WO2020011199A1 - 钻头用多脊金刚石复合片和钻头 - Google Patents

钻头用多脊金刚石复合片和钻头 Download PDF

Info

Publication number
WO2020011199A1
WO2020011199A1 PCT/CN2019/095427 CN2019095427W WO2020011199A1 WO 2020011199 A1 WO2020011199 A1 WO 2020011199A1 CN 2019095427 W CN2019095427 W CN 2019095427W WO 2020011199 A1 WO2020011199 A1 WO 2020011199A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond composite
ridge
ridges
drill bit
composite sheet
Prior art date
Application number
PCT/CN2019/095427
Other languages
English (en)
French (fr)
Inventor
刘强
涂关富
徐红
Original Assignee
中石化江钻石油机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中石化江钻石油机械有限公司 filed Critical 中石化江钻石油机械有限公司
Priority to EA202190273A priority Critical patent/EA202190273A1/ru
Priority to US17/259,383 priority patent/US11725459B2/en
Publication of WO2020011199A1 publication Critical patent/WO2020011199A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/5673Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts having a non planar or non circular cutting face
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • E21B10/5676Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts having a cutting face with different segments, e.g. mosaic-type inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Definitions

  • the present disclosure relates to a multi-ridge diamond composite sheet for a drill bit, which belongs to the technical field of petroleum drilling.
  • Diamond drill bits have been widely used in oil and gas drilling projects.
  • Diamond drill bits are mainly composed of the drill body and cutting elements. According to the cutting elements, diamond drill bits are divided into three types: PDC (polycrystalline diamond) bits, TSP (thermally stable polycrystalline diamond) bits, and natural diamond bits.
  • PDC drills are mainly used for drilling in soft to medium hard formations. After continuous technological progress, the scope of application of PDC drills has become wider and wider, and has good economic value.
  • TSP bit is mainly used for drilling in medium to very hard formations. At present, deep well operations in oil and gas drilling projects are gradually increasing, and the formations encountered are becoming more and more complex.
  • the impact resistance of the existing diamond composite sheet is mainly improved by changing the interface structure between the diamond layer and the hard alloy base in the diamond composite sheet to reduce its residual stress, or by changing the material formula and processing technology.
  • PCD layers with spherical teeth, tapered teeth and other special-shaped teeth. Although this special-shaped structure PDC improves its impact resistance, there are phenomena such as high drilling cutting resistance, high drill torque, and low drilling efficiency during use.
  • the technical problem to be solved by the present disclosure is to provide a multi-ridge diamond composite sheet for a drill bit which has good drilling performance, strong impact resistance, and can prolong the service life of the drill bit.
  • the present disclosure provides a multi-ridge diamond composite sheet for a drill bit, which includes a cemented carbide substrate and a diamond composite layer.
  • the end face of the diamond composite layer is provided with at least two convex ridges at a certain angle, and the convergence of two adjacent convex ridges The end extends to the edge of the diamond composite layer to form a concave cutting edge.
  • the edges of the diamond composite layer are chamfered such that the edges of the diamond composite layer form a tapered surface, and the convergent end of the tapered surface and two adjacent ridges constitute a cutting edge portion.
  • the convex ridges are scattered.
  • At least three ridges are provided, one of which is arranged along the radial direction of the diamond composite layer.
  • each ridge forms a polygon
  • each set of ridges is composed of at least two ridges at a certain angle.
  • the adjacent expanded ends of adjacent sets of ridges meet in the end face of the diamond composite layer. .
  • the ridges of each group are uniformly arranged along the circumferential direction of the diamond composite layer, and the intersection of the expanded ends of the ridges of adjacent groups is located in the middle region of the end face of the diamond composite layer.
  • each ridge is formed by the intersection of two inclined surfaces, and a groove is provided between adjacent inclined surfaces of two adjacent ridges.
  • the expanded end of the raised ridge is higher than the convergent end.
  • the included angle between the ridge and the bottom plane of the cemented carbide is 0 degrees to 20 degrees.
  • the included angle is 0 degrees or 15 degrees.
  • the included angle between two adjacent ridges is 10-90 degrees.
  • the shape of the convex ridge is one of a line, a plane, a curved surface, and a gradient curved surface.
  • the convex ridge is conical, and the conical convex ridge is tapered from the expanded end toward the convergent end.
  • the width of the cutting edge portion is L, and the value of L ranges from 1 mm to 4 mm.
  • the width L of the cutting edge portion is 1.5 mm or 2 mm.
  • the radial cross section of the diamond composite sheet is circular or oval.
  • the present disclosure also provides a drill bit including the above-mentioned multi-ridge diamond composite sheet.
  • the cutting surface group consisting of the convex ridge group and the lateral inclined surface also has impact resistance, which can guide the discharge of rock cuttings at the bottom of the well, further increase the mechanical drilling speed of the diamond bit, and further enhance the impact resistance of the composite sheet. .
  • 1 and 2 are a perspective view and a plan view of the first embodiment
  • FIG. 3 is a perspective view of a second embodiment
