WO2020009384A1 - Optical disc for fingerprint recognition sensor and optical filter comprising same - Google Patents

Optical disc for fingerprint recognition sensor and optical filter comprising same Download PDF

Info

Publication number
WO2020009384A1
WO2020009384A1 PCT/KR2019/007936 KR2019007936W WO2020009384A1 WO 2020009384 A1 WO2020009384 A1 WO 2020009384A1 KR 2019007936 W KR2019007936 W KR 2019007936W WO 2020009384 A1 WO2020009384 A1 WO 2020009384A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical disc
light
transmittance
wavelength range
Prior art date
Application number
PCT/KR2019/007936
Other languages
French (fr)
Korean (ko)
Inventor
최정옥
김진환
안영수
양선호
박태광
나우주
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190003914A external-priority patent/KR102158811B1/en
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to CN201980043644.XA priority Critical patent/CN112368612B/en
Priority to US17/257,419 priority patent/US20210280621A1/en
Publication of WO2020009384A1 publication Critical patent/WO2020009384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to an optical disc and an optical filter including the same, which can locate an area where a fingerprint is recognized in a screen of a display device.
  • capacitive fingerprint recognition took the most part.
  • the capacitive type has the advantage of good recognition rate and reliability as the condenser reacts to the fingerprint by the pressure of the bone of the fingerprint.
  • optical fingerprint recognition is limited to OLED, but can be positioned inside the display.
  • a visible light transmission filter that transmits only a wavelength band of a light source used as signal light is required.
  • An object of the present invention is to provide an optical disc and an optical filter comprising the same that can be located in the screen of the display device fingerprint recognition site.
  • a light absorbing layer comprising a resin binder and a light absorbing agent dispersed in the resin binder
  • an optical disc for a fingerprint sensor having an average transmittance of 15% or less for light in a wavelength range of 620 nm to 710 nm.
  • optical filter comprising a selective wavelength reflecting layer formed on one or both surfaces of the optical disc.
  • a fingerprint recognition module comprising the optical filter described above.
  • the optical disc according to the present invention includes a light absorbing layer that transmits light in a green region of visible light to increase fingerprint recognition rate, and effectively absorbs light in a red region. Can be suppressed.
  • FIG. 1 is a cross-sectional view showing a laminated structure of an optical disc according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a laminated structure of an optical filter according to an embodiment of the present invention.
  • 3 and 4 are cross-sectional views showing a laminated structure of the fingerprint recognition module according to an embodiment of the present invention.
  • the terms "comprises” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
  • the present invention relates to an optical disc for a fingerprint sensor.
  • capacitive fingerprint recognition took the most part.
  • the capacitive type has the advantage of good recognition rate and reliability as the condenser responds to the fingerprint by the pressure of the bone of the fingerprint.
  • optical fingerprint recognition can be positioned inside the display.
  • a visible light transmission filter that transmits only a wavelength band of a light source used as signal light is required.
  • the present invention provides an optical disc for a fingerprint sensor.
  • the optical disc for fingerprint recognition sensor includes a light absorbing layer that transmits light in the green region of visible light to increase the fingerprint recognition rate and effectively absorbs the light in the red region. Suppresses the appearance of color.
  • a light absorbing layer comprising a resin binder and a light absorbing agent dispersed in the resin binder
  • An optical disc for a fingerprint sensor having an average transmittance of 15% or less for light in a wavelength range of 620 to 710 nm is provided.
  • Optical disc for fingerprint recognition sensor a light transmissive substrate; And a light absorbing layer including a light absorbing agent, wherein the light absorbing layer has an absorption maximum in the visible light region (550 nm to 750 nm), and the cut-off of the optical disc is 580 nm to 620 nm showing a red color in a 620 nm to 700 nm region. It absorbs light.
  • the optical disc for fingerprint recognition sensor can reduce the phenomenon that the display looks red by absorbing a red region of the visible light to a certain range.
  • the optical disc has an average transmittance of 15% or less, 13% or less, 10% or less, or 7 to a wavelength in the wavelength range of 620 nm to 710 nm when the spectrophotometer measures the transmittance of the optical disc in the wavelength range of 300 nm to 1,200 nm. It may be expressed in% or less, and the average lower limit may be, for example, 1% or more or 3% or more. More specifically, the optical disc may have an average transmittance of 1% to 10% or 3% to 5% for light in a wavelength region of 620nm to 710nm.
  • optical disc for a fingerprint sensor according to the present invention may satisfy the following condition 1.
  • T 50% represents the wavelength value at the point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm
  • T 10% represents the wavelength value at the point where the light transmittance is 10% in the wavelength range of 550 nm to 710 nm.
  • the optical disc has a wavelength value (T 50% ) at a point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm and a wavelength value (T 10% ) at a point where light transmittance is 10% in a wavelength range of 550 nm to 710 nm.
  • the absolute value of the difference may be 50 nm or less, 40 nm or less, 30 nm or less, 25 nm or less, and the lower limit may be 10 nm or more or 15 nm or more.
  • the optical disc for fingerprint recognition sensor may have a light transmittance of 85% or more in the wavelength range of 430 nm to 560 nm when the spectrophotometer measures the transmittance of the optical disc in the wavelength range of 300 nm to 1,200 nm.
  • the light transmittance in the 430nm to 560nm wavelength region of the optical disc may be 85% or more, 88% or more, 90% or more, or 92% or more, the upper limit is 95% or less, 98% or less, 99% or less or 100%.
  • the light transmittance in the wavelength region of 430nm to 560nm of the optical disc may be 90% to 99% or 92% to 95%.
  • the optical disc 100 may have a structure in which the primer layer 120 and the light absorbing layer 110 are sequentially stacked on the light transmissive substrate 130. have.
  • the primer layer 120 may be omitted.
  • the light absorbing layer 110 is a structure in which a light absorbing dye that absorbs light in a red region of visible light is dispersed in a resin, and is also called a red absorbing layer.
  • the light transmissive substrate 130 may be replaced with a resin substrate.
  • the optical disc for fingerprint recognition sensor includes a light transmissive substrate, and the light transmissive substrate is not particularly limited as long as it is transparent and a plate-shaped substrate, but specifically, a transparent glass substrate, a transparent resin substrate, or the like may be used. Can be.
  • the transparent glass substrate as the light transmissive substrate
  • a commercially available transparent glass substrate can be used, and if necessary, a phosphate-based glass substrate containing copper oxide (CuO) can be used.
  • a transparent resin substrate any one having excellent strength can be used without particular limitation.
  • a light transmissive resin in which an inorganic filler is dispersed can be used, and a binder resin usable for the light absorbing layer can be used.
  • the transparent glass substrate may prevent thermal deformation and warpage according to an optical filter manufacturing process without inhibiting light transmittance of visible light
  • the transparent resin substrate may include a light absorbing layer when the binder resin of the light absorbing layer is used as a transparent resin substrate.
  • the degree of interfacial peeling can be improved by controlling the kind of the binder resin and the resin used as the light transmissive substrate in the same or similar manner.
  • the optical disc according to the present invention may include a light absorbing layer, and the light absorbing layer may be formed on one or both surfaces of the substrate, and may include a resin binder and a light absorbing agent dispersed in the resin binder.
  • the light absorbing layer has a spectrophotometer in the wavelength range of 300 nm to 1,200 nm, and the shortest wavelength ( ⁇ _cut-off) having a transmittance of 50% in a wavelength region longer than the 550 nm wavelength is measured in the range of 580 nm to 620 nm. exist. Specifically, the shortest wavelength ( ⁇ _cut-off) having a transmittance of 50% in the wavelength region longer than the 550 nm wavelength of the optical disc exists in the 590 nm to 610 nm wavelength region.
  • the light absorbing agent according to the present invention is a compound having a near infrared absorption maximum in the wavelength range of 650 nm to 700 nm, and absorbs light in the near infrared region incident to the optical filter to block light in the near infrared region from entering the image sensor. Do this.
  • the light absorbing agent is not particularly limited as long as the compound has a near infrared absorption maximum ( ⁇ max ) in the wavelength range of 640 nm to 700 nm. It may include any one or more of a phosphorus dye and a dye having an absorption maximum of 680 ⁇ 15 nm.
  • the dye may include SDA6698 (HW Sands, absorption peak 651 nm), SDA4451 (HW Sands, absorption peak 634 nm) and VIS680D (QCR Solutions, absorption peak 680 nm).
  • the light absorbing agent may be used alone, and in some cases, may be used in combination of three or more kinds or separated into two layers.
  • the content of the light absorbing agent may be selected without limitation within a range that does not affect the light absorption of the optical disc. Specifically, it is 0.01-10.0 weight part with respect to 100 weight part of binder resin contained in a light absorption layer; 0.01 to 8.0 parts by weight; Or 0.01 to 5.0 parts by weight.
  • the light absorbing layer according to the present invention may include a binder resin.
  • binder resin which concerns on this invention, a cyclic olefin resin, polyarylate resin, polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide, for example Resins, polyetherimide resins, polyamideimide resins, acrylic resins, polycarbonate resins, polyethylene naphthalate resins, organic-inorganic hybrid series resins, and the like.
  • cyclic olefin polymer (cyclic olefin polymer, COP), cyclic olefin copolymer (cyclic olefin co-polymer, COC), polyimide resin (polyimide, PI) or a mixture thereof can be used.
  • the binder resin may further include an additive.
  • the additive may be used without particular limitation, as long as it can prevent modification of the light absorbing layer at a high temperature.
  • phenol phenol
  • Ti tin
  • optical filter comprising a selective wavelength reflecting layer formed on one or both surfaces of the optical disc.
  • the optical filter according to the present invention may include a selective wavelength reflecting layer formed on one or both surfaces of the optical disc.
  • the optical filter includes a selective wavelength reflecting layer formed on both sides of the optical disc, and when measuring the transmittance of the optical filter in the spectrophotometer in the wavelength range of 300nm to 1,200nm 50% transmittance in the wavelength region longer than 550nm wavelength
  • the shortest wavelength [lambda] _cut-off may be present in the 585 nm to 615 nm wavelength range.
  • the longest wavelength ( ⁇ _cut-off) with a transmittance of 50% in a wavelength region longer than 550 nm when the spectrophotometer measures the transmittance of the optical filter in the wavelength range of 300 nm to 1,200 nm may exist in the 655 nm to 615 nm wavelength region.
  • the optical filter according to the present invention when measuring the transmittance of the optical disc in the spectrophotometer in the wavelength range of 300nm to 1,200nm, the light transmittance in the wavelength range of 650nm to 1200nm may be 5% or less, 4% or less or 3% or less. And the average lower limit may be, for example, 0.5% or more or 1% or more.
  • the optical filter according to the present invention has a light transmittance of 90% or more, 93% or more, 95% or more or 97% in the wavelength range of 430 nm to 560 nm when the spectrophotometer measures the transmittance of the optical disc in the wavelength range of 300 nm to 1,200 nm.
  • the upper limit may be 99% or less or 100%.
  • optical filter according to the present invention may satisfy the following condition 1.
  • T 50% represents the wavelength value at the point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm
  • T 10% represents the wavelength value at the point where the light transmittance is 10% in the wavelength range of 550 nm to 710 nm.
  • the optical filter has a wavelength value (T 50% ) at a point where light transmittance is 50% in the wavelength range of 550nm to 710nm and a wavelength value (T 10% ) at a point where light transmittance is 10% in the wavelength range of 550nm to 710nm.
  • the absolute value of the difference may be 50 nm or less, 40 nm or less, 30 nm or less, 25 nm or less, and the average lower limit may be 5 nm or more or 10 nm or more.
  • the optical filter 200 includes an optical disc having a structure in which a primer layer 220 and a flaw layer 230 are sequentially stacked on a light transmissive substrate 230, First and second selective wavelength reflecting layers 240 and 250 are formed on and under the optical disc, respectively.
  • the first and second selective wavelength reflecting layers 240 and 250 may have a structure in which TiO 2 and SiO 2 are alternately stacked.
  • the optical filter according to the present invention may include a selective wavelength reflecting layer on one or both surfaces of the optical disc.
  • the selective wavelength reflecting layer may serve to reflect light in the near infrared region, and may have a structure such as a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately stacked, but is not limited thereto.
  • the selective wavelength reflecting layer reflects light having a wavelength of 700 nm or more, specifically, a wavelength in the range of 700 nm to 1,100 nm, of light incident to the optical filter, thereby preventing the light in the range from entering the image sensor.
  • the selective wavelength reflecting layer may serve as an near-infrared reflecting layer (IR layer) reflecting near infrared rays and / or an anti-reflection layer (AR layer) for preventing visible light from being reflected. .
  • the selective wavelength reflecting layer may have a structure such as a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately stacked, an aluminum deposition film; Precious metal thin film;
  • the method may further include a resin film in which one or more fine particles of indium oxide and tin oxide are dispersed.
  • the selective wavelength reflecting layer may have a structure in which a dielectric multilayer film having a first refractive index and a dielectric multilayer film having a second refractive index are alternately stacked, and the dielectric multilayer film having the first refractive index and the dielectric multilayer film having a second refractive index Refractive index deviation is 0.2 or more; 0.3 or more; Or 0.2 to 1.0.
  • the high refractive index layer and the low refractive index layer of the selective wavelength reflecting layer is not particularly limited as long as the refractive index deviation of the high refractive index layer and the low refractive index layer is included in the above-described range, but specifically, the high refractive index layer is 2.1 to 2.5. It may include one or more selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, tantalum pentoxide, niobium oxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide and indium oxide having a refractive index of Indium oxide may further contain a small amount of titanium oxide, tin oxide, cerium oxide and the like.
  • the low refractive index layer may include at least one member selected from the group consisting of silicon dioxide, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride (Cryolite, Na 3 AlF 6 ) having a refractive index of 1.4 to 1.6.
  • a fingerprint recognition module comprising the optical filter described above.
  • Fingerprint recognition module comprises the above-described optical filter; And a fingerprint recognition sensor on one surface of the optical filter.
  • the fingerprint sensor may be a camera type or an optical type.
  • the fingerprint recognition module of the present invention includes the above-described optical filter (filter for fingerprint recognition sensor); It may include a fingerprint sensor and a circuit board for the fingerprint sensor. More specifically, the fingerprint recognition module may have a structure in which an optical filter, a fingerprint recognition sensor, and a circuit board for a fingerprint recognition sensor are sequentially stacked.
  • the optical filter is a light transmissive substrate; And a light absorbing layer formed on one or both surfaces of the substrate and including a resin binder and a light absorbing agent dispersed in the resin binder.
  • the optical filter includes the optical disc described above; And a selective wavelength reflecting layer formed on one or both surfaces of the optical disc.
  • the optical filter may be a filter for a fingerprint sensor, and the fingerprint sensor including the optical filter may be located in an in display area of the display.
  • the fingerprint recognition module according to the present invention includes the optical filter as described above, thereby reducing the visibility of the red light to prevent the display screen from appearing red.
  • a display device including the fingerprint recognition module described above.
  • the display device may include a fingerprint recognition module in an in-display area of the display.
  • the location of the fingerprint module in the in-display area of the display means that the fingerprint module is present in the light emitting area of the display panel, but is located opposite to the light emitting surface of the display panel. do.
  • the present invention can provide an OLED display device as shown in FIG.
  • the OLED display device 300 may include a fingerprint recognition module 410 within the OLED display screen 400.
  • the OLED display device 300 includes an OLED display screen 400; And the fingerprint recognition module 410 described above under the OLED display screen 400.
  • the OLED display screen 400 has a structure in which the screen protective layer 310, the cover glass 320, and the OLED display panel 331 are sequentially stacked, and a fingerprint recognition module is disposed below the OLED display screen 400.
  • 410 may be located.
  • the fingerprint recognition module 410 has a structure in which an optical filter 340, a fingerprint recognition sensor 350, and a fingerprint recognition sensor circuit board 360 are sequentially stacked.
  • the optical filter 340 may be a filter for a fingerprint sensor.
  • the present invention can provide an LCD display device as shown in FIG.
  • the LCD display device 300 may include a fingerprint recognition module 410 in the area of the LCD display screen 400. More specifically, the LCD display device 300 includes an LCD display screen 400; And a fingerprint recognition module 410 under the LCD display screen 400.
  • the LCD display screen 400 may include a screen protective layer 310; LCD display panel 332; And a backlight unit 370 sequentially stacked, and includes a fingerprint recognition module 410 under the LCD display screen 400, wherein the fingerprint recognition module 410 is located at a portion where the backlight unit 370 is not applied. Can be located.
  • the fingerprint recognition module 410 may be located under the backlight unit 370. That is, the position of the fingerprint recognition module 410 is not limited to the position at which the backlight unit 370 is applied or not applied, and may be positioned differently according to the fingerprint recognition rate.
  • the fingerprint recognition module 410 has a structure including an optical filter 340, a fingerprint recognition sensor 350, and a circuit board 360 for a fingerprint recognition sensor.
  • Light absorbers A, light absorbers B, and light absorbers C having absorption maxima in the wavelength ranges of 645 ⁇ 5 nm, 670 ⁇ 5 nm, and 685 ⁇ 5 nm, respectively, were obtained commercially and mixed so as to be 0.5 to 5 parts by weight based on 100 parts by weight of the resin. .
  • polymethyl methacrylate (PMMA) resin was used as the resin, and methyl ethyl ketone (MEK) was used as the organic solvent.
  • PMMA polymethyl methacrylate
  • MEK methyl ethyl ketone
  • PMMA polymethyl methacrylate
  • MEK methyl ethyl ketone
  • Light absorbers C having an absorption maximum in each and the 685 ⁇ 5 nm wavelength range were obtained commercially and mixed so as to be 0.5 to 5 parts by weight based on 100 parts by weight of the resin.
  • PMMA polymethyl methacrylate
  • MEK methyl ethyl ketone
  • An optical filter was prepared by depositing a dielectric multilayer film in the same manner as in Example 2, except that the optical disc prepared in Comparative Example 1 was used as the optical disc.
  • An optical filter was prepared by depositing a dielectric multilayer film in the same manner as in Example 2, except that the optical disc prepared in Comparative Example 2 was used as the optical disc.
  • Example 2 Comparative Example 3, and Comparative Example 4, wherein the cut-off T 50% values of the optical discs were 590 nm, 630 nm, and 650 nm, respectively, was observed. Is shown in FIG. 7.
  • the optical disc manufactured in Example 1 has a point where light absorption is 50% in a wavelength range of 580 nm to 610 nm, and the wavelength difference between a point where light absorption is 50% and a point where 10% is 25 nm is 25 nm. It can be seen that it is within. Specifically, when the light transmittance is measured, it can be seen that the wavelength which becomes Cut-off T 50% is 590 nm. On the other hand, in the optical discs prepared in Comparative Example 1 and Comparative Example 2, it can be seen that when the light transmittance is measured, the wavelengths of Cut-off T 50% are 630 nm and 650 nm, respectively. Through this, the optical disc according to the present invention can control the wavelength region of the absorbed light by controlling the light absorbing agent included in the light absorbing layer, thereby absorbing the near infrared wavelength.
  • the optical filter manufactured in Example 2 exhibits light transmittance of 80% or more in the wavelength region of 400 nm to 580 nm, and absorbs light in the wavelength region of 580 nm or more.
  • the optical filter prepared in Comparative Example 3 shows a light transmittance of 80% or more in the wavelength region of 400nm to 630nm, it can be seen that the light in the wavelength region of 630nm or more absorb.
  • the optical filter prepared in Comparative Example 4 exhibits light transmittance of 80% or more in the wavelength region of 400 nm to 650 nm, and absorbs light in the wavelength region of 650 nm or more. Through this, it can be seen that the optical filter according to the present invention effectively absorbs light in the red region compared with other optical filters.
  • the optical disc Cut-off T 50% embodiments apply the value to 590nm Example 2 of the optical filter of Comparative Example 3, an optical filter and an optical disc of applying the Cut-off T 50% value of the optical disc to 630nm It can be experimentally confirmed that the red visibility reflected by the optical filter is significantly reduced compared to the optical filter of Comparative Example 5, wherein the cut-off T 50% value is applied at 650 nm.
  • the optical disc of the present invention includes a light absorbing agent absorbing a red region in the light absorbing layer, it can be seen that the red visibility of the optical filter including the optical disc is reduced.

