WO2020012732A1 - Method for manufacturing optical film - Google Patents

Method for manufacturing optical film Download PDF

Info

Publication number
WO2020012732A1
WO2020012732A1 PCT/JP2019/014767 JP2019014767W WO2020012732A1 WO 2020012732 A1 WO2020012732 A1 WO 2020012732A1 JP 2019014767 W JP2019014767 W JP 2019014767W WO 2020012732 A1 WO2020012732 A1 WO 2020012732A1
Authority
WO
WIPO (PCT)
Prior art keywords
dope
temperature
casting
optical film
casting die
Prior art date
Application number
PCT/JP2019/014767
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 穂北
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN201980045835.XA priority Critical patent/CN112423959B/en
Priority to KR1020217000296A priority patent/KR102356401B1/en
Priority to JP2020529990A priority patent/JPWO2020012732A1/en
Publication of WO2020012732A1 publication Critical patent/WO2020012732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/42Removing articles from moulds, cores or other substrates
    • B29C41/44Articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/46Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films

Definitions

  • the present invention relates to a method for producing an optical film by a solution casting method.
  • optical films used for display devices have been demanded to be thin and water-blocking (low water permeability).
  • Conventional optical films containing cellulose acylate do not satisfy required requirements because of their high water permeability.
  • a resin having a low SP value has a weaker interaction between molecules than cellulose acylate, so that the viscosity of the dope containing such a resin is low. Then, in the solution casting using the dope, when the dope is cast and transported on the support, the dope is formed on the support under the influence of the surrounding wind (wind pressure, wind speed) and temperature. The surface of the casting film is easily deformed (surface irregularities are easily generated). As a result, the thickness of the formed film becomes uneven. In addition, the surface deformation of the casting film causes uneven orientation of molecules during stretching, which appears as a phase difference deviation.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an optical film capable of reducing a film thickness deviation and a phase difference deviation in a solution casting using a resin having a low SP value. It is to provide a method for producing a film.
  • the method for producing an optical film according to one aspect of the present invention is a method for producing an optical film by producing an optical film by a solution casting method
  • a dope is prepared by dissolving a resin having an SP value of 10.5 (MPa) 1/2 or less as a solubility parameter in a solvent in a dissolving pot to prepare a dope, and transferring the dope to a casting die via an intermediate pot.
  • T1 Temperature (° C.) of the dope immediately after leaving the melting pot
  • T2 temperature of the dope immediately after leaving the intermediate pot (° C.)
  • T3 temperature of the dope immediately before entering the casting die (° C.) It is.
  • the film thickness deviation and the phase difference deviation can be reduced in a solution casting using a resin having a low SP value.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of an optical film manufacturing apparatus 50 according to the present embodiment.
  • FIG. 2 is a flowchart showing a flow of a manufacturing process of the optical film.
  • the method for producing an optical film according to the present embodiment is a method for producing an optical film by a solution casting method, and as shown in FIG. 2, a dope transfer step (S1), a casting step (S2), and a peeling step. (S3), a first drying step (S4), a stretching step (S5), a second drying step (S6), a cutting step (S7), an embossing step (S8), and a winding step (S9).
  • S1 dope transfer step
  • S2 a casting step
  • S3 a peeling step.
  • S4 a first drying step
  • S5 a stretching step
  • S6 second drying step
  • S7 a cutting step
  • S8 embossing step
  • winding step S9
  • the dope fed to the casting die 2 by the dope transfer unit 1 is transferred from the casting die 2 to a casting position on a support 3 made of a rotary drive stainless steel endless belt for infinitely transferring the dope. Extend.
  • the support 3 transports the cast dope (cast dope) while supporting it. Thus, a casting film (web) 5 is formed on the support 3.
  • the support 3 is held by a pair of rolls 3a and 3b and a plurality of rolls (not shown) located between them.
  • One or both of the rolls 3a and 3b are provided with a driving device (not shown) for applying tension to the support 3, whereby the support 3 is used under tension.
  • the web 5 formed by the dope cast on the support 3 is heated on the support 3 and the solvent is evaporated from the support 3 until the web 5 can be peeled off by the peeling roll 4. Let it.
  • evaporate the solvent there are a method of blowing air from the web side, a method of transferring heat from the back surface of the support 3 by liquid, a method of transferring heat from the front and back by radiant heat, and the like, which is used alone or in combination as appropriate. Just fine.
  • the residual solvent amount of the web 5 on the support 3 at the time of peeling is desirably in the range of 25 to 120% by mass depending on the strength of the drying conditions, the length of the support 3, and the like.
  • the amount of solvent is determined.
  • the residual solvent amount is defined by the following equation.
  • Residual solvent amount (mass%) (mass before heat treatment of web ⁇ mass after heat treatment of web) / (mass after heat treatment of web) ⁇ 100
  • the heat treatment at the time of measuring the amount of residual solvent means that heat treatment is performed at 115 ° C. for one hour.
  • the web 5 peeled from the support 3 by the peeling roll 4 is dried by the drying device 6.
  • the drying device 6 the web 5 is transported by a plurality of transport rolls, during which the web 5 is dried.
  • the drying method in the drying device 6 is not particularly limited, and the web 5 is generally dried using hot air, infrared rays, a heating roll, a microwave, or the like. From the viewpoint of simplicity, a method of drying the web 5 with hot air is preferred. Note that the first drying step may be performed as needed.
  • the stretching direction at this time is either a film transport direction (MD direction; Machine Direction), a width direction perpendicular to the transport direction in the film plane (TD direction; Transverse Direction), or both of these directions.
  • MD direction film transport direction
  • TD direction width direction perpendicular to the transport direction in the film plane
  • a tenter method in which both side edges of the web 5 are fixed with clips or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film.
  • drying may be performed in addition to stretching.
  • the stretching step of S5 may be performed as needed, and can be omitted.
  • the stretching step before winding can be omitted.
  • the web 5 stretched by the tenter 7 as required is dried by the drying device 8.
  • the drying device 8 the web 5 is transported by a plurality of transport rolls, during which the web 5 is dried.
  • the drying method in the drying device 8 is not particularly limited, and the web 5 is generally dried using hot air, infrared rays, a heating roll, a microwave, or the like. From the viewpoint of simplicity, a method of drying the web 5 with hot air is preferred. Before entering the drying device 8, a step of roughly cutting both width end portions of the web 5 may be performed.
  • the web 5 is dried by the drying device 8
  • the web 5 is conveyed as an optical film F toward the winding device 11.
  • the cutting unit 9 and the embossing unit 10 are arranged between the drying device 8 and the winding device 11 in this order.
  • a cutting step of cutting both ends in the width direction by a slitter while transporting the formed optical film F is performed.
  • the portions remaining after the cutting at both ends constitute a product part to be a film product.
  • the portion cut from the optical film F is collected by a shooter and reused again as a part of raw materials for forming a film.
  • embossing is performed by the embossed portion 10 on both ends in the width direction of the optical film F.
  • the embossing is performed by pressing a heated emboss roller against both ends of the optical film F. Fine irregularities are formed on the surface of the embossing roller. By pressing the embossing roller against both ends of the optical film F, the irregularities are formed on the both ends.
  • the optical film F on which the embossing has been completed is wound up by the winding device 11 to obtain the original roll (film roll) of the optical film F. That is, in the winding step, a film roll is manufactured by winding the optical film F around a core while transporting the same.
  • the winding method of the optical film F may use a commonly used winder, and there is a method of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method for constant internal stress. You can use them properly.
  • the winding length of the optical film F is preferably from 1,000 to 15,000 m. In this case, the width is desirably 1000 to 3200 mm, and the film thickness is desirably 10 to 60 ⁇ m.
  • a resin having an SP value as a solubility parameter (Solubility Parameter) of 10.5 (MPa) 1/2 or less is dissolved in a solvent in a dissolving vessel 21 to prepare a dope, and the dope is transferred to an intermediate vessel. It is transferred to the casting die 2 via 22. In the intermediate pot 22, the dope is temporarily held, whereby air and bubbles in the dope are removed. The dope in the melting pot 21 is transferred to the intermediate pot 22 through the conduit 23, and the dope in the intermediate pot 22 is transferred to the casting die 2 through the conduit 24.
  • At least one heat exchanger 25 is provided between the intermediate pot 22 and the casting die 2.
  • the conduit 24 is heated or cooled by a heating medium or a cooling medium, so that the dope passing through the conduit 24, that is, the dope flowing from the intermediate tank 22 toward the casting die 2 is heated or cooled. Is done.
  • a plurality of heat exchangers 25 are provided between the intermediate pot 22 and the casting die 2, it is possible to heat the dope once and then cool it, or to cool it once and then heat it.
  • Examples of the resin having an SP value of 10.5 (MPa) 1/2 or less include a cycloolefin resin (SP value: 9.6 (MPa) 1/2 ) and a polycarbonate resin (SP value: 10.2 ( MPa) 1/2 ) and an acrylic resin (SP value: 9.5 (MPa) 1/2 ).
  • the resin having a low SP value is not limited to the above-mentioned resins, and any resin other than TAC (SP value; 10.9 (MPa) 1/2 ) can be used.
  • a mixed solvent of a good solvent and a poor solvent can be used.
  • a good solvent refers to an organic solvent having a property of dissolving a resin (solubility), such as 1,3-dioxolan, THF (tetrahydrofuran), methyl ethyl ketone, acetone, methyl acetate, methylene chloride (dichloromethane, methylene chloride), Toluene and the like correspond to this.
  • a poor solvent refers to a solvent that does not have the property of dissolving a resin by itself, such as methanol or ethanol.
  • Conditional expression (1) defines the magnitude relationship between the temperatures of the respective dopes immediately after leaving the melting vessel 21, immediately after leaving the intermediate vessel 22, and immediately before entering the casting die 2.
  • Conditional expression (2) defines an appropriate range of the temperature difference between the dope immediately after leaving the melting vessel 21 and the dope immediately before entering the casting die 2.
  • Conditional expression (3) defines an appropriate range of the temperature difference between the dope immediately after leaving the intermediate pot 22 and the dope immediately before entering the casting die 2.
  • conditional expression (1) the dope immediately before entering the casting die 2 is cooled more than the dope immediately after leaving the melting pot 21 and the dope immediately after leaving the intermediate pot 22. .
  • the low-viscosity dope containing the resin having a low SP value is cooled in the process of being transferred from the melting vessel 21 to the casting die 2, thereby generating a high-viscosity region in a part of the dope. it can.
  • conditional expression (2) the degree of cooling of the dope is limited (because the dope is not cooled too much), so that it is possible to suppress the generation of a region having a high viscosity in the dope. it can.
  • T2-T3 temperature difference
  • T2-T3 temperature difference
  • a low-viscosity dope containing a resin having a low SP value is easily affected by the surrounding wind and temperature during casting from the casting die 2 and transporting on the support 3.
  • the surface of No. 5 is easily deformed and the thickness deviation and the phase difference deviation are likely to occur.
  • By generating a high-viscosity region in the dope as in the present embodiment it is possible to prevent the surface of the web 5 from being deformed by the influence of wind or the like at the time of casting and transporting the dope onto the support 3. Can be. Thereby, it is possible to reduce the occurrence of the film thickness deviation and the phase difference deviation due to the influence of the wind at the time of the casting.
  • the dope is excessively cooled and a region having a high viscosity is generated in the dope, a gel-like substance is easily generated in the dope. Further, the surface of the dope is likely to have irregularities immediately after being discharged from the casting die 2 on the support 3, and the surface of the dope is less likely to be leveled (flattened) by the influence of stress due to uneven drying. In this case, the surface deformation of the dope remains as the surface deformation of the web 5 after drying. For this reason, due to the surface deformation of the web 5, a thickness deviation and a phase difference deviation occur in the optical film F finally obtained.
  • the high-viscosity region and the low-viscosity region can coexist in the dope while suppressing the increase in the high-viscosity region due to excessive cooling.
  • the low-viscosity region of the dope flows, and the stress due to uneven drying is transmitted to the periphery by the low-viscosity region. Is leveled.
  • the surface deformation of the web 5 can be suppressed, it is possible to reduce the occurrence of the thickness deviation and the phase difference deviation in the optical film F finally obtained due to the surface deformation.
  • the presence of a low-viscosity region in the dope also suppresses the generation of a gel-like substance.
  • conditional expression (4) 5 ° C ⁇ Tmax-Tmin ⁇ 30 ° C
  • Tmax the maximum temperature of the dope between the intermediate pot 22 and the casting die 2 (° C.)
  • Tmin minimum temperature (° C.) of dope between the intermediate pot 22 and the casting die 2 It is.
  • the temperature change of the dope that satisfies the conditional expression (4) can be realized by heating or cooling the dope flowing in the conduit 24 by at least one heat exchanger 25 as described above.
  • FIG. 3 shows the temperature history of the dope flowing between the intermediate pot 22 and the casting die 2 (temperature at each dope passage position).
  • the position of the passing point 0 on the horizontal axis corresponds to the position of the intermediate shuttle 22, and the position of the passing point 6 corresponds to the position of the casting die 2.
  • conditional expression (4) various temperature histories can be realized between the intermediate pot 22 and the casting die 2. For example, even if the temperature of the dope coming out of the intermediate kettle 22 is constant (same) and the temperature of the dope entering the casting die 2 is constant (same), the temperature of the dope is cast from the intermediate kettle 22 as the temperature history of the dope.
  • Ta, Tb, and Tc in the figure correspond to the difference between the maximum temperature Tmax and the minimum temperature Tmin of the dope in each case (temperature history).
  • the low-viscosity region and the high-viscosity region in the dope are well-balanced. Mix. Thereby, the effect of leveling the entire surface of the dope (web 5) by movement of the region with high fluidity and low viscosity can be enhanced, and at least the film thickness deviation can be further reduced.
  • conditional expression (4a) when a dope in which a cycloolefin-based resin is dissolved in a solvent is used, it is preferable that the following conditional expression (4a) is satisfied. That is, (4a) 10 ° C. ⁇ Tmax ⁇ Tmin ⁇ 15 ° C. It is. In the solution casting using a cycloolefin-based resin, by further satisfying the conditional expression (4a), both the film thickness deviation and the phase difference deviation are surely reduced by the leveling effect of the web surface by the low viscosity region. It becomes possible.
  • An optical film 1 made of a cycloolefin-based resin film (COP film) was produced by the following production method (solution casting method).
  • Thermoplastic resin Cycloolefin resin (G7810, manufactured by JSR Corporation) 145 parts by mass Fine particles: Silicon dioxide dispersion diluent 25 parts by mass Dichloromethane 360 parts by mass Ethanol 12 parts by mass
  • Thermoplastic resin Cycloolefin resin (G7810, manufactured by JSR Corporation) 145 parts by mass
  • Fine particles Silicon dioxide dispersion diluent 25 parts by mass Dichloromethane 360 parts by mass Ethanol 12 parts by mass
  • the above is charged into a closed container, heated and stirred. While completely dissolved, and Azumi Filter Paper No. The resulting solution was filtered using No. 24 to prepare a dope.
  • the dope prepared above was transferred from the melting pot to the casting die via the intermediate pot.
  • the temperature of the dope immediately after leaving the melting pot is T1 (° C.)
  • the temperature of the dope immediately after leaving the intermediate pot is T2 (° C.)
  • the temperature of the dope immediately before entering the casting die is T3 ( ° C)
  • each temperature of T1, T2, and T3 was adjusted to the temperature shown in Table 1, respectively.
  • T1 was set to a temperature equal to or higher than the boiling point (about 39.5 ° C.) of the solvent (here, dichloromethane).
  • Tmax and Tmin (° C.) When the maximum temperature and the minimum temperature of the dope between the intermediate pot and the casting die are Tmax (° C.) and Tmin (° C.), respectively, at least one dope is provided between the intermediate pot and the casting die.
  • a heat exchanger was provided, and Tmax and Tmin were adjusted to have the values shown in Table 1.
  • T1 the temperature was adjusted by flowing hot or cold water through a jacket provided outside the melting pot.
  • T2 the temperature was adjusted by flowing hot or cold water through a jacket provided outside the intermediate pot.
  • T3 the temperature was adjusted by a heat exchanger between the melting pot and the intermediate pot (by flowing a heating medium or a cooling medium outside the pipe).
  • each temperature of T1, T2, T3, Tmax, and Tmin was measured as follows using a thermometer (RTD made by Okazaki Seisakusho; Model No. RBN).
  • T1 the above-mentioned thermometer was set in the melting vessel, and the dope temperature was measured in a state where the thermometer was completely immersed in the dope. The obtained result was defined as T1.
  • T2 in the pipe through which the dope that has exited the intermediate kettle passes, the above-mentioned thermometer is installed in the pipe from the joint between the outlet of the intermediate kettle and the pipe to a position 1 m in the dope advancing direction to adjust the dope temperature. The measurement was performed, and the obtained result was defined as T2.
  • thermometer was installed in a pipe just before entering the casting die, in a pipe 1 m away from the joint between the pipe and the casting die in a direction opposite to the dope advancing direction. The temperature was measured, and the obtained result was defined as T3.
  • Tmax and Tmin dope by installing a thermometer every 50 cm between the thermometer for T2 measurement and the thermometer for T3 measurement in the pipe between the intermediate pot and the casting die. The temperature was measured, and the maximum temperature was measured as Tmax and the minimum temperature was measured as Tmin among the plurality of measured temperatures.
  • the dope is uniformly cast on the stainless steel band support from the casting die, and the web is formed on the stainless steel band support by evaporating the solvent until the residual solvent amount becomes 80% by mass.
  • the web was peeled off from the body.
  • the obtained web was kept at 35 ° C to further evaporate the solvent, slit to a width of 1.15 m, and dried at a drying temperature of 160 ° C.
  • the film was dried for 15 minutes while being conveyed by a number of rollers in a drying apparatus at 130 ° C., slit to a width of 1.0 m, and wound around a core to obtain an optical film 1.
  • the thickness of the optical film 1 was 40 ⁇ m, and the winding length was 5000 m.
  • the film thickness in the width direction was measured using a digimatic thickness gauge (manufactured by Mitutoyo). The measurement of the film thickness was performed on the obtained film having a width of 1.0 m from the left end to the right end at intervals of 100 mm along the width direction, and the thickness was varied (the maximum value of the film thickness in the width direction). (Difference between the minimum value and the minimum value). This measurement was performed three times every 50 m in the longitudinal direction, and the average value was obtained. Then, the thickness variation (film thickness deviation) was evaluated based on the following evaluation criteria.
  • Thickness variation is less than 1 ⁇ m (very good). 4: Thickness variation is 1 ⁇ m or more and less than 2 ⁇ m (very good). 3: The thickness variation is 2 ⁇ m or more and less than 3 ⁇ m (good). 2: The thickness variation is 3 ⁇ m or more and less than 5 ⁇ m (defective). 1: Thickness variation is 5 ⁇ m or more (very poor).
  • the measurement of Ro is performed on the obtained film having a width of 1.0 m from the left end to the right end at intervals of 100 mm along the width direction, and the variation of Ro (the maximum value of Ro in the width direction) is measured. (Difference between the minimum value and the minimum value). This measurement was performed three times every 50 m in the longitudinal direction, and the average value was obtained. Then, the variation (phase difference deviation) of Ro was evaluated based on the following evaluation criteria. It is preferable that the variation of Ro is smaller. "Evaluation criteria" 5: The variation in Ro is less than 1 nm (very good). 4: The variation in Ro is 1 nm or more and less than 2 nm (very good). 3: Ro variation is 2 nm or more and less than 3 nm (good). 2: The variation in Ro is 3 nm or more and less than 5 nm (poor). 1: Ro variation is 5 nm or more (very bad).
  • Table 1 shows the evaluation results of the optical films 1 to 16 of Examples 1 to 16 and the optical films 21 to 26 of Comparative Examples 1 to 6.
  • PC indicates a polycarbonate resin
  • Acryl indicates an acrylic resin
  • TAC indicates triacetyl cellulose.
  • Comparative Examples 1 to 6 all have poor film thickness variation (film thickness deviation) and Ro variation (phase difference deviation).
  • the solvent evaporates in the intermediate vessel, and the concentration of the liquid dope fluctuates. Therefore, film formation is performed using a dope that is out of design, so that the film thickness varies greatly, which is considered to cause a film thickness deviation and a phase difference deviation.
  • T3> T2 in the dope transfer step, T3> T2, and the dope entering the casting die could not be sufficiently cooled, so that a high-viscosity region could not be sufficiently generated in the dope.
  • the cause is that the surface of the dope fluctuates under the influence of the surrounding wind or the like immediately after casting on the support.
  • T2 ⁇ T3 5 ° C.
  • the temperature difference between T2 and T3 was too small to sufficiently cool the dope entering the casting die. It is considered that a high-viscosity region cannot be sufficiently generated therein, and the surface of the dope fluctuates immediately after casting on the support under the influence of the surrounding wind or the like.
  • T2-T3 is 15 ° C
  • T1-T3 is 26 ° C
  • the dope entering the casting die is cooled too much.
  • a region of high viscosity is generated in the dope too much, and the surface of the dope is likely to have irregularities immediately after casting on the support, and the surface deformation of the dope remains as the surface deformation of the web after drying, and this is It is considered that a film thickness deviation and a phase difference deviation are caused in the final film.
  • Comparative Example 6 a film was formed using TAC.
  • TAC high-viscosity resin
  • Example 1 to 15 the film thickness deviation and the phase difference deviation are further reduced as compared with Example 16.
  • the following conditional expression (4) (4) 5 ° C ⁇ Tmax-Tmin ⁇ 30 ° C
  • the dope temperature is raised or lowered between the intermediate pot and the casting die, so that the low-viscosity region and the high-viscosity region are mixed in the dope in a well-balanced manner. It is considered that the leveling effect of the surface of the dope (web) by the region of the viscosity was enhanced.
  • a method for producing an optical film by producing an optical film by a solution casting method A dope is prepared by dissolving a resin having an SP value of 10.5 (MPa) 1/2 or less as a solubility parameter in a solvent in a dissolving vessel to prepare a dope, and transferring the dope to a casting die via an intermediate vessel.
  • a transfer process A casting step of casting the dope from the casting die onto a support, A method for producing an optical film, wherein the dope transfer step satisfies the following conditional expressions (1) to (3); (1) T1>T2> T3 (2) T1-T3 ⁇ 25 ° C.
  • T1 Temperature (° C.) of the dope immediately after leaving the melting pot
  • T2 temperature of the dope immediately after leaving the intermediate pot (° C.)
  • T3 temperature of the dope immediately before entering the casting die (° C.) It is.
  • the resin is a cycloolefin resin, 3.
  • the method for producing an optical film of the present invention can be used when an optical film is produced by a solution casting method using a resin having a low SP value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

