WO2020013005A1 - Gas detection material - Google Patents

Gas detection material Download PDF

Info

Publication number
WO2020013005A1
WO2020013005A1 PCT/JP2019/026072 JP2019026072W WO2020013005A1 WO 2020013005 A1 WO2020013005 A1 WO 2020013005A1 JP 2019026072 W JP2019026072 W JP 2019026072W WO 2020013005 A1 WO2020013005 A1 WO 2020013005A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas detection
detection material
glass
porous
Prior art date
Application number
PCT/JP2019/026072
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 辻口
丸尾 容子
Original Assignee
日本電気硝子株式会社
学校法人東北工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019019353A external-priority patent/JP7301284B2/en
Application filed by 日本電気硝子株式会社, 学校法人東北工業大学 filed Critical 日本電気硝子株式会社
Priority to CN201980031916.4A priority Critical patent/CN112119305B/en
Priority to US17/042,249 priority patent/US20210047229A1/en
Publication of WO2020013005A1 publication Critical patent/WO2020013005A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • the present invention relates to a gas detection material.
  • Lung cancer is one of the highest mortality cancers. This is because it is difficult to detect lung cancer early with chest x-ray, which is the current main examination method. Therefore, a method of diagnosing lung cancer at an early stage by analyzing a component that specifically increases in lung cancer patients from exhaled breath is being studied.
  • Non-Patent Document 1 the result of analyzing the breath of a lung cancer patient using a gas chromatography mass spectrometer (GC-MS) and disclosing the result that an aldehyde-based gas such as nonanal is contained at a higher concentration than a healthy person is disclosed.
  • GC-MS gas chromatography mass spectrometer
  • GC-MS is problematic in that it is large-scale and very expensive, and it takes a long time for analysis.
  • the present invention has been made in view of such circumstances, and has as its object to provide a gas detection material which is small and inexpensive and can detect an aldehyde-based gas.
  • the gas detection material of the present invention is preferably a porous glass in which the porous body contains 85 to 100% of SiO 2 by mass%.
  • the gas detection agent preferably contains vanillin and / or a derivative of vanillin.
  • a small and inexpensive gas detection material capable of detecting an aldehyde-based gas can be provided.
  • the gas detection material of the present invention has a porous body having pores, an alkaline compound, and a gas detection agent. Both the alkaline compound and the gas detector are supported in the pores of the porous body.
  • B 2 O 3 / SiO 2 is preferably from 0.3 to 0.5, 0.35 to 0.48, 0.38 to 0.46, particularly preferably 0.4 to 0.45. If B 2 O 3 / SiO 2 is too small, internal stress is likely to be generated in the step of removing the SiO 2 colloid with an alkaline aqueous solution described later, so that the porous glass is likely to be cracked. On the other hand, if B 2 O 3 / SiO 2 is too large, the mechanical strength tends to decrease in the step of removing the SiO 2 colloid with an alkaline aqueous solution described later, so that the porous glass is likely to crack. “B 2 O 3 / SiO 2 ” indicates a value obtained by dividing the content of B 2 O 3 by the content of SiO 2 .
  • ZnO is a component that increases the ZrO 2 content in the silica-rich phase and improves weather resistance.
  • the content of ZnO is preferably 0 to 20%, 0 to 10%, particularly preferably 0 to less than 3%. If the content of ZnO is too large, phase separation becomes difficult.
  • the obtained glass base material preferably has an aspect ratio of 2 to 1000, particularly preferably 5 to 500. If the aspect ratio is too small, in the step of removing the boron oxide-rich phase with an acid to be described later, a large difference appears in the speed of removing the boron oxide-rich phase between the surface and the inside of the glass base material. The porous glass is easily broken. On the other hand, if the aspect ratio is too large, handling becomes difficult.
  • the aspect ratio is calculated by the following equation.
  • the bottom area and the thickness of the obtained glass base material may be appropriately adjusted so as to have the above aspect ratio.
  • the bottom area is preferably 1 to 1000 mm 2 , particularly preferably 5 to 500 mm 2
  • the thickness is preferably 0.1 to 1 mm, particularly preferably 0.2 to 0.5 mm.
  • the SiO 2 colloid can be removed with, for example, an alkaline aqueous solution.
  • an alkali sodium hydroxide, potassium hydroxide and the like can be used. Note that these alkalis may be mixed and used.
  • the immersion time of the alkaline aqueous solution is preferably 10 minutes or more, particularly preferably 30 minutes or more. If the immersion time is too short, it becomes difficult to remove the SiO 2 colloid.
  • the upper limit of the immersion time is not particularly limited, but is practically 100 hours or less.
  • the immersion temperature is preferably 15 ° C. or higher, particularly preferably 20 ° C. or higher. If the immersion temperature is too low, it becomes difficult to remove the SiO 2 colloid.
  • the upper limit of the immersion temperature is not particularly limited, but is actually 95 ° C. or less.
  • the obtained porous glass preferably contains 85 to 100% of SiO 2 by mass%.
  • Al 2 O 3 , ZrO 2 and the like may be contained.
  • an alkaline compound and a gas detector are mixed with a solvent such as water to obtain a mixed solution containing the alkaline compound and the gas detector.
  • the concentration of the alkaline compound in the mixture is preferably 0.1 to 10N, more preferably 0.25 to 5N. If the concentration of the alkaline compound is too low, the reaction between the gas and the gas detector may not proceed sufficiently. On the other hand, if the concentration of the alkaline compound is too high, it tends to react with the porous body, and the mechanical strength of the porous body may be reduced.
  • the porous body is immersed in the obtained mixed solution to obtain a gas detection material in which the pores of the porous body carry the alkaline compound and the gas detection agent. It is preferable that 0.01 g to 10 kg (preferably 10 g to 10 kg) of the porous body is dipped in 0.01 to 100 L (preferably 0.1 to 10 L) of the mixed solution, and the dipping time is 1 hour. It is preferably from minutes to 50 hours. After the porous body is immersed, moisture may be volatilized by natural drying or the like.
  • the support of the alkaline compound and the gas detecting agent may be carried out by immersing the porous body in the mixed solution a plurality of times.
  • concentration of the alkaline compound in the mixed solution is increased as the stage after the immersion step.
  • a porous body is first immersed in a mixture of an alkaline compound and a gas detector at a concentration of 0.01 to 0.5N, and then a mixture of an alkaline compound and a gas detector at a concentration of 0.1 to 10N. It is preferable to immerse in the water.
  • the alkaline compound and the gas detector may be separately loaded.
  • a gas detector is mixed with a dispersion medium such as water to obtain a gas detector dispersion.
  • a porous body carrying the gas detection agent is obtained.
  • the alkaline compound is mixed with a solvent such as water to obtain an alkaline compound solution.
  • a gas detecting material supporting the gas detecting agent and the alkaline compound is obtained.
  • the absorbance of the gas detection material at a specific wavelength is measured by a spectrophotometer or the like.
  • the gas detection material is placed in a tetra bag or the like in which the measurement gas is sealed, and left for 1 minute to 5 hours to expose the measurement gas to the gas detection material.
  • the gas detection material after exposure may be heated at 50 to 200 ° C. for 5 minutes to 1 hour.
  • the absorbance at a specific wavelength of the gas detection material after the exposure is measured by a spectrophotometer or the like. If the absorbance of the gas detection material is different from the absorbance of the gas detection material previously measured, the measurement gas contains an aldehyde-based gas. Become. If a calibration curve is prepared using a standard gas having a known amount of the aldehyde-based gas in advance, the amount of the aldehyde-based gas can be determined from the difference in absorbance of the gas detection material before and after exposure.
  • Example 1 Preparation of porous glass
  • raw materials prepared so as to have a glass composition of 53% by mass of SiO 2 , 23% of B 2 O 3 , 7% of Na 2 O, 6% of ZrO 2 , 3% of Al 2 O 3 , and 8% of CaO by mass%.
  • After putting in a platinum crucible it was melted at 1400 ° C. for 6 hours.
  • the mixture was stirred using a platinum stirrer to homogenize.
  • the molten glass was poured out onto a carbon plate, formed into a plate shape, and then gradually cooled at 500 ° C. for 30 minutes to obtain a glass base material.
  • the obtained glass base material was heat-treated at 675 ° C. for 72 hours in an electric furnace to separate phases.
  • the glass base material after the phase separation was cut and polished to 5 mm ⁇ 5 mm ⁇ 0.5 mm (thickness).
  • the film was immersed in 1 N nitric acid (90 ° C.) for 48 hours, and then immersed in 3 N sulfuric acid (90 ° C.) for 48 hours. Then, it was washed with ion-exchanged water to obtain a porous glass.
  • the composition of the obtained porous glass was 93% of SiO 2 , 4% of ZrO 2 , and 3% of Al 2 O 3 by mass%, and the median diameter of the pore distribution was 80 nm.
  • the light transmittance at a wavelength of 400 nm and a thickness of 0.5 mm was 0.1%.
  • composition was measured with an energy dispersive X-ray analyzer (EX-250 manufactured by Horiba, Ltd.).
  • UV-3100 manufactured by Shimadzu Corporation
  • the gas detection material was placed in a tetrabag filled with a gas containing 2.5 ppm of nonanal and left for 4 hours to expose the gas to the gas detection material.
  • the exposed gas detection material was heated at 100 ° C. for 20 minutes.
  • the absorbance of the heated gas detection material at a wavelength of 420 nm was measured with a spectrophotometer.
  • the absorbance was 4.5, which was 0.3 larger than the absorbance before exposure.
  • the absorbance after gas exposure was higher than that before exposure. The value was increased by about 0.1 in comparison. From this, it was found that nonanal can be detected on the order of ppm.
  • Example 2 Preparation of porous glass
  • the glass base material produced in the same manner as in Example 1 was heat-treated at 675 ° C. for 36 hours in an electric furnace to separate phases.
  • the glass base material after the phase separation was subjected to cutting, polishing, acid treatment, and washing with ion-exchanged water in the same manner as in Example 1 to obtain a porous glass.
  • the obtained porous glass had a skeleton structure based on spinodal phase separation, and the median diameter of the pore distribution was 50 nm.
  • the light transmittance at a wavelength of 400 nm and a thickness of 0.5 mm was 1%.
  • 1 g of the porous glass is immersed in 100 ml of a mixed solution having a sodium hydroxide concentration of 0.5 N for 2 hours, and then left in the air for 24 hours to evaporate water. Soaked in sodium solution for 2 hours. Thereafter, the porous glass was allowed to stand in the air for 24 hours to evaporate water, thereby obtaining a gas detection material.
  • the absorbance of the gas detection material at a wavelength of 420 nm was measured with a spectrophotometer (UV-3100, manufactured by Shimadzu Corporation), and the absorbance was 3.1.
  • the gas detection material was placed in a tetrabag filled with a gas containing 2.5 ppm of nonanal and left for 4 hours to expose the gas to the gas detection material.
  • the exposed gas detection material was heated at 100 ° C. for 20 minutes.
  • the gas detection material of the present invention is suitable for a wide range of applications such as breath diagnosis, skin gas measurement, bad breath checker, environmental monitoring, and work environment management.

