WO2020010538A1 - 远心镜头和激光加工设备 - Google Patents

远心镜头和激光加工设备 Download PDF

Info

Publication number
WO2020010538A1
WO2020010538A1 PCT/CN2018/095233 CN2018095233W WO2020010538A1 WO 2020010538 A1 WO2020010538 A1 WO 2020010538A1 CN 2018095233 W CN2018095233 W CN 2018095233W WO 2020010538 A1 WO2020010538 A1 WO 2020010538A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curved surface
telecentric
telecentric lens
optical axis
Prior art date
Application number
PCT/CN2018/095233
Other languages
English (en)
French (fr)
Inventor
陈玉庆
周朝明
彭金明
高云峰
Original Assignee
大族激光科技产业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大族激光科技产业集团股份有限公司 filed Critical 大族激光科技产业集团股份有限公司
Priority to PCT/CN2018/095233 priority Critical patent/WO2020010538A1/zh
Priority to CN201880094741.7A priority patent/CN112292627B/zh
Publication of WO2020010538A1 publication Critical patent/WO2020010538A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the invention relates to the technical field of optical lenses, in particular to a telecentric lens and laser processing equipment.
  • UV laser After rapid development in recent years, the UV laser has developed from 0.2w to 0.5w at the beginning to the current laser power density higher than 10w. Due to the increase of laser power, the application field of UV laser is not only staying on the product identification, but also more widely used in the fields of wafer cutting, flexible circuit board cutting, and thin plate cutting.
  • a telecentric lens for ultraviolet laser light includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens which are sequentially arranged along an incident direction of light rays, and the first lens is a biconcave negative lens.
  • the second lens is a meniscus negative lens
  • the third lens is a meniscus positive lens
  • the fourth lens is a plano-convex positive lens
  • the fifth lens is a plano-convex positive lens
  • the telecentric lens The focal length is 254mm
  • the allowable tolerance is 10%
  • the upper deviation is + 5%
  • the lower deviation is -5%
  • the field of view is 42 °.
  • FIG. 1 is a schematic structural diagram of a telecentric lens according to an embodiment
  • 2 is a geometric phase difference graph of a telecentric lens in an embodiment
  • 3 is a distortion curve diagram of a telecentric lens in an embodiment
  • FIG. 4 is an O.T.F curve diagram of an optical transfer function of a telecentric lens in an embodiment
  • FIG. 5 is a M.T.F curve diagram of a transfer function of a telecentric lens in an embodiment
  • FIG. 6 is a schematic diagram of a diffuse spot of a telecentric lens in an embodiment
  • FIG. 7 is a schematic diagram of the energy concentration of a telecentric lens in an embodiment.
  • a telecentric lens 100 includes a first lens 10, a second lens 20, a third lens 30, a fourth lens 40, and a fifth lens 50, which are arranged in order along the incident direction of light.
  • 10 is a biconcave negative lens
  • the second lens 20 is a meniscus negative lens
  • the third lens 30 is a meniscus positive lens
  • the fourth lens 40 is a plano-convex positive lens
  • the fifth lens 50 is a plano-convex positive lens
  • the focal length of 100 is 254mm
  • the allowable tolerance is 10%
  • the upper deviation is + 5%
  • the lower deviation is -5%
  • the field of view is 42 °.
  • the scanning field range of the telecentric lens 100 needs to be increased.
  • the telecentric lens 100 is designed with a focal length of 254 mm and a field of view angle of 42 °.
  • the scanning field of view of the telecentric lens 100 of the present invention reaches 120 mm * 120 mm without moving a processing object or a table, which can meet a larger
  • the demand of the processing area of the format effectively improves the production efficiency.
  • the telecentric lens 100 of the present invention effectively corrects astigmatism and distortion by designing the shapes and relative positions of the first lens 10, the second lens 20, the third lens 30, the fourth lens 40, and the fifth lens 50, and the energy High concentration, realizing telecentric optical path at large focal length stage, enabling high-quality imaging marking and improving imaging quality.
  • the lens structure is simple and easy to design, and is suitable for being widely used in various laser processing equipment.
  • the light passes through the telecentric lens 100 to obtain an image-side telecentric optical path, and the telecentricity of the telecentric lens 100 is less than 5 °.
  • a non-telecentric lens is used for drilling, there is a certain inclination between the main light on the image side and the focal plane, resulting in a certain slope of the processed hole.
  • the processed object and the non-telecentric lens have a certain defocus, it will cause additional distortion and reduce the processing accuracy.
  • the telecentric lens 100 of the present invention is specially designed so that the exit pupil is at an infinite distance in the image space, and the main ray of the focused beam is perpendicular to the focal plane at any field angle, which can avoid punching and tilting and reduce the slightness of the processed object. Distortion caused by out of focus, thereby ensuring processing accuracy.
  • the wavelength of the incident beam of the telecentric lens 100 is 355 nm.
  • d is the diameter of the Airy spot (that is, the diffused spot after focusing);
  • is the laser wavelength of the processing beam
  • f is the focal length of the telecentric lens 100
  • D is the entrance pupil diameter of the telecentric lens 100.