This method for manufacturing an optical film is for manufacturing an optical film by a solution casting film-forming method, the method including: a dope transport step in which a resin with an SP value as a solubility parameter of 10.5 (MPa)1/2 or less is dissolved in a solvent in a dissolution vessel to prepare a dope, and the dope is transported to a casting die via an intermediate vessel; and a casting step, in which the dope is cast onto a support body from the casting die. In the dope transport step, the following conditional formulas (1)–(3) are satisfied. (1) T1 > T2 > T3, (2) T1 − T3 ≤ 25°C, and (3) 5°C < T2 − T3 < 15°C, where T1 is the temperature (°C) of the dope immediately after leaving the dissolution vessel, T2 is the temperature (°C) of the dope immediately after leaving the intermediate vessel, and T3 is the temperature (°C) of the dope immediately before entering the casting die.

Description

光学フィルムの製造方法Optical film manufacturing method
 本発明は、溶液流延製膜法による光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film by a solution casting method.
 溶液流延製膜法で用いるドープ中にゲル状物質が含まれると、このドープを用いて溶液流延製膜法による製膜(以下、溶液製膜とも称する)を行った場合に、ゲル状物質がフィルム中に存在してフィルムの製品品質を落とす原因となる。そこで、例えば特許文献1では、ドープからのゲル状物質の発生と、ドープ温度またはドープの温度履歴とが、非常に密接な関係があることに鑑み、セルロースアシレートと溶媒とを含むドープを流延ダイに移送する際に、ドープ温度をできるだけ一定に保つようにして、ゲル状物質の発生を抑制するようにしている。 When a gel material is contained in the dope used in the solution casting film forming method, when a film is formed by the solution casting film forming method (hereinafter, also referred to as a solution film forming) using the dope, the gel is formed. Substances are present in the film and cause the product quality of the film to deteriorate. Therefore, for example, in Patent Document 1, in view of the fact that the generation of a gel-like substance from a dope and the dope temperature or the temperature history of the dope are very closely related, the dope containing cellulose acylate and a solvent is flown. When transferring to a rolling die, the temperature of the dope is kept as constant as possible to suppress the generation of a gel-like substance.
特許第4753553号公報(請求項1、2、段落〔0004〕、〔0010〕~〔0012〕、図1、図2等参照)Japanese Patent No. 4753553 (refer to claims 1 and 2, paragraphs [0004], [0010] to [0012], and FIGS. 1 and 2)
 近年、表示装置に用いられる光学フィルムには、薄膜であることや、遮水性(低透水性)が求められている。セルロースアシレートを含む従来の光学フィルムは、透水性が高いため、求められる要件を満足しない。 In recent years, optical films used for display devices have been demanded to be thin and water-blocking (low water permeability). Conventional optical films containing cellulose acylate do not satisfy required requirements because of their high water permeability.
 そこで、透水性の低い樹脂(例えば溶解性パラメータであるSP値が低い樹脂)を用いた溶液製膜が必要となってきている。しかし、低SP値の樹脂を用いた溶液製膜において、特許文献1のようにドープの温度を一定に保ってドープを移送すると、平滑で特性の良好な膜を作製することができないことがわかった。具体的には、作製された光学フィルムにおいて、幅手方向または長手方向において膜厚が不規則で不均一となる膜厚偏差が発生することや、延伸による位相差発現が不均一となる位相差偏差が発生することがわかった。この理由について、本願発明者は以下のように推測している。すなわち、低SP値の樹脂は、セルロースアシレートに比べて分子間の相互作用が弱いため、そのような樹脂を含むドープの粘度が低くなる。すると、上記ドープを用いた溶液製膜において、支持体上にドープを流延して搬送する際に、周囲の風(風圧、風速)や温度の影響を受けて、支持体上に形成される流延膜の表面が変形しやすくなる(表面凹凸が発生しやすくなる)。その結果、製膜されたフィルムの膜厚が不均一になる。また、流延膜の表面変形は、延伸時に分子の配向ムラを引き起こし、これが位相差偏差となって現れる。 Therefore, solution casting using a resin having low water permeability (for example, a resin having a low SP value as a solubility parameter) has become necessary. However, it was found that in a solution film formation using a resin having a low SP value, when the dope was transferred while keeping the temperature of the dope constant as in Patent Document 1, it was not possible to produce a film having smooth and good characteristics. Was. Specifically, in the manufactured optical film, a film thickness deviation occurs in which the film thickness is irregular and non-uniform in the width direction or the longitudinal direction, and a phase difference in which the phase difference expression due to stretching becomes non-uniform. It was found that a deviation occurred. The inventor of the present application speculates this reason as follows. In other words, a resin having a low SP value has a weaker interaction between molecules than cellulose acylate, so that the viscosity of the dope containing such a resin is low. Then, in the solution casting using the dope, when the dope is cast and transported on the support, the dope is formed on the support under the influence of the surrounding wind (wind pressure, wind speed) and temperature. The surface of the casting film is easily deformed (surface irregularities are easily generated). As a result, the thickness of the formed film becomes uneven. In addition, the surface deformation of the casting film causes uneven orientation of molecules during stretching, which appears as a phase difference deviation.
 したがって、低SP値の樹脂を用いた溶液製膜では、膜厚偏差および位相差偏差を低減することが望まれるが、そのような溶液製膜は未だ実現されていない。 Thus, in a solution casting using a resin having a low SP value, it is desired to reduce the film thickness deviation and the phase difference deviation, but such a solution casting has not yet been realized.
 本発明は、上記の問題点を解決するためになされたものであり、その目的は、低SP値の樹脂を用いた溶液製膜において、膜厚偏差および位相差偏差を低減することができる光学フィルムの製造方法を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical film capable of reducing a film thickness deviation and a phase difference deviation in a solution casting using a resin having a low SP value. It is to provide a method for producing a film.
 本発明の上記目的は、以下の製造方法によって達成される。 The above object of the present invention is achieved by the following manufacturing method.
 本発明の一側面に係る光学フィルムの製造方法は、溶液流延製膜法によって光学フィルムを製造する光学フィルムの製造方法であって、
 溶解性パラメータとしてのSP値が10.5(MPa)1/2以下である樹脂を溶解釜で溶媒に溶解させてドープを作製し、前記ドープを中間釜を介して流延ダイに移送するドープ移送工程と、
 前記ドープを、前記流延ダイから支持体上に流延する流延工程とを含み、
 前記ドープ移送工程において、以下の条件式(1)~(3)を満足することを特徴とする光学フィルムの製造方法;
  (1)T1>T2>T3
  (2)T1-T3≦25℃
  (3)5℃<T2-T3<15℃
 ただし、
  T1:前記溶解釜から出た直後の前記ドープの温度(℃)
  T2:前記中間釜から出た直後の前記ドープの温度(℃)
  T3:前記流延ダイに入る直前の前記ドープの温度(℃)
である。
The method for producing an optical film according to one aspect of the present invention is a method for producing an optical film by producing an optical film by a solution casting method,
A dope is prepared by dissolving a resin having an SP value of 10.5 (MPa) 1/2 or less as a solubility parameter in a solvent in a dissolving pot to prepare a dope, and transferring the dope to a casting die via an intermediate pot. A transfer process;
A casting step of casting the dope from the casting die onto a support,
A method for producing an optical film, wherein the dope transfer step satisfies the following conditional expressions (1) to (3);
(1) T1>T2> T3
(2) T1-T3 ≦ 25 ° C.
(3) 5 ° C <T2-T3 <15 ° C
However,
T1: Temperature (° C.) of the dope immediately after leaving the melting pot
T2: temperature of the dope immediately after leaving the intermediate pot (° C.)
T3: temperature of the dope immediately before entering the casting die (° C.)
It is.
 上記の光学フィルムの製造方法によれば、低SP値の樹脂を用いた溶液製膜において、膜厚偏差および位相差偏差を低減することができる。 According to the method for producing an optical film described above, the film thickness deviation and the phase difference deviation can be reduced in a solution casting using a resin having a low SP value.
本発明の実施の形態に係る光学フィルムの製造装置の概略の構成を示す説明図である。It is an explanatory view showing the schematic structure of the manufacturing device of the optical film concerning an embodiment of the invention. 上記光学フィルムの製造工程の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing process of the said optical film. 上記製造装置の中間釜と流延ダイとの間を流れるドープの温度履歴を示す説明図である。It is explanatory drawing which shows the temperature history of the dope which flows between an intermediate pot and a casting die of the said manufacturing apparatus.
 本発明の実施の一形態について、図面に基づいて説明すれば以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。なお、本発明は、以下の内容に限定されるわけではない。 An embodiment of the present invention will be described below with reference to the drawings. In this specification, when the numerical range is described as AB, the numerical range includes the lower limit A and the upper limit B. In addition, this invention is not necessarily limited to the following content.
 〔光学フィルムの製造方法〕
 図1は、本実施形態の光学フィルムの製造装置50の概略の構成を示す説明図である。また、図2は、光学フィルムの製造工程の流れを示すフローチャートである。本実施形態の光学フィルムの製造方法は、溶液流延製膜法によって光学フィルムを製造する方法であり、図2に示すように、ドープ移送工程(S1)、流延工程(S2)、剥離工程(S3)、第1乾燥工程(S4)、延伸工程(S5)、第2乾燥工程(S6)、切断工程(S7)、エンボス加工工程(S8)、巻取工程(S9)を含む。以下、図1および図2を参照しながら、各工程について説明する。
(Production method of optical film)
FIG. 1 is an explanatory diagram illustrating a schematic configuration of an optical film manufacturing apparatus 50 according to the present embodiment. FIG. 2 is a flowchart showing a flow of a manufacturing process of the optical film. The method for producing an optical film according to the present embodiment is a method for producing an optical film by a solution casting method, and as shown in FIG. 2, a dope transfer step (S1), a casting step (S2), and a peeling step. (S3), a first drying step (S4), a stretching step (S5), a second drying step (S6), a cutting step (S7), an embossing step (S8), and a winding step (S9). Hereinafter, each step will be described with reference to FIGS.
 (S1;ドープ移送工程)
 ドープ移送工程では、ドープ移送部1において、支持体3上に流延する対象となるドープを作製(調製)し、流延ダイ2に移送する。なお、ドープ移送工程の詳細については後述する。
(S1: dope transfer step)
In the dope transferring step, a dope to be cast on the support 3 is prepared (prepared) in the dope transferring section 1 and transferred to the casting die 2. The details of the dope transfer step will be described later.
 (S2;流延工程)
 流延工程では、ドープ移送部1によって流延ダイ2に送液されたドープを、無限に移送する回転駆動ステンレス鋼製エンドレスベルトよりなる支持体3上の流延位置に流延ダイ2から流延する。そして、支持体3は、流延されたドープ(流延ドープ)を支持しながら搬送する。これにより、支持体3上に流延膜(ウェブ)5が形成される。
(S2: casting process)
In the casting step, the dope fed to the casting die 2 by the dope transfer unit 1 is transferred from the casting die 2 to a casting position on a support 3 made of a rotary drive stainless steel endless belt for infinitely transferring the dope. Extend. The support 3 transports the cast dope (cast dope) while supporting it. Thus, a casting film (web) 5 is formed on the support 3.
 支持体3は、一対のロール3a・3bおよびこれらの間に位置する複数のロール(不図示)によって保持されている。ロール3a・3bの一方または両方には、支持体3に張力を付与する駆動装置(不図示)が設けられており、これによって支持体3は張力が掛けられて張った状態で使用される。 The support 3 is held by a pair of rolls 3a and 3b and a plurality of rolls (not shown) located between them. One or both of the rolls 3a and 3b are provided with a driving device (not shown) for applying tension to the support 3, whereby the support 3 is used under tension.
 流延工程では、支持体3上に流延されたドープにより形成されたウェブ5を、支持体3上で加熱し、支持体3から剥離ロール4によってウェブ5が剥離可能になるまで溶媒を蒸発させる。溶媒を蒸発させるには、ウェブ側から風を吹かせる方法や、支持体3の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があり、適宜、単独であるいは組み合わせて用いればよい。 In the casting step, the web 5 formed by the dope cast on the support 3 is heated on the support 3 and the solvent is evaporated from the support 3 until the web 5 can be peeled off by the peeling roll 4. Let it. To evaporate the solvent, there are a method of blowing air from the web side, a method of transferring heat from the back surface of the support 3 by liquid, a method of transferring heat from the front and back by radiant heat, and the like, which is used alone or in combination as appropriate. Just fine.
