WO2020012833A1 - Sealing material - Google Patents

Sealing material Download PDF

Info

Publication number
WO2020012833A1
WO2020012833A1 PCT/JP2019/022461 JP2019022461W WO2020012833A1 WO 2020012833 A1 WO2020012833 A1 WO 2020012833A1 JP 2019022461 W JP2019022461 W JP 2019022461W WO 2020012833 A1 WO2020012833 A1 WO 2020012833A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
powder
refractory filler
sealing layer
sealing material
Prior art date
Application number
PCT/JP2019/022461
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 加納
貴久 山口
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980036819.4A priority Critical patent/CN112262112B/en
Publication of WO2020012833A1 publication Critical patent/WO2020012833A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Definitions

  • the present invention relates to a sealing material for forming a sealing layer having a small thickness, and more particularly to a sealing material suitable for a miniaturized and thinned piezoelectric vibrator package and the like.
  • a piezoelectric vibrator represented by a semiconductor element, a crystal vibrator, and a surface acoustic wave element has a plurality of metallized wiring layers made of a high melting point metal such as tungsten or molybdenum, and has a
  • the piezoelectric vibrator is housed in a package including a base made of an alumina insulator having a concave portion for housing a piezoelectric vibrator and a lid made of the alumina insulator (for example, see Patent Document 1).
  • one end of the piezoelectric vibrator is fixed to a base with a conductive resin such as a conductive epoxy resin, and each electrode of the piezoelectric vibrator is electrically connected to a metallized wiring layer.
  • the base and the lid are sealed with a sealing material containing glass powder and refractory filler powder to hermetically store the piezoelectric vibrator in the package.
  • the present invention provides a sealing material containing a glass powder and a refractory filler powder, in which even if a sealing layer having a small thickness is formed, undesired stress does not easily remain in the sealing layer or the object to be sealed.
  • the purpose is to provide the material.
  • the present inventors as a result of earnest effort, regulate the content of the glass powder and the refractory filler powder within a predetermined range, and regulate the particle size of the refractory filler powder within a predetermined range, thereby solving the above technical problem.
  • the present invention has been found to be able to be solved, and is proposed as the present invention.
  • the sealing material of the present invention is (1) a sealing material for forming a sealing layer having a thickness of 50 ⁇ m or less (sealing thickness of 50 ⁇ m or less); %, Containing 50 to 99% of glass powder and 1 to 50% of refractory filler powder, (3) the refractory filler powder is substantially spherical, and (4) 90% particle diameter D 90 of the refractory filler powder.
  • the thickness is 1 to 20 ⁇ m.
  • the “thickness of the sealing layer” refers to the thickness after firing, that is, after the sealing step.
  • 90% particle diameter D 90 refers to a value measured by a laser diffraction method, and refers to a particle diameter (volume) with an integrated particle diameter of 90%.
  • the sealing material of the present invention is a sealing material for forming a sealing layer having a thickness of 50 ⁇ m or less. If the thickness of the sealing layer is reduced, the size and thickness of the piezoelectric vibrator package can be easily reduced. If the thickness of the sealing layer is 50 ⁇ m or less, the stress remaining on the sealing layer and the object to be sealed can be reduced, and the reliability of the piezoelectric vibrator package and the like can be improved.
  • the sealing material of the present invention regulates the content of the refractory filler powder to 1 to 50% by volume. By doing so, it is possible to reduce the thermal expansion coefficient of the sealing material so as to match the thermal expansion coefficient of the sealed object.
  • the sealing material of the present invention regulates the refractory filler powder into a substantially spherical shape. This makes it easier to suppress a decrease in the fluidity of the sealing material due to the refractory filler.
  • the 90% particle diameter D 90 of the refractory filler powder is regulated to 1 to 20 ⁇ m. If the 90% particle diameter D 90 of the refractory filler powder is regulated to 20 ⁇ m or less, the probability of occurrence of surface projections on the sealing layer can be reduced, and as a result, the hermeticity in the package is impaired due to mechanical shock. Can be prevented. In addition, when the thermal expansion coefficient of the refractory filler powder is low, if the 90% particle diameter D 90 of the refractory filler powder is regulated to 20 ⁇ m or less, micro cracks are less likely to be generated on the surface of the sealing layer, and mechanical impact is reduced.
  • the 90% particle diameter D 90 of the refractory filler powder is regulated to 1 ⁇ m or more, the effect provided by the refractory filler powder, for example, the effect of lowering the coefficient of thermal expansion and the effect of improving the mechanical strength of the sealing layer. Etc. can be easily enjoyed.
  • the glass powder contains 10 to 60% of TeO 2 and 10 to 60% of MoO 3 in mol%, and does not substantially contain PbO.
  • the glass powder preferably contains 5 to 50% of Ag 2 O + CuO + WO 3 in mol%.
  • Ag 2 O + CuO + WO 3 means the total amount of Ag 2 O, CuO, and WO 3 .
  • the sealing layer of the present invention is (1) a sealing layer having a thickness of 50 ⁇ m or less, and (2) a sealing layer comprising 50 to 99% by volume of glass powder and 1 to 50% by volume of a refractory filler powder. (3) the refractory filler powder has a substantially spherical shape, (4) the 90% particle diameter D 90 of the refractory filler powder is 1 to 20 ⁇ m, and (5) the 90% particle diameter of the refractory filler powder. D 90 is smaller than the thickness of the sealing layer.
  • a sealing material containing a glass powder and a refractory filler powder even when a sealing layer having a small thickness is formed, undesired stress is unlikely to remain in the sealing layer or the object to be sealed. Material can be provided.
  • the sealing material of the present invention is for forming a sealing layer having a thickness of 50 ⁇ m or less, and the thickness of the sealing layer is 40 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, 24 ⁇ m or less, and particularly 23 ⁇ m or less. Is preferred. If the thickness of the sealing layer is too large, it is difficult to reduce the size and thickness of the piezoelectric vibrator package. Further, the stress remaining in the sealing layer and the object to be sealed tends to increase, and the reliability of the piezoelectric vibrator package and the like tends to decrease.
  • the lower limit of the thickness of the sealing layer is not particularly limited, but is actually more than 1 ⁇ m.
  • the mixing ratio of the glass powder and the refractory filler powder is, by volume%, glass powder 50 to 99%, refractory filler powder 1 to 50%, glass powder 50 to 85%, fire resistance It is preferable that the conductive filler powder is 15 to 50%, particularly the glass powder is 55 to 75%, and the refractory filler powder is 25 to 45%. If the content of the refractory filler powder is too small, undue stress tends to remain in the sealing layer and the sealed object, and in some cases, cracks occur in the sealing layer and the sealed object, and the piezoelectric vibrator package And the like may cause poor airtightness.
  • the content of the refractory filler powder is too large, the content of the glass powder is relatively small, so that it is difficult to form a dense sealing layer, and the fluidity of the sealing material tends to decrease, As a result, the sealing strength between members tends to decrease.
  • the coefficient of thermal expansion is 20 ⁇ 10 ⁇ 7 / ° C. to 180 ⁇ 10 ⁇ 7 / ° C., 30 ⁇ 10 ⁇ 7 / ° C. to 160 ⁇ 10 ⁇ 7 / ° C., particularly 40 ⁇ 10 ⁇ 7. / ° C. to 140 ⁇ 10 ⁇ 7 / ° C.
  • the coefficient of thermal expansion of the sealing material is too low or too high, undesired stress may remain in the sealing layer or the object to be sealed, resulting in poor airtightness due to mechanical shock. Cracks may occur in the adhered layer and the sealed object, and poor sealing may occur in the piezoelectric vibrator package and the like.
  • the "thermal expansion coefficient” refers to a value measured by a push-rod type thermal expansion coefficient measurement (TMA) device, and the measurement temperature range is 30 to 150 ° C.
  • the softening point is preferably 400 ° C or lower, 390 ° C or lower, 380 ° C or lower, particularly preferably 370 ° C or lower. If the softening point is too high, the viscosity of the glass increases, so that the sealing temperature rises and the element may be deteriorated during sealing.
  • the lower limit of the softening point is not particularly limited, but is actually 180 ° C. or higher.
  • the “softening point” refers to a value measured by a macro-type differential thermal analyzer using a glass composition and a sealing material having an average particle diameter D 50 of 0.5 to 20 ⁇ m as a measurement sample. As measurement conditions, the measurement is started from room temperature, and the heating rate is 10 ° C./min.
  • the softening point measured by the macro-type differential thermal analyzer indicates the temperature (Ts) at the fourth inflection point in the measurement curve shown in FIG.
  • the bending strength is preferably 40 MPa or more, 45 MPa or more, particularly preferably 50 MPa or more.
  • the "bending strength" is determined by a three-point load measurement method in accordance with JIS R1601, using a sealing material that is densely sintered and then processed into a 3 ⁇ 4 ⁇ 40 mm prism. The measurement is performed 20 times, and the average value is calculated. If the transverse rupture strength is too low, the sealing layer is easily broken by cracks or the like, and the reliability, particularly airtightness, of the piezoelectric vibrator package or the like is liable to deteriorate.
  • the upper limit of the transverse rupture strength is not particularly limited, but is practically 200 MPa or less.
  • the refractory filler is substantially spherical. In this case, a decrease in the fluidity of the sealing material due to the refractory filler is easily suppressed, and as a result, the sealing strength between the members is easily increased. Note that the closer to a true sphere, the more easily the above-mentioned effects can be obtained.
  • the 90% particle size D 90 is 1 to 20 ⁇ m, preferably 1 to 15 ⁇ m, 1 to 13 ⁇ m, 2 to 12 ⁇ m, and particularly preferably 3 to 11 ⁇ m. If the 90% particle diameter D 90 of the refractory filler powder is too small, the effect of lowering the coefficient of thermal expansion is poor, and the refractory filler powder is easily melted into the glass in the heat treatment step. Fluidity and devitrification resistance tend to decrease.
  • the 90% particle diameter D 90 is smaller than the thickness of the sealing layer, preferably smaller than the thickness of the sealing layer by 5 ⁇ m or more, and particularly preferably smaller than the thickness of the sealing layer by 7 ⁇ m or more.
  • the 90% particle diameter D 90 of the refractory filler powder is greater than the thickness of the sealing layer, surface projections are likely to be formed on the sealing layer, and undue stress tends to remain near the surface projections of the sealing layer. In addition, cracks easily occur in the sealed object that comes into contact with the surface protrusions.
  • the refractory filler powder is not particularly limited, and various materials can be selected, but those which hardly react with the above glass powder are preferable.
  • the glass powder is not particularly limited as long as it has low softening characteristics.
  • the glass powder preferably contains 10 to 60% of TeO 2 and 10 to 60% of MoO 3 in mol%. The reason for limiting the glass composition range in this manner will be described below.
  • TeO 2 is a component that forms a glass network and improves weather resistance.