Abstract

Provided is a gas detection material which is small-sized and inexpensive, and which can detect an aldehyde-based gas. A gas detection material characterized by having a porous body having pores, an alkaline compound carried in the pores, and a gas sensing agent.

Description

ガス検出材料Gas detection material
 本発明は、ガス検出材料に関する。 The present invention relates to a gas detection material.
 肺がんは、死亡率が最も高いがんのひとつである。それは現状の主な検査方法である胸部エックス線撮影では、肺がんの早期発見が困難なことによるものである。そこで、呼気から肺がん患者に特異的に増加する成分を分析することにより、肺がんを早期診断する方法が検討されている。 Lung cancer is one of the highest mortality cancers. This is because it is difficult to detect lung cancer early with chest x-ray, which is the current main examination method. Therefore, a method of diagnosing lung cancer at an early stage by analyzing a component that specifically increases in lung cancer patients from exhaled breath is being studied.
 例えば、ガスクロマトグラフィー質量分析計(GC-MS)を用いて、肺がん患者の呼気を分析した結果、健常者と比較し、ノナナール等のアルデヒド系ガスが高濃度で含まれているといった結果が開示されている(例えば、非特許文献1参照)。 For example, the result of analyzing the breath of a lung cancer patient using a gas chromatography mass spectrometer (GC-MS) and disclosing the result that an aldehyde-based gas such as nonanal is contained at a higher concentration than a healthy person is disclosed. (For example, see Non-Patent Document 1).
 しかしながら、GC-MSは、大がかりで非常に高価であり、分析に長時間を要するという問題がある。 However, GC-MS is problematic in that it is large-scale and very expensive, and it takes a long time for analysis.
 本発明は、このような状況に鑑みてなされたものであり、小型かつ安価で、アルデヒド系ガスを検出することが可能なガス検出材料を提供することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to provide a gas detection material which is small and inexpensive and can detect an aldehyde-based gas.
 本発明のガス検出材料は、細孔を有する多孔体と、細孔内に担持されたアルカリ性化合物、及びガス検知剤とを有することを特徴とする。多孔体の細孔内に担持されたガス検知剤が、触媒であるアルカリ性化合物下にてアルデヒド系ガスと反応すると、ガス検知剤の特定波長での吸光度が変化する。この吸光度の変化を測定することにより、アルデヒド系ガスを検出することができる。 ガ ス The gas detection material of the present invention is characterized by having a porous body having pores, an alkaline compound supported in the pores, and a gas detection agent. When the gas detector carried in the pores of the porous body reacts with the aldehyde-based gas under an alkaline compound as a catalyst, the absorbance of the gas detector at a specific wavelength changes. By measuring the change in the absorbance, an aldehyde-based gas can be detected.
 本発明のガス検出材料は、多孔体が、質量%で、SiO 85~100%を含有する多孔質ガラスであることが好ましい。 The gas detection material of the present invention is preferably a porous glass in which the porous body contains 85 to 100% of SiO 2 by mass%.
 本発明のガス検出材料は、アルカリ性化合物が、水酸化ナトリウムを含むことが好ましい。 ガ ス In the gas detection material of the present invention, the alkaline compound preferably contains sodium hydroxide.
 本発明のガス検出材料は、ガス検知剤が、バニリン、及び/又はバニリンの誘導体を含むことが好ましい。 は In the gas detection material of the present invention, the gas detection agent preferably contains vanillin and / or a derivative of vanillin.
 本発明のガス検出材料は、アルデヒド系ガス検出用であることが好ましい。 ガ ス The gas detection material of the present invention is preferably for detecting aldehyde gas.
 本発明によれば、小型かつ安価で、アルデヒド系ガスを検出することが可能なガス検出材料を提供することができる。 According to the present invention, a small and inexpensive gas detection material capable of detecting an aldehyde-based gas can be provided.
 本発明のガス検出材料について説明する。 ガ ス The gas detection material of the present invention will be described.
 本発明のガス検出材料は、細孔を有する多孔体と、アルカリ性化合物、及びガス検知剤とを有する。アルカリ性化合物とガス検知剤の双方が、多孔体の細孔内に担持されている。 ガ ス The gas detection material of the present invention has a porous body having pores, an alkaline compound, and a gas detection agent. Both the alkaline compound and the gas detector are supported in the pores of the porous body.
 以下に各構成要素ごとに説明する。 す る Each component will be described below.
 (多孔体)
 上述した通り、ガス検知剤の特定波長での吸光度の変化を測定することにより、アルデヒド系ガスを検出するため、多孔体には高い光透過率が要求される。そのため、多孔体は、高い光透過率を有する多孔質ガラスであることが好ましい。なお、光透過率の点で多孔質ガラスには劣るが、多孔質高分子材料、多孔質セラミック、シリカゲル等を多孔体として使用しても構わない。
(Porous body)
As described above, since the aldehyde-based gas is detected by measuring the change in the absorbance of the gas detector at a specific wavelength, the porous body is required to have a high light transmittance. Therefore, the porous body is preferably a porous glass having high light transmittance. Although porous glass is inferior to light in terms of light transmittance, a porous polymer material, porous ceramic, silica gel, or the like may be used as the porous body.
 以下に多孔質ガラスの製造方法について説明する。 (4) A method for producing a porous glass will be described below.
 まず、以下のようにして多孔質ガラス用ガラス母材を用意する。質量%で、SiO 40~80%、B 0超~40%、NaO 0超~20%、ZrO 0~10%、Al 0~5%、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種) 0~20%を含有し、質量比でNaO/Bが0.25~0.5のガラス組成になるように、ガラス原料を調合する。以下に、各成分の含有量を上記のように特定した理由を説明する。なお、特に断りがない場合、以下の成分含有量に関する説明において、「%」は「質量%」を意味する。 First, a glass base material for porous glass is prepared as follows. In mass%, SiO 2 40 to 80%, B 2 O 3 0 to 40%, Na 2 O 0 to 20%, ZrO 2 0 to 10%, Al 2 O 3 0 to 5%, RO (R is (At least one selected from Mg, Ca, Sr and Ba) so that the glass composition contains 0 to 20% and Na 2 O / B 2 O 3 in a mass ratio of 0.25 to 0.5. Mix glass raw materials. The reason why the content of each component is specified as described above will be described below. Unless otherwise specified, "%" means "% by mass" in the following description of the component content.
 SiOはガラスネットワークを形成する成分である。SiOの含有量は40~80%、45~75%、50~70%、特に52~65%であることが好ましい。SiOの含有量が少なすぎると、耐候性や機械的強度が低下する傾向がある。一方、SiOの含有量が多すぎると、分相しにくくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 40 to 80%, 45 to 75%, 50 to 70%, and particularly preferably 52 to 65%. If the content of SiO 2 is too small, the weather resistance and mechanical strength tend to decrease. On the other hand, if the content of SiO 2 is too large, phase separation becomes difficult.
 Bはガラスネットワークを形成し、分相を促進する成分である。Bの含有量は0超~40%、10~30%、特に20~25%であることが好ましい。Bを含有していないと、上記効果が得にくい。一方、Bの含有量が多すぎると、耐候性が低下しやすくなる。 B 2 O 3 is a component that forms a glass network and promotes phase separation. The content of B 2 O 3 is preferably more than 0 to 40%, 10 to 30%, particularly preferably 20 to 25%. If B 2 O 3 is not contained, the above effect is difficult to obtain. On the other hand, if the content of B 2 O 3 is too large, the weather resistance tends to decrease.
 B/SiOは0.3~0.5、0.35~0.48、0.38~0.46、特に0.4~0.45であることが好ましい。B/SiOが小さすぎると、後述するアルカリ水溶液にてSiOコロイドを除去する工程において、内部応力が発生しやすくなるため多孔質ガラスに割れが発生しやすくなる。一方、B/SiOが大きすぎると、後述するアルカリ水溶液にてSiOコロイドを除去する工程において、機械的強度が低下しやすくなるため多孔質ガラスに割れが発生しやすくなる。なお、「B/SiO」は、Bの含有量をSiOの含有量で除した値を指す。 B 2 O 3 / SiO 2 is preferably from 0.3 to 0.5, 0.35 to 0.48, 0.38 to 0.46, particularly preferably 0.4 to 0.45. If B 2 O 3 / SiO 2 is too small, internal stress is likely to be generated in the step of removing the SiO 2 colloid with an alkaline aqueous solution described later, so that the porous glass is likely to be cracked. On the other hand, if B 2 O 3 / SiO 2 is too large, the mechanical strength tends to decrease in the step of removing the SiO 2 colloid with an alkaline aqueous solution described later, so that the porous glass is likely to crack. “B 2 O 3 / SiO 2 ” indicates a value obtained by dividing the content of B 2 O 3 by the content of SiO 2 .
