WO2012014913A1 - Method for manufacturing retardation films - Google Patents

Method for manufacturing retardation films Download PDF

Info

Publication number
WO2012014913A1
WO2012014913A1 PCT/JP2011/067035 JP2011067035W WO2012014913A1 WO 2012014913 A1 WO2012014913 A1 WO 2012014913A1 JP 2011067035 W JP2011067035 W JP 2011067035W WO 2012014913 A1 WO2012014913 A1 WO 2012014913A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
retardation film
resin
temperature
die
Prior art date
Application number
PCT/JP2011/067035
Other languages
French (fr)
Japanese (ja)
Inventor
邦博 清家
江原 啓悟
山本 省吾
丈志 前田
村上 奈穗
信幸 灰田
宮武 稔
Original Assignee
東洋鋼鈑株式会社
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 日東電工株式会社 filed Critical 東洋鋼鈑株式会社
Publication of WO2012014913A1 publication Critical patent/WO2012014913A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/9145Endless cooling belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a method for producing a retardation film used for, for example, a liquid crystal display element.
  • liquid crystal display elements those using the optical rotation mode display method (TN type liquid crystal display device) in which the alignment state of the liquid crystal molecules is twisted by 90 ° change the display color and display contrast depending on the viewing direction due to the principle of the display method.
  • TN type liquid crystal display device TN type liquid crystal display device
  • a method using an optical anisotropic element has been proposed (see, for example, Patent Document 1).
  • JP-A-4-308377 Japanese Patent Laid-Open No. 7-333437
  • the inventor of the present invention has achieved excellent uniformity of the film thickness, no birefringence unevenness, and uniform viewing angle characteristics of display color and contrast over the entire display screen when used in a liquid crystal display device.
  • a method for producing a retardation film has been found.
  • An object of the present invention is to propose a method for continuously producing a retardation film, which is an optical anisotropic element having excellent contrast and viewing angle characteristics, and less color unevenness and contrast unevenness.
  • the method for producing a retardation film of the present invention that solves the above-described problem is a method in which a thermoplastic resin extruded in a sheet form from a die exit of a T-die is poured between a first roll and a second roll facing each other, and rolled.
  • a retardation film manufacturing method for manufacturing a retardation film by performing a temperature at the die exit of the resin from a temperature 70 ° C. higher than the glass transition temperature of the resin to 100 than the glass transition temperature of the resin.
  • the temperature of the first roll and the second roll is controlled between a temperature lower by 35 ° C. than the glass transition temperature of the resin and 10 times higher than the glass transition temperature of the resin. It is characterized by controlling the temperature up to °C.
  • the temperature at the die exit of the resin is controlled between a temperature 70 ° C. higher than the glass transition temperature of the resin and a temperature 100 ° C. higher than the glass transition temperature of the resin
  • the temperature of at least one of the first roll and the second roll is controlled between a temperature 35 ° C. lower than the glass transition temperature of the resin and a temperature 10 ° C. higher than the glass transition temperature of the resin.
  • the diameter of the larger roll of the first roll and the second roll is a distance from the die exit to the position where the rolling of the resin is started.
  • the position of the roll and the die is set so that the divided value is 3.1 or more and 9.5 or less.
  • the value obtained by dividing the diameter of the larger roll of the first roll and the second roll by the distance from the die exit to the position where the rolling of the resin is started is 3.1.
  • the distance from the die exit to the rolling start position is shortened, and the space (that is, the gap) surrounded by the two rolls and the T die is reduced. can do. Therefore, it is possible to suppress a phenomenon in which the film sheet extruded from the die exit is swayed by the air current while reaching the rolling start position from the die exit. As a result, the film thickness uniformity in the longitudinal direction and the width direction of the film sheet is improved.
  • an endless belt sleeve is rotatably wound around the first roll, and the rolling is performed between the endless belt sleeve and the second roll. It is characterized by.
  • the temperature of the endless belt sleeve between the first roll and the second roll is reduced from 35 ° C. lower than the glass transition temperature of the resin. It is preferable to control the temperature up to 10 ° C. higher than the transition temperature.
  • the first roll is constituted by an elastic roll that elastically biases the resin with respect to the second roll
  • the endless belt sleeve is constituted by a metal belt sleeve. It is characterized by being.
  • the retardation film manufacturing method of the present invention is characterized in that the rolling linear pressure is 1 to 12.5 kgf / mm.
  • the method for producing a retardation film of the present invention is characterized in that the roll has a diameter of 200 mm to 400 mm.
  • the method for producing a retardation film of the present invention is characterized in that the included angle between both outer walls of the downstream portion of the T die is set to 45 ° or less.
  • the T die can be disposed closer to the two rolls. Accordingly, the distance from the die exit to the rolling start position is shortened, and the space (that is, the gap) surrounded by the two rolls and the T die can be reduced. Therefore, it is possible to suppress a phenomenon in which the film sheet extruded from the die exit is swayed by the air current while reaching the rolling start position from the die exit. As a result, the film thickness uniformity in the longitudinal direction and the width direction of the film sheet is improved.
  • thermoplastic resin is a resin having a cyclic olefin structure.
  • the retardation film manufacturing method of the present invention is characterized in that the thermoplastic resin is a resin having a polycarbonate structure.
  • the temperature at the die exit of the resin is controlled between a temperature 70 ° C. higher than the glass transition temperature of the resin and a temperature 100 ° C. higher than the glass transition temperature of the resin
  • the temperature of at least one of the first roll and the second roll is controlled between a temperature 35 ° C. lower than the glass transition temperature of the resin and a temperature 10 ° C. higher than the glass transition temperature of the resin. Can be within a suitable range.
  • the display contrast and the viewing angle characteristics of the display color can be made uniform over the entire display screen.
  • FIG. 1A and 1B are diagrams for explaining the configuration of a retardation film manufacturing apparatus used in the retardation film manufacturing method in the present embodiment.
  • FIG. 1A is an overall view
  • FIG. FIG. 1B is a diagram for explaining the configuration of a retardation film manufacturing apparatus used in the retardation film manufacturing method in the present embodiment.
  • FIG. 1A is an overall view
  • FIG. FIG. 1B is a diagram for explaining the configuration of a retardation film manufacturing apparatus used in the retardation film manufacturing method in the present embodiment.
  • FIG. 1A is an overall view
  • the retardation film manufacturing apparatus 1 includes an extrusion molding apparatus 2 and a roll apparatus 3 as shown in FIG.
  • the extrusion molding apparatus 2 has a configuration in which the raw material resin w ⁇ b> 1 charged in the hopper 11 is heated to a temperature higher than the glass transition temperature and melted and extruded by the extruder 12.
  • the raw material resin w1 for example, one having a cyclic olefin structure or polycarbonate is used, and the one dried for 4 hours at 100 ° C. in a dehumidifying dryer (not shown) is put into the hopper 11.
  • a dehumidifying dryer (not shown) is put into the hopper 11.
  • the extruder 12 for example, a single screw extruder (shaft diameter 50 mm, full flight type) is used.
  • the molten resin w2 extruded to the extruder 12 passes through the gear pump 13 and the filter 14 connected to the extruder 12 and is supplied to the T die 15, and the die outlet of the T die 15 16 is extruded into a sheet shape.
  • the T die 15 having a sheet width of 355 mm of the molten resin w2 extruded from the die outlet 16 was used.
  • the T die 15 has a die passage communicating with the die outlet 16.
  • the die outlet 16 is desirably installed at a position closer to the rolling start position P between the first roll 21 and the second roll 31 as much as possible.
  • the die outlet 16 is downstream of the T die 15.
  • the included angle ⁇ between the two outer walls 15a and 15b is set to 45 ° or less.
  • the distance D between the die outlet 16 and the rolling start position P is shortened, and the sheet-like molten resin w2 extruded from the die outlet 16 during the period from the die outlet 16 to the rolling start position P It is possible to suppress the phenomenon of shaking and improve the film thickness uniformity in the longitudinal direction and the width direction.
  • the molten resin w ⁇ b> 2 extruded from the T die 15 into a sheet shape is supplied to the roll device 3.
  • the roll device 3 is configured to produce a retardation film w3 by pouring and rolling a molten resin w2 between a pair of rolls, and extends parallel to each other below the T die 15. It has a first roll 21 and a second roll 31.
  • the first roll 21 is constituted by a rubber elastic roll (rubber roll) that presses the molten resin w2 against the second roll 31.
  • An endless belt sleeve 23 is wound around the first roll 21 so as to be rotatable.
  • the endless belt sleeve 23 is constituted by a metal belt sleeve made of Ni, and the surface thereof is subjected to chrome plating.
  • the endless belt sleeve 23 is provided so as to span between the first roll 21 and the driving roll 22 disposed at a position spaced apart from the first roll 21 by a predetermined distance. It is driven by rotation.
  • the drive roll 22 is rotationally driven by a first drive motor (not shown).
  • the second roll 31 is composed of a metal roll member whose surface is chrome plated.
  • the second roll 31 is rotationally driven by a second drive motor (not shown).
  • the first drive motor and the second drive motor are connected to motor control means (not shown) so that the peripheral speed ratio between the endless belt sleeve 23 and the second roll 31 becomes a preset value. Each rotation speed is controlled.
  • the first roll 21 and the second roll 31 have a roll diameter of 200 mm to 400 mm. In the present embodiment, the diameters of the first roll 21 and the second roll 31 are the same. It is configured.
  • the T die 15, the first roll 21, and the second roll 31 are air gap distances from the die outlet 16 of the T die 15 to the rolling start position P between the first roll 21 and the second roll 31.
  • the ratio of D to the diameter of the first roll 21 is 3.1 or more, that is, the value obtained by dividing the diameter of the first roll 21 by the distance of the air gap D is 3.1 or more. It is arranged to be a value. When the above value is 3.1 or less, unevenness increases. The upper limit of the above value that can actually be implemented is 9.5.
  • the lip thickness of the T die 15 is a minimum of 5 mm
  • the narrow angle of the T die 15 is a minimum of 30 °
  • the maximum roll diameter is 400 mm
  • the distance D when the rolls 21 and 31 and the T die 15 are closest to each other is 4. 2 mm and the ratio is 9.5.
  • the first roll 21 and the second roll 31 apply a constant pressure linearly along the sheet width direction to the molten resin w2 during rolling, and the linear pressure acting on the molten resin w2 is 1 to 12.
  • the arrangement position is set to be 5 kgf / mm.
  • the roll device 3 includes a heater and a control unit (not shown), heats the roll surface, and controls the temperature of at least one of the first roll 21 and the second roll 31 and the first roll 21.
  • the sleeve temperature of the endless belt sleeve 23 between the second roll 31 can be controlled to a predetermined temperature.
  • Molten resin w2 is rolled between the first roll 21 and the second roll 31 and becomes a retardation film w3 due to the difference in peripheral speed, and is cooled on the endless belt sleeve 23 while being transported by the endless belt sleeve 23 as it is, It is wound up from the endless belt sleeve 23 by a winder (not shown).
  • the ratio of the peripheral speeds of the first roll 21 and the second roll 31 is preferably 0.90 to 0.995.