  • the content of TeO 2 is 10 to 60%, preferably 15 to 57%, particularly preferably 25 to 55%. If the content of TeO 2 is too small, the glass becomes thermally unstable, the glass tends to be devitrified at the time of melting or firing, and the weather resistance tends to decrease. On the other hand, if the content of TeO 2 is too large, the viscosity (softening point, etc.) of the glass becomes high, and low-temperature sealing becomes difficult, and the glass becomes thermally unstable. Devitrification easily occurs. Further, the thermal expansion coefficient of glass tends to be too high.
  • MoO 3 is a component that forms a glass network and improves weather resistance.
  • the content of MoO 3 is 10 to 60%, preferably 15 to 55%, particularly preferably 20 to 50%. If the content of MoO 3 is too small, the glass becomes thermally unstable, the glass tends to be devitrified at the time of melting or firing, and the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing becomes difficult. It becomes difficult. On the other hand, if the content of MoO 3 is too large, the glass becomes thermally unstable, the glass tends to be devitrified during melting or firing, and the coefficient of thermal expansion of the glass tends to be too high.
  • the glass powder may contain the following components in the glass composition.
  • Ag 2 O, CuO, and WO 3 are components that lower the viscosity (softening point and the like) of glass.
  • Ag 2 O + CuO + WO 3 (the total amount of Ag 2 O, CuO and WO 3 ) is preferably 5 to 50%, 6 to 48%, particularly preferably 7 to 46%. If the total amount of Ag 2 O, CuO, and WO 3 is too small, the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing tends to be difficult. On the other hand, if the total amount of Ag 2 O, CuO, and WO 3 is too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
  • the content of Ag 2 O is preferably 0 to 40%, 0 to 35%, particularly preferably 0.1 to 30%.
  • the content of CuO is preferably 0 to 40%, 0 to 35%, particularly preferably 0.1 to 30%.
  • the content of WO 3 is preferably 0 to 30%, 0 to 25%, particularly preferably 0 to 20%.
  • Bi 2 O 3 is a component that lowers the viscosity (softening point and the like) of the glass and lowers the coefficient of thermal expansion of the glass.
  • the content of Bi 2 O 3 is preferably 0 to 10%, 0 to 6%, particularly preferably 0 to 2%. If the content of Bi 2 O 3 is too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
  • TiO 2 is a component that stabilizes the glass thermally and reduces the coefficient of thermal expansion of the glass.
  • the content of TiO 2 is preferably 0 to 10%, 0 to 6%, particularly preferably 0 to 2%. If the content of TiO 2 is too large, the viscosity (softening point and the like) of the glass increases, and low-temperature sealing tends to be difficult.
  • AgI is a component that lowers the viscosity (softening point, etc.) of glass.
  • the content of AgI is preferably 0 to 10%, 0 to 5%, particularly preferably 0 to 2%. If the content of AgI is too large, the thermal expansion coefficient of the glass tends to be too high.
  • P 2 O 5 is a component that forms a glass network and thermally stabilizes the glass.
  • the content of P 2 O 5 is preferably 0 to 5%, 0 to 2%, particularly preferably 0 to 1%. If the content of P 2 O 5 is too large, the viscosity (softening point and the like) of the glass becomes high, so that low-temperature sealing becomes difficult and the weather resistance tends to decrease.
  • Li 2 O, Na 2 O, and K 2 O have an effect of lowering the viscosity (softening point, etc.) of glass, and their contents are 0 to 10%, 0 to 5%, particularly 0 to Preferably it is 2%. If the total amount of Li 2 O, Na 2 O, and K 2 O is too large, the glass becomes thermally unstable, the glass tends to be devitrified at the time of melting or firing, and the weather resistance tends to decrease. Become.
  • the contents of Li 2 O, Na 2 O, and K 2 O are each preferably 0 to 10%, particularly preferably 0 to 5%.
  • MgO, CaO, SrO, and BaO have the effect of thermally stabilizing the glass and improving the weather resistance, and their contents are 0 to 20%, particularly 0 to 10% in total. Is preferred. If the total amount of MgO, CaO, SrO, and BaO is too large, the glass becomes thermally unstable and the glass tends to devitrify during melting or firing.
  • the contents of MgO, CaO, SrO, and BaO are each preferably 0 to 10%, particularly preferably 0 to 5%.
  • ZnO is a component that lowers the viscosity (softening point and the like) of glass and improves weather resistance.
  • the content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of ZnO is too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
  • Nb 2 O 5 is a component that stabilizes glass thermally and improves weather resistance.
  • the content of Nb 2 O 5 is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of Nb 2 O 5 is too large, the viscosity (softening point and the like) of the glass increases, and low-temperature sealing tends to be difficult.
  • V 2 O 5 is a component that forms a glass network and reduces the viscosity (softening point and the like) of the glass.
  • the content of V 2 O 5 is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of V 2 O 5 is too large, the glass becomes thermally unstable, the glass tends to be devitrified during melting or firing, and the weather resistance tends to decrease.
  • Ga 2 O 3 is a component that stabilizes the glass thermally and improves the weather resistance. However, since it is very expensive, its content is preferably less than 0.01%, particularly preferably not contained. .
  • SiO 2 , Al 2 O 3 , GeO 2 , Fe 2 O 3 , NiO, CeO 2 , B 2 O 3 , Sb 2 O 3 , and ZrO 2 are components that thermally stabilize glass and suppress devitrification. And each can be added to less than 2%. If these contents are too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
  • the glass powder does not substantially contain PbO for environmental reasons.
  • substantially does not contain PbO in the present invention refers to a case where the content of PbO in the glass composition is 1000 ppm or less.
  • the raw material powder prepared to have the above composition is melted at 800 to 1000 ° C. for 1 to 2 hours until a homogeneous glass is obtained.
  • the molten glass is formed into a film or the like, and then pulverized and classified to produce a glass powder.
  • the average particle diameter D 50 of the glass powder is about 2 ⁇ 20 [mu] m.
  • a vehicle is added to the sealing material and kneaded to prepare a sealing material paste.
  • the vehicle mainly comprises an organic solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste. Further, if necessary, a surfactant, a thickener and the like can be added.
  • the organic solvent preferably has a low boiling point (for example, a boiling point of 300 ° C. or lower), has a small residue after firing, and does not deteriorate the glass. Its content is preferably 10 to 40% by mass. preferable.
  • the organic solvent include propylene carbonate, toluene, N, N'-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, It is preferable to use dimethyl sulfoxide, acetone, methyl ethyl ketone and the like. Further, it is more preferable to use a higher alcohol as the organic solvent.
  • the higher alcohol itself has viscosity, it can be made into a paste without adding a resin to the vehicle.
  • pentanediol and its derivatives specifically, diethylpentanediol (C 9 H 20 O 2 ) can be used as a solvent because of its excellent viscosity.
  • the resin preferably has a low decomposition temperature and a small amount of residue after firing, and furthermore, hardly deteriorates the glass, and its content is preferably 0.1 to 20% by mass.
  • the resin it is preferable to use nitrocellulose, a polyethylene glycol derivative, polyethylene carbonate, an acrylate (acrylic resin), or the like.
  • the sealing layer thus formed between the two members has a thickness of 50 ⁇ m or less, contains 50 to 99% by volume of glass powder and 1 to 50% of refractory filler powder, and the refractory filler powder is substantially spherical.
  • the 90% particle diameter D 90 of the refractory filler powder is 1 to 20 ⁇ m, and the 90% particle diameter D 90 of the refractory filler powder is smaller than the thickness of the sealing layer.
  • Tables 1 to 3 show Examples (Samples Nos. 1 to 12) and Comparative Examples (Samples Nos. 13 to 15) of the present invention.
  • glass raw materials such as various oxides and carbonates are prepared so as to have the glass compositions shown in the table, and a glass batch is prepared. Melted for 2 hours. Next, it was formed into a film by a water-cooled roller. Finally, the glass in the form of a film was pulverized by a ball mill and then passed through a sieve having an opening of 75 ⁇ m to obtain a glass powder having an average particle diameter D 50 of about 10 ⁇ m.
  • the refractory filler powder shown in the table was used as the refractory filler powder.
  • Each refractory filler powder was prepared so as to have the particle diameter and shape shown in the table.
  • ZWP is Zr 2 WO 4 (PO 4 ) 2
  • NZP is NbZr (PO 4 ) 3 .
  • the particle diameters of the glass powder and the refractory filler powder were measured by a laser diffraction method.
  • the coefficient of thermal expansion was determined with a TMA device.
  • the measurement temperature range was 30 to 150 ° C.
  • the softening point was measured with a DTA device. The measurement was carried out in the atmosphere at a heating rate of 10 ° C./min, and the measurement was started from room temperature.
  • the transverse rupture strength was determined by a three-point load measurement method in accordance with JIS R1601, using each sample densely sintered and then processed into a 3 ⁇ 4 ⁇ 40 mm prism as a measurement sample. In addition, each measurement was performed 20 times, and the average value was calculated.
  • Fluidity was evaluated as follows. After 5 g of the powder sample was put into a mold having a diameter of 20 mm and press-molded, it was baked on a glass substrate at 450 ° C. for 30 minutes. Those having a flow diameter of 19 mm or more were evaluated as “ ⁇ ”, and those having a flow diameter of less than 19 mm were evaluated as “ ⁇ ”.
  • a sealing layer was produced as follows. First, an alumina substrate of ⁇ 25 mm and a thickness of 5 mm was prepared, each sample was mixed with a vehicle ( ⁇ -terpineol containing an acrylic resin), and a paste was applied to the entire surface of the substrate (only one surface). The application conditions and the vehicle composition were adjusted so that a sealing layer having the thickness shown in the table was obtained after the heat treatment. Next, the coating film was dried at 130 ° C. for 10 minutes to evaporate and remove the solvent in the vehicle, and then heat-treated at 450 ° C. for 30 minutes to obtain a sealing layer shown in the table.
  • a vehicle ⁇ -terpineol containing an acrylic resin
  • the surface protrusions of the sealing layer were measured with a surface roughness meter on the surface of the sealing layer obtained by the above method, and those having no protrusions of 10 ⁇ m or more were rated “ ⁇ ” and those having protrusions of 10 ⁇ m or more. Was evaluated as "x”.
  • No. 1 was an example of the present invention.
  • the samples of Nos. 1 to 12 were able to form a sealing layer having a thickness of 25 ⁇ m or less after heat treatment, and further, no surface protrusion was observed in the sealing layer.
  • Comparative Example No. The sample No. 13 was inferior in fluidity because the content of the refractory filler powder was too large. No. In the sample No. 14, the 90% particle diameter D90 of the refractory filler powder was large, so that the evaluation of the surface protrusion was poor. No. Sample No. 15 was inferior in fluidity because the refractory filler powder was crushed.
  • the sealing material of the present invention is suitable for sealing semiconductor integrated circuits, quartz oscillators, flat panel displays, and glass terminals for LDs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Provided is a sealing material which comprises a glass powder and a fire-resistant filler powder and has such a property that, when formed into a sealing layer having a small thickness, an undesirable stress rarely remains in the sealing layer and an object to be sealed. A sealing material characterized in that (1) the sealing material can be used for the formation of a sealing layer having a thickness of 50 μm or less, (2) the sealing material contains, in vol%, 50 to 99% of a glass powder and 1 to 50% of a fire-resistant filler powder, (3) each particle in the fire-resistant filler powder has an approximately spherical form, and (4) the fire-resistant filler powder has a 90% particle diameter D90 of 1 to 20 μm.

