WO2020010583A1 - 放疗设备准直器安装检测方法、装置及系统 - Google Patents
放疗设备准直器安装检测方法、装置及系统 Download PDFInfo
- Publication number
- WO2020010583A1 WO2020010583A1 PCT/CN2018/095471 CN2018095471W WO2020010583A1 WO 2020010583 A1 WO2020010583 A1 WO 2020010583A1 CN 2018095471 W CN2018095471 W CN 2018095471W WO 2020010583 A1 WO2020010583 A1 WO 2020010583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collimator
- projection
- deviation
- installation
- measured
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1075—Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1065—Beam adjustment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1042—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
- A61N5/1045—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
Definitions
- the invention relates to the field of mechanical equipment, in particular to a method, a device and a system for detecting and installing a collimator of a radiotherapy device.
- Radiotherapy equipment In modern medicine, radiation therapy is an important method for treating malignant tumors. Radiation therapy refers to the use of high-energy radiation to kill tumors.
- Radiotherapy equipment is mainly used for radiation therapy.
- Radiotherapy equipment generally includes radiation sources and collimators. Among them, the radiation source is used to emit rays, and the collimator is used to generate a field that meets the requirements. The field defines the range of radiation. The radiation emitted by the radiation source passes through the radiation field generated by the collimator, forms a beam, and irradiates the tumor lesion area.
- the accuracy of the installation of the collimator often directly affects the treatment effect of the radiotherapy equipment.
- the installation deviation of the film collimator is usually used for detection.
- the installation position of the collimator is adjusted. Specifically, it is detected whether the projection center of the beam formed by the radiation source after passing through the collimator on the film located on the isocentric plane is located at a preset position on the film. When the projection center is located at the preset position, it is determined that the installation deviation of the collimator meets the requirements; when the projection center is not at the preset position, it is determined that the installation deviation of the collimator does not meet the requirements, and then the installation position of the collimator is adjusted .
- the film Before the detection of the installation deviation of the film collimator, the film needs to be manually installed, the installation steps are tedious, and the manual installation operation easily affects the detection accuracy, which ultimately affects the installation accuracy of the collimator and the position adjustment operation is more complicated. Since the film is set at an isocentric position, it cannot reflect the accuracy of the installation of a single collimator.
- Embodiments of the present invention provide a method, a device, and a system for detecting and installing a collimator of a radiotherapy device, which can solve the manual installation of films in related technologies, the installation steps are tedious, and the manual installation operation easily affects the detection accuracy, and finally affects the alignment The installation accuracy of the device and the complicated position adjustment operation.
- the technical solution is as follows:
- a method for detecting the installation of a collimator of a radiotherapy device including:
- comparing the projection to be measured and the reference projection, and determining the installation deviation of the collimator of the radiotherapy equipment according to the deviation of the projection to be measured and the reference projection includes:
- the installation deviation of the collimator of the radiotherapy equipment is determined.
- the reference projection is a preset projection of the collimator or a projection of a metal ball disposed at a center of the radiotherapy equipment or the like.
- the radiotherapy device is a focused radiotherapy device having a plurality of collimators, the comparison is performed between the projection to be measured and the reference projection, and the determination is made according to a deviation between the projection to be measured and the reference projection.
- Deviations in the installation of radiotherapy equipment collimators including:
- the first quantity is greater than or equal to a preset quantity
- the system installation deviation is determined according to a deviation of a geometric center of each of the projections to be measured and a corresponding geometric center of a reference projection.
- the method further includes:
- the deviation between the geometric center of the second number of projections to be measured and the geometric center of the corresponding reference projection is not less than the preset deviation, it is determined that there is an installation deviation for each of the second number of collimators. , The second number is less than the preset number;
- the preset coordinate system is a two-dimensional coordinate system having mutually perpendicular x-axis and y-axis, and the beams that pass through the center planes of the collimator and the radiotherapy equipment in order are obtained in After the projection to be measured on the ray detector, the method further includes:
- the projection to be measured When the absolute value of the difference between the coordinates of the geometric center of the projection to be measured and the coordinates of the geometric center of the corresponding reference projection in the x-axis direction is not less than a first preset deviation value, and / or, the projection to be measured When the absolute value of the difference between the coordinates of the geometric center of the geometric center of the corresponding reference projection and the coordinates of the geometric center of the reference projection in the y-axis direction is not less than a second preset deviation value, determine the geometric center of the projection to be measured and the corresponding reference projection The deviation of the geometric center of is not less than the preset deviation.
- the plurality of collimators are arranged in a collimator, and after the determining the system installation deviation, the method further includes:
- the method further includes:
- the installation position of the collimator is adjusted according to the installation deviation of the collimator.
- a method for detecting the installation of a collimator of a radiotherapy device including:
- comparing the projections to be measured obtained at different rotation angles to determine the installation stability of the radiotherapy equipment collimator includes:
- a collimator installation detection device for a radiotherapy apparatus including:
- An acquisition module configured to acquire a projection to be measured on a radiation detector of a beam passing through a center plane such as the collimator and the radiotherapy equipment in sequence;
- a determining module configured to compare the projection to be measured with a reference projection, and determine a mounting deviation of the collimator of the radiotherapy device according to a deviation between the projection to be measured and the reference projection.
- a collimator installation detection device for a radiotherapy apparatus which includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
- the processor executes the computer program, the steps of the method according to the first aspect are carried out.
- a computer-readable storage medium stores a computer program that, when executed by a processor, implements a method according to the first aspect. step.
- a computer program product stores instructions that, when run on a computer, cause the computer to implement the steps of the method according to the first aspect.
- a collimator installation detection device for a radiotherapy apparatus including:
- An acquisition module configured to acquire the projections of the beams of the radiotherapy equipment rack which pass through the center plane of the collimator and the radiotherapy equipment in different rotation angles on a ray detector in sequence;
- a determining module is configured to compare the projections to be measured obtained under different rotation angles, and determine the installation stability of the collimator of the radiotherapy equipment.
- a collimator installation detection device for a radiation therapy device which includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
- the processor executes the computer program, the steps of the method according to the second aspect are carried out.
- a computer-readable storage medium stores a computer program that, when executed by a processor, implements a method according to the second aspect. step.
- a computer program product stores instructions that, when run on a computer, cause the computer to implement the steps of the method according to the second aspect.
- a collimator installation detection system for a radiotherapy apparatus including: a radiotherapy apparatus, a radiation detector, and a processing component,
- the processing component includes the radiation therapy equipment collimator installation detection device according to the third aspect, or includes the radiation therapy equipment collimator installation detection device according to the fourth aspect.
- the processing component further includes a radiation therapy equipment collimator installation detection device according to the seventh aspect, or a radiation therapy equipment collimator installation detection device according to the eighth aspect.
- the installation deviation of the collimator does not need to manually install a film, which simplifies the installation deviation detection operation of the collimator, thereby simplifying the installation position adjustment operation of the collimator, and improving the detection accuracy.
- the amount of radiation to the installer is also reduced, thereby reducing the impact on the health of the installer.
- FIG. 1 is a schematic diagram of an implementation environment according to an embodiment of the present invention.
- FIG. 2 is a flowchart of a method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention
- FIG. 3 is a flowchart of another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention
- FIG. 4 is a flowchart of another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of a focused radiotherapy apparatus according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a projection to be measured and a corresponding reference projection according to an embodiment of the present invention
- FIG. 7 is a schematic diagram of a projection to be measured and a corresponding reference projection according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a projection to be measured and a corresponding reference projection according to an embodiment of the present invention.
- FIG. 9 is a flowchart of still another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- FIG. 10 is a flowchart of another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of a collimator installation detection device for a radiotherapy apparatus according to an embodiment of the present invention.
- FIG. 12 is a schematic structural diagram of another installation and detection device for a collimator of a radiotherapy apparatus according to an embodiment of the present invention.
- FIG. 13 is a schematic structural diagram of another installation and detection device for a collimator of a radiotherapy apparatus according to an embodiment of the present invention.
- FIG. 1 illustrates a schematic diagram of an implementation environment according to an embodiment of the present invention.
- the implementation environment may include a processing component 01, a radiotherapy equipment treatment head 02, and a radiation detector 03.
- the treatment head 02 includes at least one radiation source, and each radiation source is correspondingly provided with a collimator, and the treatment head 02 is disposed on the rack 04. And can be rotated with the frame 03.
- the radiotherapy equipment may be a focused radiotherapy equipment with multiple collimators or a conformal intensity modulated radiotherapy equipment with one multi-leaf collimator.
- the embodiment of the present invention does not limit the type of radiotherapy equipment.
- the rack may be a drum-type rack, or may be a C-arm, a cantilever, or a semi-arc rack.
- the radiation source may be an accelerator ray source (generally an X-ray source) or an isotope ray source (generally a cobalt source).
- the radiation source is used to emit radiation, and the collimator is used to generate a radiation field that meets the requirements.
- the radiation emitted by the radiation source passes through the radiation field generated by the collimator to form a beam.
- the beams passing through the center plane such as the collimator and the radiotherapy equipment in sequence form the projection to be measured on the ray detector.
