WO2020012583A1 - スイッチング電源回路およびそれを備えた電力変換装置 - Google Patents

スイッチング電源回路およびそれを備えた電力変換装置 Download PDF

Info

Publication number
WO2020012583A1
WO2020012583A1 PCT/JP2018/026209 JP2018026209W WO2020012583A1 WO 2020012583 A1 WO2020012583 A1 WO 2020012583A1 JP 2018026209 W JP2018026209 W JP 2018026209W WO 2020012583 A1 WO2020012583 A1 WO 2020012583A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
power supply
supply circuit
voltage
switching
Prior art date
Application number
PCT/JP2018/026209
Other languages
English (en)
French (fr)
Inventor
啓輔 田邉
史宏 佐藤
正宏 平賀
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2018/026209 priority Critical patent/WO2020012583A1/ja
Priority to JP2020529901A priority patent/JP7122379B2/ja
Publication of WO2020012583A1 publication Critical patent/WO2020012583A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage

Definitions

  • switching power supply circuits such as flyback converters as insulated power supply circuits that receive an AC voltage to obtain a DC voltage and further obtain DC voltages having different voltage specifications from the DC voltage.
  • These switching power supply circuits receive a supply of DC power from a DC voltage unit, perform switching control of a primary side of a transformer by a PWM control circuit, and output DC voltages having different voltage specifications.
  • the voltage of the DC voltage section becomes higher as the input AC voltage becomes higher, and it is necessary to correspond to a voltage exceeding 350 V to more than 1000 V according to the AC voltage.
  • a switching element used in a known switching power supply circuit is a MOSFET having a withstand voltage of several hundred volts in the case of receiving 200V AC, and a MOSFET having a withstand voltage exceeding 1000V in the case of receiving 400V AC.
  • a switching element with a withstand voltage exceeding 1000 V has a high cost and is a problem.
  • FIG. 3 of Non-Patent Document 1 and FIG. 2 of Non-Patent Document 2 show a first switching element having a gate terminal connected to a controller, and a first switching element connected in series to the first switching element.
  • a second switching element configured to switch in synchronization with the element.
  • the number of components is increased as compared with the conventional case where a switching element having a withstand voltage exceeding 1000 V is applied. there were.
  • the present invention is, for example, a switching power supply circuit that includes a transformer in which one terminal of a primary winding is connected to a high voltage side of a DC voltage source, and a DC power supply.
  • a first switching element having a source terminal connected to the low voltage side of the voltage source, a controller for outputting a gate signal to a gate terminal of the first switching element, and a source terminal connected to a drain terminal of the first switching element
  • a second switching element having a drain terminal connected to the other terminal of the primary winding of the transformer, a cathode terminal connected to a gate terminal of the second switching element, and a source terminal connected to the source terminal of the second switching element.
  • a first Zener diode to which an anode terminal is connected, a series body of two capacitors connected between terminals of a DC voltage source, and two capacitors A first resistor connected between a connection point of the series body of the second switching element and a gate terminal of the second switching element; a cathode terminal connected to the gate terminal of the second switching element; The second Zener diode to which the anode terminal is connected is provided.
  • the present invention it is possible to provide a switching power supply circuit capable of reducing cost while reducing the number of components and the mounting area, and a power conversion device including the switching power supply circuit.
  • FIG. 2 is a circuit configuration diagram of a switching power supply circuit described in Non-Patent Documents 1 and 2.
  • FIG. 2 is a circuit configuration diagram of a switching power supply circuit according to the first embodiment.
  • 9 is an operation waveform of each part of the switching power supply circuit in Non-Patent Document 1 and Example 1.
  • FIG. 9 is a circuit configuration diagram of a switching power supply circuit according to a second embodiment.
  • FIG. 13 is a circuit configuration diagram of a switching power supply circuit according to a third embodiment.
  • FIG. 13 is a circuit configuration diagram in which a resistor is connected as an example of a gate drive circuit of a switching power supply circuit according to a third embodiment.
  • FIG. 13 is a circuit configuration diagram in which a diode is connected in parallel to a resistor as an example of a gate drive circuit of a switching power supply circuit according to a third embodiment.
  • FIG. 13 is a circuit configuration diagram in which an inductor is connected as an example of a gate drive circuit of a switching power supply circuit according to a third embodiment.
  • FIG. 13 is a circuit configuration diagram in which a capacitor is connected as an example of a gate drive circuit of a switching power supply circuit according to a third embodiment.
  • FIG. 13 is a circuit configuration diagram of a power conversion device to which a switching power supply circuit according to a fourth embodiment is applied.
  • FIG. 1 is a circuit configuration diagram of a conventional generally used switching power supply circuit
  • FIG. 2 is a circuit configuration diagram described in Non-Patent Documents 1 and 2.
  • the switching element applied to the switching power supply circuit generally used in the past is one switching element S1, and the switching element S1 is turned on in response to a signal from the controller CTRL.
  • the voltage of the DC voltage source Vin is applied to the primary side of the transformer Tr, and energy is stored in the transformer Tr. Thereafter, while the switching element S1 is off, the energy stored in the transformer Tr is transmitted to the secondary side of the transformer.
  • the switching element S1 switches upon receiving a gate signal from the controller CTRL, and is controlled so that, for example, the voltage on the secondary side of the transformer Tr becomes a desired voltage.
  • the voltage of the DC voltage source Vin exceeds 1000 V
  • switching elements S1 and S2 having a withstand voltage of several hundred volts are connected in series to a portion conventionally constituted by one switching element S1 exceeding 1000V.
  • the circuit operation is substantially the same as that of the circuit shown in FIG. 1, and a voltage of Vin is applied to the primary side of the transformer Tr while both the switching elements S1 and S2 are on, and both the switching elements S1 and S2 are turned off. During this period, the energy stored in the transformer Tr is transmitted to the secondary side of the transformer.
  • the switching element S2 forms a circuit in synchronization with the switching of the switching element S1, and further includes a resistor R1 and zener diodes ZD1 and ZD2 from the circuit shown in FIG. Further detailed operations are described in Non-Patent Documents 1 and 2, and will not be described.