  • the peripheral speed ratio is 1.0 or more, the film is stretched and it is difficult to apply shear, and even when the peripheral speed ratio is 0.995 to 1.00, shear is applied due to insufficient peripheral speed difference. I can't.
  • the peripheral speed ratio is less than 0.90, the contact state between the roll and the film becomes unstable, and wrinkles and horizontal unevenness occur.
  • the MFR value is within the range of 10 to 60 for the fluidity of the resin. That is, when the MFR value is 10 or less, wrinkles / horizontal unevenness occurs when rolling, and when the MFR value is 60 or more, film shake occurs and the film thickness accuracy is inferior.
  • the temperature at the resin die outlet 16 is from 70 ° C. higher than the glass transition temperature Tg of the resin to 100 ° C. higher than the glass transition temperature Tg of the resin.
  • the temperature of the endless belt sleeve 23 and the second roll 31 is controlled between a temperature 35 ° C. lower than the glass transition temperature Tg of the resin and a temperature 10 ° C. higher than the glass transition temperature Tg of the resin. Therefore, the adhesiveness between the molten resin w2 and the endless belt sleep 23 and the adhesiveness between the molten resin w2 and the second roll 31 can be set within appropriate ranges. Accordingly, the occurrence of wrinkles and horizontal unevenness in the retardation film w3 can be reduced, and the retardation film w3 with little variation in front retardation can be obtained.
  • the endless belt sleeve 23 and the second roll 31 are constant. Repeated in a cycle, wrinkles and unevenness occur in the retardation film w3.
  • the temperature of the molten resin w2 at the die outlet 16 the temperature of at least one of the first roll 21 and the second roll 31, and the sleeve temperature of the endless belt sleeve 23 are higher than the temperature range defined above.
  • the adhesiveness between the molten resin w2 and the endless belt sleeve 23 or the adhesiveness between the molten resin w2 and the second roll 31 becomes excessively high, and after the end of rolling, the endless belt sleeve 23 or the second When the film is peeled off from the roll 31, the wrinkles and unevenness occur in the retardation film w3.
  • the temperature of the molten resin w2 at the die outlet 16, the temperature of at least one of the first roll 21 and the second roll 31, the endless belt sleeve 23 Since the sleeve temperature is set within the temperature range defined above, the adhesion between the molten resin w2 and the endless belt sleeve 23 and the adhesion between the molten resin w2 and the second roll 31 are adjusted. , Each can be within an appropriate range.
  • the occurrence of wrinkles and horizontal unevenness in the retardation film w3 can be reduced as compared with the conventional manufacturing method by rolling, and the retardation film w3 with less variation in front retardation can be provided. It becomes possible.
  • the endless belt sleeve 23 is interposed between the first roll 21 and the second roll 31 as an example, but the endless belt sleeve 23 is omitted.
  • the adhesion between the molten resin w2 and the first roll 21 and the molten resin are also the same.
  • the adhesiveness between w2 and the second roll 31 can be set within an appropriate range, and the occurrence of wrinkles and horizontal unevenness in the retardation film w3 can be reduced.
  • the rolling starts when the resin roll is started from the die outlet 16 with the diameter of the larger roll of the first roll 21 and the second roll 31.
  • the positions of the rolls 21 and 31 and the T die 15 so that the value divided by the distance D to the position P is 3.1 or more, the distance from the die exit 16 to the rolling start position P is shortened.
  • the space (that is, the gap) surrounded by the two rolls 21 and 31 and the T die 15 can be reduced. Therefore, it is possible to suppress a phenomenon in which the film sheet extruded from the die outlet 16 is swayed by the air current while reaching the rolling start position P from the die outlet 16. As a result, the film thickness uniformity in the longitudinal direction and the width direction of the film sheet is improved.
  • the distance of the air gap between the T die 15 and the rolling start position is 35 mm (ratio of the roll diameter to the air gap is 7.1)
  • the resin temperature at the die outlet 16 of the T die 15 is 217 ° C.
  • the rolling line The pressure is 5 kgf / mm
  • the sleeve temperature of the endless belt sleeve 23 is 90 ° C.
  • the peripheral speed of the endless belt sleeve 23 is 4.0 m / min
  • the peripheral speed of the second roll 31 is 4.08 m / min
  • melting from the T-die 15 The extrusion rate of the resin w2 was 10 kg / h.
  • the film thickness variation of the retardation film w3 was ⁇ 1 ⁇ m, there was no wrinkle, and the flatness was good. Although unevenness due to foreign matter and horizontal unevenness in crossed Nicols were slightly present visually, they were at an acceptable level.
  • the front phase difference ( ⁇ nd) was 26 nm and the front phase difference variation was ⁇ 2 nm.
  • the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 36 °.
  • Crossed Nicol is a method of placing polarizers used when observing defects in the optical properties of the target film sample. Two polarizers are placed perpendicular to each other, the sample is sandwiched between them, and the bottom By observing the state of light leakage when the light beam is irradiated from the above, it is possible to know how much the film is optically distorted or uniformly distorted in the plane. When there is no optical distortion (phase difference), or when the distortion is uniform within the target sample size, unevenness is not observed, but the distortion differs depending on the location (phase difference value is different) , The degree of light leakage varies from place to place and appears uneven.
  • the distance of the air gap is 40 mm (ratio of roll diameter to air gap is 6.3), the resin temperature at the die outlet 16 of the T die 15 is 219 ° C., and the sleeve temperature of the endless belt sleeve 23 is 122 ° C.
  • a retardation film w3 having a film thickness of 115 ⁇ m was obtained in the same manner as in Example 1.
  • the film thickness variation of the retardation film w3 is ⁇ 1 ⁇ m, and as shown in FIG. 2A, there is no wrinkle and the flatness is good. It was. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 41 nm and the front phase difference variation was ⁇ 3 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 34 °.
  • FIG. 2 (a) is a diagram showing the surface state of the retardation film in Example 2, and shows an example of wrinkles ⁇ and horizontal unevenness ⁇ .
  • the horizontal unevenness is a color unevenness that appears streaks in the film width direction when light is transmitted through crossed Nicols, and is periodically generated at intervals of about several millimeters in the longitudinal direction.
  • the evaluation criteria for horizontal step-like unevenness are ⁇ when thinner than the horizontal step-like unevenness standard shown in FIG. 2D, and ⁇ when equal to the horizontal step-like unevenness standard, both of which can be applied to retardation films. It is.
  • color unevenness is remarkably visible from the standard, it is x, and cannot be applied to a retardation film.
  • wrinkles are present in random directions and refer to a state where flatness is impaired.
  • the evaluation standard for wrinkles is ⁇ when the number of wrinkles per 10 cm ⁇ is less than one, and is applicable to a retardation film. On the other hand, when the number of wrinkles per 10 cm ⁇ is 1 or more, it is “x” and cannot be applied to a retardation film.
  • a retardation film w3 having a film thickness of 115 ⁇ m was obtained in the same manner as in Example 2 except that the rolling linear pressure was 7.5 kgf / mm.
  • the film thickness variation of the retardation film w3 was ⁇ 1 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 52 nm and the front phase difference variation was ⁇ 3 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
  • the film thickness variation of the retardation film w3 was ⁇ 2 ⁇ m. In crossed Nicol, the horizontal unevenness was slightly conspicuous compared with Example 2, but it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 62 nm and the front phase difference variation was ⁇ 9 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
  • a retardation film w3 having a film thickness of 118 ⁇ m was obtained in the same manner as in Example 2 except that the distance of the air gap was 60 mm (ratio of roll diameter to air gap was 4.2).
  • the film thickness variation of the retardation film w3 was ⁇ 2 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 43 nm and the front phase difference variation was ⁇ 7 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
  • a retardation film w3 having a film thickness of 119 ⁇ m was obtained in the same manner as in Example 2 except that the air gap distance was 80 mm (ratio of roll diameter to air gap was 3.1).
  • the film thickness variation of the retardation film w3 was ⁇ 3 ⁇ m, there was no wrinkle, and the flatness was good.
  • the front phase difference ( ⁇ nd) was 46 nm and the front phase difference variation was ⁇ 9 nm.
  • the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 34 °.
  • FIG. 2B shows the surface state of the retardation film in Example 6 and shows an example of wrinkles ⁇ and horizontal unevenness ⁇ .
  • the film thickness variation of the retardation film w3 was ⁇ 2 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 47 nm and the front phase difference variation was ⁇ 3 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
  • a retardation film w3 having a film thickness of 118 ⁇ m was obtained in the same manner as in Example 2 except that the resin temperature at the die outlet 16 of the T die 15 was 233 ° C. and the sleeve temperature of the endless belt sleeve 23 was 137 ° C. .
  • the film thickness variation of the retardation film w3 was ⁇ 1 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 40 nm and the front phase difference variation was ⁇ 6 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 33 °.
  • the film thickness variation of the film was ⁇ 1 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 100 nm and the front phase difference variation was ⁇ 9 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 37 °.
  • a retardation film w3 having a film thickness of 123 ⁇ m was obtained in the same manner as in Example 7 except that the peripheral speed of the second roll 31 was changed to 4.20 m / min.
  • the film thickness variation of the retardation film w3 was ⁇ 1 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. Further, the front phase difference ( ⁇ nd) was 138 nm, and the front phase difference variation was ⁇ 9 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 39 °.
  • the film thickness variation of the retardation film w3 was ⁇ 1 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 17 nm and the front phase difference variation was ⁇ 3 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 33 °.
  • a retardation film w3 having a film thickness of 116 ⁇ m was obtained in the same manner as in Example 7 except that the rolling linear pressure was 10 kgf / mm and the peripheral speed of the second roll 31 was 4.04 m / min.
  • the film thickness variation of the retardation film w3 was ⁇ 1 ⁇ m, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level.
  • the front phase difference ( ⁇ nd) was 31 nm and the front phase difference variation was ⁇ 4 nm. Furthermore, the angle ⁇ (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 36 °.
  • the film thickness variation of the retardation film w3 was ⁇ 4 ⁇ m, wrinkles and horizontal unevenness occurred, and the flatness was inferior to that of Example 2.
  • the inclination angle ⁇ was 17 °, which was significantly lower than that of Example 2.
  • FIG. 2 (c) is a surface state of the retardation film in Comparative Example 2 and is a diagram showing an example of wrinkles ⁇ / horizontal step unevenness ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Liquid Crystal (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Disclosed is a method for the continuous manufacture of optically anisotropic elements that exhibit excellent contrast and view-angle characteristics and a high degree of color uniformity and contrast uniformity. In the disclosed retardation-film manufacturing method, the temperature of a molten resin (w2) at a die exit (16) is kept between a temperature 70°C higher than the glass transition temperature of the molten resin (w2) and a temperature 100°C higher than the glass transition temperature of the molten resin (w2), and the temperature of a first roller (21) and/or a second roller (31) is kept between a temperature 35°C lower than the glass transition temperature of the molten resin (w2) and a temperature 10°C higher than the glass transition temperature of the molten resin (w2).