  • the entrance pupil diameter of the telecentric lens 100 is 16mm, which can effectively increase the amount of light per unit time, making the telecentric lens 100 have a large aperture advantage, which can reduce the aberrations of the edge field of view while enhancing the dark environment. Imaging effect.
  • the first lens 10 is composed of the first curved surface 11 and the second curved surface 12
  • the second lens 20 is composed of the third curved surface 21 and the fourth curved surface 22
  • the third lens 30 is composed of the fifth curved surface 31 and the sixth curved surface 32
  • the fourth The lens 40 is composed of a seventh curved surface 41 and an eighth curved surface 42
  • the fifth lens 50 is composed of a ninth curved surface 51 and a tenth curved surface 52.
  • the first curved surface 11 to the tenth curved surface 52 are sequentially arranged in the direction of incident light.
  • the curvature radius of the first curved surface 11 is -355.5 ⁇ 5% mm
  • the curvature radius of the second curved surface 12 is 272.5 ⁇ 5% mm
  • the curvature radius of the third curved surface 21 is -46.25 ⁇ 5% mm
  • the curvature of the fourth curved surface 22 The radius is -59.5 ⁇ 5% mm
  • the radius of curvature of the fifth curved surface 31 is -75 ⁇ 5% mm
  • the radius of curvature of the sixth curved surface 32 is -75.5 ⁇ 5% mm
  • the radius of curvature of the seventh curved surface 41 is infinite.
  • the radius of curvature of the eighth curved surface 42 is -128.5 ⁇ 5% mm
  • the radius of curvature of the ninth curved surface 51 is 252.5 ⁇ 5%
  • the radius of curvature of the tenth curved surface 52 is infinite.
  • the central thickness d1 of the first lens 10 on the optical axis is 4.5 ⁇ 5% mm
  • the central thickness d2 of the second lens 20 on the optical axis is 14 ⁇ 5%
  • the central thickness d3 of the third lens 30 on the optical axis is 20 ⁇ 5%
  • the central thickness d5 of the fifth lens 50 on the optical axis is 13 ⁇ 5% mm.
  • the distance S1 between the second curved surface 12 and the third curved surface 21 on the optical axis is 23 ⁇ 5% mm
  • the distance S2 between the fourth curved surface 22 and the fifth curved surface 31 on the optical axis is 0.5 ⁇ 5%
  • the sixth curved surface 32 A distance S3 on the optical axis from the seventh curved surface 41 is 0.5 ⁇ 5% mm
  • a distance S4 on the optical axis from the eighth curved surface 42 and the ninth curved surface 51 is 0.5 ⁇ 5% mm.
  • the ratio of the refractive index of the first lens 10 to the Abbe number is 1.4585 / 67.82 ⁇ 5%
  • the ratio of the refractive index of the second lens 20 to the Abbe number is 1.4585 / 67.82 ⁇ 5%
  • the refractive index of the third lens 30 is The ratio of the Abbe number is 1.4585 / 67.82 ⁇ 5%
  • the ratio of the refractive index of the fourth lens 40 to the Abbe number is 1.4585 / 67.82 ⁇ 5%
  • the ratio of the refractive index of the fifth lens 50 to the Abbe number is 1.4585 / 67.82 ⁇ 5%.
  • the structural parameters of the telecentric lens 100 are shown in the following table:
  • the astigmatism and curvature of the telecentric lens 100 have reached an ideal correction state, and the image plane is significantly flattened. That is to say, the image plane in the entire cutting range is very flat, and there is no obvious difference between on-axis and off-axis. Astigmatism is small, which can meet high-precision processing.
  • the optical transfer function O.T.F and the transfer function M.T.F of the telecentric lens 100 for ultraviolet laser light are shown in FIGS. 4 and 5, respectively. It can also be seen from this that there is no obvious difference between the on-axis point and the off-axis point of the telecentric lens 100 for ultraviolet laser light, and the purpose of a flat image field is achieved.
  • FIG. 6 and FIG. 7 show the diffuse spots and energy concentration of the telecentric lens 100 for ultraviolet laser light.
  • the size of the diffuse spots was controlled at about 10 ⁇ m in all fields of view. "Energy concentration” also means that all energy for cutting is concentrated around 10 ⁇ m. Extreme energy concentration allows precise marking or cutting.
  • a laser processing apparatus includes an ultraviolet laser and a telecentric lens 100 for focusing the ultraviolet laser.
  • the above laser processing equipment may be a laser drilling machine, a laser marking machine, or a laser cutting machine.
  • the emission wavelength of the ultraviolet laser is 355 nm, and the power of the ultraviolet laser is equal to or greater than 20W.
  • the laser processing equipment also includes a beam expander, an X-galvanometer and a Y-galvanometer.
  • the laser light emitted by the ultraviolet laser passes through the beam-expanding mirror, the X-galvanometer and the Y-galvanometer in order, and finally focuses on the image surface through the telecentric lens 100.
  • the scanning field of view of the telecentric lens 100 reaches 120mm * 120mm, which can meet the needs of a larger format processing area and effectively improve production efficiency.
  • the principal rays in the direction of each field of view of the telecentric lens 100 are perpendicular to the image plane, thereby avoiding tilting of the perforations, and at the same time avoiding distortion caused by slight defocusing of the processing object, thereby ensuring processing accuracy.
  • the astigmatism of the telecentric lens 100 is small, it is possible to avoid drastic changes in the processing shape caused by a slight defocus or tilt of the processing object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种用于紫外激光的远心镜头,包括沿光线的入射方向依次排列的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,第一透镜为双凹负透镜,第二透镜为弯月负透镜,第三透镜为弯月正透镜,第四透镜为平凸正透镜,第五透镜为平凸正透镜,远心镜头的焦距为254mm,允许公差为10%,上偏差为+5%,下偏差为-5%,视场角为42°。