Description

封着材料Sealing material
 本発明は、厚みが小さい封着層を形成するための封着材料に関し、特に小型化・薄型化された圧電振動子パッケージ等に好適な封着材料に関する。 The present invention relates to a sealing material for forming a sealing layer having a small thickness, and more particularly to a sealing material suitable for a miniaturized and thinned piezoelectric vibrator package and the like.
 一般的に、半導体素子、水晶振動子、弾性表面波素子に代表される圧電振動子は、タングステンやモリブデン等の高融点金属で構成される複数個のメタライズ配線層を有し、且つ中央部に圧電振動子を収容するための凹部を有するアルミナ絶縁体からなる基体と、アルミナ絶縁体からなる蓋体で構成されるパッケージ内に収容されている(例えば、特許文献1参照)。 In general, a piezoelectric vibrator represented by a semiconductor element, a crystal vibrator, and a surface acoustic wave element has a plurality of metallized wiring layers made of a high melting point metal such as tungsten or molybdenum, and has a The piezoelectric vibrator is housed in a package including a base made of an alumina insulator having a concave portion for housing a piezoelectric vibrator and a lid made of the alumina insulator (for example, see Patent Document 1).
 パッケージ内において、圧電振動子の一端は、導電性エポキシ樹脂等の導電性樹脂により基体に固定されるとともに、圧電振動子の各電極は、メタライズ配線層に電気的に接続されている。そして、基体と蓋体は、パッケージ内に圧電振動子を気密に収納するために、ガラス粉末と耐火性フィラー粉末を含有する封着材料により封着されている。 一端 In the package, one end of the piezoelectric vibrator is fixed to a base with a conductive resin such as a conductive epoxy resin, and each electrode of the piezoelectric vibrator is electrically connected to a metallized wiring layer. The base and the lid are sealed with a sealing material containing glass powder and refractory filler powder to hermetically store the piezoelectric vibrator in the package.
特開2006-261684号公報JP 2006-261684 A
 近年、携帯電子機器の普及に伴って、圧電振動子パッケージ等の小型化・薄型化の要求が高まっている。圧電振動子パッケージ等を小型化・薄型化するためには、基体と蓋体を小型化・薄型化する必要があり、封着材料で形成される封着層の厚みを小さくする必要がある。 In recent years, with the spread of portable electronic devices, demands for smaller and thinner piezoelectric vibrator packages and the like have been increasing. In order to reduce the size and thickness of the piezoelectric vibrator package and the like, it is necessary to reduce the size and thickness of the base and the lid, and it is necessary to reduce the thickness of a sealing layer formed of a sealing material.
 従来の封着材料を用いて、厚みの小さい封着層を基体に形成すると、封着層の表面に耐火性フィラー粉末の一部が露出し、封着層に表面突起が形成される。封着層に表面突起が形成されると、封着層の表面突起の近傍に不当な応力が残留するとともに、表面突起に当接される蓋体に不当な応力が残留し、その結果、機械的衝撃により、封着層や蓋体にクラックが生じやすくなり、パッケージ内の気密性が損なわれるおそれがある。 (4) When a thin sealing layer is formed on a substrate using a conventional sealing material, part of the refractory filler powder is exposed on the surface of the sealing layer, and surface projections are formed on the sealing layer. When surface projections are formed on the sealing layer, undue stress remains in the vicinity of the surface projections of the sealing layer, and undue stress remains on the lid contacting the surface projections. Cracks tend to occur in the sealing layer and the lid due to a mechanical impact, and the airtightness in the package may be impaired.
 また、耐火性フィラー粉末を含有せず、ガラス粉末のみで構成される封着材料を用いると、封着層に表面突起は生じにくい。しかし、ガラス粉末のみで構成される封着材料は、熱膨張係数が高くなるため、基体と蓋体の熱膨張係数に整合させることが困難になり、このような場合、基体、蓋体および封着層に不当な応力が残留し、機械的衝撃により、基体、蓋体および封着層にクラックが生じやすくなり、結局のところ、パッケージ内の気密性が損なわれるおそれがある。 In addition, when a sealing material that does not contain a refractory filler powder and is made of only a glass powder is used, surface projections are less likely to be formed on the sealing layer. However, since the sealing material composed only of glass powder has a high coefficient of thermal expansion, it is difficult to match the coefficient of thermal expansion between the base and the lid. In such a case, the base, the lid and the sealing Inappropriate stress remains in the adhesion layer, and cracks are likely to occur in the base, the lid, and the sealing layer due to mechanical impact, and eventually, the airtightness in the package may be impaired.
 そこで、本発明は、ガラス粉末と耐火性フィラー粉末を含有する封着材料において、厚みが小さい封着層を形成しても、封着層や被封着物に不当な応力が残留し難い封着材料を提供することを目的とする。 Therefore, the present invention provides a sealing material containing a glass powder and a refractory filler powder, in which even if a sealing layer having a small thickness is formed, undesired stress does not easily remain in the sealing layer or the object to be sealed. The purpose is to provide the material.
 本発明者等は、鋭意努力の結果、ガラス粉末と耐火性フィラー粉末の含有量を所定範囲に規制するとともに、耐火性フィラー粉末の粒子径を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の封着材料は、(1)厚みが50μm以下の封着層(50μm以下の封着厚み)を形成するための封着材料であって、(2)封着材料が、体積%で、ガラス粉末 50~99%、耐火性フィラー粉末 1~50%を含有し、(3)耐火性フィラー粉末が略球状であり、(4)耐火性フィラー粉末の90%粒子径D90が1~20μmであることを特徴とする。ここで、「封着層の厚み」とは、焼成後、つまり封着工程後の厚みを指す。ここで、「90%粒子径D90」とは、レーザー回折法で測定した値を指し、積算粒子径が90%の粒子径(体積)を指す。 The present inventors, as a result of earnest effort, regulate the content of the glass powder and the refractory filler powder within a predetermined range, and regulate the particle size of the refractory filler powder within a predetermined range, thereby solving the above technical problem. The present invention has been found to be able to be solved, and is proposed as the present invention. That is, the sealing material of the present invention is (1) a sealing material for forming a sealing layer having a thickness of 50 μm or less (sealing thickness of 50 μm or less); %, Containing 50 to 99% of glass powder and 1 to 50% of refractory filler powder, (3) the refractory filler powder is substantially spherical, and (4) 90% particle diameter D 90 of the refractory filler powder. The thickness is 1 to 20 μm. Here, the “thickness of the sealing layer” refers to the thickness after firing, that is, after the sealing step. Here, “90% particle diameter D 90 ” refers to a value measured by a laser diffraction method, and refers to a particle diameter (volume) with an integrated particle diameter of 90%.
 本発明の封着材料は、厚みが50μm以下の封着層を形成するための封着材料である。封着層の厚みを小さくすれば、圧電振動子パッケージの小型化・薄型化を達成しやすくなる。また、封着層の厚みを50μm以下にすれば、封着層や被封着物に残留する応力を緩和することができ、圧電振動子パッケージ等の信頼性を高めることもできる。 封 The sealing material of the present invention is a sealing material for forming a sealing layer having a thickness of 50 μm or less. If the thickness of the sealing layer is reduced, the size and thickness of the piezoelectric vibrator package can be easily reduced. If the thickness of the sealing layer is 50 μm or less, the stress remaining on the sealing layer and the object to be sealed can be reduced, and the reliability of the piezoelectric vibrator package and the like can be improved.
 本発明の封着材料は、耐火性フィラー粉末の含有量を1~50体積%に規制している。このようにすれば、被封着物の熱膨張係数に整合するように、封着材料の熱膨張係数を低下させることが可能である。 封 The sealing material of the present invention regulates the content of the refractory filler powder to 1 to 50% by volume. By doing so, it is possible to reduce the thermal expansion coefficient of the sealing material so as to match the thermal expansion coefficient of the sealed object.
 本発明の封着材料は、耐火性フィラー粉末を略球状に規制している。このようにすれば、耐火性フィラーによる封着材料の流動性の低下を抑制しやすくなる。 封 The sealing material of the present invention regulates the refractory filler powder into a substantially spherical shape. This makes it easier to suppress a decrease in the fluidity of the sealing material due to the refractory filler.
 本発明の封着材料は、耐火性フィラー粉末の90%粒子径D90を1~20μmに規制している。耐火性フィラー粉末の90%粒子径D90を20μm以下に規制すれば、封着層に表面突起が生じる確率を低下させることができ、その結果、機械的衝撃により、パッケージ内の気密性が損なわれる事態を防止することができる。また、耐火性フィラー粉末の熱膨張係数が低い場合、耐火性フィラー粉末の90%粒子径D90を20μm以下に規制すれば、封着層の表面にマイクロクラックが発生し難くなり、機械的衝撃により、パッケージ内の気密性が損なわれる事態を更に防止することができる。一方、耐火性フィラー粉末の90%粒子径D90を1μm以上に規制すれば、耐火性フィラー粉末がもたらす効果、例えば、熱膨張係数を低下させる効果、封着層の機械的強度を向上させる効果等を享受しやすくなる。 In the sealing material of the present invention, the 90% particle diameter D 90 of the refractory filler powder is regulated to 1 to 20 μm. If the 90% particle diameter D 90 of the refractory filler powder is regulated to 20 μm or less, the probability of occurrence of surface projections on the sealing layer can be reduced, and as a result, the hermeticity in the package is impaired due to mechanical shock. Can be prevented. In addition, when the thermal expansion coefficient of the refractory filler powder is low, if the 90% particle diameter D 90 of the refractory filler powder is regulated to 20 μm or less, micro cracks are less likely to be generated on the surface of the sealing layer, and mechanical impact is reduced. Thereby, it is possible to further prevent a situation in which the airtightness in the package is impaired. On the other hand, if the 90% particle diameter D 90 of the refractory filler powder is regulated to 1 μm or more, the effect provided by the refractory filler powder, for example, the effect of lowering the coefficient of thermal expansion and the effect of improving the mechanical strength of the sealing layer. Etc. can be easily enjoyed.
 本発明の封着材料は、ガラス粉末が、モル%で、TeO 10~60%、MoO 10~60%を含有し、実質的にPbOを含有しないことが好ましい。 In the sealing material of the present invention, it is preferable that the glass powder contains 10 to 60% of TeO 2 and 10 to 60% of MoO 3 in mol%, and does not substantially contain PbO.
 本発明の封着材料は、ガラス粉末が、モル%で、AgO+CuO+WO 5~50%を含有することが好ましい。ここで、「AgO+CuO+WO」とは、AgO、CuO、及びWOの合量を意味する。 In the sealing material of the present invention, the glass powder preferably contains 5 to 50% of Ag 2 O + CuO + WO 3 in mol%. Here, “Ag 2 O + CuO + WO 3 ” means the total amount of Ag 2 O, CuO, and WO 3 .
 本発明の封着層は(1)厚みが50μm以下である封着層であって、(2)封着層が、体積%でガラス粉末を50~99%、耐火性フィラー粉末を1~50%含有し、(3)耐火性フィラー粉末が略球状であり、(4)耐火性フィラー粉末の90%粒子径D90が1~20μmであり、(5)耐火性フィラー粉末の90%粒子径D90が封着層の厚みより小さいことを特徴とする。 The sealing layer of the present invention is (1) a sealing layer having a thickness of 50 μm or less, and (2) a sealing layer comprising 50 to 99% by volume of glass powder and 1 to 50% by volume of a refractory filler powder. (3) the refractory filler powder has a substantially spherical shape, (4) the 90% particle diameter D 90 of the refractory filler powder is 1 to 20 μm, and (5) the 90% particle diameter of the refractory filler powder. D 90 is smaller than the thickness of the sealing layer.