  • FIG. 4 is a perspective view of a third embodiment
  • FIG. 5 is a perspective view of a fourth embodiment
  • FIG. 6 is a perspective view of a fifth embodiment
  • FIG. 7 is a perspective view of the sixth embodiment.
  • the multi-ridge diamond composite sheet for a drill bit includes a columnar diamond composite layer 101 and a columnar cemented carbide base body 102.
  • the end faces of the diamond composite layer 101 are provided with first and second convex ridges at a certain angle.
  • 104, 107, the convergent ends of the first and second ridges 104 and 107 both extend to the edge of the diamond composite layer, and the expanded ends of the first and second ridges 104 and 107 extend to the edge of the diamond composite layer to form a concave cut
  • the distance between the convergent ends of the blade portion, the first ridge 104 and the second ridge 107 is smaller than the distance between the first ridge 104 and the expanded end of the second ridge 107.
  • the intersection constitutes a groove-shaped cutting edge portion.
  • the first ridge 104 is formed by the intersection of the first inclined surface 103 and the second inclined surface 105
  • the second ridge 107 is formed by the intersection of the third inclined surface 106 and the fourth inclined surface 108
  • the adjacent second inclined surface 105 and the third inclined surface 106 There are grooves in between.
  • the radius of the arc surface of the first ridge 104 and the second ridge 107 is 0.5 mm
  • the angle between the first ridge 104 and the second ridge 107 and the bottom plane of the cemented carbide substrate 102 is 0 degrees
  • the included angle between the first and fourth inclined surfaces 103 and 108 and the bottom plane of the cemented carbide substrate 102 is 15 degrees.
  • the included angle ⁇ between the first and second ridges 104 and 107 is 30 degrees
  • the width L of the cutting edge portion between the first ends of the first and second ridges 104 and 107 is 2 mm.
  • the radial section of the multi-ridge diamond composite sheet is circular.
  • the shape of the convex ridge is one of a line, a plane, a curved surface, and a gradient curved surface.
  • the gradient curved surface is conical, and the conical convex ridge is tapered from the expanding end toward the converging end.
  • the diamond layer and the cemented carbide substrate are sintered under ultra-high pressure and high temperature conditions, and the bonding surface between the cemented carbide substrate and the diamond composite layer is a flat surface, an uneven surface, or a grooved surface.
  • the end face of the diamond layer is then processed into a desired shape.
  • the difference from the first embodiment lies in that the expanded ends of the ridges meet at the middle of the end face of the diamond composite layer and meet through the transition surface.
  • this embodiment is provided with two sets of ridges which are symmetrically arranged. Each set of ridges is composed of two ridges with a certain angle. The two expanded ends of one set of ridges are respectively two with the other set of ridges. The dilated ends intersect, and the connected ridges meet through the transition surface. The convergent ends of the two sets of convex ridges meet the edges of the diamond composite layer to form two cutting edge portions, and the two cutting edge portions are symmetrically disposed at 180 °.
  • FIG. 4 it is different from the second embodiment in that three ridges are arranged on the end face of the diamond composite layer, and both ends of the three ridges extend to the edge of the diamond composite layer, and two ridges adjacent to each other The adjacent two ends of the ridge form a groove-shaped cutting edge portion, the ends of the three convex ridges form three cutting edge portions, and the three cutting edge portions are uniformly arranged circumferentially along the edge of the diamond composite layer.
  • Embodiment 1 the difference from Embodiment 1 is that three convex ridges are provided, and the constricted ends of two adjacent convex ridges extend to the edge of the diamond composite layer to form an equilateral triangular convex ridge.
  • the angle of the two convex ridges is 60 degrees, so that three groove-shaped cutting edges are uniformly arranged in the circumferential direction.
  • the number of ridges can be greater than three, so that the ridges form a polygonal shape, such as a square, and the angle between two adjacent ridges is 90 degrees.
  • the width L of the cutting edge portion is 1.5 mm.
  • FIG. 6 it is different from the first embodiment in that three end surfaces of the diamond composite layer are provided with three scattering ridges, and the middle ridges are adjacent to each other in the diameter direction of the diamond composite layer.
  • the angle between the ridges is 10 or 15 degrees.
  • the convex ridge is arranged at a certain angle with the bottom plane of the cemented carbide substrate, and the expanded end of the convex ridge is higher than the convergent end.
  • the number of ridges can also be greater than three.
  • the included angle between the ridge and the bottom plane of the cemented carbide is 15 degrees.
  • each set of ridges includes three ridges similar to the third embodiment.
  • a set of ridges is also included.
  • the set of ridges includes three ridges. One end of the three ridges converges at the center of the end face of the diamond composite layer, and the other end of the three ridges extends to the edge of the end face of the diamond composite layer.
  • the included angle between two ridges adjacent in the radial direction is 15 degrees.
  • the present disclosure also provides a drill bit including a multi-ridged diamond composite sheet according to the present disclosure.