Description

远心镜头和激光加工设备 技术领域
本发明涉及光学镜头技术领域,尤其是涉及一种远心镜头及激光加工设备。
背景技术
紫外激光器经过近几年的迅猛发展,已经从刚开始的0.2w~0.5w发展到目前的高于10w的激光功率密度。由于激光器功率的提高,使紫外激光的应用领域不仅仅停留在产品标识上,也在晶圆切割、柔性线路板切割、薄板切割等领域得到更为广泛的应用。
然而目前高功率紫外激光用远心镜头不能满足大焦距范围的应用,导致扫描范围较小,加工效率低。
发明内容
基于此,有必要提供一种具有较大焦距的远心镜头及激光加工设备。
一种用于紫外激光的远心镜头,包括沿光线的入射方向依次排列的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,所述第一透镜为双凹负透镜,所述第二透镜为弯月负透镜,所述第三透镜为弯月正透镜,所述第四透镜为平凸正透镜,所述第五透镜为平凸正透镜,所述远心镜头的焦距为254mm,允许公差为10%,上偏差为+5%,下偏差为-5%,视场角为42°。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一实施例中远心镜头的结构示意图;
图2是一实施例中远心镜头的几何相差曲线图;
图3是一实施例中远心镜头的畸变曲线图;
图4是一实施例中远心镜头的光学传递函数O.T.F曲线图;
图5是一实施例中远心镜头的传递函数的M.T.F曲线图;
图6是一实施例中远心镜头的弥散斑示意图;
图7是一实施例中远心镜头的能量集中度示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
需要说明的是,光从左向右传播,以球面和主光轴的交点为准,球面的球心在该点以左,则曲率半径为负。反之,球心在该点以右,则曲率半径为正。此外,本文中以入射光从左向右传播,位于镜头左边的为物体侧,位于镜头右边的为图像侧。
如图1所示,一种远心镜头100,包括沿光线的入射方向依次排列的第一透镜10、第二透镜20、第三透镜30、第四透镜40和第五透镜50,第一透镜10为双凹负透镜,第二透镜20为弯月负透镜,第三透镜30为弯月正透镜,第四透镜40为平凸正透镜,第五透镜50为平凸正透镜,远心镜头100的焦距为254mm,允许公差为10%,上偏差为+5%,下偏差为-5%,视场角为42°。
为获取较大的加工区域,需要增加远心镜头100的扫描视场范围。将远心镜头100的焦距设计为254mm,视场角为42°,在不移动加工物体或工作台的情况下,本发明远心镜头100的扫描视场范围达到120mm*120mm,能够满足较大幅面的加工区域的需求,有效提高生产效率。
本发明远心镜头100,通过第一透镜10、第二透镜20、第三透镜30、第四透镜40和第五透镜50的形状及相对位置的设计,有效矫正了像散和畸变,且能量集中度高,实现了大焦距阶段的远心光路,能够实现高质量成像打标,提高了成像质量。且镜头结构简单,便于设计,适合广泛应用于各种激光加工设备中。
光线通过远心镜头100获得像方远心光路,远心镜头100的远心度小于5°。在使用非远心镜头进行打孔时,像方主光线与焦面之间有一定的倾角,导致加工出来的孔会有一定的斜度。此外,当被加工物体与非远心镜头有一定的离焦时,会造成额外的畸变,加工精度降低。本发明远心镜头100经过特殊设计,使得出射光瞳在像空间无限远处,聚焦光束的主光线在任何视场角的情况下都垂直于焦平面,能够避免打孔倾斜,减少加工物体轻微离焦所造成的畸变,从而保证加工精度。
远心镜头100的入射光束波长为355nm。
根据“Airy Disk”判断可知(艾里斑判断),激光聚焦后的弥散光斑的理论分辨距离为:
d=2.44λf/D
其中:d为艾里斑直径(也就是聚焦后的弥散光斑);
λ为加工光束的激光波长;
f为远心镜头100的焦距;
D为远心镜头100的入瞳直径。