 本発明によれば、ガラス粉末と耐火性フィラー粉末を含有する封着材料において、厚みが小さい封着層を形成しても、封着層や被封着物に不当な応力が残留し難い封着材料を提供することができる。 According to the present invention, in a sealing material containing a glass powder and a refractory filler powder, even when a sealing layer having a small thickness is formed, undesired stress is unlikely to remain in the sealing layer or the object to be sealed. Material can be provided.
マクロ型示差熱分析装置により得られる測定曲線を示す模式図である。It is a schematic diagram which shows the measurement curve obtained by a macro type differential thermal analyzer.
 まず、本発明の封着材料について説明する。 First, the sealing material of the present invention will be described.
 本発明の封着材料は、厚みが50μm以下の封着層を形成するためのものであり、封着層の厚みは、40μm以下、30μm以下、25μm以下、24μm以下、特に23μm以下であることが好ましい。封着層の厚みが大きすぎると、圧電振動子パッケージの小型化・薄型化を達成しにくくなる。また、封着層や被封着物に残留する応力が大きくなり易く、圧電振動子パッケージ等の信頼性が低下しやすくなる。なお、封着層の厚みの下限は特に限定されないが、現実的には1μm超である。 The sealing material of the present invention is for forming a sealing layer having a thickness of 50 μm or less, and the thickness of the sealing layer is 40 μm or less, 30 μm or less, 25 μm or less, 24 μm or less, and particularly 23 μm or less. Is preferred. If the thickness of the sealing layer is too large, it is difficult to reduce the size and thickness of the piezoelectric vibrator package. Further, the stress remaining in the sealing layer and the object to be sealed tends to increase, and the reliability of the piezoelectric vibrator package and the like tends to decrease. The lower limit of the thickness of the sealing layer is not particularly limited, but is actually more than 1 μm.
 本発明の封着材料において、ガラス粉末と耐火性フィラー粉末の混合割合は、体積%で、ガラス粉末 50~99%、耐火性フィラー粉末 1~50%であり、ガラス粉末 50~85%、耐火性フィラー粉末 15~50%、特にガラス粉末 55~75%、耐火性フィラー粉末 25~45%であることが好ましい。耐火性フィラー粉末の含有量が少なすぎると、封着層や被封着物に不当な応力が残留しやすくなり、場合によっては、封着層や被封着物にクラックが発生し、圧電振動子パッケージ等に気密不良等が発生するおそれがある。一方、耐火性フィラー粉末の含有量が多すぎると、相対的にガラス粉末の含有量が少なくなるため、緻密な封着層を形成し難くなるとともに、封着材料の流動性が低下しやすく、その結果、部材同士の封着強度が低下しやすくなる。 In the sealing material of the present invention, the mixing ratio of the glass powder and the refractory filler powder is, by volume%, glass powder 50 to 99%, refractory filler powder 1 to 50%, glass powder 50 to 85%, fire resistance It is preferable that the conductive filler powder is 15 to 50%, particularly the glass powder is 55 to 75%, and the refractory filler powder is 25 to 45%. If the content of the refractory filler powder is too small, undue stress tends to remain in the sealing layer and the sealed object, and in some cases, cracks occur in the sealing layer and the sealed object, and the piezoelectric vibrator package And the like may cause poor airtightness. On the other hand, if the content of the refractory filler powder is too large, the content of the glass powder is relatively small, so that it is difficult to form a dense sealing layer, and the fluidity of the sealing material tends to decrease, As a result, the sealing strength between members tends to decrease.
 本発明の封着材料において、熱膨張係数は20×10-7/℃~180×10-7/℃、30×10-7/℃~160×10-7/℃、特に40×10-7/℃~140×10-7/℃であることが好ましい。封着材料の熱膨張係数が低すぎても高すぎても、封着層や被封着物に不当な応力が残留し、機械的衝撃により気密不良が発生するおそれがあり、場合によっては、封着層や被封着物にクラックが発生し、圧電振動子パッケージ等に気密不良等が発生するおそれがある。ここで、「熱膨張係数」とは、押棒式熱膨張係数測定(TMA)装置で測定した値を指し、測定温度範囲は30~150℃である。 In the sealing material of the present invention, the coefficient of thermal expansion is 20 × 10 −7 / ° C. to 180 × 10 −7 / ° C., 30 × 10 −7 / ° C. to 160 × 10 −7 / ° C., particularly 40 × 10 −7. / ° C. to 140 × 10 −7 / ° C. If the coefficient of thermal expansion of the sealing material is too low or too high, undesired stress may remain in the sealing layer or the object to be sealed, resulting in poor airtightness due to mechanical shock. Cracks may occur in the adhered layer and the sealed object, and poor sealing may occur in the piezoelectric vibrator package and the like. Here, the "thermal expansion coefficient" refers to a value measured by a push-rod type thermal expansion coefficient measurement (TMA) device, and the measurement temperature range is 30 to 150 ° C.
 本発明の封着材料において、軟化点は400℃以下、390℃以下、380℃以下、特に370℃以下であることが好ましい。軟化点が高すぎると、ガラスの粘性が高くなるため、封着温度が上昇して、封着時に素子を劣化させるおそれがある。なお、軟化点の下限は特に限定されないが、現実的には180℃以上である。ここで、「軟化点」とは、平均粒子径D50が0.5~20μmのガラス組成物及び封着材料を測定試料として、マクロ型示差熱分析装置で測定した値を指す。測定条件としては、室温から測定を開始し、昇温速度は10℃/分とする。なお、マクロ型示差熱分析装置で測定した軟化点は、図1に示す測定曲線における第四屈曲点の温度(Ts)を指す。 In the sealing material of the present invention, the softening point is preferably 400 ° C or lower, 390 ° C or lower, 380 ° C or lower, particularly preferably 370 ° C or lower. If the softening point is too high, the viscosity of the glass increases, so that the sealing temperature rises and the element may be deteriorated during sealing. The lower limit of the softening point is not particularly limited, but is actually 180 ° C. or higher. Here, the “softening point” refers to a value measured by a macro-type differential thermal analyzer using a glass composition and a sealing material having an average particle diameter D 50 of 0.5 to 20 μm as a measurement sample. As measurement conditions, the measurement is started from room temperature, and the heating rate is 10 ° C./min. The softening point measured by the macro-type differential thermal analyzer indicates the temperature (Ts) at the fourth inflection point in the measurement curve shown in FIG.
 本発明の封着材料において、抗折強度は40MPa以上、45MPa以上、特に50MPa以上であることが好ましい。ここで、「抗折強度」は、封着材料を緻密に焼結させた後、3×4×40mmの角柱に加工したものを測定試料として、JIS R1601に準拠した三点荷重測定法で求めた値を指し、測定は各20回行い、その平均値を算出する。抗折強度が小さすぎると、封着層がクラック等により破壊しやすく、圧電振動子パッケージ等の信頼性、特に気密性が悪化しやすくなる。なお、抗折強度の上限は特に限定されないが、現実的には200MPa以下である。 に お い て In the sealing material of the present invention, the bending strength is preferably 40 MPa or more, 45 MPa or more, particularly preferably 50 MPa or more. Here, the "bending strength" is determined by a three-point load measurement method in accordance with JIS R1601, using a sealing material that is densely sintered and then processed into a 3 × 4 × 40 mm prism. The measurement is performed 20 times, and the average value is calculated. If the transverse rupture strength is too low, the sealing layer is easily broken by cracks or the like, and the reliability, particularly airtightness, of the piezoelectric vibrator package or the like is liable to deteriorate. The upper limit of the transverse rupture strength is not particularly limited, but is practically 200 MPa or less.
 次に、本発明で使用される耐火性フィラーについて説明する。 Next, the refractory filler used in the present invention will be described.
 耐火性フィラーは略球状である。このようにすれば、耐火性フィラーによる封着材料の流動性の低下が抑制されやすく、その結果、部材同士の封着強度が上昇しやすくなる。なお、真球に近いほど、上記効果が得られやすい。 火 The refractory filler is substantially spherical. In this case, a decrease in the fluidity of the sealing material due to the refractory filler is easily suppressed, and as a result, the sealing strength between the members is easily increased. Note that the closer to a true sphere, the more easily the above-mentioned effects can be obtained.
 耐火性フィラー粉末において、90%粒子径D90は1~20μmであり、1~15μm、1~13μm、2~12μm、特に3~11μmであることが好ましい。耐火性フィラー粉末の90%粒子径D90が小さすぎると、熱膨張係数を低下させる効果が乏しくなることに加えて、熱処理工程で耐火性フィラー粉末がガラスに溶け込みやすくなるため、封着材料の流動性や耐失透性が低下しやすくなる。一方、耐火性フィラー粉末の90%粒子径D90が大きすぎると、封着層に表面突起が生じやすくなり、表面突起の近傍に不当な応力が残留しやすくなるとともに、表面突起に当接される被封着物にクラックが発生しやすくなる。 In the refractory filler powder, the 90% particle size D 90 is 1 to 20 μm, preferably 1 to 15 μm, 1 to 13 μm, 2 to 12 μm, and particularly preferably 3 to 11 μm. If the 90% particle diameter D 90 of the refractory filler powder is too small, the effect of lowering the coefficient of thermal expansion is poor, and the refractory filler powder is easily melted into the glass in the heat treatment step. Fluidity and devitrification resistance tend to decrease. On the other hand, if the 90% particle diameter D 90 of the refractory filler powder is too large, surface projections are likely to be generated in the sealing layer, and undue stress is likely to remain near the surface projections, and the refractory filler powder is in contact with the surface projections. Cracks easily occur in the sealed object.
 耐火性フィラー粉末において、90%粒子径D90は封着層の厚みより小さく、封着層の厚みより5μm以上小さく、特に封着層の厚みより7μm以上小さいことが好ましい。耐火性フィラー粉末の90%粒子径D90が封着層の厚み以上になると、封着層に表面突起が生じやすくなり、封着層の表面突起の近傍に不当な応力が残留しやすくなるとともに、表面突起に当接される被封着物にクラックが発生しやすくなる。 In the refractory filler powder, the 90% particle diameter D 90 is smaller than the thickness of the sealing layer, preferably smaller than the thickness of the sealing layer by 5 μm or more, and particularly preferably smaller than the thickness of the sealing layer by 7 μm or more. When the 90% particle diameter D 90 of the refractory filler powder is greater than the thickness of the sealing layer, surface projections are likely to be formed on the sealing layer, and undue stress tends to remain near the surface projections of the sealing layer. In addition, cracks easily occur in the sealed object that comes into contact with the surface protrusions.
 耐火性フィラー粉末は、特に限定されず、種々の材料を選択することができるが、上記のガラス粉末と反応し難いものが好ましい。 火 The refractory filler powder is not particularly limited, and various materials can be selected, but those which hardly react with the above glass powder are preferable.
 具体的には、耐火性フィラーとして、NbZr(PO、ZrWO(PO、ZrMoO(PO、HfWO(PO、HfMoO(PO、リン酸ジルコニウム、ジルコン、ジルコニア、酸化錫、チタン酸アルミニウム、石英、β-スポジュメン、ムライト、チタニア、石英ガラス、β-ユークリプタイト、β-石英、ウィレマイト、コーディエライト、Sr0.5Zr(PO等のNaZr(PO型固溶体等を、単独で又は2種以上を混合して使用することができる。 Specifically, NbZr (PO 4 ) 3 , Zr 2 WO 4 (PO 4 ) 2 , Zr 2 MoO 4 (PO 4 ) 2 , Hf 2 WO 4 (PO 4 ) 2 , Hf 2 MoO as refractory fillers 4 (PO 4 ) 2 , zirconium phosphate, zircon, zirconia, tin oxide, aluminum titanate, quartz, β-spodumene, mullite, titania, quartz glass, β-eucryptite, β-quartz, willemite, cordierite , Sr 0.5 Zr 2 (PO 4 ) 3 and other NaZr 2 (PO 4 ) 3 type solid solutions and the like can be used alone or in combination of two or more.
