JP7022386B2 - Manufacturing method of glass for radiation detection - Google Patents

Manufacturing method of glass for radiation detection Download PDF

Info

Publication number
JP7022386B2
JP7022386B2 JP2018052677A JP2018052677A JP7022386B2 JP 7022386 B2 JP7022386 B2 JP 7022386B2 JP 2018052677 A JP2018052677 A JP 2018052677A JP 2018052677 A JP2018052677 A JP 2018052677A JP 7022386 B2 JP7022386 B2 JP 7022386B2
Authority
JP
Japan
Prior art keywords
glass
radiation
radiation detection
sio
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018052677A
Other languages
Japanese (ja)
Other versions
JP2019163192A (en
Inventor
克 岩尾
光 池田
良憲 山▲崎▼
佳久 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018052677A priority Critical patent/JP7022386B2/en
Publication of JP2019163192A publication Critical patent/JP2019163192A/en
Application granted granted Critical
Publication of JP7022386B2 publication Critical patent/JP7022386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は放射線の線量当量を計測するために好適な放射線検出用ガラスの製造方法に関する。 The present invention relates to a method for producing a glass for radiation detection suitable for measuring a dose equivalent of radiation.

放射線検出用ガラスは、放射線被ばく線量を測定するための検出物質として、医療分野、原子力分野等の放射線を取り扱う分野において広く用いられている。なお、ここで放射線とはベータ線、ガンマ線またはエックス線等を指す。一般に放射線検出用ガラスには、例えば、銀イオンを含有したリン酸塩ガラスが用いられている。このガラスに放射線を照射すると、ガラス中に正孔と電子が生成し、生成した正孔と電子がガラス中のAgイオンに捕捉されてAg2+、Agとなる。ガラス中のAg2+、Agを、波長300~400nmの紫外光により励起すると蛍光を発する(ラジオフォトルミネッセンス現象、以下「RPL現象」と示す。)。 Radiation detection glass is widely used in fields dealing with radiation such as medical fields and nuclear fields as a detection substance for measuring radiation exposure dose. Here, radiation refers to beta rays, gamma rays, X-rays, and the like. Generally, as the radiation detection glass, for example, phosphate glass containing silver ions is used. When this glass is irradiated with radiation, holes and electrons are generated in the glass, and the generated holes and electrons are captured by Ag + ions in the glass to become Ag 2+ and Ag 0 . When Ag 2+ and Ag 0 in glass are excited by ultraviolet light having a wavelength of 300 to 400 nm, they fluoresce (radiophotoluminescence phenomenon, hereinafter referred to as "RPL phenomenon").

RPL現象による蛍光強度は照射された放射線の線量当量(以下、「放射線量」と記す。)に比例するので、蛍光強度を測定する事により放射線量を計測する事が出来る。このガラスの放射線量に対する蛍光検出感度は、ガラスの組成に応じて変化する。RPL現象によってガラス中に生成した蛍光中心は近接配位原子との相互作用により安定化し、室温下では蛍光中心の消失が起こらないため、長期間にわたり放射線量の計測が可能である。また、ガラス中に生成した蛍光中心は加熱処理により消失するため、繰り返して使用することが可能である。 Since the fluorescence intensity due to the RPL phenomenon is proportional to the dose equivalent of the irradiated radiation (hereinafter referred to as "radiation dose"), the radiation dose can be measured by measuring the fluorescence intensity. The fluorescence detection sensitivity of this glass to the radiation dose varies depending on the composition of the glass. The fluorescent center generated in the glass by the RPL phenomenon is stabilized by the interaction with the close-coordinating atom, and the fluorescent center does not disappear at room temperature, so that the radiation dose can be measured for a long period of time. Further, since the fluorescent center generated in the glass disappears by the heat treatment, it can be used repeatedly.

放射線検出用ガラスとしては、蛍光検出感度を向上させる成分であるSiOを含有するガラス等が使用されている(例えば特許文献1参照)。 As the radiation detection glass, glass or the like containing SiO 2 which is a component for improving the fluorescence detection sensitivity is used (see, for example, Patent Document 1).

特開2016-145145号公報Japanese Unexamined Patent Publication No. 2016-145145

しかしながら、特許文献1に記載されているガラスは、放射線未照射時にガラス自身が有する蛍光(以下、「プレドーズ」と示す。)が多く、放射線量の計測を阻害するという問題がある。 However, the glass described in Patent Document 1 has a large amount of fluorescence (hereinafter referred to as "predose") possessed by the glass itself when not irradiated with radiation, and has a problem of hindering the measurement of radiation dose.

以上に鑑み、本発明は、低いプレドーズ値を有する放射線検出用ガラスの製造方法を提供することを目的とする。 In view of the above, it is an object of the present invention to provide a method for producing a glass for radiation detection having a low predose value.

SiO原料を用いて溶融すると融点の高いSiOが溶け残りやすく、放射線検出用ガラス中にSiOのブツが発生しやすい。そこで、本発明者等は種々の実験を行った結果、放射線量の計測時に、発生したSiOのブツが多重散乱を引き起し、放射線検出用ガラスのプレドーズ値を上昇させていることを突きとめた。 When melted using a SiO 2 raw material, SiO 2 having a high melting point tends to remain undissolved, and the lumps of SiO 2 are likely to occur in the radiation detection glass. Therefore, as a result of conducting various experiments, the present inventors have found that the generated SiO 2 lumps cause multiple scattering and increase the predose value of the radiation detection glass when measuring the radiation dose. I stopped.