- the projection to be measured is compared with the reference projection.
- the position of the projection projection and the reference projection on the radiation detector is compared to determine the installation deviation of the collimator of the radiotherapy equipment.
- the isocenter plane refers to a plane that is past the isocenter and is perpendicular to the connection line between the radiotherapy device and the detector.
- the reference projection can be obtained in various ways.
- the reference projection may be a preset projection of a collimator, and for another example, the reference projection may be a projection of a metal ball disposed at a center of a radiotherapy apparatus or the like.
- the metal ball may be a tungsten ball.
- FIG. 2 shows a flowchart of a method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- the method can be used for processing component 01 in the implementation environment shown in FIG. 1.
- the method may include:
- Step 201 Obtain a projection to be measured on a ray detector of a beam passing through a center plane such as a collimator and a radiotherapy device in sequence.
- the isocenter plane refers to a plane that is past the isocenter and is perpendicular to the connection line between the radiotherapy device and the detector.
- Step 202 Compare the projection to be measured with the reference projection, and determine the installation deviation of the collimator of the radiotherapy equipment according to the deviation between the projection to be measured and the reference projection.
- Comparing the projection to be measured and the reference projection is to specifically compare the positions of the projection to be measured and the reference projection on the ray detector. In this step, the positions of the projection to be measured and the reference projection on the radiation detector are compared, and the installation deviation of the collimator of the radiotherapy equipment is determined according to the deviation of the positions of the projection to be measured and the reference projection on the radiation detector.
- the method for detecting the installation of a collimator of a radiotherapy device can obtain the test projection of a beam on a ray detector that passes through the center plane of the collimator and the radiotherapy device in order, and then compare the Measuring projection and reference projection, and determining the installation deviation of the collimator of the radiotherapy equipment according to the deviation of the projection to be measured and the reference projection, without the need to manually install a film, simplifying the installation deviation detection operation of the collimator, thereby simplifying the Installation position adjustment operation and improved detection accuracy.
- the amount of radiation to the installer is also reduced, thereby reducing the impact on the health of the installer.
- FIG. 3 shows a flowchart of another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- the method can be used for processing component 01 in the implementation environment shown in FIG. It is used to detect the deviation of the collimator installation of the radiotherapy equipment.
- the method may include:
- Step 301 Obtain a projection to be measured on a ray detector of a beam passing through a center plane such as a collimator and a radiotherapy device in sequence.
- Step 302 Determine the geometric center of the projection to be measured and the geometric center of the reference projection, respectively.
- Step 303 Determine the installation deviation of the collimator of the radiotherapy equipment according to the deviation between the geometric center of the projection to be measured and the geometric center of the reference projection.
- the processing component may first obtain the beams on the ray detector that pass through the center plane of the collimator and the radiotherapy device in order.
- the geometric center of the projection to be measured and the geometric center of the reference projection are determined, and then the deviation of the installation of the multi-leaf collimator is determined according to the deviation between the geometric center of the projection to be measured and the geometric center of the reference projection.
- the installation position of the multi-leaf collimator can be adjusted so that the installation position of the multi-leaf collimator satisfies Installation requirements.
- the method for detecting the installation of a collimator of a radiotherapy device can obtain the test projection of a beam on a ray detector that passes through the center plane of the collimator and the radiotherapy device in order, and then compare the Measuring projection and reference projection, and determining the installation deviation of the collimator of the radiotherapy equipment according to the deviation of the projection to be measured and the reference projection, without the need to manually install a film, simplifying the installation deviation detection operation of the collimator, thereby simplifying the collimator Installation position adjustment operation and improved detection accuracy.
- the amount of radiation to the installer is also reduced, thereby reducing the impact on the health of the installer.
- FIG. 4 shows a flowchart of another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- the method can be used for processing component 01 in the implementation environment shown in FIG. 1. It is used to detect the installation deviation of the collimator of the radiotherapy equipment.
- the radiotherapy equipment may be a focused radiotherapy equipment with multiple collimators. As shown in FIG. 4, the method may include:
- Step 401 Obtain a projection to be measured on a radiation detector of a beam passing through a center plane such as a collimator and a radiotherapy device in sequence.
- the radiotherapy equipment is a focused radiotherapy equipment with 18 collimators.
- the radiotherapy equipment includes 18 radioactive sources. As shown in FIG. 5, the 18 radioactive sources are divided into two groups, and the two radioactive sources are arranged side by side.
- the beam formed by the radiation from the source passing through the corresponding collimator passes through the same focal point.
- Each beam passing through the center plane of the collimator and the radiotherapy equipment in turn forms a projection to be measured on the ray detector 03, a total of 18 projections to be measured, and the processing component 01 acquires the collimator and the radiotherapy equipment in order.
- Step 402 When the absolute value of the difference between the coordinates of the geometric center of the projection to be measured and the coordinates of the geometric center of the corresponding reference projection in the x-axis direction is not less than the first preset deviation value, and / or, When the absolute value of the difference between the coordinates of the geometric center and the coordinates of the geometric center of the corresponding reference projection in the y-axis direction is not less than the second preset deviation value, determine the geometric center of the projection to be measured and the geometric center of the corresponding reference projection The deviation is not less than the preset deviation.
- the deviation between the measured projection and the reference projection may be determined by comparing the coordinates of the geometric center of the projection to be measured with the coordinates of the geometric center of the corresponding reference projection in a preset coordinate system.
- the preset coordinate system is a two-dimensional coordinate system having an x-axis and a y-axis that are perpendicular to each other.
- the preset coordinate system can be established based on the detection surface of the ray detector, and the upper left corner of the detection surface can be used as the origin of the preset coordinate system.
- the coordinates of the geometric center of a projection to be measured determined by the processing component can be expressed as (x1, y1), where x1 is the horizontal coordinate of the geometric center in a preset coordinate system, and y1 is the geometric center of the projection in a preset The ordinate in the coordinate system.
- the processing component determines that the deviation between the geometric center of the projection to be measured and the geometric center of the reference projection is not less than a preset deviation.
- the sizes of the first preset deviation value and the second preset deviation value can be determined according to actual needs, which is not limited in the embodiment of the present invention.
- the coordinates of the geometric center of a projection to be measured determined by the processing component are (x1, y1), and the coordinates of the geometric center of a reference projection corresponding to the projection to be measured are (x2, y2).
- the processing component may determine that the deviation between the geometric center of the projection to be measured and the geometric center of the reference projection is not Less than the preset deviation.
- Step 403 In the preset coordinate system, when there is a deviation between the geometric center of the first number of projections to be measured and the geometric center of the corresponding reference projection is not less than a preset deviation, and the deviation directions are the same, determine a plurality of collimators. There is a system installation deviation.
- the first number is greater than or equal to the preset number.
- the deviation between the geometric center of the projection to be measured and the geometric center of the corresponding reference projection is not less than the preset deviation, it means that the deviation of the measured projection from the reference projection is larger; if the deviation directions are the same, it means that all deviations are relatively
- the large projections to be measured are deviated in the same direction compared to the reference projection, for example, they are all deviated to the lower right, or they are all deviated to the upper left.
- the processing component can determine that all collimators have system installation deviations, that is, all The deviation between the overall installation position of the collimator and the preset overall installation position is large.
- the processing component may determine multiple There is no system installation deviation for the collimator.
- the preset number can be set according to the number of collimators provided by the radiotherapy equipment. For example, when the radiotherapy equipment includes a large number of collimators, the preset number can be set larger; when the radiotherapy equipment includes a collimator, When less, the preset number can be set smaller.
- the embodiment of the present invention does not limit the size of the preset number.
- the reference projection is a preset projection of the collimator.
- the projection to be measured is indicated by a solid circle and the reference projection is indicated by a dotted circle.
- the preset number is 10
- the processing component can determine that 18 collimators exist in the system
- step 404 and step 405 can be performed. As shown in FIG.
- the processing is performed.
- the component can determine that there are no system installation deviations for the 18 collimators, and steps 406 to 408 can be performed. For example, when the deviation between the geometric center of the 11 projections to be measured and the geometric center of the corresponding reference projection is not less than a preset deviation, but the deviation directions are different, the processing component can also determine that there are no system installations for 18 collimators. deviation.
- the reference projection is a projection of a metal sphere set at the center of the radiotherapy equipment.
- the projection to be measured is indicated by a solid circle
- the reference projection is indicated by a solid circle.
- the processing component can determine that there are no system installation deviations for the 18 collimators. , Step 406 to step 408 may be performed.
- Step 404 Determine the system installation deviation according to the deviation of the geometric center of each projection to be measured and the geometric center of the corresponding reference projection.
- step 404 may include: determining the position offset values of all the projections to be measured according to the deviation between the geometric center of each projection to be measured and the geometric center of the corresponding reference projection; and according to the position offset values of all the projections to be measured Determine system installation deviations.
- the position offset values L of all the projections to be tested satisfy: N is the number of projections to be measured, and ⁇ x i is the difference in the x-axis direction between the coordinates of the geometric center of the i-th (1 ⁇ i ⁇ N) projection to be measured and the coordinates of the geometric center of the corresponding reference projection, ⁇ y i is the difference in the y-axis direction between the coordinates of the geometric center of the i-th projection to be measured and the coordinates of the geometric center of the corresponding reference projection.