 NaOは溶融温度を低下させて溶融性を改善する成分であるとともに分相を促進させる成分である。NaOの含有量は0超~20%、3~10%、特に4~8%であることが好ましい。NaOを含有していないと、上記効果が得にくい。一方、NaOの含有量が多すぎると、逆に分相しにくくなる。 Na 2 O is a component that lowers the melting temperature to improve the meltability and promotes phase separation. The content of Na 2 O is preferably more than 0 to 20%, 3 to 10%, particularly preferably 4 to 8%. If Na 2 O is not contained, the above effect is difficult to obtain. On the other hand, if the content of Na 2 O is too large, phase separation will be difficult.
 NaO/Bは0.25~0.5、0.28~0.4、特に0.3~0.35であることが好ましい。NaO/Bが小さすぎると、後述する酸にて酸化ホウ素リッチ相を除去する工程において、酸化ホウ素リッチ相を除去し難くなる。一方、NaO/Bが大きすぎると、シリカゲルの水和による膨張量が、シリカリッチ相中からNaOが溶出することによる収縮量より小さくなりやすく、多孔質ガラスに割れが発生しやすくなる。 Na 2 O / B 2 O 3 is preferably 0.25 to 0.5, 0.28 to 0.4, and more preferably 0.3 to 0.35. If Na 2 O / B 2 O 3 is too small, it becomes difficult to remove the boron oxide-rich phase in the step of removing the boron oxide-rich phase with an acid described later. On the other hand, if Na 2 O / B 2 O 3 is too large, the amount of expansion due to hydration of the silica gel tends to be smaller than the amount of contraction due to elution of Na 2 O from the silica-rich phase, and the porous glass may be cracked. More likely to occur.
 ZrOは耐候性を向上する成分である。なお、多孔質ガラスとアルカリ性化合物が反応すると、当該反応にアルカリ性化合物が消費されてしまい、多孔質ガラス内に担持されるアルカリ性化合物の量が低減し、その結果ガス検知材料の機能が低下するおそれがある。一方、多孔質ガラスにZrOを含有させることにより、多孔質ガラスの耐アルカリ性が向上するため、上記のような不具合が発生しにくくなる。ZrOの含有量は0~10%、1~10%、3超~10%、4~8%、特に5~7%であることが好ましい。ZrOの含有量が多すぎると、失透しやすくなると共に分相しにくくなる。 ZrO 2 is a component that improves weather resistance. When the porous glass reacts with the alkaline compound, the alkaline compound is consumed in the reaction, and the amount of the alkaline compound carried in the porous glass is reduced. As a result, the function of the gas detection material may be reduced. There is. On the other hand, when ZrO 2 is contained in the porous glass, the alkali resistance of the porous glass is improved, so that the above-described problems are less likely to occur. The content of ZrO 2 is preferably 0 to 10%, 1 to 10%, more than 3 to 10%, 4 to 8%, particularly preferably 5 to 7%. If the content of ZrO 2 is too large, devitrification tends to occur and phase separation becomes difficult.
 Alは耐候性や機械的強度を向上させる成分である。Alの含有量は0~5%、2~5%、特に3~4%であることが好ましい。Alの含有量が多すぎると、分相しにくくなる。 Al 2 O 3 is a component that improves weather resistance and mechanical strength. The content of Al 2 O 3 is preferably 0 to 5%, 2 to 5%, particularly preferably 3 to 4%. If the content of Al 2 O 3 is too large, phase separation becomes difficult.
 RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)は、シリカリッチ相のZrO含有量を増加し、耐候性を向上させる成分である。ROの含有量(MgO、CaO、SrO、BaOの合量)は0~20%、0.5~20%、1~17%、3~15%、4~13%、特に5~10%であることが好ましい。ROの含有量が多すぎると、分相しにくくなる。なお、MgO、CaO、SrO及びBaOの含有量は各々0~20%、1~17%、3~15%、4~13%、特に5~10%であることが好ましい。なかでも耐候性を向上させる効果が特に大きいという点でCaOを使用することが好ましい。 RO (R is at least one selected from Mg, Ca, Sr and Ba) is a component that increases the ZrO 2 content of the silica-rich phase and improves weather resistance. The content of RO (the total amount of MgO, CaO, SrO, and BaO) is 0 to 20%, 0.5 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, particularly 5 to 10%. Preferably, there is. If the content of RO is too large, phase separation becomes difficult. The contents of MgO, CaO, SrO and BaO are each preferably 0 to 20%, 1 to 17%, 3 to 15%, 4 to 13%, and particularly preferably 5 to 10%. Among them, CaO is preferably used because the effect of improving weather resistance is particularly large.
 本発明の多孔質ガラス用ガラス母材には、上記成分以外にも下記の成分を含有させることができる。 ガ ラ ス The glass base material for porous glass of the present invention may contain the following components in addition to the above components.
 KOは、溶融温度を低下させて溶融性を改善する成分であるとともに分相を促進させる成分である。KOの含有量は0~20%、3~10%、特に4~8%であることが好ましい。KOの含有量が多すぎると、逆に分相しにくくなる。 K 2 O is a component that lowers the melting temperature to improve the meltability and promotes phase separation. The content of K 2 O is preferably 0 to 20%, 3 to 10%, particularly preferably 4 to 8%. If the content of K 2 O is too large, it is difficult to separate phases.
 ZnOは、シリカリッチ相におけるZrO含有量を増加し、耐候性を向上させる成分である。ZnOの含有量は、0~20%、0~10%、特に0~3%未満であることが好ましい。ZnOの含有量が多すぎると、分相しにくくなる。 ZnO is a component that increases the ZrO 2 content in the silica-rich phase and improves weather resistance. The content of ZnO is preferably 0 to 20%, 0 to 10%, particularly preferably 0 to less than 3%. If the content of ZnO is too large, phase separation becomes difficult.
 上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を含有させることができる。例えば、TiO、La、Ta、TeO、Nb、Gd、Y、Eu、Sb、SnO、P及びBi等をそれぞれ15%以下、さらには10%以下、特に5%以下、合量で30%以下の範囲で含有させてもよい。 In addition to the above components, various components can be contained within a range that does not impair the effects of the present invention. For example, TiO 2 , La 2 O 3 , Ta 2 O 5 , TeO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , Eu 2 O 3 , Sb 2 O 3 , SnO 2 , P 2 O 5 And Bi 2 O 3 or the like may be contained in a range of 15% or less, further 10% or less, particularly 5% or less, and a total amount of 30% or less.
 次に、調合したガラスバッチを、1300~1500℃で4~12時間溶融する。次いで、溶融ガラスを板状に成形した後、400~600℃で10分~10時間徐冷を行いガラス母材を得る。得られたガラス母材の形状は特に限定されないが、表面形状が矩形や円形の板状であることが好ましい。なお、得られたガラス母材を所望の形状にするために、切削、研磨等の加工を施しても構わない。また、耐火物炉による連続生産でも構わない。ガラスの溶融および成形の方法は、上記の方法に限定されるものではない。 Next, the prepared glass batch is melted at 1300-1500 ° C. for 4-12 hours. Next, the molten glass is formed into a plate shape, and then gradually cooled at 400 to 600 ° C. for 10 minutes to 10 hours to obtain a glass base material. The shape of the obtained glass base material is not particularly limited, but the surface shape is preferably a rectangular or circular plate. In addition, in order to make the obtained glass base material into a desired shape, processing such as cutting and polishing may be performed. Also, continuous production using a refractory furnace may be used. The method of melting and shaping the glass is not limited to the above method.
 得られたガラス母材は、アスペクト比が2~1000、特に5~500であることが好ましい。アスペクト比が小さすぎると、後述する酸にて酸化ホウ素リッチ相を除去する工程において、ガラス母材の表面と内部にて酸化ホウ素リッチ相を除去する速度に大きな差が出るため、応力が発生しやすく多孔質ガラスが割れやすくなる。一方、アスペクト比が大きすぎると、取り扱いにくくなる。なお、アスペクト比は下記の式により算出する。 ア ス ペ ク ト The obtained glass base material preferably has an aspect ratio of 2 to 1000, particularly preferably 5 to 500. If the aspect ratio is too small, in the step of removing the boron oxide-rich phase with an acid to be described later, a large difference appears in the speed of removing the boron oxide-rich phase between the surface and the inside of the glass base material. The porous glass is easily broken. On the other hand, if the aspect ratio is too large, handling becomes difficult. The aspect ratio is calculated by the following equation.
 アスペクト比=(ガラス母材の底面積)1/2/ガラス母材の厚み Aspect ratio = (bottom area of glass base material) 1/2 / thickness of glass base material
 なお、得られたガラス母材の底面積と厚みは、上記アスペクト比となるように適宜調整すればよい。例えば、底面積は1~1000mm、特に5~500mmであることが好ましく、厚みは0.1~1mm、特に0.2~0.5mmであることが好ましい。 Note that the bottom area and the thickness of the obtained glass base material may be appropriately adjusted so as to have the above aspect ratio. For example, the bottom area is preferably 1 to 1000 mm 2 , particularly preferably 5 to 500 mm 2 , and the thickness is preferably 0.1 to 1 mm, particularly preferably 0.2 to 0.5 mm.