本発明の放射線検出用ガラスの製造方法は、原料を、厚み5mmでの波長800nmにおける直線透過率が0.1~30%であるシリカガラス坩堝を用いて加熱溶融することを特徴とする。このようにすれば、加熱源である赤外線が坩堝の内壁で散乱し、溶融ガラス全体に照射されるため、ガラスを均質に加熱することができる。そのため、SiO原料が溶解し易くなり、放射線検出用ガラス中にSiOのブツが発生しにくくなる。結果として、低いプレドーズ値を有する放射線検出用ガラスを作製することができる。 The method for producing a glass for radiation detection of the present invention is characterized in that a raw material is heated and melted using a silica glass crucible having a thickness of 5 mm and a linear transmittance of 0.1 to 30% at a wavelength of 800 nm. In this way, infrared rays, which are a heating source, are scattered on the inner wall of the crucible and irradiate the entire molten glass, so that the glass can be heated uniformly. Therefore, the SiO 2 raw material is easily melted, and the lumps of SiO 2 are less likely to occur in the radiation detection glass. As a result, a glass for radiation detection having a low predose value can be produced.

本発明の放射線検出用ガラスの製造方法は、シリカガラス坩堝の表面粗さRaが1~100μmであることが好ましい。 In the method for producing a glass for radiation detection of the present invention, it is preferable that the surface roughness Ra of the silica glass crucible is 1 to 100 μm.

本発明の放射線検出用ガラスの製造方法は、放射線検出用ガラスが、モル%で、SiO 0.1~20%、B 0~10%、P 40~70%、Al 10~30%、NaO 10~35%、AgO 0.01~2%を含有することが好ましい。 In the method for producing the radiation detection glass of the present invention, the radiation detection glass is mol%, SiO 2 0.1 to 20%, B 2 O 30 to 10%, P 2 O 5 40 to 70%, Al. It preferably contains 2 O 3 10 to 30%, Na 2 O 10 to 35%, and Ag 2 O 0.01 to 2%.

本発明によれば、低いプレドーズ値を有する放射線検出用ガラスの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a glass for radiation detection having a low predose value.

本発明の放射線検出用ガラスの製造方法は、原料を、厚み5mmにて波長800nmにおける直線透過率が0.1~30%であるシリカガラス坩堝を用いて加熱溶融することを特徴とする。 The method for producing a glass for radiation detection of the present invention is characterized in that a raw material is heated and melted using a silica glass crucible having a thickness of 5 mm and a linear transmittance of 0.1 to 30% at a wavelength of 800 nm.

上述した通り、厚み5mmでの波長800nmにおける直線透過率が0.1~30%であるシリカガラス坩堝を用いてガラスを加熱すると、プレドーズ値を上昇させるSiOのブツが発生しにくくなる。 As described above, when the glass is heated using a silica glass crucible having a thickness of 5 mm and a linear transmittance of 0.1 to 30% at a wavelength of 800 nm, the lumps of SiO 2 that increase the predose value are less likely to occur.

次に、シリカガラス坩堝について説明する。 Next, the silica glass crucible will be described.

シリカガラス坩堝の厚み5mmでの波長800nmにおける直線透過率は0.1~30%であり、0.2~29%、特に0.5~28%であることが好ましい。直線透過率が低すぎると、赤外線が坩堝の外壁で反射されやすくガラスを加熱し難くなる。一方、直線透過率が高すぎると、赤外線が坩堝の内壁で散乱しにくくガラスを均質に加熱し難くなる。 The linear transmittance at a wavelength of 800 nm at a thickness of 5 mm of the silica glass crucible is 0.1 to 30%, preferably 0.2 to 29%, particularly preferably 0.5 to 28%. If the linear transmittance is too low, infrared rays are easily reflected by the outer wall of the crucible, making it difficult to heat the glass. On the other hand, if the linear transmittance is too high, infrared rays are less likely to be scattered on the inner wall of the crucible and it is difficult to uniformly heat the glass.

シリカガラス坩堝の表面粗さRaは1~100μm、2~90μm、特に5~80μmであることが好ましい。表面粗さRaが小さすぎると、赤外線が坩堝の内壁で散乱しにくくガラスを均質に加熱し難くなる。表面粗さRaが大きすぎると、赤外線が坩堝の外壁で反射されやすくガラスを加熱し難くなる。 The surface roughness Ra of the silica glass crucible is preferably 1 to 100 μm, 2 to 90 μm, and particularly preferably 5 to 80 μm. If the surface roughness Ra is too small, infrared rays are less likely to be scattered on the inner wall of the crucible, and it is difficult to uniformly heat the glass. If the surface roughness Ra is too large, infrared rays are easily reflected by the outer wall of the crucible, making it difficult to heat the glass.

なお、シリカガラス坩堝はSiO原料を焼成することにより作製されるが、その直線透過率、表面粗さRaは、SiO原料の粒度、焼成温度、焼成時間によって制御できる。また、得られたシリカガラス坩堝をバフ研磨、ウェットブラスト、サンドブラスト等の研磨処理、酸やアルカリによるエッチング処理により表面粗さRaを制御することも可能である。 The silica glass crucible is manufactured by firing a SiO 2 raw material, and its linear transmittance and surface roughness Ra can be controlled by the particle size, firing temperature, and firing time of the SiO 2 raw material. Further, it is also possible to control the surface roughness Ra of the obtained silica glass crucible by buffing, wet blasting, sandblasting or the like, or etching with an acid or an alkali.

