WO2015034211A1 - Optical filter, and imaging device comprising same - Google Patents

Optical filter, and imaging device comprising same Download PDF

Info

Publication number
WO2015034211A1
WO2015034211A1 PCT/KR2014/008074 KR2014008074W WO2015034211A1 WO 2015034211 A1 WO2015034211 A1 WO 2015034211A1 KR 2014008074 W KR2014008074 W KR 2014008074W WO 2015034211 A1 WO2015034211 A1 WO 2015034211A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
light
equation
transmittance
wavelength
Prior art date
Application number
PCT/KR2014/008074
Other languages
French (fr)
Korean (ko)
Inventor
김주영
조성민
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130140098A external-priority patent/KR101527822B1/en
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to CN201480049126.6A priority Critical patent/CN105518494B/en
Priority to US14/917,016 priority patent/US10386555B2/en
Publication of WO2015034211A1 publication Critical patent/WO2015034211A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present invention relates to an optical filter and an imaging device including the same.
  • An imaging device such as a camera uses a CMOS sensor to convert incident light into an electrical signal to produce an image.
  • the newly developed BSI type (Back Side Illuminated type) CMOS sensor instead of the FSI type (Front Side Illuminated type) CMOS sensor, which has been widely used for realizing high quality images due to the high pixel resolution of the camera. Is the trend for main cameras.
  • BSI type CMOS sensor some light is blocked by forming a wiring on the top of a photodiode (PD).
  • the BSI-type CMOS sensor can receive more incident light than the FSI-type CMOS sensor by placing the wiring under the photodiode so as to receive more light, thereby brightening the image by 70% or more.
  • cameras of 8 million pixels or more are mostly BSI type CMOS sensors.
  • Such a BSI type CMOS sensor can be structurally reached to a photodiode having a larger angle of incidence than an FSI type CMOS sensor.
  • the CMOS sensor can detect the light intensity in the wavelength region which cannot be seen by the naked eye.
  • the light of the wavelength region causes distortion of the image, and thus looks different in color.
  • an optical filter is used in front of the CMOS sensor.
  • the transmission spectrum of the optical filter is changed as the incident angle of light is changed, which causes distortion in the image.
  • Patent Document 1 Japanese Laid-Open Patent No. 2008-106836
  • an object of the present invention is to provide an optical filter which can improve color reproducibility by eliminating color difference due to incident angle of light.
  • Another object of the present invention is to provide an imaging device including the optical filter.
  • An optical filter according to an embodiment for realizing the object of the present invention may satisfy the following Equation 1.
  • ⁇ E * denotes a color difference between light incident in the vertical direction of the optical filter and transmitted through the optical filter and light incident at an angle of 30 ° with the vertical direction of the optical filter and transmitted through the optical filter.
  • it may include an imaging device including the optical filter according to the present invention.
  • Such an optical filter can prevent a shift phenomenon of the transmission spectrum due to the change in the incident angle of light without impairing the transmittance of the visible light region.
  • FIG. 1 is a cross-sectional view showing a laminated structure of an optical filter according to an embodiment of the present invention.
  • FIG. 2 is a graph illustrating an optical transmittance spectrum of an optical filter according to an exemplary embodiment of the present invention.
  • the "incidence angle” means an angle at which light incident on the optical filter is made perpendicular to the optical filter. As the number of pixels in the imaging device increases, the amount of light of incident light required increases. Therefore, recent imaging apparatuses need to accommodate not only light incident in the vertical direction to the optical filter, but also light having an angle of 30 ° or more with respect to the vertical direction.
  • ⁇ E * means light incident in the vertical direction of the optical filter and transmitted through the optical filter, and light incident at an angle of 30 ° with the vertical direction of the optical filter and transmitted through the optical filter. It means color difference.
  • the light transmitted through the optical filter can be divided into components that are substantially parallel to the incident light and scattered components.
  • the transmittance of the components substantially parallel to the incident light is called transmittance
  • the transmittance of the scattered components is called diffuse transmittance.
  • the light transmittance is a concept including a transmittance of permeability and diffusion, but the transmittance of light in the present invention is used as a concept meaning only permeability.
  • ⁇ E * is a concept used in the CIE Lab color space, which is a color value defined by the CIE (Communication Commission, Commossion International de l'Eclairage), and this concept is used in the present invention.
  • the CIE Lab color space is a color coordinate space capable of expressing color differences that can be detected by human eyesight. The distance between two different colors in the CIE Lab color space is designed to be proportional to the difference in color perceived by humans.
  • the color difference in the CIE Lab color space means the distance between two colors in the CIE Lab color space. In other words, the farther the distance, the larger the color difference, and the shorter the distance, the less the color difference. This color difference can be represented by ⁇ E * .
  • L * any position in the CIE color space is represented by three coordinate values: L *, a *, b *.
  • a * indicates whether the color with the color coordinates is pure magenta or pure green, and b * indicates that the color with the color coordinates is pure yellow and pure blue ( pure blue).
  • a * ranges from -a to + a.
  • the maximum value of a * (a * max) represents pure magenta
  • the minimum value of a * (a * min) represents pure green. For example, if a * is negative, the color is biased toward pure green, and if it is positive, it means color biased to pure magenta.
  • b * ranges from -b to + b.
  • the maximum value of b * (b * max) represents pure yellow
  • the minimum value of b * (b * min) represents pure blue.
  • a negative b * means a color biased to pure yellow
  • ⁇ E * In general, when ⁇ E * is 1.5 or less, the human eye hardly recognizes the color difference. When ⁇ E * is 0.5 or less, the human eye cannot perceive the color difference. However, if ⁇ E * exceeds 1.5, there is a possibility of recognizing the color difference with human eyesight, and if ⁇ E * is 2.0 or more, the color difference can be clearly recognized with human eyesight. For example, when a product is manufactured in a factory, maintaining a value of ⁇ E * of 0.8 to 1.2 may mean that color deviation between products is being managed at a level that cannot be recognized by human eyesight.
  • the color difference ⁇ E * which is an arbitrary color E1 having a color coordinate of (L1 * , a1 * , b1 * ) and another arbitrary color E2 having a color coordinate of (L2 * , a2 * , b2 * ), is calculated by the following equation (5): can do.
  • ⁇ L * in Equation 5 means a difference between L1 * and L2 * of the color coordinates E1 and E2 of the two colors.
  • ⁇ a * also means the difference between a1 * and a2 * in the color coordinates of E1 and E2
  • ⁇ b * also means the difference between b1 * and b2 * in the color coordinates of E1 and E2.
  • the present invention relates to an optical filter, as an example,
  • It may include an optical filter characterized in that to satisfy the following equation (1).
  • ⁇ E * denotes a color difference between light incident in the vertical direction of the optical filter and transmitted through the optical filter and light incident at an angle of 30 ° with the vertical direction of the optical filter and transmitted through the optical filter.
  • ⁇ E * is a color coordinate E1 (L1 * , a1 * , b1 * ) of light incident to the optical filter in the vertical direction and transmitted through the optical filter, and the vertical of the optical filter.
  • the color difference calculated by substituting the color coordinates E2 (L2 * , a2 * , b2 * ) of the light incident through the optical filter and passing through the optical filter into the equation (1).
  • the optical filter when the optical filter is implemented such that the color difference ⁇ E * is 1.5 or less, the human eye cannot perceive the distortion of the color present in the image represented by the display device.
  • the ⁇ E * may be 0.001 to 1.5, 0.001 to 1.2, 0.001 to 1.0, or 0.001 to 0.8.
  • the optical filter according to the present invention may include a light absorbing layer and a near infrared reflecting layer, and may satisfy Equation 2 below.
  • W1 means a wavelength in the wavelength range of 600 ⁇ 800 nm, the transmittance of the near-infrared reflecting layer to the light incident in the vertical direction to the optical filter is 50%,
  • W2 means a wavelength at which the light absorption layer has an absorption maximum.
  • the wavelength W1 and the light absorbing layer having the transmittance of the near infrared reflecting layer with respect to the light incident in the direction perpendicular to the optical filter are 50%, the absorption maximum.
  • the wavelength of the light absorbing layer that is, the wavelength W2 at which the light absorption layer shows the lowest transmittance may be 20 nm or less.
  • the W2-W1 may be 0 nm to 20 nm, 5 nm to 15 nm, or 10 nm to 13 nm.
  • the W2-W1 value within the above range it is possible to prevent the shift phenomenon of the transmission spectrum due to the change of the incident angle, and excellent near-infrared blocking effect can be expected.
  • the near-infrared reflecting layer by reflecting a part of the light incident to the light absorbing layer by the near-infrared reflecting layer, it is possible to prevent problems such as deterioration of the optical filter or efficiency degradation of the optical filter that may be generated due to the light absorbing layer absorbs excessive amounts of light.
  • the optical filter according to the present invention may include a light absorbing layer and a near infrared reflecting layer, and may satisfy Equation 3 below.
  • W1 means a wavelength at which the transmittance of the near-infrared reflecting layer with respect to light incident in the direction perpendicular to the optical filter is 50% in the wavelength range of 600 to 800 nm
  • W2 means the wavelength at which the light absorption layer has an absorption maximum
  • W3 means the absolute value of the difference between the two wavelengths in which the light absorption layer has a transmittance of 50% in the wavelength range of 600 nm or more.