 次に、本発明で使用されるガラス粉末について説明する。 Next, the glass powder used in the present invention will be described.
 ガラス粉末は、低軟化特性を有するものであれば特に限定されない。例えば、ガラス粉末は、モル%で、TeO 10~60%、MoO 10~60%を含有することが好ましい。以下に、このようにガラス組成範囲を限定した理由を説明する。 The glass powder is not particularly limited as long as it has low softening characteristics. For example, the glass powder preferably contains 10 to 60% of TeO 2 and 10 to 60% of MoO 3 in mol%. The reason for limiting the glass composition range in this manner will be described below.
 TeOは、ガラスネットワークを形成すると共に、耐候性を向上させる成分である。TeOの含有量は10~60%であり、15~57%、特に25~55%であることが好ましい。TeOの含有量が少なすぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。一方、TeOの含有量が多すぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。また、ガラスの熱膨張係数が高くなりすぎる傾向にある。 TeO 2 is a component that forms a glass network and improves weather resistance. The content of TeO 2 is 10 to 60%, preferably 15 to 57%, particularly preferably 25 to 55%. If the content of TeO 2 is too small, the glass becomes thermally unstable, the glass tends to be devitrified at the time of melting or firing, and the weather resistance tends to decrease. On the other hand, if the content of TeO 2 is too large, the viscosity (softening point, etc.) of the glass becomes high, and low-temperature sealing becomes difficult, and the glass becomes thermally unstable. Devitrification easily occurs. Further, the thermal expansion coefficient of glass tends to be too high.
 MoOは、ガラスネットワークを形成すると共に、耐候性を向上させる成分である。MoOの含有量は10~60%であり、15~55%、特に20~50%であることが好ましい。MoOの含有量が少なすぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になる。一方、MoOの含有量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、ガラスの熱膨張係数が高くなりすぎる傾向にある。 MoO 3 is a component that forms a glass network and improves weather resistance. The content of MoO 3 is 10 to 60%, preferably 15 to 55%, particularly preferably 20 to 50%. If the content of MoO 3 is too small, the glass becomes thermally unstable, the glass tends to be devitrified at the time of melting or firing, and the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing becomes difficult. It becomes difficult. On the other hand, if the content of MoO 3 is too large, the glass becomes thermally unstable, the glass tends to be devitrified during melting or firing, and the coefficient of thermal expansion of the glass tends to be too high.
 ガラス粉末は、上記成分以外にも、ガラス組成中に下記の成分を含有してもよい。 In addition to the above components, the glass powder may contain the following components in the glass composition.
 AgO、CuO、及びWOは、ガラスの粘性(軟化点等)を低下させる成分である。AgO+CuO+WO(AgO、CuO、及びWOの合量)は5~50%、6~48%、特に7~46%であることが好ましい。AgO、CuO、及びWOの合量が少なすぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易くなる。一方、AgO、CuO、及びWOの合量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 Ag 2 O, CuO, and WO 3 are components that lower the viscosity (softening point and the like) of glass. Ag 2 O + CuO + WO 3 (the total amount of Ag 2 O, CuO and WO 3 ) is preferably 5 to 50%, 6 to 48%, particularly preferably 7 to 46%. If the total amount of Ag 2 O, CuO, and WO 3 is too small, the viscosity (softening point, etc.) of the glass increases, and low-temperature sealing tends to be difficult. On the other hand, if the total amount of Ag 2 O, CuO, and WO 3 is too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
 なお、AgO、CuO、及びWOの含有量の好ましい範囲は以下の通りである。 The preferred ranges of the contents of Ag 2 O, CuO, and WO 3 are as follows.
 AgOの含有量は0~40%、0~35%、特に0.1~30%であることが好ましい。 The content of Ag 2 O is preferably 0 to 40%, 0 to 35%, particularly preferably 0.1 to 30%.
 CuOの含有量は0~40%、0~35%、特に0.1~30%であることが好ましい。 The content of CuO is preferably 0 to 40%, 0 to 35%, particularly preferably 0.1 to 30%.
 WOの含有量は0~30%、0~25%、特に0~20%であることが好ましい。 The content of WO 3 is preferably 0 to 30%, 0 to 25%, particularly preferably 0 to 20%.
 Biは、ガラスの粘性(軟化点等)を低下させると共に、ガラスの熱膨張係数を低下させる成分である。Biの含有量は0~10%、0~6%、特に0~2%であることが好ましい。Biの含有量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 Bi 2 O 3 is a component that lowers the viscosity (softening point and the like) of the glass and lowers the coefficient of thermal expansion of the glass. The content of Bi 2 O 3 is preferably 0 to 10%, 0 to 6%, particularly preferably 0 to 2%. If the content of Bi 2 O 3 is too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
 TiOは、ガラスを熱的に安定化させると共に、ガラスの熱膨張係数を低下させる成分である。TiOの含有量は0~10%、0~6%、特に0~2%であることが好ましい。TiOの含有量が多すぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 TiO 2 is a component that stabilizes the glass thermally and reduces the coefficient of thermal expansion of the glass. The content of TiO 2 is preferably 0 to 10%, 0 to 6%, particularly preferably 0 to 2%. If the content of TiO 2 is too large, the viscosity (softening point and the like) of the glass increases, and low-temperature sealing tends to be difficult.
 AgIは、ガラスの粘性(軟化点等)を低下させる成分である。AgIの含有量は0~10%、0~5%、特に0~2%であることが好ましい。AgIの含有量が多すぎると、ガラスの熱膨張係数が高くなりすぎる傾向にある。 AgI is a component that lowers the viscosity (softening point, etc.) of glass. The content of AgI is preferably 0 to 10%, 0 to 5%, particularly preferably 0 to 2%. If the content of AgI is too large, the thermal expansion coefficient of the glass tends to be too high.
 Pは、ガラスネットワークを形成すると共に、ガラスを熱的に安定化させる成分である。Pの含有量は0~5%、0~2%、特に0~1%であることが好ましい。Pの含有量が多すぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になると共に耐候性が低下し易くなる。 P 2 O 5 is a component that forms a glass network and thermally stabilizes the glass. The content of P 2 O 5 is preferably 0 to 5%, 0 to 2%, particularly preferably 0 to 1%. If the content of P 2 O 5 is too large, the viscosity (softening point and the like) of the glass becomes high, so that low-temperature sealing becomes difficult and the weather resistance tends to decrease.
 LiO、NaO、及びKOは、ガラスの粘性(軟化点等)を下げる効果があり、それらの含有量は合量で、0~10%、0~5%、特に0~2%であることが好ましい。LiO、NaO、及びKOの合量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。なお、LiO、NaO、KOの含有量はそれぞれ、0~10%、特に0~5%であることが好ましい。 Li 2 O, Na 2 O, and K 2 O have an effect of lowering the viscosity (softening point, etc.) of glass, and their contents are 0 to 10%, 0 to 5%, particularly 0 to Preferably it is 2%. If the total amount of Li 2 O, Na 2 O, and K 2 O is too large, the glass becomes thermally unstable, the glass tends to be devitrified at the time of melting or firing, and the weather resistance tends to decrease. Become. The contents of Li 2 O, Na 2 O, and K 2 O are each preferably 0 to 10%, particularly preferably 0 to 5%.
 MgO、CaO、SrO、及びBaOは、ガラスを熱的に安定化させると共に、耐候性を向上させる効果があり、それらの含有量は合量で、0~20%、特に0~10%であることが好ましい。MgO、CaO、SrO、及びBaOの合量が多すぎると、ガラスが熱的に不安定になり溶融時または焼成時にガラスが失透し易くなる。なお、MgO、CaO、SrO、BaOの含有量はそれぞれ、0~10%、特に0~5%であることが好ましい。 MgO, CaO, SrO, and BaO have the effect of thermally stabilizing the glass and improving the weather resistance, and their contents are 0 to 20%, particularly 0 to 10% in total. Is preferred. If the total amount of MgO, CaO, SrO, and BaO is too large, the glass becomes thermally unstable and the glass tends to devitrify during melting or firing. The contents of MgO, CaO, SrO, and BaO are each preferably 0 to 10%, particularly preferably 0 to 5%.
 ZnOは、ガラスの粘性(軟化点等)を低下させると共に、耐候性を向上させる成分である。ZnOの含有量は0~10%、特に0~5%であることが好ましい。ZnOの含有量が多すぎると、ガラスが熱的に不安定になり溶融時または焼成時にガラスが失透し易くなる。 ZnO is a component that lowers the viscosity (softening point and the like) of glass and improves weather resistance. The content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of ZnO is too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
 Nbは、ガラスを熱的に安定化させると共に、耐候性を向上させる成分である。Nbの含有量は0~10%、特に0~5%であることが好ましい。Nbの含有量が多すぎると、ガラスの粘性(軟化点等)が高くなり、低温封着が困難になり易い。 Nb 2 O 5 is a component that stabilizes glass thermally and improves weather resistance. The content of Nb 2 O 5 is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of Nb 2 O 5 is too large, the viscosity (softening point and the like) of the glass increases, and low-temperature sealing tends to be difficult.
 Vは、ガラスネットワークを形成すると共に、ガラスの粘性(軟化点等)を低下させる成分である。Vの含有量は0~10%、特に0~5%であることが好ましい。Vの含有量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなると共に、耐候性が低下し易くなる。 V 2 O 5 is a component that forms a glass network and reduces the viscosity (softening point and the like) of the glass. The content of V 2 O 5 is preferably 0 to 10%, particularly preferably 0 to 5%. If the content of V 2 O 5 is too large, the glass becomes thermally unstable, the glass tends to be devitrified during melting or firing, and the weather resistance tends to decrease.
 Gaは、ガラスを熱的に安定化させると共に、耐候性を向上させる成分であるが、非常に高価であることから、その含有量は0.01%未満、特に含有しないことが好ましい。 Ga 2 O 3 is a component that stabilizes the glass thermally and improves the weather resistance. However, since it is very expensive, its content is preferably less than 0.01%, particularly preferably not contained. .
 SiO、Al、GeO、Fe、NiO、CeO、B、Sb、ZrOはガラスを熱的に安定化させて、失透を抑制する成分であり、各々2%未満まで添加可能である。これらの含有量が多すぎると、ガラスが熱的に不安定になり、溶融時又は焼成時にガラスが失透し易くなる。 SiO 2 , Al 2 O 3 , GeO 2 , Fe 2 O 3 , NiO, CeO 2 , B 2 O 3 , Sb 2 O 3 , and ZrO 2 are components that thermally stabilize glass and suppress devitrification. And each can be added to less than 2%. If these contents are too large, the glass becomes thermally unstable, and the glass tends to be devitrified during melting or firing.
 ガラス粉末は、環境上の理由から、実質的にPbOを含有しないことが好ましい。ここで、本発明でいう「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm以下の場合を指す。 It is preferable that the glass powder does not substantially contain PbO for environmental reasons. Here, “substantially does not contain PbO” in the present invention refers to a case where the content of PbO in the glass composition is 1000 ppm or less.