シリカガラス坩堝は、質量%で、SiO 90%以上、特に92%以上含有することが好ましい。シリカガラス坩堝は、SiO成分がガラス中に溶出することがあり、このSiO溶出量を考慮してガラスの組成設計を行う場合がある。ところがシリカガラス坩堝のSiOの含有量が少なすぎると、SiO以外の成分もガラス中に溶出する可能性がある。その結果、所望の組成のガラスが得られない等の不具合が生じやすい。 The silica glass crucible preferably contains 290 % or more, particularly 92% or more, in terms of mass%. In a silica glass crucible, the SiO 2 component may elute into the glass, and the composition of the glass may be designed in consideration of the amount of the SiO 2 elution. However, if the content of SiO 2 in the silica glass crucible is too small, components other than SiO 2 may elute into the glass. As a result, problems such as not being able to obtain glass having a desired composition are likely to occur.

なお、一般的なガラス溶融坩堝の材質であるPt、Rhは、ガラスを還元してAg量を増加させ、放射線検出用ガラスのプレドーズ値を上昇させる傾向があるため、放射線検出用ガラスの製造には不適である。 Since Pt and Rh, which are general glass melting crucible materials, tend to reduce the glass to increase the amount of Ag 0 and increase the predose value of the radiation detection glass, the production of radiation detection glass is performed. Not suitable for.

次に、放射線検出用ガラスの製造方法について詳細に説明する。 Next, a method for manufacturing the glass for radiation detection will be described in detail.

まず、所望の組成となるように原料粉末を調合する。次に調合した原料粉末を上述したシリカガラス坩堝へ投入し、均質なガラスが得られるまで溶融する。次いで、溶融ガラスをカーボン板等の上に流し出し、板状に成形した後、常温まで徐冷することにより、放射線検出用ガラスを得る。徐冷条件としては、例えば、徐冷点より約20℃高い温度から約2℃/分で降温することが好ましい。 First, the raw material powder is prepared so as to have a desired composition. Next, the prepared raw material powder is put into the silica glass crucible described above and melted until a homogeneous glass is obtained. Next, the molten glass is poured onto a carbon plate or the like, molded into a plate shape, and then slowly cooled to room temperature to obtain a glass for radiation detection. As the slow cooling condition, for example, it is preferable to lower the temperature at about 2 ° C./min from a temperature about 20 ° C. higher than the slow cooling point.

また、溶融時の酸素分圧が低くなるとAg成分が還元され易くなり、ガラス中にAgが生成しやすくなる。Ag成分の還元を抑制する方法としては、溶融温度を1000~1400℃と低くする方法、溶融雰囲気に酸化性ガスを導入する方法、原料として酸化剤である硝酸塩を使用する方法等が挙げられる。なお、酸化性ガスとしては、酸素、オゾン、窒素酸化物(亜酸化窒素、一酸化窒素、二酸化窒素等)等が挙げられる。また、硝酸塩としては、硝酸銀、硝酸アルミニウム、硝酸ナトリウム等を用いることができる。 Further, when the oxygen partial pressure at the time of melting becomes low, the Ag component is easily reduced, and Ag 0 is easily generated in the glass. Examples of the method of suppressing the reduction of the Ag component include a method of lowering the melting temperature to 1000 to 1400 ° C., a method of introducing an oxidizing gas into the melting atmosphere, and a method of using nitrate as an oxidizing agent as a raw material. Examples of the oxidizing gas include oxygen, ozone, nitrogen oxides (nitrous oxide, nitric oxide, nitrogen dioxide, etc.) and the like. Further, as the nitrate, silver nitrate, aluminum nitrate, sodium nitrate and the like can be used.

次に、放射線検出用ガラスを用いて蛍光強度測定を行った後、再生する一連の流れについて説明する。 Next, a series of steps of regenerating after measuring the fluorescence intensity using the glass for radiation detection will be described.

(自然放射線による蛍光中心の消失)
まず、得られた放射線検出用ガラスの両面を光学研磨面(鏡面)となるように研磨した後、熱処理し、自然放射線によって形成された蛍光中心を消失させる。
(Disappearance of fluorescent center due to natural radiation)
First, both sides of the obtained radiation detection glass are polished so as to be an optically polished surface (mirror surface), and then heat-treated to eliminate the fluorescent center formed by natural radiation.

(放射線量の測定)
続いて、放射線検出用ガラスが受けた放射線量を測定する。具体的には、放射線検出用ガラスに放射線が照射されると、ガラス中にAg2+、Agが形成される。その後、下記の熱処理条件で熱処理し蛍光強度を安定化した後、紫外光を照射して蛍光強度を測定する。この蛍光強度から放射線量を算出する。
(Measurement of radiation dose)
Then, the radiation dose received by the radiation detection glass is measured. Specifically, when the radiation detection glass is irradiated with radiation, Ag 2+ and Ag 0 are formed in the glass. Then, after heat-treating under the following heat treatment conditions to stabilize the fluorescence intensity, the fluorescence intensity is measured by irradiating with ultraviolet light. The radiation dose is calculated from this fluorescence intensity.