Abstract

The present invention relates to an optical disc capable of positioning a fingerprint recognition region in a screen of a display, and an optical filter comprising same. The optical disc according to the present invention comprises a light absorption layer, which transmits light in a green region of visible light to increase a fingerprint recognition rate and effectively absorbs light in a red region so as to suppress a phenomenon in which the fingerprint recognition region in the screen of the display appears in red.

Description

지문인식센서용 광학원판 및 이를 포함하는 광학필터Optical disc for fingerprint sensor and optical filter including same
본 발명은 지문이 인식되는 영역을 디스플레이 장치의 화면 내에 위치할 수 있는 광학원판 및 이를 포함하는 광학필터에 관한 것이다.The present invention relates to an optical disc and an optical filter including the same, which can locate an area where a fingerprint is recognized in a screen of a display device.
스마트폰의 잠금 상태의 해제를 위한 보안 방식에는 초기부터 적용된 패턴입력에서 지문인식, 홍채인식 등의 여러 가지 방식이 도입되고 있다. 그 가운데 지문인식이나 홍채인식 등 생체 정보를 입력하는 방식의 경우 본인이 아닌 타인이 접근하기 힘든 면이 있어서 선호되고 있고 그 채용이 증가하고 있는 추세이다.As a security method for releasing a locked state of a smartphone, various methods such as fingerprint recognition and iris recognition have been introduced in the pattern input applied from the beginning. Among them, the method of inputting biometric information such as fingerprint recognition or iris recognition is preferred because it is difficult for others other than the person to access it, and the hiring is increasing.
이러한 생체 인식 가운데 지문인식의 경우 초기에는 정전식 방식의 지문인식이 대부분을 차지했다. 정전식은 지문의 골의 압력에 의해 콘덴서가 반응하여 지문을 읽어들이는 방식으로 인식율과 신뢰성이 좋은 장점이 있다 Among the biometrics, in the early stage of fingerprint recognition, capacitive fingerprint recognition took the most part. The capacitive type has the advantage of good recognition rate and reliability as the condenser reacts to the fingerprint by the pressure of the bone of the fingerprint.
하지만, 스마트폰의 발전과 더불어 스마트폰 화면을 넓게 사용하려는 요구가 강해지고, 이에 따라 전면에 위치한 물리적인 버튼을 터치패널로 이용하려는 시도가 늘어나면서 정전식 지문인식 방식은 더 이상 사용할 수 없게 되고 있다. 정전식 지문인식을 사용하기 위해서는 디스플레이와는 별도로 지문인식 센서가 위치해야 하는데 이러한 점은 스마트폰 화면을 넓게 사용하려는 현재 추세와는 맞지 않는 것이 되었다. However, with the development of smartphones, the demand for wider use of smartphone screens is intensified, and as a result, more attempts to use the physical buttons located on the front panel as touch panels are no longer available. have. In order to use capacitive fingerprint recognition, a fingerprint sensor must be located separately from the display, which is inconsistent with the current trend of widespread use of smartphone screens.
이런 요구를 반영한 보안 방식이 광학식 지문인식이다. 광학식 지문인식은 OLED에 국한되기는 하지만 디스플레이 내부에 위치를 시킬 수 있는데, 이러한 광학식 지문인식 센서의 인식율을 높이기 위해서 신호광으로 사용되는 광원의 파장대역만을 투과시키는 가시광선 투과 필터가 필요하게 된다.The security method that reflects this demand is optical fingerprint recognition. Optical fingerprint recognition is limited to OLED, but can be positioned inside the display. In order to increase the recognition rate of the optical fingerprint sensor, a visible light transmission filter that transmits only a wavelength band of a light source used as signal light is required.
본 발명의 목적은 지문인식 부위를 디스플레이 장치의 화면 내에 위치할 수 있는 광학원판 및 이를 포함하는 광학필터를 제공하는 것이다. An object of the present invention is to provide an optical disc and an optical filter comprising the same that can be located in the screen of the display device fingerprint recognition site.
상기 본 발명의 목적을 해결하기 위하여,In order to solve the above object of the present invention,
본 발명은 일실시예에서,The present invention in one embodiment,
광투과성 기재; 및Light transmissive substrates; And
상기 기재의 일면 또는 양면에 형성되며, 수지 바인더와 상기 수지 바인더 내에 분산된 광흡수제를 포함하는 광 흡수층을 포함하며, It is formed on one or both sides of the base material, and includes a light absorbing layer comprising a resin binder and a light absorbing agent dispersed in the resin binder,
620nm 내지 710nm 파장 범위의 광에 대한 투과율이 평균 15% 이하인 지문인식센서용 광학원판을 제공한다.Provided are an optical disc for a fingerprint sensor having an average transmittance of 15% or less for light in a wavelength range of 620 nm to 710 nm.
또한, 본 발명은 일실시예에서,In addition, the present invention in one embodiment,
상기 서술한 광학원판; 및The optical disc described above; And
상기 광학원판의 일면 또는 양면에 형성된 선택파장 반사층을 포함하는 광학필터를 제공한다.It provides an optical filter comprising a selective wavelength reflecting layer formed on one or both surfaces of the optical disc.
나아가, 본 발명은 일실시예에서,Furthermore, the present invention in one embodiment,
상기 서술한 광학필터를 포함하는 지문인식모듈을 제공한다.Provided is a fingerprint recognition module comprising the optical filter described above.
본 발명에 따른 광학원판은 가시광선 중 녹색 영역의 광을 투과시켜 지문인식율을 높이고, 붉은색 영역의 광을 효과적으로 흡수하는 광 흡수층을 포함하여 디스플레이 화면의 지문이 인식되는 영역이 붉은색으로 보이는 현상을 억제할 수 있다.The optical disc according to the present invention includes a light absorbing layer that transmits light in a green region of visible light to increase fingerprint recognition rate, and effectively absorbs light in a red region. Can be suppressed.
도 1은 본 발명의 일 실시예에 따른 광학원판의 적층 구조를 도시한 단면도이다.1 is a cross-sectional view showing a laminated structure of an optical disc according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 광학필터의 적층 구조를 도시한 단면도이다.2 is a cross-sectional view illustrating a laminated structure of an optical filter according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 일 실시예에 따른 지문인식모듈의 적층 구조를 도시한 단면도이다.3 and 4 are cross-sectional views showing a laminated structure of the fingerprint recognition module according to an embodiment of the present invention.
도 5는 조사되는 광의 파장대별로 광학필터의 시인성을 비교 관찰한 결과이다. 5 is a result of comparing and observing the visibility of the optical filter for each wavelength band of the irradiated light.
도 6은 광학원판에 대한 파장에 따른 광 흡수 그래프이다. 6 is a graph of light absorption according to the wavelength of the optical disc.
도 7은 광학필터에 대한 파장에 따른 광 투과 그래프이다.7 is a light transmission graph according to the wavelength for the optical filter.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
또한, 본 발명에서 첨부된 도면은 설명의 편의를 위하여 확대 또는 축소하여 도시된 것으로 이해되어야 한다.In addition, it is to be understood that the accompanying drawings in the present invention are shown to be enlarged or reduced for convenience of description.
이하, 본 발명에 대하여 도면을 참고하여 상세하게 설명하고, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
본 발명은 지문인식 센서용 광학원판에 관한 것이다.The present invention relates to an optical disc for a fingerprint sensor.
스마트폰의 잠금 상태의 해제를 위한 보안 방식에는 초기부터 적용된 패턴입력에서 지문인식, 홍채인식 등의 여러 가지 방식이 도입되고 있다. 그 가운데 지문인식이나 홍채인식 등 생체 정보를 입력하는 방식의 경우 본인이 아닌 타인이 접근하기 힘든 면이 있어서 선호되고 있고 그 채용이 증가하고 있는 추세이다.As a security method for releasing a locked state of a smartphone, various methods such as fingerprint recognition and iris recognition have been introduced in the pattern input applied from the beginning. Among them, the method of inputting biometric information such as fingerprint recognition or iris recognition is preferred because it is difficult for others other than the person to access it, and the hiring is increasing.
이러한 생체 인식 가운데 지문인식의 경우 초기에는 정전식 방식의 지문인식이 대부분을 차지했다. 정전식은 지문의 골의 압력에 의해 콘덴서가 반응하여 지문을 인식하는 방식으로 인식율과 신뢰성이 좋은 장점이 있다 Among the biometrics, in the early stage of fingerprint recognition, capacitive fingerprint recognition took the most part. The capacitive type has the advantage of good recognition rate and reliability as the condenser responds to the fingerprint by the pressure of the bone of the fingerprint.
하지만, 스마트폰의 발전과 더불어 스마트폰 화면을 넓게 사용하려는 요구가 강해지고, 이에 따라 전면에 위치한 물리적인 버튼을 터치패널로 이용하려는 시도가 늘어나면서 정전식 지문인식 방식은 더 이상 사용할 수 없게 되고 있다. 정전식 지문인식을 사용하기 위해서는 디스플레이와는 별도로 지문인식 센서가 위치해야 하는데 이러한 점은 스마트폰 화면을 넓게 사용하려는 현재 추세와는 맞지 않는 것이 되었다. However, with the development of smartphones, the demand for wider use of smartphone screens is intensified, and as a result, more attempts to use the physical buttons located on the front panel as touch panels are no longer available. have. In order to use capacitive fingerprint recognition, a fingerprint sensor must be located separately from the display, which is inconsistent with the current trend of widespread use of smartphone screens.
이런 요구를 반영한 보안 방식이 광학식 지문인식이다. 광학식 지문인식은 디스플레이 내부에 위치를 시킬 수 있는데, 이러한 광학식 지문인식 센서의 인식율을 높이기 위해서 신호광으로 사용되는 광원의 파장대역만을 투과시키는 가시광선 투과 필터가 필요하게 된다.The security method that reflects this demand is optical fingerprint recognition. Optical fingerprint recognition can be positioned inside the display. In order to increase the recognition rate of the optical fingerprint sensor, a visible light transmission filter that transmits only a wavelength band of a light source used as signal light is required.
이에, 본 발명은 지문인식 센서용 광학원판을 제공한다.Accordingly, the present invention provides an optical disc for a fingerprint sensor.
본 발명에 따른 지문인식 센서용 광학원판은 가시광선 중 녹색 영역의 광을 투과시켜 지문인식율을 높이고, 붉은색 영역의 광을 효과적으로 흡수하는 광 흡수층을 포함하여 디스플레이 화면의 지문이 인식되는 영역이 붉은색으로 보이는 현상을 억제한다.The optical disc for fingerprint recognition sensor according to the present invention includes a light absorbing layer that transmits light in the green region of visible light to increase the fingerprint recognition rate and effectively absorbs the light in the red region. Suppresses the appearance of color.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
광학원판Optical disc
본 발명은 일실시예에서,The present invention in one embodiment,
광투과성 기재; 및Light transmissive substrates; And
상기 기재의 일면 또는 양면에 형성되며, 수지 바인더와 상기 수지 바인더 내에 분산된 광흡수제를 포함하는 광 흡수층을 포함하며, It is formed on one or both sides of the base material, and includes a light absorbing layer comprising a resin binder and a light absorbing agent dispersed in the resin binder,
620 내지 710 nm 파장 범위의 광에 대한 투과율이 평균 15% 이하인 지문인식센서용 광학원판을 제공한다.An optical disc for a fingerprint sensor having an average transmittance of 15% or less for light in a wavelength range of 620 to 710 nm is provided.