Abstract

一种钻头用多脊金刚石复合片,包括硬质合金基体(102)和金刚石复合层(101),其中金刚石复合层(101)的端面设有至少两条呈一定夹角(α)的凸脊(104、107),两个相邻凸脊(104、107)的汇聚端延伸至金刚石复合层(101)边缘以形成凹形切削刃部。设置多条成一定角度(α)的凸脊(104、107)作为切削面组同时切削地层,通过呈一定角度(α)的凸脊(104、107)对地层先进行预破碎,由尖锐面(凸脊(104、107)的汇聚端)先进入地层,延脊的方向破碎坑进一步扩大,然后由这组脊面两侧的斜面(103、105、106、108)对地层进一步挤压破碎,使其切削面具有犁削作用。

Description

钻头用多脊金刚石复合片和钻头
相关申请的交叉引用
本公开是以中国申请号为201810767637.1,申请日为2018年7月13日的申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及一种钻头用多脊金刚石复合片,属于石油钻探技术领域。
背景技术
上世纪80年代开始,金刚石钻头被广泛地用于石油天然气钻井工程。金刚石钻头主要由钻头体和切削元件构成,金刚石钻头根据切削元件分成三类:PDC(聚晶金刚石)钻头、TSP(热稳定聚晶金刚石)钻头及天然金刚石钻头。PDC钻头主要用于软至中硬地层钻进,经过不断的技术进步,PDC钻头的适用范围越来越广,具有较好的经济价值。TSP钻头主要用于中硬至极硬地层钻进。目前,石油天然气钻井工程中深井作业逐步增多,钻遇的地层也越来越复杂。
在钻遇含砾石的地层或者地层软硬交错,变化较为频繁时,复合片所受冲击载荷较大,金刚石复合片容易崩齿失效,从而导致钻头整体失效。因而钻井现场急需一种抗冲击能力强的金刚石复合片。而现有的金刚石复合片的抗冲击能力主要以改变金刚石复合片中金刚石层与硬质合金基座界面结构降低其残余应力、或者改变材料配方、加工工艺来提高。也有采用球头形、锥形等异形齿PCD层,这种异形结构的PDC虽然提高了其抗冲击能力,但使用过程中存在钻进切削阻力大,钻头扭矩大,钻进效率低等现象。
发明内容
本公开所要解决的技术问题在于针对上述现有技术存在的不足提供一种钻进性好、抗冲击力强,能延长钻头使用寿命的钻头用多脊金刚石复合片。
本公开提供一种钻头用多脊金刚石复合片,包括硬质合金基体和金刚石复合层,其中金刚石复合层的端面设有至少两条呈一定夹角的凸脊,两个相邻凸脊的汇聚端延伸至金刚石复合层边缘以形成凹形切削刃部。
在一些实施例中,在金刚石复合层的边缘被倒角,使金刚石复合层(的边缘形成锥面, 锥面与两个相邻凸脊的汇聚端构成切削刃部。
在一些实施例中,凸脊呈散射状。
在一些实施例中,设有至少三条凸脊,其中一条凸脊沿着金刚石复合层的径向布置。
在一些实施例中,各凸脊形成多边形。
在一些实施例中,设有至少两组凸脊,每组凸脊至少由两条呈一定夹角的凸脊构成,相邻组凸脊的相邻扩张端两两交汇于金刚石复合层端面内。