  • the switching element S1 when the switching element S1 is turned on in response to a signal from the controller CTRL, the voltage at the drain terminal of the switching element S1 substantially matches the voltage on the low voltage side of the DC voltage source. Therefore, the voltage of the DC voltage source Vin is applied to the resistor R1 and the gate-source capacitance CgsS2 of the switching element S2. Therefore, the gate-source capacitance CgsS2 of the switching element S2 is charged by the current determined by the voltage of the resistor R1 and the DC voltage source Vin, and the switching element S2 is turned on when the voltage of the CgsS2 exceeds the threshold voltage of the switching element S2.
  • the current IgsS2 for charging the gate-source capacitance of the switching element S2 is represented by Expression (1).
  • IgsS2 ′ Vn1 / R1 ′ (2)
  • the value of the resistor R1 ′ is determined so that IgsS2 shown in the equation (1) becomes equal to IgsS2 ′ shown in the equation (2), a constant shown in the equation (3) is obtained.
  • R1 ' R1 / 2 (3)
  • R1 4 M ⁇ (1 M ⁇ ⁇ 4 series)
  • the resistance value of the resistor R1 ′ in this embodiment is estimated to be approximately 2 M ⁇ . That is, in the circuit configuration shown in FIG. 2, four 1 M ⁇ resistors R1 are connected in series, whereas in the circuit configuration described in this embodiment, two 1 M ⁇ resistors R1 ′ can be connected in series.
  • the resistors R1 and R1 'used here need to have a large capacity, and therefore have a large shape. Therefore, halving the value of the resistor can reduce the mounting area in addition to the reduction in the number of components. It can greatly contribute to space.
  • ITr is the current of the primary winding of the transformer Tr
  • Vn1 and Vn1 ' are the voltages of Node1 and Node1'
  • VgsS1 and VgsS2 are the voltages between the gate and source of the switching elements S1 and S2
  • VdsS1 and VdsS2 are the switching elements. These are the drain-source voltages of S1 and S2.
  • the value of the resistor R1 used in the conventional circuit can be substantially halved, and the number of components can be reduced and the mounting area can be reduced.
  • controller CTRL and the switching element S1 are separate bodies, but an element in which the controller CTRL and the switching element S1 are integrated as shown in Non-Patent Document 2 may be applied.
  • the gate-source capacitance CgsS2 of the switching element S2 is charged and discharged, and the switching element S2 is turned on / off. Therefore, as the value of the resistor R1 'is reduced, the difference between the turn-on / off timings of the switching element S1 and the switching element S2 is reduced, and the switching element S1 and the switching element S2 can be more ideally synchronized. become.
  • a gate drive circuit GD is added to the gate terminal of the switching element S2 in the circuit of the first embodiment shown in FIG.
  • FIG. 7 shows, as an example of the gate drive circuit GD, a case where a resistor R2 is connected to the gate terminal of the switching element S2 in the circuit shown in FIG.
  • a resistor R2 By connecting the resistor R2, for example, the rise time of the gate voltage when the switching element S2 is turned on is delayed as compared with the circuit shown in FIG. 3, so that the switching noise generated from the switching element S2 can be reduced.
  • the resistor R2 for example, the rise time of the gate voltage when the switching element S2 is turned on is delayed as compared with the circuit shown in FIG. 3, so that the switching noise generated from the switching element S2 can be reduced.
  • FIG. 8 shows an example of the gate drive circuit GD in which a diode D2 is connected in parallel with the resistor R2 in the circuit shown in FIG.
  • the fall time of the gate voltage when the switching element S2 is turned off is shorter than that of the circuit shown in FIG. 7, and the turn-off loss of the switching element S2 is reduced. Therefore, the turn-off loss of the switching element S2 is reduced, and the efficiency is improved as compared with the circuit shown in FIG.
  • the conversion efficiency and the switching noise level of the switching power supply circuit 1 can be adjusted.
  • FIG. 9 shows an example of the gate drive circuit GD in which an inductor L1 is connected to the gate terminal of the switching element S2 in the circuit shown in FIG.
  • the impedance between the gate terminal of the switching element S2 and the node Node1 'increases by adding the inductor L1, the current flowing through the gate terminal of the switching element S2 and the Zener diode ZD1 caused by disturbance noise. And it is possible to suppress the switching element S2 from being erroneously fired.
  • FIG. 10 shows a case where a capacitor C1 is newly connected between the gate and the source of the switching element S2 in the circuit shown in FIG.
  • a capacitor C1 is newly connected between the gate and the source of the switching element S2 in the circuit shown in FIG.
  • the time required for the gate voltage of the switching element S2 to increase from the circuit shown in FIG. Can also be lengthened, and erroneous firing of the switching element S2 can be suppressed.
  • the gate drive circuit GD including passive components such as a resistor, a diode, an inductor, and a capacitor to the gate terminal of the switching element S2
  • the operation characteristics of the switching power supply circuit 1 with respect to various elements are desired. It can be adjusted to a value.
  • FIG. 11 is a circuit configuration diagram of a power conversion device to which the switching power supply circuit according to the present embodiment is applied.
  • the switching power supply circuit 1 shown in FIGS. 3 and 5 to 10 power is input from an AC power supply 4 to an AC load such as a motor 5 or the like.
  • a circuit configuration when applied to a power conversion device including an inverter circuit that outputs power will be described.
  • the switching power supply circuit 1 is composed of a rectifier circuit 2 that receives power from an AC power supply and includes diodes DB1 to DB6 and an inverter circuit 3 that includes switching elements Q1 to Q6. Power conversion device.
  • the voltage at the output of the rectifier circuit becomes a DC voltage Vdc corresponding to the voltage of the AC system, and the DC voltage Vdc is applied to a series body of the capacitors Cb1 and Cb2. Then, the switching power supply circuit 1 outputs the secondary voltage of the transformer Tr, as shown in FIGS. 3, 5 to 10.
  • the circuit configuration in the case where the switching power supply circuit 1 is applied to the power conversion device including the inverter circuit that inputs the AC power from the AC power supply and outputs the AC power has been described.
  • the application of the switching power supply circuit 1 is not limited to this, and the switching power supply circuit 1 can be similarly applied to a DC input or DC output power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