由上可知,用超短波长的激光束进行切割会得到更为精细的切缝。目前普遍使用的紫外激光器的波长λ=355nm,从理论上它的分辨率比1064nm波长的激光器分辨率大三倍。由于上述远心镜头100的第一透镜10、第二透镜20、第三透镜30、第四透镜40、第五透镜50的材料均为熔融石英,该远心镜头100能够适用于紫外波段的激光器λ=355nm,会得到高分辨的点距,也就是可以获得超精细的聚焦后的弥散光斑,并适合高功率密度,可以应用到20w的紫外激光器上。
远心镜头100的入瞳直径为16mm,可有效地增大单位时间内的通光量,使得远心镜头100具有大光圈优势,从而能够在减小边缘视场的像差的同时增强暗环境下的成像效果。
第一透镜10由第一曲面11和第二曲面12构成,第二透镜20由第三曲面21和第四曲面22构成,第三透镜30由第五曲面31和第六曲面32构成,第四透镜40由第七曲面41和第八曲面42构成,第五透镜50由第九曲面51和第十曲面52构成,其中,第一曲面11至第十曲面52沿入射光线的方向依次排布,第一曲面11的曲率半径为-355.5±5%mm,第二曲面12的曲率半径为272.5±5%mm,第三曲面21的曲率半径为-46.25±5%mm,第四曲面22的曲率半径为-59.5±5%mm,第五曲面31的曲率半径为-75±5%mm,第六曲面32的曲率半径为-75.5±5%mm,第七曲面41的曲率半径为无穷大,第八曲面42的曲率半径为-128.5±5%mm,第九曲面51的曲率半径为252.5±5%mm,第十曲面52的曲率半径为无穷大。
第一透镜10在光轴上的中心厚度d1为4.5±5%mm,第二透镜20在光轴上的中心厚度d2为14±5%mm,第三透镜30在光轴上的中心厚度d3为14±5%mm,第四透镜40在光轴上的中心厚度d4为20±5%mm,第五透镜50在光轴上的中心厚度d5为13±5%mm。
第二曲面12和第三曲面21在光轴上的间距S1为23±5%mm,第四曲面 22和第五曲面31在光轴上的间距S2为0.5±5%mm,第六曲面32和第七曲面41在光轴上的间距S3为0.5±5%mm,第八曲面42和第九曲面51在光轴上的间距S4为0.5±5%mm。
第一透镜10的折射率与阿贝数的比例为1.4585/67.82±5%,第二透镜20的折射率与阿贝数的比例为1.4585/67.82±5%,第三透镜30的折射率与阿贝数的比例为1.4585/67.82±5%,第四透镜40的折射率与阿贝数的比例为1.4585/67.82±5%,第五透镜50的折射率与阿贝数的比例为1.4585/67.82±5%。
在一实施例中,远心镜头100的结构参数如下表所示:
Figure PCTCN2018095233-appb-000001
由图2和图3可知,该远心镜头100的像散和弯曲都已达到了理想的校正状态,像面明显地变平。也就是说整个切割范围内的像面都非常平,且轴上与轴外无明显差别。像散较小,能够满足高精度加工。
由图4和图5分别表示该紫外激光用远心镜头100的光学传递函数O.T.F 和传递函数M.T.F。由此也可以看出,该紫外激光用远心镜头100的轴上点和轴外点均无明显差别,达到了平像场的目的。
图6和图7表示该紫外激光用远心镜头100的弥散斑和能量集中度。在所有视场中弥散斑的大小均控制在10μm左右。“能量集中度”也表示,切割所有能量均集中在10μm左右。能量集中度极高,从而可以精确地打标或切割。
一种激光加工设备,包括紫外激光器和用于对紫外激光进行聚焦的远心镜头100。上述激光加工设备可为激光打孔机、激光打标机或激光切割机。
