WO2020011471A1 - Turbomachine radiale et procédé pour son fonctionnement - Google Patents
Turbomachine radiale et procédé pour son fonctionnement Download PDFInfo
- Publication number
- WO2020011471A1 WO2020011471A1 PCT/EP2019/065293 EP2019065293W WO2020011471A1 WO 2020011471 A1 WO2020011471 A1 WO 2020011471A1 EP 2019065293 W EP2019065293 W EP 2019065293W WO 2020011471 A1 WO2020011471 A1 WO 2020011471A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rtm
- radial
- cor
- contour
- contour ring
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/70—Suction grids; Strainers; Dust separation; Cleaning
- F04D29/701—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/70—Suction grids; Strainers; Dust separation; Cleaning
- F04D29/701—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
- F04D29/705—Adding liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/514—Porosity
Definitions
- the invention relates to a radial turbine machine, in particular a compressor, comprising a standing contour ring with a flow contour, and comprising a radial turbine machine impeller that can be rotated about an axis of rotation, the contour ring being arranged opposite the radial turbine machine impeller in such a way that flow channels open to a wheel disc of the radial turboma machine impeller by means of a flow mation contour of the standing contour ring are limited with the interposition of a running game.
- W02015043879-Al W02016001179-A1, W02016046037-Al,
- W02016062549-Al W02016091495-A1, EP3045686-A1, EP3061991-A1, EP3106670-Al, EP3112693-A1, W02018007029-A1 are known.
- axial, radial, tangential or circumferential direction are always related to an axis or axis of rotation of a rotor of the radial turbomachine.
- the axis of rotation is always the axis of rotation of at least one radial turbine machine impeller through which the process fluid flows and which, for example in the case of a radial turbocompressor, deflects the flow direction of the process fluid from the axial direction into the radial direction, and thereby the process fluid by means of the radial turbomachine impeller through flow blades defined flow channels due to the rotation of the Ro- accelerates.
- the flow of the process fluid is delayed in a diffuser which is generally located downstream after the radial turbine engine impeller, so that there is an increase in the pressure of the process fluid.
- Radial turbomachinery includes both compressors and expanders. Basically, these are so-called flow machines, in which technical process is either removed from a process fluid or technical work is transferred to a process fluid.
- the preferred field of application of the invention are compressors in a corresponding centrifugal design. In such radial turbine machines, process fluids are deflected from the axial flow direction along the axis of rotation of a rotor into a radial direction - or vice versa.
- Some process fluids have the peculiarity of appearing proportionately in liquid or solid or a pasty form or of converting into such states or aggregate states.
- raw gas tends to polymerize at a certain temperature during compression.
- Corresponding polymerizations which are partially solid or liquid, or form a transition form between solid and liquid, tend to adhere to flow-guiding elements of the radial turbomachine.
- these buildups can lead to bridging overruns which disrupt the operation of the radial turbo machine.
- the radial turbine engine impeller is regularly selected as a closed impeller for raw gas compression.
- Ge closed impellers have a wheel disc connected to the shaft of the rotor, blades attached to the wheel disc and a cover disc opposite the wheel disc, the blades connecting the cover disc to the wheel disc.
- the cover plate essentially ensures one Radially-axially terminating the flow channels within the impeller to form a stator of the radial turbomachine. If buildup occurs within these flow channels of the impeller, bridging play clearance as a result of these buildup is rather unlikely, since the running play is arranged between the outside of the cover plate and the stator of the radial turbine engine.
- the invention proposes a radial turbomachine with a contour ring of the type defined at the outset with the additional features of the independent claim 1. Furthermore, a method according to the method claim for operating a radial turbine engine with such a contour ring is proposed.
- the dependent subclaims each contain advantageous developments of the invention. So that any polymerizations or other buildup from the process fluid on the contour ring do not interfere with operation, it is provided that the flow contour has a surface that is permeable to a liquid or gaseous cleaning agent,
- the contour ring has distribution channels below the surface
- distribution channels are fluidly connected to a supply unit for the cleaning agent of the contour ring.
- the contour ring is provided for a radial turbine engine, in particular for a compressor.