 次に本発明の封着材料の製造方法、及び本発明の封着材料の使用方法の一例について説明する。 Next, an example of the method for producing the sealing material of the present invention and the method for using the sealing material of the present invention will be described.
 まず、上記組成を有するように調合した原料粉末を800~1000℃で1~2時間、均質なガラスが得られるまで溶融する。次いで、溶融ガラスをフィルム状等に成形した後、粉砕し、分級することにより、ガラス粉末を作製する。なお、ガラス粉末の平均粒子径D50は2~20μm程度であることが好ましい。 First, the raw material powder prepared to have the above composition is melted at 800 to 1000 ° C. for 1 to 2 hours until a homogeneous glass is obtained. Next, the molten glass is formed into a film or the like, and then pulverized and classified to produce a glass powder. Incidentally, it is preferable that the average particle diameter D 50 of the glass powder is about 2 ~ 20 [mu] m.
 次に、ガラス粉末に各種耐火性フィラー粉末を添加し、封着材料を得る。 Next, various refractory filler powders are added to the glass powder to obtain a sealing material.
 次いで封着材料にビークルを添加して混練することにより封着材料ペーストを調製する。ビークルは、主に有機溶剤と樹脂とからなり、樹脂はペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。 Next, a vehicle is added to the sealing material and kneaded to prepare a sealing material paste. The vehicle mainly comprises an organic solvent and a resin, and the resin is added for the purpose of adjusting the viscosity of the paste. Further, if necessary, a surfactant, a thickener and the like can be added.
 有機溶剤は、沸点が低く(例えば、沸点が300℃以下)、且つ焼成後の残渣が少ないことに加えて、ガラスを変質させないものが好ましく、その含有量は10~40質量%であることが好ましい。有機溶剤としては、プロピレンカーボネート、トルエン、N,N’-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、炭酸ジメチル、ブチルカルビトールアセテート(BCA)、酢酸イソアミル、ジメチルスルホキシド、アセトン、メチルエチルケトン等を使用することが好ましい。また、有機溶剤として、高級アルコールを使用することがさらに好ましい。高級アルコールは、それ自身が粘性を有しているために、ビークルに樹脂を添加しなくても、ペースト化することができる。また、ペンタンジオールとその誘導体、具体的にはジエチルペンタンジオール(C20)も粘性に優れるため、溶剤に使用することができる。 The organic solvent preferably has a low boiling point (for example, a boiling point of 300 ° C. or lower), has a small residue after firing, and does not deteriorate the glass. Its content is preferably 10 to 40% by mass. preferable. Examples of the organic solvent include propylene carbonate, toluene, N, N'-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl carbonate, butyl carbitol acetate (BCA), isoamyl acetate, It is preferable to use dimethyl sulfoxide, acetone, methyl ethyl ketone and the like. Further, it is more preferable to use a higher alcohol as the organic solvent. Since the higher alcohol itself has viscosity, it can be made into a paste without adding a resin to the vehicle. In addition, pentanediol and its derivatives, specifically, diethylpentanediol (C 9 H 20 O 2 ) can be used as a solvent because of its excellent viscosity.
 樹脂は、分解温度が低く、焼成後の残渣が少ないことに加えて、ガラスを変質させ難いものが好ましく、その含有量は0.1~20質量%であることが好ましい。樹脂として、ニトロセルロース、ポリエチレングリコール誘導体、ポリエチレンカーボネート、アクリル酸エステル(アクリル樹脂)等を使用することが好ましい。 (4) The resin preferably has a low decomposition temperature and a small amount of residue after firing, and furthermore, hardly deteriorates the glass, and its content is preferably 0.1 to 20% by mass. As the resin, it is preferable to use nitrocellulose, a polyethylene glycol derivative, polyethylene carbonate, an acrylate (acrylic resin), or the like.
 次いで、ペーストを金属、セラミック、または、ガラスからなる第一の部材と、金属、セラミック、または、ガラスからなる第二の部材との封着箇所にディスペンサーやスクリーン印刷機等の塗布機を用いて塗布し、乾燥させ、300~400℃で熱処理する。この熱処理により、封着材料が軟化流動して第一と第二の部材を封着する。 Then, the paste, metal, ceramic, or, the first member made of glass, metal, ceramic, or using a dispenser or an applicator such as a screen printing machine at the sealing portion of the second member made of glass. Apply, dry and heat treat at 300-400 ° C. By this heat treatment, the sealing material softens and flows to seal the first and second members.
 こうして両部材の間に形成された封着層は、厚みが50μm以下であり、体積%でガラス粉末 50~99%、耐火性フィラー粉末 1~50%を含有し、耐火性フィラー粉末が略球状であり、耐火性フィラー粉末の90%粒子径D90が1~20μmであり、耐火性フィラー粉末の90%粒子径D90が封着層の厚みより小さいことを特徴とする。 The sealing layer thus formed between the two members has a thickness of 50 μm or less, contains 50 to 99% by volume of glass powder and 1 to 50% of refractory filler powder, and the refractory filler powder is substantially spherical. Wherein the 90% particle diameter D 90 of the refractory filler powder is 1 to 20 μm, and the 90% particle diameter D 90 of the refractory filler powder is smaller than the thickness of the sealing layer.
 実施例に基づいて、本発明を詳細に説明する。表1~3は、本発明の実施例(試料No.1~12)及び比較例(試料No.13~15)を示している。 本 The present invention will be described in detail based on examples. Tables 1 to 3 show Examples (Samples Nos. 1 to 12) and Comparative Examples (Samples Nos. 13 to 15) of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 まず、表中に示したガラス組成となるように各種酸化物、炭酸塩等のガラス原料を調合し、ガラスバッチを準備した後、このガラスバッチを白金坩堝に入れ、800~1000℃で1~2時間溶融した。次に、水冷ローラーでフィルム状に成形した。最後に、フィルム状のガラスをボールミルで粉砕した後、目開き75μmの篩を通過させて、平均粒子径D50が約10μmのガラス粉末を得た。 First, glass raw materials such as various oxides and carbonates are prepared so as to have the glass compositions shown in the table, and a glass batch is prepared. Melted for 2 hours. Next, it was formed into a film by a water-cooled roller. Finally, the glass in the form of a film was pulverized by a ball mill and then passed through a sieve having an opening of 75 μm to obtain a glass powder having an average particle diameter D 50 of about 10 μm.
 耐火物フィラー粉末は、表中に示す耐火性フィラー粉末を用いた。各耐火性フィラー粉末は、表中の粒子径、形状になるように調製した。なお、ZWPはZrWO(PO、NZPはNbZr(POである。ちなみに、ガラス粉末および耐火性フィラー粉末の粒子径はレーザー回折法で測定した。 The refractory filler powder shown in the table was used as the refractory filler powder. Each refractory filler powder was prepared so as to have the particle diameter and shape shown in the table. Note that ZWP is Zr 2 WO 4 (PO 4 ) 2 and NZP is NbZr (PO 4 ) 3 . Incidentally, the particle diameters of the glass powder and the refractory filler powder were measured by a laser diffraction method.
 表中に示す通り、ガラス粉末と耐火性フィラー粉末を混合し、封着材料を得た。No.1~15の試料について、熱膨張係数、軟化点、抗折強度、流動性を評価した。 通 り As shown in the table, the glass powder and the refractory filler powder were mixed to obtain a sealing material. No. Samples 1 to 15 were evaluated for thermal expansion coefficient, softening point, flexural strength, and fluidity.
 熱膨張係数は、TMA装置で求めた。測定温度範囲は30~150℃とした。 The coefficient of thermal expansion was determined with a TMA device. The measurement temperature range was 30 to 150 ° C.
 軟化点は、DTA装置で測定した。測定は、大気中において、昇温速度10℃/分で行い、室温から測定を開始した。 The softening point was measured with a DTA device. The measurement was carried out in the atmosphere at a heating rate of 10 ° C./min, and the measurement was started from room temperature.
 抗折強度は、各試料を緻密に焼結させた後、3×4×40mmの角柱に加工したものを測定試料として、JIS R1601に準拠した三点荷重測定法で求めた。なお、測定は各20回行い、その平均値を算出した。 The transverse rupture strength was determined by a three-point load measurement method in accordance with JIS R1601, using each sample densely sintered and then processed into a 3 × 4 × 40 mm prism as a measurement sample. In addition, each measurement was performed 20 times, and the average value was calculated.
 流動性は次のようにして評価した。粉末試料5gを、直径20mmの金型に入れプレス成型した後に、ガラス基板上で450℃にて30分間焼成した。焼成体の流動径が19mm以上であるものを「○」、19mm未満のものを「×」として評価した。 Fluidity was evaluated as follows. After 5 g of the powder sample was put into a mold having a diameter of 20 mm and press-molded, it was baked on a glass substrate at 450 ° C. for 30 minutes. Those having a flow diameter of 19 mm or more were evaluated as “○”, and those having a flow diameter of less than 19 mm were evaluated as “×”.
 続いて、封着層を次のようにして作製した。まず□25mm、厚み 5mmのアルミナ基板を用意し、各試料とビークル(アクリル樹脂含有α-ターピネオール)を混合し、ペースト化したものを基板の全面(一方の面のみ)に塗布した。なお、熱処理後に表中の厚みの封着層が得られるように、塗布条件、ビークル組成を調製した。次に、130℃で10分間の条件で塗布膜を乾燥して、ビークル中の溶剤を蒸発除去した後、450℃で30分間の条件で熱処理し、表中の封着層を得た。 Subsequently, a sealing layer was produced as follows. First, an alumina substrate of □ 25 mm and a thickness of 5 mm was prepared, each sample was mixed with a vehicle (α-terpineol containing an acrylic resin), and a paste was applied to the entire surface of the substrate (only one surface). The application conditions and the vehicle composition were adjusted so that a sealing layer having the thickness shown in the table was obtained after the heat treatment. Next, the coating film was dried at 130 ° C. for 10 minutes to evaporate and remove the solvent in the vehicle, and then heat-treated at 450 ° C. for 30 minutes to obtain a sealing layer shown in the table.
 封着層の表面突起は、上記の方法で得られた封着層の表面を表面粗さ計で測定し、10μm以上の突起物がないものを「○」、10μm以上の突起物があるものを「×」として評価した。 The surface protrusions of the sealing layer were measured with a surface roughness meter on the surface of the sealing layer obtained by the above method, and those having no protrusions of 10 μm or more were rated “○” and those having protrusions of 10 μm or more. Was evaluated as "x".
 表から明らかなように本発明の実施例であるNo.1~12の試料は、熱処理後の厚みが25μm以下の封着層を形成することが可能であり、更には封着層に表面突起が認められなかった。 As is clear from the table, No. 1 was an example of the present invention. The samples of Nos. 1 to 12 were able to form a sealing layer having a thickness of 25 μm or less after heat treatment, and further, no surface protrusion was observed in the sealing layer.
 一方、比較例であるNo.13の試料は、耐火性フィラー粉末の含有量が多すぎるため、流動性に劣っていた。No.14の試料は、耐火性フィラー粉末の90%粒子径D90が大きいため、表面突起の評価が不良であった。No.15の試料は、耐火性フィラー粉末が破砕状であるため、流動性に劣っていた。 On the other hand, in Comparative Example No. The sample No. 13 was inferior in fluidity because the content of the refractory filler powder was too large. No. In the sample No. 14, the 90% particle diameter D90 of the refractory filler powder was large, so that the evaluation of the surface protrusion was poor. No. Sample No. 15 was inferior in fluidity because the refractory filler powder was crushed.
 本発明の封着材料は、半導体集積回路、水晶振動子、平面表示装置やLD用ガラス端子の封着に好適である。 The sealing material of the present invention is suitable for sealing semiconductor integrated circuits, quartz oscillators, flat panel displays, and glass terminals for LDs.