본 발명에 따른 지문인식 센서용 광학원판은, 광투광성 기재; 및 광흡수제를 포함하는 광 흡수층을 포함하는데, 상기 광 흡수층은, 가시광 영역(550nm 내지 750nm)에서 흡수극대를 가지며, 광학원판의 Cut-off는 580 nm 내지 620nm으로 붉은색을 나타내는 620nm 내지 700nm 영역의 광을 흡수하는 역할을 한다.Optical disc for fingerprint recognition sensor according to the present invention, a light transmissive substrate; And a light absorbing layer including a light absorbing agent, wherein the light absorbing layer has an absorption maximum in the visible light region (550 nm to 750 nm), and the cut-off of the optical disc is 580 nm to 620 nm showing a red color in a 620 nm to 700 nm region. It absorbs light.
일실시예에서, 본 발명에 따른 지문인식 센서용 광학원판은 가시광선 중에서 붉은색 영역을 일정 범위로 흡수하여 디스플레이가 붉게 보이는 현상을 줄일 수 있다. 구체적으로, 상기 광학원판은 300nm 내지 1,200nm 파장 범위에서 분광광도계를 광학원판의 투과율을 측정했을 때 620nm 내지 710nm 파장 영역의 광에 대한 투과율이 평균 15% 이하, 13% 이하, 10% 이하 또는 7% 이하로 나타날 수 있고, 평균 하한값은 예를 들어 1% 이상 또는 3% 이상일 수 있다. 보다 구체적으로 상기 광학원판은 620nm 내지 710nm 파장 영역의 광에 대한 투과율이 평균 1% 내지 10% 또는 3% 내지 5%일 수 있다.In one embodiment, the optical disc for fingerprint recognition sensor according to the present invention can reduce the phenomenon that the display looks red by absorbing a red region of the visible light to a certain range. Specifically, the optical disc has an average transmittance of 15% or less, 13% or less, 10% or less, or 7 to a wavelength in the wavelength range of 620 nm to 710 nm when the spectrophotometer measures the transmittance of the optical disc in the wavelength range of 300 nm to 1,200 nm. It may be expressed in% or less, and the average lower limit may be, for example, 1% or more or 3% or more. More specifically, the optical disc may have an average transmittance of 1% to 10% or 3% to 5% for light in a wavelength region of 620nm to 710nm.
또한, 본 발명에 따른 지문인식 센서용 광학원판은 하기 조건 1을 만족할 수 있다:In addition, the optical disc for a fingerprint sensor according to the present invention may satisfy the following condition 1.
[조건 1][Condition 1]
10 < |T10% - T50%| < 50 (nm)10 <| T 10% -T 50% | <50 (nm)
T50%은 550nm 내지 710nm 파장 영역에서 광투과도가 50%인 지점의 파장값을 나타내고,T 50% represents the wavelength value at the point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm,
T10%은 550nm 내지 710nm 파장 영역에서 광투과도가 10%인 지점의 파장값을 나타낸다.T 10% represents the wavelength value at the point where the light transmittance is 10% in the wavelength range of 550 nm to 710 nm.
구체적으로, 상기 광학원판은 550nm 내지 710nm 파장 영역에서 광투과도가 50%인 지점의 파장값(T50%)과 550nm 내지 710nm 파장 영역에서 광투과도가 10%인 지점의 파장값(T10%)의 차이의 절대값이 50nm 이하, 40nm 이하, 30nm 이하, 25nm 이하일 수 있고, 하한값은 10nm 이상 또는 15nm 이상일 수 있다.Specifically, the optical disc has a wavelength value (T 50% ) at a point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm and a wavelength value (T 10% ) at a point where light transmittance is 10% in a wavelength range of 550 nm to 710 nm. The absolute value of the difference may be 50 nm or less, 40 nm or less, 30 nm or less, 25 nm or less, and the lower limit may be 10 nm or more or 15 nm or more.
나아가, 본 발명에 따른 지문인식 센서용 광학원판은 300nm 내지 1,200nm 파장 범위에서 분광광도계를 광학원판의 투과율을 측정했을 때 430nm 내지 560nm 파장 영역에서 광 투과율은 85% 이상일 수 있다. 구체적으로, 상기 광학원판의 430nm 내지 560nm 파장 영역에서 광 투과율은 85% 이상, 88% 이상, 90% 이상 또는 92% 이상일 수 있고, 상한값은 95% 이하, 98% 이하, 99% 이하 또는 100%일 수 있다. 보다 구체적으로, 상기 광학원판의 430nm 내지 560nm 파장 영역에서 광 투과율은 90% 내지 99% 또는 92% 내지 95%일 수 있다.Furthermore, the optical disc for fingerprint recognition sensor according to the present invention may have a light transmittance of 85% or more in the wavelength range of 430 nm to 560 nm when the spectrophotometer measures the transmittance of the optical disc in the wavelength range of 300 nm to 1,200 nm. Specifically, the light transmittance in the 430nm to 560nm wavelength region of the optical disc may be 85% or more, 88% or more, 90% or more, or 92% or more, the upper limit is 95% or less, 98% or less, 99% or less or 100%. Can be. More specifically, the light transmittance in the wavelength region of 430nm to 560nm of the optical disc may be 90% to 99% or 92% to 95%.
이하 본 발명에 따른 광학원판의 각 구성요소를 보다 상세히 설명한다.Hereinafter, each component of the optical disc according to the present invention will be described in more detail.
본 발명에 따른 지문인식 센서용 광학원판은 도 1에 나타낸 바와 같이 광학원판(100)은 광투과성 기재(130) 상에 프라이머층(120)과 광 흡수층(110)이 순차 적층된 구조를 가질 수 있다. 상기 프라이머층(120)은 생략 가능하다. 또한, 상기 광 흡수층(110)은 가시광선 중 적색 영역의 광을 흡수하는 광흡수 염료가 수지에 분산된 구조이며, 적색 흡수층이라고도 한다. 상기 광투과성 기재(130)은 수지제 기판 등으로 대체 가능하다.In the optical disc for fingerprint recognition sensor according to the present invention, as shown in FIG. 1, the optical disc 100 may have a structure in which the primer layer 120 and the light absorbing layer 110 are sequentially stacked on the light transmissive substrate 130. have. The primer layer 120 may be omitted. In addition, the light absorbing layer 110 is a structure in which a light absorbing dye that absorbs light in a red region of visible light is dispersed in a resin, and is also called a red absorbing layer. The light transmissive substrate 130 may be replaced with a resin substrate.
먼저, 본 발명에 따른 지문인식 센서용 광학원판은 광투과성 기재를 포함하고, 광투과성 기재는 투명성을 갖고 판형상의 기재라면 특별히 제한되는 것은 아니나, 구체적으로는 투명 유리기판, 투명 수지기판 등을 사용할 수 있다.First, the optical disc for fingerprint recognition sensor according to the present invention includes a light transmissive substrate, and the light transmissive substrate is not particularly limited as long as it is transparent and a plate-shaped substrate, but specifically, a transparent glass substrate, a transparent resin substrate, or the like may be used. Can be.
구체적으로는, 상기 광투과성 기재로서 투명 유리기판의 경우, 상업적으로 입수 가능한 투명 유리기판을 사용할 수 있으며, 필요에 따라서는 산화구리(CuO)를 함유하는 인산염계 유리기판을 사용할 수 있다. 또한, 투명 수지기판의 경우, 강도가 우수한 것이라면 특별히 제한되지 않고 사용될 수 있다. 예를 들면, 무기 필러가 분산된 광투과성 수지를 사용할 수 있으며, 광 흡수층에 사용 가능한 바인더 수지를 사용할 수 있다.Specifically, in the case of the transparent glass substrate as the light transmissive substrate, a commercially available transparent glass substrate can be used, and if necessary, a phosphate-based glass substrate containing copper oxide (CuO) can be used. In addition, in the case of a transparent resin substrate, any one having excellent strength can be used without particular limitation. For example, a light transmissive resin in which an inorganic filler is dispersed can be used, and a binder resin usable for the light absorbing layer can be used.
상기 투명 유리기판은, 가시광의 광투과도를 저해하지 않으면서 광학 필터 제조공정에 따른 열 변형 및 휨을 방지할 수 있으며, 상기 투명 수지기판은 광 흡수층의 바인더 수지를 투명 수지기판으로 사용할 경우, 광 흡수층의 바인더 수지와 광투과성 기재로 사용되는 수지의 종류를 동일 또는 유사하게 제어함으로써 계면 박리 정도를 개선할 수 있다.The transparent glass substrate may prevent thermal deformation and warpage according to an optical filter manufacturing process without inhibiting light transmittance of visible light, and the transparent resin substrate may include a light absorbing layer when the binder resin of the light absorbing layer is used as a transparent resin substrate. The degree of interfacial peeling can be improved by controlling the kind of the binder resin and the resin used as the light transmissive substrate in the same or similar manner.
또한, 본 발명에 따른 광학원판은 광 흡수층을 포함하고, 광 흡수층은 상기 기재의 일면 또는 양면에 형성되며, 수지 바인더와 상기 수지 바인더 내에 분산된 광흡수제를 포함할 수 있다.In addition, the optical disc according to the present invention may include a light absorbing layer, and the light absorbing layer may be formed on one or both surfaces of the substrate, and may include a resin binder and a light absorbing agent dispersed in the resin binder.
상기 광 흡수층은 300nm 내지 1,200nm 파장 범위에서 분광광도계를 광학원판의 투과율을 측정했을 때 550nm 파장보다 긴 파장 영역에서 투과율이 50%가 되는 가장 짧은 파장(λ_cut-off)은 580nm 내지 620nm 파장 영역에서 존재한다. 구체적으로, 상기 광학원판의 550nm 파장보다 긴 파장 영역에서 투과율이 50%가 되는 가장 짧은 파장(λ_cut-off)은 590nm 내지 610nm 파장 영역에서 존재한다.The light absorbing layer has a spectrophotometer in the wavelength range of 300 nm to 1,200 nm, and the shortest wavelength (λ_cut-off) having a transmittance of 50% in a wavelength region longer than the 550 nm wavelength is measured in the range of 580 nm to 620 nm. exist. Specifically, the shortest wavelength (λ_cut-off) having a transmittance of 50% in the wavelength region longer than the 550 nm wavelength of the optical disc exists in the 590 nm to 610 nm wavelength region.
본 발명에 따른 상기 광흡수제는, 650nm 내지700 nm 파장 범위의 근적외선 흡수극대를 갖는 화합물로서, 광학 필터로 입사되는 근적외선 영역의 광을 흡수하여 근적외선 영역의 광이 이미지 센서로 입사되는 것을 차단하는 역할을 수행한다.The light absorbing agent according to the present invention is a compound having a near infrared absorption maximum in the wavelength range of 650 nm to 700 nm, and absorbs light in the near infrared region incident to the optical filter to block light in the near infrared region from entering the image sensor. Do this.
이때, 상기 광흡수제로는, 640nm 내지 700nm 파장 범위의 근적외선 흡수극대(λmax)를 갖는 화합물이라면 특별히 제한되지 않으나, 구체적으로 광흡수제는 흡수극대가 630±15nm인 염료, 흡수극대가 650±15nm인 염료 및 흡수극대가 680±15nm인 염료 중 어느 하나 이상을 포함할 수 있다. 예를 들어, 상기 염료는 SDA6698(HW Sands, 흡수극대 651nm), SDA4451(HW Sands, 흡수극대 634nm) 및 VIS680D(QCR Solutions, 흡수극대 680nm)을 포함할 수 있다.In this case, the light absorbing agent is not particularly limited as long as the compound has a near infrared absorption maximum (λ max ) in the wavelength range of 640 nm to 700 nm. It may include any one or more of a phosphorus dye and a dye having an absorption maximum of 680 ± 15 nm. For example, the dye may include SDA6698 (HW Sands, absorption peak 651 nm), SDA4451 (HW Sands, absorption peak 634 nm) and VIS680D (QCR Solutions, absorption peak 680 nm).