- a contour ring is understood by a person skilled in the art to mean a component for arrangement with respect to an open radial turbine machine impeller which can be rotated about a rotational axis, such that open flow channels are restricted to a wheel disc of the rotatable radial door machine impeller by means of a flow contour of the standing contour ring with intermediate play.
- the invention proposes that the con turring has distribution channels below the surface, which are fluidly connected to a supply unit for a cleaning agent of the contour ring.
- the radial turbine machine with a contour ring according to the invention can be put into operation - even according to the method according to the invention - and the flow-carrying components can be cleaned during operation by conveying cleaning agents to the flow-guiding flow contour of the contour ring by means of the supply unit.
- the distribution channels distribute the detergent originating from the supply unit on the surface of the flow contour.
- the flow contour is in this case arranged with respect to the radial turbine machine impeller which is preferably designed to be open and rotatable about an axis of rotation, so that with respect to a wheel disc of the rotatable radial turbine machine impeller of the open flow channels by means of the flow contour of the standing contour rings are limited with the interposition of a running game. If there is buildup in the area of the running game, the cleaning agent will remove these buildup.
- the contour ring formation according to the invention and the method according to the invention is superior in particular because it brings the cleaning agent into the process precisely where there is any buildup.
- contour ring according to the invention a radial turbomachine equipped according to the invention and the method according to the invention in avoiding buildup are much more powerful than conventional efficiency-enhancing tests, it is also possible according to the invention for the first time to have a trouble-free operation of openly designed impellers process fluids at risk of adhesion.
- the contour ring is particularly undesigned in a circumferential direction to the axis of rotation of the radial turbomachine.
- the undivided design has the advantage on the one hand that possible sealing of joints can be saved and on the other hand the network of distribution channels according to the invention can be formed undisturbed by a possible parting joint below the surface for supplying the cleaning agent.
- the permeable surface is particularly expediently designed as a coating of a base body of the contour ring.
- the permeability of this coating is particularly realized before given by means of an open porosity of the coating.
- the permeability of the surface of the contour ring to the impeller can also be achieved by other manufacturing processes without a porous coating, for example:
- the drilled channels can be produced by the contour ring being modularly divided into two half-shells and then is assembled, for example by soldering the half-shells
- a further advantageous development of the invention provides that the distribution channels are divided into at least two fluid-conducting distribution channel groups which are separate from one another and which are at most the input and / or output of the distribution route defined by means of the distribution channels in the connection ring.
- the distribution of the cleaning fluid can be locally optimized and, for example, adapted to the main points of attachment.
- the pressure of the cleaning agent provided by the supply unit can be used particularly efficiently for distribution and for avoiding buildup.
- the cleaning agent is distributed through the distribution channels to the surface of the flow contour by means of gravity.
- both the distribution channels themselves and the supply unit can be formed accordingly.
- the supply unit can be arranged, for example, with a tank at a corresponding height above the contour ring, so that a largely fail-safe supply with the cleaning agent is guaranteed.
- the contour ring has a cooling device for cooling the contour ring.
- This cooling device particularly preferably has cooling channels, these cooling channels in particular being able to be at least partially connected to the distribution channels in such a way that a fluid or at least unidirectional access or exchange between the cooling device and the distributors distribution channels is given. Additional cooling reduces the tendency of many process fluids to form adherent portions.
- FIG. 1 shows a schematic longitudinal section of a section of a radial turbomachine which is designed as a radial turbocompressor with a contour ring according to the invention
- Figure 2 is a schematic representation through a longitudinal
- Figure 3 is a schematic representation through a longitudinal
- Figure 4 is a schematic representation of a longitudinal section through a contour ring according to the invention, wherein supply channels for a detergent free cut are shown.
- FIG. 1 also shows its arrangement in a radial turbomachine RTM, which is designed as a compressor CP.
- FIG. 3 also shows the contour ring COR according to the invention together with a radial turbine machine impeller IMP - in short impeller IMP - of a compressor CP. All longitudinal sections of FIGS. 1 to 4 are shown along an axis of rotation X of a shaft SH of a rotor, to which the impeller IMP also belongs.