Claims (4)

  1. (1)厚みが50μm以下の封着層を形成するための封着材料であって、
    (2)封着材料が、体積%で、ガラス粉末 50~99%、耐火性フィラー粉末 1~50%を含有し、
    (3)耐火性フィラー粉末が略球状であり、
    (4)耐火性フィラー粉末の90%粒子径D90が1~20μmであることを特徴とする封着材料。
    (1) A sealing material for forming a sealing layer having a thickness of 50 μm or less,
    (2) The sealing material contains, by volume%, 50 to 99% of glass powder and 1 to 50% of refractory filler powder,
    (3) the refractory filler powder is substantially spherical;
    (4) A sealing material, wherein the 90% particle diameter D 90 of the refractory filler powder is 1 to 20 μm.
  2.  ガラス粉末が、モル%で、TeO 10~60%、MoO 10~60%を含有し、実質的にPbOを含有しないことを特徴とする請求項1に記載の封着材料。 2. The sealing material according to claim 1, wherein the glass powder contains 10 to 60% of TeO 2 and 10 to 60% of MoO 3 in mol%, and contains substantially no PbO.
  3.  ガラス粉末が、モル%で、AgO+CuO+WO 5~50%を含有することを特徴とする請求項1又は2に記載の封着材料。 3. The sealing material according to claim 1, wherein the glass powder contains 5 to 50% of Ag 2 O + CuO + WO 3 in mol%.
  4. (1)厚みが50μm以下である封着層であって、
    (2)封着層が、体積%でガラス粉末 50~99%、耐火性フィラー粉末 1~50%を含有し、
    (3)耐火性フィラー粉末が略球状であり、
    (4)耐火性フィラー粉末の90%粒子径D90が1~20μmであり、
    (5)耐火性フィラー粉末の90%粒子径D90が封着層の厚みより小さいことを特徴とする封着層。
    (1) a sealing layer having a thickness of 50 μm or less,
    (2) The sealing layer contains 50 to 99% by volume of glass powder and 1 to 50% of refractory filler powder by volume,
    (3) the refractory filler powder is substantially spherical;
    (4) The 90% particle diameter D 90 of the refractory filler powder is 1 to 20 μm,
    (5) sealing layer 90% particle size D 90 of the refractory filler powder being less than the thickness of the sealing layer.
PCT/JP2019/022461 2018-07-13 2019-06-06 Sealing material WO2020012833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980036819.4A CN112262112B (en) 2018-07-13 2019-06-06 Sealing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018132784A JP7172209B2 (en) 2018-07-13 2018-07-13 sealing material
JP2018-132784 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020012833A1 true WO2020012833A1 (en) 2020-01-16

