WO2020012520A1 - Medical x-ray image processing device and x-ray imaging device - Google Patents

Medical x-ray image processing device and x-ray imaging device Download PDF

Info

Publication number
WO2020012520A1
WO2020012520A1 PCT/JP2018/025842 JP2018025842W WO2020012520A1 WO 2020012520 A1 WO2020012520 A1 WO 2020012520A1 JP 2018025842 W JP2018025842 W JP 2018025842W WO 2020012520 A1 WO2020012520 A1 WO 2020012520A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray image
ray
image processing
pixel value
phantom
Prior art date
Application number
PCT/JP2018/025842
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 山本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020529847A priority Critical patent/JP7115545B2/en
Priority to PCT/JP2018/025842 priority patent/WO2020012520A1/en
Publication of WO2020012520A1 publication Critical patent/WO2020012520A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment

Definitions

  • the present invention relates to a medical X-ray image processing device and an X-ray image photographing device.
  • a medical X-ray image processing apparatus and an X-ray image capturing apparatus for acquiring an X-ray image of a subject are known.
  • Such a medical X-ray image processing apparatus and X-ray image radiographing apparatus are disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-311922.
  • the X-ray imaging apparatus described in Japanese Patent Application Laid-Open No. 2006-31922 discloses an X-ray generation apparatus that generates X-rays for irradiating a subject, and an X-ray generation apparatus that is arranged to face the X-ray generation apparatus and transmits X-rays transmitted through the subject.
  • An X-ray detection unit that detects and converts the image data into image data.
  • An X-ray imaging apparatus includes a correction processing unit that obtains corrected image data by performing various types of correction processing on image data, and an automatic gradation processing unit that obtains output image data by automatically performing gradation conversion on the corrected image data.
  • an image processing apparatus including:
  • the automatic gradation processing unit has a storage unit that stores a plurality of basic gradation conversion characteristics that are desirable gradation conversion functions.
  • the automatic gradation processing unit in the X-ray imaging apparatus described in Japanese Patent Application Laid-Open No. 2006-311922 is configured to select an appropriate basic gradation conversion characteristic from among the plurality of basic gradation conversion characteristics stored in the storage unit. It is configured to acquire a gradation conversion characteristic. Specifically, the automatic gradation processing unit obtains a feature amount such as a maximum value, a minimum value, and an average value of pixel values in the feature region set in the corrected image data, and determines that an error from the feature amount is minimum. It is configured to acquire the following basic gradation conversion characteristics.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a method for changing the dose of an X-ray or changing the position of an X-ray generator.
  • One object of the present invention is to provide a medical X-ray image processing apparatus and an X-ray image capturing apparatus capable of preventing a reference in an X-ray image from being changed.
  • a medical X-ray image processing apparatus includes a plurality of reference portions corresponding to a plurality of reference portions of a phantom including a plurality of reference portions having different X-ray absorption coefficients.
  • a phantom information storage unit that stores an absorption coefficient; a plurality of absorption coefficients of each of a plurality of reference units in the X-ray image stored in the phantom information storage unit;
  • an X-ray image processing unit that associates each of the plurality of pixel values of the reference unit with the X-ray image processing unit.
  • the pixel value in the present invention is a broad concept including not only a general pixel value, but also a pixel value converted by a log conversion and a pixel value converted by a conversion coefficient such as a sigmoid curve. is there.
  • the X-ray image processing unit includes a plurality of reference units in the X-ray image stored in the phantom information storage unit.
  • the absorption coefficient is configured to correspond to each of the plurality of pixel values of the plurality of reference portions of the phantom in the X-ray image of the subject captured with the phantom.
  • the reference in the X-ray image can be prevented from being changed.
  • a high-precision reconstructed image can be obtained, for example, when reconstructing a plurality of images due to a difference in reference between the plurality of images.
  • the X-ray image processing unit corrects each of the plurality of pixel values corresponding to the plurality of absorption coefficients to a plurality of target pixel values. It is configured. With this configuration, the pixel value in the X-ray image is corrected to the target pixel value by using the mutual relationship between the plurality of target pixel values set for each of the plurality of reference portions of the phantom. In this case, not only a plurality of target pixel values corresponding to a plurality of absorption coefficients but also a target pixel value of a pixel value in an X-ray image can be set.
  • the X-ray image processing unit includes a plurality of absorption coefficients corresponding to a plurality of reference units of a phantom. And a plurality of target pixel values corresponding to each of the plurality of absorption coefficients, based on a target pixel value function set by a relationship between the plurality of target pixel values and a plurality of target pixel values corresponding to each of the plurality of absorption coefficients. It is configured to correct to the corresponding target pixel value on the value function. With this configuration, a plurality of target pixel values can be handled as a target pixel value function associated with a plurality of absorption coefficients, so that information on a plurality of target pixel values can be easily obtained.
  • a medical X-ray image processing apparatus including an X-ray image processing unit that sets a relationship between a plurality of target pixel values corresponding to each of the plurality of absorption coefficients as a target pixel value function
  • Pixel value correction for correcting a plurality of pixel values corresponding to a plurality of absorption coefficients to a plurality of target pixel values on a target pixel value function each time an X-ray image of a subject taken with a phantom is obtained It is configured to get a table.
  • a medical X-ray image processing apparatus including an X-ray image processing unit that obtains the pixel value correction table
  • the X-ray image processing unit obtains a plurality of X-ray images by performing a plurality of X-ray imagings, Each time a plurality of X-ray images are obtained, a pixel value correction table is acquired, and each of the plurality of X-ray images is corrected based on the pixel value correction table corresponding to each of the plurality of X-ray images. Is configured.
  • the pixel value correction table is stored in the plurality of phantoms.
  • the pixel values associated with the plurality of absorption coefficients of each of the reference portions so that a plurality of X-ray images with the same reference correction can be obtained. Accordingly, for example, even when a plurality of X-ray images are reconstructed to obtain a reconstructed image, it is possible to suppress an artifact (virtual image) from occurring in the reconstructed image.
  • a medical X-ray image processing apparatus including an X-ray image processing unit that sets a relationship between a plurality of target pixel values corresponding to each of the plurality of absorption coefficients as a target pixel value function, preferably the X-ray image processing unit , Estimated pixel value information of the X-ray image estimated based on the plurality of absorption coefficients of each of the plurality of reference portions of the phantom in the X-ray image and the plurality of pixel values corresponding to each of the plurality of absorption coefficients.
  • Is configured to acquire a pixel value correction table based on According to this configuration, an accurate pixel value correction table can be obtained based on the estimated pixel value information, so that the pixel values in the X-ray image based on the pixel value correction table can be accurately corrected.
  • a display unit is further provided, and the X-ray image processing unit is configured to display both the target pixel value function and the estimated pixel value information on the display unit.
  • the X-ray image processing unit includes a plurality of reference units stored in the phantom information storage unit.
  • An X-ray in which a plurality of pixel values are corrected to a plurality of target pixel values based on correspondence information in which each of the plurality of absorption coefficients is associated with each of a plurality of pixel values of a plurality of reference portions in the X-ray image
  • the configuration of the image processing performed on the image is changed, or the setting of the image processing performed on the X-ray image before correction is changed. With this configuration, it is possible to appropriately set the image processing before or after the correction performed on the X-ray image.
  • An X-ray imaging apparatus includes an X-ray source, a detector that detects X-rays emitted from the X-ray source, and an X-ray intensity distribution based on the X-ray intensity distribution detected by the detector.
  • An image processing unit for acquiring an image wherein the image processing unit stores a plurality of absorption coefficients respectively corresponding to a plurality of reference portions of the phantom including a plurality of reference portions having different X-ray absorption coefficients.
  • An X-ray image processing unit for associating the pixel value with the pixel value.
  • the X-ray image processing unit performs the plurality of absorptions of the plurality of reference units in the X-ray image stored in the phantom information storage unit.
  • the coefficient is configured to correspond to each of a plurality of pixel values of a plurality of reference portions of the phantom in the X-ray image obtained by capturing the subject together with the phantom.
  • the reference in the X-ray image can be prevented from being changed.
  • a high-precision reconstructed image can be obtained, for example, when reconstructing a plurality of images due to a difference in reference between the plurality of images.
  • a medical X-ray image processing device and an X-ray image capturing device can be provided.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of an X-ray image capturing apparatus and an image browsing apparatus according to an embodiment.
  • FIG. 1 is a block diagram illustrating an overall configuration of a medical X-ray image processing apparatus and an image browsing apparatus according to an embodiment.
  • FIG. 3A is a perspective view showing a phantom including characteristic portions A, B, and C.
  • FIG. 3B is a table showing absorption coefficients and sizes of phantom structure data.
  • FIG. 4A is a table showing the absorption coefficients and target pixel values of the characteristic parts A, B, and C of the phantom.
  • FIG. 4B is a graph showing a target pixel value function.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of an X-ray image capturing apparatus and an image browsing apparatus according to an embodiment.
  • FIG. 1 is a block diagram illustrating an overall configuration of a medical X-ray image processing apparatus and an image browsing apparatus according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating an X-ray image captured by the X-ray image capturing apparatus according to the embodiment.
  • FIG. 6A is a table showing pixel value information of characteristic portions A, B, and C in the X-ray image.
  • FIG. 6B is a table showing estimated pixel values of characteristic portions A, B, and C in the X-ray image.
  • FIG. 6C is a graph showing estimated pixel value information in an X-ray image.
  • 5 is a graph showing a target pixel value function and estimated pixel value information generated in the image browsing device according to the embodiment.
  • FIG. 8A is a table showing a pixel value correction table.
  • FIG. 8B is a graph showing a pixel value correction table.
  • 5 is a flowchart illustrating an X-ray image processing flow in the image browsing device according to the present embodiment.
  • the X-ray imaging apparatus 1 irradiates the subject 20 and the phantom 30 lying on the imaging table 3 with X-rays, and detects the X-rays transmitted through the subject 20 to thereby detect the subject 20 and the phantom 30. It is configured to shoot.
  • the X-ray imaging apparatus 1 includes an imaging table 3, an X-ray source 4, a detector 5, an imaging system position changing mechanism 6, an imaging apparatus control unit 7, and a medical X-ray image processing apparatus 8.
  • the length direction of the imaging table 3 is defined as an X direction, one of which is defined as an X1 direction, and the other is defined as an X2 direction.
  • a direction perpendicular to the X direction is defined as a Y direction, one of which is defined as a Y1 direction, and the other is defined as a Y2 direction.
  • a direction perpendicular to the X direction and the Y direction is defined as a Z direction (vertical direction), one of which is defined as a Z1 direction (upward direction), and the other is defined as a Z2 direction (downward direction).
  • the X-ray source 4 is configured to irradiate the detector 5 with X-rays generated by applying a high voltage.
  • the detector 5 is configured to detect X-rays, convert the detected X-rays into electric signals, and read the converted electric signals as image signals.
  • the detector 5 is, for example, an FPD (Flat @ Panel @ Detector).
  • the detector 5 has a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements.
  • the plurality of conversion elements are arranged at a predetermined cycle (pixel pitch) such that the arrangement direction of the pixels matches the Y direction and the X direction.
  • the plurality of pixel electrodes are arranged at a predetermined cycle (pixel pitch) such that the arrangement direction of the pixels matches the Y direction and the X direction.
  • the detector 5 is configured to output the acquired image signal to the medical X-ray image processing device 8.
  • the imaging system position changing mechanism 6 is configured to change the relative position between the X-ray source 4 and the detector 5 and the angle of the X-ray source 4 based on a signal from the imaging device control unit 7.
  • the imaging system position changing mechanism 6 includes an X-ray source holding unit 6a that rotatably holds the X-ray source 4. Further, the imaging system position changing mechanism 6 includes an X-ray source moving unit 6b that moves the X-ray source holding unit 6a in the X direction.
  • the X-ray source holding unit 6a holds the X-ray source 4 at one end so as to be rotatable, and the other end is movably held by the X-ray source moving unit 6b.
  • the X-ray source holding unit 6a is configured such that, at one end, the X-ray source 4 is rotatable around an axis in the X direction. That is, the X-ray source holding unit 6a is configured to be able to change the irradiation angle of the X-ray source 4 by a signal from the imaging device control unit 7. Further, the X-ray source holding unit 6a is configured to be able to expand and contract in the Z direction. Therefore, the X-ray source holding unit 6a is configured to be able to change the position of the X-ray source 4 in the Z direction.
  • the X-ray source moving unit 6b is configured to move the X-ray source holding unit 6a in the X direction according to a signal from the imaging device control unit 7.
  • the imaging device controller 7 is configured to perform X-ray imaging by irradiating the detector 5 with X-rays from the X-ray source 4.
  • the imaging device control unit 7 is configured to change the relative position of the imaging system with respect to the subject 20 by moving the X-ray source 4 via the imaging system position changing mechanism 6.
  • the imaging device control unit 7 includes, for example, a processor such as a CPU (Central Processing Unit). Note that the imaging system includes an X-ray source 4, a detector 5, and an imaging system position changing mechanism 6 that changes a relative position between the X-ray source 4 and the detector 5.
  • the medical X-ray image processing device 8 is configured to generate an X-ray image R (see FIG. 5) based on the image signal output from the detector 5. Further, the medical X-ray image processing device 8 is configured to acquire the position information of the characteristic portions A, B, and C (see FIG. 5) appearing in the plurality of X-ray images R. Further, the medical X-ray image processing device 8 is configured to generate a reconstructed image obtained by reconstructing a plurality of X-ray images R into one image.
  • the medical X-ray image processing apparatus 8 includes, for example, a processor such as a CPU, a GPU (Graphics Processing Unit), or an FPGA (Field-Programmable Gate Array) configured for image processing.
  • the characteristic portions A, B, and C are examples of the “reference portion” in the claims.
  • the medical X-ray image processing device 8 includes an image acquisition unit 8a, an X-ray image generation unit 8b, a position information acquisition unit 8c, a reconstructed image generation unit 8d, A control unit 8e.
  • the image acquisition unit 8a, the X-ray image generation unit 8b, the position information acquisition unit 8c, the reconstructed image generation unit 8d, and the control unit 8e are each a processing module (processor) of a processor such as an FPGA of the medical X-ray image processing device 8. ).
  • the image acquisition unit 8a is configured to acquire image signals of the subject 20 and the phantom 30 detected by the detector 5, and output the acquired image signals of the subject 20 and the phantom 30 to the X-ray image generation unit 8b. I have. That is, the image acquisition unit 8a has a function as an input / output device.
  • the X-ray image generation unit 8b is configured to generate an X-ray original image of the subject 20 and the phantom 30 based on the intensity distribution of the image signals of the subject 20 and the phantom 30 output from the image acquisition unit 8a. . Further, the X-ray image generation unit 8b corrects the pixel value of the X-ray original image by performing log conversion or the like on the X-ray original image and generates the X-ray image R. Then, the X-ray image generation unit 8b performs well-known image processing (for example, offset correction, gain correction, gradation correction, and the like) accompanying the imaging of the X-ray image R, and then performs the window level of the X-ray image R. And the window width is adjusted.
  • image processing for example, offset correction, gain correction, gradation correction, and the like
  • the position information acquisition unit 8c obtains position information in the X-ray image R of a plurality of characteristic parts A, B, and C provided on the phantom 30 arranged at a position where the phantom 30 is located along with the region of interest ROI (see FIG. 1) of the subject 20. Is configured to retrieve.
  • the position information acquisition unit 8c is configured to acquire the position information of a plurality of characteristic portions A, B, and C by performing image recognition processing.
  • the reconstructed image generator 8d is configured to generate a reconstructed image in which a plurality of X-ray images R are reconstructed into one image. Specifically, the X-ray imaging apparatus 1 reconstructs a plurality of X-ray images R acquired by irradiating the subject 20 with X-rays from a plurality of different angles (for example, a shift addition method). By doing so, a reconstructed image is obtained.
  • the control unit 8e is configured to transmit a signal for the imaging device control unit 7 to perform X-ray imaging.
  • the phantom 30 has a plurality of characteristic portions A, B, and C having different absorption coefficients.
  • the characteristic portions B and C are arranged inside the characteristic portion A.
  • the absorption coefficient A1 of the characteristic portion A is made of a resin or the like having a value (for example, 100) having a smaller absorption coefficient than the characteristic portions B and C.
  • the absorption coefficient B1 of the characteristic portion B is a heavy metal (gold, lead, tungsten, iron, copper, or the like) having a larger absorption coefficient than the characteristic portion A and a smaller absorption coefficient (eg, 800) than the characteristic portion C. ).
  • the absorption coefficient C1 of the characteristic portion C is made of a heavy metal (for example, gold, lead, tungsten, iron, or copper) having a larger absorption coefficient (for example, 1000) than the characteristic portion B.
  • the characteristic portion A has a larger size (for example, 50 [cm 3 ]) than the characteristic portions B and C.
  • the characteristic portion B and the characteristic portion C have the same size (for example, 4 [cm 3 ]).
  • the characteristic portions A, B, and C are composed of X-ray absorbers having different absorption coefficients A1, B1, and C1 for absorbing X-rays.
  • the doses of the X-rays absorbed by the characteristic portions A, B, and C are different, so that the characteristic portions A, B, and C can be detected in the X-ray image R.
  • the values of the absorption coefficients A1, B1, and C1 and the sizes of the characteristic portions A, B, and C described above are stored in the image viewing device 9 as phantom structure data 12a.
  • the X-ray imaging apparatus 1 is provided in a separate room from the X-ray imaging room, and includes an image browsing apparatus 9 for browsing the X-ray image R and the reconstructed image. ing.
  • the image browsing device 9 has the same function as the above-described medical X-ray image processing device 8 in that an X-ray image R is generated and a reconstructed image is formed.
  • the image browsing device 9 is configured to acquire pixel value information of characteristic portions A, B, and C appearing in a plurality of X-ray images R. Further, the image browsing device 9 is configured to generate a reconstructed image obtained by reconstructing a plurality of X-ray images R into one image.
  • the image browsing device 9 includes, for example, a processor such as a CPU, a GPU, or an FPGA configured for image processing.
  • the image browsing device 9 includes an image acquisition unit 9a, a position information acquisition unit 9b, a reconstructed image generation unit 9c, a phantom information storage unit 9d, an X-ray image processing unit 9e, and a display unit 9f.
  • the image acquisition unit 9a, the position information acquisition unit 9b, and the reconstructed image generation unit 9c are each configured as a processing module (processing processor) in a processor such as an FPGA of the image browsing device 9.
  • the image browsing device 9 is an example of the “medical X-ray image processing device” in the claims.
  • the image browsing device 9 is communicably connected to the medical X-ray image processing device 8. Thereby, the image browsing device 9 acquires the X-ray image R generated by the medical X-ray image processing device 8.
  • the image browsing device 9 of the present embodiment is configured to convert the pixel value information of the subject 20 in the X-ray image R into desired pixel value information using a pixel value correction table.
  • the image acquisition unit 9a, the position information acquisition unit 9b, and the reconstructed image generation unit 9c have the same configuration as that of the medical X-ray image processing device 8 described above. The configuration different from that described above will be described in detail below.
  • the image browsing device 9 includes a phantom information storage unit 9d, an X-ray image processing unit 9e, and a display unit 9f.
  • the phantom information storage unit 9d mainly includes a processor such as the CPU 11, and a storage unit 12 such as an HDD (Hard Disc Drive) and a memory.
  • the phantom structure data 12a is stored in the storage unit 12. That is, the phantom information storage unit 9d stores the plurality of absorption coefficients A1, B1, and C1 corresponding to the plurality of characteristic parts A, B, and C of the phantom 30 in the storage unit 12, respectively.
  • the plurality of absorption coefficients A1, B1, and C1 are stored in the storage unit 12 of the phantom information storage unit 9d when the user inputs.