- the product of the position offset value L and the conversion coefficient q (0 ⁇ q ⁇ 1) of all the projections to be measured can be used as the system installation deviation. , That is, the system installation deviation is
- Step 405 Adjust the positions of the collimators according to the system installation deviation to adjust the overall installation positions of the multiple collimators.
- the processing component can adjust the overall installation position of all collimators at the same time according to the magnitude and plus or minus of the system installation deviation determined in step 404, so that the deviation of the geometric center is not less than the preset deviation and the deviation direction is the same.
- the number of measured projections is less than the preset number.
- Step 406 When the deviation between the geometric center of the second number of projections to be measured and the geometric center of the corresponding reference projection is not less than a preset deviation, it is determined that there is an installation deviation in each of the second number of collimators.
- the second number is smaller than the preset number.
- the processing component may determine each collimation in the second number of collimators. There is a deviation in the installation.
- the preset number is 10.
- the processing component may determine the corresponding three criteria. There is a mounting deviation for each collimator in the collimator.
- Step 407 Determine the installation deviation of the corresponding collimator according to the deviation between the geometric center of each measured projection in the second number of projections to be measured and the geometric center of the corresponding reference projection.
- the processing component determines that there is an installation deviation of each of the three collimators, and the processing component may determine the geometric center of each projection to be measured from the second number of projections to be measured and the corresponding With reference to the deviation ( ⁇ x, ⁇ y) of the geometric center of the projection, the installation deviation of the corresponding collimator is determined, and then the installation position of each of the 3 collimators is adjusted separately.
- ⁇ x is the difference in the x-axis direction between the coordinate of the geometric center of the projection to be measured and the coordinate of the geometric center of the corresponding reference projection
- ⁇ y is the coordinate of the geometric center of the projection to be measured and the geometric center of the corresponding reference projection.
- Step 408 Adjust the installation position of the collimator according to the installation deviation of the collimator.
- the processing component separately adjusts the installation position of each collimator in the second number of collimators according to the installation deviation of the collimator determined in step 407, so that the geometric center of the projection to be measured and the geometric center of the corresponding reference projection The deviation is smaller than the preset deviation.
- the installation deviation of the film collimator is usually used for detection, and the film is installed on a central plane such as a radiotherapy device by manual installation.
- the radiotherapy equipment includes 9 radioactive sources, and the beams formed by the rays from the 9 radioactive sources pass through the corresponding collimator and pass through the same focal point.
- a film is installed on the plane where the focal point is located. In the case of installation deviations, only system installation deviations of all collimators can be detected.
- the method for detecting the installation of a collimator of a radiotherapy device provided by the embodiment of the present invention can detect the installation deviation of a single collimator, make the installation position of the collimator more accurate, and thereby improve the treatment effect of the radiotherapy device.
- the method for detecting the installation of a collimator of a radiotherapy device can obtain the test projection of a beam on a ray detector that passes through the center plane of the collimator and the radiotherapy device in order, and then compare the Measuring projection and reference projection, and determining the installation deviation of the collimator of the radiotherapy equipment according to the deviation of the projection to be measured and the reference projection, without the need to manually install a film, simplifying the installation deviation detection operation of the collimator, thereby simplifying the collimator Installation position adjustment operation and improved detection accuracy.
- this method can determine whether there is a system installation deviation for all collimators and whether there is an installation deviation for a single collimator, which makes the installation position of the collimator more accurate, thereby improving the treatment effect of the radiotherapy equipment.
- the amount of radiation to the installer is also reduced, thereby reducing the impact on the health of the installer.
- FIG. 9 shows a flowchart of another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- the method can be used for processing component 01 in the implementation environment shown in FIG. 1. It is used to detect the installation stability of the collimator of the radiotherapy equipment. As shown in FIG. 9, the method includes:
- Step 901 Obtain the projections of the beams of the radiotherapy equipment on the ray detector, which pass through the center planes of the collimator and the radiotherapy equipment in sequence, at different rotation angles.
- the isocenter plane refers to a plane that is past the isocenter and is perpendicular to the connection line between the radiotherapy device and the detector.
- Step 902 Compare the projections to be measured obtained under different rotation angles to determine the installation stability of the collimator of the radiotherapy equipment.
- the method for detecting the installation of a collimator of a radiotherapy device detects the radiation of a beam of the radiotherapy device through the center plane of the collimator and the radiotherapy device in order to detect the radiation at different rotation angles.
- the projection to be measured on the device is compared with the projection to be measured under different rotation angles to determine the installation stability of the collimator of the radiotherapy equipment, which simplifies the installation stability detection operation of the collimator and has high detection accuracy.
- FIG. 10 shows a flowchart of another method for detecting the installation of a collimator of a radiotherapy device according to an embodiment of the present invention.
- the method can be used for processing component 01 in the implementation environment shown in FIG. 1. It is used to detect the installation stability of the collimator of the radiotherapy equipment.
- the method may include:
- Step 1001 Obtain the projected projections of the beams of the radiation therapy equipment on the ray detector at different rotation angles through the center planes of the collimator and the radiation therapy equipment in order.
- the isocenter plane refers to a plane that is past the isocenter and is perpendicular to the connection line between the radiotherapy device and the detector.
- Step 1002 Compare the shape and position of the projection to be measured obtained under different rotation angles.
- the radiotherapy device is a conformal intensity modulated radiotherapy device with a multi-leaf collimator.
- the processing component acquires the radiotherapy equipment frame under the rotation angle a1, and passes through the projection P1 of the beam on the ray detector in the center plane of the collimator and the radiotherapy equipment in order, and obtains the radiotherapy equipment frame under the rotation angle a2.
- the beam P2 passing through the center plane of the collimator and the radiotherapy equipment on the ray detector is measured in order to obtain the radiotherapy equipment rack at the rotation angle a3, and then pass through the center plane of the collimator and the radiotherapy equipment in sequence.
- the projection P3 of the beam on the radiation detector to be measured.
- the processing component compares the shapes and positions of the projection P1 to be measured P2 and the projection P3 to be tested, and determines whether the collimator installation is stable according to the comparison result.
- Step 1003 When the shapes and positions of the projections to be measured obtained at different rotation angles are the same, determine that the collimator is installed stably.
- the processing component may determine that the collimator is installed stably; when at least one of the shape and position of the projection to be measured obtained at different rotation angles is different, determine Collimator installation is unstable.
- the method for detecting the installation of the radiation therapy device collimator provided by the embodiment of the present invention, when detecting the stability of the installation of the radiation therapy device collimator, it is also possible to obtain the coordinates of the geometric center of the projection to be measured under different rotation angles of the radiation treatment equipment rack , And then determine whether the corresponding collimator installation is stable according to the multiple sets of coordinates of the geometric center of the projection to be measured.
- the variance of the coordinates of the geometric center of the projection to be measured at all angles can be calculated, and then it is determined whether the variance is greater than a preset variance. When the variance is not greater than the preset variance, it can be determined that the corresponding collimator is installed stably.
- the variance is used to indicate the degree of deviation of a group of data from the average value of the group of data.
- the variance is used to indicate the degree of deviation of the plurality of sets of coordinates of the geometric center of the projection to be measured from the average value of the plurality of sets of coordinates. The smaller the stability, the better the stability of the corresponding collimator.
- the processing component obtains the coordinates (x1, y1) of the geometric center of the projection P1 to be measured; when the radiation therapy equipment rack is rotated to When the angle a2 (a2> a1), the processing component obtains the coordinates (x2, y2) of the geometric center of the projection P1 to be measured; when the radiotherapy equipment rack is rotated to the angle a3 (a3> a2), the processing component obtains the measurement to be measured.
- the processing component calculates the average value of the abscissa of the geometric center of the projection P1 to be measured. And the average value of the ordinate After that, the processing component calculates the variance of the coordinates of the geometric center of the projection P1 to be measured at different angles.
- the variance S 2 is not greater than the preset variance, it can be determined that the corresponding collimator is installed stably.
- the method for detecting the installation of a collimator of a radiotherapy device detects the radiation of a beam of the radiotherapy device through the center plane of the collimator and the radiotherapy device in order to detect the radiation at different rotation angles.
- the projection to be measured on the device is compared with the projection to be measured under different rotation angles to determine the installation stability of the collimator of the radiotherapy equipment, which simplifies the installation stability detection operation of the collimator and has high detection accuracy.
- An embodiment of the present invention also provides a collimator installation detection device for a radiotherapy device, which is used for the processing component 01 in the implementation environment shown in FIG. 1, and the device is used to detect a deviation of the collimator installation of the radiotherapy device, as shown in FIG. 11.
- the device 1100 includes:
- An acquiring module 1110 is configured to acquire a projection to be measured on a radiation detector of a beam passing through a center plane such as a collimator and a radiotherapy device in sequence.
- the determining module 1120 is configured to compare the projection to be measured with the reference projection, and determine the installation deviation of the collimator of the radiotherapy equipment according to the deviation between the projection to be measured and the reference projection.