- a circumferential direction CDR symbolized, for example, in FIG. 1 is related to the axis of rotation X. In principle, terms such as axial, radial, tangential or circumferential direction CDR are related to the axis of rotation X, unless otherwise stated.
- FIG. 1 also shows the arrangement of other essential components of the radial turbomachine RTM or of the compressor CP.
- a process fluid PFL flows axially into the impeller IMP through an inlet INL.
- the impeller IMP accelerates the process fluid id PFL radially outwards due to the circular movement or centrifugal force, where it emerges from the impeller IMP and reaches a diffuser DIF.
- the impeller IMP has a wheel disc HWH, on which blades BLD are attached.
- the blades BLD delimit individual flow channels FTH of the impeller IMP in the circumferential direction CDR.
- these flow channels FTH are limited by means of a flow contour FCR of the standing contour ring COR with the interposition of a running clearance GAP.
- the impeller IMP according to the exemplary embodiment which is shown in FIGS. 1-4 is a so-called open impeller IMP without a cover disk.
- the individual flow channels FTH are delimited radially outwards by a cover disk, which lies essentially radially opposite the wheel disk HWH.
- the limitation of the individual flow channels FTH due to the flow contour FCR of the contour ring COR is increasingly axial instead of radial.
- the standing contour ring COR deflects the process fluid PFL, which axially enters the impeller IMP, from an axial flow direction into a radial flow direction.
- the arrangement of the impeller IMP and the standing contour ring COR is surrounded by a housing CAS, which, as a pressure vessel, also encapsulates the internal pressure in the RTM radial turbomachine from the ambient pressure.
- a housing CAS which, as a pressure vessel, also encapsulates the internal pressure in the RTM radial turbomachine from the ambient pressure.
- the contour ring COR has distribution channels DSC below the surface of the SRF, which are fluidly connected to a supply unit SPU for a cleaning agent DTG.
- the supply unit SPU is controlled such that the cleaning agent DTG flows into the supply channels DSC, which form a supply network, and reaches the surface SRF of the contour ring COR there.
- the cleaning agent DTG is preferably an oily liquid (for example a so-called washing oil), which prevents or even detaches any buildup from the process fluid PFL on the contour ring COR or on the flow contour FCR.
- the liquid or gaseous cleaning agent DTG flows out of the supply channels DSC through the permeable surface SRF.
- the permeable surface SRF is particularly preferred as a coating COT of a base body BBD of the contour
- the coating COT can have an open porosity and can therefore be permeable to the cleaning agent DTG.
- the distribution channels DSC are particularly preferably divided into different fluid-conducting distribution channel groups DSCG.
- the distribution channel groups DSCG can each have their own inlet Dil, DI2 and their own outlet DE1, DE2.
- the first inlet Dil which is shown in FIG. 4, enables a flow of the cleaning agent DTG, which is driven only by the force of gravity g, through the corresponding system of the supply channels DSC of a distribution section DSN up to the first supply outlet DE1.
- Another supply to the distribution link DSN which does not operate by means of gravity, is ensured by means of the second inlet Dil and second outlet DE2.
- FIGS. 2 and 3 show, in addition to the inventive sharing of a cleaning agent DTG, in particular during the operation of the radial turbomachine RTM additionally a cooling device COS of the contour ring COR.
- the contour ring COR can be thermally checked by means of the cooling device COS, so that temperatures that are too high or too low do not occur.
- the contour ring COR here has cooling channels CLC of the cooling device COS, through which a coolant CLM flows.
- the coolant CLM can expediently be identical to the cleaning agent DTG.
- the cooling channels CLC are at least partially connected to the distribution channels DSC in such a way that there is fluid at least unidirectional access or exchange between the cooling device COS and the distribution channels DSC. This training is shown schematically in Figure 3.
- the contour ring COR extends in FIG. 1 only in the area of the open impeller IMP.
- the contour ring can also continue to extend in the downstream direction, for example into the diffuser DIF.
- the term contour ring COR is therefore not to be understood according to the invention exclusively in such a way that only the area directly opposite the open impeller IMP is occupied by the contour ring COR.
- the permeable surface of the contour ring can also be produced using additive manufacturing.
- at least some of the contour ring COR and / or at least some of the distribution channels DSC below the surface SRF and / or at least some of the surface SRF can be produced by means of additive manufacturing.