  • Equation 3 is a wavelength (W1) in which the light transmittance of the near-infrared reflecting layer is 50% with respect to light incident in the direction perpendicular to the optical filter in the wavelength range of 600 to 800 nm, the absorption band is the absorption maximum
  • W1- (W2-W3 / 2) value may range from 0 nm to 65 nm, 5 nm to 40 nm, or 10 nm to 30 nm.
  • W1- (W2-W3 / 2) by adjusting the value of W1- (W2-W3 / 2) within the above range, it is possible to minimize the transmittance of light in the near infrared region.
  • the W1- (W2-W3 / 2) value is less than 0 nm, the shift of the transmission spectrum of the optical filter due to the change of the incident angle may not be prevented, and the transmittance of light in the near infrared region may increase, thereby displaying the display.
  • the user can recognize the distortion of the color present in the image represented by the device.
  • the formulation stability of the light absorbing layer may be impaired, but rather the distortion of the image by inhibiting the light transmittance in the visible light region contributing to the generation of the image. Can be generated.
  • Equations 2 and 3 together with Equation 1 are satisfied at the same time, even if the angle of incidence of the light incident on the optical filter is changed, distortion of the image can be minimized, thereby reducing the color to the same level as the image observed by the naked eye. I can reproduce it.
  • by minimizing the transmittance of light in the near infrared region it is possible to prevent the degradation of the efficiency of the optical filter generated by the light in the near infrared region incident to the optical filter and the heat generation phenomenon.
  • unnecessary transmission peaks may be generated in the wavelength range of the near infrared region (700 to 750 nm) according to the absorption characteristics of the light absorption layer.
  • optical filter of the present embodiment for preventing this may satisfy the following equation (4).
  • % T NIR-peak refers to the maximum transmittance in the wavelength range of the near infrared region (700-750 nm).
  • the% T NIR-peak means the maximum transmittance in the wavelength range of the near infrared region
  • % T NIR-peak may be 10% or less.
  • the% T NIR-peak may be represented by 0.1% to 8%, 1% to 5% or 1% to 2% or less, preferably 0%. As the% T NIR-peak approaches 0%, the distortion of the image can be reduced.
  • the optical filter according to the present invention may have an average transmittance of 80% or more in the visible light region (450 to 600 nm).
  • the optical filter When the optical filter is applied to an imaging device, a camera module, or the like, it is preferable that the optical transmittance is high in the visible light region.
  • the optical filter has an average transmittance of 80% or more in the visible light region, the image represented by the imaging device or the camera module to which the optical filter is applied may be expressed in the same color as the image observed by the naked eye.
  • the optical filter according to the present invention may have an average transmittance of 10% or less in the infrared region (750 to 1000 nm).
  • the condition may mean that the transmittance of the optical filter with respect to light in the infrared region is 10% or less.
  • the dynamic width of the visible light region refers to a range of light that the CMOS sensor can faithfully express on the screen.
  • the optical filter must minimize light transmittance in the infrared region. Noise in CMOS sensors is mainly caused by the circuit structure, especially thermal noise. Since the light in the infrared region passing through the optical filter acts as a major cause for the heat generation of the CMOS sensor, the optical filter should minimize the light transmittance in the infrared region.
  • the light transmittance of 30% as well as the wavelength of light transmittance of 50% of the incident light at the respective incident angles by Equations 1 to 3 are obtained.
  • the wavelength was controlled simultaneously.
  • the difference between the wavelengths of light incident perpendicularly to the optical filter and transmitted through the optical filter and 30% of the incident light transmitted in the direction perpendicular to the optical filter and transmitted through the optical filter becomes 30%.
  • the optical filter of this invention was able to reduce the distortion of an image compared with the conventional optical filter.
  • the optical filter according to the present invention may include a light absorbing layer and a near infrared reflecting layer including at least one light absorbing agent. Therefore, light in the near infrared region incident on the optical filter is mostly reflected by the near infrared reflecting layer.
  • the light absorbing layer may include a binder resin and a light absorbing agent dispersed in the binder resin.
  • the kind of the binder is not particularly limited, and examples thereof include cyclic olefin resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyparaphenylene resins, and polyarylene ether phosphine oxides.
  • At least one of resins, polyimide resins, polyetherimide resins, polyamideimide resins, acrylic resins, polycarbonate resins, polyethylene naphthalate resins, and various organic-inorganic hybrid series resins can be used.
  • the light absorbing agent one or more kinds of dyes, pigments, or metal complex compounds of various kinds may be used, and are not particularly limited.
  • a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound or a dithiol metal complex compound may be used as the light absorbing agent.
  • the light absorbing agent may be used alone, or in some cases, may be used by mixing two or more kinds or separating the two layers into two layers.
  • the content of the light absorbing agent may be, for example, in a range of 0.001 to 10 parts by weight, 0.01 to 10 parts by weight, or 0.5 to 5 parts by weight based on 100 parts by weight of the binder resin.
  • the optical filter according to the present invention may further include a transparent substrate formed on one surface of the light absorption layer.
  • the transparent substrate may be a transparent glass substrate or a transparent resin substrate.
  • the transparent substrate may be a transparent glass substrate, and if necessary, a phosphate-based glass substrate containing copper oxide (CuO) may be used.
  • a glass substrate as a transparent base material, there exists an effect which prevents heat deformation and suppresses curvature in the optical filter manufacturing process, without impairing the transmittance
  • substrate is excellent in strength
  • distributed can be used.
  • the kind of light transmissive resin is not particularly limited, and a binder resin mentioned as applicable to the light absorbing layer can be used.
  • the interface peeling can be reduced.
  • the near infrared reflecting layer may be formed of a dielectric multilayer.
  • the near infrared reflecting layer serves to reflect light in the near infrared region.
  • the near-infrared reflection layer can use the dielectric multilayer film etc. which alternately laminated the high refractive index layer and the low refractive index layer.
  • the near-infrared reflecting layer may include an aluminum vapor deposition film if necessary; Precious metal thin film; Or a resin film in which at least one fine particle of indium oxide and tin oxide is dispersed.
  • the near infrared reflecting layer may have a structure in which a dielectric layer having a first refractive index and a dielectric layer having a second refractive index are alternately stacked.
  • the refractive index difference between the dielectric layer having the first refractive index and the dielectric layer having the second refractive index may be 0.2 or more, 0.3 or more, or 0.2 to 1.0.
  • the dielectric layer having the first refractive index may be a layer having a relatively high refractive index
  • the dielectric layer having the second refractive index may be a layer having a relatively low refractive index.
  • the refractive index of the dielectric layer having the first refractive index may range from 1.6 to 2.4
  • the refractive index of the dielectric layer having the second refractive index may range from 1.3 to 1.6.
  • the dielectric layer having the first refractive index may be formed of one or more selected from the group consisting of titanium oxide, alumina, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide and indium oxide.
  • the indium oxide may further contain a small amount of titanium oxide, tin oxide, cerium oxide, and the like as necessary.
  • the dielectric layer having the second refractive index may be formed of one or more selected from the group consisting of silica, lanthanum fluoride, magnesium fluoride, and sodium alumina fluoride.
  • the method for forming the near infrared reflecting layer is not particularly limited, and for example, a CVD method, a sputtering method, a vacuum deposition method, or the like may be applied.
  • the near-infrared reflective layer may have a structure in which a dielectric layer having a first refractive index and a dielectric layer having a second refractive index are alternately stacked into 5 to 61 layers, 11 to 51 layers, or 21 to 41 layers.
  • the near-infrared reflecting layer can be designed in consideration of a range of desired transmittance to refractive index and a region of a wavelength to be blocked.
  • the near-infrared reflective layer may further include a light absorbing agent dispersed in the dielectric multilayer.
  • the light absorbing agent dispersed in the dielectric multilayer film is not particularly limited as long as it is a light absorbing agent capable of absorbing a near infrared to infrared wavelength region of 600 nm or more.
  • the present invention may include an imaging device including the optical filter according to the present invention.
  • the optical filter according to the present invention is also applicable to display devices such as PDPs.
  • the present invention is more preferably applicable to an imaging device that requires a high pixel, for example, a camera of 8 million pixels or more.
  • the optical filter according to the present invention can be effectively applied to a camera for a mobile device.
  • TiO 2 and SiO 2 were alternately deposited using an E-beam evaporator to form a near infrared reflecting layer.
  • the prepared near-infrared absorbing solution was spin coated on the opposite surface of the glass substrate on which the near-infrared reflective layer was formed to form a light absorbing layer.
  • an optical filter according to the present invention was prepared.
  • the laminated structure of the manufactured optical filter is shown in FIG. Referring to FIG. 1, a near infrared reflecting layer 20 is formed on a lower surface of the glass substrate 10, and a light absorption layer 30 is formed on an upper surface of the glass substrate 10.
  • the light transmittance experiment was performed by varying the angle of incidence of light to (a) 0 ° and (b) 30 °. The results are shown in FIG.
  • W1, W2 and W3 were measured to calculate the values of W2-W1 and W1- (W2-W3 / 2).