또한, 상기 광흡수제는 단독으로 사용할 수 있으며, 경우에 따라서 3종 이상을 병용하거나 두 개의 층으로 분리하여 사용할 수도 있다. 아울러, 상기 광흡수제의 함량은, 광학원판의 광흡수율에 영향을 미치지 않는 범위 내에서 제한되지 않고 선택될 수 있다. 구체적으로는, 광 흡수층에 포함되는 바인더 수지 100 중량부에 대하여, 0.01 내지 10.0 중량부; 0.01 내지 8.0 중량부; 또는 0.01 내지 5.0 중량부일 수 있다.In addition, the light absorbing agent may be used alone, and in some cases, may be used in combination of three or more kinds or separated into two layers. In addition, the content of the light absorbing agent may be selected without limitation within a range that does not affect the light absorption of the optical disc. Specifically, it is 0.01-10.0 weight part with respect to 100 weight part of binder resin contained in a light absorption layer; 0.01 to 8.0 parts by weight; Or 0.01 to 5.0 parts by weight.
다음으로, 본 발명에 따른 상기 광 흡수층은, 바인더 수지를 포함할 수 있다. Next, the light absorbing layer according to the present invention may include a binder resin.
본 발명에 따른 상기 바인더 수지로는, 예를 들면, 환상 올레핀계 수지, 폴리아릴레이트 수지, 폴리술폰 수지, 폴리에테르술폰 수지, 폴리파라페닐렌 수지, 폴리아릴렌에테르포스핀옥사이드 수지, 폴리이미드 수지, 폴리에테르이미드 수지, 폴리아미드이미드 수지, 아크릴 수지, 폴리카보네이트 수지, 폴리에틸렌 나프탈레이트 수지, 유-무기 하이브리드 계열 수지 등을 사용할 수 있다. 구체적으로는, 환상 올레핀 중합체(cyclic olefin polymer, COP), 환상 올레핀 공중합체(cyclic olefin co-polymer, COC), 폴리이미드 수지(polyimide, PI) 또는 이들의 혼합물을 사용할 수 있다.As said binder resin which concerns on this invention, a cyclic olefin resin, polyarylate resin, polysulfone resin, polyether sulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide resin, polyimide, for example Resins, polyetherimide resins, polyamideimide resins, acrylic resins, polycarbonate resins, polyethylene naphthalate resins, organic-inorganic hybrid series resins, and the like. Specifically, cyclic olefin polymer (cyclic olefin polymer, COP), cyclic olefin copolymer (cyclic olefin co-polymer, COC), polyimide resin (polyimide, PI) or a mixture thereof can be used.
나아가, 상기 바인더 수지는, 첨가제를 더 포함할 수 있다.Furthermore, the binder resin may further include an additive.
상기 첨가제로는, 고온에서 광 흡수층의 변성을 방지할 수 있는 것이라면, 특별히 제한되지 않고 사용될 수 있다. 예를 들면, 폐놀(phenol)계 산화방지제, 주석(Tin)계 안정제 등을 들 수 있으나, 이에 제한되는 것은 아니다. The additive may be used without particular limitation, as long as it can prevent modification of the light absorbing layer at a high temperature. For example, phenol (phenol) antioxidant, tin (Tin) stabilizer and the like, but is not limited thereto.
광학필터Optical filter
또한, 본 발명은 일실시예에서,In addition, the present invention in one embodiment,
상기 서술한 광학원판; 및The optical disc described above; And
상기 광학원판의 일면 또는 양면에 형성된 선택파장 반사층을 포함하는 광학필터를 제공한다.It provides an optical filter comprising a selective wavelength reflecting layer formed on one or both surfaces of the optical disc.
본 발명에 따른 광학필터는, 광학원판의 일면 또는 양면에 형성된 선택파장 반사층을 포함할 수 있다. 구체적으로, 상기 광학필터는 광학원판의 양면에 형성된 선택파장 반사층을 포함하고, 300nm 내지 1,200nm 파장 범위에서 분광광도계를 광학필터의 투과율을 측정했을 때 550nm 파장보다 긴 파장 영역에서 투과율이 50%가 되는 가장 짧은 파장(λ_cut-off)은 585nm 내지 615nm 파장 영역에서 존재할 수 있다. 또한, 300nm 내지 1,200nm 파장 범위에서 분광광도계를 광학필터의 투과율을 측정했을 때 550nm 파장보다 긴 파장 영역에서 투과율이 50%가 되는 가장 긴 파장(λ_cut-off)은 655nm 내지 615nm 파장 영역에서 존재할 수 있다.The optical filter according to the present invention may include a selective wavelength reflecting layer formed on one or both surfaces of the optical disc. Specifically, the optical filter includes a selective wavelength reflecting layer formed on both sides of the optical disc, and when measuring the transmittance of the optical filter in the spectrophotometer in the wavelength range of 300nm to 1,200nm 50% transmittance in the wavelength region longer than 550nm wavelength The shortest wavelength [lambda] _cut-off may be present in the 585 nm to 615 nm wavelength range. In addition, the longest wavelength (λ_cut-off) with a transmittance of 50% in a wavelength region longer than 550 nm when the spectrophotometer measures the transmittance of the optical filter in the wavelength range of 300 nm to 1,200 nm may exist in the 655 nm to 615 nm wavelength region. have.
또한, 본 발명에 따른 광학필터는 300nm 내지 1,200nm 파장 범위에서 분광광도계를 광학원판의 투과율을 측정했을 때 650nm 내지 1200nm 파장 영역에서 광투과율은 5% 이하, 4% 이하 또는 3% 이하로 나타날 수 있고, 평균 하한값은 예를 들어 0.5% 이상 또는 1% 이상일 수 있다.In addition, the optical filter according to the present invention, when measuring the transmittance of the optical disc in the spectrophotometer in the wavelength range of 300nm to 1,200nm, the light transmittance in the wavelength range of 650nm to 1200nm may be 5% or less, 4% or less or 3% or less. And the average lower limit may be, for example, 0.5% or more or 1% or more.
나아가, 본 발명에 따른 광학필터는 300nm 내지 1,200nm 파장 범위에서 분광광도계를 광학원판의 투과율을 측정했을 때 430nm 내지 560nm 파장 영역에서 광투과율은 90% 이상, 93% 이상, 95% 이상 또는 97% 이상일 수 있고, 평균 상한값은 99% 이하 또는 100%일 수 있다.Furthermore, the optical filter according to the present invention has a light transmittance of 90% or more, 93% or more, 95% or more or 97% in the wavelength range of 430 nm to 560 nm when the spectrophotometer measures the transmittance of the optical disc in the wavelength range of 300 nm to 1,200 nm. The upper limit may be 99% or less or 100%.
또한, 본 발명에 따른 광학필터는 하기 조건 1을 만족할 수 있다:In addition, the optical filter according to the present invention may satisfy the following condition 1.
[조건 1][Condition 1]
|T10% - T50%| < 50 (nm)T 10% -T 50% | <50 (nm)
T50%은 550nm 내지 710nm 파장 영역에서 광투과도가 50%인 지점의 파장값을 나타내고, T 50% represents the wavelength value at the point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm,
T10%은 550nm 내지 710nm 파장 영역에서 광투과도가 10%인 지점의 파장값을 나타낸다.T 10% represents the wavelength value at the point where the light transmittance is 10% in the wavelength range of 550 nm to 710 nm.
구체적으로, 상기 광학필터는 550nm 내지 710nm 파장 영역에서 광투과도가 50%인 지점의 파장값(T50%)과 550nm 내지 710nm 파장 영역에서 광투과도가 10%인 지점의 파장값(T10%)의 차이의 절대값이 평균 50nm 이하, 40nm 이하, 30nm 이하, 25nm 이하일 수 있고, 평균 하한값은 5nm 이상 또는 10nm 이상일 수 있다.Specifically, the optical filter has a wavelength value (T 50% ) at a point where light transmittance is 50% in the wavelength range of 550nm to 710nm and a wavelength value (T 10% ) at a point where light transmittance is 10% in the wavelength range of 550nm to 710nm. The absolute value of the difference may be 50 nm or less, 40 nm or less, 30 nm or less, 25 nm or less, and the average lower limit may be 5 nm or more or 10 nm or more.
이하, 본 발명에 따른 광학필터를 구성하는 각 성분을 보다 구체적으로 설명한다.Hereinafter, each component which comprises the optical filter which concerns on this invention is demonstrated more concretely.
본 발명에 따른 광학필터는 도 2에 나타낸 바와 같이 광학필터(200)는 광투과성 기재(230) 상에 프라이머층(220)과 흠수층(230)이 순차 적층된 구조의 광학원판이 형성되고, 상기 광학원판의 위아래에 각각 제1 및 제2 선택파장 반사층(240, 250)이 각각 형성된 구조이다. 제1 및 제2 선택파장 반사층(240, 250)은 각각 TiO2 및 SiO2가 교대 적층된 구조일 수 있다.In the optical filter according to the present invention, as shown in FIG. 2, the optical filter 200 includes an optical disc having a structure in which a primer layer 220 and a flaw layer 230 are sequentially stacked on a light transmissive substrate 230, First and second selective wavelength reflecting layers 240 and 250 are formed on and under the optical disc, respectively. The first and second selective wavelength reflecting layers 240 and 250 may have a structure in which TiO 2 and SiO 2 are alternately stacked.
먼저, 본 발명에 따른 광학필터는, 광학원판의 일면 또는 양면에 선택파장 반사층을 포함할 수 있다.First, the optical filter according to the present invention may include a selective wavelength reflecting layer on one or both surfaces of the optical disc.
구체적으로, 상기 선택파장 반사층은, 근적외선 영역의 광을 반사하는 역할을 수행하며, 고굴절률층과 저굴절률층을 교대로 적층한 유전체 다층막 등의 구조를 가질 수 있으나, 이에 제한되는 것은 아니다. 이와 더불어, 상기 선택파장 반사층은 광학필터로 입사되는 광 중 700㎚ 이상의 파장, 구체적으로는 700㎚ 내지 1,100㎚ 범위의 파장을 갖는 광을 반사하여 상기 범위의 광이 이미지 센서로 입사되는 것을 차단하거나, 400㎚ 내지 700㎚ 파장 범위의 가시광선 영역의 광이 반사되는 것을 방지하는 역할을 수행한다. 즉, 상기 선택파장 반사층은 근적외선을 반사시키는 근적외선 반사층(Infrared Reflective layer, IR층) 및/또는 가시광선이 반사되는 것을 방지하는 반사방지층(Anti-Reflection layer, AR층)의 역할을 수행할 수 있다.Specifically, the selective wavelength reflecting layer may serve to reflect light in the near infrared region, and may have a structure such as a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately stacked, but is not limited thereto. In addition, the selective wavelength reflecting layer reflects light having a wavelength of 700 nm or more, specifically, a wavelength in the range of 700 nm to 1,100 nm, of light incident to the optical filter, thereby preventing the light in the range from entering the image sensor. , To prevent reflection of light in the visible light region in the wavelength range of 400 nm to 700 nm. That is, the selective wavelength reflecting layer may serve as an near-infrared reflecting layer (IR layer) reflecting near infrared rays and / or an anti-reflection layer (AR layer) for preventing visible light from being reflected. .
이때, 상기 선택파장 반사층은 고굴절률층과 저굴절률층을 교대로 적층한 유전체 다층막 등의 구조를 가질 수 있으며, 알루미늄 증착막; 귀금속 박막; 또는 산화인듐 및 산화주석 중 1종 이상의 미립자가 분산된 수지막을 더 포함할 수도 있다. 예를 들면, 상기 선택파장 반사층은 제1 굴절률을 가지는 유전체 다층막과 제2 굴절률을 가지는 유전체 다층막이 교대 적층된 구조일 수 있으며, 상기 제1 굴절률을 가지는 유전체 다층막과 제2 굴절률을 가지는 유전체 다층막의 굴절률 편차는 0.2 이상; 0.3 이상; 또는 0.2 내지 1.0 일 수 있다.In this case, the selective wavelength reflecting layer may have a structure such as a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately stacked, an aluminum deposition film; Precious metal thin film; Alternatively, the method may further include a resin film in which one or more fine particles of indium oxide and tin oxide are dispersed. For example, the selective wavelength reflecting layer may have a structure in which a dielectric multilayer film having a first refractive index and a dielectric multilayer film having a second refractive index are alternately stacked, and the dielectric multilayer film having the first refractive index and the dielectric multilayer film having a second refractive index Refractive index deviation is 0.2 or more; 0.3 or more; Or 0.2 to 1.0.