- the invention also includes a method for operating the radial turbomachine RTM, the radial turbomachine RTM with the contour ring COR being put into operation and during the compression or expansion of the process fluid PFL in a second step the supply unit SPU is controlled such that the cleaning agent DTG through the permeable surface SRF during the operation of the compressor CP in the area of the running play GAP.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
L'invention concerne une turbomachine radiale (RTM), en particulier un compresseur (CP), comprenant un anneau de contour (COR) vertical qui comprend un contour d'écoulement (FCR), et comprenant une roue de turbomachine radiale (IMP) pouvant tourner autour d'un axe de rotation (X). Pour que des polymérisations ou autres adhérences éventuelles provenant du fluide de processus (PFL) sur l'anneau de contour (COR) ne perturbent pas le fonctionnement, le contour d'écoulement (FCR) comprend, selon l'invention, une surface perméable à un détergent (DTG) liquide ou gazeux, l'anneau de contour (COR) comprenant des canaux de distribution (DSC) en dessous de la surface (SRF), les canaux de distribution (DSC) étant connectés en communication de fluides à une unité d'approvisionnement (SPU) pour le détergent (DTG) de l'anneau de contour (COR). L'invention concerne en outre un procédé pour faire fonctionner une turbomachine radiale (RTM) comprenant un tel anneau de contour (COR).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18183140.5 | 2018-07-12 | ||
EP18183140.5A EP3594506A1 (fr) | 2018-07-12 | 2018-07-12 | Bague de contour pour un compresseur |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020011471A1 true WO2020011471A1 (fr) | 2020-01-16 |
Family
ID=62948007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/065293 WO2020011471A1 (fr) | 2018-07-12 | 2019-06-12 | Turbomachine radiale et procédé pour son fonctionnement |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3594506A1 (fr) |
WO (1) | WO2020011471A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11092163B2 (en) * | 2017-02-08 | 2021-08-17 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Compressor and turbocharger |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4106614A1 (de) * | 1991-03-01 | 1992-09-03 | Kuehnle Kopp Kausch Ag | Vorrichtung zur kennlinienstabilisierung fuer radialverdichter |
WO2009144102A1 (fr) | 2008-05-27 | 2009-12-03 | Siemens Aktiengesellschaft | Espace collecteur et procédé de fabrication |
WO2012038407A1 (fr) | 2010-09-22 | 2012-03-29 | Siemens Aktiengesellschaft | Turbocompresseur à réglage simultané de la roue directrice avant et du diffuseur |
WO2012104366A1 (fr) | 2011-02-02 | 2012-08-09 | Siemens Aktiengesellschaft | Ajustage angulaire accouplé d'un aubage directionnel de sortie |
WO2012104153A1 (fr) | 2011-02-02 | 2012-08-09 | Siemens Aktiengesellschaft | Joint de séparation étagé sur un carter de transmission d'une machine à fluide |
EP2722506A1 (fr) | 2012-10-22 | 2014-04-23 | Otics Corporation | Turbocompresseur |
WO2014060163A1 (fr) | 2012-10-16 | 2014-04-24 | Siemens Aktiengesellschaft | Carter à volute de pot sans soudure |
WO2014095843A1 (fr) | 2012-12-17 | 2014-06-26 | Siemens Aktiengesellschaft | Joint de redondance à faible encombrement, destiné à un carter de turbomachine |
WO2014191312A1 (fr) | 2013-05-29 | 2014-12-04 | Siemens Aktiengesellschaft | Procédé de fonctionnement d'un compresseur et système équipé d'un compresseur |