 (S3;剥離工程)
 上記の流延工程にて、支持体3上でウェブ5が剥離可能な膜強度となるまで乾燥固化あるいは冷却凝固させた後、剥離工程では、ウェブ5を、自己支持性を持たせたまま、支持体3から剥離ロール4によって剥離する。
(S3: peeling step)
In the above casting step, after the web 5 is dried and solidified or cooled and solidified on the support 3 until the web 5 has a releasable film strength, in the stripping step, the web 5 is left with a self-supporting property. Peeling is performed from the support 3 by the peeling roll 4.
 なお、剥離時点での支持体3上でのウェブ5の残留溶媒量は、乾燥の条件の強弱、支持体3の長さ等により、25~120質量%の範囲であることが望ましい。残留溶媒量がより多い時点で剥離する場合、ウェブ5が柔らか過ぎると剥離時平面性を損ね、剥離張力によるシワや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。なお、残留溶媒量は、下記式で定義される。 The residual solvent amount of the web 5 on the support 3 at the time of peeling is desirably in the range of 25 to 120% by mass depending on the strength of the drying conditions, the length of the support 3, and the like. When the web 5 is peeled off at a point where the residual solvent amount is larger, if the web 5 is too soft, the flatness at the time of peeling is impaired, and wrinkles and vertical stripes are easily generated due to the peeling tension. The amount of solvent is determined. The residual solvent amount is defined by the following equation.
 残留溶媒量(質量%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 ここで、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (mass%) = (mass before heat treatment of web−mass after heat treatment of web) / (mass after heat treatment of web) × 100
Here, the heat treatment at the time of measuring the amount of residual solvent means that heat treatment is performed at 115 ° C. for one hour.
 (S4;第1乾燥工程)
 支持体3から剥離ロール4によって剥離されたウェブ5は、乾燥装置6にて乾燥される。乾燥装置6内では、複数の搬送ロールによってウェブ5が搬送され、その間にウェブ5が乾燥される。乾燥装置6での乾燥方法は、特に制限はなく、一般的に熱風、赤外線、加熱ロール、マイクロ波等を用いてウェブ5を乾燥させる。簡便さの点から、熱風でウェブ5を乾燥させる方法が好ましい。なお、第1乾燥工程は、必要に応じて行われればよい。
(S4; first drying step)
The web 5 peeled from the support 3 by the peeling roll 4 is dried by the drying device 6. In the drying device 6, the web 5 is transported by a plurality of transport rolls, during which the web 5 is dried. The drying method in the drying device 6 is not particularly limited, and the web 5 is generally dried using hot air, infrared rays, a heating roll, a microwave, or the like. From the viewpoint of simplicity, a method of drying the web 5 with hot air is preferred. Note that the first drying step may be performed as needed.
 (S5延伸工程)
 延伸工程では、乾燥装置6にて乾燥されたウェブ5を、テンター7によって延伸する。このときの延伸方向としては、フィルム搬送方向(MD方向;Machine Direction)、フィルム面内で上記搬送方向に垂直な幅手方向(TD方向;Transverse Direction)、これらの両方向、のいずれかである。延伸工程では、ウェブ5の両側縁部をクリップ等で固定して延伸するテンター方式が、フィルムの平面性や寸法安定性を向上させるために好ましい。なお、テンター7内では、延伸に加えて乾燥を行ってもよい。
(S5 stretching step)
In the stretching step, the web 5 dried by the drying device 6 is stretched by the tenter 7. The stretching direction at this time is either a film transport direction (MD direction; Machine Direction), a width direction perpendicular to the transport direction in the film plane (TD direction; Transverse Direction), or both of these directions. In the stretching step, a tenter method in which both side edges of the web 5 are fixed with clips or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film. In the tenter 7, drying may be performed in addition to stretching.
 なお、S5の延伸工程は、必要に応じて行われればよく、省略することが可能である。例えば、光学フィルムを巻き取った後に延伸を行う場合は、巻取前の上記延伸工程を省略することができる。 延伸 Note that the stretching step of S5 may be performed as needed, and can be omitted. For example, when stretching is performed after winding the optical film, the stretching step before winding can be omitted.
 (S6;第2乾燥工程)
 必要に応じてテンター7にて延伸されたウェブ5は、乾燥装置8にて乾燥される。乾燥装置8内では、複数の搬送ロールによってウェブ5が搬送され、その間にウェブ5が乾燥される。乾燥装置8での乾燥方法は、特に制限はなく、一般的に熱風、赤外線、加熱ロール、マイクロ波等を用いてウェブ5を乾燥させる。簡便さの点から、熱風でウェブ5を乾燥させる方法が好ましい。なお、乾燥装置8に入る前に、ウェブ5の幅手両端部を大まかに切断する工程を行ってもよい。
(S6: second drying step)
The web 5 stretched by the tenter 7 as required is dried by the drying device 8. In the drying device 8, the web 5 is transported by a plurality of transport rolls, during which the web 5 is dried. The drying method in the drying device 8 is not particularly limited, and the web 5 is generally dried using hot air, infrared rays, a heating roll, a microwave, or the like. From the viewpoint of simplicity, a method of drying the web 5 with hot air is preferred. Before entering the drying device 8, a step of roughly cutting both width end portions of the web 5 may be performed.
 ウェブ5は、乾燥装置8にて乾燥された後、光学フィルムFとして巻取装置11に向かって搬送される。 After the web 5 is dried by the drying device 8, the web 5 is conveyed as an optical film F toward the winding device 11.
 (S7;切断工程、S8;エンボス加工工程)
 乾燥装置8と巻取装置11との間には、切断部9およびエンボス加工部10がこの順で配置されている。切断部9では、製膜された光学フィルムFを搬送しながら、その幅手方向の両端部を、スリッターによって切断する切断工程が行われる。光学フィルムFにおいて、両端部の切断後に残った部分は、フィルム製品となる製品部を構成する。一方、光学フィルムFから切断された部分は、シュータにて回収され、再び原材料の一部としてフィルムの製膜に再利用される。
(S7: cutting step, S8: embossing step)
The cutting unit 9 and the embossing unit 10 are arranged between the drying device 8 and the winding device 11 in this order. In the cutting section 9, a cutting step of cutting both ends in the width direction by a slitter while transporting the formed optical film F is performed. In the optical film F, the portions remaining after the cutting at both ends constitute a product part to be a film product. On the other hand, the portion cut from the optical film F is collected by a shooter and reused again as a part of raw materials for forming a film.
 切断工程の後、光学フィルムFの幅手方向の両端部には、エンボス加工部10により、エンボス加工(ナーリング加工)が施される。エンボス加工は、加熱されたエンボスローラーを光学フィルムFの両端部に押し当てることにより行われる。エンボスローラーの表面には細かな凹凸が形成されており、エンボスローラーを光学フィルムFの両端部に押し当てることで、上記両端部に凹凸が形成される。このようなエンボス加工により、次の巻取工程での巻きズレやブロッキング(フィルム同士の貼り付き)を極力抑えることができる。 の 後 After the cutting step, embossing (knurling) is performed by the embossed portion 10 on both ends in the width direction of the optical film F. The embossing is performed by pressing a heated emboss roller against both ends of the optical film F. Fine irregularities are formed on the surface of the embossing roller. By pressing the embossing roller against both ends of the optical film F, the irregularities are formed on the both ends. By such embossing, winding deviation and blocking (sticking between films) in the next winding step can be suppressed as much as possible.
 (S9;巻取工程)
 最後に、エンボス加工が終了した光学フィルムFを、巻取装置11によって巻き取り、光学フィルムFの元巻(フィルムロール)を得る。すなわち、巻取工程では、光学フィルムFを搬送しながら巻芯に巻き取ることにより、フィルムロールが製造される。光学フィルムFの巻き取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。光学フィルムFの巻長は、1000~15000mであることが好ましい。また、その際の幅は1000~3200mm幅であることが望ましく、膜厚は10~60μmであることが望ましい。
(S9: winding step)
Finally, the optical film F on which the embossing has been completed is wound up by the winding device 11 to obtain the original roll (film roll) of the optical film F. That is, in the winding step, a film roll is manufactured by winding the optical film F around a core while transporting the same. The winding method of the optical film F may use a commonly used winder, and there is a method of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method for constant internal stress. You can use them properly. The winding length of the optical film F is preferably from 1,000 to 15,000 m. In this case, the width is desirably 1000 to 3200 mm, and the film thickness is desirably 10 to 60 μm.
 〔ドープ移送工程の詳細について〕
 次に、上述したドープ移送工程の詳細について説明する。ドープ移送工程では、溶解性パラメータ(Solubility Parameter)としてのSP値が10.5(MPa)1/2以下である樹脂を溶解釜21で溶媒に溶解させてドープを作製し、上記ドープを中間釜22を介して流延ダイ2に移送する。中間釜22では、ドープが一時的に保持され、これによって、ドープ中の空気や泡が抜かれる。溶解釜21内のドープは、導管23の中を通って中間釜22に移送され、中間釜22内のドープは、導管24の中を通って流延ダイ2に移送される。また、中間釜22と流延ダイ2との間には、少なくとも1つの熱交換器25が設けられている。熱交換器25では、導管24が加熱媒体または冷却媒体によって加熱または冷却され、これによって、導管24の中を通るドープ、つまり、中間釜22から流延ダイ2に向かって流れるドープが加熱または冷却される。中間釜22と流延ダイ2との間に熱交換器25を複数設置した場合は、上記ドープを一旦加熱してから冷却したり、一旦冷却してから加熱することが可能となる。
[Details of the dope transfer process]
Next, details of the above-described dope transfer step will be described. In the dope transferring step, a resin having an SP value as a solubility parameter (Solubility Parameter) of 10.5 (MPa) 1/2 or less is dissolved in a solvent in a dissolving vessel 21 to prepare a dope, and the dope is transferred to an intermediate vessel. It is transferred to the casting die 2 via 22. In the intermediate pot 22, the dope is temporarily held, whereby air and bubbles in the dope are removed. The dope in the melting pot 21 is transferred to the intermediate pot 22 through the conduit 23, and the dope in the intermediate pot 22 is transferred to the casting die 2 through the conduit 24. At least one heat exchanger 25 is provided between the intermediate pot 22 and the casting die 2. In the heat exchanger 25, the conduit 24 is heated or cooled by a heating medium or a cooling medium, so that the dope passing through the conduit 24, that is, the dope flowing from the intermediate tank 22 toward the casting die 2 is heated or cooled. Is done. When a plurality of heat exchangers 25 are provided between the intermediate pot 22 and the casting die 2, it is possible to heat the dope once and then cool it, or to cool it once and then heat it.
 ここで、上記のSP値について説明する。SP値とは、分子凝集エネルギーの平方根で表される値で、Polymer Hand Book (Second Edition)第IV章 Solubility Parameter Valuesに記載があり、その値を用いる。ただし、本願では、単位は(MPa)1/2であり、25℃における値を示す。なお、データの記載がないものについては、R.F.Fedors,Polymer Engineering Science,14,p147(1974)に記載の方法で計算することができる。すなわち、基本的には、下記式に従って計算できる。
 溶解度パラメータ値(SP値)=(△E/V)1/2
 ここで、△Eは凝集エネルギー密度を表す。Vは分子容(モル体積)を表す。
Here, the above SP value will be described. The SP value is a value represented by the square root of the molecular cohesion energy, which is described in Polymer Hand Book (Second Edition), Chapter IV, Solubility Parameter Values, and is used. However, in the present application, the unit is (MPa) 1/2 and shows a value at 25 ° C. In addition, about what has no description of data, R. F. It can be calculated by the method described in Fedors, Polymer Engineering Science, 14, p147 (1974). That is, it can be basically calculated according to the following equation.
Solubility parameter value (SP value) = (△ E / V) 1/2
Here, ΔE represents the cohesive energy density. V represents molecular volume (molar volume).
 上記の溶解度パラメータ値(SP値)は、上記R.F.Fedorsの考え方に基づいて、Scigress Explorer Ver.2.4(富士通(株)製)を用いて算出することができる。 は The above solubility parameter value (SP value) F. Based on the concept of Fedors, Scigres @ Explorer @ Ver. 2.4 (manufactured by Fujitsu Limited).
 SP値が10.5(MPa)1/2以下の樹脂としては、例えば、シクロオレフィン系樹脂(SP値;9.6(MPa)1/2)、ポリカーボネート系樹脂(SP値;10.2(MPa)1/2)、アクリル系樹脂(SP値;9.5(MPa)1/2)を用いることができる。なお、低SP値の樹脂は、上記の樹脂に限定されるわけではなく、TAC(SP値;10.9(MPa)1/2)以外の樹脂であればほぼ用いることができる。 Examples of the resin having an SP value of 10.5 (MPa) 1/2 or less include a cycloolefin resin (SP value: 9.6 (MPa) 1/2 ) and a polycarbonate resin (SP value: 10.2 ( MPa) 1/2 ) and an acrylic resin (SP value: 9.5 (MPa) 1/2 ). Note that the resin having a low SP value is not limited to the above-mentioned resins, and any resin other than TAC (SP value; 10.9 (MPa) 1/2 ) can be used.