Description

位相差フィルム製造方法Retardation film manufacturing method
 本発明は、例えば液晶表示素子に用いられる位相差フィルムの製造方法に関する。 The present invention relates to a method for producing a retardation film used for, for example, a liquid crystal display element.
 液晶表示素子のうち、液晶分子の配列状態が90°ねじれた旋光モードの表示方式(TN型液晶表示素子)を用いたものは、表示方式の原理上、見る方向によって表示色や表示コントラストが変化するといった視角特性があり、これを補償する方法として、光学異方素子を使用する方法が提案されている(例えば特許文献1を参照)。 Among the liquid crystal display elements, those using the optical rotation mode display method (TN type liquid crystal display device) in which the alignment state of the liquid crystal molecules is twisted by 90 ° change the display color and display contrast depending on the viewing direction due to the principle of the display method. As a method for compensating for this, a method using an optical anisotropic element has been proposed (see, for example, Patent Document 1).
 光学異方素子をフィルム状に連続的に製造した場合に、複屈折ムラが発生するおそれがあり、かかる光学フィルムを液晶表示素子に用いると、表示画像の色むら、コントラストむらとなることが指摘されている(例えば、特許文献2を参照)。 When optically anisotropic elements are continuously produced in the form of a film, birefringence unevenness may occur, and when such an optical film is used in a liquid crystal display element, it is pointed out that the display image has uneven color and contrast. (For example, see Patent Document 2).
特開平4-308377号公報JP-A-4-308377 特開平7-333437号公報Japanese Patent Laid-Open No. 7-333437
 本発明の発明者は、鋭意研究の結果、膜厚の精度に優れ、複屈折ムラがなく、液晶表示素子に用いた場合に、表示色及びコントラストの視角特性を表示画面全面で均一にする位相差フィルムを製造する方法を見出した。 As a result of earnest research, the inventor of the present invention has achieved excellent uniformity of the film thickness, no birefringence unevenness, and uniform viewing angle characteristics of display color and contrast over the entire display screen when used in a liquid crystal display device. A method for producing a retardation film has been found.
 本発明の目的は、コントラスト及び視野角特性に優れ、色むら、コントラストむらの少ない光学異方素子である位相差フィルムを連続して製造する方法を提案することである。 An object of the present invention is to propose a method for continuously producing a retardation film, which is an optical anisotropic element having excellent contrast and viewing angle characteristics, and less color unevenness and contrast unevenness.
 上記課題を解決する本発明の位相差フィルム製造方法は、Tダイのダイ出口からシート状に押し出された熱可塑性樹脂を互いに対向する第1のロールと第2のロールとの間に流し込んで圧延することにより位相差フィルムを製造する位相差フィルム製造方法であって、前記樹脂の前記ダイ出口における温度を、当該樹脂のガラス転移温度よりも70℃高い温度から前記樹脂のガラス転移温度よりも100℃高い温度までの間に制御し、前記第1のロールと前記第2のロールの少なくとも一方の温度を、前記樹脂のガラス転移温度よりも35℃低い温度から前記樹脂のガラス転移温度よりも10℃高い温度までの間に制御することを特徴としている。 The method for producing a retardation film of the present invention that solves the above-described problem is a method in which a thermoplastic resin extruded in a sheet form from a die exit of a T-die is poured between a first roll and a second roll facing each other, and rolled. A retardation film manufacturing method for manufacturing a retardation film by performing a temperature at the die exit of the resin from a temperature 70 ° C. higher than the glass transition temperature of the resin to 100 than the glass transition temperature of the resin. The temperature of the first roll and the second roll is controlled between a temperature lower by 35 ° C. than the glass transition temperature of the resin and 10 times higher than the glass transition temperature of the resin. It is characterized by controlling the temperature up to ℃.
 本発明の位相差フィルム製造方法によれば、樹脂のダイ出口における温度を、樹脂のガラス転移温度よりも70℃高い温度から樹脂のガラス転移温度よりも100℃高い温度までの間に制御し、第1のロールと第2のロールの少なくとも一方の温度を、樹脂のガラス転移温度よりも35℃低い温度から樹脂のガラス転移温度よりも10℃高い温度までの間に制御するので、樹脂とロールとの間の密着性を適切な範囲内のものにすることができる。したがって、位相差フィルムにシワ、横段状ムラが発生するのを、従来の圧延による製造方法よりも、低減することができ、正面位相差のばらつきの少ない位相差フィルムを提供することが可能となる。 According to the retardation film manufacturing method of the present invention, the temperature at the die exit of the resin is controlled between a temperature 70 ° C. higher than the glass transition temperature of the resin and a temperature 100 ° C. higher than the glass transition temperature of the resin, The temperature of at least one of the first roll and the second roll is controlled between a temperature 35 ° C. lower than the glass transition temperature of the resin and a temperature 10 ° C. higher than the glass transition temperature of the resin. Can be within a suitable range. Therefore, the occurrence of wrinkles and horizontal unevenness in the retardation film can be reduced as compared with the conventional rolling manufacturing method, and it is possible to provide a retardation film with less variation in front retardation. Become.
 本発明の位相差フィルム製造方法は、前記第1のロールと前記第2のロールのうち、直径が大きい方のロールの直径を前記ダイ出口から前記樹脂の圧延が開始される位置までの距離で除算した値が3.1以上、9.5以下となるように、前記ロールと前記ダイとの位置が設定されていることを特徴としている。 In the retardation film manufacturing method of the present invention, the diameter of the larger roll of the first roll and the second roll is a distance from the die exit to the position where the rolling of the resin is started. The position of the roll and the die is set so that the divided value is 3.1 or more and 9.5 or less.
 本発明によれば、第1のロールと前記第2のロールのうち、直径が大きい方のロールの直径をダイ出口から樹脂の圧延が開始される位置までの距離で除算した値が3.1以上となるように、ロールとTダイとの位置を設定することによって、ダイ出口から圧延開始位置までの距離が短くなるとともに、2つのロールとTダイで囲まれた空間(すなわち隙間)を小さくすることができる。したがって、ダイ出口から押し出されたフィルムシートが、ダイ出口から圧延開始位置に至る間に、気流によって揺れる現象を抑えることが可能になる。その結果として、フィルムシートの長手方向及び幅方向のフィルム膜厚均一性が向上する効果がもたらされる。 According to the present invention, the value obtained by dividing the diameter of the larger roll of the first roll and the second roll by the distance from the die exit to the position where the rolling of the resin is started is 3.1. As described above, by setting the position of the roll and the T die, the distance from the die exit to the rolling start position is shortened, and the space (that is, the gap) surrounded by the two rolls and the T die is reduced. can do. Therefore, it is possible to suppress a phenomenon in which the film sheet extruded from the die exit is swayed by the air current while reaching the rolling start position from the die exit. As a result, the film thickness uniformity in the longitudinal direction and the width direction of the film sheet is improved.
 本発明の位相差フィルム製造方法は、前記第1のロールに無端帯スリーブが回動可能に巻回されており、前記無端帯スリーブと前記第2のロールとの間で前記圧延が行われることを特徴としている。 In the retardation film manufacturing method of the present invention, an endless belt sleeve is rotatably wound around the first roll, and the rolling is performed between the endless belt sleeve and the second roll. It is characterized by.
 本発明の位相差フィルム製造方法は、第1のロールと前記第2のロールとの間における前記無端帯スリーブのスリーブ温度を、前記樹脂のガラス転移温度よりも35℃低い温度から前記樹脂のガラス転移温度よりも10℃高い温度までの間に制御することが好ましい。 In the retardation film manufacturing method of the present invention, the temperature of the endless belt sleeve between the first roll and the second roll is reduced from 35 ° C. lower than the glass transition temperature of the resin. It is preferable to control the temperature up to 10 ° C. higher than the transition temperature.
 本発明の位相差フィルム製造方法は、第1のロールが、前記第2のロールに対して前記樹脂を弾性付勢する弾性ロールによって構成され、前記無端帯スリーブは、金属ベルトスリーブによって構成されていることを特徴としている。 In the retardation film manufacturing method of the present invention, the first roll is constituted by an elastic roll that elastically biases the resin with respect to the second roll, and the endless belt sleeve is constituted by a metal belt sleeve. It is characterized by being.
 本発明の位相差フィルム製造方法は、前記圧延の線圧が1~12.5kgf/mmであることを特徴としている。 The retardation film manufacturing method of the present invention is characterized in that the rolling linear pressure is 1 to 12.5 kgf / mm.
 本発明の位相差フィルム製造方法は、前記ロールの直径が200mmから400mmであることを特徴としている。 The method for producing a retardation film of the present invention is characterized in that the roll has a diameter of 200 mm to 400 mm.
 本発明の位相差フィルム製造方法は、Tダイの下流部の両外壁の挟角が45°以下に設定されていることを特徴としている。 The method for producing a retardation film of the present invention is characterized in that the included angle between both outer walls of the downstream portion of the T die is set to 45 ° or less.
 本発明によれば、Tダイの下流部の両外壁の挟角が45°以下に設定されているので、Tダイを2つのロールの間に、より接近させて配置できる。したがって、ダイ出口から圧延開始位置までの距離が短くなるとともに、2つのロールとTダイで囲まれた空間(すなわち隙間)を小さくすることができる。したがって、ダイ出口から押し出されたフィルムシートが、ダイ出口から圧延開始位置に至る間に、気流によって揺れる現象を抑えることが可能になる。その結果として、フィルムシートの長手方向及び幅方向のフィルム膜厚均一性が向上する効果がもたらされる。 According to the present invention, since the sandwich angle between both outer walls of the downstream portion of the T die is set to 45 ° or less, the T die can be disposed closer to the two rolls. Accordingly, the distance from the die exit to the rolling start position is shortened, and the space (that is, the gap) surrounded by the two rolls and the T die can be reduced. Therefore, it is possible to suppress a phenomenon in which the film sheet extruded from the die exit is swayed by the air current while reaching the rolling start position from the die exit. As a result, the film thickness uniformity in the longitudinal direction and the width direction of the film sheet is improved.
 本発明の位相差フィルム製造方法は、前記熱可塑性樹脂が、環状オレフィン構造を有する樹脂であることを特徴としている。 The method for producing a retardation film of the present invention is characterized in that the thermoplastic resin is a resin having a cyclic olefin structure.
 本発明の位相差フィルム製造方法は、前記熱可塑性樹脂が、ポリカーボネート構造を有する樹脂であることを特徴としている。 The retardation film manufacturing method of the present invention is characterized in that the thermoplastic resin is a resin having a polycarbonate structure.
 本発明の位相差フィルム製造方法によれば、樹脂のダイ出口における温度を、樹脂のガラス転移温度よりも70℃高い温度から樹脂のガラス転移温度よりも100℃高い温度までの間に制御し、第1のロールと第2のロールの少なくとも一方の温度を、樹脂のガラス転移温度よりも35℃低い温度から樹脂のガラス転移温度よりも10℃高い温度までの間に制御するので、樹脂とロールとの間の密着性を適切な範囲内のものにすることができる。 According to the retardation film manufacturing method of the present invention, the temperature at the die exit of the resin is controlled between a temperature 70 ° C. higher than the glass transition temperature of the resin and a temperature 100 ° C. higher than the glass transition temperature of the resin, The temperature of at least one of the first roll and the second roll is controlled between a temperature 35 ° C. lower than the glass transition temperature of the resin and a temperature 10 ° C. higher than the glass transition temperature of the resin. Can be within a suitable range.
 したがって、位相差フィルムにシワ、横段状ムラが発生するのを、従来の圧延による製造方法よりも、低減することができ、正面位相差のばらつきの少ない位相差フィルムを提供することが可能となる。 Therefore, the occurrence of wrinkles and horizontal unevenness in the retardation film can be reduced as compared with the conventional rolling manufacturing method, and it is possible to provide a retardation film with less variation in front retardation. Become.
 したがって、本発明の製造方法により製造した位相差フィルムを液晶表示素子に用いた場合に、表示コントラスト及び表示色の視角特性を表示画面全面で均一にすることができる。 Therefore, when the retardation film manufactured by the manufacturing method of the present invention is used for the liquid crystal display element, the display contrast and the viewing angle characteristics of the display color can be made uniform over the entire display screen.
 本明細書は、本願の優先権の基礎である日本国特許出願2010-168065号の明細書及び/または図面に記載されている内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2010-168065 which is the basis of the priority of the present application.
位相差フィルム製造装置の構成を説明する図。The figure explaining the structure of a phase difference film manufacturing apparatus. 実施例2、6と比較例2における位相差フィルムの表面状態を説明する図。The figure explaining the surface state of the retardation film in Examples 2 and 6 and Comparative Example 2.
 次に、本発明の実施の形態について説明する。 Next, an embodiment of the present invention will be described.
 図1は、本実施の形態における位相差フィルム製造方法に用いられる位相差フィルム製造装置の構成を説明する図であり、図1(a)は全体図、図1(b)は図1(a)のA部拡大図である。 1A and 1B are diagrams for explaining the configuration of a retardation film manufacturing apparatus used in the retardation film manufacturing method in the present embodiment. FIG. 1A is an overall view, and FIG. FIG.
 位相差フィルム製造装置1は、図1(a)に示すように、押出成形装置2とロール装置3を備えている。 The retardation film manufacturing apparatus 1 includes an extrusion molding apparatus 2 and a roll apparatus 3 as shown in FIG.