WO2014195390A1 (fr) | 2013-06-06 | 2014-12-11 | Siemens Aktiengesellschaft | Compresseur à engrenage |
WO2015043879A1 (fr) | 2013-09-25 | 2015-04-02 | Siemens Aktiengesellschaft | Compresseur à engrenage et procédé de montage |
EP2949947A1 (fr) | 2014-05-30 | 2015-12-02 | OTICS Corporation | Turbocompresseur |
WO2016001179A1 (fr) | 2014-07-03 | 2016-01-07 | Siemens Aktiengesellschaft | Carter en spirale de compresseur radial présentant des aubes directrices de diffuseur positionnées au moyen de vis de réglage |
WO2016046037A1 (fr) | 2014-09-23 | 2016-03-31 | Siemens Aktiengesellschaft | Boîtier de transmission séparable à élément d'étanchéité pour jonction étagée |
WO2016062549A1 (fr) | 2014-10-21 | 2016-04-28 | Siemens Aktiengesellschaft | Joint de séparation à gradins installé au niveau d'un carter d'engrenage |
WO2016091495A1 (fr) | 2014-12-08 | 2016-06-16 | Siemens Aktiengesellschaft | Compresseur à engrenages et ensemble comprenant un entraînement et un compresseur à engrenages |
EP3045686A1 (fr) | 2015-01-14 | 2016-07-20 | Siemens Aktiengesellschaft | Agencement pour fixer une volute sur un boîtier de transmission et compresseur à engrenages avec un tel agencement |
EP3061991A1 (fr) | 2015-02-24 | 2016-08-31 | Siemens Aktiengesellschaft | Logement de compresseur, compresseur |
EP3106670A1 (fr) | 2015-06-15 | 2016-12-21 | Siemens Aktiengesellschaft | Turbocompresseur de transmission |
EP3112693A1 (fr) | 2015-07-02 | 2017-01-04 | Siemens Aktiengesellschaft | Turbocompresseur de transmission, procédé d'orientation |
WO2018007029A1 (fr) | 2016-07-07 | 2018-01-11 | Man Diesel & Turbo Se | Turbomachine à transmission |
-
2018
- 2018-07-12 EP EP18183140.5A patent/EP3594506A1/fr not_active Withdrawn
-
2019
- 2019-06-12 WO PCT/EP2019/065293 patent/WO2020011471A1/fr active Application Filing
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4106614A1 (de) * | 1991-03-01 | 1992-09-03 | Kuehnle Kopp Kausch Ag | Vorrichtung zur kennlinienstabilisierung fuer radialverdichter |
WO2009144102A1 (fr) | 2008-05-27 | 2009-12-03 | Siemens Aktiengesellschaft | Espace collecteur et procédé de fabrication |
WO2012038407A1 (fr) | 2010-09-22 | 2012-03-29 | Siemens Aktiengesellschaft | Turbocompresseur à réglage simultané de la roue directrice avant et du diffuseur |
WO2012104366A1 (fr) | 2011-02-02 | 2012-08-09 | Siemens Aktiengesellschaft | Ajustage angulaire accouplé d'un aubage directionnel de sortie |
WO2012104153A1 (fr) | 2011-02-02 | 2012-08-09 | Siemens Aktiengesellschaft | Joint de séparation étagé sur un carter de transmission d'une machine à fluide |
WO2014060163A1 (fr) | 2012-10-16 | 2014-04-24 | Siemens Aktiengesellschaft | Carter à volute de pot sans soudure |
EP2722506A1 (fr) | 2012-10-22 | 2014-04-23 | Otics Corporation | Turbocompresseur |
WO2014095843A1 (fr) | 2012-12-17 | 2014-06-26 | Siemens Aktiengesellschaft | Joint de redondance à faible encombrement, destiné à un carter de turbomachine |
WO2014191312A1 (fr) | 2013-05-29 | 2014-12-04 | Siemens Aktiengesellschaft | Procédé de fonctionnement d'un compresseur et système équipé d'un compresseur |
WO2014195390A1 (fr) | 2013-06-06 | 2014-12-11 | Siemens Aktiengesellschaft | Compresseur à engrenage |
WO2015043879A1 (fr) | 2013-09-25 | 2015-04-02 | Siemens Aktiengesellschaft | Compresseur à engrenage et procédé de montage |
EP2949947A1 (fr) | 2014-05-30 | 2015-12-02 | OTICS Corporation | Turbocompresseur |
WO2016001179A1 (fr) | 2014-07-03 | 2016-01-07 | Siemens Aktiengesellschaft | Carter en spirale de compresseur radial présentant des aubes directrices de diffuseur positionnées au moyen de vis de réglage |