 溶媒としては、良溶媒および貧溶媒の混合溶媒を用いることができる。なお、良溶媒とは、樹脂を溶解させる性質(溶解性)を有する有機溶媒を言い、1,3-ジオキソラン、THF(テトラヒドロフラン)、メチルエチルケトン、アセトン、酢酸メチル、塩化メチレン(ジクロロメタン、メチレンクロライド)、トルエンなどがこれに相当する。一方、貧溶媒とは、単独では樹脂を溶解させる性質を有していない溶媒を言い、メタノールやエタノールなどがこれに相当する。 混合 As the solvent, a mixed solvent of a good solvent and a poor solvent can be used. Note that a good solvent refers to an organic solvent having a property of dissolving a resin (solubility), such as 1,3-dioxolan, THF (tetrahydrofuran), methyl ethyl ketone, acetone, methyl acetate, methylene chloride (dichloromethane, methylene chloride), Toluene and the like correspond to this. On the other hand, a poor solvent refers to a solvent that does not have the property of dissolving a resin by itself, such as methanol or ethanol.
 本実施形態では、ドープを溶解釜21から中間釜22を介して流延ダイ2に移送する工程において、以下の条件式(1)~(3)を満足する。すなわち、
  (1)T1>T2>T3
  (2)T1-T3≦25℃
  (3)5℃<T2-T3<15℃
 ただし、
  T1:溶解釜21から出た直後のドープの温度(℃)
  T2:中間釜22から出た直後のドープの温度(℃)
  T3:流延ダイ2に入る直前のドープの温度(℃)
である。
In the present embodiment, in the step of transferring the dope from the melting pot 21 to the casting die 2 via the intermediate pot 22, the following conditional expressions (1) to (3) are satisfied. That is,
(1) T1>T2> T3
(2) T1-T3 ≦ 25 ° C.
(3) 5 ° C <T2-T3 <15 ° C
However,
T1: Temperature of the dope immediately after coming out of the melting pot 21 (° C.)
T2: Dope temperature (° C.) immediately after leaving the intermediate pot 22
T3: Temperature of dope just before entering casting die 2 (° C)
It is.
 条件式(1)は、溶解釜21から出た直後、中間釜22から出た直後、流延ダイ2に入る直前の各ドープの温度の大小関係を規定している。条件式(2)は、溶解釜21から出た直後のドープと、流延ダイ2に入る直前のドープとの間の温度差の適切な範囲を規定している。条件式(3)は、中間釜22から出た直後のドープと、流延ダイ2に入る直前のドープとの間の温度差の適切な範囲を規定している。条件式(1)~(3)を満足することにより、低SP値を用いた溶液製膜において、光学フィルムFの膜厚偏差および位相差偏差を低減することができる。その理由について、本願発明者は以下のように考えている。 Conditional expression (1) defines the magnitude relationship between the temperatures of the respective dopes immediately after leaving the melting vessel 21, immediately after leaving the intermediate vessel 22, and immediately before entering the casting die 2. Conditional expression (2) defines an appropriate range of the temperature difference between the dope immediately after leaving the melting vessel 21 and the dope immediately before entering the casting die 2. Conditional expression (3) defines an appropriate range of the temperature difference between the dope immediately after leaving the intermediate pot 22 and the dope immediately before entering the casting die 2. By satisfying conditional expressions (1) to (3), it is possible to reduce the thickness deviation and the phase difference deviation of the optical film F in the solution film formation using a low SP value. The present inventor considers the reason as follows.
 条件式(1)を満足することにより、流延ダイ2に入る直前のドープは、溶解釜21から出た直後のドープ、および中間釜22から出た直後のドープよりも冷却されることになる。このように、低SP値の樹脂を含む低粘度のドープが、溶解釜21から流延ダイ2への移送過程で冷却されることにより、ドープの一部に高粘度の領域を発生させることができる。しかも、条件式(2)をさらに満足することにより、ドープの冷却の度合いが制限されるため(ドープが冷却されすぎないため)、ドープ中に高粘度の領域が発生しすぎるのを抑えることができる。 By satisfying conditional expression (1), the dope immediately before entering the casting die 2 is cooled more than the dope immediately after leaving the melting pot 21 and the dope immediately after leaving the intermediate pot 22. . As described above, the low-viscosity dope containing the resin having a low SP value is cooled in the process of being transferred from the melting vessel 21 to the casting die 2, thereby generating a high-viscosity region in a part of the dope. it can. Moreover, by further satisfying the conditional expression (2), the degree of cooling of the dope is limited (because the dope is not cooled too much), so that it is possible to suppress the generation of a region having a high viscosity in the dope. it can.
 また、T2-T3の値(温度差)が小さいほど、ドープの冷却による高粘度の領域の発生を抑えられ、T2-T3の値が大きいほど、ドープの冷却による高粘度の領域の発生が促進されるが、T2-T3の値が条件式(3)を満足する範囲では、ドープ中に高粘度の領域と低粘度の領域とが共存する。これにより、互いの領域の相互作用によって、膜厚偏差および位相差偏差の発生を低減することが可能となる。 Further, as the value of T2-T3 (temperature difference) is smaller, the generation of a high-viscosity region due to cooling of the dope is suppressed, and as the value of T2-T3 is larger, the generation of a high-viscosity region due to cooling of the dope is promoted. However, as long as the value of T2−T3 satisfies the conditional expression (3), a high-viscosity region and a low-viscosity region coexist in the dope. Thereby, it is possible to reduce the occurrence of the film thickness deviation and the phase difference deviation due to the interaction between the regions.
 すなわち、低SP値の樹脂を含む低粘度のドープは、流延ダイ2からの流延時および支持体3上での搬送時に、周囲の風や温度の影響を受けやすく、支持体3上でウェブ5の表面が変形して膜厚偏差および位相差偏差が生じやすくなることは前述の通りである。本実施形態のように、ドープ中に高粘度の領域を発生させることにより、ドープの支持体3上への流延時および搬送時に、風等の影響でウェブ5の表面が変形するのを抑えることができる。これにより、上記流延時の風等の影響によって膜厚偏差および位相差偏差が発生するのを低減することができる。 That is, a low-viscosity dope containing a resin having a low SP value is easily affected by the surrounding wind and temperature during casting from the casting die 2 and transporting on the support 3. As described above, the surface of No. 5 is easily deformed and the thickness deviation and the phase difference deviation are likely to occur. By generating a high-viscosity region in the dope as in the present embodiment, it is possible to prevent the surface of the web 5 from being deformed by the influence of wind or the like at the time of casting and transporting the dope onto the support 3. Can be. Thereby, it is possible to reduce the occurrence of the film thickness deviation and the phase difference deviation due to the influence of the wind at the time of the casting.
 また、ドープを冷却しすぎて、ドープ中に高粘度の領域が発生しすぎると、ドープ中にゲル状物質が発生しやすくなる。さらに、支持体3上において、流延ダイ2から吐出された直後にドープの表面に凹凸が生じやすくなり、乾燥ムラによる応力の影響でドープの表面がレベリング(平坦化)されにくくなる。この場合、ドープの表面変形が乾燥後にウェブ5の表面変形として残存する。このため、ウェブ5の表面変形に起因して、最終的に得られる光学フィルムFに膜厚偏差および位相差偏差が生じる。 と If the dope is excessively cooled and a region having a high viscosity is generated in the dope, a gel-like substance is easily generated in the dope. Further, the surface of the dope is likely to have irregularities immediately after being discharged from the casting die 2 on the support 3, and the surface of the dope is less likely to be leveled (flattened) by the influence of stress due to uneven drying. In this case, the surface deformation of the dope remains as the surface deformation of the web 5 after drying. For this reason, due to the surface deformation of the web 5, a thickness deviation and a phase difference deviation occur in the optical film F finally obtained.
 しかし、本実施形態では、ドープ中に、冷却しすぎによる高粘度の領域の増大を抑えながら、高粘度の領域と低粘度の領域とを共存させることができるため、支持体3上への流延直後に、高粘度の領域の存在によってドープの表面に凹凸が生じても、ドープの粘度の低い領域が流動し、乾燥ムラによる応力が低粘度の領域によって周辺に伝達されるため、ドープ全体の表面がレベリングされる。これにより、ウェブ5の表面変形を抑えることができるため、上記表面変形に起因して、最終的に得られる光学フィルムFに膜厚偏差および位相差偏差が生じるのを低減することができる。さらに、ドープ中に低粘度の領域が存在することにより、ゲル状物質の発生も抑えられる。 However, in the present embodiment, the high-viscosity region and the low-viscosity region can coexist in the dope while suppressing the increase in the high-viscosity region due to excessive cooling. Immediately after rolling, even if the surface of the dope has irregularities due to the presence of the high-viscosity region, the low-viscosity region of the dope flows, and the stress due to uneven drying is transmitted to the periphery by the low-viscosity region. Is leveled. Thereby, since the surface deformation of the web 5 can be suppressed, it is possible to reduce the occurrence of the thickness deviation and the phase difference deviation in the optical film F finally obtained due to the surface deformation. Further, the presence of a low-viscosity region in the dope also suppresses the generation of a gel-like substance.
 このように、条件式(1)~(3)を満足することにより、ドープ中に低粘度の領域を残して流動性を維持しつつ、芯となる高粘度の領域を(過剰とはならないように)発生させることで、流延時の局所的な風による影響や、乾燥ムラによる応力を低減した上で、流動性の高い低粘度の領域の移動によってドープ(ウェブ5)の表面全体をレベリングすることができる。その結果、ゲル状物質の発生、膜厚偏差および位相差偏差の発生を低減することができる。 As described above, by satisfying conditional expressions (1) to (3), while maintaining the fluidity while leaving a low viscosity region in the dope, a high viscosity region serving as a core is formed so as not to be excessive. ) To reduce the influence of local wind during casting and the stress due to drying unevenness, and then level the entire surface of the dope (web 5) by moving a region with high fluidity and low viscosity. be able to. As a result, it is possible to reduce the occurrence of the gel-like substance, the thickness deviation, and the phase difference deviation.
 上記したS1のドープ移送工程では、以下の条件式(4)をさらに満足することが望ましい。すなわち、
  (4)5℃<Tmax-Tmin<30℃
 ただし、
  Tmax:中間釜22と流延ダイ2との間でのドープの最大温度(℃)
  Tmin:中間釜22と流延ダイ2との間でのドープの最小温度(℃)
である。なお、条件式(4)を満足するようなドープの温度変化は、上記したように少なくとも1個の熱交換器25によって導管24内を流れるドープを加熱または冷却することによって実現することができる。
In the above-described doping transfer step of S1, it is desirable that the following conditional expression (4) is further satisfied. That is,
(4) 5 ° C <Tmax-Tmin <30 ° C
However,
Tmax: the maximum temperature of the dope between the intermediate pot 22 and the casting die 2 (° C.)
Tmin: minimum temperature (° C.) of dope between the intermediate pot 22 and the casting die 2
It is. In addition, the temperature change of the dope that satisfies the conditional expression (4) can be realized by heating or cooling the dope flowing in the conduit 24 by at least one heat exchanger 25 as described above.
 図3は、中間釜22と流延ダイ2との間を流れるドープの温度履歴(ドープの通過位置ごとの温度)を示している。なお、横軸の通過点0の位置は、中間釜22の位置に相当し、通過点6の位置は、流延ダイ2の位置に相当する。条件式(4)を満足することにより、中間釜22と流延ダイ2との間で、様々な温度履歴を実現することができる。例えば、中間釜22から出るドープの温度が一定(同じ)であり、流延ダイ2に入るドープの温度が一定(同じ)であった場合でも、ドープの温度履歴として、中間釜22から流延ダイ2にドープが向かうにつれて、ドープの温度が一旦上昇して下降するケース(実線A参照)、ドープの温度が一旦下降して上昇するケース(破線B参照)、ドープの温度が一旦下降して上昇し、再度下降するケース(一点鎖線C参照)などを実現することができる。なお、図中のTa、TbおよびTcは、それぞれのケース(温度履歴)におけるドープの最大温度Tmaxと最小温度Tminとの差に相当する。 FIG. 3 shows the temperature history of the dope flowing between the intermediate pot 22 and the casting die 2 (temperature at each dope passage position). The position of the passing point 0 on the horizontal axis corresponds to the position of the intermediate shuttle 22, and the position of the passing point 6 corresponds to the position of the casting die 2. By satisfying conditional expression (4), various temperature histories can be realized between the intermediate pot 22 and the casting die 2. For example, even if the temperature of the dope coming out of the intermediate kettle 22 is constant (same) and the temperature of the dope entering the casting die 2 is constant (same), the temperature of the dope is cast from the intermediate kettle 22 as the temperature history of the dope. The case where the temperature of the dope rises and falls once as the dope moves toward the die 2 (see the solid line A), the case where the temperature of the dope falls and rises once (see the broken line B), and the temperature of the dope falls once It is possible to realize a case of rising and falling again (see the dashed line C). Ta, Tb, and Tc in the figure correspond to the difference between the maximum temperature Tmax and the minimum temperature Tmin of the dope in each case (temperature history).