部品点数及び実装面積を削減しつつコストを低減することを目的とする。 スイッチング電源回路であって、直流電圧源の高電圧側に1 次巻き線の一方の端子が接続されたトランスと、直流電圧源の低電圧側にソースが接続された第1のスイッチング素子と、第1のスイッチング素子のゲートにゲート信号を出力するコントローラと、第1のスイッチング素子のドレインにソースが接続され、トランスの1次巻き線の他方の端子にドレインが接続された第2のスイッチング素子と、第2のスイッチング素子のゲートにカソードが接続され、第2のスイッチング素子のソースにアノードが接続された第1のツェナダイオードと、直流電圧源の端子間に接続されたコンデンサの直列体と、2つのコンデンサの接続点と第2のゲートの間に接続された第1の抵抗と、第2のゲートにカソードが接続され、直流電圧源の低電圧側にアノードが接続された第2のツェナダイオードを備える構成とする。

Description

スイッチング電源回路およびそれを備えた電力変換装置
 本発明は、直流電圧部から電圧仕様の異なる直流電圧を得る絶縁型スイッチング電源回路を備えた電力変換装置に関する。
 従来、交流電圧を受電して直流電圧を得、更にこの直流電圧から電圧仕様の異なる直流電圧を得る絶縁電源回路としてフライバックコンバータ等の種々のスイッチング電源回路がある。これらのスイッチング電源回路は、直流電圧部から直流電力の供給を受けてトランスの一次側をPWM制御回路によりスイッチング制御し、電圧仕様の異なる直流電圧を出力するものである。この直流電圧部の電圧は、入力される交流電圧が高圧になるほど高くなり、その交流電圧に応じて350V~1000Vを超える電圧まで対応する必要がある。公知のスイッチング電源回路に用いられるスイッチング素子は、交流200V受電の場合は数百V耐圧のMOSFETであるのに対し、交流400V受電の場合は1000Vを超える耐圧を有するMOSFETを備える必要があった。特に、1000Vを超える耐圧のスイッチング素子はコストが高く課題であった。
 これらの課題を解決する手段として、複数の数百V耐圧のMOSFETを直列に組み合わせる回路構成が非特許文献1、非特許文献2に記されている。この回路構成では1000Vを超過する直流電圧を、複数の数百V耐圧のMOSFETで分担することで各MOSFETの耐圧を超過しない範囲でスイッチングすることが可能であり、従来1000Vを超える耐圧のスイッチング素子を用いていた場合に比べてコストを低減できる。
Texas Instruments, 400V-to 690V AC Input 50-W Flyback Isolated Power Supply Reference Design for Motor Drives, September 2014-Revised November 2014 Infineon, Application Note CoolSET&CoolMOS Ultra Wide Input Range, HV-BIAS Supply for SMPS with ICE2B25 and SPA02N80, Version 1.1, March 2008
 非特許文献1のFig.3及び非特許文献2のFig.2には、コントローラにゲート端子が接続された第1のスイッチング素子と、第1のスイッチング素子に直列に接続され、第1のスイッチング素子に同期してスイッチングする様に構成された第2のスイッチング素子を備えている。しかし、各スイッチング素子のスイッチングのタイミングを同期させるために、従来1000Vを超える耐圧を有するスイッチング素子を適用していた場合に比べて部品点数が増加するため、実装面積の増加を招いており課題であった。
 本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、スイッチング電源回路であって、直流電圧源の高電圧側に1次巻き線の一方の端子が接続されたトランスと、直流電圧源の低電圧側にソース端子が接続された第1のスイッチング素子と、第1のスイッチング素子のゲート端子にゲート信号を出力するコントローラと、第1のスイッチング素子のドレイン端子にソース端子が接続され、トランスの1次巻き線の他方の端子にドレイン端子が接続された第2のスイッチング素子と、第2のスイッチング素子のゲート端子にカソード端子が接続され、第2のスイッチング素子のソース端子にアノード端子が接続された第1のツェナダイオードと、直流電圧源の端子間に接続された2つのコンデンサの直列体と、2つのコンデンサの直列体の接続点と第2のスイッチング素子のゲート端子の間に接続された第1の抵抗と、第2のスイッチング素子のゲート端子にカソード端子が接続され、直流電圧源の低電圧側にアノード端子が接続された第2のツェナダイオードを備える構成とする。
