable of determining a turned-off state of a load connected thereto when power supply is off
US20220264720A1 (en) Light source driver circuit, optical measuring device comprising the light source driver circuit, device for checking value documents, and method for operating a light source load by means of the light source driver circuit
KR101521608B1 (en) Led lighting system and driving circuit thereof
JP6812679B2 (en) Current control device, lighting device and current control method
US9848468B1 (en) Visible light communication enabling lighting driver
JP6145678B2 (en) Lighting device, lighting fixture, and lighting system
JP6134312B2 (en) Downconverter control circuit and vehicle lamp
JP2021086763A (en) Lighting device
KR20110005550A (en) Led driver and illumination device
JP7108977B2 (en) Lighting devices and lighting fixtures
EP3007521A2 (en) Driving circuit with dimming controller for driving light sources
JP2010278068A (en) Led driving circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6812679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150