 条件式(4)を満足するように、中間釜22と流延ダイ2との間で、ドープ温度を上昇または下降させることにより、ドープ中で低粘度の領域と高粘度の領域とがバランスよく混ざり合う。これにより、流動性の高い低粘度の領域の移動によってドープ(ウェブ5)の表面全体をレベリングする効果を高めることができ、少なくとも膜厚偏差をさらに低減することが可能となる。 By raising or lowering the dope temperature between the intermediate pot 22 and the casting die 2 so as to satisfy the conditional expression (4), the low-viscosity region and the high-viscosity region in the dope are well-balanced. Mix. Thereby, the effect of leveling the entire surface of the dope (web 5) by movement of the region with high fluidity and low viscosity can be enhanced, and at least the film thickness deviation can be further reduced.
 特に、シクロオレフィン系樹脂を溶媒に溶解させたドープを用いた場合、以下の条件式(4a)を満足することが望ましい。すなわち、
  (4a)10℃≦Tmax-Tmin≦15℃
である。シクロオレフィン系樹脂を用いた溶液製膜では、条件式(4a)をさらに満足することにより、低粘度の領域によるウェブ表面のレベリング効果により、膜厚偏差および位相差偏差の両方を確実に低減することが可能となる。
In particular, when a dope in which a cycloolefin-based resin is dissolved in a solvent is used, it is preferable that the following conditional expression (4a) is satisfied. That is,
(4a) 10 ° C. ≦ Tmax−Tmin ≦ 15 ° C.
It is. In the solution casting using a cycloolefin-based resin, by further satisfying the conditional expression (4a), both the film thickness deviation and the phase difference deviation are surely reduced by the leveling effect of the web surface by the low viscosity region. It becomes possible.
 〔実施例〕
 以下、本実施形態の光学フィルムの製造方法の具体例な実施例について、比較例も挙げながら説明する。なお、本発明は、以下の実施例には限定されない。
〔Example〕
Hereinafter, specific examples of the method for manufacturing an optical film of the present embodiment will be described with reference to comparative examples. Note that the present invention is not limited to the following embodiments.
 <実施例1>
 シクロオレフィン系樹脂フィルム(COPフィルム)からなる光学フィルム1を、以下の製造方法(溶液流延製膜法)によって作製した。
<Example 1>
An optical film 1 made of a cycloolefin-based resin film (COP film) was produced by the following production method (solution casting method).
 (二酸化ケイ素分散希釈液の調製)
 10質量部のアエロジルR812と、80質量部のエタノールとをディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行い、二酸化ケイ素分散液を調製した。調製した二酸化ケイ素分散液に、80質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合した後、微粒子分散希釈液濾過器(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過して二酸化ケイ素分散希釈液を調製した。
(Preparation of silicon dioxide dispersion diluent)
10 parts by mass of Aerosil R812 and 80 parts by mass of ethanol were stirred and mixed with a dissolver for 30 minutes, and then dispersed with Manton-Gaulin to prepare a silicon dioxide dispersion. 80 parts by mass of dichloromethane was added to the prepared silicon dioxide dispersion with stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes. 1N) to prepare a silicon dioxide dispersion diluent.
 (ドープの調製)
 熱可塑性樹脂:シクロオレフィン系樹脂
        (G7810、JSR株式会社製)    145質量部
 微粒子:二酸化ケイ素分散希釈液             25質量部
 ジクロロメタン                    360質量部
 エタノール                       12質量部
 以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙(株)製の安積濾紙No.24を使用して濾過し、ドープを調製した。
(Preparation of dope)
Thermoplastic resin: Cycloolefin resin (G7810, manufactured by JSR Corporation) 145 parts by mass Fine particles: Silicon dioxide dispersion diluent 25 parts by mass Dichloromethane 360 parts by mass Ethanol 12 parts by mass The above is charged into a closed container, heated and stirred. While completely dissolved, and Azumi Filter Paper No. The resulting solution was filtered using No. 24 to prepare a dope.
 次に、ベルト流延製膜装置を用い、上記で調整したドープを、溶解釜から中間釜を介して流延ダイに移送した。ここで、溶解釜から出た直後のドープの温度をT1(℃)とし、中間釜から出た直後のドープの温度をT2(℃)とし、流延ダイに入る直前のドープの温度をT3(℃)としたとき、T1、T2、T3の各温度を、それぞれ表1に示す温度に調整した。このとき、T1は、溶媒(ここではジクロロメタン)の沸点(約39.5℃)以上の温度に設定した。また、中間釜と流延ダイとの間でのドープの最大温度および最小温度をそれぞれTmax(℃)およびTmin(℃)としたときに、中間釜と流延ダイとの間に少なくとも1個の熱交換器を設けて、TmaxおよびTminを、表1で示した値となるように調整した。 (5) Next, using a belt casting film forming apparatus, the dope prepared above was transferred from the melting pot to the casting die via the intermediate pot. Here, the temperature of the dope immediately after leaving the melting pot is T1 (° C.), the temperature of the dope immediately after leaving the intermediate pot is T2 (° C.), and the temperature of the dope immediately before entering the casting die is T3 ( ° C), each temperature of T1, T2, and T3 was adjusted to the temperature shown in Table 1, respectively. At this time, T1 was set to a temperature equal to or higher than the boiling point (about 39.5 ° C.) of the solvent (here, dichloromethane). When the maximum temperature and the minimum temperature of the dope between the intermediate pot and the casting die are Tmax (° C.) and Tmin (° C.), respectively, at least one dope is provided between the intermediate pot and the casting die. A heat exchanger was provided, and Tmax and Tmin were adjusted to have the values shown in Table 1.
 なお、T1、T2、T3の各温度の調整は、以下のようにして行った。T1については、溶解釜の外側に備えたジャケットに温水または冷水を流して温度調整を行った。T2については、中間釜の外側に備えたジャケットに温水または冷水を流して温度調整を行った。T3については、溶解釜と中間釜との間の熱交換器によって(配管外側に加熱媒体または冷却媒体を流すことによって)温度調整を行った。 調整 In addition, the adjustment of each temperature of T1, T2, and T3 was performed as follows. For T1, the temperature was adjusted by flowing hot or cold water through a jacket provided outside the melting pot. For T2, the temperature was adjusted by flowing hot or cold water through a jacket provided outside the intermediate pot. As for T3, the temperature was adjusted by a heat exchanger between the melting pot and the intermediate pot (by flowing a heating medium or a cooling medium outside the pipe).
 また、T1、T2、T3、Tmax、Tminの各温度の測定は、測温計(岡崎製作所製の測温抵抗体;Model No.RBN)を用いて以下のようにして行った。T1については、溶解釜内に上記の測温計を設置し、測温計がドープに全て浸かっている状態でドープ温度を測定し、得られた結果をT1とした。T2については、中間釜を出たドープが通る配管において、中間釜の出口と配管とのつなぎ目から、ドープ進行方向に1mの位置までの配管内に上記の測温計を設置してドープ温度を測定し、得られた結果をT2とした。T3については、流延ダイに入る直前の配管において、その配管と流延ダイとのつなぎ目からドープ進行方向とは逆方向に1mの位置までの配管内に上記の測温計を設置してドープ温度を測定し、得られた結果をT3とした。TmaxおよびTminについては、中間釜と流延ダイとの間の配管内で、T2測定用の測温計とT3測定用の測温計との間に50cmおきに測温計を設置してドープ温度を測定し、測定した複数箇所の温度のうちで最大の温度をTmaxとし、最小の温度をTminとした。 Moreover, each temperature of T1, T2, T3, Tmax, and Tmin was measured as follows using a thermometer (RTD made by Okazaki Seisakusho; Model No. RBN). As for T1, the above-mentioned thermometer was set in the melting vessel, and the dope temperature was measured in a state where the thermometer was completely immersed in the dope. The obtained result was defined as T1. Regarding T2, in the pipe through which the dope that has exited the intermediate kettle passes, the above-mentioned thermometer is installed in the pipe from the joint between the outlet of the intermediate kettle and the pipe to a position 1 m in the dope advancing direction to adjust the dope temperature. The measurement was performed, and the obtained result was defined as T2. Regarding T3, the above-mentioned thermometer was installed in a pipe just before entering the casting die, in a pipe 1 m away from the joint between the pipe and the casting die in a direction opposite to the dope advancing direction. The temperature was measured, and the obtained result was defined as T3. Regarding Tmax and Tmin, dope by installing a thermometer every 50 cm between the thermometer for T2 measurement and the thermometer for T3 measurement in the pipe between the intermediate pot and the casting die. The temperature was measured, and the maximum temperature was measured as Tmax and the minimum temperature was measured as Tmin among the plurality of measured temperatures.
 続いて、流延ダイからステンレスバンド支持体上にドープを均一に流延し、ステンレスバンド支持体で、残留溶媒量が80質量%になるまで溶媒を蒸発させてウェブを形成し、ステンレスバンド支持体上からウェブを剥離した。得られたウェブを35℃に保持して更に溶媒を蒸発させ、1.15m幅にスリットし、160℃の乾燥温度で乾燥させた。その後、130℃の乾燥装置内を多数のローラーで搬送させながら15分間乾燥させた後、1.0m幅にスリットし、巻芯に巻き取り、光学フィルム1を得た。光学フィルム1の厚さは40μm、巻長は5000mであった。 Subsequently, the dope is uniformly cast on the stainless steel band support from the casting die, and the web is formed on the stainless steel band support by evaporating the solvent until the residual solvent amount becomes 80% by mass. The web was peeled off from the body. The obtained web was kept at 35 ° C to further evaporate the solvent, slit to a width of 1.15 m, and dried at a drying temperature of 160 ° C. Thereafter, the film was dried for 15 minutes while being conveyed by a number of rollers in a drying apparatus at 130 ° C., slit to a width of 1.0 m, and wound around a core to obtain an optical film 1. The thickness of the optical film 1 was 40 μm, and the winding length was 5000 m.
 <実施例2~16、比較例1~6>
 溶媒に溶解する樹脂を、表1に記載の樹脂に変更し、ドープの移送工程におけるT1、T2、T3、Tmax、Tminの各温度を、表1に記載の温度となるように調整した以外は、実施例1と同様にして、実施例2~16の光学フィルム2~16、および比較例1~6の光学フィルム21~26を作製した。このうち、実施例9~14においては、Tmax=T2、Tmin=T3の条件で、中間釜と流延ダイとの間でドープの加熱および冷却を熱交換器により少なくとも1回ずつ繰り返した。また、実施例16では、T2からT3にリニアに温度を変化させた。
<Examples 2 to 16, Comparative Examples 1 to 6>
Except that the resin dissolved in the solvent was changed to the resin shown in Table 1, and the temperatures of T1, T2, T3, Tmax, and Tmin in the dope transfer step were adjusted to the temperatures shown in Table 1. In the same manner as in Example 1, optical films 2 to 16 of Examples 2 to 16 and optical films 21 to 26 of Comparative Examples 1 to 6 were produced. In Examples 9 to 14, heating and cooling of the dope between the intermediate pot and the casting die was repeated at least once by a heat exchanger under the conditions of Tmax = T2 and Tmin = T3. In Example 16, the temperature was changed linearly from T2 to T3.
 <評価>
 (膜厚偏差)
 実施例1~16の光学フィルム1~16、および比較例1~6の光学フィルム21~26について、デジマチックシックネスゲージ(ミツトヨ製)を用いて、幅手方向の膜厚を測定した。膜厚の測定は、得られた1.0m幅のフィルムに対して、左端部から右端部まで、幅手方向に沿って100mm間隔で行って厚みのバラツキ(幅手方向におけるフィルム厚みの最大値と最小値との差)を求めた。そして、この測定を長手方向の50mごとに3回行い、その平均値を求めた。そして、以下の評価基準に基づいて、厚みのバラツキ(膜厚偏差)について評価した。なお、厚みバラツキは、小さいほうが好ましい。
 《評価基準》
 5:厚みバラツキが1μm未満である(非常に良好である)。
 4:厚みバラツキが1μm以上2μm未満である(かなり良好である)。
 3:厚みバラツキが2μm以上3μm未満である(良好である)。
 2:厚みバラツキが3μm以上5μm未満である(不良である)。
 1:厚みバラツキが5μm以上である(かなり不良である)。
<Evaluation>
(Thickness deviation)
With respect to the optical films 1 to 16 of Examples 1 to 16 and the optical films 21 to 26 of Comparative Examples 1 to 6, the film thickness in the width direction was measured using a digimatic thickness gauge (manufactured by Mitutoyo). The measurement of the film thickness was performed on the obtained film having a width of 1.0 m from the left end to the right end at intervals of 100 mm along the width direction, and the thickness was varied (the maximum value of the film thickness in the width direction). (Difference between the minimum value and the minimum value). This measurement was performed three times every 50 m in the longitudinal direction, and the average value was obtained. Then, the thickness variation (film thickness deviation) was evaluated based on the following evaluation criteria. The smaller the thickness variation, the better.
"Evaluation criteria"
5: Thickness variation is less than 1 μm (very good).
4: Thickness variation is 1 μm or more and less than 2 μm (very good).
3: The thickness variation is 2 μm or more and less than 3 μm (good).
2: The thickness variation is 3 μm or more and less than 5 μm (defective).
1: Thickness variation is 5 μm or more (very poor).
 (位相差偏差)
 実施例1~16の光学フィルム1~16、および比較例1~6の光学フィルム21~26について、Ro測定装置(Axometrics製 AXOSCAN-AFM-2000x500H)を用いて、幅手方向において面内位相差(リタデーション)Roを測定した。Ro測定は、上述の厚みバラツキの測定と同様にして行った。