 次に、得られたガラス母材を熱処理し、シリカリッチ相と酸化ホウ素リッチ相の2相に分相させる。熱処理温度は、500~800℃、特に600~700℃であることが好ましい。熱処理温度が高すぎると、ガラス母材が軟化し、所望の形状を得にくくなる。一方、熱処理温度が低すぎると、ガラス母材を分相させにくくなる。熱処理時間は、10分以上、1時間以上、特に3時間以上であることが好ましい。熱処理時間が短すぎると、ガラス母材を分相させにくくなる。熱処理時間の上限は特に限定されないが、長時間熱処理しても分相はある一定以上は進まなくなるため、現実的には、180時間以下である。 Next, the obtained glass base material is subjected to a heat treatment to separate into two phases, a silica-rich phase and a boron oxide-rich phase. The heat treatment temperature is preferably from 500 to 800 ° C, particularly preferably from 600 to 700 ° C. If the heat treatment temperature is too high, the glass base material softens, and it becomes difficult to obtain a desired shape. On the other hand, if the heat treatment temperature is too low, it becomes difficult to phase separate the glass base material. The heat treatment time is preferably at least 10 minutes, at least 1 hour, especially at least 3 hours. If the heat treatment time is too short, it becomes difficult to phase separate the glass base material. Although the upper limit of the heat treatment time is not particularly limited, the phase separation does not advance beyond a certain level even if the heat treatment is performed for a long time.
 次に、2相に分相させたガラス母材を酸に浸漬させ、酸化ホウ素リッチ相を除去し、多孔質ガラスを得る。酸としては、塩酸、硝酸を用いることができる。なお、これらの酸を混合して用いてもよい。酸の濃度は0.1~5規定、特に0.5~3規定であることが好ましい。酸の浸漬時間は1時間以上、10時間以上、特に20時間以上であることが好ましい。浸漬時間が短すぎると、多孔質ガラスを得にくくなる。浸漬時間の上限は特に限定されないが、現実的には、100時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、多孔質ガラスを得にくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 (4) Next, the glass base material separated into two phases is immersed in an acid to remove the boron oxide-rich phase to obtain a porous glass. Hydrochloric acid and nitric acid can be used as the acid. Note that these acids may be used as a mixture. The concentration of the acid is preferably 0.1 to 5N, more preferably 0.5 to 3N. The acid immersion time is preferably 1 hour or more, 10 hours or more, particularly preferably 20 hours or more. If the immersion time is too short, it becomes difficult to obtain a porous glass. The upper limit of the immersion time is not particularly limited, but is practically 100 hours or less. The immersion temperature is preferably 20 ° C. or higher, 25 ° C. or higher, particularly preferably 30 ° C. or higher. If the immersion temperature is too low, it becomes difficult to obtain a porous glass. The upper limit of the immersion temperature is not particularly limited, but is actually 95 ° C. or less.
 なお、ガラス母材を熱処理し、シリカリッチ相と酸化ホウ素リッチ相の2相に分相させる工程において、ガラス母材の最表面にシリカ含有層(シリカを概ね80質量%以上含有する層)が形成される傾向がある。シリカ含有層は酸で除去し難いため、シリカ含有層が形成された際は、分相させたガラス母材を切削、研磨し、シリカ含有層を除去した後に酸に浸漬させると、酸化ホウ素リッチ相を除去しやすくなる。 In the step of heat-treating the glass base material to separate into two phases, a silica-rich phase and a boron oxide-rich phase, a silica-containing layer (a layer containing about 80% by mass or more of silica) is formed on the outermost surface of the glass base material. Tends to form. Since the silica-containing layer is difficult to remove with an acid, when the silica-containing layer is formed, the phase-separated glass base material is cut and polished. It is easier to remove the phase.
 さらに、得られた多孔質ガラスの細孔中に残留するZrOコロイド、SiOコロイドを除去することが好ましい。以下に、ZrOコロイド、SiOコロイドの除去方法を説明するが、これらの方法に限定されるものではない。 Further, it is preferable to remove the ZrO 2 colloid and SiO 2 colloid remaining in the pores of the obtained porous glass. Hereinafter, a method for removing the ZrO 2 colloid and the SiO 2 colloid will be described, but the method is not limited to these methods.
 ZrOコロイドは、例えば硫酸にて除去することができる。硫酸の濃度は0.1~5規定、特に1~5規定であることが好ましい。硫酸の浸漬時間は1時間以上、特に10時間以上であることが好ましい。浸漬時間が短すぎると、ZrOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には、100時間以下である。浸漬温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。浸漬温度が低すぎると、ZrOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 The ZrO 2 colloid can be removed with, for example, sulfuric acid. The concentration of sulfuric acid is preferably 0.1 to 5N, particularly preferably 1 to 5N. The immersion time of sulfuric acid is preferably 1 hour or more, particularly preferably 10 hours or more. If the immersion time is too short, it will be difficult to remove the ZrO 2 colloid. The upper limit of the immersion time is not particularly limited, but is practically 100 hours or less. The immersion temperature is preferably 20 ° C. or higher, 25 ° C. or higher, particularly preferably 30 ° C. or higher. If the immersion temperature is too low, it becomes difficult to remove the ZrO 2 colloid. The upper limit of the immersion temperature is not particularly limited, but is actually 95 ° C. or less.
 SiOコロイドは、例えばアルカリ水溶液にて除去することができる。アルカリとしては、水酸化ナトリウム、水酸化カリウム等を用いることができる。なお、これらのアルカリを混合して用いてもよい。アルカリ水溶液の浸漬時間は10分間以上、特に30分間以上であることが好ましい。浸漬時間が短すぎると、SiOコロイドを除去しにくくなる。浸漬時間の上限は特に限定されないが、現実的には、100時間以下である。浸漬温度は15℃以上、特に20℃以上であることが好ましい。浸漬温度が低すぎると、SiOコロイドを除去しにくくなる。浸漬温度の上限は特に限定されないが、現実的には、95℃以下である。 The SiO 2 colloid can be removed with, for example, an alkaline aqueous solution. As the alkali, sodium hydroxide, potassium hydroxide and the like can be used. Note that these alkalis may be mixed and used. The immersion time of the alkaline aqueous solution is preferably 10 minutes or more, particularly preferably 30 minutes or more. If the immersion time is too short, it becomes difficult to remove the SiO 2 colloid. The upper limit of the immersion time is not particularly limited, but is practically 100 hours or less. The immersion temperature is preferably 15 ° C. or higher, particularly preferably 20 ° C. or higher. If the immersion temperature is too low, it becomes difficult to remove the SiO 2 colloid. The upper limit of the immersion temperature is not particularly limited, but is actually 95 ° C. or less.
 得られた多孔質ガラスは、質量%で、SiO 85~100%を含有することが好ましい。その他の成分として、AlやZrO等を含有しても構わない。 The obtained porous glass preferably contains 85 to 100% of SiO 2 by mass%. As other components, Al 2 O 3 , ZrO 2 and the like may be contained.
 多孔質ガラスの細孔分布の中央径は、1~100nm、4~90nm、特に7~80nmであることが好ましい。細孔分布の中央径が小さすぎると、細孔内へのガスの拡散が著しく困難となる。一方、細孔分布の中央径が大きすぎると、光透過性が低下する傾向がある。また、細孔は、真球状、略楕円体、チューブ状等の様々な形状を有する。なお、多孔質ガラスの厚み、アスペクト比は、ガラス母材と同等である。 中央 The central diameter of the pore distribution of the porous glass is preferably 1 to 100 nm, 4 to 90 nm, and particularly preferably 7 to 80 nm. If the median diameter of the pore distribution is too small, diffusion of gas into the pores becomes extremely difficult. On the other hand, if the central diameter of the pore distribution is too large, the light transmittance tends to decrease. The pores have various shapes such as a true sphere, a substantially ellipsoid, and a tube. The thickness and aspect ratio of the porous glass are the same as those of the glass base material.
 多孔質ガラスは、波長400nmにおける厚み0.5mmでの光透過率が0.02%以上、0.05%以上、特に0.1%以上であることが好ましい。光透過率が低すぎると、ガス検出材料の多孔体として使用することが困難となる傾向がある。 光 The porous glass preferably has a light transmittance of 0.02% or more, 0.05% or more, particularly 0.1% or more at a wavelength of 400 nm and a thickness of 0.5 mm. If the light transmittance is too low, it tends to be difficult to use the gas detection material as a porous material.
 (アルカリ性化合物)
 アルカリ性化合物としては、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の炭酸水素塩、アルカリ土類金属の水酸化物、アルカリ土類金属の炭酸塩等を使用することができる。なかでも、触媒能力が高い水酸化ナトリウムを使用することが好ましい。
(Alkaline compound)
Examples of the alkaline compound include an alkali metal hydroxide, an alkali metal carbonate, an alkali metal bicarbonate, an alkaline earth metal hydroxide, and an alkaline earth metal carbonate. Among them, it is preferable to use sodium hydroxide having a high catalytic ability.