또한, 상기 선택파장 반사층의 고굴절률층 및 저굴절률층으로는, 고굴절률층과 저굴절률층의 굴절률 편차가 앞서 설명한 범위에 포함되는 것이라면 특별히 제한되는 것은 아니나, 구체적으로 고굴절률층은 2.1 내지 2.5의 굴절률을 갖는 산화티탄늄, 산화알루미늄, 산화지르코늄, 오산화탄탈륨, 오산화니오븀, 산화란타늄, 산화이트륨, 산화아연, 황화아연 및 산화인듐으로 이루어진 군으로부터 선택되는 1 종 이상을 포함할 수 있으며, 상기 산화인듐은, 산화티타늄, 산화주석, 산화세륨 등을 소량 더 포함할 수 있다. 또한, 저굴절률층은 1.4 내지 1.6의 굴절률을 갖는 이산화규소, 불화란탄, 불화마그네슘 및 육불화알루미륨나트륨(빙정석, Na3AlF6)으로 이루어진 군으로부터 선택되는 1 종 이상을 포함할 수 있다.Further, the high refractive index layer and the low refractive index layer of the selective wavelength reflecting layer is not particularly limited as long as the refractive index deviation of the high refractive index layer and the low refractive index layer is included in the above-described range, but specifically, the high refractive index layer is 2.1 to 2.5. It may include one or more selected from the group consisting of titanium oxide, aluminum oxide, zirconium oxide, tantalum pentoxide, niobium oxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide and indium oxide having a refractive index of Indium oxide may further contain a small amount of titanium oxide, tin oxide, cerium oxide and the like. In addition, the low refractive index layer may include at least one member selected from the group consisting of silicon dioxide, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride (Cryolite, Na 3 AlF 6 ) having a refractive index of 1.4 to 1.6.
지문인식모듈Fingerprint Recognition Module
나아가, 본 발명은 일실시예에서,Furthermore, the present invention in one embodiment,
상기 서술한 광학필터를 포함하는 지문인식 모듈을 제공한다.Provided is a fingerprint recognition module comprising the optical filter described above.
본 발명에 따른 지문인식 모듈은 상기 서술된 광학필터; 및 상기 광학필터 일면에 지문인식 센서를 포함할 수 있다. 이때, 지문인식 센서는 카메라식 또는 광학식일 수 있다. 구체적으로, 본 발명의 지문인식 모듈은 상기 서술된 광학필터(지문인식 센서용 필터); 지문인식 센서 및 지문인식 센서용 회로기판을 포함할 수 있다. 보다 구체적으로 지문인식 모듈은 광학필터, 지문인식 센서 및 지문인식 센서용 회로 기판이 순차로 적층된 구조를 가질 수 있다.Fingerprint recognition module according to the present invention comprises the above-described optical filter; And a fingerprint recognition sensor on one surface of the optical filter. In this case, the fingerprint sensor may be a camera type or an optical type. Specifically, the fingerprint recognition module of the present invention includes the above-described optical filter (filter for fingerprint recognition sensor); It may include a fingerprint sensor and a circuit board for the fingerprint sensor. More specifically, the fingerprint recognition module may have a structure in which an optical filter, a fingerprint recognition sensor, and a circuit board for a fingerprint recognition sensor are sequentially stacked.
구체적으로, 상기 광학필터는 광투과성 기재; 및 상기 기재의 일면 또는 양면에 형성되며, 수지 바인더와 상기 수지 바인더 내에 분산된 광흡수제를 포함하는 광 흡수층을 포함하며, Specifically, the optical filter is a light transmissive substrate; And a light absorbing layer formed on one or both surfaces of the substrate and including a resin binder and a light absorbing agent dispersed in the resin binder.
620nm 내지 710nm 파장 영역의 광 투과율이 평균 15% 이하인 지문인식센서용 광학원판을 포함할 수 있다.It may include an optical disc for fingerprint recognition sensor that the light transmittance in the wavelength region of 620nm to 710nm is 15% or less on average.
보다 구체적으로 상기 광학 필터는 상기 서술한 광학원판; 및 상기 광학원판의 일면 또는 양면에 형성된 선택파장 반사층을 포함할 수 있다. More specifically, the optical filter includes the optical disc described above; And a selective wavelength reflecting layer formed on one or both surfaces of the optical disc.
하나의 예로서, 본 발명의 지문인식 모듈에서 광학필터는 지문인식 센서용 필터일 수 있으며, 상기 광학필터를 포함하는 지문인식 센서는 디스플레이의 화면 영역 내(In display)에 위치할 수 있다.As an example, in the fingerprint recognition module of the present invention, the optical filter may be a filter for a fingerprint sensor, and the fingerprint sensor including the optical filter may be located in an in display area of the display.
본 발명에 따른 지문인식 모듈은 상기와 같이 광학필터를 포함함으로써, 적색 광의 시인성을 감소시켜 디스플레이 화면이 붉게 보이는 것을 방지할 수 있다.The fingerprint recognition module according to the present invention includes the optical filter as described above, thereby reducing the visibility of the red light to prevent the display screen from appearing red.
디스플레이 장치Display device
또한, 본 발명은 일실시예에서,In addition, the present invention in one embodiment,
상기 서술한 지문인식 모듈을 포함하는 디스플레이 장치를 제공한다.Provided is a display device including the fingerprint recognition module described above.
본 발명에 따른 디스플레이 장치는 디스플레이의 화면 영역 내(In-display)에 지문인식 모듈을 포함할 수 있다. 본 발명에서, 디스플레이의 화면 영역 내(In-display)에 지문인식 모듈이 위치한다는 것은, 상기 지문인식 모듈이 디스플레이 패널의 발광 영역 내에 존재하되, 상기 디스플레이 패널의 발광면의 반대편에 위치하는 것을 의미한다.The display device according to the present invention may include a fingerprint recognition module in an in-display area of the display. In the present invention, the location of the fingerprint module in the in-display area of the display means that the fingerprint module is present in the light emitting area of the display panel, but is located opposite to the light emitting surface of the display panel. do.
하나의 예로서, 본 발명은 도 3에 나타낸 바와 같이 OLED 디스플레이 장치를 제공할 수 있다. 구체적으로, OLED 디스플레이 장치(300)는 OLED 디스플레이 화면(400) 영역 내에 지문인식 모듈(410)을 포함할 수 있다. 보다 구체적으로, OLED 디스플레이 장치(300)는 OLED 디스플레이 화면(400); 및 OLED 디스플레이 화면(400) 하부에 상기 서술한 지문인식 모듈(410)을 포함할 수 있다. 예를 들어, OLED 디스플레이 화면(400)은 스크린 보호층(310), 커버 글래스(320), 및 OLED 디스플레이 패널(331)이 순차 적층된 구조이고, OLED 디스플레이 화면(400)의 하부에는 지문인식 모듈(410)이 위치한 구조일 수 있다. 지문인식 모듈(410)은 광학필터(340), 지문인식 센서(350) 및 지문인식 센서용 회로기판(360)이 순차로 적층된 구조이다. 광학필터(340)는 지문인식 센서용 필터일 수 있다.As one example, the present invention can provide an OLED display device as shown in FIG. In detail, the OLED display device 300 may include a fingerprint recognition module 410 within the OLED display screen 400. More specifically, the OLED display device 300 includes an OLED display screen 400; And the fingerprint recognition module 410 described above under the OLED display screen 400. For example, the OLED display screen 400 has a structure in which the screen protective layer 310, the cover glass 320, and the OLED display panel 331 are sequentially stacked, and a fingerprint recognition module is disposed below the OLED display screen 400. 410 may be located. The fingerprint recognition module 410 has a structure in which an optical filter 340, a fingerprint recognition sensor 350, and a fingerprint recognition sensor circuit board 360 are sequentially stacked. The optical filter 340 may be a filter for a fingerprint sensor.
또한, 본 발명은 도 4에 나타낸 바와 같이 LCD 디스플레이 장치를 제공할 수 있다. 구체적으로, LCD 디스플레이 장치(300)는 LCD 디스플레이 화면(400) 영역 내에 지문인식 모듈(410)을 포함할 수 있다. 보다 구체적으로, LCD 디스플레이 장치(300)는 LCD 디스플레이 화면(400); 및 LCD 디스플레이 화면(400) 하부에 지문인식 모듈(410)을 포함할 수 있다. 예를 들어, LCD 디스플레이 화면(400)은 스크린 보호층(310); LCD 디스플레이 패널(332); 및 백라이트 유닛(370)이 순차로 적층된 구조이고, LCD 디스플레이 화면(400) 하부에 지문인식 모듈(410)을 포함하되, 지문인식 모듈(410)은 백라이트 유닛(370)이 적용되지 않는 부위에 위치할 수 있다.In addition, the present invention can provide an LCD display device as shown in FIG. In detail, the LCD display device 300 may include a fingerprint recognition module 410 in the area of the LCD display screen 400. More specifically, the LCD display device 300 includes an LCD display screen 400; And a fingerprint recognition module 410 under the LCD display screen 400. For example, the LCD display screen 400 may include a screen protective layer 310; LCD display panel 332; And a backlight unit 370 sequentially stacked, and includes a fingerprint recognition module 410 under the LCD display screen 400, wherein the fingerprint recognition module 410 is located at a portion where the backlight unit 370 is not applied. Can be located.
아울러, 지문인식 모듈(410)이 백라이트 유닛(370)의 하부에 위치할 수도 있다. 즉, 지문인식 모듈(410)의 위치는 백라이트 유닛(370)이 적용되는 위치 또는 적용되지 않는 위치에 따라 한정하는 것은 아니며, 지문 인식률에 따라 다르게 위치시킬 수 있다.In addition, the fingerprint recognition module 410 may be located under the backlight unit 370. That is, the position of the fingerprint recognition module 410 is not limited to the position at which the backlight unit 370 is applied or not applied, and may be positioned differently according to the fingerprint recognition rate.
지문인식 모듈(410)은 광학필터(340), 지문인식 센서(350) 및 지문인식 센서용 회로기판(360)을 포함하는 구조이다.The fingerprint recognition module 410 has a structure including an optical filter 340, a fingerprint recognition sensor 350, and a circuit board 360 for a fingerprint recognition sensor.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following Examples and Experimental Examples are only illustrative of the present invention, and the content of the present invention is not limited to the following Examples and Experimental Examples.
실시예 1Example 1
각각 645±5nm, 670±5nm 및 685±5nm 파장 영역에서 흡수극대를 갖는 광흡수제 A, 광흡수제 B 및 광흡수제 C를 상업적으로 입수하여 수지 100 중량부를 기준으로 각각 0.5 내지 5 중량부가 되도록 혼합하였다. 이때, 수지로서는 폴리메틸메타크릴레이트(PMMA) 수지를 이용하였고, 유기 용매로서는 메틸에틸케톤(MEK)을 이용하였다. 이후 상기 재료를 모두 넣고, 자력 교반기로 24시간 이상 교반하여 광 흡수 용액을 제조하였다. 제조된 광 흡수 용액을 두께가 0.2mm인 유리 기판의 양면에 도포하고 120℃에서 50분간 경화하여 광 흡수층을 포함하는 광학원판을 제조하였다.Light absorbers A, light absorbers B, and light absorbers C having absorption maxima in the wavelength ranges of 645 ± 5 nm, 670 ± 5 nm, and 685 ± 5 nm, respectively, were obtained commercially and mixed so as to be 0.5 to 5 parts by weight based on 100 parts by weight of the resin. . At this time, polymethyl methacrylate (PMMA) resin was used as the resin, and methyl ethyl ketone (MEK) was used as the organic solvent. Then, all the materials were put, and stirred for 24 hours or more with a magnetic stirrer to prepare a light absorption solution. The prepared light absorbing solution was applied to both surfaces of a glass substrate having a thickness of 0.2 mm, and cured at 120 ° C. for 50 minutes to prepare an optical disc including a light absorbing layer.
이 광학원판의 광투과율을 분광광도계를 이용하여 측정했을 때, Cut-off T50%가 되는 파장은 590nm임을 확인하였다.When the optical transmittance of this optical disc was measured using the spectrophotometer, it was confirmed that the wavelength which becomes Cut-off T 50% is 590 nm.