 押出成形装置2は、ホッパ11に投入された原料樹脂w1をガラス転移温度よりも高い温度まで加熱して溶融し、押出機12で押し出す構成を有している。原料樹脂w1には、例えば環状オレフィン構造を有するものや、ポリカーボネートが使用され、図示していない除湿乾燥機にて100℃で4時間乾燥したものがホッパ11に投入される。押出機12には、例えば単軸押出機(軸径50mm、フルフライトタイプ)が使用される。押出機12に押し出された溶融樹脂w2(図1(b)を参照)は、押出機12に接続されたギヤポンプ13及びフィルター14を通過してTダイ15に供給され、Tダイ15のダイ出口16からシート状に押し出される。 The extrusion molding apparatus 2 has a configuration in which the raw material resin w <b> 1 charged in the hopper 11 is heated to a temperature higher than the glass transition temperature and melted and extruded by the extruder 12. As the raw material resin w1, for example, one having a cyclic olefin structure or polycarbonate is used, and the one dried for 4 hours at 100 ° C. in a dehumidifying dryer (not shown) is put into the hopper 11. As the extruder 12, for example, a single screw extruder (shaft diameter 50 mm, full flight type) is used. The molten resin w2 extruded to the extruder 12 (see FIG. 1B) passes through the gear pump 13 and the filter 14 connected to the extruder 12 and is supplied to the T die 15, and the die outlet of the T die 15 16 is extruded into a sheet shape.
 Tダイ15は、本実施の形態では、ダイ出口16から押し出された溶融樹脂w2のシート幅が355mmとなるものを使用した。Tダイ15は、ダイ出口16に連通したダイ通路を有している。ダイ出口16は、可能な限り第1のロール21と第2のロール31との間の圧延開始位置Pに、より近い位置に設置させることが望ましく、本実施の形態では、Tダイ15の下流部の両外壁15a、15bの挟角θは、45°以下に設定されている。 In the present embodiment, the T die 15 having a sheet width of 355 mm of the molten resin w2 extruded from the die outlet 16 was used. The T die 15 has a die passage communicating with the die outlet 16. The die outlet 16 is desirably installed at a position closer to the rolling start position P between the first roll 21 and the second roll 31 as much as possible. In this embodiment, the die outlet 16 is downstream of the T die 15. The included angle θ between the two outer walls 15a and 15b is set to 45 ° or less.
 そうすることで、ダイ出口16と圧延開始位置Pとの距離Dが短くなり、ダイ出口16から圧延開始位置Pに至る間に、ダイ出口16から押し出されたシート状の溶融樹脂w2が、気流によって揺れる現象を抑え、長手方向、幅方向のフィルム膜厚均一性を向上することが可能となる。 By doing so, the distance D between the die outlet 16 and the rolling start position P is shortened, and the sheet-like molten resin w2 extruded from the die outlet 16 during the period from the die outlet 16 to the rolling start position P It is possible to suppress the phenomenon of shaking and improve the film thickness uniformity in the longitudinal direction and the width direction.
 Tダイ15からシート状に押し出された溶融樹脂w2は、ロール装置3に供給される。ロール装置3は、一対のロールの間に溶融樹脂w2を流し込んで圧延することにより位相差フィルムw3を製造するように構成されており、Tダイ15の下方で互いに対向して平行に延在する第1のロール21と第2のロール31を有している。 The molten resin w <b> 2 extruded from the T die 15 into a sheet shape is supplied to the roll device 3. The roll device 3 is configured to produce a retardation film w3 by pouring and rolling a molten resin w2 between a pair of rolls, and extends parallel to each other below the T die 15. It has a first roll 21 and a second roll 31.
 第1のロール21は、第2のロール31に対して溶融樹脂w2を押圧するゴム製の弾性ロール(ゴムロール)によって構成されている。第1のロール21には、無端帯スリーブ23が回動可能に巻回されている。無端帯スリーブ23は、本実施の形態では、Ni製の金属ベルトスリーブによって構成されており、その表面にはクロムめっき処理が施されている。 The first roll 21 is constituted by a rubber elastic roll (rubber roll) that presses the molten resin w2 against the second roll 31. An endless belt sleeve 23 is wound around the first roll 21 so as to be rotatable. In this embodiment, the endless belt sleeve 23 is constituted by a metal belt sleeve made of Ni, and the surface thereof is subjected to chrome plating.
 無端帯スリーブ23は、第1のロール21と第1のロール21から所定距離だけ離間した位置に配置された駆動ロール22との間に亘って架け渡されて設けられており、駆動ロール22の回転によって従動回転される。駆動ロール22は、図示していない第1の駆動モータによって回転駆動される。 The endless belt sleeve 23 is provided so as to span between the first roll 21 and the driving roll 22 disposed at a position spaced apart from the first roll 21 by a predetermined distance. It is driven by rotation. The drive roll 22 is rotationally driven by a first drive motor (not shown).
 第2のロール31は、表面にクロムめっき処理が施された金属製のロール部材によって構成されている。第2のロール31は、図示していない第2の駆動モータによって回転駆動される。第1の駆動モータと第2の駆動モータは、図示していないモータ制御手段に接続されており、無端帯スリーブ23と第2のロール31との周速比が予め設定された値となるように各回転速度が制御される。 The second roll 31 is composed of a metal roll member whose surface is chrome plated. The second roll 31 is rotationally driven by a second drive motor (not shown). The first drive motor and the second drive motor are connected to motor control means (not shown) so that the peripheral speed ratio between the endless belt sleeve 23 and the second roll 31 becomes a preset value. Each rotation speed is controlled.
 第1のロール21と第2のロール31は、200mmから400mmのロール直径を有しており、本実施の形態では、第1のロール21と第2のロール31の直径は同一になるように構成されている。 The first roll 21 and the second roll 31 have a roll diameter of 200 mm to 400 mm. In the present embodiment, the diameters of the first roll 21 and the second roll 31 are the same. It is configured.
 Tダイ15と第1のロール21と第2のロール31は、Tダイ15のダイ出口16から第1のロール21と第2のロール31との間の圧延開始位置Pまでのエアギャップの距離Dと、第1のロール21の直径との比が3.1以上の値となるように、すなわち、第1のロール21の直径をエアギャップDの距離で除算した値が3.1以上の値となるように配置されている。上記値が3.1以下では、ムラが増大する。また、上記値の実際に実施可能な上限値は9.5である。例えば、Tダイ15のリップ厚みが最小5mm、Tダイ15の狭角が最小30°、最大ロール径が400mmの場合、ロール21、31とTダイ15が最も近づいたときの距離Dは4.2mmとなり、比は9.5となる。 The T die 15, the first roll 21, and the second roll 31 are air gap distances from the die outlet 16 of the T die 15 to the rolling start position P between the first roll 21 and the second roll 31. The ratio of D to the diameter of the first roll 21 is 3.1 or more, that is, the value obtained by dividing the diameter of the first roll 21 by the distance of the air gap D is 3.1 or more. It is arranged to be a value. When the above value is 3.1 or less, unevenness increases. The upper limit of the above value that can actually be implemented is 9.5. For example, when the lip thickness of the T die 15 is a minimum of 5 mm, the narrow angle of the T die 15 is a minimum of 30 °, and the maximum roll diameter is 400 mm, the distance D when the rolls 21 and 31 and the T die 15 are closest to each other is 4. 2 mm and the ratio is 9.5.
 第1のロール21と第2のロール31は、圧延時に溶融樹脂w2に対してシート幅方向に沿って線状に一定の圧力を加えて、その溶融樹脂w2に作用する線圧が1~12.5kgf/mmとなるように、配置位置が設定されている。 The first roll 21 and the second roll 31 apply a constant pressure linearly along the sheet width direction to the molten resin w2 during rolling, and the linear pressure acting on the molten resin w2 is 1 to 12. The arrangement position is set to be 5 kgf / mm.
 ロール装置3は、図示していない加熱ヒータと制御手段を有しており、ロール表面を加熱して、第1のロール21と第2のロール31の少なくとも一方の温度及び第1のロール21と第2のロール31との間における無端帯スリーブ23のスリーブ温度を、それぞれ所定温度に制御できるようになっている。 The roll device 3 includes a heater and a control unit (not shown), heats the roll surface, and controls the temperature of at least one of the first roll 21 and the second roll 31 and the first roll 21. The sleeve temperature of the endless belt sleeve 23 between the second roll 31 can be controlled to a predetermined temperature.
 溶融樹脂w2第1のロール21と第2のロール31との間で圧延されてその周速差により位相差フィルムw3となり、そのまま無端帯スリーブ23によって搬送されながら無端帯スリーブ23上で冷却され、図示していない巻き取り機によって無端帯スリーブ23から巻き取られる。 Molten resin w2 is rolled between the first roll 21 and the second roll 31 and becomes a retardation film w3 due to the difference in peripheral speed, and is cooled on the endless belt sleeve 23 while being transported by the endless belt sleeve 23 as it is, It is wound up from the endless belt sleeve 23 by a winder (not shown).
 第1のロール21と第2のロール31の周速度の比率(第1のロールの周速度/第2のロールの周速度)は0.90~0.995とすることが好ましい。周速比率を1.0以上とした場合はフィルムが延伸されて剪断を与えることが困難となり、周速比率を0.995~1.00とした場合にも周速差不十分により剪断を与えることができない。また、周速比率を0.90未満にした場合には、ロールとフィルムの密着状態が不安定になり、シワ、横段状ムラが発生する。 The ratio of the peripheral speeds of the first roll 21 and the second roll 31 (the peripheral speed of the first roll / the peripheral speed of the second roll) is preferably 0.90 to 0.995. When the peripheral speed ratio is 1.0 or more, the film is stretched and it is difficult to apply shear, and even when the peripheral speed ratio is 0.995 to 1.00, shear is applied due to insufficient peripheral speed difference. I can't. Further, when the peripheral speed ratio is less than 0.90, the contact state between the roll and the film becomes unstable, and wrinkles and horizontal unevenness occur.
 また、樹脂の流動性についてはMFR値が10~60の範囲内であることが望ましい。すなわち、MFR値10以下では、圧延した際に、シワ・横段状ムラが発生し、MFR値60以上では、膜揺れが生じ、フィルムの膜厚精度が劣る。 In addition, it is desirable that the MFR value is within the range of 10 to 60 for the fluidity of the resin. That is, when the MFR value is 10 or less, wrinkles / horizontal unevenness occurs when rolling, and when the MFR value is 60 or more, film shake occurs and the film thickness accuracy is inferior.
 上記構成を有する位相差フィルム製造装置1によれば、樹脂のダイ出口16における温度を、樹脂のガラス転移温度Tgよりも70℃高い温度から樹脂のガラス転移温度Tgよりも100℃高い温度までの間に制御し、無端帯スリーブ23と第2のロール31の温度を、樹脂のガラス転移温度Tgよりも35℃低い温度から樹脂のガラス転移温度Tgよりも10℃高い温度までの間に制御するので、溶融樹脂w2と無端帯スリープ23との間の密着性、及び、溶融樹脂w2と第2のロール31との間の密着性を、それぞれ適切な範囲内のものにすることができる。したがって、位相差フィルムw3にシワ、横段状ムラが発生するのを低減することができ、正面位相差のばらつきの少ない位相差フィルムw3を得ることができる。 According to the retardation film manufacturing apparatus 1 having the above-described configuration, the temperature at the resin die outlet 16 is from 70 ° C. higher than the glass transition temperature Tg of the resin to 100 ° C. higher than the glass transition temperature Tg of the resin. The temperature of the endless belt sleeve 23 and the second roll 31 is controlled between a temperature 35 ° C. lower than the glass transition temperature Tg of the resin and a temperature 10 ° C. higher than the glass transition temperature Tg of the resin. Therefore, the adhesiveness between the molten resin w2 and the endless belt sleep 23 and the adhesiveness between the molten resin w2 and the second roll 31 can be set within appropriate ranges. Accordingly, the occurrence of wrinkles and horizontal unevenness in the retardation film w3 can be reduced, and the retardation film w3 with little variation in front retardation can be obtained.
 例えば、溶融樹脂w2のダイ出口16における温度、あるいは、無端帯スリーブ23と第2のロール31の温度が、上記で規定した温度範囲よりも低い場合には、無端帯スリーブ23と第2のロール31との間で、溶融樹脂w2が無端帯スリーブ23または第2のロール31に密着した状態と、溶融樹脂w2が無端帯スリーブ23または第2のロール31上を滑っている状態とが、一定周期で繰り返されて、位相差フィルムw3にシワやムラが発生する。 For example, when the temperature of the molten resin w2 at the die outlet 16 or the temperature of the endless belt sleeve 23 and the second roll 31 is lower than the temperature range defined above, the endless belt sleeve 23 and the second roll The state in which the molten resin w2 is in close contact with the endless belt sleeve 23 or the second roll 31 and the state in which the molten resin w2 is sliding on the endless belt sleeve 23 or the second roll 31 are constant. Repeated in a cycle, wrinkles and unevenness occur in the retardation film w3.
 そして、溶融樹脂w2のダイ出口16における温度、あるいは、第1のロール21と第2のロール31の少なくとも一方の温度、無端帯スリーブ23のスリーブ温度が、上記で規定した温度範囲よりも高い場合には、溶融樹脂w2と無端帯スリーブ23との密着性、または、溶融樹脂w2と第2のロール31との密着性が過度に高くなり、圧延終了後、無端帯スリーブ23、あるいは、第2のロール31から剥がれる際にひっぱられて、位相差フィルムw3にシワやムラが発生する。 When the temperature of the molten resin w2 at the die outlet 16, the temperature of at least one of the first roll 21 and the second roll 31, and the sleeve temperature of the endless belt sleeve 23 are higher than the temperature range defined above. The adhesiveness between the molten resin w2 and the endless belt sleeve 23 or the adhesiveness between the molten resin w2 and the second roll 31 becomes excessively high, and after the end of rolling, the endless belt sleeve 23 or the second When the film is peeled off from the roll 31, the wrinkles and unevenness occur in the retardation film w3.
 これに対して、本発明の位相差フィルム製造方法によれば、溶融樹脂w2のダイ出口16における温度、及び、第1のロール21と第2のロール31の少なくとも一方の温度、無端帯スリーブ23のスリーブ温度を、上記で規定した温度範囲内に設定するので、溶融樹脂w2と無端帯スリーブ23との間の密着性、及び、溶融樹脂w2と第2のロール31との間の密着性を、それぞれ適切な範囲内のものにすることができる。 On the other hand, according to the retardation film manufacturing method of the present invention, the temperature of the molten resin w2 at the die outlet 16, the temperature of at least one of the first roll 21 and the second roll 31, the endless belt sleeve 23 Since the sleeve temperature is set within the temperature range defined above, the adhesion between the molten resin w2 and the endless belt sleeve 23 and the adhesion between the molten resin w2 and the second roll 31 are adjusted. , Each can be within an appropriate range.
 したがって、無端帯スリーブ23と第2のロール31との間における溶融樹脂w2の密着/滑りの周期的変動が抑制され、位相差フィルムw3にムラやシワが発生するのを低減することができる。そして、圧延終了後、位相差フィルムw3を無端帯スリーブ23、あるいは、第2のロール31から剥がす際に、位相差フィルムw3を引っ張ることなく剥がすことができ、引っ張りによるムラやシワの発生を防ぐことができる。 Therefore, periodic fluctuations in the adhesion / slip of the molten resin w2 between the endless belt sleeve 23 and the second roll 31 are suppressed, and occurrence of unevenness and wrinkles in the retardation film w3 can be reduced. Then, after the rolling, when the retardation film w3 is peeled from the endless belt sleeve 23 or the second roll 31, the retardation film w3 can be peeled without being pulled, thereby preventing the occurrence of unevenness and wrinkles due to pulling. be able to.