在一些实施例中,各组凸脊沿金刚石复合层周向均匀布置,相邻组的凸脊的扩张端的交汇处位于金刚石复合层的端面中部区域。
在一些实施例中,每条凸脊由两个斜面交汇而成,相邻两个凸脊的相邻斜面之间设有沟槽。
在一些实施例中,凸脊的扩张端高于汇聚端。
在一些实施例中,凸脊与硬质合金底平面之间的夹角为0度至20度。
在一些实施例中,夹角为0度或15度。
在一些实施例中,相邻的两个凸脊之间的夹角为10-90度。
在一些实施例中,凸脊的形状为线、平面、弧面、渐变曲面中的一个。
在一些实施例中,凸脊为圆锥形的,圆锥形的凸脊从扩张端朝向汇聚端呈渐缩的。
在一些实施例中,切削刃部的宽度为L,L取值范围为1mm-4mm。
在一些实施例中,切削刃部的宽度L为1.5mm或2mm。
在一些实施例中,金刚石复合片径向截面为圆形或椭圆形。
本公开还提供一种钻头,包括上述的多脊金刚石复合片。
本公开能够得到以下有益效果中的至少一个:
设置多条成一定角度的凸脊作为切削面组,同时切削地层,通过呈一定角度的凸脊对地层先进行预破碎,由尖锐面(凸脊的汇聚端)先进入地层,延凸脊的方向破碎坑进一步扩大,然后由这组凸脊两侧的斜面对地层进一步挤压破碎,使其切削面具有犁削作用,提高了复合片的破碎钻进性能,降低了钻进切削阻力,从而提高金刚石钻头的机械钻速。
凸脊组与侧向斜面所组成的切削面组也具备抗冲击性能,能起到引导井底岩屑排出的作用,进一步提升金刚石钻头的机械钻速,并使复合片的抗冲击能力进一步增强。
具有多个切削刃部,在一个切削刃部磨损后可以旋转至另一个未磨损的切削刃部继续使用,进而降低钻头的使用成本。
附图说明
图1和图2是本实施例一的立体图、俯视图;
图3为实施例二的立体图;
图4为实施例三的立体图;
图5为实施例四的立体图;
图6为实施例五的立体图;
图7为实施例六的立体图。
具体实施方式
下面结合附图对本公开作进一步说明。
实施例一
如图1和图2所示,钻头用多脊金刚石复合片包括柱状金刚石复合层101和柱状硬质合金基体102,金刚石复合层101的端面设有成一定夹角的第一和第二凸脊104、107,第一和第二凸脊104和107的汇聚端均延伸至金刚石复合层边缘,第一凸脊104和第二凸脊107的扩张端延伸至金刚石复合层边缘以形成凹形切削刃部,第一凸脊104和第二凸脊107的汇聚端之间的距离小于第一凸脊104和第二凸脊107的扩张端之间的距离。在金刚石复合层101的周向边缘处有倒角,使金刚石复合层101的周向边缘处形成渐缩锥面,渐缩锥面与第一和第二凸脊104和107的第一端的交汇处构成槽状切削刃部。第一凸脊104由第一斜面103和第二斜面105交汇而成,第二凸脊107由第三斜面106和第四斜面108交汇而成,相邻的第二斜面105和第三斜面106之间设有沟槽。