- the determining module 1120 is configured to determine the geometric center of the projection to be measured and the geometric center of the reference projection respectively; and to determine the installation deviation of the collimator of the radiotherapy equipment according to the deviation between the geometric center of the projection to be measured and the geometric center of the reference projection. .
- the reference projection is a preset projection of a collimator or a projection of a metal ball disposed at a center of a radiotherapy apparatus or the like.
- the radiotherapy device is a focusing radiotherapy device with multiple collimators
- the determining module 1120 is configured to: in a preset coordinate system, when a first number of geometric centers of the projections to be measured and the geometry of the corresponding reference projection exist When the deviation of the center is not less than the preset deviation and the deviation directions are the same, it is determined that there is a system installation deviation of multiple collimators, and the first number is greater than or equal to the preset number; according to the geometric center of each projection to be measured and the corresponding reference projection The deviation of the geometric center determines the installation deviation of the system.
- the determining module 1120 is further configured to: when a deviation between the geometric center of the second number of projections to be measured and the geometric center of the corresponding reference projection is not less than a preset deviation, determine each of the second number of collimators There are installation deviations of each collimator, and the second number is less than a preset number; the corresponding collimator is determined according to the deviation of the geometric center of each measured projection and the corresponding reference projection in the second number of measured projections. Installation deviation.
- the preset coordinate system is a two-dimensional coordinate system with mutually perpendicular x-axis and y-axis.
- the device 1100 may further include:
- a processing module configured to: when the absolute value of the difference between the coordinates of the geometric center of the projection to be measured and the coordinates of the geometric center of the corresponding reference projection in the x-axis direction is not less than the first preset deviation value, and / or, the measurement to be measured When the absolute value of the difference between the coordinates of the geometric center of the projection and the coordinates of the geometric center of the corresponding reference projection in the y-axis direction is not less than the second preset deviation value, determine the geometric center of the projection to be measured and the corresponding reference projection. The deviation of the geometric center is not less than the preset deviation.
- a plurality of collimators are disposed in a collimator, and the device 1100 may further include:
- An adjustment module is used to adjust the position of the collimator according to the system installation deviation to adjust the overall installation position of multiple collimators; adjust the position of the collimator according to the installation deviation of the collimator.
- the installation and detection device for the collimator of the radiotherapy equipment provided by the embodiment of the present invention can obtain the test projections of the beams passing through the center plane of the collimator and the radiotherapy equipment on the ray detector, and then compare the Measuring projection and reference projection, and determining the installation deviation of the collimator of the radiotherapy equipment according to the deviation of the projection to be measured and the reference projection, without the need to manually install a film, simplifying the installation deviation detection operation of the collimator, thereby simplifying the collimator Installation position adjustment operation and improved detection accuracy.
- the device can determine whether there is a system installation deviation for all collimators and whether there is a installation deviation for a single collimator, which makes the installation position of the collimator more accurate, thereby improving the treatment effect of the radiotherapy equipment.
- the amount of radiation to the installer is also reduced, thereby reducing the impact on the health of the installer.
- the embodiment of the present invention also provides another installation and detection device for the collimator of the radiotherapy equipment, which is used for the processing component 01 in the implementation environment shown in FIG. 1, and the device is used to detect the installation stability of the collimator of the radiotherapy equipment, as shown in FIG.
- the device 1200 includes:
- An acquisition module 1210 is configured to acquire a projection of a beam of a radiation therapy equipment on a ray detector, which passes through a center plane such as a collimator and the radiation therapy equipment in sequence at different rotation angles.
- a determining module 1220 is configured to compare the projections to be measured obtained at different rotation angles, and determine the installation stability of the collimator of the radiotherapy equipment.
- the determining module 1220 is used to: compare the shapes and positions of the projections to be measured obtained at different rotation angles; when the shapes and positions of the projections to be measured obtained at different rotation angles are the same, determine that the collimator is installed stably.
- the installation detection device for the collimator of the radiotherapy equipment detects the radiation of the beam of the radiotherapy equipment through the center plane of the collimator and the radiotherapy equipment in order to detect the radiation at different rotation angles.
- the projection to be measured on the device is compared with the projection to be measured under different rotation angles to determine the installation stability of the collimator of the radiotherapy equipment, which simplifies the installation stability detection operation of the collimator and has high detection accuracy.
- An embodiment of the present invention further provides a collimator installation detection device for a radiotherapy apparatus.
- the apparatus includes a memory 1310, a processor 1320, and a processor 1320 stored in the memory 1310 and operable on the processor 1320.
- a computer program 1311, and the processor 1320 executes the computer program to implement the steps of the method for detecting the installation of a collimator of a radiotherapy device as shown in FIG. 2, FIG. 3, or FIG.
- An embodiment of the present invention also provides a computer-readable storage medium.
- the storage medium is a non-volatile readable storage medium.
- the computer-readable storage medium stores a computer program, and the computer program is implemented when executed by a processor. The steps of the method for detecting the installation of a collimator of a radiotherapy device as shown in FIG. 2, FIG. 3, or FIG. 4.
- An embodiment of the present invention also provides a computer program product.
- the computer program product stores instructions, and when the computer program product is run on a computer, the computer enables the radiotherapy equipment shown in FIG. 2, FIG. 3, or FIG. 4 to be collimated. Steps for the installation method of the device.
- An embodiment of the present invention further provides a chip, where the chip includes a programmable logic circuit and / or a program instruction, and is used to implement the radiotherapy equipment alignment shown in FIG. 2, FIG. 3, or FIG. 4 when the chip is running. Steps for the installation method of the device.
- An embodiment of the present invention also provides a collimator installation detection device for a radiotherapy apparatus.
- a memory, a processor, and a computer program stored in the memory and executable on the processor are described.
- the computer executes the computer program, the steps of the method for detecting the installation of the collimator of the radiotherapy equipment shown in FIG. 9 or 10 are implemented.
- An embodiment of the present invention also provides a computer-readable storage medium.
- the storage medium is a non-volatile readable storage medium.
- the computer-readable storage medium stores a computer program, and the computer program is implemented when executed by a processor. Steps of a method for detecting the installation of a collimator of a radiotherapy device as shown in FIG. 9 or 10.
- An embodiment of the present invention also provides a computer program product.
- the computer program product stores instructions, and when the computer program product runs on the computer, the computer enables the computer to implement installation and detection of the radiation therapy device collimator as shown in FIG. 9 or FIG. 10. Method steps.
- An embodiment of the present invention further provides a chip, the chip includes a programmable logic circuit and / or a program instruction, and is used to implement a collimator installation detection of a radiotherapy device as shown in FIG. 9 or 10 when the chip is running. Method steps.
- An embodiment of the present invention further provides a collimator installation detection system for a radiotherapy device, including: a radiotherapy device, a radiation detector, and a processing component.
- the processing component includes a collimator installation detection device of the radiotherapy equipment as shown in FIG. 11;
- the processing component further includes a collimator installation detection device of the radiotherapy equipment as shown in FIG. 12.
- the program may be stored in a computer-readable storage medium.