 したがって、位相差フィルムw3にシワ、横段状ムラが発生するのを、従来の圧延による製造方法よりも、低減することができ、正面位相差のばらつきの少ない位相差フィルムw3を提供することが可能となる。 Therefore, the occurrence of wrinkles and horizontal unevenness in the retardation film w3 can be reduced as compared with the conventional manufacturing method by rolling, and the retardation film w3 with less variation in front retardation can be provided. It becomes possible.
 なお、上述の実施の形態では、第1のロール21と第2のロール31との間に無端帯スリーブ23が介在された構成の場合を例に説明したが、無端帯スリーブ23を省略して、第1のロール21と第2のロール31との間で溶融樹脂w2を直接圧延する構成の場合についても、同様に、溶融樹脂w2と第1のロール21との密着性、及び、溶融樹脂w2と第2のロール31との密着性を、それぞれ適切な範囲内のものにすることができ、位相差フィルムw3にシワ、横段状ムラが発生するのを低減することができる。 In the above-described embodiment, the case where the endless belt sleeve 23 is interposed between the first roll 21 and the second roll 31 is described as an example, but the endless belt sleeve 23 is omitted. Similarly, in the case of a configuration in which the molten resin w2 is directly rolled between the first roll 21 and the second roll 31, the adhesion between the molten resin w2 and the first roll 21 and the molten resin are also the same. The adhesiveness between w2 and the second roll 31 can be set within an appropriate range, and the occurrence of wrinkles and horizontal unevenness in the retardation film w3 can be reduced.
 また、上記した位相差フィルム製造装置1によれば、第1のロール21と第2のロール31のうち、直径が大きい方のロールの直径をダイ出口16から樹脂の圧延が開始される圧延開始位置Pまでの距離Dで除算した値が3.1以上となるように、ロール21、31とTダイ15との位置を設定することによって、ダイ出口16から圧延開始位置Pまでの距離が短くなるとともに、2つのロール21、31とTダイ15で囲まれた空間(すなわち隙間)を小さくすることができる。したがって、ダイ出口16から押し出されたフィルムシートが、ダイ出口16から圧延開始位置Pに至る間に、気流によって揺れる現象を抑えることが可能になる。その結果として、フィルムシートの長手方向及び幅方向のフィルム膜厚均一性が向上する効果がもたらされる。 In addition, according to the retardation film manufacturing apparatus 1 described above, the rolling starts when the resin roll is started from the die outlet 16 with the diameter of the larger roll of the first roll 21 and the second roll 31. By setting the positions of the rolls 21 and 31 and the T die 15 so that the value divided by the distance D to the position P is 3.1 or more, the distance from the die exit 16 to the rolling start position P is shortened. In addition, the space (that is, the gap) surrounded by the two rolls 21 and 31 and the T die 15 can be reduced. Therefore, it is possible to suppress a phenomenon in which the film sheet extruded from the die outlet 16 is swayed by the air current while reaching the rolling start position P from the die outlet 16. As a result, the film thickness uniformity in the longitudinal direction and the width direction of the film sheet is improved.
 上記の装置を用いて、実際に以下に示す方法により位相差フィルムを作製した。 Using the above apparatus, a retardation film was actually produced by the following method.
(実施例1) 
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱して溶融し、Tダイ15のダイ出口16から押し出した。そして、Tダイ15のダイ出口16から、無端帯スリーブ23と第2ロール31との間に流し込み圧延して、膜厚が117μmの位相差フィルムw3を得た。
Example 1
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated to 270 ° C. in the extruder 12 to be melted. And extruded from the die outlet 16 of the T die 15. Then, from the die outlet 16 of the T die 15, it was cast and rolled between the endless belt sleeve 23 and the second roll 31 to obtain a retardation film w <b> 3 having a film thickness of 117 μm.
 その際、Tダイ15と圧延開始位置との間のエアギャップの距離を35mm(ロール径とエアギャップの比を7.1)とし、Tダイ15のダイ出口16における樹脂温度を217℃、圧延の線圧を5kgf/mm、無端帯スリーブ23のスリーブ温度を90℃、無端帯スリーブ23の周速を4.0m/min、第2のロール31の周速を4.08m/min、Tダイ15からの溶融樹脂w2の押出量を10kg/hとした。 At that time, the distance of the air gap between the T die 15 and the rolling start position is 35 mm (ratio of the roll diameter to the air gap is 7.1), the resin temperature at the die outlet 16 of the T die 15 is 217 ° C., and the rolling line The pressure is 5 kgf / mm, the sleeve temperature of the endless belt sleeve 23 is 90 ° C., the peripheral speed of the endless belt sleeve 23 is 4.0 m / min, the peripheral speed of the second roll 31 is 4.08 m / min, and melting from the T-die 15 The extrusion rate of the resin w2 was 10 kg / h.
 その結果、表1の実施例1の欄に示すように、位相差フィルムw3の膜厚ばらつきは±1μmであり、シワもなく、平坦性は良好であった。クロスニコルでの異物によるムラおよび横段状ムラは目視にて若干存在したが許容できるレベルであった。また、位相差を測定したところ、正面位相差(Δnd)は26nmで正面位相差ばらつきは±2nmであった。さらに、光軸がフィルム面に垂直な方向からなす角度β(傾斜角)は36°であった。 As a result, as shown in the column of Example 1 in Table 1, the film thickness variation of the retardation film w3 was ± 1 μm, there was no wrinkle, and the flatness was good. Although unevenness due to foreign matter and horizontal unevenness in crossed Nicols were slightly present visually, they were at an acceptable level. When the phase difference was measured, the front phase difference (Δnd) was 26 nm and the front phase difference variation was ± 2 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 36 °.
 クロスニコルは、対象となるフィルムサンプルの光学特性面での欠陥を観察するときに使用する偏光子の配置方法であり、二枚の偏光子を直交させて配置し、その間にサンプルを挟み、下から光線を照射したときの光漏れの状態を観察することで、フィルムが光学的にどの程度歪んでいるか、または、面内で均一に歪んでいるかを知ることができる。光学的な歪み(位相差)がない状態、もしくは、対象とするサンプル・サイズ内で一様に歪んでいる状態ではムラは観察されないが、場所によって歪み方が異なる(位相差値が異なる)場合は、光漏れの度合いが場所によって異なり、ムラとなって見える。 Crossed Nicol is a method of placing polarizers used when observing defects in the optical properties of the target film sample. Two polarizers are placed perpendicular to each other, the sample is sandwiched between them, and the bottom By observing the state of light leakage when the light beam is irradiated from the above, it is possible to know how much the film is optically distorted or uniformly distorted in the plane. When there is no optical distortion (phase difference), or when the distortion is uniform within the target sample size, unevenness is not observed, but the distortion differs depending on the location (phase difference value is different) , The degree of light leakage varies from place to place and appears uneven.
(実施例2)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。
(Example 2)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of retardation film production 1, and heated and melted at 270 ° C. in the extruder 12, T Extruded from the die outlet 16 of the die 15.
 そして、エアギャップの距離を40mm(ロール径とエアギャップの比を6.3)とし、Tダイ15のダイ出口16における樹脂温度を219℃、無端帯スリーブ23のスリーブ温度を122℃とした以外は、実施例1と同様の方法で膜厚が115μmの位相差フィルムw3を得た。 The distance of the air gap is 40 mm (ratio of roll diameter to air gap is 6.3), the resin temperature at the die outlet 16 of the T die 15 is 219 ° C., and the sleeve temperature of the endless belt sleeve 23 is 122 ° C. A retardation film w3 having a film thickness of 115 μm was obtained in the same manner as in Example 1.
 その結果、表1の実施例2の欄に示すように、位相差フィルムw3の膜厚ばらつきは±1μmであり、図2(a)に示すように、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は41nmで正面位相差ばらつきは±3nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は34°であった。 As a result, as shown in the column of Example 2 in Table 1, the film thickness variation of the retardation film w3 is ± 1 μm, and as shown in FIG. 2A, there is no wrinkle and the flatness is good. It was. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 41 nm and the front phase difference variation was ± 3 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 34 °.
 図2(a)は、実施例2における位相差フィルムの表面状態であり、シワ○・横段状ムラ○の例を示す図である。ここで、横段状ムラとは、クロスニコルで光を透過させたときに、フィルム巾方向にスジ状に見える色ムラであり、長手方向に数ミリ程度の間隔で周期的に発生する。横段状ムラの評価基準は、図2(d)に示す横段状ムラ標準よりも薄いときに○、横段状ムラ標準と同等のときに△であり、いずれも位相差フィルムに適用可である。一方、標準より顕著に色ムラが見えるときに×であり、位相差フィルムへの適用不可である。そして、シワは、ランダムな方向に存在し、平坦性が損なわれた状態をいう。シワの評価基準は、10cm□当たりのシワが1個未満のときに○であり、位相差フィルムに適用可である。一方、10cm□当たりのシワが1個以上のときに×であり、位相差フィルムへの適用不可である。 FIG. 2 (a) is a diagram showing the surface state of the retardation film in Example 2, and shows an example of wrinkles ○ and horizontal unevenness ○. Here, the horizontal unevenness is a color unevenness that appears streaks in the film width direction when light is transmitted through crossed Nicols, and is periodically generated at intervals of about several millimeters in the longitudinal direction. The evaluation criteria for horizontal step-like unevenness are ◯ when thinner than the horizontal step-like unevenness standard shown in FIG. 2D, and Δ when equal to the horizontal step-like unevenness standard, both of which can be applied to retardation films. It is. On the other hand, when color unevenness is remarkably visible from the standard, it is x, and cannot be applied to a retardation film. And wrinkles are present in random directions and refer to a state where flatness is impaired. The evaluation standard for wrinkles is ○ when the number of wrinkles per 10 cm □ is less than one, and is applicable to a retardation film. On the other hand, when the number of wrinkles per 10 cm □ is 1 or more, it is “x” and cannot be applied to a retardation film.
(実施例3)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。
(Example 3)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15.
 そして、圧延の線圧を7.5kgf/mmとした以外は実施例2と同様な方法で膜厚が115μmの位相差フィルムw3を得た。 Then, a retardation film w3 having a film thickness of 115 μm was obtained in the same manner as in Example 2 except that the rolling linear pressure was 7.5 kgf / mm.
 位相差フィルムw3の膜厚ばらつきは±1μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は52nmで正面位相差ばらつきは±3nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は35°であった。 The film thickness variation of the retardation film w3 was ± 1 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 52 nm and the front phase difference variation was ± 3 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
(実施例4)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、圧延の線圧を12.5kgf/mmとした以外は実施例2と同様な方法で膜厚が121μmの位相差フィルムw3を得た。
Example 4
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. A retardation film w3 having a thickness of 121 μm was obtained in the same manner as in Example 2 except that the rolling linear pressure was 12.5 kgf / mm.
 位相差フィルムw3の膜厚ばらつきは±2μmであった。クロスニコルでは、横段状のムラが実施例2に比べて若干目立ったが、許容できるレベルであった。また、正面位相差(Δnd)は62nmで正面位相差ばらつきは±9nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は35°であった。 The film thickness variation of the retardation film w3 was ± 2 μm. In crossed Nicol, the horizontal unevenness was slightly conspicuous compared with Example 2, but it was an acceptable level. The front phase difference (Δnd) was 62 nm and the front phase difference variation was ± 9 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
(実施例5)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、エアギャップの距離を60mm(ロール径とエアギャップの比を4.2)とした以外は実施例2と同様な方法で膜厚が118μmの位相差フィルムw3を得た。
(Example 5)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. A retardation film w3 having a film thickness of 118 μm was obtained in the same manner as in Example 2 except that the distance of the air gap was 60 mm (ratio of roll diameter to air gap was 4.2).
 位相差フィルムw3の膜厚ばらつきは±2μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は43nmで正面位相差ばらつきは±7nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は35°であった。 The film thickness variation of the retardation film w3 was ± 2 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 43 nm and the front phase difference variation was ± 7 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
(実施例6)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、エアギャップの距離を80mm(ロール径とエアギャップの比を3.1)とした以外は実施例2と同様な方法で膜厚が119μmの位相差フィルムw3を得た。
(Example 6)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. A retardation film w3 having a film thickness of 119 μm was obtained in the same manner as in Example 2 except that the air gap distance was 80 mm (ratio of roll diameter to air gap was 3.1).
 位相差フィルムw3の膜厚ばらつきは±3μmであり、シワもなく、平坦性は良好であった。図2(b)に示すように、クロスニコルでの横段状のムラが実施例2に比べて若干目立ったが、許容できるレベルであった。また、正面位相差(Δnd)は46nmで正面位相差ばらつきは±9nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は34°であった。図2(b)は、実施例6における位相差フィルムの表面状態であり、シワ○・横段状ムラ△の例を示す図である。 The film thickness variation of the retardation film w3 was ± 3 μm, there was no wrinkle, and the flatness was good. As shown in FIG. 2 (b), the horizontal unevenness in crossed Nicols was slightly more noticeable than in Example 2, but it was at an acceptable level. The front phase difference (Δnd) was 46 nm and the front phase difference variation was ± 9 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 34 °. FIG. 2B shows the surface state of the retardation film in Example 6 and shows an example of wrinkles ○ and horizontal unevenness Δ.