在一些实施例中,第一凸脊104和第二凸脊107的弧面半径为0.5mm,第一凸脊104和第二凸脊107与硬质合金基体102底平面之间的夹角为0度,且第一和第四斜面103、108与硬质合金基体102底平面夹角为15度。第一和第二凸脊104、107之间的夹角α为30度,第一和第二凸脊104、107的第一端之间的切削刃部的宽度L为2mm。多脊金刚石复合片径向截面为圆形。
在一些实施例中,凸脊的形状为线、平面、弧面、渐变曲面中的一个,渐变曲面为圆锥形的,圆锥形的凸脊从扩张端朝着汇聚端呈渐缩的。
在一些实施例中,金刚石层与硬质合金基体在超高压高温条件下烧结而成,的硬质合金基体与金刚石复合层之间的粘结面为平面、凹凸面或沟槽面。然后对金刚石层的端面进行加工成所需形状。
实施例二
如图3所示,与实施例一的不同之处在于:凸脊的扩张端交汇于金刚石复合层端面的中部,且通过过渡面交汇。另外本实施例设有两组呈对称设置的凸脊,每组凸脊由两条呈一定夹角的凸脊构成,一组凸脊的两个扩张端分别与另一组凸脊的两个扩张端相交,相连的凸脊通过过渡面交汇。两组凸脊的汇聚端分别与金刚石复合层边缘交汇构成两个切削刃部,两个切削刃部呈180°对称设置。
实施例三
如图4所示,与实施例二的不同之处在于:在金刚石复合层端面上布置有三个凸脊,三个凸脊的两端均延伸至金刚石复合层边缘,彼此相邻的两个凸脊的相邻两端形成槽形的切削刃部,三个凸脊的端部形成三个切削刃部,三个切削刃部沿着金刚石复合层边缘周向地均匀布置。
实施例四
如图5所示,与实施例一的不同之处在于:设有三条凸脊,相邻的两个凸脊的收缩端延伸至金刚石复合层边缘,构成等边三角形的凸脊,相邻的两个凸脊的角度为60度,这样形成周向均匀布置的三个槽形切削刃部。凸脊的数量可以大于三,从而使得凸脊构成了多边形形状,例如正方形,相邻的两个凸脊的角度为90度。
在一些实施例中,切削刃部的宽度L为1.5mm。
实施例五
如图6所示,与实施例一的不同之处在于:金刚石复合层的端面上设有三条呈散射状的凸脊,中间的凸脊在金刚石复合层的直径方向上,相邻的两个凸脊之间夹角为10度或15度。凸脊与硬质合金基体底平面呈一定夹角设置,凸脊的扩张端高于汇聚端。凸脊的数量也可以大于三。
在一些实施例中,凸脊与硬质合金底平面之间的夹角为15度。
实施例六
如图7所示,与实施例三的不同之处在于:金刚石复合层的端面上设有至少两组凸脊,每组凸脊包括与实施例三类似的三条凸脊。还包括一组凸脊,这组凸脊包括三条凸脊,三条凸脊的一端在金刚石复合层的端面的中心汇聚,三条凸脊的另一端延伸至金刚石复合层的端面边缘。在一些实施例中,在径向上相邻的两个凸脊之间夹角为15度。
本公开还提供一种钻头,其包括根据本公开的多脊金刚石复合片。
以上结合的实施例对于本公开的实施方式做出详细说明,但本公开不局限于所描述的 实施方式。对于本领域的技术人员而言,在不脱离本公开的原理和实质精神的情况下对这些实施方式进行多种变化、修改、等效替换和变型仍落入在本公开的保护范围之内。