  • the phantom information storage unit 9d stores a plurality of sizes corresponding to the plurality of characteristic portions A, B, and C of the phantom 30 in the storage unit 12, respectively.
  • the plurality of sizes are stored in the storage unit 12 of the phantom information storage unit 9d when the user inputs.
  • the absorption coefficients A1, B1, and C1 may be stored in advance as set values.
  • a plurality of sizes corresponding to each of the plurality of characteristic portions A, B, and C may be stored in advance as setting values.
  • the X-ray image processing unit 9e mainly includes a processor such as a CPU 13, and a storage unit 14 such as a HDD (Hard Disc Drive) and a memory.
  • the storage unit 14 of the X-ray image processing unit 9e stores target pixel value function data 14a and X-ray image processing data 14b.
  • the target pixel value function data 14a includes a plurality of absorption coefficients A1, B1, and C1 set for a plurality of characteristic portions A, B, and C of the phantom 30.
  • a function target pixel value function
  • the target pixel value function passes through coordinates Ax1 indicated by the value of the absorption coefficient A1 of the characteristic portion A and the target pixel value Ta of the characteristic portion A set by the user.
  • the target pixel value function passes through coordinates Ax2 indicated by the value of the absorption coefficient B1 of the characteristic portion B and the target pixel value Tb of the characteristic portion B set by the user.
  • the target pixel value function passes through coordinates Ax3 indicated by the value of the absorption coefficient C1 of the characteristic portion C and the target pixel value Tc of the characteristic portion C set by the user.
  • the target pixel value function is a function passing through the coordinates Ax1, Ax2, and Ax3, and is a linear function passing through the coordinates Ax1, Ax2, and Ax3 in the example shown in FIG.
  • the X-ray image processing unit 9e converts the pixel values of the X-ray image R including the phantom 30 including the characteristic portions A, B, and C and the subject (for example, the right hand) 20 illustrated in FIG. , Is configured to perform a process of correcting to a target pixel value on a target pixel value function.
  • the X-ray image processing unit 9e acquires the X-ray image R generated by the medical X-ray image processing device 8 via the image acquisition unit 8a.
  • the X-ray image processing unit 9e uses the X-ray image processing data 14b to generate the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C in the X-ray image R, as shown in FIG. And a plurality of pixel values X, Y, and Z of each of the plurality of characteristic portions A, B, and C in the X-ray image R.
  • the X-ray image processing unit 9e specifies each position of the plurality of characteristic portions A, B, and C in the X-ray image R by the position information It is configured to acquire the pixel value of the specified location.
  • the X-ray image processing unit 9e acquires a plurality of pixel values X, Y, and Z of each of the plurality of characteristic portions A, B, and C in the X-ray image R.
  • the plurality of pixel values X, Y, and Z are, for example, 90, 120, and 130, respectively.
  • the X-ray image processing unit 9e uses the X-ray image processing data 14b to generate a plurality of absorption coefficients A1, B1, C1, and a plurality of absorption coefficients A1, B1, C1, respectively. Is configured to obtain estimated pixel value information estimated based on a plurality of pixel values X, Y, and Z corresponding to. Specifically, the X-ray image processing unit 9e performs a known estimation process based on the X-ray image processing data 14b, and thereby obtains another pixel corresponding to an absorption coefficient other than the plurality of absorption coefficients A1, B1, and C1. Estimate the value.
  • a table in which values are associated with each other is estimated pixel value information (estimated pixel value table). That is, the estimated pixel value information is a look-up table indicating an absorption coefficient and a pixel value corresponding to the absorption coefficient.
  • the estimated pixel value information displayed on the graph with the absorption coefficient on the horizontal axis and the pixel value on the vertical axis is the value of the absorption coefficient and the pixel value such that the curve shown in FIG. 6C is obtained.
  • the estimated pixel value information is not necessarily the values of the absorption coefficient and the pixel value indicating a curve as shown in FIG.
  • the X-ray image processing unit 9e converts a plurality of pixel values X, Y, and Z corresponding to a plurality of characteristic portions A, B, and C into a plurality of target pixel values Ta, It is configured to correct to Tb and Tc. Specifically, each time the X-ray image processing unit 9e acquires the X-ray image R from the medical X-ray image processing device 8, the X-ray image processing unit 9e sets a plurality of pixel values X corresponding to a plurality of absorption coefficients A1, B1, and C1, Each of Y and Z is configured to acquire a pixel value correction table that is corrected to a plurality of target pixel values Ta, Tb, and Tc.
  • the pixel value correction table includes a plurality of estimated pixel values of the estimated pixel value information and a plurality of target pixel values on the target pixel value function corresponding to the plurality of estimated pixel values of the estimated pixel value information.
  • Pixel value For example, the pixel value correction table has 90 as the estimated pixel value in the characteristic portion A, and has 50 as the target pixel value corresponding to the estimated pixel value.
  • the pixel value correction table has 120 as an estimated pixel value in the characteristic portion B, and has 115 as a target pixel value corresponding to the estimated pixel value.
  • the pixel value correction table has 130 as the estimated pixel value in the characteristic portion C, and has 130 as the target pixel value corresponding to the estimated pixel value.
  • the X-ray image processing unit 9e is configured to associate the plurality of estimated pixel values included in the estimated pixel value information with the plurality of target pixel values on the target pixel value function by the X-ray image processing data 14b. Have been. Specifically, the X-ray image processing unit 9e is configured to cause the pixel values other than the plurality of absorption coefficients A1, B1, and C1 to correspond to the target pixel values, respectively, using the pixel value correction table. . Thereby, the X-ray image processing unit 9e can correct the estimated pixel value corresponding to the subject 20 in the X-ray image R to the target pixel value based on the pixel value correction table.
  • the pixel value correction table has 110 as the estimated pixel value in the portion D of the subject 20, and has 80 as the target pixel value corresponding to the estimated pixel value.
  • the pixel value correction table associates the plurality of pixel values M, X, Y, Z and other estimated pixel values with the plurality of pixel values N, Ta, Tb, TC and other target pixel values. It is a table. That is, the pixel value correction table is a lookup table indicating the estimated pixel values and the target pixel values corresponding to the estimated pixel values.
  • the X-ray image processing unit 9e can correct the estimated pixel value included in the estimated pixel value information to the target pixel value on the target pixel value function by using the X-ray image processing data 14b.
  • the pixel value correction table displayed on a graph in which the estimated pixel value is set on the horizontal axis and the target pixel value is set on the vertical axis is such that the estimated pixel value and the target pixel value become a straight line shown in FIG. Is assumed. It should be noted that the pixel value correction table is not necessarily the value of the estimated pixel value and the target pixel value indicating a straight line as shown in FIG.
  • the X-ray image processing unit 9e performs a known image process (for example, gradation correction) on the X-ray image R whose estimated pixel value has been corrected to the target pixel value according to the conversion of the X-ray image R. After that, the window level and the window width of the X-ray image R are adjusted. At this time, the X-ray image processing unit 9e determines the pixel values X, Y, and Z in the X-ray image R based on correspondence information that associates the plurality of absorption coefficients A1, B1, and C1 with the pixel values X, Y, and Z in the X-ray image R.
  • a known image process for example, gradation correction
  • the configuration of the image processing performed on the corrected X-ray image R in which Y and Z are corrected to the target pixel values Ta, Tb, and Tc is changed. Specifically, in the X-ray image processing unit 9e, the set value of the gradation correction and the like are changed according to the correspondence information so that the corrected X-ray image R is adjusted to an appropriate contrast.
  • the display unit 9f includes an image display device such as a liquid crystal monitor, and is configured to display a screen based on the image output of the X-ray image processing unit 9e. Specifically, the display unit 9f displays the X-ray image R and the reconstructed image. Further, both the target pixel value function and the estimated pixel value information are displayed on the display unit 9f in a state as shown in FIG. That is, the display unit 9f displays the target pixel value function as a solid line and the estimated pixel value information as a dotted line on the graph. In the display unit 9f, the absorption coefficients A1, B1, C1, and D1 and the target pixel values Ta, Tb, and Tc are displayed as character data on a graph.
  • the absorption coefficients A1, B1, C1, and D1 and the target pixel values Ta, Tb, and Tc are displayed as character data on a graph.
  • the display unit 9f On the display unit 9f, the pixel values X, Y, and Z included in the estimated pixel value information are displayed as character data on the graph.
  • the display unit 9f displays the pixel value M before correction and the pixel value N after correction included in the estimated pixel value information as character data.
  • the target pixel value function and the estimated pixel value information are displayed on a graph, but the target pixel value function and the estimated pixel value information are displayed on the screen using only straight lines and curves. There may be.
  • the display unit 9f displays the target pixel value function as a straight line and the estimated pixel value information as a curve, but displays the target pixel value function as a straight line and displays the estimated pixel value information as a histogram. Is also good.
  • the image browsing device 9 is configured to acquire a reconstructed image based on a plurality of X-ray images R corrected by the pixel value correction table.
  • a plurality of X-ray images R are required in order to generate a reconstructed image in which the reconstructed image generating unit 9c reconstructs the plurality of X-ray images R into one image.
  • the X-ray image processing unit 9e performs an optimal pixel value correction for each of the plurality of X-ray images R so that each pixel value of the plurality of X-ray images R becomes a pixel value according to the target pixel value.
  • the X-ray image processing unit 9e irradiates the phantom 30 and the subject 20 with X-rays from a plurality of different angles, thereby obtaining a plurality of X-ray images R each time. It is configured to acquire a pixel value correction table corresponding to each of the X-ray images R. Then, the X-ray image processing unit 9e is configured to correct each of the plurality of X-ray images R based on the pixel value correction table corresponding to each of the plurality of X-ray images R.
  • the target pixel values Ta, Tb, and Tc correspond to the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C for each of the plurality of X-ray images R.
  • a target pixel value function is obtained.
  • the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C are added to the pixel values X, Y, Estimated pixel value information is acquired in association with Z.
  • the X-ray image processing unit 9e acquires a pixel value correction table for correcting the estimated pixel value included in the estimated pixel value information to a target pixel value on a target pixel value function for each of the plurality of X-ray images R.
  • the X-ray image processing unit 9e corrects all the estimated pixel values included in the estimated pixel value information by using the pixel value correction table for each of the plurality of X-ray images R, so that the X-ray image processing unit 9e complies with a certain target pixel value (reference).
  • the obtained X-ray image R is obtained.
  • Steps S1 to S5 are processes performed in the medical X-ray image processing apparatus 8.
  • step S1 the X-ray image generation unit 8b obtains an original X-ray image of the phantom 30 and the subject 20 by X-ray detection via the image obtaining unit 8a.
  • step S2 the X-ray image generation unit 8b performs log conversion on the X-ray original image.
  • step S3 the X-ray image generation unit 8b acquires an X-ray image R by image processing in the X-ray image generation unit 8b.
  • the X-ray image generation unit 8b performs, for example, gain correction, offset correction, and gradation correction as image processing.
  • step S4 the X-ray image processing unit 9e sets the window level and the window width of the X-ray image R.
  • step S5 the X-ray image generation unit 8b outputs the X-ray image R generated by the X-ray image generation unit 8b to the image viewing device 9.
  • Steps S6 to S18 are processes performed in the image browsing device 9.
  • step S6 the X-ray image processing unit 9e acquires the pixel values of the plurality of characteristic portions A, B, and C of the phantom 30 from the acquired X-ray image R.
  • step S7 the X-ray image processing unit 9e acquires the absorption coefficients A1, B1, and C1 of the plurality of characteristic parts A, B, and C of the phantom 30 from the phantom information storage unit 9d.
  • step S8 the X-ray image processing unit 9e acquires target pixel value information corresponding to the absorption coefficient of the phantom 30.
  • step S9 the X-ray image processing unit 9e acquires a target pixel value function based on the absorption coefficients A1, B1, C1, and the target pixel values Ta, Tb, Tc corresponding to the absorption coefficients A1, B1, C1.
  • step S10 the X-ray image processing unit 9e acquires correspondence information in which the absorption coefficients A1, B1, and C1 of the phantom 30 correspond to the pixel values X, Y, and Z in the X-ray image R.
  • the correspondence information includes the absorption coefficients A1, B1, and C1 of the characteristic portions A, B, and C of the phantom 30, and the pixel values X, of the characteristic portions A, B, and C of the phantom 30 in the X-ray image R, respectively.
  • Y and Z are the corresponding data.
  • step S11 the X-ray image processing unit 9e determines in the X-ray image R from the absorption coefficients A1, B1, and C1 and the pixel values X, Y, and Z in the X-ray image R corresponding to the absorption coefficients A1, B1, and C1.
  • Estimated pixel value information obtained by estimating all pixel values is obtained. That is, the estimated pixel value information is a pixel value estimated from the pixel values X, Y, and Z in the X-ray image R corresponding to the absorption coefficients A1, B1, and C1 by performing a known estimation process.
  • step S12 in the X-ray image processing unit 9e, the X-ray image processing unit 9e acquires a pixel value correction table for correcting a pixel value included in the estimated pixel value information into a pixel value on a target pixel value function.
  • step S13 the X-ray image processing unit 9e displays the estimated pixel value information and the target pixel value function on the display unit 9f. This makes it easier for the user to determine the necessity of correcting the pixel values in the X-ray image R using the pixel value correction table by comparing the estimated pixel value information with the target pixel value function.
  • step S14 the X-ray image processing unit 9e corrects the pixel value of the subject 20 using the pixel value correction table.
  • step S15 the X-ray image processing unit 9e changes the setting of the image processing in the X-ray image processing unit 9e based on the correspondence information described above. For example, in the X-ray image processing unit 9e, the set value of the gradation correction is changed according to the corresponding information so that the contrast is adjusted appropriately for the corrected X-ray image R.
  • step S16 the X-ray image processing unit 9e corrects the X-ray image R by image processing in the X-ray image processing unit 9e.
  • step S17 the X-ray image processing unit 9e sets the window level and the window width of the X-ray image R, and the X-ray image processing flow ends.
  • the X-ray image processing unit 9e generates the plurality of absorption coefficients A1 of the plurality of characteristic portions A, B, and C in the X-ray image R stored in the phantom information storage unit 9d. , B1, C1 and a plurality of pixel values X, Y, Z of a plurality of characteristic portions A, B, C in an X-ray image R in which the subject 20 is photographed together with the phantom 30. ing.
  • the X-ray dose changes.
  • the reference in the X-ray image R when correcting the pixel value in the X-ray image R can be prevented from being changed.
  • a high-precision reconstructed image can be obtained, for example, when reconstructing a plurality of images due to a difference in reference between the plurality of images.
  • the X-ray image processing unit 9e is configured to correct a plurality of pixel values corresponding to a plurality of absorption coefficients to a plurality of target pixel values, respectively. .
  • the pixel in the X-ray image R is utilized by utilizing the mutual relationship between the plurality of target pixel values Ta, Tb, and Tc set for each of the plurality of characteristic portions A, B, and C of the phantom 30.
  • the X-ray image processing unit 9e includes a plurality of absorption coefficients A1, B1, C1 corresponding to a plurality of characteristic portions A, B, C of the phantom 30, and a plurality of characteristic portions.
  • the configuration is such that a target pixel value function is set based on a relationship with a plurality of target pixel values Ta, Tb, and Tc corresponding to A, B, and C.
  • the X-ray image processing unit 9e converts the plurality of pixel values X, Y, and Z of each of the plurality of characteristic portions A, B, and C in the X-ray image R into the target pixel value based on the set target pixel value function.
  • the target pixel values Ta, Tb, and Tc on the function are corrected.
  • a plurality of target pixel values Ta, Tb, and Tc can be handled as a target pixel value function associated with a plurality of absorption coefficients A1, B1, and C1, and thus information on the plurality of target pixel values Ta, Tb, and Tc is obtained. Can be easily obtained.
  • the X-ray image processing unit 9e corresponds to the plurality of absorption coefficients A1, B1, and C1 each time the X-ray image R in which the subject 20 is captured together with the phantom 30 is acquired. It is configured to acquire a pixel value correction table for correcting the plurality of pixel values X, Y, and Z into a plurality of target pixel values Ta, Tb, and Tc on the target pixel value function, respectively. Accordingly, by acquiring the pixel value correction table of the corresponding X-ray image R every time the X-ray image R is acquired, it is possible to acquire a plurality of X-ray images R in which the same reference pixel value is corrected. Therefore, when reconstructing a plurality of X-ray images R, a highly accurate reconstructed image can be easily obtained.
  • the X-ray image processing unit 9e when acquiring a plurality of X-ray images R by performing a plurality of X-ray imagings, the X-ray image processing unit 9e performs each time the plurality of X-ray images R are obtained. First, a pixel value correction table is obtained. The X-ray image processing unit 9e is configured to correct each of the plurality of X-ray images R based on a pixel value correction table corresponding to each of the plurality of X-ray images R.
  • the pixel value correction table is stored in the plurality of phantoms 30. Since the X-ray images are acquired by the pixel values associated with the plurality of absorption coefficients A1, B1, and C1 of the characteristic portions A, B, and C, a plurality of X-ray images R having the same reference correction are acquired. be able to. As a result, for example, even when a plurality of X-ray images R are reconstructed to acquire a reconstructed image, it is possible to suppress the occurrence of artifacts (virtual images) in the reconstructed image.
  • the X-ray image processing unit 9e includes the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C of the phantom 30 in the X-ray image R.
  • a pixel value correction table based on the estimated pixel value information of the X-ray image R estimated based on the plurality of pixel values X, Y, and Z corresponding to the plurality of absorption coefficients A1, B1, and C1, respectively.
  • an accurate pixel value correction table can be obtained based on the estimated pixel value information, so that the pixel values in the X-ray image R based on the pixel value correction table can be accurately corrected.
  • the image browsing device 9 includes the display unit 9f.
  • the X-ray image processor 9e is configured to display both the target pixel value function and the estimated pixel value information on the display 9f. This allows the user to easily visually recognize the difference between the target pixel value function and the estimated pixel value information.
  • the X-ray image processing unit 9e corrects the plurality of pixel values X, Y, and Z into the plurality of target pixel values Ta, Tb, and Tc based on the correspondence information.
  • the configuration of the image processing performed on the line image R is changed. Accordingly, image processing performed on the corrected X-ray image R can be appropriately performed.
  • the target pixel value function is a linear function passing through the coordinates Ax1, Ax2, and Ax3, but the present invention is not limited to this.
  • the target pixel value function may be a quadratic function, a cubic function, or the like.
  • the subject 20 is the right hand
  • the present invention is not limited to this.
  • the subject may be a left hand, a leg, a chest, an abdomen, or the like.
  • the X-ray image processing unit 9e determines the plurality of absorption coefficients A1, B1, and C1 based on the correspondence information that associates the pixel values X, Y, and Z in the X-ray image R with each other.
  • the example in which the setting of the image processing performed on the X-ray image R in which the pixel values X, Y, and Z are corrected to the target pixel values Ta, Tb, and Tc is changed. It is not limited to this. In the present invention, the setting of the image processing performed on the X-ray image before being corrected by the pixel value correction table in the medical X-ray image processing apparatus may be changed.
  • the image browsing device 9 includes the X-ray image processing unit 9e in the present embodiment, the present invention is not limited to this.
  • the medical X-ray image processing device may include the X-ray image processing unit.
  • the medical X-ray image processing device 8 and the image browsing device 9 are each configured to perform image processing on the X-ray image R, but the present invention is not limited to this. Not limited. In the present invention, only one of the medical X-ray image processing device and the image browsing device may perform the image processing on the X-ray image.
  • control processing of the X-ray image processing unit 9e is described using a flow-driven flowchart in which processing is sequentially performed along a processing flow.
  • the invention is not limited to this.
  • the control processing of the X-ray image processing unit 9e may be performed by event-driven (event-driven) processing that executes processing in event units. In this case, it may be performed in a completely event-driven manner, or may be performed in a combination of event-driven and flow-driven.
  • X-ray imaging apparatus Medical X-ray image processing apparatus (image processing unit) Reference Signs List 9 image browsing device 9d phantom information storage unit 9e X-ray image processing unit 9f display unit 20 subject 30 phantom A, B, C characteristic part (plural reference parts) A1, B1, C1 Absorption coefficient R X-ray image Ta, Tb, Tc Target pixel value X, Y, Z pixel value