 (ガス検知剤)
 ガス検知剤としては、吸収波長が350~750nmにあり、アルカリ性化合物下でアルデヒド系ガスと反応し、吸光度が変化するものであれば特に限定されないが、バニリン、及び/又はバニリン誘導体を使用することが好ましい。バニリン、及び/又はバニリン誘導体は、室温で揮発しないため取り扱いやすいという利点がある。なお、これ以外のガス検知剤を使用することも可能である。
(Gas detector)
The gas detector is not particularly limited as long as it has an absorption wavelength of 350 to 750 nm, reacts with an aldehyde-based gas under an alkaline compound, and changes the absorbance. Vanillin and / or a vanillin derivative may be used. Is preferred. Vanillin and / or a vanillin derivative have the advantage of being easy to handle because they do not volatilize at room temperature. It should be noted that other gas detecting agents can be used.
 次に、本発明のガス検出材料の製造方法の一例について説明する。 Next, an example of the method for producing a gas detection material of the present invention will be described.
 まず、アルカリ性化合物、及びガス検知剤を水等の溶媒と混合し、アルカリ性化合物、及びガス検知剤を含んだ混合液を得る。混合液中におけるアルカリ性化合物の濃度は0.1~10規定、特に0.25~5規定が好ましい。アルカリ性化合物の濃度が低すぎると、ガスとガス検知剤との反応が十分進まない虞がある。一方、アルカリ性化合物の濃度が高すぎると、多孔体と反応しやすくなり、多孔体の機械的強度が低下する虞がある。 {Circle around (1)} First, an alkaline compound and a gas detector are mixed with a solvent such as water to obtain a mixed solution containing the alkaline compound and the gas detector. The concentration of the alkaline compound in the mixture is preferably 0.1 to 10N, more preferably 0.25 to 5N. If the concentration of the alkaline compound is too low, the reaction between the gas and the gas detector may not proceed sufficiently. On the other hand, if the concentration of the alkaline compound is too high, it tends to react with the porous body, and the mechanical strength of the porous body may be reduced.
 ガス検知剤の添加量(混合液中における含有量)は、多孔体に対する質量比で、ガス検知剤/多孔体=0.01~100、特に0.1~10が好ましい。ガス検知剤の添加量が少なすぎると、ガス検出材料の機能が不十分になる傾向がある。一方、ガス検知剤が多すぎると、多孔体の細孔を塞いでしまう虞があり、この場合もガス検出材料の機能が不十分になる傾向がある。 添加 The addition amount of the gas detector (content in the mixed solution) is preferably gas detector / porous material = 0.01 to 100, particularly preferably 0.1 to 10, by mass ratio to the porous material. If the added amount of the gas detecting agent is too small, the function of the gas detecting material tends to be insufficient. On the other hand, if the amount of the gas detecting agent is too large, the pores of the porous body may be blocked, and also in this case, the function of the gas detecting material tends to be insufficient.
 次に、得られた混合液中に、多孔体を浸漬させることにより、多孔体の細孔内にアルカリ性化合物、及びガス検知剤が担持されたガス検出材料を得る。なお、0.01~100L(好ましくは0.1~10L)の混合液に対して、0.01g~10kg(好ましくは10g~10kg)の多孔体を浸漬させることが好ましく、浸漬時間は、1分~50時間であることが好ましい。なお、多孔体を浸漬させた後、自然乾燥等により水分を揮発させても構わない。 Next, the porous body is immersed in the obtained mixed solution to obtain a gas detection material in which the pores of the porous body carry the alkaline compound and the gas detection agent. It is preferable that 0.01 g to 10 kg (preferably 10 g to 10 kg) of the porous body is dipped in 0.01 to 100 L (preferably 0.1 to 10 L) of the mixed solution, and the dipping time is 1 hour. It is preferably from minutes to 50 hours. After the porous body is immersed, moisture may be volatilized by natural drying or the like.
 アルカリ性化合物及びガス検知剤の担持は、多孔体を上記混合液に複数回浸漬させることにより行ってもよい。この場合、浸漬工程の後段になる程、混合液におけるアルカリ性化合物の濃度を高くすることが好ましい。これにより、浸漬工程の前段でアルカリ性化合物と多孔体の反応生成物(例えばケイ酸水和物)が、ガス検知剤の担持を阻害することをより一層確実に抑制できる。例えば多孔体を、まず0.01~0.5規定の濃度のアルカリ性化合物とガス検知剤の混合液に浸漬し、次に0.1~10規定の濃度のアルカリ性化合物とガス検知剤の混合液に浸漬することが好ましい。 担 持 The support of the alkaline compound and the gas detecting agent may be carried out by immersing the porous body in the mixed solution a plurality of times. In this case, it is preferable that the concentration of the alkaline compound in the mixed solution is increased as the stage after the immersion step. Thereby, it is possible to more reliably suppress the reaction product (for example, silicic acid hydrate) of the alkaline compound and the porous body from hindering the loading of the gas detecting agent in the previous stage of the immersion step. For example, a porous body is first immersed in a mixture of an alkaline compound and a gas detector at a concentration of 0.01 to 0.5N, and then a mixture of an alkaline compound and a gas detector at a concentration of 0.1 to 10N. It is preferable to immerse in the water.
 また、アルカリ性化合物とガス検知剤を別々に担持させてもよい。具体的には、ガス検知剤を水等の分散媒と混合し、ガス検知剤分散液を得る。得られた分散液中に、多孔体を浸漬することにより、ガス検知剤が担持された多孔体を得る。続いて、アルカリ性化合物を水等の溶媒と混合し、アルカリ性化合物溶液を得る。得られた溶液中に、ガス検知剤が担持された多孔体を浸漬することにより、ガス検知剤及びアルカリ性化合物が担持されたガス検出材料を得る。これにより、多孔体とアルカリ性化合物の反応生成物が、ガス検知剤の担持を阻害することをさらに一層確実に防止できるといった効果が得られる。 Also, the alkaline compound and the gas detector may be separately loaded. Specifically, a gas detector is mixed with a dispersion medium such as water to obtain a gas detector dispersion. By immersing the porous body in the obtained dispersion, a porous body carrying the gas detection agent is obtained. Subsequently, the alkaline compound is mixed with a solvent such as water to obtain an alkaline compound solution. By immersing the porous body supporting the gas detecting agent in the obtained solution, a gas detecting material supporting the gas detecting agent and the alkaline compound is obtained. Thus, an effect is obtained that the reaction product of the porous body and the alkaline compound can more reliably prevent the gas detection agent from being carried.
 次に、アルデヒド系ガスを検出する方法について説明する。 Next, a method for detecting an aldehyde-based gas will be described.
 まず、ガス検出材料の特定波長での吸光度を分光光度計等により測定する。 First, the absorbance of the gas detection material at a specific wavelength is measured by a spectrophotometer or the like.
 次に、ガス検出材料を測定ガスが封入されたテトラバック等に入れ、1分~5時間放置することにより、ガス検出材料に測定ガスを暴露させる。なお、ガス検出材料と測定ガスとの反応を促進させるために、暴露後のガス検出材料を50~200℃にて5分~1時間加熱しても構わない。 Next, the gas detection material is placed in a tetra bag or the like in which the measurement gas is sealed, and left for 1 minute to 5 hours to expose the measurement gas to the gas detection material. In order to promote the reaction between the gas detection material and the measurement gas, the gas detection material after exposure may be heated at 50 to 200 ° C. for 5 minutes to 1 hour.
 次いで、暴露後のガス検出材料の特定波長での吸光度を分光光度計等により測定し、先に測定したガス検出材料の吸光度と異なれば、測定ガス中にアルデヒド系ガスが含まれていることになる。なお、あらかじめアルデヒド系ガスの量が既知の標準ガスを用いて、検量線を作成すれば、暴露前後でのガス検出材料の吸光度の差から、アルデヒド系ガスの量を求めることも可能である。 Next, the absorbance at a specific wavelength of the gas detection material after the exposure is measured by a spectrophotometer or the like.If the absorbance of the gas detection material is different from the absorbance of the gas detection material previously measured, the measurement gas contains an aldehyde-based gas. Become. If a calibration curve is prepared using a standard gas having a known amount of the aldehyde-based gas in advance, the amount of the aldehyde-based gas can be determined from the difference in absorbance of the gas detection material before and after exposure.
 以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 (実施例1)
 (多孔質ガラスの作製)
 まず、質量%で、SiO 53%、B 23%、NaO 7%、ZrO 6%、Al 3%、CaO 8%のガラス組成になるように調合した原料を白金坩堝に入れた後、1400℃で6時間溶融した。ガラスバッチの溶融に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、500℃で30分間徐冷しガラス母材を得た。
(Example 1)
(Preparation of porous glass)