(実施例7)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=145℃、MFR=28)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、Tダイ15のダイ出口16における樹脂温度を223℃、無端帯スリーブ23のスリーブ温度を132℃とした以外は実施例2と同様な方法で膜厚が125μmの位相差フィルムw3を得た。
(Example 7)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 145 ° C., MFR = 28) as raw resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. Then, a retardation film w3 having a film thickness of 125 μm was obtained in the same manner as in Example 2 except that the resin temperature at the die outlet 16 of the T die 15 was 223 ° C. and the sleeve temperature of the endless sleeve 23 was 132 ° C. .
 位相差フィルムw3の膜厚ばらつきは±2μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は47nmで正面位相差ばらつきは±3nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は35°であった。 The film thickness variation of the retardation film w3 was ± 2 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 47 nm and the front phase difference variation was ± 3 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 35 °.
(実施例8)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=145℃、MFR=28)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、Tダイ15のダイ出口16における樹脂温度を233℃、無端帯スリーブ23のスリーブ温度を137℃とした以外は実施例2と同様な方法で膜厚が118μmの位相差フィルムw3を得た。
(Example 8)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 145 ° C., MFR = 28) as raw resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. A retardation film w3 having a film thickness of 118 μm was obtained in the same manner as in Example 2 except that the resin temperature at the die outlet 16 of the T die 15 was 233 ° C. and the sleeve temperature of the endless belt sleeve 23 was 137 ° C. .
 位相差フィルムw3の膜厚ばらつきは±1μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は40nmで正面位相差ばらつきは±6nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は33°であった。 The film thickness variation of the retardation film w3 was ± 1 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 40 nm and the front phase difference variation was ± 6 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 33 °.
(実施例9)
 原料樹脂w1としてポリカーボネートPC(ガラス転移温度Tg=124℃、MFR=50)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で230℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、Tダイ15のダイ出口16における樹脂温度を202℃、無端帯スリーブ23のスリーブ温度を110℃とした以外は実施例2と同様な方法で膜厚が122μmの位相差フィルムw3を得た。
Example 9
Pellets of polycarbonate PC (glass transition temperature Tg = 124 ° C., MFR = 50) as raw material resin w1 are put into the hopper 11 of the retardation film manufacturing apparatus 1, heated and melted at 230 ° C. in the extruder 12, and T Extruded from the die outlet 16 of the die 15. Then, a retardation film w3 having a film thickness of 122 μm was obtained in the same manner as in Example 2 except that the resin temperature at the die outlet 16 of the T die 15 was 202 ° C. and the sleeve temperature of the endless belt 23 was 110 ° C. .
 前記フィルムの膜厚ばらつきは±1μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は100nmで正面位相差ばらつきは±9nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は37°であった。 The film thickness variation of the film was ± 1 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 100 nm and the front phase difference variation was ± 9 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 37 °.
(実施例10)
 原料樹脂w1としてポリカーボネートPC(ガラス転移温度Tg=124℃、MFR=50)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で230℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、第2ロール31の周速を4.20m/minとした以外は実施例7と同様な方法で膜厚が123μmの位相差フィルムw3を得た。
(Example 10)
Pellets of polycarbonate PC (glass transition temperature Tg = 124 ° C., MFR = 50) as raw material resin w1 are put into the hopper 11 of the retardation film manufacturing apparatus 1, heated and melted at 230 ° C. in the extruder 12, and T Extruded from the die outlet 16 of the die 15. A retardation film w3 having a film thickness of 123 μm was obtained in the same manner as in Example 7 except that the peripheral speed of the second roll 31 was changed to 4.20 m / min.
 位相差フィルムw3の膜厚ばらつきは±1μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は138nmで正面位相差ばらつきは±9nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は39°であった。 The film thickness variation of the retardation film w3 was ± 1 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. Further, the front phase difference (Δnd) was 138 nm, and the front phase difference variation was ± 9 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 39 °.
(実施例11)
 原料樹脂w1としてポリカーボネートPC(ガラス転移温度Tg=124℃、MFR=50)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で230℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、第2ロール31の周速を4.04m/minとした以外は実施例7と同様な方法で膜厚が112μmの位相差フィルムw3を得た。
(Example 11)
Pellets of polycarbonate PC (glass transition temperature Tg = 124 ° C., MFR = 50) as raw material resin w1 are put into the hopper 11 of the retardation film manufacturing apparatus 1, heated and melted at 230 ° C. in the extruder 12, and T Extruded from the die outlet 16 of the die 15. Then, a retardation film w3 having a film thickness of 112 μm was obtained in the same manner as in Example 7 except that the peripheral speed of the second roll 31 was set to 4.04 m / min.
 位相差フィルムw3の膜厚ばらつきは±1μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は17nmで正面位相差ばらつきは±3nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は33°であった。 The film thickness variation of the retardation film w3 was ± 1 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 17 nm and the front phase difference variation was ± 3 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 33 °.
(実施例12)
 原料樹脂w1としてポリカーボネートPC(ガラス転移温度Tg=124℃、MFR=50)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で230℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、圧延の線圧を10kgf/mm、第2のロール31の周速を4.04m/minとした以外は実施例7と同様な方法で膜厚が116μmの位相差フィルムw3を得た。
(Example 12)
Pellets of polycarbonate PC (glass transition temperature Tg = 124 ° C., MFR = 50) as raw material resin w1 are put into the hopper 11 of the retardation film manufacturing apparatus 1, heated and melted at 230 ° C. in the extruder 12, and T Extruded from the die outlet 16 of the die 15. A retardation film w3 having a film thickness of 116 μm was obtained in the same manner as in Example 7 except that the rolling linear pressure was 10 kgf / mm and the peripheral speed of the second roll 31 was 4.04 m / min.
 位相差フィルムw3の膜厚ばらつきは±1μmであり、シワもなく、平坦性は良好であった。クロスニコルでの横段状ムラは目視にて若干存在したが許容できるレベルであった。また、正面位相差(Δnd)は31nmで正面位相差ばらつきは±4nmであった。さらに、光軸がフィルム面の垂直方向からなす角度β(傾斜角)は36°であった。 The film thickness variation of the retardation film w3 was ± 1 μm, there was no wrinkle, and the flatness was good. Although the horizontal step-like unevenness in crossed Nicols was slightly present visually, it was an acceptable level. The front phase difference (Δnd) was 31 nm and the front phase difference variation was ± 4 nm. Furthermore, the angle β (tilt angle) formed by the optical axis from the direction perpendicular to the film surface was 36 °.
(比較例1)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、Tダイ15のダイ出口16における樹脂温度を192℃とした以外は実施例2と同様な方法で膜厚が117μmの位相差フィルムw3を得た。
(Comparative Example 1)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. Then, a retardation film w3 having a film thickness of 117 μm was obtained in the same manner as in Example 2 except that the resin temperature at the die outlet 16 of the T die 15 was set to 192 ° C.
 位相差フィルムw3の膜厚ばらつきは±4μmであり、シワ、横段状のムラが発生し、実施例2に比べて平坦性が劣った。また、傾斜角βは17°で実施例2に比べて著しく低下した。 The film thickness variation of the retardation film w3 was ± 4 μm, wrinkles and horizontal unevenness occurred, and the flatness was inferior to that of Example 2. In addition, the inclination angle β was 17 °, which was significantly lower than that of Example 2.
(比較例2)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=145℃、MFR=28)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、無端帯スリーブ23のスリーブ温度を80℃とした以外は実施例8と同様な方法で膜厚が119μmの位相差フィルムw3を得た。位相差フィルムw3には、図2(c)に示すように、シワ、横段状のムラが存在し、実施例8に比べて平坦性が劣った。図2(c)は、比較例2における位相差フィルムの表面状態であり、シワ×・横段状ムラ×の例を示す図である。
(Comparative Example 2)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 145 ° C., MFR = 28) as raw resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. Then, a retardation film w3 having a film thickness of 119 μm was obtained in the same manner as in Example 8 except that the sleeve temperature of the endless belt sleeve 23 was changed to 80 ° C. As shown in FIG. 2C, the retardation film w <b> 3 had wrinkles and horizontal unevenness, and the flatness was inferior to that of Example 8. FIG. 2 (c) is a surface state of the retardation film in Comparative Example 2 and is a diagram showing an example of wrinkles × / horizontal step unevenness ×.
(比較例3)
 原料樹脂w1として環状オレフィンポリマー(ガラス転移温度Tg=125℃、MFR=45)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、第2のロール31の周速を4.60m/min(第1のロールの周速度/第2のロールの周速度=0.87)とした以外は実施例2と同様な方法で圧延を行ったところ、位相差フィルムw3には、シワ、横段状のムラが顕著に存在し、フィルムの巻取が不可能であった。
(Comparative Example 3)
Pellet of cyclic olefin polymer (glass transition temperature Tg = 125 ° C., MFR = 45) as raw material resin w1 is put into the hopper 11 of the retardation film manufacturing apparatus 1 and heated and melted to 270 ° C. in the extruder 12, Extruded from the die outlet 16 of the T die 15. And it rolled by the method similar to Example 2 except the peripheral speed of the 2nd roll 31 having been 4.60 m / min (peripheral speed of the 1st roll / peripheral speed of the 2nd roll = 0.87). However, in the retardation film w3, wrinkles and horizontal unevenness were remarkably present, and the film could not be wound.
(比較例4)
 原料樹脂w1としてポリカーボネートPC(ガラス転移温度Tg=124℃、MFR=50)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で230℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、無端帯スリーブ23のスリーブ温度を70℃とした以外は実施例9と同様な方法で膜厚が118μmの位相差フィルムw3を得た。位相差フィルムw3には、シワ、横段状のムラが存在し、実施例9に比べて平坦性が劣った。また、傾斜角βは24°で実施例9に比べて低下した。
(Comparative Example 4)
Pellets of polycarbonate PC (glass transition temperature Tg = 124 ° C., MFR = 50) as raw material resin w1 are put into the hopper 11 of the retardation film manufacturing apparatus 1, heated and melted at 230 ° C. in the extruder 12, and T Extruded from the die outlet 16 of the die 15. Then, a retardation film w3 having a film thickness of 118 μm was obtained in the same manner as in Example 9 except that the sleeve temperature of the endless belt sleeve 23 was set to 70 ° C. The retardation film w3 had wrinkles and horizontal unevenness, and the flatness was inferior to that of Example 9. Further, the inclination angle β was 24 °, which was lower than that in Example 9.
(比較例5)
 原料樹脂w1としてポリカーボネートPC(ガラス転移温度Tg=144℃、MFR=5)のペレットを、位相差フィルム製造装置1のホッパ11に投入して、押出機12内で270℃に加熱溶融し、Tダイ15のダイ出口16から押し出した。そして、Tダイ15のダイ出口16における樹脂温度を232℃とし、無端帯スリーブ23のスリーブ温度を130℃とした以外は、実施例9と同様な方法で膜厚が121μmの位相差フィルムw3を得た。位相差フィルムw3には、シワ、横段状のムラが存在し、実施例9に比べて平坦性が劣った。
Figure JPOXMLDOC01-appb-T000001
(Comparative Example 5)
Pellets of polycarbonate PC (glass transition temperature Tg = 144 ° C., MFR = 5) as raw material resin w1 are put into the hopper 11 of the retardation film manufacturing apparatus 1, heated and melted to 270 ° C. in the extruder 12, T Extruded from the die outlet 16 of the die 15. Then, a retardation film w3 having a film thickness of 121 μm is formed in the same manner as in Example 9 except that the resin temperature at the die outlet 16 of the T die 15 is 232 ° C. and the sleeve temperature of the endless belt sleeve 23 is 130 ° C. Obtained. The retardation film w3 had wrinkles and horizontal unevenness, and the flatness was inferior to that of Example 9.
Figure JPOXMLDOC01-appb-T000001
1 位相差フィルム製造装置
2 押出成形装置
3 ロール装置
15 Tダイ
16 ダイ出口
21 第1のロール
23 無端帯スリーブ
31 第2のロール
w1 原料樹脂
w2 溶融樹脂
w3 位相差フィルム
DESCRIPTION OF SYMBOLS 1 Phase difference film manufacturing apparatus 2 Extrusion apparatus 3 Roll apparatus 15 T die 16 Die exit 21 1st roll 23 Endless belt sleeve 31 2nd roll w1 Raw material resin w2 Molten resin w3 Phase difference film