Abstract

This medical X-ray image processing device (1) is provided with an X-ray image processing unit (9b) that associates multiple absorption coefficients (A1, B1, C1) of respective feature sections (A, B, C) in an X-ray image (R) stored in a phantom information storage unit (9a) with multiple pixel values (X, Y, Z) of respective feature sections (A, B, C) in an X-ray image (R) in which an object (20) is captured together with a phantom (30).

Description

医用X線画像処理装置およびX線画像撮影装置Medical X-ray image processing apparatus and X-ray image photographing apparatus
 本発明は、医用X線画像処理装置およびX線画像撮影装置に関する。 The present invention relates to a medical X-ray image processing device and an X-ray image photographing device.
 従来、被写体を撮影したX線画像を取得する医用X線画像処理装置およびX線画像撮影装置が知られている。このような医用X線画像処理装置およびX線画像撮影装置は、たとえば、特開2006-311922号公報に開示されている。 Conventionally, a medical X-ray image processing apparatus and an X-ray image capturing apparatus for acquiring an X-ray image of a subject are known. Such a medical X-ray image processing apparatus and X-ray image radiographing apparatus are disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-311922.
 上記特開2006-311922号公報に記載のX線撮影装置は、被写体に照射するX線を発生させるX線発生装置と、X線発生装置に対して対向配置され、被写体を透過したX線を検出して画像データに変換するX線検出部とを備えている。X線撮影装置は、画像データに各種補正処理を行うことにより補正画像データを取得する補正処理部と、補正画像データを自動的に階調変換して出力画像データを取得する自動階調処理部とを含む画像処理装置を備えている。ここで、自動階調処理部は、望ましい階調変換関数である基本階調変換特性を複数記憶した記憶部を有している。 The X-ray imaging apparatus described in Japanese Patent Application Laid-Open No. 2006-31922 discloses an X-ray generation apparatus that generates X-rays for irradiating a subject, and an X-ray generation apparatus that is arranged to face the X-ray generation apparatus and transmits X-rays transmitted through the subject. An X-ray detection unit that detects and converts the image data into image data. An X-ray imaging apparatus includes a correction processing unit that obtains corrected image data by performing various types of correction processing on image data, and an automatic gradation processing unit that obtains output image data by automatically performing gradation conversion on the corrected image data. And an image processing apparatus including: Here, the automatic gradation processing unit has a storage unit that stores a plurality of basic gradation conversion characteristics that are desirable gradation conversion functions.
 上記特開2006-311922号公報に記載のX線撮影装置における自動階調処理部は、記憶部に記憶されている複数の基本階調変換特性のうちから、補正画像データに対して適切な基本階調変換特性を取得するように構成されている。具体的には、自動階調処理部は、補正画像データ内に設定された特徴領域における画素値の最大値、最小値および平均値をといった特徴量を取得し、特徴量との誤差が最小となる基本階調変換特性を取得するように構成されている。 The automatic gradation processing unit in the X-ray imaging apparatus described in Japanese Patent Application Laid-Open No. 2006-311922 is configured to select an appropriate basic gradation conversion characteristic from among the plurality of basic gradation conversion characteristics stored in the storage unit. It is configured to acquire a gradation conversion characteristic. Specifically, the automatic gradation processing unit obtains a feature amount such as a maximum value, a minimum value, and an average value of pixel values in the feature region set in the corrected image data, and determines that an error from the feature amount is minimum. It is configured to acquire the following basic gradation conversion characteristics.
特開2006-311922号公報JP 2006-311922 A
 しかしながら、上記特開2006-311922号公報に記載のX線撮影装置では、補正画像データ内の特徴領域の画素値に基づいて、基本階調変換特性を取得しているので、X線の線量が変化したり、X線発生装置の位置が変化したりすると、基本階調変換特性を取得する際の、補正画像データ(X線画像)内の特徴量(基準)が変更されるという問題点がある。この結果、撮影した複数の画像間での基準が異なることに起因して、たとえば複数画像を再構成する場合などに、精度の高い再構成画像を取得することができない。 However, in the X-ray imaging apparatus described in Japanese Patent Application Laid-Open No. 2006-311922, since the basic gradation conversion characteristic is obtained based on the pixel value of the characteristic region in the corrected image data, the X-ray dose is reduced. A change in the position of the X-ray generator or a change in the position of the X-ray generator causes a problem that the feature amount (reference) in the corrected image data (X-ray image) at the time of acquiring the basic gradation conversion characteristics is changed. is there. As a result, a high-precision reconstructed image cannot be obtained, for example, when reconstructing a plurality of images, due to a difference in reference between a plurality of captured images.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、X線の線量が変化したり、X線発生装置の位置が変化したりしても、X線画像内の基準が変更されないようにすることが可能な医用X線画像処理装置およびX線画像撮影装置を提供することである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and one object of the present invention is to provide a method for changing the dose of an X-ray or changing the position of an X-ray generator. To provide a medical X-ray image processing apparatus and an X-ray image capturing apparatus capable of preventing a reference in an X-ray image from being changed.
 上記目的を達成するために、この発明の第1の局面における医用X線画像処理装置は、X線の吸収係数が異なる複数の基準部を含むファントムの複数の基準部のそれぞれに対応する複数の吸収係数を記憶するファントム情報記憶部と、ファントム情報記憶部に記憶されたX線画像中の複数の基準部のそれぞれの複数の吸収係数と、ファントムとともに被写体が撮影されたX線画像中の複数の基準部のそれぞれの複数の画素値とを対応させるX線画像処理部とを備える。なお、本発明における画素値とは、一般的な画素値だけでなく、log変換による変換を行った画素値、および、シグモイド曲線状などの変換係数による変換を行った画素値を含む広い概念である。 In order to achieve the above object, a medical X-ray image processing apparatus according to a first aspect of the present invention includes a plurality of reference portions corresponding to a plurality of reference portions of a phantom including a plurality of reference portions having different X-ray absorption coefficients. A phantom information storage unit that stores an absorption coefficient; a plurality of absorption coefficients of each of a plurality of reference units in the X-ray image stored in the phantom information storage unit; And an X-ray image processing unit that associates each of the plurality of pixel values of the reference unit with the X-ray image processing unit. Note that the pixel value in the present invention is a broad concept including not only a general pixel value, but also a pixel value converted by a log conversion and a pixel value converted by a conversion coefficient such as a sigmoid curve. is there.
 この発明の第1の局面による医用X線画像処理装置では、上記のように、X線画像処理部が、ファントム情報記憶部に記憶されたX線画像中の複数の基準部のそれぞれの複数の吸収係数と、ファントムとともに被写体が撮影されたX線画像中のファントムの複数の基準部のそれぞれの複数の画素値とを対応させるように構成されている。これにより、X線画像内のファントムの複数の基準部のそれぞれの吸収係数と複数の画素値とが対応するので、X線の線量が変化したり、X線発生装置の位置が変化したりしても、たとえばX線画像内の画素値の補正を行う際の、X線画像内の基準が変更されないようにすることができる。その結果、複数の画像間での基準が異なることに起因して、たとえば複数画像を再構成する場合などに、精度の高い再構成画像を取得することができる。 In the medical X-ray image processing apparatus according to the first aspect of the present invention, as described above, the X-ray image processing unit includes a plurality of reference units in the X-ray image stored in the phantom information storage unit. The absorption coefficient is configured to correspond to each of the plurality of pixel values of the plurality of reference portions of the phantom in the X-ray image of the subject captured with the phantom. As a result, since the respective absorption coefficients of the plurality of reference portions of the phantom in the X-ray image correspond to the plurality of pixel values, the dose of X-rays changes and the position of the X-ray generator changes. However, for example, when correcting the pixel value in the X-ray image, the reference in the X-ray image can be prevented from being changed. As a result, a high-precision reconstructed image can be obtained, for example, when reconstructing a plurality of images due to a difference in reference between the plurality of images.
 上記第1の局面における医用X線画像処理装置において、好ましくは、X線画像処理部は、複数の吸収係数に対応させた複数の画素値を、それぞれ、複数の目標画素値に補正するように構成されている。このように構成すれば、ファントムの複数の基準部のそれぞれに対して設定された複数の目標画素値同士の互いの関係を利用して、X線画像内の画素値を目標画素値に補正する際に、複数の吸収係数に対応させた複数の目標画素値だけでなく、X線画像内の画素値の目標画素値を設定することができる。 In the medical X-ray image processing apparatus according to the first aspect, preferably, the X-ray image processing unit corrects each of the plurality of pixel values corresponding to the plurality of absorption coefficients to a plurality of target pixel values. It is configured. With this configuration, the pixel value in the X-ray image is corrected to the target pixel value by using the mutual relationship between the plurality of target pixel values set for each of the plurality of reference portions of the phantom. In this case, not only a plurality of target pixel values corresponding to a plurality of absorption coefficients but also a target pixel value of a pixel value in an X-ray image can be set.
 上記複数の画素値を目標画素値に補正するX線画像処理部を備える医用X線画像処理装置において、好ましくは、X線画像処理部は、ファントムの複数の基準部に対応した複数の吸収係数と、複数の吸収係数のそれぞれに対応した複数の目標画素値との関係により設定された目標画素値関数に基づいて、X線画像中の複数の基準部のそれぞれの複数の画素値を目標画素値関数上の対応する目標画素値に補正するように構成されている。このように構成すれば、複数の目標画素値を複数の吸収係数に対応付けた目標画素値関数として扱うことができるので、複数の目標画素値の情報を容易に取得することができる。 In the medical X-ray image processing apparatus including an X-ray image processing unit that corrects the plurality of pixel values to a target pixel value, preferably, the X-ray image processing unit includes a plurality of absorption coefficients corresponding to a plurality of reference units of a phantom. And a plurality of target pixel values corresponding to each of the plurality of absorption coefficients, based on a target pixel value function set by a relationship between the plurality of target pixel values and a plurality of target pixel values corresponding to each of the plurality of absorption coefficients. It is configured to correct to the corresponding target pixel value on the value function. With this configuration, a plurality of target pixel values can be handled as a target pixel value function associated with a plurality of absorption coefficients, so that information on a plurality of target pixel values can be easily obtained.
 上記複数の吸収係数のそれぞれに対応した複数の目標画素値との関係を目標画素値関数として設定するX線画像処理部を備える医用X線画像処理装置において、好ましくは、X線画像処理部は、ファントムとともに被写体が撮影されたX線画像を取得するごとに、複数の吸収係数に対応させた複数の画素値を、それぞれ、目標画素値関数上の複数の目標画素値に補正する画素値補正テーブルを取得するように構成されている。このように構成すれば、X線画像を取得するごとに対応するX線画像の画素値補正テーブルを取得することにより、同じ基準の画素値の補正が行なわれた複数のX線画像を取得することができるので、複数のX線画像を再構成する場合に、精度の高い再構成画像を容易に得ることができる。 In a medical X-ray image processing apparatus including an X-ray image processing unit that sets a relationship between a plurality of target pixel values corresponding to each of the plurality of absorption coefficients as a target pixel value function, preferably the X-ray image processing unit Pixel value correction for correcting a plurality of pixel values corresponding to a plurality of absorption coefficients to a plurality of target pixel values on a target pixel value function each time an X-ray image of a subject taken with a phantom is obtained It is configured to get a table. With this configuration, each time an X-ray image is acquired, a corresponding X-ray image pixel value correction table is acquired, thereby acquiring a plurality of X-ray images having the same reference pixel value corrected. Therefore, when reconstructing a plurality of X-ray images, a highly accurate reconstructed image can be easily obtained.
 上記画素値補正テーブルを取得するX線画像処理部を備える医用X線画像処理装置において、好ましくは、X線画像処理部は、複数回のX線撮影によりX線画像を複数取得する場合において、複数のX線画像の各々が得られるごとに、画素値補正テーブルを取得し、複数のX線画像の各々に対応する画素値補正テーブルに基づいて、複数のX線画像の各々を補正するように構成されている。このように構成すれば、複数のX線画像の各々が得られるごとに取得される画素値補正テーブルにより複数のX線画像の各々が補正されたとしても、画素値補正テーブルが、ファントムの複数の基準部の各々の複数の吸収係数に対応付けられた画素値により取得されているので、同じ基準の補正が行なわれた複数のX線画像を取得することができる。これにより、たとえば、複数のX線画像を再構成して再構成画像を取得する場合であっても、再構成画像にアーチファクト(虚像)が生じることを抑制することができる。 In a medical X-ray image processing apparatus including an X-ray image processing unit that obtains the pixel value correction table, preferably, when the X-ray image processing unit obtains a plurality of X-ray images by performing a plurality of X-ray imagings, Each time a plurality of X-ray images are obtained, a pixel value correction table is acquired, and each of the plurality of X-ray images is corrected based on the pixel value correction table corresponding to each of the plurality of X-ray images. Is configured. With such a configuration, even if each of the plurality of X-ray images is corrected by the pixel value correction table acquired each time each of the plurality of X-ray images is obtained, the pixel value correction table is stored in the plurality of phantoms. Are obtained by the pixel values associated with the plurality of absorption coefficients of each of the reference portions, so that a plurality of X-ray images with the same reference correction can be obtained. Accordingly, for example, even when a plurality of X-ray images are reconstructed to obtain a reconstructed image, it is possible to suppress an artifact (virtual image) from occurring in the reconstructed image.
 上記複数の吸収係数のそれぞれに対応した複数の目標画素値との関係を目標画素値関数として設定するX線画像処理部を備える医用X線画像処理装置において、好ましくは、X線画像処理部は、X線画像中におけるファントムの複数の基準部のそれぞれの複数の吸収係数と、複数の吸収係数のそれぞれに対応する複数の画素値とに基づいて推定されるX線画像の推定画素値情報とに基づいて、画素値補正テーブルを取得するように構成されている。このように構成すれば、推定画素値情報により、正確な画素値補正テーブルを取得することができるので、画素値補正テーブルによるX線画像中の画素値を精度よく補正することができる。 In a medical X-ray image processing apparatus including an X-ray image processing unit that sets a relationship between a plurality of target pixel values corresponding to each of the plurality of absorption coefficients as a target pixel value function, preferably the X-ray image processing unit , Estimated pixel value information of the X-ray image estimated based on the plurality of absorption coefficients of each of the plurality of reference portions of the phantom in the X-ray image and the plurality of pixel values corresponding to each of the plurality of absorption coefficients. Is configured to acquire a pixel value correction table based on According to this configuration, an accurate pixel value correction table can be obtained based on the estimated pixel value information, so that the pixel values in the X-ray image based on the pixel value correction table can be accurately corrected.
 この場合、好ましくは、表示部をさらに備え、X線画像処理部は、目標画素値関数と推定画素値情報との両方を表示部に表示させるように構成されている。このように構成すれば、目標画素値関数と推定画素値情報との違いを容易にユーザーが視覚的に認識することができる。 In this case, preferably, a display unit is further provided, and the X-ray image processing unit is configured to display both the target pixel value function and the estimated pixel value information on the display unit. With this configuration, the user can easily visually recognize the difference between the target pixel value function and the estimated pixel value information.
 上記複数の画素値を目標画素値に補正するX線画像処理部を備える医用X線画像処理装置において、好ましくは、X線画像処理部は、ファントム情報記憶部に記憶された複数の基準部のそれぞれの複数の吸収係数と、X線画像中の複数の基準部のそれぞれの複数の画素値とを対応させた対応情報に基づいて、複数の画素値を複数の目標画素値に補正したX線画像に対して行う画像処理の設定を変更する、または、補正前のX線画像に対して行う画像処理の設定を変更するように構成されている。このように構成すれば、X線画像に対して行われる補正前または補正後の画像処理の設定を適切に行うことができる。 In the medical X-ray image processing apparatus including the X-ray image processing unit that corrects the plurality of pixel values to the target pixel value, preferably, the X-ray image processing unit includes a plurality of reference units stored in the phantom information storage unit. An X-ray in which a plurality of pixel values are corrected to a plurality of target pixel values based on correspondence information in which each of the plurality of absorption coefficients is associated with each of a plurality of pixel values of a plurality of reference portions in the X-ray image The configuration of the image processing performed on the image is changed, or the setting of the image processing performed on the X-ray image before correction is changed. With this configuration, it is possible to appropriately set the image processing before or after the correction performed on the X-ray image.
 この発明の第2の局面におけるX線画像撮影装置は、X線源と、X線源から照射されたX線を検出する検出器と、検出器により検出されたX線の強度分布からX線画像を取得する画像処理部とを備え、画像処理部は、X線の吸収係数が異なる複数の基準部を含むファントムの複数の基準部のそれぞれに対応する複数の吸収係数を記憶するファントム情報記憶部と、ファントム情報記憶部に記憶されたX線画像中の複数の基準部のそれぞれの複数の吸収係数と、ファントムとともに被写体が撮影されたX線画像中の複数の基準部のそれぞれの複数の画素値とを対応させるX線画像処理部とを含む。 An X-ray imaging apparatus according to a second aspect of the present invention includes an X-ray source, a detector that detects X-rays emitted from the X-ray source, and an X-ray intensity distribution based on the X-ray intensity distribution detected by the detector. An image processing unit for acquiring an image, wherein the image processing unit stores a plurality of absorption coefficients respectively corresponding to a plurality of reference portions of the phantom including a plurality of reference portions having different X-ray absorption coefficients. Part, a plurality of absorption coefficients of each of a plurality of reference parts in the X-ray image stored in the phantom information storage unit, and a plurality of each of the plurality of reference parts in the X-ray image of the subject photographed with the phantom. An X-ray image processing unit for associating the pixel value with the pixel value.
 この発明の第2の局面によるX線画像撮影装置では、上記のように、X線画像処理部が、ファントム情報記憶部に記憶されたX線画像中の複数の基準部のそれぞれの複数の吸収係数と、ファントムとともに被写体が撮影されたX線画像中のファントムの複数の基準部のそれぞれの複数の画素値とを対応させるように構成されている。これにより、X線画像内のファントムの複数の基準部のそれぞれの吸収係数と複数の画素値とが対応するので、X線の線量が変化したり、X線発生装置の位置が変化したりしても、たとえばX線画像内の画素値の補正を行う際の、X線画像内の基準が変更されないようにすることができる。その結果、複数の画像間での基準が異なることに起因して、たとえば複数画像を再構成する場合などに、精度の高い再構成画像を取得することができる。 In the X-ray imaging apparatus according to the second aspect of the present invention, as described above, the X-ray image processing unit performs the plurality of absorptions of the plurality of reference units in the X-ray image stored in the phantom information storage unit. The coefficient is configured to correspond to each of a plurality of pixel values of a plurality of reference portions of the phantom in the X-ray image obtained by capturing the subject together with the phantom. As a result, since the respective absorption coefficients of the plurality of reference portions of the phantom in the X-ray image correspond to the plurality of pixel values, the dose of X-rays changes and the position of the X-ray generator changes. However, for example, when correcting the pixel value in the X-ray image, the reference in the X-ray image can be prevented from being changed. As a result, a high-precision reconstructed image can be obtained, for example, when reconstructing a plurality of images due to a difference in reference between the plurality of images.
 本発明によれば、上記のように、X線の線量が変化したり、X線発生装置の位置が変化したりしても、X線画像内の基準が変更されないようにすることが可能な医用X線画像処理装置およびX線画像撮影装置を提供することができる。 According to the present invention, as described above, even if the X-ray dose changes or the position of the X-ray generator changes, it is possible to prevent the reference in the X-ray image from being changed. A medical X-ray image processing device and an X-ray image capturing device can be provided.