실시예 2Example 2
전자빔 증착기(E-beam evaporator)를 이용하여 110±5℃ 온도에서 상기 실시예 1에서 제조한 광학원판의 제1 주면에 SiO2와 Ti3O5을 교대로 증착하여 유전체 다층막 구조의 제1 선택파장 반사층을 형성하였다. 이후, 전자빔 증착기(E-beam evaporator)로 110±5℃ 온도에서 광학물품의 제2 주면에 SiO2와 Ti3O5을 교대로 증착하여 유전체 다층막 구조의 제2 선택파장 반사층을 형성하여 광학필터를 제조하였다. 이때, 적층된 제1 및 제2 선택파장 반사층의 적층 층수 및 두께는 하기 표 2에 나타내었다. 여기서, 상기 두께는 제1 및 제2 선택파장 반사층의 각각의 총 두께를 의미하여 단위는 마이크로미터(μm)이다.First selection of the dielectric multilayer structure by alternately depositing SiO 2 and Ti 3 O 5 on the first main surface of the optical disc prepared in Example 1 using an E-beam evaporator at 110 ± 5 ℃ A wavelength reflecting layer was formed. Subsequently, SiO 2 and Ti 3 O 5 are alternately deposited on the second main surface of the optical article at an temperature of 110 ± 5 ° C. using an E-beam evaporator to form a second selective wavelength reflective layer having a dielectric multilayer structure. Was prepared. In this case, the number of laminated layers and the thickness of the stacked first and second selective wavelength reflecting layers are shown in Table 2 below. Here, the thickness means the total thickness of each of the first and second selective wavelength reflecting layers, and the unit is micrometer (μm).
제1 선택파장 반사층First Selective Wave Reflective Layer 제2 선택파장 반사층Second Selective Wave Reflective Layer
층수 [P1]Floor Level [P1] 두께 [D1]Thickness [D1] 층수 [P2]Floor Level [P2] 두께 [D2]Thickness [D2]
실시예 2Example 2 20~2520-25 2~32 ~ 3 20~2520-25 2~32 ~ 3
비교예 1Comparative Example 1
각각 670±5nm, 및 685±5nm 파장 영역에서 흡수극대를 갖는 광흡수제 B및 광흡수제 C를 상업적으로 입수하여 수지 100 중량부를 기준으로 각각 0.5 내지 5 중량부가 되도록 혼합하였다. 이때, 수지로서는 폴리메틸메타크릴레이트(PMMA) 수지를 이용하였고, 유기 용매로서는 메틸에틸케톤(MEK)를 이용하였다. 이후 상기 재료를 모두 넣고, 자력 교반기로 24시간 이상 교반 하여 광 흡수 용액을 제조하였다. 제조된 광 흡수 용액을 두께가 0.2mm인 유리 기판의 양면에 도포하고 120℃에서 50분간 고온 건조하여 광 흡수층을 포함하는 광학원판을 제조하였다.Light absorbers B and light absorbers C having absorption bands at wavelengths of 670 ± 5 nm and 685 ± 5 nm, respectively, were obtained commercially and mixed so as to be 0.5 to 5 parts by weight based on 100 parts by weight of the resin. At this time, polymethyl methacrylate (PMMA) resin was used as the resin, and methyl ethyl ketone (MEK) was used as the organic solvent. Then, all the materials were put, and stirred for 24 hours or more with a magnetic stirrer to prepare a light absorption solution. The prepared light absorbing solution was applied to both surfaces of a glass substrate having a thickness of 0.2 mm and dried at high temperature at 120 ° C. for 50 minutes to prepare an optical disc including a light absorbing layer.
이 광학원판의 광투과율을 분광광도계 측정 했을 때, Cut-off T50%가 되는 파장은 630nm임을 확인했다.When the optical transmittance of this optical disc was measured by a spectrophotometer, it was confirmed that the wavelength of Cut-off T 50% was 630 nm.
비교예 2Comparative Example 2
각각 및 685±5nm 파장 영역에서 흡수극대를 갖는 광흡수제 C를 상업적으로 입수하여 수지 100 중량부를 기준으로 각각 0.5 내지 5 중량부가 되도록 혼합하였다. 이때, 수지로서는 폴리메틸메타크릴레이트(PMMA) 수지를 이용하였고, 유기 용매로서는 메틸에틸케톤(MEK)를 이용하였다. 이후 상기 재료를 모두 넣고, 자력 교반기로 24시간 이상 교반 하여 광 흡수 용액을 제조하였다. 제조된 광 흡수 용액을 두께가 0.2mm인 유리 기판의 양면에 도포하고 120℃에서 50분간 고온 건조하여 광 흡수층을 포함하는 광학원판을 제조하였다.Light absorbers C having an absorption maximum in each and the 685 ± 5 nm wavelength range were obtained commercially and mixed so as to be 0.5 to 5 parts by weight based on 100 parts by weight of the resin. At this time, polymethyl methacrylate (PMMA) resin was used as the resin, and methyl ethyl ketone (MEK) was used as the organic solvent. Then, all the materials were put, and stirred for 24 hours or more with a magnetic stirrer to prepare a light absorption solution. The prepared light absorbing solution was applied to both surfaces of a glass substrate having a thickness of 0.2 mm and dried at high temperature at 120 ° C. for 50 minutes to prepare an optical disc including a light absorbing layer.
이 광학원판의 광투과율을 분광광도계 측정 했을 때, Cut-off T50%가 되는 파장은, 650nm임을 확인했다.When the light transmittance of this optical disc was measured by a spectrophotometer, it was confirmed that the wavelength of Cut-off T 50% was 650 nm.
비교예 3Comparative Example 3
광학원판으로 비교예 1에서 제조한 광학원판을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유전체 다층막을 증착하여 광학필터를 제작하였다.An optical filter was prepared by depositing a dielectric multilayer film in the same manner as in Example 2, except that the optical disc prepared in Comparative Example 1 was used as the optical disc.
비교예 4Comparative Example 4
광학원판으로 비교예 2에서 제조한 광학원판을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 유전체 다층막을 증착하여 광학필터를 제작하였다.An optical filter was prepared by depositing a dielectric multilayer film in the same manner as in Example 2, except that the optical disc prepared in Comparative Example 2 was used as the optical disc.
실험예 1Experimental Example 1
본 발명에 따른 광학원판 및 광학원판을 포함하는 광학필터의 광학적 특성을 알아보기 위하여 하기와 같은 실험을 수행하였다.In order to determine the optical characteristics of the optical filter including the optical disc and the optical disc according to the present invention, the following experiment was performed.
먼저, 실시예 1, 비교예 1 및 비교예 2에서 제조한 광학원판을 대상으로 350nm 내지 1200nm 파장 범위에서 분광광도계를 이용하여 입사각 0도 조건에서 투과 스펙트럼을 측정하였고, 그 결과를 도 5에 나타내었다.First, the transmission spectra of the optical discs prepared in Example 1, Comparative Example 1 and Comparative Example 2 were measured at 0 ° incident angle using a spectrophotometer in the wavelength range of 350 nm to 1200 nm, and the results are shown in FIG. 5. It was.
또한, 실시예 2, 비교예 3 및 비교예 4에서 제조한 광학필터에 대하여 광 투과 스펙트럼을 측정하였으며, 그 결과를 도 6에 각각 나타내었다.In addition, light transmission spectra of the optical filters prepared in Example 2, Comparative Example 3, and Comparative Example 4 were measured, and the results are shown in FIG. 6, respectively.
아울러, 광학원판의 cut-off T50% 값이 각각 590nm, 630nm 및 650nm인 실시예 2, 비교예 3 및 비교예 4의 광학필터를 대상으로 필터에서 반사되는 붉은색 시인성을 관찰하였으며, 그 결과를 도 7에 나타내었다.In addition, the optical visibility of Example 2, Comparative Example 3, and Comparative Example 4, wherein the cut-off T 50% values of the optical discs were 590 nm, 630 nm, and 650 nm, respectively, was observed. Is shown in FIG. 7.
도 5를 살펴보면, 실시예 1에서 제조한 광학원판은 580nm 내지 610nm 파장 영역에서 광흡수도가 50%인 지점이 존재하며, 광흡수도가 50%인 지점과 10%인 지점의 파장 차이는 25nm 이내인 것을 알 수 있다. 구체적으로 광 투과율을 측정했을 때, Cut-off T50%가 되는 파장은 590nm인 것을 확인할 수 있다. 반면, 비교예 1 및 비교예 2에서 제조한 광학원판은 광 투과율을 측정했을 때 Cut-off T50%가 되는 파장은 각각 630nm 및 650nm인 것을 확인할 수 있다. 이를 통해, 본 발명에 따른 광학원판은 광 흡수층에 포함되는 광흡수제를 제어함으로써 흡수되는 광의 파장 영역을 조절할 수 있고, 이에 따라 근적외선 파장을 흡수할 수 있다.Referring to FIG. 5, the optical disc manufactured in Example 1 has a point where light absorption is 50% in a wavelength range of 580 nm to 610 nm, and the wavelength difference between a point where light absorption is 50% and a point where 10% is 25 nm is 25 nm. It can be seen that it is within. Specifically, when the light transmittance is measured, it can be seen that the wavelength which becomes Cut-off T 50% is 590 nm. On the other hand, in the optical discs prepared in Comparative Example 1 and Comparative Example 2, it can be seen that when the light transmittance is measured, the wavelengths of Cut-off T 50% are 630 nm and 650 nm, respectively. Through this, the optical disc according to the present invention can control the wavelength region of the absorbed light by controlling the light absorbing agent included in the light absorbing layer, thereby absorbing the near infrared wavelength.
또한, 도 6을 살펴보면, 실시예 2에서 제조한 광학필터는 400nm 내지 580nm의 파장 영역에서 80% 이상의 광 투과율을 나타내고, 580nm 이상의 파장 영역의 광은 흡수하는 것을 알 수 있다. 반면, 비교예 3에서 제조한 광학필터는 400nm 내지 630nm의 파장 영역에서 80% 이상의 광 투과율을 나타내고, 630nm 이상의 파장 영역의 광은 흡수하는 것을 알 수 있다. 또한, 비교예 4에서 제조한 광학필터는 400nm 내지 650nm의 파장 영역에서 80% 이상의 광 투과율을 나타내고, 650nm 이상의 파장 영역의 광은 흡수하는 것을 알 수 있다. 이를 통해서, 본 발명에 따른 광학필터는 다른 광학필터와 비교하여 붉은색 영역의 광을 효과적으로 흡수하는 것을 알 수 있다.In addition, referring to FIG. 6, the optical filter manufactured in Example 2 exhibits light transmittance of 80% or more in the wavelength region of 400 nm to 580 nm, and absorbs light in the wavelength region of 580 nm or more. On the other hand, the optical filter prepared in Comparative Example 3 shows a light transmittance of 80% or more in the wavelength region of 400nm to 630nm, it can be seen that the light in the wavelength region of 630nm or more absorb. In addition, it can be seen that the optical filter prepared in Comparative Example 4 exhibits light transmittance of 80% or more in the wavelength region of 400 nm to 650 nm, and absorbs light in the wavelength region of 650 nm or more. Through this, it can be seen that the optical filter according to the present invention effectively absorbs light in the red region compared with other optical filters.
도 7을 살펴보면, 광학원판의 Cut-off T50%값을 590nm으로 적용한 실시예 2의 광학필터가 광학원판의 Cut-off T50%값을 630nm으로 적용한 비교예 3의 광학필터 및 광학원판의 Cut-off T50%값을 650nm으로 적용한 비교예 5의 광학필터와 비교하여 광학필터에서 반사되는 붉은색 시인성이 현저하게 감소함을 실험적으로 확인할 수 있다. 이를 통해, 본 발명의 광학원판은 광 흡수층에 붉은색 영역을 흡수하는 광 흡수제를 포함함으로써, 상기 광학원판을 포함하는 광학필터의 경우 붉은색 시인성이 감소함을 알 수 있다.Referring to Figure 7, the optical disc Cut-off T 50% embodiments apply the value to 590nm Example 2 of the optical filter of Comparative Example 3, an optical filter and an optical disc of applying the Cut-off T 50% value of the optical disc to 630nm It can be experimentally confirmed that the red visibility reflected by the optical filter is significantly reduced compared to the optical filter of Comparative Example 5, wherein the cut-off T 50% value is applied at 650 nm. Through this, the optical disc of the present invention includes a light absorbing agent absorbing a red region in the light absorbing layer, it can be seen that the red visibility of the optical filter including the optical disc is reduced.