Claims (12)

  1.  Tダイのダイ出口からシート状に押し出された熱可塑性樹脂を互いに対向する第1のロールと第2のロールとの間に流し込んで圧延することにより位相差フィルムを製造する位相差フィルム製造方法であって、
     前記樹脂の前記ダイ出口における温度を、当該樹脂のガラス転移温度よりも70℃高い温度から前記樹脂のガラス転移温度よりも100℃高い温度までの間に制御し、
     前記第1のロールと前記第2のロールの少なくとも一方の温度を、前記樹脂のガラス転移温度よりも35℃低い温度から前記樹脂のガラス転移温度よりも10℃高い温度までの間に制御することを特徴とする位相差フィルム製造方法。
    A retardation film manufacturing method for manufacturing a retardation film by pouring and rolling a thermoplastic resin extruded in a sheet form from a die outlet of a T die between a first roll and a second roll facing each other. There,
    Controlling the temperature at the die exit of the resin from a temperature 70 ° C. higher than the glass transition temperature of the resin to a temperature 100 ° C. higher than the glass transition temperature of the resin;
    Controlling the temperature of at least one of the first roll and the second roll from a temperature 35 ° C. lower than the glass transition temperature of the resin to a temperature 10 ° C. higher than the glass transition temperature of the resin A method for producing a retardation film.
  2.  前記第1のロールと前記第2のロールのうち、直径が大きい方のロールの直径を前記ダイ出口から前記樹脂の圧延が開始される位置までの距離で除算した値が3.1以上、9.5以下となるように、前記ロールと前記ダイとの位置が設定されていることを特徴とする請求項1に記載の位相差フィルム製造方法。 A value obtained by dividing the diameter of the larger roll of the first roll and the second roll by the distance from the die exit to the position where the rolling of the resin is started is 3.1 or more, 9 The phase difference film manufacturing method according to claim 1, wherein positions of the roll and the die are set so as to be 5 or less.
  3.  前記第1のロールに無端帯スリーブが回動可能に巻回されており、前記無端帯スリーブと前記第2のロールとの間で前記圧延が行われることを特徴とする請求項1又は2に記載の位相差フィルム製造方法。 The endless belt sleeve is rotatably wound around the first roll, and the rolling is performed between the endless belt sleeve and the second roll. The retardation film manufacturing method of description.
  4.  前記第1のロールと前記第2のロールとの間における前記無端帯スリーブのスリーブ温度を、前記樹脂のガラス転移温度よりも35℃低い温度から前記樹脂のガラス転移温度よりも10℃高い温度までの間に制御することを特徴とする請求項3に記載の位相差フィルム製造方法。 The sleeve temperature of the endless belt sleeve between the first roll and the second roll is from a temperature 35 ° C. lower than the glass transition temperature of the resin to a temperature 10 ° C. higher than the glass transition temperature of the resin. The method for producing a retardation film according to claim 3, wherein the retardation film is controlled in between.
  5.  前記第1のロールは、前記第2のロールに対して前記樹脂を弾性付勢する弾性ロールによって構成され、
     前記無端帯スリーブは、金属ベルトスリーブによって構成されていることを特徴とする請求項4に記載の位相差フィルム製造方法。
    The first roll is constituted by an elastic roll that elastically biases the resin against the second roll,
    The retardation film manufacturing method according to claim 4, wherein the endless belt sleeve is formed of a metal belt sleeve.
  6.  前記圧延の線圧が1~12.5kgf/mmであることを特徴とする請求項1から請求項5いずれか一項に記載の位相差フィルム製造方法。 The method for producing a retardation film according to any one of claims 1 to 5, wherein a linear pressure of the rolling is 1 to 12.5 kgf / mm.
  7.  前記各ロールの直径が200mmから400mmであることを特徴とする請求項1から請求項6のいずれか一項に記載の位相差フィルム製造方法。 The diameter of each said roll is 200 mm to 400 mm, The retardation film manufacturing method as described in any one of Claims 1-6 characterized by the above-mentioned.
  8.  前記Tダイは、前記Tダイの下流部の両外壁の狭角が45°以下に設定されていることを特徴とする請求項1から請求項7のいずれか一項に記載の位相差フィルム製造方法。 The retardation film production according to any one of claims 1 to 7, wherein the T die has a narrow angle of both outer walls at a downstream portion of the T die set to 45 ° or less. Method.
  9.  前記第1のロールと前記第2のロールの周速度の比率(第1のロールの周速度/第2のロールの周速度)が0.90以上0.995以下である、請求項1から請求項8のいずれか一項に記載の位相差フィルム製造方法。 The ratio of the peripheral speed of the first roll and the second roll (peripheral speed of the first roll / peripheral speed of the second roll) is 0.90 or more and 0.995 or less. Item 9. The method for producing a retardation film according to any one of Items 8 to 9.
  10.  前記熱可塑性樹脂が、MFR値10~60の範囲の流動性を示す樹脂であることを特徴とする請求項1から請求項9のいずれか一項に記載の位相差フィルム製造方法。 The method for producing a retardation film according to any one of claims 1 to 9, wherein the thermoplastic resin is a resin exhibiting fluidity in an MFR value range of 10 to 60.
  11.  前記熱可塑性樹脂が、環状オレフィン構造を有する樹脂であることを特徴とする請求項1から請求項10のいずれか一項に記載の位相差フィルム製造方法。 The retardation film production method according to any one of claims 1 to 10, wherein the thermoplastic resin is a resin having a cyclic olefin structure.
  12.  前記熱可塑性樹脂が、ポリカーボネート構造を有する樹脂であることを特徴とする請求項1から請求項10のいずれか一項に記載の位相差フィルム製造方法。 The method for producing a retardation film according to any one of claims 1 to 10, wherein the thermoplastic resin is a resin having a polycarbonate structure.
PCT/JP2011/067035 2010-07-27 2011-07-27 Method for manufacturing retardation films WO2012014913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-168065 2010-07-27
JP2010168065A JP2012027372A (en) 2010-07-27 2010-07-27 Method for producing retardation film