熱処理温度は、(ガラス転移点/4)~(ガラス転移点/2.5)、特に(ガラス転移点/3.5)~(ガラス転移点/2.7)であることが好ましい。熱処理温度が低すぎると、蛍光強度が安定化しにくく、放射線量測定値の再現性が低くなり易い。一方、熱処理温度が高すぎると、長期保管時に蛍光強度が低下し易く、放射線量測定値の再現性が低くなり易い。具体的には、熱処理温度は、105~200℃、特に110~180℃であることが好ましい。また、熱処理時間は、10~120分、特に20~70分であることが好ましい。熱処理時間が短過ぎると、ガラス内部にまで熱が伝わりにくいため、蛍光強度が安定化しにくく、放射線量測定値の再現性が低くなり易い。一方、熱処理時間が長過ぎると、長期保管時に蛍光強度が低下し易く、放射線量測定値の再現性が低くなり易い。 The heat treatment temperature is preferably (glass transition point / 4) to (glass transition point / 2.5), particularly preferably (glass transition point / 3.5) to (glass transition point / 2.7). If the heat treatment temperature is too low, the fluorescence intensity is difficult to stabilize, and the reproducibility of the radiation dose measurement value tends to be low. On the other hand, if the heat treatment temperature is too high, the fluorescence intensity tends to decrease during long-term storage, and the reproducibility of the radiation dose measurement value tends to decrease. Specifically, the heat treatment temperature is preferably 105 to 200 ° C., particularly preferably 110 to 180 ° C. The heat treatment time is preferably 10 to 120 minutes, particularly preferably 20 to 70 minutes. If the heat treatment time is too short, heat is not easily transferred to the inside of the glass, so that the fluorescence intensity is difficult to stabilize and the reproducibility of the radiation dose measurement value tends to be low. On the other hand, if the heat treatment time is too long, the fluorescence intensity tends to decrease during long-term storage, and the reproducibility of the radiation dose measurement value tends to decrease.

(ガラスの再生)
蛍光強度測定後のガラスを下記の熱処理条件で熱処理することにより、ガラスを再生(再利用)することができる。
(Regeneration of glass)
The glass can be regenerated (reused) by heat-treating the glass after the fluorescence intensity measurement under the following heat treatment conditions.

熱処理温度は、(ガラス転移点-80℃)~(ガラス転移点-10℃)、(ガラス転移点-55℃)~(ガラス転移点-15℃)、(ガラス転移点-40℃)~(ガラス転移点-15℃)、特に(ガラス転移点-25℃)~(ガラス転移点-20℃)であることが好ましい。熱処理温度が低すぎると、ガラス中に形成された蛍光中心を十分に消失させにくく、ガラスを再生し難くなる。一方、熱処理温度が高すぎると、ガラス表面の銀イオン濃度が高まりガラスが変質しやすくなるため、ガラスを再生し難くなる。具体的には、熱処理温度は、420~500℃、430~490℃、440~480℃、特に450~470℃であることが好ましい。また、熱処理時間は、20~150分、30~120分、40~90分、特に50~70分であることが好ましい。熱処理時間が短過ぎると、ガラス内部にまで熱が伝わりにくいため、ガラス中に形成された蛍光中心を十分に消失させにくく、ガラスを再生し難くなる。一方、熱処理時間が長過ぎると、ガラス表面の銀イオン濃度が高まりガラスが変質しやすくなるため、ガラスを再生し難くなる。なお、ガラスを再生することにより、繰り返し使用することが可能になる。使用回数が多いほど、コストダウンに繋がることは言うまでもない。なお、自然放射線によって形成された蛍光中心を消失させる際の熱処理条件も上記と同様にすることが好ましい。 The heat treatment temperature is (glass transition point -80 ° C) to (glass transition point -10 ° C), (glass transition point -55 ° C) to (glass transition point -15 ° C), (glass transition point -40 ° C) to ( Glass transition point −15 ° C.), particularly preferably (glass transition point −25 ° C.) to (glass transition point −20 ° C.). If the heat treatment temperature is too low, it is difficult to sufficiently eliminate the fluorescent center formed in the glass, and it is difficult to regenerate the glass. On the other hand, if the heat treatment temperature is too high, the silver ion concentration on the glass surface increases and the glass tends to deteriorate, which makes it difficult to regenerate the glass. Specifically, the heat treatment temperature is preferably 420 to 500 ° C., 430 to 490 ° C., 440 to 480 ° C., and particularly preferably 450 to 470 ° C. The heat treatment time is preferably 20 to 150 minutes, 30 to 120 minutes, 40 to 90 minutes, and particularly preferably 50 to 70 minutes. If the heat treatment time is too short, heat is not easily transferred to the inside of the glass, so that it is difficult to sufficiently eliminate the fluorescent center formed in the glass, and it is difficult to regenerate the glass. On the other hand, if the heat treatment time is too long, the silver ion concentration on the glass surface increases and the glass tends to deteriorate, which makes it difficult to regenerate the glass. By regenerating the glass, it can be used repeatedly. Needless to say, the more times you use it, the lower the cost. It is preferable that the heat treatment conditions for eliminating the fluorescent center formed by natural radiation are the same as described above.

次に、本発明で製造する放射線検出用ガラスについて説明する。 Next, the radiation detection glass manufactured by the present invention will be described.

放射線検出用ガラスは、モル%で、SiO 0.1~20%、B 0~10%、P 40~70%、Al 10~30%、NaO 10~35%、AgO 0.01~2%を含有することが好ましい。 The glass for radiation detection is mol%, SiO 2 0.1 to 20%, B 2 O 30 to 10%, P 2 O 5 40 to 70%, Al 2 O 3 10 to 30%, Na 2 O 10 It preferably contains ~ 35% and Ag 2 O 0.01 ~ 2%.