  • the W2-W1 value described in Equation 2 and the W1- (W2-W3 / 2) value described in Equation 3 were measured.
  • the wavelength W1 at which the transmittance of the near infrared reflecting layer was 50% was adjusted to 650 nm to 750 nm.
  • Table 1 The results are shown in Table 1 below.
  • the optical filter according to the present invention when the wavelength (W1) that the transmittance of the near infrared reflecting layer is 50% is 680 ⁇ 720 nm, the incident light in the perpendicular direction to the optical filter and transmitted through the optical filter;
  • the color difference ⁇ E * of light incident to the optical filter at an incident angle of 30 ° and transmitted through the optical filter may be 1.5 or less.
  • the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near infrared reflecting layer is 50% in the range of 670 to 750 nm
  • the optical filter of Preparation Example 2 has a wavelength at which the transmittance of the near infrared reflecting layer is 50%.
  • the W2-W1 value was 20 nm or less in the range of (680) to 750 nm.
  • the optical filter of Preparation Example 1 has a wavelength of 650 to 700 nm in which the transmittance of the near infrared reflecting layer is 50%
  • the optical filter of Preparation Example 2 has a wavelength (W1) of 660 in which the transmittance of the near infrared reflecting layer is 50%.
  • the value of W1- (W2-W3 / 2) was in the range from 0 nm to 65 nm in the range from -720 nm.
  • the maximum transmittance (% T NIR-peak ) in the wavelength range of W1- (W2-W3 / 2) and near infrared region (700-750 nm) was measured for the optical filters prepared in Preparation Examples 1 and 2.
  • the wavelength at which the transmittance of the near infrared reflecting layer was 50% was adjusted to 650 nm to 750 nm.
  • the thickness of the light absorption layer was measured to be different from 7, 11 and 15 ⁇ m, and the results are shown in Tables 2 to 4 below.
  • the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% with respect to light incident in the vertical direction is in the range of 680 to 710 nm, and of Preparation Example 2
  • the optical filter was found to have a W1- (W2-W3 / 2) value within the range of 20 to 65 when the wavelength at which the transmittance of the near infrared reflecting layer was 50% was in the range of 700 to 730 nm.
  • the optical filter of Preparation Example 1 has a wavelength W1 of 690 nm or less at which the transmittance of the near infrared reflecting layer is 50% with respect to light incident in the vertical direction
  • the optical filter of Preparation Example 2 has a transmittance of the near infrared reflecting layer.
  • the wavelength W1 to be 50% is 710 nm or less, it can be seen that the maximum transmittance (% T NIR-peak ) in the wavelength range of the near infrared region (700 to 750 nm) is 10% or less.
  • the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near infrared reflecting layer is 50% in the range of 650 to 690 nm
  • the optical filter of Preparation Example 2 has a transmittance of the near infrared reflecting layer.
  • W1- (W2-W3 / 2) values were found to satisfy the range 0-50 when the wavelength W1 at 50% ranged from 670-710 nm.
  • the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near infrared reflecting layer is 50% is 690 nm or less
  • the optical filter of Preparation Example 2 has a transmittance of the near infrared reflecting layer with respect to light incident in the vertical direction.
  • the wavelength W1 to be 50% is 710 nm or less, it can be seen that% T NIR-peak is 10% or less.
  • the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% with respect to light incident in the vertical direction is in the range of 650 to 680 nm, and of Preparation Example 2
  • the optical filter is such that W1- (W2-W3 / 2) satisfies the range 0-50 when the wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% for light incident in the vertical direction is in the range of 660 to 700 nm. Appeared.
  • the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% to light incident in the vertical direction is 700 nm or less, and the optical filter of Preparation Example 2 is incident on the vertical direction. It can be seen that% T NIR-peak is 10% or less when the wavelength W1 at which the transmittance of the near-infrared reflecting layer to light becomes 50% is 720 nm or less.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

The present invention provides an optical filter satisfying mathematical formula (1) and an imaging device comprising the filter. [Mathematical formula (1)] ΔE*≤1.5. In mathematical formula (1) ΔE* represents the colour difference between light that has entered in the vertical direction of the optical filter and passed through the optical filter, and light that has entered in the direction at an angle of 30° to the vertical direction of the optical filter and passed through the optical filter.

Description

광학 필터 및 이를 포함하는 촬상 장치Optical filter and imaging device including same
본 발명은 광학 필터 및 이를 포함하는 촬상 장치에 관한 것이다.The present invention relates to an optical filter and an imaging device including the same.
카메라와 같은 촬상 장치는 CMOS 센서(sensor)를 사용하여 입사광을 전기신호로 바꾸어서 화상을 만들게 된다. 카메라의 고화소화에 따른 고화질의 화상 구현을 위하여 기존에 많이 사용하던 FSI형(Front Side Illuminated type, 표면 조사형) CMOS 센서 대신에 신규 개발된 BSI형(Back Side Illuminated type, 이면 조사형) CMOS 센서가 주(main) 카메라에 적용되고 있는 추세이다. FSI형 CMOS 센서는 포토다이오드(photodiode, PD) 윗면에 배선을 형성하여 일부 광이 차단되는 현상이 나타난다. 이에 반해, BSI형 CMOS 센서는 광을 더 많이 받을 수 있도록 배선을 포토다이오드 아래로 위치시킴으로써, FSI형 CMOS 센서에 비해 입사광을 더 많이 받을 수 있어, 화상이 70% 이상 밝아지는 효과가 있다. 이에, 일반적으로 800만 화소(pixel) 이상의 카메라에서는 대부분 BSI형의 CMOS 센서가 적용되고 있는 추세이다.An imaging device such as a camera uses a CMOS sensor to convert incident light into an electrical signal to produce an image. The newly developed BSI type (Back Side Illuminated type) CMOS sensor instead of the FSI type (Front Side Illuminated type) CMOS sensor, which has been widely used for realizing high quality images due to the high pixel resolution of the camera. Is the trend for main cameras. In the FSI type CMOS sensor, some light is blocked by forming a wiring on the top of a photodiode (PD). On the other hand, the BSI-type CMOS sensor can receive more incident light than the FSI-type CMOS sensor by placing the wiring under the photodiode so as to receive more light, thereby brightening the image by 70% or more. Thus, in general, cameras of 8 million pixels or more are mostly BSI type CMOS sensors.
이러한, BSI형 CMOS 센서는 구조적으로 FSI형 CMOS 센서에 비해서 보다 큰 입사각을 갖는 광도 포토다이오드에 도달될 수 있다.Such a BSI type CMOS sensor can be structurally reached to a photodiode having a larger angle of incidence than an FSI type CMOS sensor.
일반적으로 CMOS 센서는 육안으로 확인할 수 없는 파장 영역의 광도 감지를 할 수 있는데 이러한 파장 영역의 광에 의해서 화상의 왜곡이 발생되어 육안으로 보는 경우보다는 다른색으로 보이게 된다. 이를 차단하기 위해 CMOS 센서 전면부에 광학 필터를 사용하게 된다. 그러나 종래의 광학 필터에서는 광의 입사각이 달라짐에 따라서 광학 필터의 투과 스펙트럼이 달라져서 이로 인해 화상에 왜곡이 발생하는 문제점이 있었다. In general, the CMOS sensor can detect the light intensity in the wavelength region which cannot be seen by the naked eye. The light of the wavelength region causes distortion of the image, and thus looks different in color. To block this, an optical filter is used in front of the CMOS sensor. However, in the conventional optical filter, the transmission spectrum of the optical filter is changed as the incident angle of light is changed, which causes distortion in the image.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 일본공개특허 제2008-106836호(Patent Document 1) Japanese Laid-Open Patent No. 2008-106836
따라서, 본 발명의 목적은 광의 입사각에 따른 색감차이를 해소하여 색 재현성을 높일 수 있는 광학 필터를 제공하는 것이다.Accordingly, an object of the present invention is to provide an optical filter which can improve color reproducibility by eliminating color difference due to incident angle of light.
본 발명의 다른 목적은 상기 광학 필터를 포함하는 촬상 장치를 제공하는 것이다.Another object of the present invention is to provide an imaging device including the optical filter.
상기 본 발명의 목적을 실현하기 위한 일 실시예에 따른 광학 필터는 하기 수학식 1을 만족할 수 있다.An optical filter according to an embodiment for realizing the object of the present invention may satisfy the following Equation 1.
[수학식 1][Equation 1]
ΔE* ≤ 1.5ΔE * ≤ 1.5
수학식 1에서,In Equation 1,
ΔE*는 광학 필터의 수직 방향에서 입사되어 상기 광학 필터를 투과한 광과, 상기 광학 필터의 수직 방향과 30°를 이루는 각도로 입사되어 상기 광학 필터를 투과한 광의 색차를 의미한다.ΔE * denotes a color difference between light incident in the vertical direction of the optical filter and transmitted through the optical filter and light incident at an angle of 30 ° with the vertical direction of the optical filter and transmitted through the optical filter.
본 발명의 또 다른 목적을 실현하기 위한 일 실시예에서, 본 발명에 따른 광학 필터를 포함하는 촬상 장치를 포함할 수 있다.In one embodiment for realizing another object of the present invention, it may include an imaging device including the optical filter according to the present invention.