Claims (18)

  1. 一种钻头用多脊金刚石复合片,包括硬质合金基体(102)和金刚石复合层(101),其中所述金刚石复合层的端面设有至少两条呈一定夹角的凸脊,两个相邻凸脊的汇聚端延伸至金刚石复合层(101)边缘以形成凹形切削刃部。
  2. 根据权利要求1所述的钻头用多脊金刚石复合片,其中在金刚石复合层(101)的边缘被倒角,使金刚石复合层(101)的边缘形成锥面,锥面与两个相邻凸脊的汇聚端构成所述切削刃部。
  3. 根据权利要求1或2所述的钻头用多脊金刚石复合片,其中所述凸脊呈散射状。
  4. 根据权利要求3所述的钻头用多脊金刚石复合片,其中设有至少三条凸脊,其中一条凸脊沿着金刚石复合层(101)的径向布置。
  5. 根据权利要求1或2所述的钻头用多脊金刚石复合片,其中各凸脊形成多边形。
  6. 根据权利要求1或2所述的钻头用多脊金刚石复合片,其中设有至少两组凸脊,每组凸脊至少由两条呈一定夹角的凸脊构成,相邻组凸脊的相邻扩张端两两交汇于所述金刚石复合层的端面内。
  7. 根据权利要求6所述的钻头用多脊金刚石复合片,其中各组凸脊沿金刚石复合层周向均匀布置,相邻组的凸脊的扩张端的交汇处位于金刚石复合层的端面中部区域。
  8. 根据权利要求1或2所述的钻头用多脊金刚石复合片,其中每条凸脊由两个斜面交汇而成,相邻两个凸脊的相邻斜面之间设有沟槽。
  9. 根据权利要求3所述的钻头用多脊金刚石复合片,其中所述凸脊的扩张端高于汇聚端。
  10. 根据权利要求1所述的钻头用多脊金刚石复合片,其中所述凸脊与硬质合金底平面之间的夹角为0度至20度。
  11. 根据权利要求10所述的钻头用多脊金刚石复合片,其中所述夹角为0度或15度。
  12. 根据权利要求1或2所述的钻头用多脊金刚石复合片,其中相邻的两个所述凸脊之间的夹角为10-90度。
  13. 根据权利要求1或2所述的钻头用多脊金刚石复合片,其中所述凸脊的形状为线、平面、弧面、渐变曲面中的一个。
  14. 根据权利要求13所述的钻头用多脊金刚石复合片,其中所述凸脊为圆锥形,圆锥形的所述凸脊从扩张端朝向汇聚端呈渐缩的。
  15. 根据权利要求1所述的钻头用多脊金刚石复合片,其中所述切削刃部的宽度为L,L取值范围为1mm-4mm。
  16. 根据权利要求15所述的钻头用多脊金刚石复合片,其中所述切削刃部的宽度L为1.5mm或2mm。
  17. 根据权利要求1或2所述的钻头用多脊金刚石复合片,其特征在于:所述的多脊金刚石复合片径向截面为圆形或椭圆形。
  18. 一种钻头,其包括权利要求1所述的钻头用多脊金刚石复合片。
PCT/CN2019/095427 2018-07-13 2019-07-10 钻头用多脊金刚石复合片和钻头 WO2020011199A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EA202190273A EA202190273A1 (ru) 2018-07-13 2019-07-10 Алмазная вставка с несколькими гребнями для бурового долота и буровое долото
US17/259,383 US11725459B2 (en) 2018-07-13 2019-07-10 Multiple ridge diamond compact for drill bit and drill bit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810767637.1A CN108661565B (zh) 2018-07-13 2018-07-13 一种多脊金刚石复合片
CN201810767637.1 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020011199A1 true WO2020011199A1 (zh) 2020-01-16