(Phase difference deviation)
For the optical films 1 to 16 of Examples 1 to 16 and the optical films 21 to 26 of Comparative Examples 1 to 6, in-plane retardation in the width direction using a Ro measurement device (AXOSCAN-AFM-2000x500H manufactured by Axometrics). (Retardation) Ro was measured. The Ro measurement was performed in the same manner as the measurement of the thickness variation described above.
 すなわち、Roの測定は、得られた1.0m幅のフィルムに対して、左端部から右端部まで、幅手方向に沿って100mm間隔で行ってRoのバラツキ(幅手方向におけるRoの最大値と最小値との差)を求めた。そして、この測定を長手方向の50mごとに3回行い、その平均値を求めた。そして、以下の評価基準に基づいて、Roのバラツキ(位相差偏差)について評価した。なお、Roのバラツキは、小さいほうが好ましい。
 《評価基準》
 5:Roバラツキが1nm未満である(非常に良好である)。
 4:Roバラツキが1nm以上2nm未満である(かなり良好である)。
 3:Roバラツキが2nm以上3nm未満である(良好である)。
 2:Roバラツキが3nm以上5nm未満である(不良である)。
 1:Roバラツキが5nm以上である(かなり不良である)。
That is, the measurement of Ro is performed on the obtained film having a width of 1.0 m from the left end to the right end at intervals of 100 mm along the width direction, and the variation of Ro (the maximum value of Ro in the width direction) is measured. (Difference between the minimum value and the minimum value). This measurement was performed three times every 50 m in the longitudinal direction, and the average value was obtained. Then, the variation (phase difference deviation) of Ro was evaluated based on the following evaluation criteria. It is preferable that the variation of Ro is smaller.
"Evaluation criteria"
5: The variation in Ro is less than 1 nm (very good).
4: The variation in Ro is 1 nm or more and less than 2 nm (very good).
3: Ro variation is 2 nm or more and less than 3 nm (good).
2: The variation in Ro is 3 nm or more and less than 5 nm (poor).
1: Ro variation is 5 nm or more (very bad).
 表1は、実施例1~16の光学フィルム1~16、および比較例1~6の光学フィルム21~26についての評価の結果を示している。なお、表1において、PCはポリカーボネート系樹脂を指し、Acrylはアクリル系樹脂を指し、TACはトリアセチルセルロースを指す。 Table 1 shows the evaluation results of the optical films 1 to 16 of Examples 1 to 16 and the optical films 21 to 26 of Comparative Examples 1 to 6. In Table 1, PC indicates a polycarbonate resin, Acryl indicates an acrylic resin, and TAC indicates triacetyl cellulose.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、比較例1~6では、いずれも、膜厚バラツキ(膜厚偏差)およびRoバラツキ(位相差偏差)が不良となっている。比較例1では、ドープ移送工程において、T2>T1であるため、中間釜の中で溶媒が蒸発し、液体であるドープの濃度が変動する。したがって、設計とはずれたドープを用いて製膜を行うことになるため、膜厚変動が大きくなり、これが膜厚偏差および位相差偏差を生じさせていると考えられる。比較例2では、ドープ移送工程において、T3>T2であり、流延ダイに入るドープを十分に冷却することができないため、ドープ中に高粘度の領域を十分に発生させることができず、その結果、支持体への流延直後にドープの表面が周囲の風等の影響を受けて変動していることが原因と考えられる。比較例3では、T2-T3=5℃であり、T2とT3との温度差が小さすぎて、流延ダイに入るドープを十分に冷却することができないため、比較例2と同様に、ドープ中に高粘度の領域を十分に発生させることができず、支持体への流延直後にドープの表面が周囲の風等の影響を受けて変動していることが原因と考えられる。 よ り Table 1 shows that Comparative Examples 1 to 6 all have poor film thickness variation (film thickness deviation) and Ro variation (phase difference deviation). In Comparative Example 1, since T2> T1 in the dope transfer step, the solvent evaporates in the intermediate vessel, and the concentration of the liquid dope fluctuates. Therefore, film formation is performed using a dope that is out of design, so that the film thickness varies greatly, which is considered to cause a film thickness deviation and a phase difference deviation. In Comparative Example 2, in the dope transfer step, T3> T2, and the dope entering the casting die could not be sufficiently cooled, so that a high-viscosity region could not be sufficiently generated in the dope. As a result, it is considered that the cause is that the surface of the dope fluctuates under the influence of the surrounding wind or the like immediately after casting on the support. In Comparative Example 3, T2−T3 = 5 ° C., and the temperature difference between T2 and T3 was too small to sufficiently cool the dope entering the casting die. It is considered that a high-viscosity region cannot be sufficiently generated therein, and the surface of the dope fluctuates immediately after casting on the support under the influence of the surrounding wind or the like.
 比較例4および5では、T2-T3がいずれも15℃であり、比較例5についてはさらに、T1-T3が26℃であり、流延ダイに入るドープを冷却しすぎている。このため、ドープに高粘度の領域が発生しすぎて、支持体上への流延直後のドープの表面に凹凸が生じやすくなり、ドープの表面変形が乾燥後にウェブの表面変形として残存し、これが最終的なフィルムに膜厚偏差および位相差偏差を生じさせていると考えられる。 In Comparative Examples 4 and 5, T2-T3 is 15 ° C, and in Comparative Example 5, T1-T3 is 26 ° C, and the dope entering the casting die is cooled too much. For this reason, a region of high viscosity is generated in the dope too much, and the surface of the dope is likely to have irregularities immediately after casting on the support, and the surface deformation of the dope remains as the surface deformation of the web after drying, and this is It is considered that a film thickness deviation and a phase difference deviation are caused in the final film.
 比較例6では、TACを用いて製膜を行っている。TACのような高粘度の樹脂を用いる場合は、ゲル状物質の発生を抑える点で、ドープの移送時に温度をできるだけ一定にすることが望ましいが(特許文献1参照)、比較例6では、T2-T3を20℃として移送中に温度を大きく変化させているため、ゲル状物質が発生し、これが膜厚偏差および位相差偏差を生じさせていると考えられる。 In Comparative Example 6, a film was formed using TAC. When using a high-viscosity resin such as TAC, it is desirable to keep the temperature as constant as possible during the transfer of the dope in order to suppress the generation of a gel-like substance (see Patent Document 1). Since -T3 is set to 20 ° C. and the temperature is largely changed during the transfer, a gel-like substance is generated, which is considered to cause a film thickness deviation and a phase difference deviation.
 これに対して、実施例1~16では、膜厚偏差および位相差偏差について、良好な結果が得られている。実施例1~16では、いずれも、T1、T2、T3について、以下の条件式(1)~(3)を満足している。すなわち、
  (1)T1>T2>T3
  (2)T1-T3≦25℃
  (3)5℃<T2-T3<15℃
である。この場合、COP等の低SP値の樹脂を用いて溶液製膜を行う場合でも、ドープに高粘度の領域と低粘度の領域とを共存させることができるため、流延時の局所的な風による影響等を低減しながら、ドープにおける流動性の高い低粘度の領域の移動によってドープの表面全体をレベリングすることができる。これにより、膜厚偏差および位相差偏差の発生を低減できていると考えられる。
On the other hand, in Examples 1 to 16, good results were obtained for the film thickness deviation and the phase difference deviation. In Examples 1 to 16, all of T1, T2, and T3 satisfy the following conditional expressions (1) to (3). That is,
(1) T1>T2> T3
(2) T1-T3 ≦ 25 ° C.
(3) 5 ° C <T2-T3 <15 ° C
It is. In this case, even when a solution casting is performed using a resin having a low SP value such as COP, a high-viscosity region and a low-viscosity region can coexist in the dope. While reducing the influence and the like, the entire surface of the dope can be leveled by the movement of the region having high fluidity and low viscosity in the dope. Thus, it is considered that the occurrence of the film thickness deviation and the phase difference deviation can be reduced.
 また、実施例1~15では、実施例16に比べて、膜厚偏差および位相差偏差がさらに低減されている。実施例1~15では、以下の条件式(4)、すなわち、
  (4)5℃<Tmax-Tmin<30℃
を満足するように、中間釜と流延ダイとの間でドープ温度を上昇または下降させているため、ドープ中で低粘度の領域と高粘度の領域とがバランスよく混ざり合い、これによって、低粘度の領域によるドープ(ウェブ)の表面のレベリング効果を高めることができているためと考えられる。
Further, in Examples 1 to 15, the film thickness deviation and the phase difference deviation are further reduced as compared with Example 16. In Examples 1 to 15, the following conditional expression (4):
(4) 5 ° C <Tmax-Tmin <30 ° C
In order to satisfy the above, the dope temperature is raised or lowered between the intermediate pot and the casting die, so that the low-viscosity region and the high-viscosity region are mixed in the dope in a well-balanced manner. It is considered that the leveling effect of the surface of the dope (web) by the region of the viscosity was enhanced.
 中でも、実施例9~11では、膜厚偏差および位相差偏差の低減効果が最も高くなっている。実施例9~11では、シクロオレフィン系樹脂を用いた溶液製膜において、以下の条件式(4a)、すなわち、
  (4a)10℃≦Tmax-Tmin≦15℃
をさらに満足していることにより、低粘度の領域によるウェブ表面のレベリング効果がさらに向上しているためと考えられる。
Above all, in Examples 9 to 11, the effect of reducing the film thickness deviation and the phase difference deviation is the highest. In Examples 9 to 11, in solution casting using a cycloolefin-based resin, the following conditional expression (4a):
(4a) 10 ° C. ≦ Tmax−Tmin ≦ 15 ° C.
This is probably because the leveling effect of the web surface by the low-viscosity region is further improved by satisfying the following.
 〔その他〕
 以上で説明した本実施形態の光学フィルムの製造方法は、以下のように表現することができる。
[Others]
The method for manufacturing an optical film of the present embodiment described above can be expressed as follows.
 1.溶液流延製膜法によって光学フィルムを製造する光学フィルムの製造方法であって、
 溶解性パラメータとしてのSP値が10.5(MPa)1/2以下である樹脂を溶解釜で溶媒に溶解させてドープを作製し、前記ドープを中間釜を介して流延ダイに移送するドープ移送工程と、
 前記ドープを、前記流延ダイから支持体上に流延する流延工程とを含み、
 前記ドープ移送工程において、以下の条件式(1)~(3)を満足することを特徴とする光学フィルムの製造方法;
  (1)T1>T2>T3
  (2)T1-T3≦25℃
  (3)5℃<T2-T3<15℃
 ただし、
  T1:前記溶解釜から出た直後の前記ドープの温度(℃)
  T2:前記中間釜から出た直後の前記ドープの温度(℃)
  T3:前記流延ダイに入る直前の前記ドープの温度(℃)
である。
1. A method for producing an optical film by producing an optical film by a solution casting method,
A dope is prepared by dissolving a resin having an SP value of 10.5 (MPa) 1/2 or less as a solubility parameter in a solvent in a dissolving vessel to prepare a dope, and transferring the dope to a casting die via an intermediate vessel. A transfer process;
A casting step of casting the dope from the casting die onto a support,
A method for producing an optical film, wherein the dope transfer step satisfies the following conditional expressions (1) to (3);
(1) T1>T2> T3
(2) T1-T3 ≦ 25 ° C.
(3) 5 ° C <T2-T3 <15 ° C
However,
T1: Temperature (° C.) of the dope immediately after leaving the melting pot
T2: temperature of the dope immediately after leaving the intermediate pot (° C.)
T3: temperature of the dope immediately before entering the casting die (° C.)
It is.
 2.前記ドープ移送工程において、以下の条件式(4)をさらに満足することを特徴とする前記1に記載の光学フィルムの製造方法;
  (4)5℃<Tmax-Tmin<30℃
 ただし、
  Tmax:前記中間釜と前記流延ダイとの間での前記ドープの最大温度(℃)
  Tmin:前記中間釜と前記流延ダイとの間での前記ドープの最小温度(℃)
である。
2. 2. The method for producing an optical film according to the above 1, wherein the dope transferring step further satisfies the following conditional expression (4);
(4) 5 ° C <Tmax-Tmin <30 ° C
However,
Tmax: maximum temperature of the dope between the intermediate pot and the casting die (° C.)
Tmin: minimum temperature (° C.) of the dope between the intermediate pot and the casting die
It is.
 3.前記樹脂は、シクロオレフィン系樹脂であり、
 前記ドープ移送工程において、以下の条件式(4a)をさらに満足することを特徴とする前記2に記載の光学フィルムの製造方法;
  (4a)10℃≦Tmax-Tmin≦15℃
である。
3. The resin is a cycloolefin resin,
3. The method for producing an optical film according to the above 2, wherein the dope transferring step further satisfies the following conditional expression (4a);
(4a) 10 ° C. ≦ Tmax−Tmin ≦ 15 ° C.
It is.
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で拡張または変更して実施することができる。 Although the embodiment of the present invention has been described above, the scope of the present invention is not limited to this, and can be extended or modified without departing from the gist of the invention.
 本発明の光学フィルムの製造方法は、低SP値の樹脂を用い、溶液流延製膜法によって光学フィルムを製造する場合に利用可能である。 光学 The method for producing an optical film of the present invention can be used when an optical film is produced by a solution casting method using a resin having a low SP value.
   2   流延ダイ
   3   支持体
  21   溶解釜
  22   中間釜
   F   光学フィルム
2 Casting die 3 Support 21 Melting pot 22 Intermediate pot F Optical film