이와 같은 광학 필터는 가시광 영역의 투과도를 저해하지 않으면서, 광의 입사각 변화에 따른 투과 스펙트럼의 편이(shift) 현상을 방지할 수 있다.Such an optical filter can prevent a shift phenomenon of the transmission spectrum due to the change in the incident angle of light without impairing the transmittance of the visible light region.
도 1은 일 실시예에서, 본 발명에 따른 광학 필터의 적층 구조를 나타낸 단면도이다.1 is a cross-sectional view showing a laminated structure of an optical filter according to an embodiment of the present invention.
도 2는 일 실시예에서, 본 발명에 따른 광학 필터의 광 투과도 스펙트럼을 나타낸 그래프이다.2 is a graph illustrating an optical transmittance spectrum of an optical filter according to an exemplary embodiment of the present invention.
이하, 본 발명에서 “입사각”이란, 광학 필터에 입사되는 광이 광학 필터에 수직한 방향과 이루는 각도를 의미한다. 촬상 장치의 화소수가 증가됨에 따라 요구되는 입사광의 광량이 증가하게 된다. 따라서, 최근의 촬상 장치는 광학 필터에 수직 방향으로 입사되는 광 뿐 만 아니라 수직 방향과 이루는 각도가 에 대하여 30° 혹은 그 이상인 광도 수용할 필요성이 있다.Hereinafter, in the present invention, the "incidence angle" means an angle at which light incident on the optical filter is made perpendicular to the optical filter. As the number of pixels in the imaging device increases, the amount of light of incident light required increases. Therefore, recent imaging apparatuses need to accommodate not only light incident in the vertical direction to the optical filter, but also light having an angle of 30 ° or more with respect to the vertical direction.
한편, 본 발명에서 "ΔE*"란, 광학 필터의 수직 방향에서 입사되어 상기 광학 필터를 투과한 광과, 상기 광학 필터의 수직 방향과 30°를 이루는 각도로 입사되어 상기 광학 필터를 투과한 광의 색차를 의미한다.In the present invention, "ΔE * " means light incident in the vertical direction of the optical filter and transmitted through the optical filter, and light incident at an angle of 30 ° with the vertical direction of the optical filter and transmitted through the optical filter. It means color difference.
일반적으로 광학 필터를 투과한 광은 입사광과 실질적으로 평행한 성분과 산란된 성분으로 나눌 수 있다. 이 경우 입사광과 실질적으로 평행한 성분에 대한 투과도를 정투과도(Transmittance)라고 하며, 산란된 성분의 투과도를 확산투과도(Diffuse Transmittance)라 한다. 일반적으로 광의 투과도는 정투과도 및 확산투과도를 포함하는 개념이지만 본 발명에서의 광의 투과도를 정투과도만을 의미하는 개념으로 사용한다.In general, the light transmitted through the optical filter can be divided into components that are substantially parallel to the incident light and scattered components. In this case, the transmittance of the components substantially parallel to the incident light is called transmittance, and the transmittance of the scattered components is called diffuse transmittance. In general, the light transmittance is a concept including a transmittance of permeability and diffusion, but the transmittance of light in the present invention is used as a concept meaning only permeability.
구체적으로, 상기 ΔE*는 CIE(국제조명위원회, Commossion International de l'Eclairage)에서 규정한 색상 값인 CIE Lab 색 공간에서 사용되는 개념으로서, 이러한 개념을 본 발명에서 원용하였다. 상기 CIE Lab 색 공간은 인간의 시력으로 감지할 수 있는 색의 차이를 표현할 수 있는 색좌표 공간이다. CIE Lab 색 공간에서 서로 다른 두 색의 거리는 인간이 인지하는 색상의 차이와 비례하도록 설계되었다.Specifically, ΔE * is a concept used in the CIE Lab color space, which is a color value defined by the CIE (Communication Commission, Commossion International de l'Eclairage), and this concept is used in the present invention. The CIE Lab color space is a color coordinate space capable of expressing color differences that can be detected by human eyesight. The distance between two different colors in the CIE Lab color space is designed to be proportional to the difference in color perceived by humans.
CIE Lab 색 공간에서의 색차란, CIE Lab 색 공간에서의 두 색간의 거리를 의미한다. 즉, 거리가 멀면 색차가 크게 나는 것이고 거리가 가까울수록 색차가 거의 없다는 것을 의미한다. 이러한 색차를 ΔE*로 표시할 수 있다.The color difference in the CIE Lab color space means the distance between two colors in the CIE Lab color space. In other words, the farther the distance, the larger the color difference, and the shorter the distance, the less the color difference. This color difference can be represented by ΔE * .
CIE 색 공간에서의 임의의 위치는 L*, a*, b* 3가지 좌표값으로 표현된다. L* 값은 밝기를 나타내는 것으로 L* = 0 이면 검은색(black)이며, L* = 100 이면 흰색(white)을 나타낸다. a*은 해당 색좌표를 갖는 색이 순수한 심홍색(pure magenta)과 순수한 초록색(pure green) 중 어느 쪽으로 치우쳤는지를 나타내며, b*은 해당 색좌표를 갖는 색이 순수한 노랑색(pure yellow)과 순수한 파랑색(pure blue) 중 어느 쪽으로 치우쳤는지를 나타낸다.Any position in the CIE color space is represented by three coordinate values: L *, a *, b *. The L * value represents the brightness. If L * = 0, the color is black, and if L * = 100, the color is white. a * indicates whether the color with the color coordinates is pure magenta or pure green, and b * indicates that the color with the color coordinates is pure yellow and pure blue ( pure blue).
a*는 -a 내지 +a의 범위를 가진다. a*의 최대값(a* max)은 순수한 심홍색(pure magenta)을 나타내며, a*의 최소값(a* min)은 순수한 초록색(pure green)을 나타낸다. 예를 들어, a*이 음수이면 순수한 초록색에 치우친 색상이며, 양수이면 순수한 심홍색에 치우친 색상을 의미한다. a*=80와 a*=50를 비교하였을 때, a*=80이 a*=50보다 순수한 심홍색에 가깝게 위치함을 의미한다.a * ranges from -a to + a. The maximum value of a * (a * max) represents pure magenta, and the minimum value of a * (a * min) represents pure green. For example, if a * is negative, the color is biased toward pure green, and if it is positive, it means color biased to pure magenta. a * = 80 and compared to a * = 50, means that a * = 80 a * = yi than 50 located close to the pure magenta.
b*는 -b 내지 +b의 범위를 가진다. b*의 최대값(b* max)은 순수한 노랑색(pure yellow)을 나타내며, b*의 최소값(b* min)은 순수한 파랑색(pure blue)을 나타낸다. 예를 들어, b*이 음수이면 순순한 노랑색에 치우친 색상이며, 양수이면 순수한 파랑색에 치우친 색상을 의미한다. b*=50와 b*=20를 비교하였을 때, b*=80이 b*=50보다 순수한 노랑색에 가깝게 위치함을 의미한다.b * ranges from -b to + b. The maximum value of b * (b * max) represents pure yellow, and the minimum value of b * (b * min) represents pure blue. For example, a negative b * means a color biased to pure yellow, while a positive value means a color biased to pure blue. Comparing b * = 50 and b * = 20, it means that b * = 80 is closer to pure yellow than b * = 50.
통상적으로 ΔE*가 1.5이하면 인간의 시력으로 색의 차이를 거의 인지하게 못하며, ΔE*가 0.5 이하면 인간의 시력으로 색의 차이를 인지할 수 없게 된다. 그러나, ΔE*가 1.5를 초과할 경우, 인간의 시력으로 색의 차이를 인지할 가능성이 있으며, ΔE*가 2.0 이상이면 인간의 시력으로 색의 차이를 명확하게 인지할 수 있게 된다. 예를 들어, 공장에서 제품을 생산할 때, ΔE* 값을 0.8~1.2로 유지할 경우, 제품간의 색 편차가 인간의 시력으로 인지할 수 없는 수준으로 관리가 되고 있다는 것을 의미할 수 있다.In general, when ΔE * is 1.5 or less, the human eye hardly recognizes the color difference. When ΔE * is 0.5 or less, the human eye cannot perceive the color difference. However, if ΔE * exceeds 1.5, there is a possibility of recognizing the color difference with human eyesight, and if ΔE * is 2.0 or more, the color difference can be clearly recognized with human eyesight. For example, when a product is manufactured in a factory, maintaining a value of ΔE * of 0.8 to 1.2 may mean that color deviation between products is being managed at a level that cannot be recognized by human eyesight.
색좌표가 (L1*, a1*, b1*)인 임의의 색 E1과 색좌표가 (L2*, a2*, b2*)인 다른 임의의 색 E2간의 색차인 ΔE*는, 하기 수학식 5를 통해 산출할 수 있다.The color difference ΔE *, which is an arbitrary color E1 having a color coordinate of (L1 * , a1 * , b1 * ) and another arbitrary color E2 having a color coordinate of (L2 * , a2 * , b2 * ), is calculated by the following equation (5): can do.