 本発明によれば、部品点数及び実装面積を削減しつつコストを低減できるスイッチング電源回路およびそれを備えた電力変換装置を提供できる。
従来の一般的に用いられているスイッチング電源回路の回路構成図である。 非特許文献1、2に記されているスイッチング電源回路の回路構成図である。 実施例1におけるスイッチング電源回路の回路構成図である。 非特許文献1および実施例1におけるスイッチング電源回路の各部の動作波形である。 実施例2におけるスイッチング電源回路の回路構成図である。 実施例3におけるスイッチング電源回路の回路構成図である。 実施例3におけるスイッチング電源回路のゲートドライブ回路の一例として抵抗を接続した回路構成図である。 実施例3におけるスイッチング電源回路のゲートドライブ回路の一例として抵抗に並列にダイオードを接続した回路構成図である。 実施例3におけるスイッチング電源回路のゲートドライブ回路の一例としてインダクタを接続した回路構成図である。 実施例3におけるスイッチング電源回路のゲートドライブ回路の一例としてコンデンサを接続した回路構成図である。 実施例4におけるスイッチング電源回路を適用した電力変換装置の回路構成図である。
 以下、本発明の実施例について図面を参照しながら詳細に説明する。
 まず、本実施例の前提となる、従来のスイッチング電源回路の回路構成について説明する。図1は、従来の一般的に用いられているスイッチング電源回路の回路構成図を示し、図2は非特許文献1、2に記されている回路構成図である。
 図1に示すように、従来一般的に用いられているスイッチング電源回路に適用されるスイッチング素子は、スイッチング素子S1ひとつであり、スイッチング素子S1がコントローラCTRLからの信号を受けてオンしている期間にトランスTrの1次側に直流電圧源Vinの電圧を印加し、トランスTrにエネルギーを蓄える。その後、スイッチング素子S1がオフしている期間に、トランスTrに蓄えたエネルギーをトランスの2次側に伝達する。スイッチング素子S1は、コントローラCTRLからのゲート信号を受けてスイッチングし、例えばトランスTrの2次側の電圧を所望の電圧とするように制御される。ここで、直流電圧源Vinの電圧が1000Vを超過する場合には、スイッチング素子S1に1000Vを超過する耐圧を有するものを適用する必要があり、コストの増加を招いており課題であった。
 一方、図2に示す回路では、従来1000Vを超過するスイッチング素子S1ひとつで構成されていた部分に、数百V耐圧のスイッチング素子S1、S2を直列に接続している。回路動作は図1に示す回路と概ね等しく、スイッチング素子S1、S2がいずれもオンしている期間にトランスTrの1次側にVinの電圧を印加し、スイッチング素子S1、S2がいずれもオフしている期間にトランスTrに蓄えたエネルギーをトランスの2次側に伝達する。ここで、スイッチング素子S2は、スイッチング素子S1のスイッチングに同期するように回路を構成しており、さらに、図1に示す回路から、抵抗R1、ツェナダイオードZD1、ZD2が追加されている。更なる詳細な動作については、非特許文献1、2に記載されているため省略する。
 図2に示す非特許文献に記載された回路では、スイッチング素子S1がコントローラCTRLの信号を受けてターンオンした場合、スイッチング素子S1のドレイン端子の電圧が概ね直流電圧源の低電圧側の電圧と一致するため、抵抗R1、スイッチング素子S2のゲートーソース間容量CgsS2に、直流電圧源Vinの電圧が印加される。従って、抵抗R1と直流電圧源Vinの電圧により決定される電流によりスイッチング素子S2のゲートーソース間容量CgsS2が充電され、CgsS2の電圧がスイッチング素子S2の閾値電圧を超過した時にスイッチング素子S2がターンオンする。ここで、スイッチング素子S2のゲートーソース間容量を充電する電流IgsS2は、式(1)で表される。
 IgsS2=Vin/R1  ・・・(1)
 次に、本実施例におけるスイッチング電源回路1の回路構成を図3を用いて説明する。図3においては、抵抗R1において、図2に示す回路構成では直流電源の高電圧側に接続していた端子を、2つのコンデンサCb1、Cb2の接続点に接続している。