ガラス組成を上記のように限定した理由を以下に示す。なお、各成分の含有量の説明において、特に断りのない限り、「%」は「モル%」を意味する。 The reasons for limiting the glass composition as described above are shown below. In the description of the content of each component, "%" means "mol%" unless otherwise specified.

SiOは、ガラスの耐候性を高めるために重要な成分であり、また蛍光検出感度、ガラスの機械的強度を高める成分である。SiOの含有量は0.1~20%、0.2~19%、0.3~18%、0.5~17%、0.7~16%、1~15%、特に1.5~10%であることが好ましい。SiOの含有量が少な過ぎると、耐候性が低下し易くなる。一方、SiOの含有量が多過ぎると、溶融性が低下しガラス化し難くなることに加えて、クリストバライト等の失透結晶が析出し易くなる。 SiO 2 is an important component for enhancing the weather resistance of glass, and is also a component for enhancing fluorescence detection sensitivity and mechanical strength of glass. The content of SiO 2 is 0.1 to 20%, 0.2 to 19%, 0.3 to 18%, 0.5 to 17%, 0.7 to 16%, 1 to 15%, especially 1.5. It is preferably ~ 10%. If the content of SiO 2 is too small, the weather resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the meltability is lowered and vitrification is difficult, and devitrified crystals such as cristobalite are likely to precipitate.

は、ガラスの耐候性を高めるために重要な成分であり、また蛍光検出感度を高める成分である。Bの含有量は0~10%、0.1~10%、0.1~9%、0.5~8%、0.7~7%、1~6%、特に1.5~5%であることが好ましい。Bの含有量が多過ぎると、分相によってガラス化し難くなることに加えて、逆に耐候性が低下し易くなる。 B 2 O 3 is an important component for enhancing the weather resistance of glass, and is also a component for enhancing fluorescence detection sensitivity. The content of B 2 O 3 is 0 to 10%, 0.1 to 10%, 0.1 to 9%, 0.5 to 8%, 0.7 to 7%, 1 to 6%, especially 1.5. It is preferably ~ 5%. If the content of B 2 O 3 is too large, it becomes difficult to vitrify due to phase separation, and conversely, the weather resistance tends to decrease.

は、ガラスの骨格を形成する主成分である。Pの含有量は40~70%、45~67%、47~65%、50~63%、特に55~63%であることが好ましい。Pの含有量が少な過ぎると、蛍光検出感度の低下が起こり易く、またガラスが分相、失透し易くなる。一方、Pの含有量が多過ぎると、溶融性が低下しガラス化し難くなる。 P 2 O 5 is a main component forming the skeleton of glass. The content of P 2 O 5 is preferably 40 to 70%, 45 to 67%, 47 to 65%, 50 to 63%, and particularly preferably 55 to 63%. If the content of P 2 O 5 is too small, the fluorescence detection sensitivity tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of P 2 O 5 is too large, the meltability is lowered and it becomes difficult to vitrify.

Alは、ガラスの耐候性を高める成分であると共に、分相、失透を抑制する成分である。Alの含有量は10~30%、11~28%、13~26%、14~24%、特に15~23%であることが好ましい。Alの含有量が少な過ぎると、耐候性が低下し易くなる。一方、Alの含有量が多過ぎると、溶融性が低下しガラス化し難くなる。 Al 2 O 3 is a component that enhances the weather resistance of glass and is a component that suppresses phase separation and devitrification. The content of Al 2 O 3 is preferably 10 to 30%, 11 to 28%, 13 to 26%, 14 to 24%, and particularly preferably 15 to 23%. If the content of Al 2 O 3 is too small, the weather resistance tends to decrease. On the other hand, if the content of Al 2 O 3 is too large, the meltability is lowered and it becomes difficult to vitrify.

/(SiO+B+Al)は1.5以上、1.6以上、特に1.7以上であることが好ましい。P/(SiO+B+Al)が小さ過ぎると分相や失透が起り易くなって、ガラス化し難くなる。また、P/(SiO+B+Al)の上限は特に限定されないが、P/(SiO+B+Al)が大き過ぎるとガラス化し難くなったり、耐候性が低下し易くなるため、5以下、4.5以下、特に4以下であることが好ましい。なお、「P/(SiO+B+Al)」はPの含有量をSiO、B及びAlの合量で除した値を指す。 P 2 O 5 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is preferably 1.5 or more, 1.6 or more, and particularly preferably 1.7 or more. If P 2 O 5 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is too small, phase separation and devitrification are likely to occur, and vitrification becomes difficult. Further, the upper limit of P 2 O 5 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is not particularly limited, but if P 2 O 5 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is too large, it is vitrified. It is preferably 5 or less, 4.5 or less, and particularly preferably 4 or less because it becomes difficult and the weather resistance tends to decrease. In addition, "P 2 O 5 / (SiO 2 + B 2 O 3 + Al 2 O 3 )" is the value obtained by dividing the content of P 2 O 5 by the total amount of SiO 2 , B 2 O 3 and Al 2 O 3 . Point to.