本実施形態によるX線画像撮影装置および画像閲覧装置の全体構成を示した模式図である。FIG. 1 is a schematic diagram illustrating an overall configuration of an X-ray image capturing apparatus and an image browsing apparatus according to an embodiment. 本実施形態による医用X線画像処理装置および画像閲覧装置の全体構成を示したブロック図である。FIG. 1 is a block diagram illustrating an overall configuration of a medical X-ray image processing apparatus and an image browsing apparatus according to an embodiment. 図3(A)は、特徴部分A、B、Cを含むファントムを示した斜視図である。図3(B)は、ファントム構造データの吸収係数およびサイズを示した表である。FIG. 3A is a perspective view showing a phantom including characteristic portions A, B, and C. FIG. FIG. 3B is a table showing absorption coefficients and sizes of phantom structure data. 図4(A)は、ファントムの特徴部分A、B、Cの吸収係数と目標画素値を示した表である。図4(B)は、目標画素値関数を示したグラフである。FIG. 4A is a table showing the absorption coefficients and target pixel values of the characteristic parts A, B, and C of the phantom. FIG. 4B is a graph showing a target pixel value function. 本実施形態によるX線画像撮影装置において撮影されたX線画像を示した模式図である。FIG. 2 is a schematic diagram illustrating an X-ray image captured by the X-ray image capturing apparatus according to the embodiment. 図6(A)は、X線画像における特徴部分A、B、Cの画素値情報を示した表である。図6(B)は、X線画像における特徴部分A、B、Cの推定画素値を示した表である。図6(C)は、X線画像における推定画素値情報を示したグラフである。FIG. 6A is a table showing pixel value information of characteristic portions A, B, and C in the X-ray image. FIG. 6B is a table showing estimated pixel values of characteristic portions A, B, and C in the X-ray image. FIG. 6C is a graph showing estimated pixel value information in an X-ray image. 本実施形態による画像閲覧装置において生成された目標画素値関数および推定画素値情報を示したグラフである。5 is a graph showing a target pixel value function and estimated pixel value information generated in the image browsing device according to the embodiment. 図8(A)は、画素値補正テーブルを示した表である。図8(B)は、画素値補正テーブルを表したグラフである。FIG. 8A is a table showing a pixel value correction table. FIG. 8B is a graph showing a pixel value correction table. 本実施形態による画像閲覧装置におけるX線画像処理フローを示したフローチャートである。5 is a flowchart illustrating an X-ray image processing flow in the image browsing device according to the present embodiment.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、図1~図9を参照して、X線画像撮影装置1および画像閲覧装置9の構成について説明する。 First, the configurations of the X-ray image photographing apparatus 1 and the image browsing apparatus 9 will be described with reference to FIGS.
(X線画像撮影装置の構成)
 図1に示すように、X線画像撮影装置1は、撮影台3に横臥した被写体20およびファントム30にX線を照射し、被写体20を透過したX線を検出することにより被写体20およびファントム30を撮影するように構成されている。X線画像撮影装置1は、撮影台3と、X線源4と、検出器5と、撮影系位置変更機構6と、撮影装置制御部7と、医用X線画像処理装置8とを含む。なお、X線画像撮影装置1において、撮影台3の長さ方向をX方向とし、その一方をX1方向とし、他方をX2方向とする。また、水平方向においてX方向に垂直な方向をY方向とし、その一方をY1方向とし、他方をY2方向とする。また、X方向およびY方向に垂直な方向をZ方向(上下方向)とし、その一方をZ1方向(上方向)とし、他方をZ2方向(下方向)とする。
(Configuration of X-ray imaging apparatus)
As shown in FIG. 1, the X-ray imaging apparatus 1 irradiates the subject 20 and the phantom 30 lying on the imaging table 3 with X-rays, and detects the X-rays transmitted through the subject 20 to thereby detect the subject 20 and the phantom 30. It is configured to shoot. The X-ray imaging apparatus 1 includes an imaging table 3, an X-ray source 4, a detector 5, an imaging system position changing mechanism 6, an imaging apparatus control unit 7, and a medical X-ray image processing apparatus 8. In the X-ray imaging apparatus 1, the length direction of the imaging table 3 is defined as an X direction, one of which is defined as an X1 direction, and the other is defined as an X2 direction. In the horizontal direction, a direction perpendicular to the X direction is defined as a Y direction, one of which is defined as a Y1 direction, and the other is defined as a Y2 direction. A direction perpendicular to the X direction and the Y direction is defined as a Z direction (vertical direction), one of which is defined as a Z1 direction (upward direction), and the other is defined as a Z2 direction (downward direction).
 X線源4は、高電圧が印加されることにより発生させたX線を、検出器5に向けて照射するように構成されている。 The X-ray source 4 is configured to irradiate the detector 5 with X-rays generated by applying a high voltage.
 検出器5は、X線を検出するとともに、検出されたX線を電気信号に変換し、変換された電気信号を画像信号として読み取るように構成されている。検出器5は、たとえば、FPD(Flat Panel Detector)である。検出器5は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とを有する。複数の変換素子は、所定の周期(画素ピッチ)で、画素の配列方向がY方向およびX方向に一致するように配置されている。複数の画素電極は、所定の周期(画素ピッチ)で、画素の配列方向がY方向およびX方向に一致するように配置されている。また、検出器5は、取得した画像信号を、医用X線画像処理装置8に出力するように構成されている。 The detector 5 is configured to detect X-rays, convert the detected X-rays into electric signals, and read the converted electric signals as image signals. The detector 5 is, for example, an FPD (Flat @ Panel @ Detector). The detector 5 has a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements. The plurality of conversion elements are arranged at a predetermined cycle (pixel pitch) such that the arrangement direction of the pixels matches the Y direction and the X direction. The plurality of pixel electrodes are arranged at a predetermined cycle (pixel pitch) such that the arrangement direction of the pixels matches the Y direction and the X direction. Further, the detector 5 is configured to output the acquired image signal to the medical X-ray image processing device 8.
 撮影系位置変更機構6は、撮影装置制御部7からの信号に基づいて、X線源4と検出器5との相対位置およびX線源4の角度を変更するように構成されている。撮影系位置変更機構6は、X線源4を回動可能に保持するX線源保持部6aを含む。また、撮影系位置変更機構6は、X線源保持部6aをX方向に移動させるX線源移動部6bを含む。X線源保持部6aは、一端部でX線源4を回動可能に保持し、他端部がX線源移動部6bに移動可能に保持されている。X線源保持部6aは、一端部において、X線源4をX方向の軸線周りに回動可能に構成されている。つまり、X線源保持部6aは、撮影装置制御部7からの信号により、X線源4の照射角度を変更可能に構成されている。また、X線源保持部6aは、Z方向に伸縮可能に構成されている。したがって、X線源保持部6aは、X線源4のZ方向の位置を変更可能に構成されている。また、X線源移動部6bは、撮影装置制御部7からの信号によりX線源保持部6aをX方向に移動させるように構成されている。 The imaging system position changing mechanism 6 is configured to change the relative position between the X-ray source 4 and the detector 5 and the angle of the X-ray source 4 based on a signal from the imaging device control unit 7. The imaging system position changing mechanism 6 includes an X-ray source holding unit 6a that rotatably holds the X-ray source 4. Further, the imaging system position changing mechanism 6 includes an X-ray source moving unit 6b that moves the X-ray source holding unit 6a in the X direction. The X-ray source holding unit 6a holds the X-ray source 4 at one end so as to be rotatable, and the other end is movably held by the X-ray source moving unit 6b. The X-ray source holding unit 6a is configured such that, at one end, the X-ray source 4 is rotatable around an axis in the X direction. That is, the X-ray source holding unit 6a is configured to be able to change the irradiation angle of the X-ray source 4 by a signal from the imaging device control unit 7. Further, the X-ray source holding unit 6a is configured to be able to expand and contract in the Z direction. Therefore, the X-ray source holding unit 6a is configured to be able to change the position of the X-ray source 4 in the Z direction. The X-ray source moving unit 6b is configured to move the X-ray source holding unit 6a in the X direction according to a signal from the imaging device control unit 7.
 撮影装置制御部7は、X線源4から検出器5に向けてX線を照射させることにより、X線撮影を行うように構成されている。また、撮影装置制御部7は、撮影系位置変更機構6を介してX線源4を移動させることにより、撮影系の被写体20に対する相対位置を変化させるように構成されている。撮影装置制御部7は、たとえば、CPU(Central Processing Unit)などのプロセッサを含む。なお、撮影系は、X線源4と、検出器5と、X線源4と検出器5との相対位置を変更する撮影系位置変更機構6とを含む。 The imaging device controller 7 is configured to perform X-ray imaging by irradiating the detector 5 with X-rays from the X-ray source 4. The imaging device control unit 7 is configured to change the relative position of the imaging system with respect to the subject 20 by moving the X-ray source 4 via the imaging system position changing mechanism 6. The imaging device control unit 7 includes, for example, a processor such as a CPU (Central Processing Unit). Note that the imaging system includes an X-ray source 4, a detector 5, and an imaging system position changing mechanism 6 that changes a relative position between the X-ray source 4 and the detector 5.
 医用X線画像処理装置8は、検出器5から出力された画像信号に基づいて、X線画像R(図5参照)を生成するように構成されている。また、医用X線画像処理装置8は、複数のX線画像R中に写る特徴部分A、B、C(図5参照)の位置情報を取得するように構成されている。また、医用X線画像処理装置8は、複数のX線画像Rを1つの画像に再構成した再構成画像を生成するように構成されている。ここで、医用X線画像処理装置8は、たとえば、CPU、GPU(Graphics Processing Unit)、または、画像処理用に構成されたFPGA(Field-Programmable Gate Array)などのプロセッサを含む。なお、特徴部分A、B、Cは、特許請求の範囲の「基準部」の一例である。 The medical X-ray image processing device 8 is configured to generate an X-ray image R (see FIG. 5) based on the image signal output from the detector 5. Further, the medical X-ray image processing device 8 is configured to acquire the position information of the characteristic portions A, B, and C (see FIG. 5) appearing in the plurality of X-ray images R. Further, the medical X-ray image processing device 8 is configured to generate a reconstructed image obtained by reconstructing a plurality of X-ray images R into one image. Here, the medical X-ray image processing apparatus 8 includes, for example, a processor such as a CPU, a GPU (Graphics Processing Unit), or an FPGA (Field-Programmable Gate Array) configured for image processing. The characteristic portions A, B, and C are examples of the “reference portion” in the claims.
 具体的には、医用X線画像処理装置8は、図2に示すように、画像取得部8aと、X線画像生成部8bと、位置情報取得部8cと、再構成画像生成部8dと、制御部8eとを備える。画像取得部8a、X線画像生成部8b、位置情報取得部8c、再構成画像生成部8dおよび制御部8eは、各々、医用X線画像処理装置8のFPGA等のプロセッサにおける処理モジュール(処理プロセッサ)として構成されている。 Specifically, as shown in FIG. 2, the medical X-ray image processing device 8 includes an image acquisition unit 8a, an X-ray image generation unit 8b, a position information acquisition unit 8c, a reconstructed image generation unit 8d, A control unit 8e. The image acquisition unit 8a, the X-ray image generation unit 8b, the position information acquisition unit 8c, the reconstructed image generation unit 8d, and the control unit 8e are each a processing module (processor) of a processor such as an FPGA of the medical X-ray image processing device 8. ).
 画像取得部8aは、検出器5において検出された被写体20およびファントム30の画像信号を取得し、取得した被写体20およびファントム30の画像信号をX線画像生成部8bに出力するように構成されている。すなわち、画像取得部8aは、入出力装置としての機能を有する。 The image acquisition unit 8a is configured to acquire image signals of the subject 20 and the phantom 30 detected by the detector 5, and output the acquired image signals of the subject 20 and the phantom 30 to the X-ray image generation unit 8b. I have. That is, the image acquisition unit 8a has a function as an input / output device.
 X線画像生成部8bは、画像取得部8aから出力された被写体20およびファントム30の画像信号の強度分布に基づいて、被写体20およびファントム30のX線原画像を生成するように構成されている。また、X線画像生成部8bは、X線原画像に対してlog変換などによりX線原画像の画素値を補正しX線画像Rを生成する。そして、X線画像生成部8bは、X線画像Rの画像化に伴う公知の画像処理(たとえば、オフセット補正、ゲイン補正、階調補正など)を行った上で、X線画像Rのウィンドウレベルおよびウィンドウ幅を調整するように構成されている。 The X-ray image generation unit 8b is configured to generate an X-ray original image of the subject 20 and the phantom 30 based on the intensity distribution of the image signals of the subject 20 and the phantom 30 output from the image acquisition unit 8a. . Further, the X-ray image generation unit 8b corrects the pixel value of the X-ray original image by performing log conversion or the like on the X-ray original image and generates the X-ray image R. Then, the X-ray image generation unit 8b performs well-known image processing (for example, offset correction, gain correction, gradation correction, and the like) accompanying the imaging of the X-ray image R, and then performs the window level of the X-ray image R. And the window width is adjusted.
 位置情報取得部8cは、被写体20の関心領域ROI(図1参照)とともに写る位置に配置されたファントム30に設けられた複数の特徴部分A、B、CのX線画像R中における位置情報を取得するように構成されている。位置情報取得部8cは、画像認識処理により複数の特徴部分A、B、Cの位置情報を取得するように構成されている。 The position information acquisition unit 8c obtains position information in the X-ray image R of a plurality of characteristic parts A, B, and C provided on the phantom 30 arranged at a position where the phantom 30 is located along with the region of interest ROI (see FIG. 1) of the subject 20. Is configured to retrieve. The position information acquisition unit 8c is configured to acquire the position information of a plurality of characteristic portions A, B, and C by performing image recognition processing.
 再構成画像生成部8dは、複数のX線画像Rを1つの画像に再構成した再構成画像を生成するように構成されている。具体的には、X線画像撮影装置1では、被写体20に対して複数の異なる角度からX線を照射することにより取得された複数のX線画像Rを再構成(たとえば、シフト加算法など)することにより再構成画像が取得される。 The reconstructed image generator 8d is configured to generate a reconstructed image in which a plurality of X-ray images R are reconstructed into one image. Specifically, the X-ray imaging apparatus 1 reconstructs a plurality of X-ray images R acquired by irradiating the subject 20 with X-rays from a plurality of different angles (for example, a shift addition method). By doing so, a reconstructed image is obtained.
 制御部8eは、撮影装置制御部7がX線撮影を行うための信号を送信するように構成されている。 The control unit 8e is configured to transmit a signal for the imaging device control unit 7 to perform X-ray imaging.
 ファントム30は、図3に示すように、複数の吸収係数が異なる特徴部分A、B、Cを有している。ここで、特徴部分B、Cは、特徴部分Aの内部に配置されている。特徴部分Aの吸収係数A1は、特徴部分B、Cよりも吸収係数が小さい値(たとえば、100)を有する樹脂などで構成されている。特徴部分Bの吸収係数B1は、特徴部分Aよりも吸収係数が大きく、かつ、特徴部分Cよりも吸収係数が小さい値(たとえば、800)を有する重金属(金、鉛、タングステン、鉄、銅など)で構成されている。特徴部分Cの吸収係数C1は、特徴部分Bよりも吸収係数が大きい値(たとえば、1000)を有する重金属(たとえば、金、鉛、タングステン、鉄、銅)などで構成されている。また、特徴部分Aは、特徴部分B、Cよりも大きいサイズ(たとえば、50[cm])を有している。特徴部分Bおよび特徴部分Cは、同じサイズ(たとえば、4[cm])を有している。 As shown in FIG. 3, the phantom 30 has a plurality of characteristic portions A, B, and C having different absorption coefficients. Here, the characteristic portions B and C are arranged inside the characteristic portion A. The absorption coefficient A1 of the characteristic portion A is made of a resin or the like having a value (for example, 100) having a smaller absorption coefficient than the characteristic portions B and C. The absorption coefficient B1 of the characteristic portion B is a heavy metal (gold, lead, tungsten, iron, copper, or the like) having a larger absorption coefficient than the characteristic portion A and a smaller absorption coefficient (eg, 800) than the characteristic portion C. ). The absorption coefficient C1 of the characteristic portion C is made of a heavy metal (for example, gold, lead, tungsten, iron, or copper) having a larger absorption coefficient (for example, 1000) than the characteristic portion B. The characteristic portion A has a larger size (for example, 50 [cm 3 ]) than the characteristic portions B and C. The characteristic portion B and the characteristic portion C have the same size (for example, 4 [cm 3 ]).
 このように、特徴部分A、B、Cは、X線を吸収する吸収係数A1、B1、C1が異なるX線吸収体で構成されている。これにより、ファントム30を撮影した際に、特徴部分A、B、Cにより吸収されるX線の線量が異なるので、X線画像Rにおいて特徴部分A、B、Cを検出することが可能となる。ファントム30において、上記した特徴部分A、B、Cの各々の吸収係数A1、B1、C1の値、および、サイズは、ファントム構造データ12aとして画像閲覧装置9に記憶されている。 特 徴 Thus, the characteristic portions A, B, and C are composed of X-ray absorbers having different absorption coefficients A1, B1, and C1 for absorbing X-rays. Thereby, when the phantom 30 is imaged, the doses of the X-rays absorbed by the characteristic portions A, B, and C are different, so that the characteristic portions A, B, and C can be detected in the X-ray image R. . In the phantom 30, the values of the absorption coefficients A1, B1, and C1 and the sizes of the characteristic portions A, B, and C described above are stored in the image viewing device 9 as phantom structure data 12a.
(画像閲覧装置)
 また、図1および図2に示すように、X線画像撮影装置1は、X線撮影室とは別室に設けられ、X線画像Rおよび再構成画像を閲覧するための画像閲覧装置9を備えている。画像閲覧装置9は、X線画像Rを生成し再構成画像を構成する点で、上記した医用X線画像処理装置8と同様の機能を有している。画像閲覧装置9は、複数のX線画像R中に写る特徴部分A、B、Cの画素値情報を取得するように構成されている。また、画像閲覧装置9は、複数のX線画像Rを1つの画像に再構成した再構成画像を生成するように構成されている。画像閲覧装置9は、たとえば、CPU、GPU、または、画像処理用に構成されたFPGAなどのプロセッサを含む。画像閲覧装置9は、画像取得部9aと、位置情報取得部9bと、再構成画像生成部9cと、ファントム情報記憶部9dと、X線画像処理部9eと、表示部9fとを備える。画像取得部9a、位置情報取得部9bおよび再構成画像生成部9cは、各々、画像閲覧装置9のFPGA等のプロセッサにおける処理モジュール(処理プロセッサ)として構成されている。なお、画像閲覧装置9は、特許請求の範囲の「医用X線画像処理装置」の一例である。
(Image viewing device)
As shown in FIGS. 1 and 2, the X-ray imaging apparatus 1 is provided in a separate room from the X-ray imaging room, and includes an image browsing apparatus 9 for browsing the X-ray image R and the reconstructed image. ing. The image browsing device 9 has the same function as the above-described medical X-ray image processing device 8 in that an X-ray image R is generated and a reconstructed image is formed. The image browsing device 9 is configured to acquire pixel value information of characteristic portions A, B, and C appearing in a plurality of X-ray images R. Further, the image browsing device 9 is configured to generate a reconstructed image obtained by reconstructing a plurality of X-ray images R into one image. The image browsing device 9 includes, for example, a processor such as a CPU, a GPU, or an FPGA configured for image processing. The image browsing device 9 includes an image acquisition unit 9a, a position information acquisition unit 9b, a reconstructed image generation unit 9c, a phantom information storage unit 9d, an X-ray image processing unit 9e, and a display unit 9f. The image acquisition unit 9a, the position information acquisition unit 9b, and the reconstructed image generation unit 9c are each configured as a processing module (processing processor) in a processor such as an FPGA of the image browsing device 9. The image browsing device 9 is an example of the “medical X-ray image processing device” in the claims.
 画像閲覧装置9は、医用X線画像処理装置8と通信可能に接続されている。これにより、画像閲覧装置9では、医用X線画像処理装置8において生成されたX線画像Rが取得される。 The image browsing device 9 is communicably connected to the medical X-ray image processing device 8. Thereby, the image browsing device 9 acquires the X-ray image R generated by the medical X-ray image processing device 8.
 そして、本実施形態の画像閲覧装置9は、X線画像R中の被写体20の画素値情報を、所望の画素値情報に画素値補正テーブルにより変換するように構成されている。なお、画像閲覧装置9において、画像取得部9a、位置情報取得部9bおよび再構成画像生成部9cは上記した医用X線画像処理装置8の構成と同様であるので、医用X線画像処理装置8とは異なる構成について、以下に詳細に説明する。 The image browsing device 9 of the present embodiment is configured to convert the pixel value information of the subject 20 in the X-ray image R into desired pixel value information using a pixel value correction table. In the image browsing device 9, the image acquisition unit 9a, the position information acquisition unit 9b, and the reconstructed image generation unit 9c have the same configuration as that of the medical X-ray image processing device 8 described above. The configuration different from that described above will be described in detail below.
 具体的には、画像閲覧装置9は、ファントム情報記憶部9dと、X線画像処理部9eと、表示部9fとを含んでいる。 Specifically, the image browsing device 9 includes a phantom information storage unit 9d, an X-ray image processing unit 9e, and a display unit 9f.
〈ファントム情報記憶部〉
 ファントム情報記憶部9dは、CPU11などのプロセッサと、HDD(Hard Disc Drive)およびメモリなどの記憶部12とを主として含んでいる。ファントム情報記憶部9dでは、記憶部12にファントム構造データ12aが記憶されている。すなわち、ファントム情報記憶部9dは、ファントム30の複数の特徴部分A、B、Cのそれぞれに対応する複数の吸収係数A1、B1、C1を記憶部12に記憶している。ここで、複数の吸収係数A1、B1、C1は、ユーザーが入力することにより、ファントム情報記憶部9dの記憶部12に記憶される。また、ファントム情報記憶部9dは、ファントム30の複数の特徴部分A、B、Cのそれぞれに対応する複数のサイズを記憶部12に記憶している。ここで、複数のサイズは、ユーザーが入力することにより、ファントム情報記憶部9dの記憶部12に記憶される。なお、吸収係数A1、B1、C1は、設定値としてあらかじめ記憶されていてもよい。また、複数の特徴部分A、B、Cのそれぞれに対応する複数のサイズは、設定値としてあらかじめ記憶されていてもよい。
<Phantom information storage unit>
The phantom information storage unit 9d mainly includes a processor such as the CPU 11, and a storage unit 12 such as an HDD (Hard Disc Drive) and a memory. In the phantom information storage unit 9d, the phantom structure data 12a is stored in the storage unit 12. That is, the phantom information storage unit 9d stores the plurality of absorption coefficients A1, B1, and C1 corresponding to the plurality of characteristic parts A, B, and C of the phantom 30 in the storage unit 12, respectively. Here, the plurality of absorption coefficients A1, B1, and C1 are stored in the storage unit 12 of the phantom information storage unit 9d when the user inputs. The phantom information storage unit 9d stores a plurality of sizes corresponding to the plurality of characteristic portions A, B, and C of the phantom 30 in the storage unit 12, respectively. Here, the plurality of sizes are stored in the storage unit 12 of the phantom information storage unit 9d when the user inputs. Note that the absorption coefficients A1, B1, and C1 may be stored in advance as set values. A plurality of sizes corresponding to each of the plurality of characteristic portions A, B, and C may be stored in advance as setting values.