Claims (3)

  1.  溶液流延製膜法によって光学フィルムを製造する光学フィルムの製造方法であって、
     溶解性パラメータとしてのSP値が10.5(MPa)1/2以下である樹脂を溶解釜で溶媒に溶解させてドープを作製し、前記ドープを中間釜を介して流延ダイに移送するドープ移送工程と、
     前記ドープを、前記流延ダイから支持体上に流延する流延工程とを含み、
     前記ドープ移送工程において、以下の条件式(1)~(3)を満足する、光学フィルムの製造方法;
      (1)T1>T2>T3
      (2)T1-T3≦25℃
      (3)5℃<T2-T3<15℃
     ただし、
      T1:前記溶解釜から出た直後の前記ドープの温度(℃)
      T2:前記中間釜から出た直後の前記ドープの温度(℃)
      T3:前記流延ダイに入る直前の前記ドープの温度(℃)
    である。
    A method for producing an optical film by producing an optical film by a solution casting method,
    A dope is prepared by dissolving a resin having an SP value of 10.5 (MPa) 1/2 or less as a solubility parameter in a solvent in a dissolving pot to prepare a dope, and transferring the dope to a casting die via an intermediate pot. A transfer process;
    A casting step of casting the dope from the casting die onto a support,
    A method for producing an optical film, wherein the dope transferring step satisfies the following conditional expressions (1) to (3);
    (1) T1>T2> T3
    (2) T1-T3 ≦ 25 ° C.
    (3) 5 ° C <T2-T3 <15 ° C
    However,
    T1: Temperature (° C.) of the dope immediately after leaving the melting pot
    T2: temperature of the dope immediately after leaving the intermediate pot (° C.)
    T3: temperature of the dope immediately before entering the casting die (° C.)
    It is.
  2.  前記ドープ移送工程において、以下の条件式(4)をさらに満足する、請求項1に記載の光学フィルムの製造方法;
      (4)5℃<Tmax-Tmin<30℃
     ただし、
      Tmax:前記中間釜と前記流延ダイとの間での前記ドープの最大温度(℃)
      Tmin:前記中間釜と前記流延ダイとの間での前記ドープの最小温度(℃)
    である。
    The method for producing an optical film according to claim 1, wherein the dope transfer step further satisfies the following conditional expression (4);
    (4) 5 ° C <Tmax-Tmin <30 ° C
    However,
    Tmax: maximum temperature of the dope between the intermediate pot and the casting die (° C.)
    Tmin: minimum temperature (° C.) of the dope between the intermediate pot and the casting die
    It is.
  3.  前記樹脂は、シクロオレフィン系樹脂であり、
     前記ドープ移送工程において、以下の条件式(4a)をさらに満足する、請求項2に記載の光学フィルムの製造方法;
      (4a)10℃≦Tmax-Tmin≦15℃
    である。
    The resin is a cycloolefin resin,
    The method for producing an optical film according to claim 2, wherein the dope transfer step further satisfies the following conditional expression (4a);
    (4a) 10 ° C. ≦ Tmax−Tmin ≦ 15 ° C.
    It is.
PCT/JP2019/014767 2018-07-11 2019-04-03 Method for manufacturing optical film WO2020012732A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980045835.XA CN112423959B (en) 2018-07-11 2019-04-03 Method for manufacturing optical film
KR1020217000296A KR102356401B1 (en) 2018-07-11 2019-04-03 Manufacturing method of optical film
JP2020529990A JPWO2020012732A1 (en) 2018-07-11 2019-04-03 Optical film manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-131281 2018-07-11
JP2018131281 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020012732A1 true WO2020012732A1 (en) 2020-01-16