紫外激光器的发光波长为355nm,紫外激光器的功率等于或大于20W。激光加工设备还包括扩束镜、X振镜及Y振镜,紫外激光器发射的激光依次经过扩束镜、X振镜及Y振镜,最后通过远心镜头100聚焦到像面上。该远心镜头100的扫描视场范围达到120mm*120mm,能够满足较大幅面的加工区域的需求,有效提高生产效率。进一步地,远心镜头100到各个视场方向上的主光线与像面垂直,从而避免打孔倾斜,同时能够避免加工物体轻微离焦造成的畸变,从而保证加工精度。同时,由于远心镜头100的像散较小,能够避免加工物体轻微离焦或倾斜带来的加工形状的剧烈变化。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种用于紫外激光的远心镜头,包括沿光线的入射方向依次排列的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,所述第一透镜为双凹负透镜,所述第二透镜为弯月负透镜,所述第三透镜为弯月正透镜,所述第四透镜为平凸正透镜,所述第五透镜为平凸正透镜,所述远心镜头的焦距为254mm,允许公差为10%,上偏差为+5%,下偏差为-5%,视场角为42°。
  2. 根据权利要求1所述的远心镜头,其特征在于,所述第一透镜由第一曲面和第二曲面构成,所述第二透镜由第三曲面和第四曲面构成,所述第三透镜由第五曲面和第六曲面构成,所述第四透镜由第七曲面和第八曲面构成,所述第五透镜由第九曲面和第十曲面构成,其中,所述第一曲面至第十曲面沿入射光线的方向依次排布,所述第一曲面至第十曲面的曲率半径依次为-355.5mm、272.5mm、-46.25mm、-59.5mm、-75mm、-75.5mm、无穷大、-128.5mm、252.5mm、无穷大,允许公差为10%,上偏差为+5%,下偏差为-5%。
  3. 根据权利要求2所述的远心镜头,其特征在于,所述第二曲面和所述第三曲面在所述光轴上的间距为23±5%mm,所述第四曲面和所述第五曲面在所述光轴上的间距为0.5±5%mm,所述第六曲面和所述第七曲面在所述光轴上的间距为0.5±5%mm,所述第八曲面和所述第九曲面在所述光轴上的间距依次为0.5±5%mm。
  4. 根据权利要求1所述的远心镜头,其特征在于,所述第一透镜至所述第五透镜在光轴上的中心厚度分别为4.5mm、14mm、14mm、20mm、13mm,允许公差为10%,上偏差为+5%,下偏差为-5%。
  5. 根据权利要求1所述的远心镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜和所述第五透镜的折射率与阿贝数的比例均为1.4585/67.82,允许公差为10%,上偏差为+5%,下偏差为-5%。
  6. 根据权利要求1所述的远心镜头,其特征在于,所述远心镜头的入瞳直径为16mm。
  7. 根据权利要求1所述的远心镜头,其特征在于,光线通过所述远心镜头获得像方远心光路,所述远心镜头的远心度小于5°。
  8. 根据权利要求1所述的远心镜头,其特征在于,所述远心镜头的入射光束波长为355nm。
  9. 根据权利要求1所述的远心镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜的材料均为熔融石英。
  10. 一种激光加工设备,包括权利要求1-9任一项所述的远心镜头。
PCT/CN2018/095233 2018-07-11 2018-07-11 远心镜头和激光加工设备 WO2020010538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/095233 WO2020010538A1 (zh) 2018-07-11 2018-07-11 远心镜头和激光加工设备
CN201880094741.7A CN112292627B (zh) 2018-07-11 2018-07-11 远心镜头和激光加工设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095233 WO2020010538A1 (zh) 2018-07-11 2018-07-11 远心镜头和激光加工设备