〈X線画像処理部〉
 X線画像処理部9eは、CPU13などのプロセッサと、HDD(Hard Disc Drive)およびメモリなどの記憶部14とを主として含んでいる。X線画像処理部9eの記憶部14には、目標画素値関数データ14aと、X線画像処理データ14bとが記憶されている。
<X-ray image processing unit>
The X-ray image processing unit 9e mainly includes a processor such as a CPU 13, and a storage unit 14 such as a HDD (Hard Disc Drive) and a memory. The storage unit 14 of the X-ray image processing unit 9e stores target pixel value function data 14a and X-ray image processing data 14b.
〈目標画素値関数データ〉
 目標画素値関数データ14aは、図4(A)および図4(B)に示すように、ファントム30の複数の特徴部分A、B、Cに設定された複数の吸収係数A1、B1、C1と、複数の吸収係数A1、B1、C1のそれぞれに対応させて設定された複数の目標画素値Ta、Tb、Tcとの関係を示した関数(目標画素値関数)である。目標画素値関数は、特徴部分Aの吸収係数A1の値とユーザーが設定した特徴部分Aの目標画素値Taとにより示される座標Ax1を通る。目標画素値関数は、特徴部分Bの吸収係数B1の値とユーザーが設定した特徴部分Bの目標画素値Tbとにより示される座標Ax2を通る。目標画素値関数は、特徴部分Cの吸収係数C1の値とユーザーが設定した特徴部分Cの目標画素値Tcとにより示される座標Ax3を通る。このように、目標画素値関数は、座標Ax1、Ax2、Ax3を通る関数であり、図4に示す例では座標Ax1、Ax2、Ax3を通る一次関数となっている。
<Target pixel value function data>
As shown in FIGS. 4A and 4B, the target pixel value function data 14a includes a plurality of absorption coefficients A1, B1, and C1 set for a plurality of characteristic portions A, B, and C of the phantom 30. , A function (target pixel value function) indicating a relationship with a plurality of target pixel values Ta, Tb, Tc set corresponding to each of the plurality of absorption coefficients A1, B1, C1. The target pixel value function passes through coordinates Ax1 indicated by the value of the absorption coefficient A1 of the characteristic portion A and the target pixel value Ta of the characteristic portion A set by the user. The target pixel value function passes through coordinates Ax2 indicated by the value of the absorption coefficient B1 of the characteristic portion B and the target pixel value Tb of the characteristic portion B set by the user. The target pixel value function passes through coordinates Ax3 indicated by the value of the absorption coefficient C1 of the characteristic portion C and the target pixel value Tc of the characteristic portion C set by the user. As described above, the target pixel value function is a function passing through the coordinates Ax1, Ax2, and Ax3, and is a linear function passing through the coordinates Ax1, Ax2, and Ax3 in the example shown in FIG.
〈X線画像処理データ〉
 X線画像処理部9eは、X線画像処理データ14bにより、図5に示す特徴部分A、B、Cを含むファントム30と被写体(たとえば、右手)20とを含むX線画像Rの画素値を、目標画素値関数上の目標画素値に補正する処理を行うように構成されている。ここで、X線画像処理部9eは、医用X線画像処理装置8において生成されたX線画像Rを画像取得部8aを介して取得する。
<X-ray image processing data>
The X-ray image processing unit 9e converts the pixel values of the X-ray image R including the phantom 30 including the characteristic portions A, B, and C and the subject (for example, the right hand) 20 illustrated in FIG. , Is configured to perform a process of correcting to a target pixel value on a target pixel value function. Here, the X-ray image processing unit 9e acquires the X-ray image R generated by the medical X-ray image processing device 8 via the image acquisition unit 8a.
 X線画像処理部9eは、X線画像処理データ14bにより、図6に示すように、X線画像R中の複数の特徴部分A、B、Cのそれぞれの複数の吸収係数A1、B1、C1と、X線画像R中の複数の特徴部分A、B、Cのそれぞれの複数の画素値X、Y、Zとを対応させるように構成されている。具体的には、X線画像処理部9eは、位置情報取得部8cにより、X線画像R中の複数の特徴部分A、B、Cのそれぞれの位置を特定した上で、X線画像R中の特定された箇所の画素値を取得するように構成されている。これにより、X線画像処理部9eは、X線画像R中の複数の特徴部分A、B、Cのそれぞれの複数の画素値X、Y、Zを取得する。ここで、複数の画素値X、Y、Zは、それぞれ、たとえば、90、120、130である。 The X-ray image processing unit 9e uses the X-ray image processing data 14b to generate the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C in the X-ray image R, as shown in FIG. And a plurality of pixel values X, Y, and Z of each of the plurality of characteristic portions A, B, and C in the X-ray image R. Specifically, the X-ray image processing unit 9e specifies each position of the plurality of characteristic portions A, B, and C in the X-ray image R by the position information It is configured to acquire the pixel value of the specified location. Accordingly, the X-ray image processing unit 9e acquires a plurality of pixel values X, Y, and Z of each of the plurality of characteristic portions A, B, and C in the X-ray image R. Here, the plurality of pixel values X, Y, and Z are, for example, 90, 120, and 130, respectively.
 また、図6(B)に示すように、X線画像処理部9eは、X線画像処理データ14bにより、複数の吸収係数A1、B1、C1と、複数の吸収係数A1、B1、C1のそれぞれに対応する複数の画素値X、Y、Zとに基づいて推定される推定画素値情報を取得するように構成されている。具体的には、X線画像処理部9eは、X線画像処理データ14bにより公知の推定処理を行うことによって、複数の吸収係数A1、B1、C1以外の他の吸収係数に対応する他の画素値を推定する。そして、複数の吸収係数A1、B1、C1および他の吸収係数と、複数の吸収係数A1、B1、C1および他の吸収係数のそれぞれに対応する複数の画素値X、Y、Zおよび他の画素値とを対応付けたテーブルが、推定画素値情報(推定画素値テーブル)である。すなわち、推定画素値情報は、吸収係数と吸収係数に対応する画素値とを示したルックアップテーブルである。 As shown in FIG. 6B, the X-ray image processing unit 9e uses the X-ray image processing data 14b to generate a plurality of absorption coefficients A1, B1, C1, and a plurality of absorption coefficients A1, B1, C1, respectively. Is configured to obtain estimated pixel value information estimated based on a plurality of pixel values X, Y, and Z corresponding to. Specifically, the X-ray image processing unit 9e performs a known estimation process based on the X-ray image processing data 14b, and thereby obtains another pixel corresponding to an absorption coefficient other than the plurality of absorption coefficients A1, B1, and C1. Estimate the value. Then, the plurality of absorption coefficients A1, B1, C1, and other absorption coefficients, and the plurality of pixel values X, Y, Z, and other pixels corresponding to the plurality of absorption coefficients A1, B1, C1, and other absorption coefficients, respectively. A table in which values are associated with each other is estimated pixel value information (estimated pixel value table). That is, the estimated pixel value information is a look-up table indicating an absorption coefficient and a pixel value corresponding to the absorption coefficient.
 ここで、吸収係数を横軸とし、画素値を縦軸としたグラフ上に表示した推定画素値情報は、図6(C)に示す曲線となるような、吸収係数および画素値の値であると仮定する。なお、推定画素値情報は、図6(C)に示すような曲線を示す吸収係数および画素値の値であるとは限らない。 Here, the estimated pixel value information displayed on the graph with the absorption coefficient on the horizontal axis and the pixel value on the vertical axis is the value of the absorption coefficient and the pixel value such that the curve shown in FIG. 6C is obtained. Suppose It should be noted that the estimated pixel value information is not necessarily the values of the absorption coefficient and the pixel value indicating a curve as shown in FIG.
 X線画像処理部9eは、図7および図8に示すように、複数の特徴部分A、B、Cに対応させた複数の画素値X、Y、Zのそれぞれを複数の目標画素値Ta、Tb、Tcに補正するように構成されている。具体的には、X線画像処理部9eは、X線画像Rを医用X線画像処理装置8から取得するごとに、複数の吸収係数A1、B1、C1に対応させた複数の画素値X、Y、Zが、それぞれ、複数の目標画素値Ta、Tb、Tcに補正される画素値補正テーブルを取得するように構成されている。 As shown in FIGS. 7 and 8, the X-ray image processing unit 9e converts a plurality of pixel values X, Y, and Z corresponding to a plurality of characteristic portions A, B, and C into a plurality of target pixel values Ta, It is configured to correct to Tb and Tc. Specifically, each time the X-ray image processing unit 9e acquires the X-ray image R from the medical X-ray image processing device 8, the X-ray image processing unit 9e sets a plurality of pixel values X corresponding to a plurality of absorption coefficients A1, B1, and C1, Each of Y and Z is configured to acquire a pixel value correction table that is corrected to a plurality of target pixel values Ta, Tb, and Tc.
 画素値補正テーブルは、図8(A)に示すように、推定画素値情報の複数の推定画素値と、推定画素値情報の複数の推定画素値に対応する目標画素値関数上の複数の目標画素値とを有している。たとえば、画素値補正テーブルは、特徴部分Aにおいて、推定画素値として90を有し、その推定画素値に対応する目標画素値として50を有している。たとえば、画素値補正テーブルは、特徴部分Bにおいて、推定画素値として120を有し、その推定画素値に対応する目標画素値として115を有している。たとえば、画素値補正テーブルは、特徴部分Cにおいて、推定画素値として130を有し、その推定画素値に対応する目標画素値として130を有している。 As shown in FIG. 8A, the pixel value correction table includes a plurality of estimated pixel values of the estimated pixel value information and a plurality of target pixel values on the target pixel value function corresponding to the plurality of estimated pixel values of the estimated pixel value information. Pixel value. For example, the pixel value correction table has 90 as the estimated pixel value in the characteristic portion A, and has 50 as the target pixel value corresponding to the estimated pixel value. For example, the pixel value correction table has 120 as an estimated pixel value in the characteristic portion B, and has 115 as a target pixel value corresponding to the estimated pixel value. For example, the pixel value correction table has 130 as the estimated pixel value in the characteristic portion C, and has 130 as the target pixel value corresponding to the estimated pixel value.
 また、X線画像処理部9eは、X線画像処理データ14bにより、推定画素値情報に含まれる複数の推定画素値と、目標画素値関数上の複数の目標画素値とを対応させるように構成されている。具体的には、X線画像処理部9eは、画素値補正テーブルにより、複数の吸収係数A1、B1、C1以外の他の画素値を、それぞれ、目標画素値に対応させるように構成されている。これにより、X線画像処理部9eは、画素値補正テーブルに基づいて、X線画像Rにおける被写体20に対応する推定画素値を目標画素値に補正することが可能となる。たとえば、画素値補正テーブルは、被写体20の部分Dにおいて、推定画素値として110を有し、その推定画素値に対応する目標画素値として80を有している。 Further, the X-ray image processing unit 9e is configured to associate the plurality of estimated pixel values included in the estimated pixel value information with the plurality of target pixel values on the target pixel value function by the X-ray image processing data 14b. Have been. Specifically, the X-ray image processing unit 9e is configured to cause the pixel values other than the plurality of absorption coefficients A1, B1, and C1 to correspond to the target pixel values, respectively, using the pixel value correction table. . Thereby, the X-ray image processing unit 9e can correct the estimated pixel value corresponding to the subject 20 in the X-ray image R to the target pixel value based on the pixel value correction table. For example, the pixel value correction table has 110 as the estimated pixel value in the portion D of the subject 20, and has 80 as the target pixel value corresponding to the estimated pixel value.
 このように、画素値補正テーブルは、複数の画素値M、X、Y、Zおよび他の推定画素値と、複数の画素値N、Ta、Tb、TCおよび他の目標画素値とを対応付けたテーブルである。すなわち、画素値補正テーブルは、推定画素値と推定画素値に対応する目標画素値とを示したルックアップテーブルである。これにより、X線画像処理部9eでは、X線画像処理データ14bにより、推定画素値情報に含まれる推定画素値を目標画素値関数上の目標画素値に補正することが可能である。 Thus, the pixel value correction table associates the plurality of pixel values M, X, Y, Z and other estimated pixel values with the plurality of pixel values N, Ta, Tb, TC and other target pixel values. It is a table. That is, the pixel value correction table is a lookup table indicating the estimated pixel values and the target pixel values corresponding to the estimated pixel values. Thus, the X-ray image processing unit 9e can correct the estimated pixel value included in the estimated pixel value information to the target pixel value on the target pixel value function by using the X-ray image processing data 14b.
 ここで、推定画素値を横軸とし、目標画素値を縦軸としたグラフ上に表示した画素値補正テーブルは、図8(B)に示す直線となるような、推定画素値および目標画素値の値であると仮定する。なお、画素値補正テーブルは、図8(B)に示すような直線を示す推定画素値および目標画素値の値であるとは限らない。 Here, the pixel value correction table displayed on a graph in which the estimated pixel value is set on the horizontal axis and the target pixel value is set on the vertical axis is such that the estimated pixel value and the target pixel value become a straight line shown in FIG. Is assumed. It should be noted that the pixel value correction table is not necessarily the value of the estimated pixel value and the target pixel value indicating a straight line as shown in FIG.
 また、X線画像処理部9eは、推定画素値が目標画素値に補正されたX線画像Rに対して、X線画像Rの画像化に伴う公知の画像処理(たとえば、階調補正など)を行った上で、X線画像Rのウィンドウレベルおよびウィンドウ幅を調整するように構成されている。このとき、X線画像処理部9eは、複数の吸収係数A1、B1、C1と、X線画像R中の画素値X、Y、Zとを対応させた対応情報に基づいて、画素値X、Y、Zを目標画素値Ta、Tb、Tcに補正した補正後のX線画像Rに対して行う画像処理の設定を変更するように構成されている。具体的には、X線画像処理部9eでは、補正したX線画像Rに対して、適切なコントラストに調整されるように階調補正の設定値などが対応情報に則して変更される。 Further, the X-ray image processing unit 9e performs a known image process (for example, gradation correction) on the X-ray image R whose estimated pixel value has been corrected to the target pixel value according to the conversion of the X-ray image R. After that, the window level and the window width of the X-ray image R are adjusted. At this time, the X-ray image processing unit 9e determines the pixel values X, Y, and Z in the X-ray image R based on correspondence information that associates the plurality of absorption coefficients A1, B1, and C1 with the pixel values X, Y, and Z in the X-ray image R. The configuration of the image processing performed on the corrected X-ray image R in which Y and Z are corrected to the target pixel values Ta, Tb, and Tc is changed. Specifically, in the X-ray image processing unit 9e, the set value of the gradation correction and the like are changed according to the correspondence information so that the corrected X-ray image R is adjusted to an appropriate contrast.
〈表示部〉
 表示部9fは、たとえば液晶モニタなどの画像表示装置からなり、X線画像処理部9eの画像出力に基づき画面表示を行うように構成されている。具体的には、表示部9fには、X線画像Rおよび再構成画像が表示される。また、表示部9fには、図7に示すような状態で、目標画素値関数と推定画素値情報との両方が表示される。すなわち、表示部9fでは、グラフ上に、目標画素値関数が実線として表示されるとともに、推定画素値情報が点線として表示される。また、表示部9fでは、グラフ上に、吸収係数A1、B1、C1、D1および目標画素値Ta、Tb、Tcが文字データとして表示される。表示部9fでは、グラフ上に、推定画素値情報に含まれる画素値X、Y、Zが文字データとして表示される。表示部9fでは、推定画素値情報に含まれる補正前の画素値M、および、補正後の画素値Nが文字データとして表示される。
<Display>
The display unit 9f includes an image display device such as a liquid crystal monitor, and is configured to display a screen based on the image output of the X-ray image processing unit 9e. Specifically, the display unit 9f displays the X-ray image R and the reconstructed image. Further, both the target pixel value function and the estimated pixel value information are displayed on the display unit 9f in a state as shown in FIG. That is, the display unit 9f displays the target pixel value function as a solid line and the estimated pixel value information as a dotted line on the graph. In the display unit 9f, the absorption coefficients A1, B1, C1, and D1 and the target pixel values Ta, Tb, and Tc are displayed as character data on a graph. On the display unit 9f, the pixel values X, Y, and Z included in the estimated pixel value information are displayed as character data on the graph. The display unit 9f displays the pixel value M before correction and the pixel value N after correction included in the estimated pixel value information as character data.
 なお、表示部9fでは、目標画素値関数および推定画素値情報などが、グラフ上に表示されているが、目標画素値関数および推定画素値情報を画面上に直線と曲線だけで表示する態様であってもよい。また、表示部9fでは、目標画素値関数を直線で表示するとともに推定画素値情報を曲線で表示しているが、目標画素値関数を直線で表示するとともに推定画素値情報をヒストグラムで表示してもよい。 In the display unit 9f, the target pixel value function and the estimated pixel value information are displayed on a graph, but the target pixel value function and the estimated pixel value information are displayed on the screen using only straight lines and curves. There may be. The display unit 9f displays the target pixel value function as a straight line and the estimated pixel value information as a curve, but displays the target pixel value function as a straight line and displays the estimated pixel value information as a histogram. Is also good.
(再構成画像の生成)
 画像閲覧装置9は、医用X線画像処理装置8とは異なり、画素値補正テーブルにより補正された複数のX線画像Rに基づいて、再構成画像を取得するように構成されている。ここで、画像閲覧装置9では、再構成画像生成部9cにより複数のX線画像Rを1つの画像に再構成した再構成画像を生成するために、複数のX線画像Rが必要となる。この場合、X線画像処理部9eは、複数のX線画像Rの各々の画素値が目標画素値に則した画素値になるように、複数のX線画像Rの各々に最適な画素値補正テーブルを適用するように構成されている。具体的には、X線画像処理部9eは、ファントム30および被写体20に対して複数の異なる角度からX線を照射することにより複数のX線画像Rの各々が取得されるごとに、複数のX線画像Rの各々に対応する画素値補正テーブルを取得するように構成されている。そして、X線画像処理部9eは、複数のX線画像Rの各々に対応する画素値補正テーブルに基づいて、複数のX線画像Rの各々を補正するように構成されている。
(Generation of reconstructed image)
Unlike the medical X-ray image processing device 8, the image browsing device 9 is configured to acquire a reconstructed image based on a plurality of X-ray images R corrected by the pixel value correction table. Here, in the image browsing device 9, a plurality of X-ray images R are required in order to generate a reconstructed image in which the reconstructed image generating unit 9c reconstructs the plurality of X-ray images R into one image. In this case, the X-ray image processing unit 9e performs an optimal pixel value correction for each of the plurality of X-ray images R so that each pixel value of the plurality of X-ray images R becomes a pixel value according to the target pixel value. Configured to apply a table. Specifically, the X-ray image processing unit 9e irradiates the phantom 30 and the subject 20 with X-rays from a plurality of different angles, thereby obtaining a plurality of X-ray images R each time. It is configured to acquire a pixel value correction table corresponding to each of the X-ray images R. Then, the X-ray image processing unit 9e is configured to correct each of the plurality of X-ray images R based on the pixel value correction table corresponding to each of the plurality of X-ray images R.
 すなわち、X線画像処理部9eでは、複数のX線画像Rごとに、複数の特徴部分A、B、Cの複数の吸収係数A1、B1、C1に、目標画素値Ta、Tb、Tcを対応させて目標画素値関数が取得される。X線画像処理部9eでは、複数のX線画像Rごとに、複数の特徴部分A、B、Cの複数の吸収係数A1、B1、C1に、X線画像R中の画素値X、Y、Zを対応させて推定画素値情報が取得される。X線画像処理部9eでは、複数のX線画像Rごとに、推定画素値情報に含まれる推定画素値を目標画素値関数上の目標画素値に補正する画素値補正テーブルが取得される。X線画像処理部9eでは、複数のX線画像Rごとに、推定画素値情報に含まれる全ての推定画素値を画素値補正テーブルにより補正することによって、一定の目標画素値(基準)に則したX線画像Rが取得される。 That is, in the X-ray image processing unit 9e, the target pixel values Ta, Tb, and Tc correspond to the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C for each of the plurality of X-ray images R. Thus, a target pixel value function is obtained. In the X-ray image processing unit 9e, for each of the plurality of X-ray images R, the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C are added to the pixel values X, Y, Estimated pixel value information is acquired in association with Z. The X-ray image processing unit 9e acquires a pixel value correction table for correcting the estimated pixel value included in the estimated pixel value information to a target pixel value on a target pixel value function for each of the plurality of X-ray images R. The X-ray image processing unit 9e corrects all the estimated pixel values included in the estimated pixel value information by using the pixel value correction table for each of the plurality of X-ray images R, so that the X-ray image processing unit 9e complies with a certain target pixel value (reference). The obtained X-ray image R is obtained.
 これにより、一定の目標画素値に則した複数のX線画像Rを再構成することにより再構成画像を取得することが可能となるので、再構成画像中に複数のX線画像R同士における画素値の変化に起因するアーチファクトの発生を抑制することが可能である。 This makes it possible to obtain a reconstructed image by reconstructing a plurality of X-ray images R in accordance with a fixed target pixel value. It is possible to suppress the occurrence of an artifact due to a change in the value.
(X線画像処理フローのフローチャート)
 次に、図9を参照して、本実施形態のX線画像処理部9eによるX線画像処理フローのフローチャートについて説明する。なお、フローチャートでは、X線画像RをX線画像処理部9eが取得するまでの処理フローに関しても記載している。したがって、フローチャートの各処理は、医用X線画像処理装置8のX線画像生成部8bおよび画像閲覧装置9におけるX線画像処理部9eにおいて行われる。
(Flowchart of X-ray image processing flow)
Next, a flowchart of an X-ray image processing flow by the X-ray image processing unit 9e of the present embodiment will be described with reference to FIG. Note that the flowchart also describes a processing flow until the X-ray image processing unit 9e acquires the X-ray image R. Therefore, each process of the flowchart is performed by the X-ray image generation unit 8b of the medical X-ray image processing device 8 and the X-ray image processing unit 9e of the image browsing device 9.
 ステップS1~ステップS5は、医用X線画像処理装置8において行われる処理である。 Steps S1 to S5 are processes performed in the medical X-ray image processing apparatus 8.