WO2016046037A1 (fr) | 2014-09-23 | 2016-03-31 | Siemens Aktiengesellschaft | Boîtier de transmission séparable à élément d'étanchéité pour jonction étagée |
WO2016062549A1 (fr) | 2014-10-21 | 2016-04-28 | Siemens Aktiengesellschaft | Joint de séparation à gradins installé au niveau d'un carter d'engrenage |
WO2016091495A1 (fr) | 2014-12-08 | 2016-06-16 | Siemens Aktiengesellschaft | Compresseur à engrenages et ensemble comprenant un entraînement et un compresseur à engrenages |
EP3045686A1 (fr) | 2015-01-14 | 2016-07-20 | Siemens Aktiengesellschaft | Agencement pour fixer une volute sur un boîtier de transmission et compresseur à engrenages avec un tel agencement |
EP3061991A1 (fr) | 2015-02-24 | 2016-08-31 | Siemens Aktiengesellschaft | Logement de compresseur, compresseur |
EP3106670A1 (fr) | 2015-06-15 | 2016-12-21 | Siemens Aktiengesellschaft | Turbocompresseur de transmission |
EP3112693A1 (fr) | 2015-07-02 | 2017-01-04 | Siemens Aktiengesellschaft | Turbocompresseur de transmission, procédé d'orientation |
WO2018007029A1 (fr) | 2016-07-07 | 2018-01-11 | Man Diesel & Turbo Se | Turbomachine à transmission |
Also Published As
Publication number | Publication date |
---|---|
EP3594506A1 (fr) | 2020-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60319606T2 (de) | Abblassystem für die Statorstufe eines Verdichters | |
EP3091177B1 (fr) | Rotor pour une turbomachine et compresseur | |
EP3301256B1 (fr) | Étage de rotor pour une turbomachine, tambour du rotor et rotor | |
EP3091178A1 (fr) | Tambour-rotor pour une turbomachine et compresseur | |
WO1986004970A1 (fr) | Joint d'etancheite d'une turbo-machine | |
DE102014219821A1 (de) | Rückführstufe | |
DE10016068C2 (de) | Dampfturbine | |
EP3192966B1 (fr) | Rotor pour une turbomachine axiale avec une bride d'équilibrage orientée axialement et compresseur | |
WO2020011471A1 (fr) | Turbomachine radiale et procédé pour son fonctionnement | |
WO2019137804A1 (fr) | Carter intérieur de turboréacteur | |
EP2906828A1 (fr) | Étanchéification d'un rotor de compresseur | |
DE102014203251A1 (de) | Rückführstufe für eine Radialturbomaschine | |
DE202014002981U1 (de) | Axialturbine für einen Abgasturbolader | |
DE60002781T2 (de) | Nabe-Achse Verbindung | |
EP3098452B1 (fr) | Turbomachine | |
DE3026558C2 (de) | Turbomaschine, insbesondere Abgasturbolader für Brennkraftmaschinen | |
DE102022101762A1 (de) | Rotor mit einem Wuchtflansch, Rotoranordnung mit zumindest einem Rotor und Strömungsmaschine mit zumindest einem Rotor oder mit einer Rotoranordnung | |
DE102011051477A1 (de) | Verfahren und Vorrichtung zum Zusammenbau von Rotationsmaschinen | |
DE102012207735B4 (de) | Schaufelgitter einer Strömungsmaschine | |
EP0985803B1 (fr) | Etage de turbine avec entrée radiale et sortie axiale | |
DE102017114646B4 (de) | Förder- und Verdichterelement, Hohlwelle, Verbrennungsmotor und Verfahren zum Reinigen von Blowby-Gasen | |
EP3514333A1 (fr) | Carénage d'extrémité d'aube de rotor pour une turbomachine, aube de rotor, procédé de fabrication d'un carénage d'extrémité d'aube de rotor et aube de rotor | |
EP2722483A2 (fr) | Turbomachine pour compresser un fluide gazeux ou vaporeux | |
EP2078821B1 (fr) | Turbine à vapeur | |
EP3577346B1 (fr) | Turbocompresseur pourvu de canaux d'écoulement intégrés |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19734273 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19734273 Country of ref document: EP Kind code of ref document: A1 |