Publications (1)

Publication Number Publication Date
WO2020010538A1 true WO2020010538A1 (zh) 2020-01-16

Family

ID=69141888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095233 WO2020010538A1 (zh) 2018-07-11 2018-07-11 远心镜头和激光加工设备

Country Status (2)

Country Link
CN (1) CN112292627B (zh)
WO (1) WO2020010538A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287163A (ja) * 1994-04-19 1995-10-31 Nikon Corp テレセントリックfθレンズ
CN203786376U (zh) * 2013-07-16 2014-08-20 业纳光学系统有限公司 F-θ物镜
CN104317034A (zh) * 2014-09-10 2015-01-28 中国电子科技集团公司第四十五研究所 f-theta光学镜头
WO2016029414A1 (zh) * 2014-08-29 2016-03-03 深圳市大族激光科技股份有限公司 光学镜头
CN206696510U (zh) * 2017-03-08 2017-12-01 上海仪万光电科技有限公司 一种紫外激光远心F‑theta扫描场镜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189211A (en) * 1978-01-03 1980-02-19 Kollmorgen Corporation Wide angle telecentric projection lens assembly
JP4618531B2 (ja) * 2004-03-15 2011-01-26 株式会社ニコン レーザ加工用光学系及びこれを用いたレーザ加工装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287163A (ja) * 1994-04-19 1995-10-31 Nikon Corp テレセントリックfθレンズ
CN203786376U (zh) * 2013-07-16 2014-08-20 业纳光学系统有限公司 F-θ物镜
WO2016029414A1 (zh) * 2014-08-29 2016-03-03 深圳市大族激光科技股份有限公司 光学镜头
CN104317034A (zh) * 2014-09-10 2015-01-28 中国电子科技集团公司第四十五研究所 f-theta光学镜头
CN206696510U (zh) * 2017-03-08 2017-12-01 上海仪万光电科技有限公司 一种紫外激光远心F‑theta扫描场镜

Also Published As

Publication number Publication date
CN112292627B (zh) 2022-07-15
CN112292627A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
JP2011519067A (ja) 光学レンズ
TWI664044B (zh) 一種適於在雷射加工工藝中使用的F-theta鏡頭
JP2011519070A (ja) 光学レンズ
JP2011519068A (ja) 光学レンズ
JP2011519069A (ja) 光学レンズ
CN109932808B (zh) 包括具有衍射光学元件的F-θ透镜的光学系统
KR20180005760A (ko) 레이저광 정형 및 파면 제어용 광학계
CN114442281B (zh) 直写光刻镜头
TWI567441B (zh) 光學成像鏡頭及應用此鏡頭之電子裝置
CN109239897A (zh) 一种离轴三反无焦光学系统
CN104317034B (zh) f‑theta光学镜头
CN111123480A (zh) 一种紫外激光应用的远心F-theta光学镜头
TW202046005A (zh) 投影裝置
CN211375164U (zh) 一种紫外激光应用的远心F-theta光学镜头
CN213888711U (zh) 一种用于激光切割加工的远心透镜
WO2020010538A1 (zh) 远心镜头和激光加工设备
CN109507789B (zh) 一种用于激光加工的远心镜头、激光加工装置及加工方法
CN216561248U (zh) 一种紫外激光定倍扩束系统
JP6224246B2 (ja) 広視野色収差補正レンズ
CN107797225B (zh) 光学镜头及其激光加工设备
CN211438581U (zh) 紫外光扫描场镜
CN209028289U (zh) 一种离轴三反无焦光学系统
CN113093480A (zh) 一种并行曝光抑制超衍射极限激光直写物镜
CN106353879B (zh) 光学镜头及具有该光学镜头的激光加工设备
CN114029609B (zh) 一种紫外镜头及其光学系统、打标设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925946

Country of ref document: EP

Kind code of ref document: A1