 ステップS1において、X線画像生成部8bで、画像取得部8aを介して、X線検出によりファントム30と被写体20のX線原画像が取得される。ステップS2において、X線画像生成部8bでは、X線原画像に対してlog変換が行われる。ステップS3において、X線画像生成部8bでは、X線画像生成部8bにおける画像処理により、X線画像Rが取得される。X線画像生成部8bでは、画像処理として、たとえばゲイン補正、オフセット補正および階調補正などが行なわれる。ステップS4において、X線画像処理部9eでは、X線画像Rのウィンドウレベルとウィンドウ幅とが設定される。ステップS5において、X線画像生成部8bでは、X線画像生成部8bにより生成されたX線画像Rが画像閲覧装置9に出力される。 In step S1, the X-ray image generation unit 8b obtains an original X-ray image of the phantom 30 and the subject 20 by X-ray detection via the image obtaining unit 8a. In step S2, the X-ray image generation unit 8b performs log conversion on the X-ray original image. In step S3, the X-ray image generation unit 8b acquires an X-ray image R by image processing in the X-ray image generation unit 8b. The X-ray image generation unit 8b performs, for example, gain correction, offset correction, and gradation correction as image processing. In step S4, the X-ray image processing unit 9e sets the window level and the window width of the X-ray image R. In step S5, the X-ray image generation unit 8b outputs the X-ray image R generated by the X-ray image generation unit 8b to the image viewing device 9.
 ステップS6~ステップS18は、画像閲覧装置9において行われる処理である。 Steps S6 to S18 are processes performed in the image browsing device 9.
 ステップS6において、X線画像処理部9eでは、取得したX線画像Rからファントム30の複数の特徴部分A、B、Cの画素値が取得される。ステップS7において、X線画像処理部9eでは、ファントム情報記憶部9dからファントム30の複数の特徴部分A、B、Cの吸収係数A1、B1、C1が取得される。ステップS8において、X線画像処理部9eでは、ファントム30の吸収係数に対応する目標画素値情報を取得される。すなわち、X線画像処理部9eでは、ファントム30の複数の特徴部分A、B、Cの吸収係数A1、B1、C1のそれぞれに、所望の目標画素値情報が設定される。ステップS9において、X線画像処理部9eでは、吸収係数A1、B1、C1および吸収係数A1、B1、C1に対応する目標画素値Ta、Tb、Tcに基づいて目標画素値関数が取得される。 In step S6, the X-ray image processing unit 9e acquires the pixel values of the plurality of characteristic portions A, B, and C of the phantom 30 from the acquired X-ray image R. In step S7, the X-ray image processing unit 9e acquires the absorption coefficients A1, B1, and C1 of the plurality of characteristic parts A, B, and C of the phantom 30 from the phantom information storage unit 9d. In step S8, the X-ray image processing unit 9e acquires target pixel value information corresponding to the absorption coefficient of the phantom 30. That is, in the X-ray image processing unit 9e, desired target pixel value information is set for each of the absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C of the phantom 30. In step S9, the X-ray image processing unit 9e acquires a target pixel value function based on the absorption coefficients A1, B1, C1, and the target pixel values Ta, Tb, Tc corresponding to the absorption coefficients A1, B1, C1.
 ステップS10において、X線画像処理部9eでは、ファントム30の吸収係数A1、B1、C1とX線画像R中の画素値X、Y、Zとを対応させた対応情報が取得される。なお、対応情報は、ファントム30の特徴部分A、B、Cのそれぞれの吸収係数A1、B1、C1とX線画像R中のファントム30の特徴部分A、B、Cのそれぞれの画素値X、Y、Zとが対応したデータである。ステップS11において、X線画像処理部9eでは、吸収係数A1、B1、C1と吸収係数A1、B1、C1に対応するX線画像R中の画素値X、Y、ZとからX線画像R中全ての画素値を推定した推定画素値情報が取得される。つまり、推定画素値情報は、公知の推定処理を行うことにより、吸収係数A1、B1、C1に対応するX線画像R中の画素値X、Y、Zから推定される画素値である。ステップS12において、X線画像処理部9eでは、X線画像処理部9eにより、推定画素値情報に含まれる画素値を目標画素値関数上の画素値に補正する画素値補正テーブルが取得される。 In step S10, the X-ray image processing unit 9e acquires correspondence information in which the absorption coefficients A1, B1, and C1 of the phantom 30 correspond to the pixel values X, Y, and Z in the X-ray image R. The correspondence information includes the absorption coefficients A1, B1, and C1 of the characteristic portions A, B, and C of the phantom 30, and the pixel values X, of the characteristic portions A, B, and C of the phantom 30 in the X-ray image R, respectively. Y and Z are the corresponding data. In step S11, the X-ray image processing unit 9e determines in the X-ray image R from the absorption coefficients A1, B1, and C1 and the pixel values X, Y, and Z in the X-ray image R corresponding to the absorption coefficients A1, B1, and C1. Estimated pixel value information obtained by estimating all pixel values is obtained. That is, the estimated pixel value information is a pixel value estimated from the pixel values X, Y, and Z in the X-ray image R corresponding to the absorption coefficients A1, B1, and C1 by performing a known estimation process. In step S12, in the X-ray image processing unit 9e, the X-ray image processing unit 9e acquires a pixel value correction table for correcting a pixel value included in the estimated pixel value information into a pixel value on a target pixel value function.
 ステップS13において、X線画像処理部9eでは、推定画素値情報および目標画素値関数が表示部9fに表示される。これにより、ユーザーが、推定画素値情報と目標画素値関数とを比較することにより、画素値補正テーブルによるX線画像R中の画素値の補正の必要性を判断しやすくなる。ステップS14において、X線画像処理部9eでは、画素値補正テーブルにより被写体20の画素値が補正される。 に お い て In step S13, the X-ray image processing unit 9e displays the estimated pixel value information and the target pixel value function on the display unit 9f. This makes it easier for the user to determine the necessity of correcting the pixel values in the X-ray image R using the pixel value correction table by comparing the estimated pixel value information with the target pixel value function. In step S14, the X-ray image processing unit 9e corrects the pixel value of the subject 20 using the pixel value correction table.
 ステップS15において、X線画像処理部9eでは、上記した対応情報に基づいて、X線画像処理部9eにおける画像処理の設定が変更される。たとえば、X線画像処理部9eでは、補正したX線画像Rに対して、適切なコントラストに調整されるように階調補正の設定値などが対応情報に則して変更される。ステップS16において、X線画像処理部9eでは、X線画像処理部9eにおける画像処理により、X線画像Rを補正する。ステップS17において、X線画像処理部9eでは、X線画像Rのウィンドウレベルとウィンドウ幅とが設定されて、X線画像処理フローが終了する。 In step S15, the X-ray image processing unit 9e changes the setting of the image processing in the X-ray image processing unit 9e based on the correspondence information described above. For example, in the X-ray image processing unit 9e, the set value of the gradation correction is changed according to the corresponding information so that the contrast is adjusted appropriately for the corrected X-ray image R. In step S16, the X-ray image processing unit 9e corrects the X-ray image R by image processing in the X-ray image processing unit 9e. In step S17, the X-ray image processing unit 9e sets the window level and the window width of the X-ray image R, and the X-ray image processing flow ends.
 (本実施形態の効果)
 本発明の本実施形態では、以下のような効果を得ることができる。
(Effect of this embodiment)
In the embodiment of the present invention, the following effects can be obtained.
 本実施形態では、上記のように、X線画像処理部9eが、ファントム情報記憶部9dに記憶されたX線画像R中の複数の特徴部分A、B、Cのそれぞれの複数の吸収係数A1、B1、C1と、ファントム30とともに被写体20が撮影されたX線画像R中の複数の特徴部分A、B、Cのそれぞれの複数の画素値X、Y、Zとを対応させるように構成されている。これにより、X線画像R内の複数の特徴部分A、B、Cのそれぞれの吸収係数A1、B1、C1と複数の画素値X、Y、Zとが対応するので、X線の線量が変化したり、X線源4の位置が変化したりしても、たとえばX線画像R内の画素値の補正を行う際の、X線画像R内の基準が変更されないようにすることができる。この結果、複数の画像間での基準が異なることに起因して、たとえば複数画像を再構成する場合などに、精度の高い再構成画像を取得することができる。 In the present embodiment, as described above, the X-ray image processing unit 9e generates the plurality of absorption coefficients A1 of the plurality of characteristic portions A, B, and C in the X-ray image R stored in the phantom information storage unit 9d. , B1, C1 and a plurality of pixel values X, Y, Z of a plurality of characteristic portions A, B, C in an X-ray image R in which the subject 20 is photographed together with the phantom 30. ing. As a result, since the respective absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C in the X-ray image R correspond to the plurality of pixel values X, Y, and Z, the X-ray dose changes. For example, even when the position of the X-ray source 4 is changed, the reference in the X-ray image R when correcting the pixel value in the X-ray image R can be prevented from being changed. As a result, a high-precision reconstructed image can be obtained, for example, when reconstructing a plurality of images due to a difference in reference between the plurality of images.
 また、本実施形態では、上記のように、X線画像処理部9eは、複数の吸収係数に対応させた複数の画素値を、それぞれ、複数の目標画素値に補正するように構成されている。これにより、ファントム30の複数の特徴部分A、B、Cのそれぞれに対して設定された複数の目標画素値Ta、Tb、Tc同士の互いの関係を利用して、X線画像R内の画素値を目標画素値に補正する際に、複数の吸収係数A1、B1、C1に対応させた複数の目標画素値Ta、Tb、Tcだけでなく、X線画像R内の画素値の目標画素値を設定することができる。 Further, in the present embodiment, as described above, the X-ray image processing unit 9e is configured to correct a plurality of pixel values corresponding to a plurality of absorption coefficients to a plurality of target pixel values, respectively. . As a result, the pixel in the X-ray image R is utilized by utilizing the mutual relationship between the plurality of target pixel values Ta, Tb, and Tc set for each of the plurality of characteristic portions A, B, and C of the phantom 30. When correcting the values to the target pixel values, not only the target pixel values Ta, Tb, and Tc corresponding to the plurality of absorption coefficients A1, B1, and C1, but also the target pixel values of the pixel values in the X-ray image R Can be set.
 また、本実施形態では、上記のように、X線画像処理部9eは、ファントム30の複数の特徴部分A、B、Cに対応した複数の吸収係数A1、B1、C1と、複数の特徴部分A、B、Cに対応した複数の目標画素値Ta、Tb、Tcとの関係により目標画素値関数が設定されるように構成されている。X線画像処理部9eは、設定された目標画素値関数に基づいて、X線画像R中の複数の特徴部分A、B、Cのそれぞれの複数の画素値X、Y、Zを目標画素値関数上の対応する目標画素値Ta、Tb、Tcに補正するように構成されている。これにより、複数の目標画素値Ta、Tb、Tcを複数の吸収係数A1、B1、C1に対応付けた目標画素値関数として扱うことができるので、複数の目標画素値Ta、Tb、Tcの情報を容易に取得することができる。 Further, in the present embodiment, as described above, the X-ray image processing unit 9e includes a plurality of absorption coefficients A1, B1, C1 corresponding to a plurality of characteristic portions A, B, C of the phantom 30, and a plurality of characteristic portions. The configuration is such that a target pixel value function is set based on a relationship with a plurality of target pixel values Ta, Tb, and Tc corresponding to A, B, and C. The X-ray image processing unit 9e converts the plurality of pixel values X, Y, and Z of each of the plurality of characteristic portions A, B, and C in the X-ray image R into the target pixel value based on the set target pixel value function. The target pixel values Ta, Tb, and Tc on the function are corrected. Thereby, a plurality of target pixel values Ta, Tb, and Tc can be handled as a target pixel value function associated with a plurality of absorption coefficients A1, B1, and C1, and thus information on the plurality of target pixel values Ta, Tb, and Tc is obtained. Can be easily obtained.
 また、本実施形態では、上記のように、X線画像処理部9eは、ファントム30とともに被写体20が撮影されたX線画像Rを取得するごとに、複数の吸収係数A1、B1、C1に対応させた複数の画素値X、Y、Zを、それぞれ、目標画素値関数上の複数の目標画素値Ta、Tb、Tcに補正する画素値補正テーブルを取得するように構成されている。これにより、X線画像Rを取得するごとに対応するX線画像Rの画素値補正テーブルを取得することにより、同じ基準の画素値の補正が行なわれた複数のX線画像Rを取得することができるので、複数のX線画像Rを再構成する場合に、精度の高い再構成画像を容易に得ることができる。 In the present embodiment, as described above, the X-ray image processing unit 9e corresponds to the plurality of absorption coefficients A1, B1, and C1 each time the X-ray image R in which the subject 20 is captured together with the phantom 30 is acquired. It is configured to acquire a pixel value correction table for correcting the plurality of pixel values X, Y, and Z into a plurality of target pixel values Ta, Tb, and Tc on the target pixel value function, respectively. Accordingly, by acquiring the pixel value correction table of the corresponding X-ray image R every time the X-ray image R is acquired, it is possible to acquire a plurality of X-ray images R in which the same reference pixel value is corrected. Therefore, when reconstructing a plurality of X-ray images R, a highly accurate reconstructed image can be easily obtained.
 また、本実施形態では、上記のように、X線画像処理部9eは、複数回のX線撮影によりX線画像Rを複数取得する場合において、複数のX線画像Rの各々が得られるごとに、画素値補正テーブルを取得するように構成されている。X線画像処理部9eは、複数のX線画像Rの各々に対応する画素値補正テーブルに基づいて、複数のX線画像Rの各々を補正するように構成されている。これにより、複数のX線画像Rの各々が得られるごとに取得される画素値補正テーブルにより複数のX線画像Rの各々が補正されたとしても、画素値補正テーブルが、ファントム30の複数の特徴部分A、B、Cのそれぞれの複数の吸収係数A1、B1、C1に対応付けられた画素値により取得されているので、同じ基準の補正が行なわれた複数のX線画像Rを取得することができる。この結果、たとえば、複数のX線画像Rを再構成して再構成画像を取得する場合であっても、再構成画像にアーチファクト(虚像)が生じることを抑制することができる。 Further, in the present embodiment, as described above, when acquiring a plurality of X-ray images R by performing a plurality of X-ray imagings, the X-ray image processing unit 9e performs each time the plurality of X-ray images R are obtained. First, a pixel value correction table is obtained. The X-ray image processing unit 9e is configured to correct each of the plurality of X-ray images R based on a pixel value correction table corresponding to each of the plurality of X-ray images R. Thereby, even if each of the plurality of X-ray images R is corrected by the pixel value correction table obtained each time each of the plurality of X-ray images R is obtained, the pixel value correction table is stored in the plurality of phantoms 30. Since the X-ray images are acquired by the pixel values associated with the plurality of absorption coefficients A1, B1, and C1 of the characteristic portions A, B, and C, a plurality of X-ray images R having the same reference correction are acquired. be able to. As a result, for example, even when a plurality of X-ray images R are reconstructed to acquire a reconstructed image, it is possible to suppress the occurrence of artifacts (virtual images) in the reconstructed image.
 また、本実施形態では、上記のように、X線画像処理部9eは、X線画像R中におけるファントム30の複数の特徴部分A、B、Cのそれぞれの複数の吸収係数A1、B1、C1と、複数の吸収係数A1、B1、C1のそれぞれに対応する複数の画素値X、Y、Zとに基づいて推定されるX線画像Rの推定画素値情報とに基づいて、画素値補正テーブルを取得するように構成されている。このように構成すれば、推定画素値情報により、正確な画素値補正テーブルを取得することができるので、画素値補正テーブルによるX線画像R中の画素値を精度よく補正することができる。 Further, in the present embodiment, as described above, the X-ray image processing unit 9e includes the plurality of absorption coefficients A1, B1, and C1 of the plurality of characteristic portions A, B, and C of the phantom 30 in the X-ray image R. A pixel value correction table based on the estimated pixel value information of the X-ray image R estimated based on the plurality of pixel values X, Y, and Z corresponding to the plurality of absorption coefficients A1, B1, and C1, respectively. Is configured to obtain According to this configuration, an accurate pixel value correction table can be obtained based on the estimated pixel value information, so that the pixel values in the X-ray image R based on the pixel value correction table can be accurately corrected.
 また、本実施形態では、上記のように、画像閲覧装置9は、表示部9fを備えている。そして、X線画像処理部9eは、目標画素値関数と推定画素値情報との両方を表示部9fに表示させるように構成されている。これにより、目標画素値関数と推定画素値情報との違いを容易にユーザーが視覚的に認識することができる。 In the present embodiment, as described above, the image browsing device 9 includes the display unit 9f. The X-ray image processor 9e is configured to display both the target pixel value function and the estimated pixel value information on the display 9f. This allows the user to easily visually recognize the difference between the target pixel value function and the estimated pixel value information.
 また、本実施形態では、上記のように、X線画像処理部9eは、対応情報に基づいて、複数の画素値X、Y、Zを複数の目標画素値Ta、Tb、Tcに補正したX線画像Rに対して行う画像処理の設定を変更するように構成されている。これにより、補正後のX線画像Rに対して行われる画像処理を適切に行うことができる。 In the present embodiment, as described above, the X-ray image processing unit 9e corrects the plurality of pixel values X, Y, and Z into the plurality of target pixel values Ta, Tb, and Tc based on the correspondence information. The configuration of the image processing performed on the line image R is changed. Accordingly, image processing performed on the corrected X-ray image R can be appropriately performed.
(変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
(Modification)
It should be noted that the embodiments disclosed this time are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description of the embodiments, and includes all modifications (modifications) within the meaning and scope equivalent to the terms of the claims.
 たとえば、上記本実施形態では、目標画素値関数は、座標Ax1、Ax2、Ax3を通る一次関数である例を示したが、本発明はこれに限られない。本発明では、目標画素値関数は、二次関数、三次関数などであってもよい。 For example, in the present embodiment, an example has been described in which the target pixel value function is a linear function passing through the coordinates Ax1, Ax2, and Ax3, but the present invention is not limited to this. In the present invention, the target pixel value function may be a quadratic function, a cubic function, or the like.
 また、上記本実施形態では、被写体20は、右手である例を示したが、本発明はこれに限られない。本発明では、被写体は、左手、脚部、胸部、腹部などであってもよい。 Also, in the above-described embodiment, the example in which the subject 20 is the right hand has been described, but the present invention is not limited to this. In the present invention, the subject may be a left hand, a leg, a chest, an abdomen, or the like.
 また、上記本実施形態では、X線画像処理部9eは、複数の吸収係数A1、B1、C1と、X線画像R中の画素値X、Y、Zとを対応させた対応情報に基づいて、画素値X、Y、Zを目標画素値Ta、Tb、Tcに補正したX線画像Rに対して行う画像処理の設定を変更するように構成されている例を示したが、本発明はこれに限られない。本発明では、医用X線画像処理装置における画素値補正テーブルにより補正する前のX線画像に対して行う画像処理の設定を変更してもよい。 Further, in the present embodiment, the X-ray image processing unit 9e determines the plurality of absorption coefficients A1, B1, and C1 based on the correspondence information that associates the pixel values X, Y, and Z in the X-ray image R with each other. , The example in which the setting of the image processing performed on the X-ray image R in which the pixel values X, Y, and Z are corrected to the target pixel values Ta, Tb, and Tc is changed. It is not limited to this. In the present invention, the setting of the image processing performed on the X-ray image before being corrected by the pixel value correction table in the medical X-ray image processing apparatus may be changed.
 また、上記本実施形態では、画像閲覧装置9がX線画像処理部9eを含む例を示したが、本発明はこれに限られない。本発明では、医用X線画像処理装置がX線画像処理部を備えていてもよい。 Although the image browsing device 9 includes the X-ray image processing unit 9e in the present embodiment, the present invention is not limited to this. In the present invention, the medical X-ray image processing device may include the X-ray image processing unit.
 また、上記本実施形態では、医用X線画像処理装置8および画像閲覧装置9が、それぞれ、X線画像Rに対する画像処理を行うように構成されている例を示したが、本発明はこれに限られない。本発明では、医用X線画像処理装置および画像閲覧装置の一方のみがX線画像の画像処理を行ってもよい。 In the present embodiment, the medical X-ray image processing device 8 and the image browsing device 9 are each configured to perform image processing on the X-ray image R, but the present invention is not limited to this. Not limited. In the present invention, only one of the medical X-ray image processing device and the image browsing device may perform the image processing on the X-ray image.
 また、上記本実施形態では、説明の便宜上、X線画像処理部9eの制御処理を、処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明した例について示したが、本発明はこれに限られない。本発明では、X線画像処理部9eの制御処理を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。 Further, in the present embodiment, for convenience of explanation, an example has been described in which the control processing of the X-ray image processing unit 9e is described using a flow-driven flowchart in which processing is sequentially performed along a processing flow. The invention is not limited to this. In the present invention, the control processing of the X-ray image processing unit 9e may be performed by event-driven (event-driven) processing that executes processing in event units. In this case, it may be performed in a completely event-driven manner, or may be performed in a combination of event-driven and flow-driven.
 1 X線画像撮影装置
 8 医用X線画像処理装置(画像処理部)
 9 画像閲覧装置
 9d ファントム情報記憶部
 9e X線画像処理部
 9f 表示部
 20 被写体
 30 ファントム
 A、B、C 特徴部分(複数の基準部)
 A1、B1、C1 吸収係数
 R X線画像
 Ta、Tb、Tc 目標画素値
 X、Y、Z 画素値
1 X-ray imaging apparatus 8 Medical X-ray image processing apparatus (image processing unit)
Reference Signs List 9 image browsing device 9d phantom information storage unit 9e X-ray image processing unit 9f display unit 20 subject 30 phantom A, B, C characteristic part (plural reference parts)
A1, B1, C1 Absorption coefficient R X-ray image Ta, Tb, Tc Target pixel value X, Y, Z pixel value