 コンデンサCb1、Cb2の電圧が概ね等しいと仮定すると、各コンデンサCb1、Cb2には直流電圧源Vinの半分の電圧Vn1が印加される。従って、図3に示す回路において、スイッチング素子S1がターンオンした際に、CgsS2を充電する電流IgsS2’は式(2)で表される。
  IgsS2’=Vn1/R1’  ・・・(2)
 ここで、式(1)に示すIgsS2と、式(2)に示すIgsS2’が等しくなる様に抵抗R1’の値を定めると、式(3)で示される定数となる。
  R1’=R1/2  ・・・(3)
 非特許文献2のFig.2に記載された定数によると、R1=4MΩ(1MΩ×4直列)であるから、本実施例における抵抗R1’の抵抗値は、概ね2MΩと試算される。即ち、図2に示す回路構成では抵抗R1として1MΩを4個直列で構成していたのに対し、本実施例に記載の回路構成では抵抗R1’として1MΩを2個直列で構成可能となる。なお、ここで用いる抵抗R1,R1’は大容量のものが必要であるため、その形状は大きく、よって、抵抗の値を概ね半減することは、部品点数の削減以外にも、実装面積の省スペース化に大きく貢献できる。
 図4に、非特許文献1および本実施例におけるスイッチング電源回路の各部の動作波形を示す。図4(a)が、図2に示す非特許文献1の回路において抵抗R1の値を4MΩとした場合の各部の動作波形を示し、図4(b)が、図3に示す本実施例の回路において抵抗R1’の値を2MΩとした場合の各部の動作波形である。
 なお、図4において、ITrはトランスTrの1次巻き線の電流、Vn1、Vn1’はNode1、Node1’の電圧、VgsS1、VgsS2はスイッチング素子S1、S2のゲートーソース間電圧、VdsS1、VdsS2はスイッチング素子S1、S2のドレインーソース間電圧である。
 図4に示すように、スイッチング素子S1のゲート電圧がコントローラCTRLの信号を受けて立ち上がり、スイッチング素子S1がターンオンした時に、スイッチング素子S2のゲート-ソース間容量CgsS2を充電する電流は非特許文献1と本実施形態で概ね同等であり、スイッチング素子S2のゲートーソース間電圧VgsS2が増加する傾きは概ね一致している。即ち、スイッチング素子S1、S2のスイッチングのタイミングは非特許文献と本実施例で同様であり、図2に示す回路と図3に示す回路は同様の動作をする。
 以上述べた様に、本実施例では従来回路で用いられていた抵抗R1の値を概ね半減することが可能であり、部品点数の削減、実装面積の省スペース化を実現することができる。
 なお、図3に示す回路ではコントローラCTRLとスイッチング素子S1を別体としているが、非特許文献2に示すようにコントローラCTRLとスイッチング素子S1が一体になった素子を適用しても良い。
 図5は、本実施例におけるスイッチング電源回路の回路構成図である。図5において、実施例1の図3との共通点は重複説明を省略する。図5において、図3と異なる点は、抵抗R1’に並列にダイオードD1を設けている点である。
 実施例1で述べたように、図3に示す回路ではスイッチング素子S1がターンオン/オフした後にスイッチング素子S2のゲート-ソース間容量CgsS2が充放電され、スイッチング素子S2がターンオン/オフする。このため、抵抗R1’の値を低減すればするほど、スイッチング素子S1とスイッチング素子S2のターンオン/オフのタイミングの差が狭まり、より理想的にスイッチング素子S1とスイッチング素子S2を同期させることが可能になる。しかしながら、抵抗R1’の値を低減させるとスイッチング素子S2の誤点弧や抵抗R1’での損失増加といった新たな課題が生じるため、抵抗R1’の値の低減幅には限界がある。
 そこで、図5に示すように抵抗R1’に並列にダイオードD1を設けることで、スイッチング素子S1がターンオンした後にスイッチング素子S2がターンオンする場合は、抵抗R1’を経由してスイッチング素子S2のゲート電流が流れるのに対し、スイッチング素子S1がターンオフした後にスイッチング素子S2がターンオフする場合は、ダイオードD1を経由してスイッチング素子S2のゲート電流が流れる。従って、抵抗R1’に並列にダイオードD1を接続することにより、スイッチング素子S1とスイッチング素子S2のターンオフのタイミングの差を狭め、更にスイッチング素子S2がターンオフする際のゲート電流がダイオードD1に流れるため、抵抗R1’での損失を低減させることが可能となる。
 以上述べたように本実施例では、図3に示す回路に対し抵抗R1’に並列にダイオードD1を追加している。これにより、スイッチング素子S1とスイッチング素子S2のターンオフのタイミングの差を狭めることが可能となり、かつ抵抗R1’での損失が低減する。