First, raw materials prepared so as to have a glass composition of 53% by mass of SiO 2 , 23% of B 2 O 3 , 7% of Na 2 O, 6% of ZrO 2 , 3% of Al 2 O 3 , and 8% of CaO by mass%. After putting in a platinum crucible, it was melted at 1400 ° C. for 6 hours. In melting the glass batch, the mixture was stirred using a platinum stirrer to homogenize. Next, the molten glass was poured out onto a carbon plate, formed into a plate shape, and then gradually cooled at 500 ° C. for 30 minutes to obtain a glass base material.
 得られたガラス母材を電気炉にて675℃で72時間熱処理し、分相させた。分相後のガラス母材を、切削、研磨し、5mm×5mm×0.5mm(厚み)にした。次いで、1規定の硝酸(90℃)中に48時間浸漬した後、3規定の硫酸(90℃)中に48時間浸漬した。その後、イオン交換水で洗浄し、多孔質ガラスを得た。 (4) The obtained glass base material was heat-treated at 675 ° C. for 72 hours in an electric furnace to separate phases. The glass base material after the phase separation was cut and polished to 5 mm × 5 mm × 0.5 mm (thickness). Next, the film was immersed in 1 N nitric acid (90 ° C.) for 48 hours, and then immersed in 3 N sulfuric acid (90 ° C.) for 48 hours. Then, it was washed with ion-exchanged water to obtain a porous glass.
 得られた多孔質ガラスの表面をFE-SEM(日立製作所社製SU-8220)で観察したところ、いずれのガラスも、スピノーダル分相に基づいたスケルトン構造を有していた。また、得られた多孔質ガラスの組成は、質量%でSiO 93%、ZrO 4%、Al 3%であり、細孔分布の中央径は80nmであった。また、波長400nmにおける厚み0.5mmでの光透過率は0.1%であった。 Observation of the surface of the obtained porous glass by FE-SEM (SU-8220 manufactured by Hitachi, Ltd.) revealed that each of the glasses had a skeleton structure based on spinodal phase separation. The composition of the obtained porous glass was 93% of SiO 2 , 4% of ZrO 2 , and 3% of Al 2 O 3 by mass%, and the median diameter of the pore distribution was 80 nm. The light transmittance at a wavelength of 400 nm and a thickness of 0.5 mm was 0.1%.
 組成は、エネルギー分散型X線分析装置(堀場製作所社製 EX-250)により測定した。 The composition was measured with an energy dispersive X-ray analyzer (EX-250 manufactured by Horiba, Ltd.).
 細孔分布の中央値は、細孔分布測定装置(カンタクローム社製 QUADRASORB SI)により測定した。 中央 The median of the pore distribution was measured by a pore distribution measuring device (QUADRASORB SI by Kantachrome).
 光透過率は、分光光度計(島津製作所社製 UV-3100)により測定した。 Light transmittance was measured by a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation).
 (ガス検出材料の作製)
 まず、バニリン0.35g、水酸化ナトリウム1g、4g、10gまたは20gを純水100mlと混合し、水酸化ナトリウム濃度がそれぞれ0.25規定、1規定、2.5規定、5規定である4種類の混合液を得た。
(Preparation of gas detection material)
First, 0.35 g of vanillin, 1 g, 4 g, 10 g or 20 g of sodium hydroxide are mixed with 100 ml of pure water, and the sodium hydroxide concentration is 0.25 normal, 1 normal, 2.5 normal, and 4 normal, respectively. Was obtained.
 次に、得られた各混合液100mlに、多孔質ガラス10gずつを2時間浸漬させた後、大気中に24時間放置し水分を蒸発させることにより、ガス検出材料を得た。 Next, 10 g of porous glass was immersed in 100 ml of each of the obtained mixed liquids for 2 hours, and then left in the air for 24 hours to evaporate water, thereby obtaining a gas detection material.
 (ノナナールの検出)
 まず、水酸化ナトリウム濃度が5規定である混合液を用いて作製したガス検出材料の波長420nmでの吸光度を分光光度計(島津製作所社製 UV-3100)により測定したところ、吸光度(a.u.)は4.2であった。
(Detection of nonanal)
First, the absorbance at a wavelength of 420 nm of a gas detection material prepared using a mixed solution having a sodium hydroxide concentration of 5 N was measured with a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation). .) Was 4.2.
 次に、ガス検出材料をノナナール2.5ppmを含有するガスを封入したテトラバックに入れ、4時間放置することにより、ガス検出材料にガスを暴露させた。次いで、暴露後のガス検出材料を100℃にて20分間加熱した。 (4) Next, the gas detection material was placed in a tetrabag filled with a gas containing 2.5 ppm of nonanal and left for 4 hours to expose the gas to the gas detection material. Next, the exposed gas detection material was heated at 100 ° C. for 20 minutes.
 加熱後のガス検出材料の波長420nmでの吸光度を分光光度計により測定したところ、吸光度は4.5と暴露前の吸光度より0.3大きくなった。水酸化ナトリウム濃度が0.25規定、1規定、2.5規定の混合液を用いて作製したガス検出材料についても、同様の試験を行ったところ、ガスへの暴露後の吸光度が暴露前と比較して0.1程度大きくなった。このことより、ppmオーダーでのノナナールの検出が可能であることが分かった。 The absorbance of the heated gas detection material at a wavelength of 420 nm was measured with a spectrophotometer. The absorbance was 4.5, which was 0.3 larger than the absorbance before exposure. When a similar test was performed on a gas detection material prepared using a mixed solution having a sodium hydroxide concentration of 0.25N, 1N, and 2.5N, the absorbance after gas exposure was higher than that before exposure. The value was increased by about 0.1 in comparison. From this, it was found that nonanal can be detected on the order of ppm.
 (実施例2)
 (多孔質ガラスの作製)
 実施例1と同様にして作製したガラス母材を電気炉にて675℃で36時間時間熱処理し、分相させた。分相後のガラス母材に対し、実施例1と同様に切削、研磨、酸処理及びイオン交換水での洗浄を行うことにより、多孔質ガラスを得た。得られた多孔質ガラスはスピノーダル分相に基づいたスケルトン構造を有しており、細孔分布の中央径は50nmであった。また、波長400nmにおける厚み0.5mmでの光透過率は1%であった。
(Example 2)
(Preparation of porous glass)
The glass base material produced in the same manner as in Example 1 was heat-treated at 675 ° C. for 36 hours in an electric furnace to separate phases. The glass base material after the phase separation was subjected to cutting, polishing, acid treatment, and washing with ion-exchanged water in the same manner as in Example 1 to obtain a porous glass. The obtained porous glass had a skeleton structure based on spinodal phase separation, and the median diameter of the pore distribution was 50 nm. The light transmittance at a wavelength of 400 nm and a thickness of 0.5 mm was 1%.
 (ガス検出材料の作製)
 バニリン0.35g、水酸化ナトリウム2gを純水100mlと混合し、水酸化ナトリウム濃度が0.5規定である混合液を得た。それとは別に、水酸化ナトリウム20gを純水100mlと混合し、5規定の水酸化ナトリウム溶液を得た。
(Preparation of gas detection material)
0.35 g of vanillin and 2 g of sodium hydroxide were mixed with 100 ml of pure water to obtain a mixed solution having a sodium hydroxide concentration of 0.5 N. Separately, 20 g of sodium hydroxide was mixed with 100 ml of pure water to obtain a 5N sodium hydroxide solution.
 多孔質ガラス1gを、まず水酸化ナトリウム濃度が0.5規定である混合液100mlに2時間浸漬させた後、大気中に24時間放置して水分を蒸発させ、さらに2.5規定の水酸化ナトリウム溶液に2時間浸漬させた。その後、多孔質ガラスを大気中に24時間放置して水分を蒸発させることにより、ガス検出材料を得た。 First, 1 g of the porous glass is immersed in 100 ml of a mixed solution having a sodium hydroxide concentration of 0.5 N for 2 hours, and then left in the air for 24 hours to evaporate water. Soaked in sodium solution for 2 hours. Thereafter, the porous glass was allowed to stand in the air for 24 hours to evaporate water, thereby obtaining a gas detection material.
 (ノナナールの検出)
 まず、ガス検出材料の波長420nmでの吸光度を分光光度計(島津製作所社製 UV-3100)により測定したところ、吸光度は3.1であった。
(Detection of nonanal)
First, the absorbance of the gas detection material at a wavelength of 420 nm was measured with a spectrophotometer (UV-3100, manufactured by Shimadzu Corporation), and the absorbance was 3.1.
 次に、ガス検出材料をノナナール2.5ppmを含有するガスを封入したテトラバックに入れ、4時間放置することにより、ガス検出材料にガスを暴露させた。次いで、暴露後のガス検出材料を100℃にて20分間加熱した。 (4) Next, the gas detection material was placed in a tetrabag filled with a gas containing 2.5 ppm of nonanal and left for 4 hours to expose the gas to the gas detection material. Next, the exposed gas detection material was heated at 100 ° C. for 20 minutes.
 加熱後のガス検出材料の波長420nmでの吸光度を分光光度計により測定したところ、吸光度は3.6と暴露前の吸光度より0.5大きくなった。このことより、ppmオーダーでのノナナールの検出が可能であることが分かった。 (4) The absorbance of the heated gas detection material at a wavelength of 420 nm was measured with a spectrophotometer. The absorbance was 3.6, which was 0.5 larger than the absorbance before exposure. From this, it was found that nonanal can be detected on the order of ppm.
 本発明のガス検出材料は、呼気診断、皮膚ガス測定、口臭チェッカー、環境モニタリング、作業環境管理など幅広い用途に好適である。 ガ ス The gas detection material of the present invention is suitable for a wide range of applications such as breath diagnosis, skin gas measurement, bad breath checker, environmental monitoring, and work environment management.