Claims (9)

  1.  X線の吸収係数が異なる複数の基準部を含むファントムの前記複数の基準部のそれぞれに対応する複数の吸収係数を記憶するファントム情報記憶部と、
     前記ファントム情報記憶部に記憶されたX線画像中の前記複数の基準部のそれぞれの前記複数の吸収係数と、前記ファントムとともに被写体が撮影された前記X線画像中の前記複数の基準部のそれぞれの複数の画素値とを対応させるX線画像処理部とを備える、医用X線画像処理装置。
    A phantom information storage unit that stores a plurality of absorption coefficients corresponding to each of the plurality of reference portions of the phantom including a plurality of reference portions having different X-ray absorption coefficients;
    The plurality of absorption coefficients of each of the plurality of reference portions in the X-ray image stored in the phantom information storage unit, and each of the plurality of reference portions in the X-ray image of an object photographed with the phantom A medical X-ray image processing apparatus comprising: an X-ray image processing unit that associates a plurality of pixel values with each other.
  2.  前記X線画像処理部は、前記複数の吸収係数に対応させた前記複数の画素値を、それぞれ、複数の目標画素値に補正するように構成されている、請求項1に記載の医用X線画像処理装置。 The medical X-ray according to claim 1, wherein the X-ray image processing unit is configured to correct each of the plurality of pixel values corresponding to the plurality of absorption coefficients to a plurality of target pixel values. Image processing device.
  3.  前記X線画像処理部は、前記ファントムの前記複数の基準部に対応した前記複数の吸収係数と、前記複数の吸収係数のそれぞれに対応した前記複数の目標画素値との関係により設定された目標画素値関数に基づいて、前記X線画像中の前記複数の基準部のそれぞれの前記複数の画素値を前記目標画素値関数上の対応する目標画素値に補正するように構成されている、請求項2に記載の医用X線画像処理装置。 The X-ray image processing unit includes a target set by a relationship between the plurality of absorption coefficients corresponding to the plurality of reference units of the phantom and the plurality of target pixel values corresponding to each of the plurality of absorption coefficients. The apparatus is configured to correct each of the plurality of pixel values of each of the plurality of reference portions in the X-ray image to a corresponding target pixel value on the target pixel value function based on a pixel value function. Item 3. The medical X-ray image processing apparatus according to item 2.
  4.  前記X線画像処理部は、前記ファントムとともに前記被写体が撮影された前記X線画像を取得するごとに、前記複数の吸収係数に対応させた前記複数の画素値を、それぞれ、前記目標画素値関数上の前記複数の目標画素値に補正する画素値補正テーブルを取得するように構成されている、請求項3に記載の医用X線画像処理装置。 Each time the X-ray image processing unit acquires the X-ray image in which the subject is photographed together with the phantom, the plurality of pixel values corresponding to the plurality of absorption coefficients are respectively referred to as the target pixel value function. 4. The medical X-ray image processing apparatus according to claim 3, wherein the apparatus is configured to acquire a pixel value correction table for correcting the plurality of target pixel values.
  5.  前記X線画像処理部は、複数回のX線撮影により前記X線画像を複数取得する場合において、前記複数のX線画像の各々が得られるごとに、前記画素値補正テーブルを取得し、前記複数のX線画像の各々に対応する前記画素値補正テーブルに基づいて、前記複数のX線画像の各々を補正するように構成されている、請求項4に記載の医用X線画像処理装置。 The X-ray image processing unit, when acquiring a plurality of the X-ray images by a plurality of X-ray imaging, each time each of the plurality of X-ray images is obtained, acquires the pixel value correction table, The medical X-ray image processing apparatus according to claim 4, wherein the medical X-ray image processing apparatus is configured to correct each of the plurality of X-ray images based on the pixel value correction table corresponding to each of the plurality of X-ray images.
  6.  前記X線画像処理部は、前記X線画像中における前記ファントムの前記複数の基準部のそれぞれの前記複数の吸収係数と、前記複数の吸収係数のそれぞれに対応する前記複数の画素値とに基づいて推定される前記X線画像の推定画素値情報とに基づいて、前記画素値補正テーブルを取得するように構成されている、請求項4または5に記載の医用X線画像処理装置。 The X-ray image processing unit is based on the plurality of absorption coefficients of each of the plurality of reference units of the phantom in the X-ray image, and the plurality of pixel values corresponding to each of the plurality of absorption coefficients. The medical X-ray image processing apparatus according to claim 4, wherein the pixel value correction table is acquired based on estimated pixel value information of the X-ray image estimated by the X-ray image.
  7.  表示部をさらに備え、
     前記X線画像処理部は、前記目標画素値関数と前記推定画素値情報との両方を前記表示部に表示させるように構成されている、請求項6に記載の医用X線画像処理装置。
    Further comprising a display unit,
    The medical X-ray image processing apparatus according to claim 6, wherein the X-ray image processing unit is configured to display both the target pixel value function and the estimated pixel value information on the display unit.
  8.  前記X線画像処理部は、前記ファントム情報記憶部に記憶された前記複数の基準部のそれぞれの前記複数の吸収係数と、前記X線画像中の前記複数の基準部のそれぞれの前記複数の画素値とを対応させた対応情報に基づいて、前記複数の画素値を前記複数の目標画素値に補正した前記X線画像に対して行う画像処理の設定を変更する、または、補正前の前記X線画像に対して行う画像処理の設定を変更するように構成されている、請求項2~7のいずれか1項に記載の医用X線画像処理装置。 The X-ray image processing unit, the plurality of absorption coefficients of each of the plurality of reference units stored in the phantom information storage unit, and the plurality of pixels of each of the plurality of reference units in the X-ray image The setting of image processing to be performed on the X-ray image in which the plurality of pixel values have been corrected to the plurality of target pixel values, based on the correspondence information in which the X values are corrected, or The medical X-ray image processing apparatus according to any one of claims 2 to 7, wherein a setting of image processing performed on the line image is changed.
  9.  X線源と、
     前記X線源から照射されたX線を検出する検出器と、
     前記検出器により検出されたX線の強度分布からX線画像を取得する画像処理部とを備え、
     前記画像処理部は、X線の吸収係数が異なる複数の基準部を含むファントムの前記複数の基準部のそれぞれに対応する複数の吸収係数を記憶するファントム情報記憶部と、前記ファントム情報記憶部に記憶された前記X線画像中の前記複数の基準部のそれぞれの前記複数の吸収係数と、前記ファントムとともに被写体が撮影された前記X線画像中の前記複数の基準部のそれぞれの複数の画素値とを対応させるX線画像処理部とを含む、X線画像撮影装置。
    An X-ray source,
    A detector for detecting X-rays emitted from the X-ray source;
    An image processing unit that acquires an X-ray image from the intensity distribution of the X-rays detected by the detector,
    The image processing unit includes: a phantom information storage unit that stores a plurality of absorption coefficients corresponding to each of the plurality of reference units of the phantom including a plurality of reference units having different X-ray absorption coefficients; and the phantom information storage unit. The plurality of absorption coefficients of each of the plurality of reference portions in the stored X-ray image, and the plurality of pixel values of each of the plurality of reference portions in the X-ray image of the subject captured with the phantom. An X-ray image capturing apparatus, comprising:
PCT/JP2018/025842 2018-07-09 2018-07-09 Medical x-ray image processing device and x-ray imaging device WO2020012520A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020529847A JP7115545B2 (en) 2018-07-09 2018-07-09 Medical X-ray image processing device and X-ray imaging device
PCT/JP2018/025842 WO2020012520A1 (en) 2018-07-09 2018-07-09 Medical x-ray image processing device and x-ray imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025842 WO2020012520A1 (en) 2018-07-09 2018-07-09 Medical x-ray image processing device and x-ray imaging device