Claims (14)

  1. 광투과성 기재; 및Light transmissive substrates; And
    상기 기재의 일면 또는 양면에 형성되며, 수지 바인더와 상기 수지 바인더 내에 분산된 광흡수제를 포함하는 광 흡수층을 포함하며, Is formed on one or both sides of the base material, and includes a light absorbing layer comprising a resin binder and a light absorbing agent dispersed in the resin binder,
    620nm 내지 710nm 파장 영역의 광 투과율이 평균 15% 이하인 지문인식센서용 광학원판.An optical disc for a fingerprint sensor having an average light transmittance of 15% or less in a wavelength range of 620 nm to 710 nm.
  2. 제 1 항에 있어서, The method of claim 1,
    300nm 내지 1,200nm 파장 범위에서 분광광도계를 이용하여 광학원판의 투과율을 측정했을 때 550nm 파장보다 긴 파장 영역에서 투과율이 50%가 되는 가장 짧은 파장(λ_cut-off)은 580nm 내지 610nm 파장 영역에서 존재하는 지문인식센서용 광학원판.When the transmittance of the optical disc was measured using a spectrophotometer in the wavelength range of 300 nm to 1,200 nm, the shortest wavelength (λ_cut-off) having a transmittance of 50% in the wavelength region longer than the 550 nm wavelength is present in the 580 nm to 610 nm wavelength region. Optical disc for fingerprint sensor.
  3. 제 1 항에 있어서, The method of claim 1,
    하기 조건 1을 만족하는 지문인식센서용 광학원판:Optical disc for fingerprint recognition sensor that satisfies the following condition 1:
    [조건 1][Condition 1]
    10 < |T10% - T50%| < 50 (nm)10 <| T 10% -T 50% | <50 (nm)
    T50%은 550nm 내지 710nm 파장 영역에서 광투과도가 50%인 지점의 파장값을 나타내고, T 50% represents the wavelength value at the point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm,
    T10%은 550nm 내지 710nm 파장 영역에서 광투과도가 10%인 지점의 파장값을 나타낸다.T 10% represents the wavelength value at the point where the light transmittance is 10% in the wavelength range of 550 nm to 710 nm.
  4. 제 1 항에 있어서, The method of claim 1,
    300nm 내지 1,200nm 파장 범위에서 분광광도계를 이용하여 광학원판의 투과율을 측정했을 때 640nm 내지 710nm 파장 영역에서 광투과율은 10% 이하인 지문인식센서용 광학원판.An optical disc for a fingerprint sensor having a light transmittance of 10% or less in a wavelength range of 640 nm to 710 nm when the transmittance of the optical disc is measured using a spectrophotometer in a wavelength range of 300 nm to 1,200 nm.
  5. 제 1 항에 있어서, The method of claim 1,
    300nm 내지 1,200nm 파장 범위에서 분광광도계를 이용하여 광학원판의 투과율을 측정했을 때 430nm 내지 560nm 파장 영역에서 광투과율은 85% 이상인 지문인식센서용 광학원판.When the transmittance of the optical disc is measured using a spectrophotometer in the wavelength range of 300nm to 1,200nm optical transmittance of the fingerprint sensor in the wavelength range of 430nm to 560nm more than 85%.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 광학원판; 및An optical disc according to any one of claims 1 to 5; And
    상기 광학원판의 일면 또는 양면에 형성된 선택파장 반사층을 포함하는 광학필터.And an optional wavelength reflecting layer formed on one or both surfaces of the optical disc.
  7. 제 6 항에 있어서, The method of claim 6,
    상기 선택파장 반사층은 유전체 다층막으로 형성된 구조인 광학필터.And the selective wavelength reflecting layer is formed of a dielectric multilayer.
  8. 제 6 항에 있어서, The method of claim 6,
    300nm 내지 1,200nm 파장 범위에서 분광광도계를 이용하여 광학필터의 투과율을 측정했을 때 550nm 파장보다 긴 파장 영역에서 투과율이 50%가 되는 가장 짧은 파장(λ_cut-off)은 585nm 내지 615nm 파장 영역에서 존재하는 광학필터.When the transmittance of the optical filter was measured using a spectrophotometer in the wavelength range of 300 nm to 1,200 nm, the shortest wavelength (λ_cut-off) having a transmittance of 50% in the wavelength region longer than the 550 nm wavelength is present in the 585 nm to 615 nm wavelength region. Optical filter.
  9. 제 6 항에 있어서, The method of claim 6,
    하기 조건 2를 만족하는 광학필터:Optical filter satisfying the following condition 2:
    [조건 2][Condition 2]
    10 < |T10% - T50%| < 50 (nm)10 <| T 10% -T 50% | <50 (nm)
    T50%은 550nm 내지 710nm 파장 영역에서 광투과도가 50%인 지점의 파장값을 나타내고,T 50% represents the wavelength value at the point where light transmittance is 50% in the wavelength range of 550 nm to 710 nm,
    T10%은 550nm 내지 710nm 파장 영역에서 광투과도가 10%인 지점의 파장값을 나타낸다.T 10% represents the wavelength value at the point where the light transmittance is 10% in the wavelength range of 550 nm to 710 nm.
  10. 제 6 항에 있어서, The method of claim 6,
    300nm 내지 1,200nm 파장 범위에서 분광광도계를 이용하여 광학필터의 투과율을 측정했을 때 650nm 내지 1200nm 파장 영역에서 광투과율은 5% 이하인 광학필터.An optical filter having a light transmittance of 5% or less in a wavelength range of 650 nm to 1200 nm when the transmittance of the optical filter is measured using a spectrophotometer in a wavelength range of 300 nm to 1,200 nm.
  11. 제 6 항에 있어서, The method of claim 6,
    300nm 내지 1,200nm 파장 범위에서 분광광도계를 이용하여 광학필터의 투과율을 측정했을 때 430nm 내지 560nm 파장 영역에서 광투과율은 90% 이상인 광학필터.An optical filter having a light transmittance of 90% or more in a wavelength range of 430 nm to 560 nm when the transmittance of the optical filter is measured using a spectrophotometer in a wavelength range of 300 nm to 1,200 nm.
  12. 제 6 항 내지 제 11 항 중 어느 한 항에 따른 광학필터를 포함하는 지문인식모듈.Fingerprint recognition module comprising an optical filter according to any one of claims 6 to 11.
  13. OLED 디스플레이 패널; 및OLED display panel; And
    상기 OLED 디스플레이 패널 하부에 위치하는 제 12 항에 따른 지문인식 모듈을 포함하는 OLED 디스플레이.An OLED display comprising a fingerprint recognition module according to claim 12 located below the OLED display panel.
  14. LCD 디스플레이 패널;LCD display panel;
    백라이트유닛; 및Backlight unit; And
    상기 LCD 디스플레이 패널 하부에 위치하는 제 12 항에 따른 지문인식 모듈을 포함하되,A fingerprint recognition module according to claim 12 located below the LCD display panel,
    상기 지문인식 모듈은 백라이트 유닛이 적용되지 않는 부위에 위치하는 LCD 디스플레이.The fingerprint recognition module is an LCD display located at a portion where the backlight unit is not applied.
PCT/KR2019/007936 2018-07-03 2019-07-01 Optical disc for fingerprint recognition sensor and optical filter comprising same WO2020009384A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980043644.XA CN112368612B (en) 2018-07-03 2019-07-01 Optical substrate for fingerprint identification sensor and optical filter comprising same
US17/257,419 US20210280621A1 (en) 2018-07-03 2019-07-01 Optical disc for fingerprint recognition sensor and optical filter comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180076965 2018-07-03
KR10-2018-0076965 2018-07-03
KR1020190003914A KR102158811B1 (en) 2018-07-03 2019-01-11 Optical disc for fingerprint recognition sensor and optical filter including the same
KR10-2019-0003914 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020009384A1 true WO2020009384A1 (en) 2020-01-09