 次に、図6~図10を用いて本実施例のスイッチング電源回路1について説明する。なお、実施例1、2との共通点は重複説明を省略する。本実施例では、図3に示す実施例1の回路に対し、図6に示すように、スイッチング素子S2のゲート端子にゲートドライブ回路GDを追加している。
 図7には、ゲートドライブ回路GDの一例として、図3に示す回路に対し、スイッチング素子S2のゲート端子に抵抗R2を接続した場合を示す。抵抗R2を接続することで、例えばスイッチング素子S2がターンオンする際のゲート電圧の立ち上がり時間が、図3に示す回路に比べて遅延するため、スイッチング素子S2から生じるスイッチングノイズを低減することが可能となる。
 図8は、ゲートドライブ回路GDの一例として、図7に示す回路に対し、抵抗R2に並列にダイオードD2を接続した場合を示す。図8に示すように、ダイオードD2を接続することにより、スイッチング素子S2がターンオフした際のゲート電圧の立下り時間が図7に示す回路よりも短縮し、スイッチング素子S2のターンオフ損失が低下する。このため、スイッチング素子S2のターンオフ損失が低減し図7に示す回路よりも効率が向上する。
 以上のように、ゲートドライブ回路GDとして、抵抗R2、ダイオードD2を接続することで、スイッチング電源回路1の変換効率やスイッチングノイズレベルを調整することが可能となる。
 また、図9には、ゲートドライブ回路GDの一例として、図3に示す回路に対し、スイッチング素子S2のゲート端子にインダクタL1を接続した場合を示す。図9に示すように、インダクタL1を追加することでスイッチング素子S2のゲート端子とノードNode1’の間のインピーダンスが増加するため、外乱ノイズにより生じるスイッチング素子S2のゲート端子やツェナダイオードZD1に流れる電流を減少させ、スイッチング素子S2が誤点弧することを抑制することが可能となる。
 図10には、図3に示す回路に対し、スイッチング素子S2のゲート-ソース間に新たにコンデンサC1を接続した場合を示す。図10に示すように、コンデンサC1を接続することにより、外乱ノイズにより高周波成分がスイッチング素子S2のゲート端子に流れた場合に、スイッチング素子S2のゲート電圧が増加する時間を図3に示す回路よりも長くすることが可能となり、スイッチング素子S2の誤点弧を抑制することが可能となる。
 以上述べたように、スイッチング素子S2のゲート端子に、抵抗、ダイオード、インダクタ、コンデンサ等の受動部品から成るゲートドライブ回路GDを接続することで、スイッチング電源回路1の種々要素に対する動作特性を所望の値とするように調整することが可能となる。
 図11は、本実施例におけるスイッチング電源回路を適用した電力変換装置の回路構成図である。本実施例では、図11に示すように、図3、図5~図10に述べたスイッチング電源回路1の適用先の一例として、交流電源4から電力を入力し、モータ5等の交流負荷に電力を出力するインバータ回路からなる電力変換装置に適用した場合の回路構成について述べる。
 図11に示すように本実施例においては、スイッチング電源回路1は、交流電源から電力を入力しダイオードDB1~DB6から成る整流回路2と、スイッチング素子Q1~Q6から成るインバータ回路3とで構成される電力変換装置に組み込まれている。整流回路の出力部の電圧は、交流系統の電圧に応じた直流電圧Vdcとなり、コンデンサCb1、Cb2の直列体に直流電圧Vdcが印加されている。そして、スイッチング電源回路1は、図3、図5~図10に示すように、トランスTrの2次側電圧を出力する。
 以上述べたように本実施例では、交流電源からの交流電力を入力し、交流電力を出力するインバータ回路からなる電力変換装置に、スイッチング電源回路1を適用した場合の回路構成について述べた。またスイッチング電源回路1の適用先はこれに限らず、直流入力或いは直流出力の電力変換装置に関しても同様に適用可能である。
 なお、本発明は上記の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1:スイッチング電源回路、Cb1,Cb2,C1:コンデンサ、Rb1,Rb2,R1,R1’,R2:抵抗、D1,D2:ダイオード、L1:インダクタ、ZD1,ZD2:ツェナダイオード、S1,S2:スイッチング素子、CgsS2:スイッチング素子、S2のゲートーソース間容量、Tr:トランス、GD:ゲートドライブ回路