Publications (1)

Publication Number Publication Date
WO2020012520A1 true WO2020012520A1 (en) 2020-01-16

Family

ID=69142564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025842 WO2020012520A1 (en) 2018-07-09 2018-07-09 Medical x-ray image processing device and x-ray imaging device

Country Status (2)

Country Link
JP (1) JP7115545B2 (en)
WO (1) WO2020012520A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200824A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Image forming apparatus
US20100266190A1 (en) * 2007-11-06 2010-10-21 Koninklijke Philips Electronics N.V. System for quantification of neovasculature in ct volumes
JP2015142719A (en) * 2013-12-25 2015-08-06 東芝メディカルシステムズ株式会社 Medical image processor, x-ray diagnostic apparatus, phantom and medical image processing program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266190A1 (en) * 2007-11-06 2010-10-21 Koninklijke Philips Electronics N.V. System for quantification of neovasculature in ct volumes
JP2010200824A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Image forming apparatus
JP2015142719A (en) * 2013-12-25 2015-08-06 東芝メディカルシステムズ株式会社 Medical image processor, x-ray diagnostic apparatus, phantom and medical image processing program

Also Published As

Publication number Publication date
JP7115545B2 (en) 2022-08-09
JPWO2020012520A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
US11419567B2 (en) Radiographic system and radiographic method for obtaining a long-size image and correcting a defective region in the long-size image
WO2010061810A1 (en) Radiation image pickup device
US9943282B2 (en) Image processing apparatus, image processing method, and image processing system
US9619893B2 (en) Body motion detection device and method
US9360571B2 (en) System and method for correction of vignetting effect in multi-camera flat panel x-ray detectors
EP1903499A2 (en) Radiological image capturing system and radiological image capturing method
JP4210464B2 (en) X-ray diagnostic imaging equipment
JP6879376B2 (en) Radiation imaging device
JP2011229012A (en) Image processing system, image processing method and program thereof
US8620049B2 (en) Interventional roadmap method with optimization of the mask phase
WO2020012520A1 (en) Medical x-ray image processing device and x-ray imaging device
US7949174B2 (en) System and method for calibrating an X-ray detector
WO2019092981A1 (en) Image processing device, image processing method, radiation imaging device, and method and program for controlling radiation imaging device
Yu et al. Heel effect adaptive flat field correction of digital x‐ray detectors
US10159457B2 (en) X-ray diagnostic apparatus
TWI500412B (en) A method for improving image quality and imaging system using the same
US20210233293A1 (en) Low-dose imaging method and apparatus
US20170181724A1 (en) X-ray detection device and apparatus and method for calibrating x-ray detector
JP5386284B2 (en) Radiation imaging device
JP2008237836A (en) Radiographic imaging device and method
JP7192921B2 (en) Radiation image processing device, scattered radiation correction method and program
US20240078723A1 (en) Medical image processing apparatus and medical image processing method
CN110755098B (en) Method for determining gain function of flat panel detector, image correction method and device
JP5334657B2 (en) Radiation image processing apparatus and method, and program
JP2017006595A (en) Image processing apparatus, tomographic image generation system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529847

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926088

Country of ref document: EP

Kind code of ref document: A1