Family

ID=69060431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007936 WO2020009384A1 (en) 2018-07-03 2019-07-01 Optical disc for fingerprint recognition sensor and optical filter comprising same

Country Status (1)

Country Link
WO (1) WO2020009384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334909A (en) * 2020-01-21 2021-02-05 深圳市汇顶科技股份有限公司 Optical fingerprint detection device, touch screen and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453469B1 (en) * 2014-02-12 2014-10-22 나우주 Optical filter and image pickup device comprising the same
KR20150028683A (en) * 2013-09-06 2015-03-16 주식회사 엘엠에스 Optical filter and image pickup device comprising the same
WO2017127734A1 (en) * 2016-01-21 2017-07-27 3M Innovative Properties Company Optical camouflage filters
KR20170099756A (en) * 2016-02-24 2017-09-01 주식회사 엘엠에스 Optical article and optical filter containing the same
KR20180019088A (en) * 2015-09-25 2018-02-23 아사히 가라스 가부시키가이샤 Optical Filters and Imaging Devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150028683A (en) * 2013-09-06 2015-03-16 주식회사 엘엠에스 Optical filter and image pickup device comprising the same
KR101453469B1 (en) * 2014-02-12 2014-10-22 나우주 Optical filter and image pickup device comprising the same
KR20180019088A (en) * 2015-09-25 2018-02-23 아사히 가라스 가부시키가이샤 Optical Filters and Imaging Devices
WO2017127734A1 (en) * 2016-01-21 2017-07-27 3M Innovative Properties Company Optical camouflage filters
KR20170099756A (en) * 2016-02-24 2017-09-01 주식회사 엘엠에스 Optical article and optical filter containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334909A (en) * 2020-01-21 2021-02-05 深圳市汇顶科技股份有限公司 Optical fingerprint detection device, touch screen and electronic equipment

Similar Documents

Publication Publication Date Title
WO2015122595A1 (en) Optical filter and imaging device comprising same
KR101903884B1 (en) Near-infrared cut filter and Device including the same
KR20170125693A (en) Near-infrared absorbing filter and image sensor
JP2018197184A5 (en)
WO2017155266A1 (en) Display apparatus
WO2013141478A1 (en) Transparent substrate having antireflective function
WO2018084411A1 (en) Anti-shattering film
WO2018194348A1 (en) Lamination system
WO2017146413A2 (en) Optical article and optical filter comprising same
WO2015034217A1 (en) Optical filter, and imaging device comprising same
WO2020009384A1 (en) Optical disc for fingerprint recognition sensor and optical filter comprising same
WO2016148518A1 (en) Optical filter and imaging device comprising same
WO2013176422A1 (en) Transparent conductive film including hybrid undercoating layer, method for manufacturing same, and touch panel using same
WO2015034211A1 (en) Optical filter, and imaging device comprising same
WO2019069689A1 (en) Optical filter and imaging device
WO2019069687A1 (en) Optical filter and imaging device
WO2013103259A1 (en) Two-sided transparent electrically conductive film of outstanding discernibility and production method therefor
WO2016122282A1 (en) Anti-glare film, and polarising plate and display device comprising same
KR102158811B1 (en) Optical disc for fingerprint recognition sensor and optical filter including the same
WO2021167378A1 (en) Multilayer film and laminate comprising same
WO2018124756A1 (en) Optical product for near infrared cut-off filter included in camera module, and near infrared cut-off filter for camera module, comprising same
WO2015108384A1 (en) Barrier film and method for producing same
WO2018190560A1 (en) Optical article and optical filter including same
WO2020141717A1 (en) Transparent substrate with a multilayer thin film and multiple glazing unit comprising the same
CN101944533B (en) Image sensor device and method for making same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19829779

Country of ref document: EP

Kind code of ref document: A1