Family

ID=63774064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095427 WO2020011199A1 (zh) 2018-07-13 2019-07-10 钻头用多脊金刚石复合片和钻头

Country Status (4)

Country Link
US (1) US11725459B2 (zh)
CN (1) CN108661565B (zh)
EA (1) EA202190273A1 (zh)
WO (1) WO2020011199A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108661565B (zh) 2018-07-13 2021-11-16 中石化江钻石油机械有限公司 一种多脊金刚石复合片
CN109681125A (zh) * 2019-01-25 2019-04-26 中石化江钻石油机械有限公司 一种内凹凸脊形金刚石复合片
GB201907505D0 (en) * 2019-05-28 2019-07-10 Element Six Uk Ltd Cutter assembly and methods for making same
GB201907976D0 (en) * 2019-06-04 2019-07-17 Element Six Uk Ltd A cutting element and methods of making same
CA3158129A1 (en) 2019-10-21 2021-04-29 Schlumberger Canada Limited Cutter with geometric cutting edges
CA3165503A1 (en) * 2020-02-05 2021-08-12 Baker Hughes Oilfield Operations Llc Cutting element with improved mechanical efficiency
CN112324349B (zh) * 2020-11-10 2023-10-03 河南四方达超硬材料股份有限公司 一种多重犁削的金刚石复合片及钻头
US11719050B2 (en) 2021-06-16 2023-08-08 Baker Hughes Oilfield Operations Llc Cutting elements for earth-boring tools and related earth-boring tools and methods
CN114562211A (zh) * 2022-03-03 2022-05-31 中石化江钻石油机械有限公司 一种抗冲击多切削刃金刚石复合片
US11920409B2 (en) 2022-07-05 2024-03-05 Baker Hughes Oilfield Operations Llc Cutting elements, earth-boring tools including the cutting elements, and methods of forming the earth-boring tools

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424017A (en) * 2004-04-30 2006-09-13 Smith International A cutter having depressions in its working surface
CN106089089A (zh) * 2016-06-24 2016-11-09 中石化石油机械股份有限公司江钻分公司 金刚石复合片
CN106089091A (zh) * 2016-08-15 2016-11-09 中石化石油机械股份有限公司江钻分公司 一种切削刃长度递减的金刚石复合片
CN206592075U (zh) * 2017-03-06 2017-10-27 珠海市钜鑫科技开发有限公司 一种高耐热性能的聚晶金刚石复合片
CN207004435U (zh) * 2017-03-14 2018-02-13 广东钜鑫新材料科技股份有限公司 一种新型双脊保径金刚石复合片
CN108661565A (zh) * 2018-07-13 2018-10-16 中石化江钻石油机械有限公司 一种多脊金刚石复合片