[수학식 5][Equation 5]
Figure PCTKR2014008074-appb-I000001
Figure PCTKR2014008074-appb-I000001
수학식 5에서 ΔL*는 두 색이 갖는 색좌표 E1과 E2의 색좌표 중 L1*와 L2*의 차를 의미한다. 또한, Δa*도 E1과 E2의 색좌표 중 a1*과 a2*의 차를 의미하고, Δb*도 E1과 E2의 색좌표 중 b1*과 b2*의 차를 의미한다.ΔL * in Equation 5 means a difference between L1 * and L2 * of the color coordinates E1 and E2 of the two colors. Δa * also means the difference between a1 * and a2 * in the color coordinates of E1 and E2, and Δb * also means the difference between b1 * and b2 * in the color coordinates of E1 and E2.
본 발명은 광학 필터에 관한 것으로, 하나의 예로서,The present invention relates to an optical filter, as an example,
하기 수학식 1을 만족하는 것을 특징으로 하는 광학 필터를 포함할 수 있다.It may include an optical filter characterized in that to satisfy the following equation (1).
[수학식 1][Equation 1]
ΔE* ≤ 1.5ΔE * ≤ 1.5
수학식 1에서,In Equation 1,
ΔE*는 광학 필터의 수직 방향에서 입사되어 상기 광학 필터를 투과한 광과, 상기 광학 필터의 수직 방향과 30°를 이루는 각도로 입사되어 상기 광학 필터를 투과한 광의 색차를 의미한다.ΔE * denotes a color difference between light incident in the vertical direction of the optical filter and transmitted through the optical filter and light incident at an angle of 30 ° with the vertical direction of the optical filter and transmitted through the optical filter.
구체적으로, 상기 수학식 1에서, ΔE*는, 본 발명에 따른 광학 필터에 수직 방향으로 입사되어 상기 광학 필터를 투과한 광의 색좌표 E1(L1*, a1*, b1*)과 상기 광학 필터의 수직 방향과 30°를 이루는 각도로 입사되어 상기 광학 필터를 투과한 광의 색좌표 E2(L2*, a2*, b2*)를 상기 수학식 1에 대입하여 산출한 색차를 의미한다. Specifically, in Equation 1, ΔE * is a color coordinate E1 (L1 * , a1 * , b1 * ) of light incident to the optical filter in the vertical direction and transmitted through the optical filter, and the vertical of the optical filter. The color difference calculated by substituting the color coordinates E2 (L2 * , a2 * , b2 * ) of the light incident through the optical filter and passing through the optical filter into the equation (1).
이와 같이 색차(ΔE*)가 1.5 이하가 되도록 광학 필터를 구현하게 되면 디스플레이 장치에서 표현되는 화상에 존재하는 색의 왜곡을 인간의 시력으로는 인지할 수 없게 된다.As such, when the optical filter is implemented such that the color difference ΔE * is 1.5 or less, the human eye cannot perceive the distortion of the color present in the image represented by the display device.
예를 들어, 상기 ΔE*는, 0.001 내지 1.5, 0.001 내지 1.2, 0.001 내지 1.0 또는 0.001 내지 0.8일 수 있다.For example, the ΔE * may be 0.001 to 1.5, 0.001 to 1.2, 0.001 to 1.0, or 0.001 to 0.8.
다른 실시예로서, 본 발명에 따른 광학 필터는 광흡수층 및 근적외선 반사층을 포함하며, 하기 수학식 2를 만족할 수 있다.As another embodiment, the optical filter according to the present invention may include a light absorbing layer and a near infrared reflecting layer, and may satisfy Equation 2 below.
[수학식 2][Equation 2]
W2-W1 ≤ 20 nmW2-W1 ≤ 20 nm
수학식 2에서,In Equation 2,
W1은 600~800 nm의 파장 범위에서, 상기 광학 필터에 수직 방향으로 입사되는 광에 대한 상기 근적외선 반사층의 투과도가 50%가 되는 파장을 의미하고,W1 means a wavelength in the wavelength range of 600 ~ 800 nm, the transmittance of the near-infrared reflecting layer to the light incident in the vertical direction to the optical filter is 50%,
W2는 상기 광흡수층이 흡수 극대를 갖는 파장을 의미한다.W2 means a wavelength at which the light absorption layer has an absorption maximum.
구체적으로, 수학식 2를 보면, 600~800 nm의 파장 범위에서, 상기 광학 필터에 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)과 광흡수층이 흡수 극대를 갖는 파장 즉, 광흡수층이 가장 낮은 투과도를 보이는 파장(W2)의 차이가 20 nm 이하일 수 있다. 예를 들어, 상기 W2-W1은 0 nm 내지 20 nm, 5 nm 내지 15 nm 또는 10 nm 내지 13 nm일 수 있다. 상기 범위 내의 W2-W1 값을 통해, 입사각의 변화에 따른 투과 스펙트럼의 편이(shift) 현상을 방지할 수 있으며, 우수한 근적외선 차단 효과를 기대할 수 있다. 또한, 근적외선 반사층이 광흡수층으로 입사되는 광의 일부를 반사시킴으로써, 광흡수층이 과도한 양의 광을 흡수함으로 인해 발생될 수 있는 광학 필터의 효율성 저하 또는 광학 필터의 열화 등의 문제점을 방지할 수 있다. Specifically, in Equation 2, in the wavelength range of 600 to 800 nm, the wavelength W1 and the light absorbing layer having the transmittance of the near infrared reflecting layer with respect to the light incident in the direction perpendicular to the optical filter are 50%, the absorption maximum. The wavelength of the light absorbing layer, that is, the wavelength W2 at which the light absorption layer shows the lowest transmittance may be 20 nm or less. For example, the W2-W1 may be 0 nm to 20 nm, 5 nm to 15 nm, or 10 nm to 13 nm. Through the W2-W1 value within the above range, it is possible to prevent the shift phenomenon of the transmission spectrum due to the change of the incident angle, and excellent near-infrared blocking effect can be expected. In addition, by reflecting a part of the light incident to the light absorbing layer by the near-infrared reflecting layer, it is possible to prevent problems such as deterioration of the optical filter or efficiency degradation of the optical filter that may be generated due to the light absorbing layer absorbs excessive amounts of light.
다른 실시예로서, 본 발명에 따른 광학 필터는 광흡수층 및 근적외선 반사층을 포함하며, 하기 수학식 3을 만족할 수 있다.As another embodiment, the optical filter according to the present invention may include a light absorbing layer and a near infrared reflecting layer, and may satisfy Equation 3 below.
[수학식 3][Equation 3]
0 nm ≤ W1-(W2-W3/2) ≤ 65 nm0 nm ≤ W1- (W2-W3 / 2) ≤ 65 nm
수학식 3에서,In Equation 3,
W1은 600~800 nm의 파장 범위에서, 상기 광학 필터에 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장을 의미하고,W1 means a wavelength at which the transmittance of the near-infrared reflecting layer with respect to light incident in the direction perpendicular to the optical filter is 50% in the wavelength range of 600 to 800 nm,
W2는 광흡수층이 흡수 극대를 갖는 파장을 의미하고,W2 means the wavelength at which the light absorption layer has an absorption maximum,
W3는 600 nm 이상의 파장 범위에서 광흡수층의 투과도가 50%가 되는 두 파장의 차이의 절대값을 의미한다.W3 means the absolute value of the difference between the two wavelengths in which the light absorption layer has a transmittance of 50% in the wavelength range of 600 nm or more.
구체적으로, 수학식 3은, 600~800 nm의 파장 범위에서, 상기 광학 필터에 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 광 투과도가 50%가 되는 파장(W1), 광흡수층이 흡수 극대를 갖는 파장(W2) 및 광흡수층의 투과도가 50%가 되는 파장에서의 반치폭(Full Width at Half Maximum : FWHM)(W3)의 관계를 나타낼 수 있다. 예를 들어, 상기 W1-(W2-W3/2) 값은, 0 nm 내지 65 nm, 5 nm 내지 40 nm 또는 10 nm 내지 30 nm 범위일 수 있다. 구체적으로, W1-(W2-W3/2) 값을 상기 범위 내로 조절함으로써, 근적외선 영역의 광의 투과도를 최소화할 수 있다. 이때, 상기 W1-(W2-W3/2) 값이 0 nm 미만일 경우에는 입사각의 변화에 따른 광학 필터의 투과 스펙트럼의 편이 현상을 방지할 수 없고, 근적외선 영역의 광의 투과도가 증가할 수 있어, 디스플레이 장치에서 표현되는 화상에 존재하는 색의 왜곡을 사용자가 인지할 수 있게 되는 문제가 발생된다.Specifically, Equation 3 is a wavelength (W1) in which the light transmittance of the near-infrared reflecting layer is 50% with respect to light incident in the direction perpendicular to the optical filter in the wavelength range of 600 to 800 nm, the absorption band is the absorption maximum The relationship between the wavelength W2 and the full width at half maximum (FWHM) W3 at the wavelength at which the transmittance of the light absorption layer is 50% can be shown. For example, the W1- (W2-W3 / 2) value may range from 0 nm to 65 nm, 5 nm to 40 nm, or 10 nm to 30 nm. Specifically, by adjusting the value of W1- (W2-W3 / 2) within the above range, it is possible to minimize the transmittance of light in the near infrared region. In this case, when the W1- (W2-W3 / 2) value is less than 0 nm, the shift of the transmission spectrum of the optical filter due to the change of the incident angle may not be prevented, and the transmittance of light in the near infrared region may increase, thereby displaying the display. There arises a problem that the user can recognize the distortion of the color present in the image represented by the device.