/(B+Al)は1.5以上、1.6以上、特に1.7以上であることが好ましい。P/(B+Al)が小さ過ぎると分相や失透が起り易くなって、ガラス化し難くなる。また、P/(B+Al)の上限は特に限定されないが、現実的には、5以下、4.5以下、特に4以下であることが好ましい。なお、「P/(B+Al)」はPの含有量をB及びAlの合量で除した値を指す。 P 2 O 5 / (B 2 O 3 + Al 2 O 3 ) is preferably 1.5 or more, 1.6 or more, and particularly preferably 1.7 or more. If P 2 O 5 / (B 2 O 3 + Al 2 O 3 ) is too small, phase separation and devitrification are likely to occur, and vitrification becomes difficult. Further, the upper limit of P 2 O 5 / (B 2 O 3 + Al 2 O 3 ) is not particularly limited, but in reality, it is preferably 5 or less, 4.5 or less, and particularly preferably 4 or less. In addition, "P 2 O 5 / (B 2 O 3 + Al 2 O 3 )" refers to a value obtained by dividing the content of P 2 O 5 by the total amount of B 2 O 3 and Al 2 O 3 .

NaOはガラス融液の粘度を下げて、溶融性を顕著に高める成分であると共に、蛍光検出感度を高める成分である。NaOの含有量は10~35%、11~33%、13~30%、14~28%、特に15~25%であることが好ましい。NaOの含有量が少な過ぎると、溶融性が低下し易くなることに加えて、蛍光検出感度が低下しやすくなる。一方、NaOの含有量が多過ぎると、耐候性が低下し易くなる。 Na 2 O is a component that lowers the viscosity of the glass melt to remarkably increase the meltability, and is a component that enhances the fluorescence detection sensitivity. The content of Na 2 O is preferably 10 to 35%, 11 to 33%, 13 to 30%, 14 to 28%, and particularly preferably 15 to 25%. If the content of Na 2 O is too small, the meltability tends to decrease and the fluorescence detection sensitivity tends to decrease. On the other hand, if the content of Na 2 O is too large, the weather resistance tends to decrease.

AgOはRPL現象によって蛍光中心を形成するための重要な成分である。AgOの含有量は、0.01~2%、0.01~1%、特に0.01~0.5%であることが好ましい。AgOの含有量が少な過ぎると蛍光検出感度が低下し易くなる。一方、AgOの含有量が多過ぎると耐候性が低下し易くなる。 Ag 2 O is an important component for forming a fluorescence center by the RPL phenomenon. The content of Ag 2 O is preferably 0.01 to 2%, 0.01 to 1%, and particularly preferably 0.01 to 0.5%. If the content of Ag 2 O is too small, the fluorescence detection sensitivity tends to decrease. On the other hand, if the content of Ag 2 O is too large, the weather resistance tends to decrease.

本発明における放射線検出用ガラスは、上記成分以外にも以下の成分を含有することができる。 The radiation detection glass in the present invention may contain the following components in addition to the above components.

MgOはガラスの耐候性を高める成分である。MgOの含有量は0~10%、0~7%、特に0~4%であることが好ましい。MgOの含有量が多過ぎると、液相温度が上昇して、リン酸マグネシウム等の失透結晶が析出し易くなる。 MgO is a component that enhances the weather resistance of glass. The content of MgO is preferably 0 to 10%, 0 to 7%, and particularly preferably 0 to 4%. If the content of MgO is too large, the liquidus temperature rises and devitrified crystals such as magnesium phosphate are likely to precipitate.

ZnOはガラスの分相、失透を抑制する成分である。ZnOの含有量は0~10%、0~7%、特に0~4%であることが好ましい。ZnOの含有量が多過ぎると、耐候性、蛍光検出感度が低下し易くなる。 ZnO is a component that suppresses phase separation and devitrification of glass. The ZnO content is preferably 0 to 10%, 0 to 7%, and particularly preferably 0 to 4%. If the ZnO content is too high, the weather resistance and fluorescence detection sensitivity tend to decrease.

CaO、SrO及びBaOはガラスの耐候性を高める成分である。CaO+SrO+BaOの含有量は0~15%、0~10%、特に0~5%であることが好ましい。CaO+SrO+BaOの含有量が多すぎると蛍光検出感度が低下し易くなり、また液相温度が低下して、リン酸塩等の失透結晶が析出し易くなる。 CaO, SrO and BaO are components that enhance the weather resistance of glass. The content of CaO + SrO + BaO is preferably 0 to 15%, 0 to 10%, and particularly preferably 0 to 5%. If the content of CaO + SrO + BaO is too large, the fluorescence detection sensitivity tends to decrease, the liquidus temperature decreases, and devitrified crystals such as phosphates tend to precipitate.

なお、CaO、SrO及びBaOの含有量の好ましい範囲は以下の通りである。 The preferable range of the contents of CaO, SrO and BaO is as follows.

CaOの含有量は0~15%、0~10%、特に0~5%であることが好ましい。 The CaO content is preferably 0 to 15%, 0 to 10%, and particularly preferably 0 to 5%.

SrOの含有量は0~15%、0~10%、特に0~5%であることが好ましい。 The content of SrO is preferably 0 to 15%, 0 to 10%, and particularly preferably 0 to 5%.

BaOの含有量は0~15%、0~10%、特に0~5%であることが好ましい。 The content of BaO is preferably 0 to 15%, 0 to 10%, and particularly preferably 0 to 5%.