Family

ID=69141389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014767 WO2020012732A1 (en) 2018-07-11 2019-04-03 Method for manufacturing optical film

Country Status (4)

Country Link
JP (1) JPWO2020012732A1 (en)
KR (1) KR102356401B1 (en)
CN (1) CN112423959B (en)
WO (1) WO2020012732A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035939A1 (en) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 Resin film, method for producing resin film, polarizing plate, and liquid crystal display
JP2017121764A (en) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 Method for manufacturing optical film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3974422B2 (en) * 2002-02-20 2007-09-12 富士フイルム株式会社 Solution casting method
JP4753553B2 (en) 2004-08-05 2011-08-24 富士フイルム株式会社 Transfer method and solution casting method
JP4585947B2 (en) 2005-09-09 2010-11-24 富士フイルム株式会社 Method for producing cyclic polyolefin film
WO2007119436A1 (en) * 2006-03-15 2007-10-25 Fujifilm Corporation Solution casting method and solution casting apparatus for film manufacture
JP2007276459A (en) * 2006-03-15 2007-10-25 Fujifilm Corp Solution film forming method and solution film forming equipment
JP2007245687A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Manufacturing method of polycycloolefin film
CN101801638A (en) * 2007-09-21 2010-08-11 住友化学株式会社 Process for producing optical film made of thermoplastic resin
CN105835376B (en) * 2015-02-03 2019-11-01 富士胶片株式会社 Solution film-forming method and device
JP6355658B2 (en) * 2015-02-03 2018-07-11 富士フイルム株式会社 Solution casting method and apparatus
JP6665512B2 (en) * 2015-12-14 2020-03-13 コニカミノルタ株式会社 Optical film manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035939A1 (en) * 2010-09-14 2012-03-22 コニカミノルタオプト株式会社 Resin film, method for producing resin film, polarizing plate, and liquid crystal display
JP2017121764A (en) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 Method for manufacturing optical film

Also Published As

Publication number Publication date
JPWO2020012732A1 (en) 2021-07-08
KR102356401B1 (en) 2022-02-08
CN112423959A (en) 2021-02-26
KR20210016611A (en) 2021-02-16
CN112423959B (en) 2022-05-10

Similar Documents

Publication Publication Date Title
JP2014188748A (en) Method for manufacturing stretched film and film stretching facility
CN101327651B (en) Casting device, solution casting apparatus, and solution casting method
WO2012102178A1 (en) Method and apparatus for producing resin film
JP2009119774A (en) Method for manufacturing obliquely stretched optical film, and stretching apparatus
TWI392575B (en) Production method of polymer film
JP4315378B2 (en) Film manufacturing method and manufacturing apparatus
JP4905350B2 (en) Manufacturing method of optical film
JP5990213B2 (en) Stretched film manufacturing method and film stretching equipment
WO2020012732A1 (en) Method for manufacturing optical film
JP5653747B2 (en) Manufacturing method of optical film
JP5292265B2 (en) Manufacturing method of optical film
JP3935755B2 (en) Solution casting method
JP5621594B2 (en) Optical film manufacturing method and optical film
CN1788971B (en) Manufacturing method of optical film
WO2012014913A1 (en) Method for manufacturing retardation films
TWI422625B (en) Method for producing cellulose acylate film
TW201350316A (en) Solution casting method and apparatus
CN100354110C (en) Unit and process for the production of tubular resin film
JP5971253B2 (en) Film production method
JP2008254429A (en) Manufacturing method of cellulose acylate film
EP0488368B1 (en) Film casting method
JP2010014994A (en) Method of manufacturing phase-difference film
JP5127654B2 (en) Solution casting method
JP6519814B2 (en) Method of manufacturing retardation film by biaxial synchronous stretching method and retardation film thereof
JP2008246758A (en) Method for producing optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529990

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217000296

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833840

Country of ref document: EP

Kind code of ref document: A1