Family

ID=69142902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022461 WO2020012833A1 (en) 2018-07-13 2019-06-06 Sealing material

Country Status (3)

Country Link
JP (1) JP7172209B2 (en)
CN (1) CN112262112B (en)
WO (1) WO2020012833A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166568A1 (en) * 2020-02-18 2021-08-26 日本電気硝子株式会社 Glass composition and sealing material
JP7522386B2 (en) 2020-02-18 2024-07-25 日本電気硝子株式会社 Glass composition and sealing material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259262A (en) * 1995-03-20 1996-10-08 Nippon Electric Glass Co Ltd Low melting point seal bonding composition
JP2009155200A (en) * 2007-12-06 2009-07-16 Nippon Electric Glass Co Ltd Sealing material
JP2009298673A (en) * 2008-06-17 2009-12-24 Nippon Electric Glass Co Ltd Sealing material
JP2016199423A (en) * 2015-04-09 2016-12-01 旭硝子株式会社 Glass paste and electronic component

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557326B2 (en) * 1989-08-14 1996-11-27 日本電気硝子株式会社 Sealing material
JPH05147974A (en) * 1991-11-25 1993-06-15 Nippon Electric Glass Co Ltd Seal bonding material
JP2002179436A (en) * 2000-12-14 2002-06-26 Nippon Electric Glass Co Ltd Silver phosphate glass and sealing material by using the same
US7447630B2 (en) * 2003-11-26 2008-11-04 Microsoft Corporation Method and apparatus for multi-sensory speech enhancement
JP5545589B2 (en) * 2007-08-10 2014-07-09 日本電気硝子株式会社 Manufacturing method of sealing material
KR20110087265A (en) * 2008-11-26 2011-08-02 아사히 가라스 가부시키가이샤 Glass member having sealing/bonding material layer, electronic device using same, and manufacturing method thereof
TWI448444B (en) * 2010-08-11 2014-08-11 Hitachi Ltd A glass composition for an electrode, a paste for an electrode for use, and an electronic component to which the electrode is used
CN103459341B (en) * 2011-07-27 2016-05-11 日本电气硝子株式会社 With the glass substrate of seal, sealing materials layer, use the manufacture method of its organic EL device and electronic device
CN105358498A (en) * 2013-10-21 2016-02-24 日本电气硝子株式会社 Sealing material
JPWO2018131191A1 (en) 2017-01-13 2019-11-14 日本山村硝子株式会社 Low melting point sealing material, electronic parts and sealed body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259262A (en) * 1995-03-20 1996-10-08 Nippon Electric Glass Co Ltd Low melting point seal bonding composition
JP2009155200A (en) * 2007-12-06 2009-07-16 Nippon Electric Glass Co Ltd Sealing material
JP2009298673A (en) * 2008-06-17 2009-12-24 Nippon Electric Glass Co Ltd Sealing material
JP2016199423A (en) * 2015-04-09 2016-12-01 旭硝子株式会社 Glass paste and electronic component

Also Published As

Publication number Publication date
CN112262112A (en) 2021-01-22
JP2020011851A (en) 2020-01-23
JP7172209B2 (en) 2022-11-16
CN112262112B (en) 2023-03-28

Similar Documents

Publication Publication Date Title
JP5354444B2 (en) Sealing material
JP5041323B2 (en) Powder material and paste material
CN112055699B (en) Glass composition and sealing material
JP7090838B2 (en) Glass composition and sealing material
WO2020012833A1 (en) Sealing material
CN112789248B (en) Glass composition and sealing material
EP4393893A1 (en) Glass composition and sealing material
CN113614042B (en) Glass composition and sealing material
JP2019089689A (en) Glass composition and sealing material
JP7385169B2 (en) Glass compositions and sealing materials
WO2020153061A1 (en) Glass powder and sealing material using same
WO2020262109A1 (en) Glass composition and sealing material
JP7522386B2 (en) Glass composition and sealing material
WO2021166568A1 (en) Glass composition and sealing material
US20230303425A1 (en) Glass composition and sealing material
US20240368024A1 (en) Glass composition and sealing material
CN117881638A (en) Glass composition and sealing material
JP2023033083A (en) Glass composition and sealing material
JP2019089685A (en) Vanadium phosphate glass composition and sealing material
JP2019073403A (en) Vanadium phosphate glass composition and sealing material
JP2020040848A (en) Glass composition and sealing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833981

Country of ref document: EP

Kind code of ref document: A1