Claims (6)

  1.  直流電圧源の高電圧側に1次巻き線の一方の端子が接続されたトランスと、
     前記直流電圧源の低電圧側にソース端子が接続された第1のスイッチング素子と、
     前記第1のスイッチング素子のゲート端子にゲート信号を出力するコントローラと、
     前記第1のスイッチング素子のドレイン端子にソース端子が接続され、前記トランスの1次巻き線の他方の端子にドレイン端子が接続された第2のスイッチング素子と、
     前記第2のスイッチング素子のゲート端子にカソード端子が接続され、前記第2のスイッチング素子のソース端子にアノード端子が接続された第1のツェナダイオードと、
     前記直流電圧源の端子間に接続された2つのコンデンサの直列体と、
     前記2つのコンデンサの直列体の接続点と前記第2のスイッチング素子のゲート端子の間に接続された第1の抵抗と、
     前記第2のスイッチング素子のゲート端子にカソード端子が接続され、前記直流電圧源の低電圧側にアノード端子が接続された第2のツェナダイオード
     を備えることを特徴とするスイッチング電源回路。
  2.  請求項1に記載のスイッチング電源回路であって、
     前記2つのコンデンサのそれぞれに並列に抵抗が接続されていることを特徴とするスイッチング電源回路。
  3.  請求項1に記載のスイッチング電源回路であって、
     前記第1の抵抗に並列に第1のダイオードが接続されていることを特徴とするスイッチング電源回路。
  4.  請求項1に記載のスイッチング電源回路であって、
     前記第1の抵抗と前記第2のスイッチング素子のゲート端子の間にゲートドライブ回路が接続されていることを特徴とするスイッチング電源回路。
  5.  請求項4に記載のスイッチング電源回路であって、
     前記ゲートドライブ回路は、少なくとも抵抗、ダイオード、インダクタ、コンデンサのいずれかひとつを含むことを特徴とするスイッチング電源回路。
  6.  請求項1~5のいずれか1項に記載のスイッチング電源回路を有する電力変換装置であって、
     交流電圧源からの交流電圧を整流する整流回路と、前記整流回路で整流された直流電圧を交流電圧に変換するインバータ回路を備え、前記直流電圧の高電圧側と低電圧側の端子間に、前記スイッチング電源回路が接続されていることを特徴とする電力変換装置。
PCT/JP2018/026209 2018-07-11 2018-07-11 スイッチング電源回路およびそれを備えた電力変換装置 WO2020012583A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/026209 WO2020012583A1 (ja) 2018-07-11 2018-07-11 スイッチング電源回路およびそれを備えた電力変換装置
JP2020529901A JP7122379B2 (ja) 2018-07-11 2018-07-11 スイッチング電源回路およびそれを備えた電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026209 WO2020012583A1 (ja) 2018-07-11 2018-07-11 スイッチング電源回路およびそれを備えた電力変換装置

Publications (1)

Publication Number Publication Date
WO2020012583A1 true WO2020012583A1 (ja) 2020-01-16

Family

ID=69142332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026209 WO2020012583A1 (ja) 2018-07-11 2018-07-11 スイッチング電源回路およびそれを備えた電力変換装置

Country Status (2)