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694918A (en) * 1985-04-29 1987-09-22 Smith International, Inc. Rock bit with diamond tip inserts
IE892863L (en) * 1988-09-09 1990-03-09 Galderma Rech Dermatologique Abrasive compacts
US5173090A (en) * 1991-03-01 1992-12-22 Hughes Tool Company Rock bit compact and method of manufacture
US5172778A (en) * 1991-11-14 1992-12-22 Baker-Hughes, Inc. Drill bit cutter and method for reducing pressure loading of cutters
US5346026A (en) * 1992-01-31 1994-09-13 Baker Hughes Incorporated Rolling cone bit with shear cutting gage
US6045440A (en) * 1997-11-20 2000-04-04 General Electric Company Polycrystalline diamond compact PDC cutter with improved cutting capability
US6904983B2 (en) * 2003-01-30 2005-06-14 Varel International, Ltd. Low-contact area cutting element
US8783387B2 (en) * 2008-09-05 2014-07-22 Smith International, Inc. Cutter geometry for high ROP applications
US9482057B2 (en) * 2011-09-16 2016-11-01 Baker Hughes Incorporated Cutting elements for earth-boring tools, earth-boring tools including such cutting elements and related methods
US20140182947A1 (en) * 2012-12-28 2014-07-03 Smith International, Inc. Cutting insert for percussion drill bit
CN108884706B (zh) 2016-03-31 2021-05-04 斯伦贝谢技术有限公司 多脊切削元件
US20180291689A1 (en) * 2017-04-08 2018-10-11 Epiroc Drilling Tools Llc Hybrid plug drill-out bit
USD878436S1 (en) * 2017-11-16 2020-03-17 Us Synthetic Corporation Cutting tool
CN207728311U (zh) * 2017-12-26 2018-08-14 中石化江钻石油机械有限公司 一种金刚石复合片
CA3041701A1 (en) * 2018-05-04 2019-11-04 Federico Bellin Superhard cutter with spikes
CN208885196U (zh) * 2018-07-13 2019-05-21 中石化江钻石油机械有限公司 一种多脊金刚石复合片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424017A (en) * 2004-04-30 2006-09-13 Smith International A cutter having depressions in its working surface
CN106089089A (zh) * 2016-06-24 2016-11-09 中石化石油机械股份有限公司江钻分公司 金刚石复合片
CN106089091A (zh) * 2016-08-15 2016-11-09 中石化石油机械股份有限公司江钻分公司 一种切削刃长度递减的金刚石复合片
CN206592075U (zh) * 2017-03-06 2017-10-27 珠海市钜鑫科技开发有限公司 一种高耐热性能的聚晶金刚石复合片
CN207004435U (zh) * 2017-03-14 2018-02-13 广东钜鑫新材料科技股份有限公司 一种新型双脊保径金刚石复合片
CN108661565A (zh) * 2018-07-13 2018-10-16 中石化江钻石油机械有限公司 一种多脊金刚石复合片

Also Published As

Publication number Publication date
US20210277722A1 (en) 2021-09-09
CN108661565B (zh) 2021-11-16
EA202190273A1 (ru) 2021-04-26
US11725459B2 (en) 2023-08-15
CN108661565A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2020011199A1 (zh) 钻头用多脊金刚石复合片和钻头
US11391095B2 (en) Polycrystalline diamond compact and drilling bit
US20220112773A1 (en) Cutting elements having non-planar surfaces and downhole cutting tools using such cutting elements
US10309156B2 (en) Cutting structures for fixed cutter drill bit and other downhole cutting tools
US20180230756A1 (en) Kerfing hybrid drill bit and other downhole cutting tools
US11828108B2 (en) Angled chisel insert
EP2510180B1 (en) Polycrystalline diamond cutting element structure
RU2629267C2 (ru) Вооружение бурового долота с фиксированными резцами и другие скважинные буровые инструменты
US20240093556A1 (en) Cutting Elements with Ridged and Inclined Cutting Face
US11365589B2 (en) Cutting element with non-planar cutting edges
CN109681125A (zh) 一种内凹凸脊形金刚石复合片
US11591858B2 (en) Cutting elements with increased curvature cutting edges
CN207420457U (zh) 一种聚晶金刚石复合片及采用此复合片的钻头
WO2023165592A1 (zh) 多切削刃金刚石复合片和钻地工具
CN209539273U (zh) 一种内凹凸脊形金刚石复合片
CN208885196U (zh) 一种多脊金刚石复合片
EA045283B1 (ru) Алмазная вставка с несколькими гребнями для бурового долота и буровое долото
EA040765B1 (ru) Поликристаллическая алмазная вставка и буровое долото
CN114763734A (zh) 切削元件及钻头
CN115977546A (zh) 切削齿及其设计方法、pdc钻头
US20180328116A1 (en) Drag bit with wear-resistant cylindrical cutting structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19833217

Country of ref document: EP

Kind code of ref document: A1