Publications (1)

Publication Number Publication Date
WO2012014913A1 true WO2012014913A1 (en) 2012-02-02

Family

ID=45530117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067035 WO2012014913A1 (en) 2010-07-27 2011-07-27 Method for manufacturing retardation films

Country Status (2)

Country Link
JP (1) JP2012027372A (en)
WO (1) WO2012014913A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870352B (en) * 2012-12-13 2017-03-22 柯尼卡美能达株式会社 Optical film roll, method for producing same, polarizing plate, and display device
TWI640554B (en) * 2016-11-28 2018-11-11 林紫綺 Isothermal extrusion molding system and isothermal roller structure thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264229A (en) * 1997-03-25 1998-10-06 Toray Ind Inc Die for extrusion molding, extrusion molding method and film manufacturing method
JPH11314233A (en) * 1998-05-06 1999-11-16 Teijin Ltd Extrusion die
JP2007168260A (en) * 2005-12-22 2007-07-05 Asahi Kasei Chemicals Corp Extrusion molding method and polyphenylene ether based resin film
JP2010058411A (en) * 2008-09-04 2010-03-18 Fujifilm Corp Thermoplastic resin film, process of manufacturing the same, polarizing plate, and liquid crystal display
JP2010125652A (en) * 2008-11-26 2010-06-10 Fujifilm Corp Film, method of manufacturing the same, polarizing plate, and liquid crystal display device
JP2011084058A (en) * 2009-09-18 2011-04-28 Fujifilm Corp Film, method for producing the same, polarizing plate and liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069534B2 (en) * 1999-02-02 2008-04-02 Jsr株式会社 Method for producing transparent laminated sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264229A (en) * 1997-03-25 1998-10-06 Toray Ind Inc Die for extrusion molding, extrusion molding method and film manufacturing method
JPH11314233A (en) * 1998-05-06 1999-11-16 Teijin Ltd Extrusion die
JP2007168260A (en) * 2005-12-22 2007-07-05 Asahi Kasei Chemicals Corp Extrusion molding method and polyphenylene ether based resin film
JP2010058411A (en) * 2008-09-04 2010-03-18 Fujifilm Corp Thermoplastic resin film, process of manufacturing the same, polarizing plate, and liquid crystal display
JP2010125652A (en) * 2008-11-26 2010-06-10 Fujifilm Corp Film, method of manufacturing the same, polarizing plate, and liquid crystal display device
JP2011084058A (en) * 2009-09-18 2011-04-28 Fujifilm Corp Film, method for producing the same, polarizing plate and liquid crystal display device

Also Published As

Publication number Publication date
JP2012027372A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
TWI644129B (en) Laminated retardation film and method of producing the same
KR20080094612A (en) Heat treatment of thermoplastic film, and thermoplastic film and method for producing the same
CN101664991B (en) Method for producing film and optical film
WO2012102178A1 (en) Method and apparatus for producing resin film
JP2011059471A (en) Optical film, method for manufacturing the same, polarizing plate, liquid crystal display apparatus and the like
JP3846566B2 (en) Method for producing thermoplastic resin sheet
WO2012014913A1 (en) Method for manufacturing retardation films
CN101746010B (en) Film, method for manufacturing the same, optical compensation film for liquid crystal display panel, polarization plate and liquid crystal display device
JP2013208717A (en) Method of manufacturing optical film, polarizing plate, and liquid crystal display device
CN102019680A (en) Film and method for manufacturing the same, polarization plate and liquid crystal display device
JP2003236915A (en) Method for manufacturing amorphous thermoplastic resin sheet
JP5304189B2 (en) Manufacturing method of optical film
JP6128818B2 (en) Manufacturing method of optical film
JP2011161657A (en) Rolled film and method for manufacturing the same
JP5029145B2 (en) Manufacturing method of optical film
JP2009119796A (en) Thermoplastic resin film, its forming method, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP4964805B2 (en) Thermoplastic film, method for producing the same, heat treatment method, polarizing plate, optical compensation film for liquid crystal display plate, antireflection film, and liquid crystal display device
WO2014027660A1 (en) Device and method for producing thermoplastic resin sheet, and thermoplastic resin sheet obtained thereby
JP2015214024A (en) Apparatus and method for producing thermoplastic resin sheet and thermoplastic resin sheet obtained therefrom
JP5762927B2 (en) Film manufacturing method and apparatus
JP2012032647A (en) Retardation film having light diffusion function, manufacturing method thereof, composite polarizing plate, polarizing plate and backlight unit for liquid crystal display device
CN102019684A (en) Method for manufacturing optical film, optical compensation film for optical film, polarization plate, and liquid crystal display panel, and liquid crystal display apparatus
JP2010137422A (en) Film, method of manufacturing film, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device
CN102576109A (en) Wave plate, method for producing same, and liquid crystal display device
JP2008246758A (en) Method for producing optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812502

Country of ref document: EP

Kind code of ref document: A1