한편, 상기 W1-(W2-W3/2) 값이 65 nm를 초과할 경우, 광흡수층의 제형 안정성이 저해될 수 있으며, 오히려 화상의 생성에 기여하는 가시광 영역의 광 투과도를 저해하여 화상의 왜곡을 발생시킬 수 있다. 상기 수학식 1과 함께 수학식 2 및 3이 동시에 만족될 경우, 광학 필터로 입사되는 광의 입사각이 변화되더라도 그로 인한 화상의 왜곡을 최소화할 수 있게 되어 육안에 의해 관찰되는 화상과 동일한 수준으로 색을 재현할 수 있다. 또한, 근적외선 영역의 광의 투과도를 최소화하여 근적외선 영역의 광이 광학 필터로 입사됨으로 인하여 발생될 수 있는 광학 필터의 효율성 저하 및 발열현상을 방지할 수 있다. On the other hand, when the W1- (W2-W3 / 2) value exceeds 65 nm, the formulation stability of the light absorbing layer may be impaired, but rather the distortion of the image by inhibiting the light transmittance in the visible light region contributing to the generation of the image. Can be generated. When Equations 2 and 3 together with Equation 1 are satisfied at the same time, even if the angle of incidence of the light incident on the optical filter is changed, distortion of the image can be minimized, thereby reducing the color to the same level as the image observed by the naked eye. I can reproduce it. In addition, by minimizing the transmittance of light in the near infrared region it is possible to prevent the degradation of the efficiency of the optical filter generated by the light in the near infrared region incident to the optical filter and the heat generation phenomenon.
이러한 광학 필터구조에서는 광흡수층의 흡수 특성에 따라 근적외선 영역(700~750 nm)의 파장 범위에서 불필요한 투과 피크가 발생될 수 있다.In such an optical filter structure, unnecessary transmission peaks may be generated in the wavelength range of the near infrared region (700 to 750 nm) according to the absorption characteristics of the light absorption layer.
이를 방지하기 위한 본 실시예의 광학 필터는 하기 수학식 4를 만족할 수 있다.The optical filter of the present embodiment for preventing this may satisfy the following equation (4).
[수학식 4][Equation 4]
%TNIR-peak ≤ 10%% T NIR-peak ≤ 10%
상기 수학식 4에서,In Equation 4,
%TNIR-peak는 근적외선 영역(700~750 nm)의 파장 범위에서의 최대 투과도를 의미한다.% T NIR-peak refers to the maximum transmittance in the wavelength range of the near infrared region (700-750 nm).
구체적으로, 상기 %TNIR-peak는 상기 근적외선 영역의 파장 범위에서의 최대 투과도를 의미하며, %TNIR-peak는 10% 이하일 수 있다. 예를 들어, 상기 %TNIR-peak는 0.1% 내지 8%, 1% 내지 5% 또는 1% 내지 2% 이하로 나타낼 수 있으며, 바람직하게는 0%일 수 있다. %TNIR-peak가 0%에 가까울수록 화상의 왜곡을 줄일 수 있다. Specifically, the% T NIR-peak means the maximum transmittance in the wavelength range of the near infrared region,% T NIR-peak may be 10% or less. For example, the% T NIR-peak may be represented by 0.1% to 8%, 1% to 5% or 1% to 2% or less, preferably 0%. As the% T NIR-peak approaches 0%, the distortion of the image can be reduced.
다른 실시예로서, 본 발명에 따른 광학 필터는 가시광 영역(450~600 nm) 에서, 평균 투과도는 80% 이상일 수 있다.In another embodiment, the optical filter according to the present invention may have an average transmittance of 80% or more in the visible light region (450 to 600 nm).
광학 필터는 촬상 장치나 카메라 모듈 등에 적용되는 경우, 가시광 영역에서 광 투과도가 높은 것이 바람직하다. 상기 광학 필터가 가시광 영역에서 80% 이상의 평균 투과도를 가질 경우 상기 광학 필터가 적용된 촬상 장치나 카메라 모듈에 의해 표현되는 화상은 육안에 의해 관찰되는 화상과 동일한 수준의 색으로 표현될 수 있다. When the optical filter is applied to an imaging device, a camera module, or the like, it is preferable that the optical transmittance is high in the visible light region. When the optical filter has an average transmittance of 80% or more in the visible light region, the image represented by the imaging device or the camera module to which the optical filter is applied may be expressed in the same color as the image observed by the naked eye.
또 다른 실시예로서, 본 발명에 따른 광학 필터는 적외선 영역(750~1000 nm)에서, 평균 투과도가 10% 이하일 수 있다.As another embodiment, the optical filter according to the present invention may have an average transmittance of 10% or less in the infrared region (750 to 1000 nm).
구체적으로, 상기 조건은, 적외선 영역의 광에 대한 광학 필터의 투과도가 10% 이하인 것을 의미할 수 있다. 적외선 영역의 광에 대한 광학 필터의 투과도를 상기 범위 내로 제어함으로써, 가시광 영역의 동적 폭(dynamic range)의 감소, 잡음(Noise)의 증가, 색 재현성과 해상도의 감소를 방지 할 수 있다.Specifically, the condition may mean that the transmittance of the optical filter with respect to light in the infrared region is 10% or less. By controlling the transmittance of the optical filter to the light in the infrared region within the above range, it is possible to prevent a reduction in the dynamic range of the visible light region, an increase in noise, a decrease in color reproducibility and resolution.
상기 가시광 영역의 동적 폭은 CMOS 센서가 화면에서 충실하게 표현할 수 있는 광의 범위를 말한다. 색 표현과 무관한 적외선 영역의 광이 광학 필터를 투과하여 CMOS 센서에 입사되면 색을 구현하는데 필요한 가시광 영역의 동적 폭이 작아진다. 가시광 영역의 동적 폭이 작아지면 어두운 부분의 이미지를 구분할 수 없는 현상이 발생하여 정확한 화상의 구현이 어려워지게 되므로 광학 필터는 적외선 영역의 광 투과도를 최소화하여야 한다. CMOS 센서에서 잡음은 주로 회로 구조에 의해 발생되는 것으로 특히 열 잡음(thermal noise)이 주요 원인이다. 광학 필터를 투과한 적외선 영역의 광이 CMOS 센서의 열 발생에 주요한 원인으로 작용하므로 광학 필터는 적외선 영역의 광 투과도를 최소화하여야 한다. The dynamic width of the visible light region refers to a range of light that the CMOS sensor can faithfully express on the screen. When the light in the infrared region irrelevant to the color expression is transmitted through the optical filter and incident on the CMOS sensor, the dynamic width of the visible light region required for color is reduced. As the dynamic width of the visible light region becomes smaller, the image of the dark portion cannot be distinguished, so that it is difficult to realize an accurate image. Therefore, the optical filter must minimize light transmittance in the infrared region. Noise in CMOS sensors is mainly caused by the circuit structure, especially thermal noise. Since the light in the infrared region passing through the optical filter acts as a major cause for the heat generation of the CMOS sensor, the optical filter should minimize the light transmittance in the infrared region.
BSI형 CMOS 센서와 같이 감도가 높은 센서를 채용한 고화소의 촬상 장치가 개발되면서, 상기 촬상 장치에 적용되는 광학 필터로 입사되는 광의 입사각이 변화되어 상기 광학 필터의 투과 스펙트럼이 변화되면 상기 고화소의 촬상 장치가 제공하는 화상에는 심각한 왜곡이 발생되었다. 이러한 심각한 왜곡을 방지하기 위하여 종래에는 광학 필터에 수직으로 입사되어 광학 필터를 투과한 광과, 광학 필터에 수직한 방향과 30°를 이루는 방향에서 입사되어 광학 필터를 투과한 광의 투과도가 50%가 되는 파장의 차이를 제어하는 방안이 도입되었다. 그러나, 상기 각각의 각도로 입사되는 광의 투과도가 50%가 되는 파장의 차이를 제어하는 것만으로는 화상의 왜곡을 방지하는데 한계가 있었다. 즉 상기 각각의 각도로 입사되는 광의 투과도가 30%가 되는 파장에서는 광의 입사각이 변화될 경우 광학 필터의 투과도가 급격하게 변화되어 여전히 화상의 왜곡이 발생되는 문제가 있었다.As a high pixel image pickup device employing a high sensitivity sensor such as a BSI type CMOS sensor has been developed, when the incident angle of light incident on the optical filter applied to the image pickup device is changed and the transmission spectrum of the optical filter is changed, image pickup of the high pixel is performed. Serious distortion has occurred in the image provided by the device. In order to prevent such a serious distortion, the transmittance of light incident to the optical filter perpendicularly and transmitted through the optical filter and incident light in the direction perpendicular to the optical filter at 30 ° and transmitted through the optical filter is 50%. A scheme for controlling the difference in wavelengths introduced is introduced. However, there is a limit in preventing distortion of the image only by controlling the difference in wavelengths at which the transmittance of light incident at each angle is 50%. That is, at the wavelength at which the transmittance of light incident at each angle becomes 30%, when the incident angle of light is changed, the transmittance of the optical filter is suddenly changed, and there is still a problem that image distortion occurs.