- the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
本发明公开了一种放疗设备准直器安装检测方法、装置及系统,属于机械设备领域。该方法包括:获取依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差,解决了相关技术中准直器的安装位置调整操作较复杂的问题;简化了准直器的安装偏差检测操作,从而简化了准直器的安装位置调整操作,且提高了检测准确度。同时由于无需人工安装胶片,所以还降低了安装人员受到的辐射量,进而减小对安装人员的健康造成的影响,用于准直器安装位置调整。
Description
本发明涉及机械设备领域,特别涉及一种放疗设备准直器安装检测方法、装置及系统。
在现代医学中,放射治疗是治疗恶性肿瘤的一种重要手段。放射治疗是指采用高能放射线杀死肿瘤,目前主要利用放疗设备进行放射治疗。放疗设备一般包括放射源和准直器。其中,放射源用于发出射线,准直器用于产生满足要求的射野,射野定义了射线照射的范围。放射源发出的射线经过准直器产生的射野后形成射束,并照射至肿瘤病灶区。然而准直器的安装精度常常会直接影响放疗设备的治疗效果。
相关技术中,通常是采用胶片对准直器的安装偏差进行检测,当安装偏差不满足要求时,调整准直器的安装位置。具体的是,检测放射源发出的射线经过准直器后形成的射束在位于等中心平面的胶片上的投影中心是否位于胶片上的预设位置。当投影中心位于预设位置时,则确定准直器的安装偏差满足要求;当投影中心不位于预设位置时,则确定准直器的安装偏差不满足要求,进而调整准直器的安装位置。
在实现本发明的过程中,发明人发现上述技术至少存在以下问题:
采用胶片对准直器的安装偏差进行检测之前,需要人工安装胶片,安装步骤繁琐,且人工安装操作容易对检测准确度产生影响,最终影响准直器的安装精度且位置调整操作较复杂,另外由于胶片设置在等中心位置,因此无法反应单个准直器的安装精度。
发明内容
本发明实施例提供了一种放疗设备准直器安装检测方法、装置及系统,可以解决相关技术中人工安装胶片,安装步骤繁琐,且人工安装操作容易对检测准确度产生影响,最终影响准直器的安装精度且位置调整操作较复杂的问题。 所述技术方案如下:
根据本发明实施例的第一方面,提供一种放疗设备准直器安装检测方法,包括:
获取依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;
对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差。
可选的,所述对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差,包括:
分别确定所述待测投影的几何中心和所述参考投影的几何中心;
根据所述待测投影的几何中心和所述参考投影的几何中心的偏差,确定所述放疗设备准直器的安装偏差。
可选的,所述参考投影为所述准直器的预设投影或为设置在所述放疗设备等中心的金属球的投影。
可选的,所述放疗设备为具有多个准直器的聚焦放疗设备,所述对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差,包括:
在预设坐标系中,当存在第一数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,确定所述多个准直器存在系统安装偏差,所述第一数量大于或等于预设数量;
根据每个所述待测投影的几何中心和对应的参考投影的几何中心的偏差,确定所述系统安装偏差。
可选的,在所述确定所述系统安装偏差之后,所述方法还包括:
当存在第二数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于所述预设偏差时,确定所述第二数量的准直器中每个准直器存在安装偏差,所述第二数量小于所述预设数量;
根据所述第二数量的待测投影中每个待测投影的几何中心和对应的参考投影的几何中心的偏差,确定对应的准直器的安装偏差。
可选的,所述预设坐标系为具有相互垂直的x轴和y轴的二维坐标系,在所述获取依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影之后,所述方法还包括:
当所述待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在x轴方向上的差值的绝对值不小于第一预设偏离值,和/或,所述待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在y轴方向上的差值的绝对值不小于第二预设偏离值时,确定所述待测投影的几何中心与对应的参考投影的几何中心的偏差不小于所述预设偏差。
可选的,所述多个准直器设置在一个准直体中,在所述确定所述系统安装偏差之后,所述方法还包括:
按照所述系统安装偏差调整所述准直体的位置,以调整所述多个准直器的整体安装位置;
在所述确定对应的准直器的安装偏差之后,所述方法还包括:
按照所述准直器的安装偏差调整所述准直器的安装位置。
根据本发明实施例的第二方面,提供了一种放疗设备准直器安装检测方法,包括:
获取所述放疗设备机架在不同旋转角度下,依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;
对比不同旋转角度下获得的所述待测投影,确定所述放疗设备准直器安装稳定性。
可选的,所述对比不同旋转角度下获得的所述待测投影,确定所述放疗设备准直器安装稳定性,包括:
对比不同旋转角度下获得的所述待测投影的形状及位置;
当不同旋转角度下获得的所述待测投影的形状及位置均相同时,确定所述准直器安装稳定。
根据本发明实施例的第三方面,提供了一种放疗设备准直器安装检测装置,包括:
获取模块,用于获取依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;
确定模块,用于对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差。
根据本发明实施例的第四方面,提供了一种放疗设备准直器安装检测装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述方法的步 骤。
根据本发明实施例的第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
根据本发明实施例的第六方面,提供了一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机实现如第一方面所述方法的步骤。
根据本发明实施例的第七方面,提供了一种放疗设备准直器安装检测装置,包括:
获取模块,用于获取所述放疗设备机架在不同旋转角度下,依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;
确定模块,用于对比不同旋转角度下获得的所述待测投影,确定所述放疗设备准直器安装稳定性。
根据本发明实施例的第八方面,提供了一种放疗设备准直器安装检测装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第二方面所述方法的步骤。
根据本发明实施例的第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第二方面所述方法的步骤。
根据本发明实施例的第十方面,提供了一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机实现如第二方面所述方法的步骤。
根据本发明实施例的第十一方面,提供了一种放疗设备准直器安装检测系统,包括:放疗设备,射线探测器,以及处理组件,
其中,依次穿过所述准直器和所述放疗设备等中心平面的射束在所述射线探测器上形成有待测投影;
所述处理组件包括第三方面所述的放疗设备准直器安装检测装置,或者包括第四方面所述的放疗设备准直器安装检测装置。
可选的,所述处理组件还包括第七方面所述的放疗设备准直器安装检测装置,或者包括第八方面所述的放疗设备准直器安装检测装置。
本发明实施例提供的技术方案的有益效果至少包括:
能够获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,然后对比待测投影和参考投影,并根据待测投影和参考投影的偏差,确定放疗设备准直器的安装偏差,无需人工安装胶片,简化了准直器的安装偏差检测操作,从而简化了准直器的安装位置调整操作,且提高了检测准确度。同时由于无需人工安装胶片,所以还降低了安装人员受到的辐射量,进而减小对安装人员的健康造成的影响。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例所涉及的实施环境的示意图;
图2是本发明实施例提供的一种放疗设备准直器安装检测方法的流程图;
图3是本发明实施例提供的另一种放疗设备准直器安装检测方法的流程图;
图4是本发明实施例提供的又一种放疗设备准直器安装检测方法的流程图;
图5是本发明实施例提供的一种聚焦放疗设备的示意图;
图6是本发明实施例提供的待测投影和对应的参考投影的示意图;
图7是本发明实施例提供的待测投影和对应的参考投影的示意图;
图8是本发明实施例提供的待测投影和对应的参考投影的示意图;
图9是本发明实施例提供的再一种放疗设备准直器安装检测方法的流程图;
图10是本发明实施例提供的另一种放疗设备准直器安装检测方法的流程图;
图11是本发明实施例提供的一种放疗设备准直器安装检测装置的结构示意图;
图12是本发明实施例提供的又一种放疗设备准直器安装检测装置的结构示意图;
图13是本发明实施例提供的再一种放疗设备准直器安装检测装置的结构示意图。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参考图1,其示出了本发明实施例所涉及的实施环境的示意图。该实施环境可以包括处理组件01,放疗设备治疗头02和射线探测器03,治疗头02包括至少一个放射源,每个放射源对应设置有准直器,治疗头02设置在机架04上,并能够随着机架03转动。
其中,放疗设备可以为具有多个准直器的聚焦放疗设备,也可以为具有1个多叶准直器的适形调强放疗设备,本发明实施例对放疗设备的类型不做限定。
示例的,机架可以为滚筒式机架,也可以是C形臂、悬臂式、半弧形等机架。放射源可以为加速器射线源(一般可以是X射线源)或者为同位素射线源(一般可以是钴源)。
其中,放射源用于发出射线,准直器用于产生满足要求的射野,放射源发出的射线经过准直器产生的射野后形成射束。在本发明实施例中,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上形成待测投影,本发明实施例通过对待测投影和参考投影进行对比,具体是将待测投影和参考投影在射线探测器上的位置进行对比,确定出放疗设备准直器的安装偏差。其中,等中心平面指的是过等中心且垂直于放疗设备与探测器连线的平面。
在本发明实施例中,参考投影可以通过多种方式得到。比如,参考投影可以为准直器的预设投影,又比如,参考投影可以为设置在放疗设备等中心的金属球的投影。示例的,该金属球可以为钨球。
请参考图2,其示出了本发明实施例提供的一种放疗设备准直器安装检测方法的流程图,该方法可以用于图1所示的实施环境中的处理组件01,该方法用于检测放疗设备准直器安装偏差,如图2所示,该方法可以包括:
步骤201、获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
其中,等中心平面指的是过等中心且垂直于放疗设备与探测器连线的平面。
步骤202、对比待测投影和参考投影,并根据待测投影和参考投影的偏差,确定放疗设备准直器的安装偏差。
对比待测投影和参考投影具体是对比待测投影和参考投影在射线探测器上的位置。在本步骤中,对比待测投影和参考投影在射线探测器上的位置,并根据待测投影和参考投影在射线探测器上的位置的偏差,确定放疗设备准直器的安装偏差。
综上所述,本发明实施例提供的放疗设备准直器安装检测方法,能够获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,然后对比待测投影和参考投影,并根据待测投影和参考投影的偏差,确定放疗设备准直器的安装偏差,无需人工安装胶片,简化了准直器的安装偏差检测操作,从而简化了准直器的安装位置调整操作,且提高了检测准确度。同时由于无需人工安装胶片,所以还降低了安装人员受到的辐射量,进而减小对安装人员的健康造成的影响。
请参考图3,其示出了本发明实施例提供的另一种放疗设备准直器安装检测方法的流程图,该方法可以用于图1所示的实施环境中的处理组件01,该方法用于检测放疗设备准直器安装偏差,如图3所示,该方法可以包括:
步骤301、获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
步骤302、分别确定待测投影的几何中心和参考投影的几何中心。
步骤303、根据待测投影的几何中心和参考投影的几何中心的偏差,确定放疗设备准直器的安装偏差。
示例的,当放疗设备为具有1个多叶准直器的适形调强放疗设备时,处理组件可以先获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,再确定待测投影的几何中心以及参考投影的几何中心,然后据待测投影的几何中心和参考投影的几何中心的偏差,确定该多叶准直器的安装偏差。比如,当待测投影的几何中心和参考投影的几何中心的偏差不小于预设 偏差时,可以对该多叶准直器的安装位置进行调整,以使该多叶准直器的安装位置满足安装要求。
综上所述,本发明实施例提供的放疗设备准直器安装检测方法,能够获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,然后对比待测投影和参考投影,并根据待测投影和参考投影的偏差,确定放疗设备准直器的安装偏差,无需人工安装胶片,简化了准直器的安装偏差检测操作,从而简化了准直器的安装位置调整操作,且提高了检测准确度。同时由于无需人工安装胶片,所以还降低了安装人员受到的辐射量,进而减小对安装人员的健康造成的影响。
请参考图4,其示出了本发明实施例提供的又一种放疗设备准直器安装检测方法的流程图,该方法可以用于图1所示的实施环境中的处理组件01,该方法用于检测放疗设备准直器安装偏差,其中,放疗设备可以为具有多个准直器的聚焦放疗设备,如图4所示,该方法可以包括:
步骤401、获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
示例的,放疗设备为具有18个准直器的聚焦放疗设备,放疗设备包括18个放射源,如图5所示,18个放射源分为2组,2组放射源并排设置,每组放射源发出的射线经过对应的准直器后形成的射束经过同一聚焦点。每个依次穿过准直器和放疗设备等中心平面的射束在射线探测器03上形成一个待测投影,共18个待测投影,处理组件01获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
步骤402、当待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在x轴方向上的差值的绝对值不小于第一预设偏离值,和/或,待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在y轴方向上的差值的绝对值不小于第二预设偏离值时,确定待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差。
在本发明实施例中,可以通过在预设坐标系中对比待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标,确定待测投影和参考投影的偏差。其中,预设坐标系为具有相互垂直的x轴和y轴的二维坐标系。
可选的,可以基于射线探测器的探测面建立该预设坐标系,并将探测面的 左上角作为该预设坐标系的原点。示例的,处理组件确定的一个待测投影的几何中心的坐标可以表示为(x1,y1),其中,x1为该几何中心在预设坐标系中的横坐标,y1为该几何中心在预设坐标系中的纵坐标。
也即是,对于每个待测投影,当该待测投影的几何中心的横坐标x1和对应的参考投影的几何中心的横坐标x2的差值的绝对值|x1-x2|不小于第一预设偏离值,和/或,该待测投影的几何中心的纵坐标y1和该参考投影的几何中心的纵坐标y2的差值的绝对值|y1-y2|不小于第二预设偏离值时,处理组件确定该待测投影的几何中心与该参考投影的几何中心的偏差不小于预设偏差。其中,第一预设偏离值和第二预设偏离值的大小可以根据实际需要来确定,本发明实施例对此不作限定。
示例的,处理组件确定的一个待测投影的几何中心的坐标为(x1,y1),与该待测投影对应的参考投影的几何中心的坐标为(x2,y2)。假设|x1-x2|大于第一预设偏离值,且|y1-y2|大于第二预设偏离值,那么处理组件可以确定该待测投影的几何中心与该参考投影的几何中心的偏差不小于预设偏差。
步骤403、在预设坐标系中,当存在第一数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,确定多个准直器存在系统安装偏差。
其中,第一数量大于或等于预设数量。
如果待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,则表明待测投影相较于参考投影的偏离程度较大;如果偏差方向相同,则表明所有偏离程度较大的待测投影相较于参考投影均朝同一方向偏离,比如均朝右下方偏离,或者均朝左上方偏离等。那么当存在第一数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,处理组件可以确定所有准直器存在系统安装偏差,即所有准直器的整体安装位置与预设整体安装位置的偏离程度较大。
另外,在预设坐标系中,当存在第一数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,但偏差方向不相同时,处理组件可以确定多个准直器不存在系统安装偏差。
其中,预设数量可以根据放疗设备具有的准直器的数量来设置,比如,当放疗设备包括的准直器较多时,预设数量可以设置得较大一些;当放疗设备包括的准直器较少时,预设数量可以设置得较小一些。本发明实施例对预设数量 的大小不作限定。
假设参考投影为准直器的预设投影,如图6所示,待测投影用实线圆圈表示,参考投影用虚线圆圈表示,共有18个待测投影。假设预设数量为10,当存在11个待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,处理组件可以确定18个准直器存在系统安装偏差,可以执行步骤404和步骤405;如图7所示,当存在3个待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,处理组件可以确定18个准直器不存在系统安装偏差,可以执行步骤406至步骤408。示例的,当存在11个待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,但偏差方向不相同时,处理组件也可以确定18个准直器不存在系统安装偏差。
又比如,参考投影为设置在放疗设备等中心的金属球的投影,如图8所示,待测投影用实线圆圈表示,参考投影用实心圆表示,共有18个待测投影,假设预设数量为10,当存在4个待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,处理组件可以确定18个准直器不存在系统安装偏差,可以执行步骤406至步骤408。
步骤404、根据每个待测投影的几何中心和对应的参考投影的几何中心的偏差,确定系统安装偏差。
可选的,步骤404可以包括:根据每个待测投影的几何中心和对应的参考投影的几何中心的偏差,确定所有待测投影的位置偏移值;根据所有待测投影的位置偏移值确定系统安装偏差。
其中,所有待测投影的位置偏移值L满足:
N为待测投影的个数,Δx
i为第i(1≤i≤N)个待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在x轴方向上的差值,Δy
i为第i个待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在y轴方向上的差值。
步骤405、按照系统安装偏差调整准直体的位置,以调整多个准直器的整体安装位置。
在本步骤中,处理组件可以按照步骤404确定的系统安装偏差的大小和正负同时调整所有准直器的整体安装位置,以使几何中心的偏差不小于预设偏差,且偏差方向相同的待测投影的数量小于预设数量。
示例的,射线探测器的探测面的左上角为预设坐标系的原点,假设所有待测投影的位置偏移值L=(0.5,0.8),q=0.7,由于0.5大于0,0.8大于0,表明所有偏离程度较大的待测投影均朝右下方偏离,那么可以按照系统安装偏差(0.5×0.7,0.8×0.7)同时将所有准直器朝左上方移动。
步骤406、当存在第二数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差时,确定第二数量的准直器中每个准直器存在安装偏差。
其中,第二数量小于预设数量。
在本步骤中,当存在第二数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差时,处理组件可以确定第二数量的准直器中每个准直器存在安装偏差。
示例的,如图7所示,预设数量为10,当存在3个待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差时,处理组件可以确定对应3个准直器中每个准直器存在安装偏差。
步骤407、根据第二数量的待测投影中每个待测投影的几何中心和对应的参考投影的几何中心的偏差,确定对应的准直器的安装偏差。
示例的,如图7所示,处理组件确定3个准直器中每个准直器存在安装偏差,处理组件可以根据第二数量的待测投影中每个待测投影的几何中心和对应的参考投影的几何中心的偏差(Δx,Δy),确定对应的准直器的安装偏差,进而单独调整3个准直器中每个准直器的安装位置。其中,Δx为待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在x轴方向上的差值,Δy为待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在y轴方向上的差值。同样的,由于物体投影位置的偏离程度通常都是大于物体的实际安装位置的偏离程度,所以可以将待测投影的几何中心和对应的参考投影的几何中 心的偏差(Δx,Δy)和转换系数q(0<q<1)的乘积作为准直器的安装偏差。
步骤408、按照准直器的安装偏差调整准直器的安装位置。
处理组件按照步骤407中确定的准直器的安装偏差,单独调整第二数量的准直器中每个准直器的安装位置,以使待测投影的几何中心与对应的参考投影的几何中心的偏差小于预设偏差。
需要说明的是,相关技术中,通常是采用胶片对准直器的安装偏差进行检测,该胶片通过人工安装方式被安装在放疗设备等中心平面。比如,放疗设备包括9个放射源,9个放射源发出的射线经过对应的准直器后形成的射束经过同一聚焦点,该聚焦点所在的平面上安装有胶片,在检测准直器的安装偏差时,仅能检测所有准直器的系统安装偏差。具体的,当射束在胶片上的投影中心位于预设位置时,则确定所有准直器不存在系统安装偏差;当投影中心不位于预设位置时,则确定所有准直器存在系统安装偏差,进而同时调整所有准直器的安装位置。该检测方式无法对单个准直器的安装偏差进行检测,无法确定单个准直器是否存在安装偏差。
而在本发明实施例中,通过步骤406至步骤408,可以确定单个准直器是否存在安装偏差,并在单个准直器存在安装偏差时,能够确定单个准直器的安装偏差,进而按照单个准直器的安装偏差调整该准直器的安装位置。相较于相关技术,本发明实施例提供的放疗设备准直器安装检测方法能够对单个准直器的安装偏差进行检测,使得准直器的安装位置更加精准,进而提高放疗设备的治疗效果。
综上所述,本发明实施例提供的放疗设备准直器安装检测方法,能够获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,然后对比待测投影和参考投影,并根据待测投影和参考投影的偏差,确定放疗设备准直器的安装偏差,无需人工安装胶片,简化了准直器的安装偏差检测操作,从而简化了准直器的安装位置调整操作,且提高了检测准确度。同时,通过该方法可以确定所有准直器是否存在系统安装偏差,以及单个准直器是否存在安装偏差,使得准直器的安装位置更加精准,进而提高放疗设备的治疗效果。另外由于无需人工安装胶片,所以还降低了安装人员受到的辐射量,进而减小对安装人员的健康造成的影响。
请参考图9,其示出了本发明实施例提供的再一种放疗设备准直器安装检 测方法的流程图,该方法可以用于图1所示的实施环境中的处理组件01,该方法用于检测放疗设备准直器安装稳定性,如图9所示,该方法包括:
步骤901、获取放疗设备机架在不同旋转角度下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
其中,等中心平面指的是过等中心且垂直于放疗设备与探测器连线的平面。
步骤902、对比不同旋转角度下获得的待测投影,确定放疗设备准直器安装稳定性。