Country Link
JP (1) JP7122379B2 (ja)
WO (1) WO2020012583A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832873A4 (en) * 2018-08-02 2022-04-13 Hitachi Industrial Equipment Systems Co., Ltd. SWITCHING POWER SUPPLY CIRCUIT AND POWER CONVERSION DEVICE THEREOF
DE102021206671A1 (de) 2021-06-28 2022-12-29 Lenze Swiss Ag DC/DC-Wandler und Frequenzumrichter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178735A (ja) * 1996-12-19 1998-06-30 Fuji Elelctrochem Co Ltd スイッチング電源用駆動回路
JP2005520474A (ja) * 2002-03-14 2005-07-07 タイコ・エレクトロニクス・コーポレイション 3端子低電圧パルス幅変調制御ic
US20100226151A1 (en) * 2009-03-09 2010-09-09 Chin-Hou Chen Power conversion circuit and portable power supply having such power conversion circuit
JP2011015461A (ja) * 2009-06-30 2011-01-20 Shindengen Electric Mfg Co Ltd 信号制御回路
US20110261594A1 (en) * 2010-04-27 2011-10-27 Power Integrations, Inc. Power supply with input filter-controlled switch clamp circuit
CN102315758A (zh) * 2010-07-07 2012-01-11 英飞特电子(杭州)有限公司 一种提高器件耐压的电路
JP2014166136A (ja) * 2013-02-25 2014-09-08 Schneider Toshiba Inverter Europe Sas スイッチング電源システムに使用される制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178735A (ja) * 1996-12-19 1998-06-30 Fuji Elelctrochem Co Ltd スイッチング電源用駆動回路
JP2005520474A (ja) * 2002-03-14 2005-07-07 タイコ・エレクトロニクス・コーポレイション 3端子低電圧パルス幅変調制御ic
US20100226151A1 (en) * 2009-03-09 2010-09-09 Chin-Hou Chen Power conversion circuit and portable power supply having such power conversion circuit
JP2011015461A (ja) * 2009-06-30 2011-01-20 Shindengen Electric Mfg Co Ltd 信号制御回路
US20110261594A1 (en) * 2010-04-27 2011-10-27 Power Integrations, Inc. Power supply with input filter-controlled switch clamp circuit
CN102315758A (zh) * 2010-07-07 2012-01-11 英飞特电子(杭州)有限公司 一种提高器件耐压的电路
JP2014166136A (ja) * 2013-02-25 2014-09-08 Schneider Toshiba Inverter Europe Sas スイッチング電源システムに使用される制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3832873A4 (en) * 2018-08-02 2022-04-13 Hitachi Industrial Equipment Systems Co., Ltd. SWITCHING POWER SUPPLY CIRCUIT AND POWER CONVERSION DEVICE THEREOF
DE102021206671A1 (de) 2021-06-28 2022-12-29 Lenze Swiss Ag DC/DC-Wandler und Frequenzumrichter
DE102021206671B4 (de) 2021-06-28 2024-09-12 Lenze Swiss Ag DC/DC-Wandler und Frequenzumrichter

Also Published As

Publication number Publication date
JP7122379B2 (ja) 2022-08-19
JPWO2020012583A1 (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
US10868473B2 (en) Secondary side controlled control circuit for power converter with synchronous rectifier
US8547711B2 (en) LLC converter active snubber circuit and method of operation thereof
EP3758209A1 (en) Semiconductor device
US20140268894A1 (en) Dc-dc converter
US10361624B2 (en) Multi-cell power converter with improved start-up routine
US10193464B2 (en) DC-DC converter
US10924021B2 (en) Control apparatus for controlling switching power supply
US11063526B2 (en) Power conversion equipment
US11451161B2 (en) Power switcher, power rectifier, and power converter including cascode-connected transistors
CN111726005A (zh) 相移全桥转换器、操作相移全桥转换器的方法和ac/dc转换器
JP7122379B2 (ja) スイッチング電源回路およびそれを備えた電力変換装置
US7082043B2 (en) Drive circuit for a synchronous rectifier, method of providing drive signals thereto and power converter incorporating the same
JP7149757B2 (ja) スイッチング電源回路およびそれを備えた電力変換装置
KR101456654B1 (ko) 공용코어 역률보정 공진 컨버터
TWI543513B (zh) 諧振轉換器
TWI586092B (zh) 單級交流至直流轉換器
JP7400188B2 (ja) 制御装置
US9673716B2 (en) Resonant converter with three switches
EP3275073B1 (en) Pfc with stacked half-bridges on dc side of rectifier
US20050248963A1 (en) Circuit for controlling the reverse recovery current in a blocking diode
JP2013198196A (ja) スイッチング電源装置
KR20150022450A (ko) 전력 변환 장치
JP2016005364A (ja) 電気回路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925954

Country of ref document: EP

Kind code of ref document: A1