放射線検出用ガラスのガラス転移点は600℃以下、550℃以下、特に530℃以下であることが好ましい。ガラス転移点が高すぎると、上述した熱処理温度が高くなるため、熱処理時にB、P、NaOが蒸発して組成ズレが起こりやすくなり、所望の特性が得にくくなる。ガラス転移点の下限は特に限定されないが、現実的には300℃以上である。 The glass transition point of the radiation detection glass is preferably 600 ° C. or lower, 550 ° C. or lower, and particularly preferably 530 ° C. or lower. If the glass transition point is too high, the heat treatment temperature described above becomes high, so that B 2 O 3 , P 2 O 5 , and Na 2 O evaporate during the heat treatment, and composition deviation is likely to occur, making it difficult to obtain desired characteristics. .. The lower limit of the glass transition point is not particularly limited, but is actually 300 ° C. or higher.

以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described based on examples. The following examples are merely examples. The present invention is not limited to the following examples.

表1は、本発明の実施例(No.1~5)及び比較例(No.6)を示している。 Table 1 shows Examples (No. 1 to 5) and Comparative Examples (No. 6) of the present invention.

Figure 0007022386000001
Figure 0007022386000001

まず、モル%で、SiO 2%、P 55%、Al 13%、NaO 29.9%、AgO 0.1%の組成になるように調合したガラスバッチを表1に記載の直線透過率、表面粗さRaを有するシリカガラス坩堝に投入し、電気炉にて表1に記載の溶融温度、溶融時間で溶融した。次いで、溶融ガラスをカーボン板上に流し出し、板形状に成形した後、徐冷点より20℃程度高い温度から2℃/分で常温まで徐冷し、放射線検出用ガラスを得た。得られた各試料について、SiOに起因するブツの有無、及びプレドーズ値を評価した。なお、シリカガラス坩堝の表面粗さRaは、サンドブラストにより制御した。また、シリカガラス坩堝の直線透過率は分光分析装置により、表面粗さRaは表面粗さ測定器により測定した。 First, a glass batch prepared to have a composition of SiO 22%, P 2 O 555%, Al 2 O 3 13%, Na 2 O 29.9%, and Ag 2 O 0.1 % in mol % . Was put into a silica glass crucible having the linear transmittance and surface roughness Ra shown in Table 1 and melted in an electric furnace at the melting temperature and melting time shown in Table 1. Next, the molten glass was poured onto a carbon plate, molded into a plate shape, and then slowly cooled from a temperature about 20 ° C. higher than the slow cooling point to room temperature at 2 ° C./min to obtain a glass for radiation detection. For each of the obtained samples, the presence or absence of lumps caused by SiO 2 and the predose value were evaluated. The surface roughness Ra of the silica glass crucible was controlled by sandblasting. The linear transmittance of the silica glass crucible was measured by a spectroscopic analyzer, and the surface roughness Ra was measured by a surface roughness measuring instrument.

SiOに起因するブツは次のようにして評価した。得られた試料を光学顕微鏡にて観察を行った。ブツが観察されなかったものを「○」、ブツが観察されたものを「×」とした。 The lumps caused by SiO 2 were evaluated as follows. The obtained sample was observed with an optical microscope. Those in which no lumps were observed were marked with "○", and those in which lumps were observed were marked with "x".

プレドーズ値の評価には、両面が光学研磨面(鏡面)となるように研磨した試料を使用した。試料を400℃で1時間熱処理する事で、自然放射線によって形成された蛍光中心を消失させた後、試料の光学研磨面に紫外光を照射して測定した蛍光強度をプレドーズ値とした。 For the evaluation of the predose value, a sample polished so that both sides had an optically polished surface (mirror surface) was used. The fluorescence intensity measured by irradiating the optically polished surface of the sample with ultraviolet light after eliminating the fluorescence center formed by natural radiation by heat-treating the sample at 400 ° C. for 1 hour was used as the predose value.

表1から明らかなように、本発明の実施例であるNo.1~5の試料は、ブツが確認されず、プレドーズ値も49~64と低かった。一方、比較例であるNo.6の試料は、SiOに起因するブツが存在しており、プレドーズ値が199と高かった。 As is clear from Table 1, No. 1 which is an embodiment of the present invention. No lumps were confirmed in the samples 1 to 5, and the predose value was as low as 49 to 64. On the other hand, No. In the sample No. 6, the lumps caused by SiO 2 were present, and the predose value was as high as 199.

本発明の放射線検出用ガラスの製造方法は、放射線の個人被ばく線量計、環境中の放射線計測、放射線治療時の患者の被ばく量モニタリング等に用いる放射線検出用ガラスの製造方法として好適である。なお、ここで放射線とはベータ線、ガンマ線またはエックス線等を指す。
The method for producing radiation detection glass of the present invention is suitable as a method for producing radiation detection glass used for an individual radiation dose meter, radiation measurement in the environment, exposure monitoring of a patient during radiation therapy, and the like. Here, radiation refers to beta rays, gamma rays, X-rays, and the like.