综上所述,本发明实施例提供的放疗设备准直器安装检测方法,通过获取放疗设备机架在不同旋转角度下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,并对比不同旋转角度下获得的待测投影,确定放疗设备准直器安装稳定性,简化了准直器的安装稳定性检测操作,且检测准确度较高。
请参考图10,其示出了本发明实施例提供的另一种放疗设备准直器安装检测方法的流程图,该方法可以用于图1所示的实施环境中的处理组件01,该方法用于检测放疗设备准直器安装稳定性,如图10所示,该方法可以包括:
步骤1001、获取放疗设备机架在不同旋转角度下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
其中,等中心平面指的是过等中心且垂直于放疗设备与探测器连线的平面。
步骤1002、对比不同旋转角度下获得的待测投影的形状及位置。
示例的,放疗设备为具有1个多叶准直器的适形调强放疗设备。处理组件获取放疗设备机架在旋转角度a1下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影P1,获取放疗设备机架在旋转角度a2下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影P2,获取放疗设备机架在旋转角度a3下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影P3。处理组件对比待测投影P1、待测投影P2和待测投影P3的形状及位置,根据对比结果确定准直器安装是否稳定。
步骤1003、当不同旋转角度下获得的待测投影的形状及位置均相同时,确定准直器安装稳定。
当不同旋转角度下获得的待测投影的形状及位置均相同时,处理组件可以确定准直器安装稳定;当不同旋转角度下获得的待测投影的形状和位置中至少一个不相同时,确定准直器安装不稳定。
此外,采用本发明实施例提供的放疗设备准直器安装检测方法,检测放疗设备准直器安装稳定性时,还可以获取放疗设备机架在不同旋转角度下,待测投影的几何中心的坐标,然后根据待测投影的几何中心的多组坐标确定对应的准直器安装是否稳定。
可选的,可以计算待测投影的几何中心的坐标在所有角度下的方差,再判断该方差是否大于预设方差。当该方差不大于预设方差时,可以确定对应的准直器安装稳定。
通常,方差用于指示一组数据与该组数据的平均值的偏离程度,方差越小,该组数据的波动越小,稳定性越好。在本发明实施例中,方差用于指示待测投影的几何中心的多组坐标与该多组坐标的平均值的偏离程度,该方差越小,表明待测投影的几何中心的坐标的波动越小,稳定性越好,进而表明对应的准直器安装稳定性越好。
示例的,对于某一待测投影P1来说,当放疗设备机架旋转至角度a1时,处理组件获取该待测投影P1的几何中心的坐标(x1,y1);当放疗设备机架旋转至角度a2(a2>a1)时,处理组件获取该待测投影P1的几何中心的坐标(x2,y2);当放疗设备机架旋转至角度a3(a3>a2)时,处理组件获取该待测投影P1的几何中心的坐标(x3,y3);当放疗设备机架旋转至角度a4(a4>a3)时,处理组件获取该待测投影P1的几何中心的坐标(x4,y4)。然后,处理组件计算该待测投影P1的几何中心的横坐标的平均值
以及纵坐标的平均值
之后,处理组件计算该待测投影P1的几何中心的坐标在不同角度下的方差
当方差S
2不大于预设方差时,可以确定对应的准直器安装稳定。
综上所述,本发明实施例提供的放疗设备准直器安装检测方法,通过获取 放疗设备机架在不同旋转角度下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,并对比不同旋转角度下获得的待测投影,确定放疗设备准直器安装稳定性,简化了准直器的安装稳定性检测操作,且检测准确度较高。
需要说明的是,本发明实施例提供的放疗设备准直器安装检测方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
本发明实施例还提供了一种放疗设备准直器安装检测装置,用于图1所示的实施环境中的处理组件01,该装置用于检测放疗设备准直器安装偏差,如图11所示,该装置1100包括:
获取模块1110,用于获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
确定模块1120,用于对比待测投影和参考投影,并根据待测投影和参考投影的偏差,确定放疗设备准直器的安装偏差。
可选的,确定模块1120用于:分别确定待测投影的几何中心和参考投影的几何中心;根据待测投影的几何中心和参考投影的几何中心的偏差,确定放疗设备准直器的安装偏差。
可选的,参考投影为准直器的预设投影或为设置在放疗设备等中心的金属球的投影。
可选的,放疗设备为具有多个准直器的聚焦放疗设备,确定模块1120用于:在预设坐标系中,当存在第一数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,确定多个准直器存在系统安装偏差,第一数量大于或等于预设数量;根据每个待测投影的几何中心和对应的参考投影的几何中心的偏差,确定系统安装偏差。
可选的,确定模块1120还用于:当存在第二数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差时,确定第二数量的准直器中每个准直器存在安装偏差,第二数量小于预设数量;根据第二数量的待测投影中每个待测投影的几何中心和对应的参考投影的几何中心的偏差,确定对应的准直器的安装偏差。
可选的,预设坐标系为具有相互垂直的x轴和y轴的二维坐标系,该装置1100还可以包括:
处理模块,用于当待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在x轴方向上的差值的绝对值不小于第一预设偏离值,和/或,待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在y轴方向上的差值的绝对值不小于第二预设偏离值时,确定待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差。
可选的,多个准直器设置在一个准直体中,该装置1100还可以包括:
调整模块,用于按照系统安装偏差调整准直体的位置,以调整多个准直器的整体安装位置;按照准直器的安装偏差调整准直器的位置。
综上所述,本发明实施例提供的放疗设备准直器安装检测装置,能够获取依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,然后对比待测投影和参考投影,并根据待测投影和参考投影的偏差,确定放疗设备准直器的安装偏差,无需人工安装胶片,简化了准直器的安装偏差检测操作,从而简化了准直器的安装位置调整操作,且提高了检测准确度。同时,通过该装置可以确定所有准直器是否存在系统安装偏差,以及单个准直器是否存在安装偏差,使得准直器的安装位置更加精准,进而提高放疗设备的治疗效果。另外由于无需人工安装胶片,所以还降低了安装人员受到的辐射量,进而减小对安装人员的健康造成的影响。
本发明实施例还提供了另一种放疗设备准直器安装检测装置,用于图1所示的实施环境中的处理组件01,该装置用于检测放疗设备准直器安装稳定性,如图12所示,该装置1200包括:
获取模块1210,用于获取放疗设备机架在不同旋转角度下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影。
确定模块1220,用于对比不同旋转角度下获得的待测投影,确定放疗设备准直器安装稳定性。
可选的,确定模块1220用于:对比不同旋转角度下获得的待测投影的形状及位置;当不同旋转角度下获得的待测投影的形状及位置均相同时,确定准直器安装稳定。
综上所述,本发明实施例提供的放疗设备准直器安装检测装置,通过获取 放疗设备机架在不同旋转角度下,依次穿过准直器和放疗设备等中心平面的射束在射线探测器上的待测投影,并对比不同旋转角度下获得的待测投影,确定放疗设备准直器安装稳定性,简化了准直器的安装稳定性检测操作,且检测准确度较高。
本发明实施例还提供了一种放疗设备准直器安装检测装置,如图13所示,包括存储器1310、处理器1320以及存储在所述存储器1310中并可在所述处理器1320上运行的计算机程序1311,所述处理器1320执行所述计算机程序时实现如图2、图3或图4所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,该存储介质为非易失性可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如图2、图3或图4所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机实现如图2、图3或图4所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如图2、图3或图4所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种放疗设备准直器安装检测装置,参考图13,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如图9或图10所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,该存储介质为非易失性可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如图9或图10所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机实现如图9或图10所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于实现如图9或图10所示的放疗设备准直器安装检测方法的步骤。
本发明实施例还提供了一种放疗设备准直器安装检测系统,包括:放疗设备,射线探测器,以及处理组件,
其中,处理组件包括如图11所示的放疗设备准直器安装检测装置;
依次穿过准直器和放疗设备等中心平面的射束在射线探测器上形成有待测投影。
可选的,处理组件还包括如图12所示的放疗设备准直器安装检测装置。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (13)
- 一种放疗设备准直器安装检测方法,其特征在于,包括:获取依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差。
- 根据权利要求1所述的方法,其特征在于,所述对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差,包括:分别确定所述待测投影的几何中心和所述参考投影的几何中心;根据所述待测投影的几何中心和所述参考投影的几何中心的偏差,确定所述放疗设备准直器的安装偏差。
- 根据权利要求1所述的方法,其特征在于,所述参考投影为所述准直器的预设投影或为设置在所述放疗设备等中心的金属球的投影。
- 根据权利要求1所述的方法,其特征在于,所述放疗设备为具有多个准直器的聚焦放疗设备,所述对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差,包括:在预设坐标系中,当存在第一数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于预设偏差,且偏差方向相同时,确定所述多个准直器存在系统安装偏差,所述第一数量大于或等于预设数量;根据每个所述待测投影的几何中心和对应的参考投影的几何中心的偏差,确定所述系统安装偏差。
- 根据权利要求4所述的方法,其特征在于,在所述确定所述系统安装偏差之后,所述方法还包括:当存在第二数量的待测投影的几何中心与对应的参考投影的几何中心的偏差不小于所述预设偏差时,确定所述第二数量的准直器中每个准直器存在安装 偏差,所述第二数量小于所述预设数量;根据所述第二数量的待测投影中每个待测投影的几何中心和对应的参考投影的几何中心的偏差,确定对应的准直器的安装偏差。
- 根据权利要求4所述的方法,其特征在于,所述预设坐标系为具有相互垂直的x轴和y轴的二维坐标系,在所述获取依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影之后,所述方法还包括:当所述待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在x轴方向上的差值的绝对值不小于第一预设偏离值,和/或,所述待测投影的几何中心的坐标和对应的参考投影的几何中心的坐标在y轴方向上的差值的绝对值不小于第二预设偏离值时,确定所述待测投影的几何中心与对应的参考投影的几何中心的偏差不小于所述预设偏差。