Claims (5)

  1.  細孔を有する多孔体と、前記細孔内に担持されたアルカリ性化合物、及びガス検知剤とを有することを特徴とするガス検出材料。 ガ ス A gas detection material comprising a porous body having pores, an alkaline compound supported in the pores, and a gas detection agent.
  2.  前記多孔体が、質量%で、SiO 85~100%を含有する多孔質ガラスであることを特徴とする請求項1に記載のガス検出材料。 2. The gas detection material according to claim 1, wherein the porous body is a porous glass containing 85 to 100% of SiO 2 by mass%.
  3.  前記アルカリ性化合物が、水酸化ナトリウムであることを特徴とする請求項1又は2に記載のガス検出材料。 (3) The gas detection material according to (1) or (2), wherein the alkaline compound is sodium hydroxide.
  4.  前記ガス検知剤が、バニリン、及び/又はバニリンの誘導体であることを特徴とする請求項1~3の何れか1項に記載のガス検出材料。 (4) The gas detection material according to any one of (1) to (3), wherein the gas detection agent is vanillin and / or a derivative of vanillin.
  5.  アルデヒド系ガス検出用であることを特徴とする請求項1~4の何れか1項に記載のガス検出材料。 The gas detection material according to any one of claims 1 to 4, which is used for detecting an aldehyde-based gas.
PCT/JP2019/026072 2018-07-13 2019-07-01 Gas detection material WO2020013005A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980031916.4A CN112119305B (en) 2018-07-13 2019-07-01 Gas detection material
US17/042,249 US20210047229A1 (en) 2018-07-13 2019-07-01 Gas detection material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-132856 2018-07-13
JP2018132856 2018-07-13
JP2019019353A JP7301284B2 (en) 2018-07-13 2019-02-06 Aldehyde gas detection materials and nonanal gas detection materials
JP2019-019353 2019-08-30