상기와 같은 종래의 문제점을 해결하기 위해, 본 발명에 따른 광학 필터에서는 상기 수학식 1 내지 3에 의해 상기 각각의 입사각으로 입사된 광의 투과도가 50%가 되는 파장뿐만 아니라 광의 투과도가 30%가 되는 파장을 동시에 제어하였다. 그 결과 광학 필터에 수직으로 입사되어 광학 필터를 투과한 광과, 광학 필터에 수직한 방향과 30°를 이루는 방향에서 입사되어 광학 필터를 투과한 광의 투과도가 30%가 되는 파장의 차이를 15 nm 이하로 제어함으로써 본 발명의 광학 필터는 화상의 왜곡을 종래의 광학 필터보다 줄일 수 있었다.In order to solve the conventional problems as described above, in the optical filter according to the present invention, the light transmittance of 30% as well as the wavelength of light transmittance of 50% of the incident light at the respective incident angles by Equations 1 to 3 are obtained. The wavelength was controlled simultaneously. As a result, the difference between the wavelengths of light incident perpendicularly to the optical filter and transmitted through the optical filter and 30% of the incident light transmitted in the direction perpendicular to the optical filter and transmitted through the optical filter becomes 30%. By controlling below, the optical filter of this invention was able to reduce the distortion of an image compared with the conventional optical filter.
이하에서는 본 발명에 따른 광학 필터의 구조를 보다 상세히 설명하도록 한다.Hereinafter, the structure of the optical filter according to the present invention will be described in more detail.
본 발명에 따른 광학 필터는 1 종 이상의 광흡수제를 포함하는 광흡수층 및 근적외선 반사층을 포함할 수 있다. 따라서 상기 광학 필터로 입사되는 근적외선 영역의 광은 상기 근적외선 반사층에 의해 대부분 반사된다.The optical filter according to the present invention may include a light absorbing layer and a near infrared reflecting layer including at least one light absorbing agent. Therefore, light in the near infrared region incident on the optical filter is mostly reflected by the near infrared reflecting layer.
상기 광흡수층은 바인더 수지 및 상기 바인더 수지 내에 분산된 광흡수제를 포함할 수 있다. 예를 들어, 상기 바인더의 종류는 특별히 제한되지 않으며, 예를 들어, 환상 올레핀계 수지, 폴리아릴레이트 수지, 폴리술폰 수지, 폴리에테르술폰 수지, 폴리파라페닐렌 수지, 폴리아릴렌에테르포스핀옥사이드 수지, 폴리이미드 수지, 폴리에테르이미드 수지, 폴리아미드이미드 수지, 아크릴 수지, 폴리카보네이트 수지, 폴리에틸렌 나프탈레이트 수지, 및 다양한 유-무기 하이브리드 계열의 수지 중 1 종 이상을 사용할 수 있다.The light absorbing layer may include a binder resin and a light absorbing agent dispersed in the binder resin. For example, the kind of the binder is not particularly limited, and examples thereof include cyclic olefin resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyparaphenylene resins, and polyarylene ether phosphine oxides. At least one of resins, polyimide resins, polyetherimide resins, polyamideimide resins, acrylic resins, polycarbonate resins, polyethylene naphthalate resins, and various organic-inorganic hybrid series resins can be used.
상기 광흡수제로는 다양한 종류의 염료, 안료 혹은 금속 착제계 화합물 중에서 1 종 이상을 사용할 수 있으며, 특별히 제한되는 것은 아니다. 예를 들어, 상기 광흡수제로는 시아닌계 화합물, 프탈로시아닌계 화합물, 나프탈로시아닌계 화합물 또는 디티올 금속 착제계 화합물 등을 사용할 수 있다. As the light absorbing agent, one or more kinds of dyes, pigments, or metal complex compounds of various kinds may be used, and are not particularly limited. For example, a cyanine compound, a phthalocyanine compound, a naphthalocyanine compound or a dithiol metal complex compound may be used as the light absorbing agent.
상기 광흡수제는 1 종을 단독으로 사용할 수 있고, 경우에 따라서는 2 종 이상을 혼합하여 사용하거나 두 개 층으로 분리하여 형성할 수 있다. The light absorbing agent may be used alone, or in some cases, may be used by mixing two or more kinds or separating the two layers into two layers.
광흡수제의 함량은, 예를 들어, 바인더 수지 100 중량부를 기준으로, 0.001 내지 10 중량부, 0.01 내지 10 중량부, 혹은 0.5 내지 5 중량부 범위일 수 있다. 광흡수제의 함량을 상기 범위로 조절함으로써 광의 입사각 변화에 따른 광학 필터의 투과 스펙트럼의 편이(shift) 현상을 보정하고, 우수한 근적외선 차단 효과를 구현할 수 있다. 또한, 상기 광흡수제를 2 종 이상을 혼합하여 사용하거나 두 개 층으로 분리하여 형성할 경우, 광흡수층의 흡수 스펙트럼에서의 반치폭을 증가시켜, 근적외선 영역의 파장 범위에서의 최대 투과도를 감소시킬 수 있다.The content of the light absorbing agent may be, for example, in a range of 0.001 to 10 parts by weight, 0.01 to 10 parts by weight, or 0.5 to 5 parts by weight based on 100 parts by weight of the binder resin. By adjusting the content of the light absorbing agent to the above range it is possible to correct the shift (shift) phenomenon of the transmission spectrum of the optical filter according to the change in the incident angle of the light, it is possible to implement an excellent near-infrared blocking effect. In addition, when the light absorbing agent is used in a mixture of two or more kinds or formed into two layers, the half maximum width in the absorption spectrum of the light absorbing layer may be increased to reduce the maximum transmittance in the wavelength range of the near infrared region. .
본 발명에 따른 광학 필터는 상기 광흡수층의 일면에 형성된 투명 기재를 더 포함할 수 있다. 예를 들어, 상기 투명 기재는 투명 유리 기판 혹은 투명 수지제 기판일 수 있다. The optical filter according to the present invention may further include a transparent substrate formed on one surface of the light absorption layer. For example, the transparent substrate may be a transparent glass substrate or a transparent resin substrate.
구체적으로, 상기 투명 기재는 투명 유리 기판을 사용할 수 있으며, 필요에 따라서는 산화구리(CuO)를 함유하는 인산염계 유리 기판을 사용할 수 있다. 투명 기재로 유리 기판을 사용하는 경우에는, 가시광의 투과도를 저해하지 않으면서, 광학 필터 제조 과정에서의 열변형을 방지하고, 휨을 억제하는 효과가 있다.Specifically, the transparent substrate may be a transparent glass substrate, and if necessary, a phosphate-based glass substrate containing copper oxide (CuO) may be used. When using a glass substrate as a transparent base material, there exists an effect which prevents heat deformation and suppresses curvature in the optical filter manufacturing process, without impairing the transmittance | permeability of visible light.
상기 투명 수지제 기판은 강도가 우수한 것이 바람직하며, 예를 들어, 무기 필러가 분산된 광투과성 수지를 사용할 수 있다. 광투과성 수지의 종류는 특별히 제한되지 않으며, 상기 광흡수층에 적용 가능하다고 언급한 바인더 수지를 사용할 수 있다. 예를 들어, 광흡수층의 바인더 수지와 투명 기재로 사용되는 수지의 종류를 동일 또는 유사하게 제어함으로써, 계면 박리를 감소시킬 수 있다.It is preferable that the said transparent resin board | substrate is excellent in strength, For example, the transparent resin in which the inorganic filler was disperse | distributed can be used. The kind of light transmissive resin is not particularly limited, and a binder resin mentioned as applicable to the light absorbing layer can be used. For example, by controlling the kind of the binder resin of the light absorption layer and the resin used as the transparent substrate, the interface peeling can be reduced.
상기 근적외선 반사층은 유전체 다층막으로 형성할 수 있다. 근적외선 반사층은 근적외선 영역의 광을 반사하는 역할을 한다. 예를 들어, 근적외선 반사층은, 고굴절률층과 저굴절률층을 교대로 적층한 유전체 다층막 등을 사용할 수 있다. 상기 근적외선 반사층은, 필요에 따라, 알루미늄 증착막; 귀금속 박막; 혹은 산화 인듐 및 산화 주석 중 1종 이상의 미립자가 분산된 수지막을 더 포함할 수 있다.The near infrared reflecting layer may be formed of a dielectric multilayer. The near infrared reflecting layer serves to reflect light in the near infrared region. For example, the near-infrared reflection layer can use the dielectric multilayer film etc. which alternately laminated the high refractive index layer and the low refractive index layer. The near-infrared reflecting layer may include an aluminum vapor deposition film if necessary; Precious metal thin film; Or a resin film in which at least one fine particle of indium oxide and tin oxide is dispersed.