- 根据权利要求5所述的方法,其特征在于,所述多个准直器设置在一个准直体中,在所述确定所述系统安装偏差之后,所述方法还包括:按照所述系统安装偏差调整所述准直体的位置,以调整所述多个准直器的整体安装位置;在所述确定对应的准直器的安装偏差之后,所述方法还包括:按照所述准直器的安装偏差调整所述准直器的安装位置。
- 一种放疗设备准直器安装检测方法,其特征在于,包括:获取所述放疗设备机架在不同旋转角度下,依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;对比不同旋转角度下获得的所述待测投影,确定所述放疗设备准直器安装稳定性。
- 根据权利要求8所述的方法,其特征在于,所述对比不同旋转角度下获得的所述待测投影,确定所述放疗设备准直器安装稳定性,包括:对比不同旋转角度下获得的所述待测投影的形状及位置;当不同旋转角度下获得的所述待测投影的形状及位置均相同时,确定所述准直器安装稳定。
- 一种放疗设备准直器安装检测装置,其特征在于,包括:获取模块,用于获取依次穿过所述准直器和所述放疗设备等中心平面的射束在射线探测器上的待测投影;确定模块,用于对比所述待测投影和参考投影,并根据所述待测投影和所述参考投影的偏差,确定所述放疗设备准直器的安装偏差。
- 一种放疗设备准直器安装检测系统,其特征在于,包括:放疗设备,射线探测器,以及处理组件,其中,所述处理组件包括权利要求10所述的放疗设备准直器安装检测装置;依次穿过所述准直器和所述放疗设备等中心平面的射束在所述射线探测器上形成有待测投影。
- 一种放疗设备准直器安装检测装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述方法的步骤。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述方法的步骤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/095471 WO2020010583A1 (zh) | 2018-07-12 | 2018-07-12 | 放疗设备准直器安装检测方法、装置及系统 |
US17/259,905 US12011617B2 (en) | 2018-07-12 | 2018-07-12 | Method, device, and system for detecting installation of collimator of radiotherapy equipment |
CN201880005153.1A CN110913952B (zh) | 2018-07-12 | 2018-07-12 | 放疗设备准直器安装检测方法、装置及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/095471 WO2020010583A1 (zh) | 2018-07-12 | 2018-07-12 | 放疗设备准直器安装检测方法、装置及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020010583A1 true WO2020010583A1 (zh) | 2020-01-16 |
Family
ID=69141919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/095471 WO2020010583A1 (zh) | 2018-07-12 | 2018-07-12 | 放疗设备准直器安装检测方法、装置及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12011617B2 (zh) |
CN (1) | CN110913952B (zh) |
WO (1) | WO2020010583A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101209368A (zh) * | 2006-12-25 | 2008-07-02 | 深圳市海博科技有限公司 | 一种放射治疗中病人靶区自动定位的方法 |
CN101209367A (zh) * | 2006-12-25 | 2008-07-02 | 深圳市海博科技有限公司 | 一种放射治疗中病人靶区剂量反演的方法 |
CN101969852A (zh) * | 2008-03-04 | 2011-02-09 | 断层放疗公司 | 用于改进图像分割的方法和系统 |
JP2016152992A (ja) * | 2016-04-22 | 2016-08-25 | 国立研究開発法人量子科学技術研究開発機構 | 放射線治療における患者自動位置決め装置及び方法並びに患者自動位置決め用プログラム |
CN107198832A (zh) * | 2016-06-14 | 2017-09-26 | 上海联影医疗科技有限公司 | 统一的轨迹生成方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010041752B4 (de) | 2010-09-30 | 2012-06-28 | Siemens Aktiengesellschaft | Kalibrierung eines Lamellenkollimators |
CN102554704A (zh) | 2011-12-29 | 2012-07-11 | 渤海造船厂集团有限公司 | 非连续平面平面度在线测量系统和方法 |
CN202844376U (zh) | 2012-08-31 | 2013-04-03 | 山东新华医疗器械股份有限公司 | 医用加速器的准直器零位校准装置 |
US9844358B2 (en) * | 2014-06-04 | 2017-12-19 | Varian Medical Systems, Inc. | Imaging-based self-adjusting radiation therapy systems, devices, and methods |
US10067497B2 (en) | 2015-05-06 | 2018-09-04 | GM Global Technology Operations LLC | System and method for implementing compensation of global and local offsets in computer controlled systems |
-
2018
- 2018-07-12 US US17/259,905 patent/US12011617B2/en active Active
- 2018-07-12 CN CN201880005153.1A patent/CN110913952B/zh active Active
- 2018-07-12 WO PCT/CN2018/095471 patent/WO2020010583A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101209368A (zh) * | 2006-12-25 | 2008-07-02 | 深圳市海博科技有限公司 | 一种放射治疗中病人靶区自动定位的方法 |
CN101209367A (zh) * | 2006-12-25 | 2008-07-02 | 深圳市海博科技有限公司 | 一种放射治疗中病人靶区剂量反演的方法 |
CN101969852A (zh) * | 2008-03-04 | 2011-02-09 | 断层放疗公司 | 用于改进图像分割的方法和系统 |
JP2016152992A (ja) * | 2016-04-22 | 2016-08-25 | 国立研究開発法人量子科学技術研究開発機構 | 放射線治療における患者自動位置決め装置及び方法並びに患者自動位置決め用プログラム |
CN107198832A (zh) * | 2016-06-14 | 2017-09-26 | 上海联影医疗科技有限公司 | 统一的轨迹生成方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110913952A (zh) | 2020-03-24 |
US20210290980A1 (en) | 2021-09-23 |
CN110913952B (zh) | 2022-03-29 |
US12011617B2 (en) | 2024-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11691031B2 (en) | Systems, methods, and devices for radiation beam asymmetry measurements using electronic portal imaging devices | |
US11992359B2 (en) | Imaging-based self-adjusting radiation therapy systems, devices, and methods | |
US10702710B2 (en) | System and methods for processing images to measure collimator leaf and collimator performance | |
JP2020521553A (ja) | 放射線に基づく治療ビームの位置較正及び検証 | |
CN111132730B (zh) | 与放射治疗设备一起使用的患者监测系统的校准方法 | |
EP3062289B1 (en) | Quality assurance system for radiation treatment machine and quality assurance method thereof | |
US20090238338A1 (en) | Radiotherapeutic apparatus | |
CN109414235B (zh) | 使用辐射成像的体模设置和源到表面距离验证 | |
WO2020029148A1 (zh) | 一种放疗设备准直器校正方法及装置 | |
CN116963803A (zh) | 辐射疗法系统中的束斑调整 | |
Du et al. | A robust Hough transform algorithm for determining the radiation centers of circular and rectangular fields with subpixel accuracy | |
US10596394B2 (en) | Beam angle direction determination | |
WO2020010583A1 (zh) | 放疗设备准直器安装检测方法、装置及系统 | |
US11648421B2 (en) | Beam spot tuning in a radiation therapy system based on radiation field measurements | |
JP2022165419A (ja) | Linacアイソセンタ品質の評価のためのx線透過画像分析 | |
Zhu et al. | Long‐term stability and mechanical characteristics of kV digital imaging system for proton radiotherapy | |
US20240115228A1 (en) | Detection device for determining a position of a phantom | |
CN114113173B (zh) | 一种x射线设备、应用于x射线设备中的散射校正方法 | |
US20240252138A1 (en) | Calibration phantom, method, and system | |
WO2019000234A1 (zh) | Ct系统参数确定方法及装置 | |
JP2023023437A (ja) | 粒子線治療システム、および治療計画装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18926035 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18926035 Country of ref document: EP Kind code of ref document: A1 |