Publications (1)

Publication Number Publication Date
WO2020013005A1 true WO2020013005A1 (en) 2020-01-16

Family

ID=69142815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026072 WO2020013005A1 (en) 2018-07-13 2019-07-01 Gas detection material

Country Status (1)

Country Link
WO (1) WO2020013005A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014268A1 (en) * 2020-07-13 2022-01-20 日本電気硝子株式会社 Porous glass member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545792A (en) * 1977-06-10 1979-01-17 Warren Teed Lab Measurement of aromatic amino caboxylic acid
JP2003254959A (en) * 2001-12-26 2003-09-10 Wako Pure Chem Ind Ltd New formaldehyde measuring kit
JP2005274288A (en) * 2004-03-24 2005-10-06 Tokai Univ Detection method and detection material for formaldehyde
JP2010261811A (en) * 2009-05-07 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Gas measuring apparatus and method for the same
JP2012076988A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive thin film material and method for producing the same
JP2012525832A (en) * 2009-05-07 2012-10-25 ウニヴェルシダド デ サラゴサ Smart packaging for microbial detection
JP2018035025A (en) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 Porous glass material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545792A (en) * 1977-06-10 1979-01-17 Warren Teed Lab Measurement of aromatic amino caboxylic acid
JP2003254959A (en) * 2001-12-26 2003-09-10 Wako Pure Chem Ind Ltd New formaldehyde measuring kit
JP2005274288A (en) * 2004-03-24 2005-10-06 Tokai Univ Detection method and detection material for formaldehyde
JP2010261811A (en) * 2009-05-07 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Gas measuring apparatus and method for the same
JP2012525832A (en) * 2009-05-07 2012-10-25 ウニヴェルシダド デ サラゴサ Smart packaging for microbial detection
JP2012076988A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive thin film material and method for producing the same
JP2018035025A (en) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 Porous glass material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOI, vol. 240, 1992, pages 382 - 388, DOI: 10.11451/mukimate1953 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014268A1 (en) * 2020-07-13 2022-01-20 日本電気硝子株式会社 Porous glass member
CN115461314A (en) * 2020-07-13 2022-12-09 日本电气硝子株式会社 Porous glass material

Similar Documents

Publication Publication Date Title
US10689288B2 (en) Ultraviolet transmitting glass
JP2021505503A (en) Black Lithium Silica Glass Ceramic
JP5153963B2 (en) Glass for light guide fiber
JP6508507B2 (en) Borosilicate glass for pharmaceutical containers
TW201119956A (en) Zircon compatible glasses for down draw
TW201742841A (en) Glass compositions that retain high compressive stress after post-ion exchange heat treatment
JPWO2017057375A1 (en) UV transmitting glass
CN105645762B (en) A kind of alkali-free glass and its application in flat display substrate
WO2020013005A1 (en) Gas detection material
JP7301284B2 (en) Aldehyde gas detection materials and nonanal gas detection materials
JP2023014591A (en) gas detection material
US20220315480A1 (en) Porous glass member production method
US20230286853A1 (en) Porous glass member
JP7397565B2 (en) Radiation detection glass
JP2021104908A (en) Gas detection ingredient
WO2022044965A1 (en) Gas detection material
JP2022036906A (en) Gas detection material
WO2018159194A1 (en) Glass for radiation detection
JP2018150190A (en) Glass for radiation detection
JPH0940440A (en) Scintillator glass
JP6959564B2 (en) Radiation detection glass
JP7022386B2 (en) Manufacturing method of glass for radiation detection
Covington Procedures for testing pH responsive glass electrodes at 25, 37, 65 and 85 C and determination of alkaline errors up to 1 mol dm-3 Na+, K+, Li+
JP2018150221A (en) Glass for radiation detection and method for producing the same
US20210024408A1 (en) Porous glass member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834133

Country of ref document: EP

Kind code of ref document: A1