Claims (2)

原料を、厚み5mmでの波長800nmにおける直線透過率が0.1~30%であるシリカガラス坩堝を用いて加熱溶融し、シリカガラス坩堝の表面粗さRaが1~100μmであることを特徴とする放射線検出用ガラスの製造方法。 The raw material is heated and melted using a silica glass crucible having a thickness of 5 mm and a linear transmittance of 0.1 to 30% at a wavelength of 800 nm , and the surface roughness Ra of the silica glass crucible is 1 to 100 μm. A method for manufacturing glass for radiation detection. 放射線検出用ガラスが、モル%で、SiO 0.1~20%、B 0~10%、P 40~70%、Al 10~30%、NaO 10~35%、AgO 0.01~2%を含有することを特徴とする請求項1に記載の放射線検出用ガラスの製造方法。 Radiation detection glass is mol%, SiO 2 0.1 to 20%, B 2 O 30 to 10%, P 2 O 5 40 to 70%, Al 2 O 3 10 to 30%, Na 2 O 10 The method for producing a glass for radiation detection according to claim 1, which contains ~ 35% and Ag 2 O 0.01 to 2%.
JP2018052677A 2018-03-20 2018-03-20 Manufacturing method of glass for radiation detection Active JP7022386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052677A JP7022386B2 (en) 2018-03-20 2018-03-20 Manufacturing method of glass for radiation detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052677A JP7022386B2 (en) 2018-03-20 2018-03-20 Manufacturing method of glass for radiation detection

Publications (2)

Publication Number Publication Date
JP2019163192A JP2019163192A (en) 2019-09-26
JP7022386B2 true JP7022386B2 (en) 2022-02-18

Family

ID=68064707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052677A Active JP7022386B2 (en) 2018-03-20 2018-03-20 Manufacturing method of glass for radiation detection

Country Status (1)

Country Link
JP (1) JP7022386B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219593A (en) 1999-01-29 2000-08-08 Shinetsu Quartz Prod Co Ltd Quartz glass crucible having large diameter for pulling up silicon single crystal
JP2004107163A (en) 2002-09-20 2004-04-08 Toshiba Ceramics Co Ltd Quartz crucible and its manufacturing method
WO2009041685A1 (en) 2007-09-28 2009-04-02 Japan Super Quartz Corporation Quartz glass crucible for pulling silicon single crystal and method for manufacturing the crucible
JP2010210336A (en) 2009-03-09 2010-09-24 Chiyoda Technol Corp Glass for fluorescence glass dosimeter sensitive to thermal neutrons and fluorescence glass dosimeter
JP2016145145A (en) 2015-01-30 2016-08-12 Agcテクノグラス株式会社 Glass for fluorescent glass dosimeter
JP2016153784A (en) 2015-01-30 2016-08-25 Agcテクノグラス株式会社 Glass for fluoroglass dosimeters
JP2018039702A (en) 2016-09-08 2018-03-15 グローバルウェーハズ・ジャパン株式会社 Production of silicon single crystal, and modified quarts crucible for silicon single crystal production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438310A (en) * 1977-08-31 1979-03-22 Toshiba Kasei Kougiyou Kk Glass for dose meter
JPS63145984A (en) * 1986-12-09 1988-06-18 Toshiba Glass Co Ltd Glass element for dosimeter
JPH0940440A (en) * 1995-07-25 1997-02-10 Nikon Corp Scintillator glass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219593A (en) 1999-01-29 2000-08-08 Shinetsu Quartz Prod Co Ltd Quartz glass crucible having large diameter for pulling up silicon single crystal
JP2004107163A (en) 2002-09-20 2004-04-08 Toshiba Ceramics Co Ltd Quartz crucible and its manufacturing method
WO2009041685A1 (en) 2007-09-28 2009-04-02 Japan Super Quartz Corporation Quartz glass crucible for pulling silicon single crystal and method for manufacturing the crucible
JP2010210336A (en) 2009-03-09 2010-09-24 Chiyoda Technol Corp Glass for fluorescence glass dosimeter sensitive to thermal neutrons and fluorescence glass dosimeter
JP2016145145A (en) 2015-01-30 2016-08-12 Agcテクノグラス株式会社 Glass for fluorescent glass dosimeter
JP2016153784A (en) 2015-01-30 2016-08-25 Agcテクノグラス株式会社 Glass for fluoroglass dosimeters
JP2018039702A (en) 2016-09-08 2018-03-15 グローバルウェーハズ・ジャパン株式会社 Production of silicon single crystal, and modified quarts crucible for silicon single crystal production

Also Published As

Publication number Publication date
JP2019163192A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7207442B2 (en) UV transparent glass
Cook et al. Ultraviolet transmission characteristics of a fluorophosphate laser glass
US20140270639A1 (en) Optical element for mie scattering light from an optical fiber
JP5153963B2 (en) Glass for light guide fiber
JPWO2006107077A1 (en) UV transmitting glass composition and glass article using the same
CN108349786A (en) It is used to prepare with SiO2The method of glass and glass ceramics as principal crystalline phase
JP2020189782A (en) Li2O-Al2O3-SiO2 BASED CRYSTALLIZED GLASS
JP2016145145A (en) Glass for fluorescent glass dosimeter
JP7374151B2 (en) borosilicate glass articles
Rothermel et al. Phosphate Glass: PbO‐WO3‐P2O5 System
JP7397565B2 (en) Radiation detection glass
JP7022386B2 (en) Manufacturing method of glass for radiation detection
JP2016153784A (en) Glass for fluoroglass dosimeters
JP5762515B2 (en) Glass composition and glass article using the same
WO2018159194A1 (en) Glass for radiation detection
JP7032697B2 (en) Manufacturing method of glass for radiation detection
JP7094492B2 (en) Treatment method of glass for radiation detection
JP2018150190A (en) Glass for radiation detection
JP2018151367A (en) Regenerating method of radiation detection glass
JP6959564B2 (en) Radiation detection glass
JPH0940440A (en) Scintillator glass
JP2018150189A (en) Glass for radiation detection
JP2021128114A (en) Glass dosemeter
JP2018158854A (en) Glass pane for radiation detection and method for producing the same
JP2018150221A (en) Glass for radiation detection and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7022386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150