하나의 예로서, 상기 근적외선 반사층은 제1 굴절률을 가지는 유전체층과 제2 굴절률을 가지는 유전체층이 교대 적층된 구조일 수 있다. 제1 굴절률을 가지는 유전체층과 제2 굴절률을 가지는 유전체층의 굴절률 차이는 0.2 이상, 0.3 이상 또는 0.2 내지 1.0 범위일 수 있다. As one example, the near infrared reflecting layer may have a structure in which a dielectric layer having a first refractive index and a dielectric layer having a second refractive index are alternately stacked. The refractive index difference between the dielectric layer having the first refractive index and the dielectric layer having the second refractive index may be 0.2 or more, 0.3 or more, or 0.2 to 1.0.
예를 들어, 제1 굴절률을 가지는 유전체층은 상대적으로 높은 굴절률을 가지는 층일 수 있고, 제2 굴절률을 가지는 유전체층은 상대적으로 낮은 굴절률을 가지는 층일 수 있다. 이 경우, 제1 굴절률을 가지는 유전체층의 굴절률은 1.6 내지 2.4 범위이고, 제2 굴절률을 가지는 유전체층의 굴절률은 1.3 내지 1.6 범위일 수 있다. For example, the dielectric layer having the first refractive index may be a layer having a relatively high refractive index, and the dielectric layer having the second refractive index may be a layer having a relatively low refractive index. In this case, the refractive index of the dielectric layer having the first refractive index may range from 1.6 to 2.4, and the refractive index of the dielectric layer having the second refractive index may range from 1.3 to 1.6.
제1 굴절률을 가지는 유전체층은 산화티탄, 알루미나, 산화지르코늄, 오산화탄탈럼, 오산화니오브, 산화란탄, 산화이트륨, 산화아연, 황화아연 및 산화인듐으로 이루어진 군으로부터 선택되는 1 종 이상으로 형성될 수 있다. 상기 산화인듐은, 필요에 따라 산화 티탄, 산화주석, 산화세륨 등을 소량 더 포함할 수 있다. The dielectric layer having the first refractive index may be formed of one or more selected from the group consisting of titanium oxide, alumina, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide and indium oxide. . The indium oxide may further contain a small amount of titanium oxide, tin oxide, cerium oxide, and the like as necessary.
제2 굴절률을 가지는 유전체층은 실리카, 불화란탄, 불화마그네슘 및 불화알루미나나트륨으로 이루어진 군으로부터 선택되는 1 종 이상으로 형성될 수 있다.The dielectric layer having the second refractive index may be formed of one or more selected from the group consisting of silica, lanthanum fluoride, magnesium fluoride, and sodium alumina fluoride.
근적외선 반사층을 형성하는 방법은 특별히 제한되지 않으며, 예를 들어, CVD법, 스퍼터링법, 진공 증착법 등이 적용될 수 있다. The method for forming the near infrared reflecting layer is not particularly limited, and for example, a CVD method, a sputtering method, a vacuum deposition method, or the like may be applied.
상기 근적외선 반사층은 제1 굴절률을 가지는 유전체층과 제2 굴절률을 가지는 유전체층이 5 내지 61층, 11 내지 51층, 혹은 21 내지 41층으로 교대 적층된 구조일 수 있다. 근적외선 반사층은 원하는 투과도 내지 굴절률의 범위 및 차단하고자 하는 파장의 영역 등을 고려하여 설계 가능하다.The near-infrared reflective layer may have a structure in which a dielectric layer having a first refractive index and a dielectric layer having a second refractive index are alternately stacked into 5 to 61 layers, 11 to 51 layers, or 21 to 41 layers. The near-infrared reflecting layer can be designed in consideration of a range of desired transmittance to refractive index and a region of a wavelength to be blocked.
상기 근적외선 반사층은 유전체 다층막에 분산된 광흡수제를 더 포함할 수 있다. 예를 들어, 상기 유전체 다층막에 분산된 광흡수제는, 600 nm 이상의 근적외선 내지 적외선 파장 영역을 흡수할 수 있는 광흡수제라면 특별히 한정하지 않는다. 상기 유전체 다층막에 광흡수제를 분산시킴으로써, 유전체 다층막의 교대 적층 횟수를 줄일 수 있어, 근적외선 반사층의 두께를 줄일 수 있다. 이를 통해, 촬상 장치에 적용하였을 때, 촬상 장치의 소형화를 구현할 수 있다.The near-infrared reflective layer may further include a light absorbing agent dispersed in the dielectric multilayer. For example, the light absorbing agent dispersed in the dielectric multilayer film is not particularly limited as long as it is a light absorbing agent capable of absorbing a near infrared to infrared wavelength region of 600 nm or more. By dispersing the light absorbing agent in the dielectric multilayer film, the number of alternating stacks of the dielectric multilayer film can be reduced, and the thickness of the near infrared reflecting layer can be reduced. In this way, when applied to the imaging apparatus, it is possible to realize miniaturization of the imaging apparatus.
본 발명은, 본 발명에 따른 광학 필터를 포함하는 촬상 장치를 포함할 수 있다. 본 발명에 따른 광학 필터는 PDP 등의 디스플레이 장치에도 적용 가능하다. 그러나, 최근 고화소가 요구되는 촬상 장치, 예를 들어 800만 화소급 이상의 카메라 등에 보다 바람직하게 적용 가능하다. 예를 들어, 본 발명에 따른 광학 필터는 모바일 장치용 카메라에 효과적으로 적용 가능하다.The present invention may include an imaging device including the optical filter according to the present invention. The optical filter according to the present invention is also applicable to display devices such as PDPs. However, the present invention is more preferably applicable to an imaging device that requires a high pixel, for example, a camera of 8 million pixels or more. For example, the optical filter according to the present invention can be effectively applied to a camera for a mobile device.
이하에서는, 본 발명에 따른 구체적인 실시예들을 통해서 본 발명에 따른 신규한 구조의 광학 필터를 보다 상세히 설명한다. 하기에 예시되는 실시예들은 발명의 상세한 설명을 위한 것일 뿐, 이에 의해 권리범위를 제한하려는 것은 아니다.Hereinafter, the optical filter of the novel structure according to the present invention will be described in detail through specific embodiments of the present invention. The embodiments exemplified below are only for the detailed description of the present invention, and are not intended to limit the scope of the rights.
제조예 1Preparation Example 1
유리 기판의 일면 상에, 이빔 증착기(E-beam evaporator)를 이용해서 TiO2과 SiO2을 교대 증착하여 근적외선 반사층을 형성하였다. On one surface of the glass substrate, TiO 2 and SiO 2 were alternately deposited using an E-beam evaporator to form a near infrared reflecting layer.
이와는 별도로 상업적으로 입수 가능하며 흡수 극대가 670nm인 광흡수제와 바인더 수지 원료인 환상 올레핀계 수지 그리고 톨루엔(Sigma Aldrich사 제품)을 혼합하고, 자력교반기를 이용해서 1 일 이상 교반하여 근적외선 흡수 용액을 제조하였다. Separately, commercially available light absorbers with a maximum absorption of 670 nm, cyclic olefin resins and toluene (manufactured by Sigma Aldrich), which are binder resin raw materials, are mixed and stirred for at least one day using a magnetic stirrer to prepare a near-infrared absorbing solution. It was.
이후 제조된 근적외선 흡수 용액을 근적외선 반사층이 형성된 유리 기판의 반대면에 스핀 코팅하여 광흡수층을 형성하였다. Thereafter, the prepared near-infrared absorbing solution was spin coated on the opposite surface of the glass substrate on which the near-infrared reflective layer was formed to form a light absorbing layer.
이상의 과정을 거쳐 본 발명에 따른 광학 필터를 제조하였다. 제조된 광학 필터의 적층 구조는 도 1에 나타내었다. 도 1을 참조하면, 유리 기판(10)을 기준으로 아래쪽 면에는 근적외선 반사층(20)이 형성되어 있고, 위쪽 면에는 광흡수층(30)이 형성된다.Through the above process, an optical filter according to the present invention was prepared. The laminated structure of the manufactured optical filter is shown in FIG. Referring to FIG. 1, a near infrared reflecting layer 20 is formed on a lower surface of the glass substrate 10, and a light absorption layer 30 is formed on an upper surface of the glass substrate 10.
본 제조예 1에서 제조된 광학 필터에 대하여 광의 입사각을 (a) 0° 및 (b) 30°로 달리하여 광 투과도 실험을 수행하였다. 그 결과는 도 2에 나타내었다. For the optical filter manufactured in Preparation Example 1, the light transmittance experiment was performed by varying the angle of incidence of light to (a) 0 ° and (b) 30 °. The results are shown in FIG.
제조예 2Preparation Example 2
상기 제조예 1과 동일한 방법으로 제조하되, 상업적으로 입수 가능하며 흡수 극대가 700nm인 광흡수제로 달리하여 광학 필터를 제조하였다.Prepared in the same manner as in Preparation Example 1, but commercially available and the optical filter was prepared by differently using a light absorbing agent having an absorption maximum of 700nm.
실험예 1Experimental Example 1
상기 제조예 1 및 2에서 제조된 광학 필터에 대하여 ΔE*를 측정하였다.ΔE * was measured for the optical filters prepared in Preparation Examples 1 and 2.
구체적으로는, 제조된 흡수필터에 대해 수직(입사각 0°)으로 백색광을 조사한 경우와, 수직 방향과 30˚를 이루는 각도에서 조사한 경우에 대해서, 광학 필터를 투과한 각각의 광의 색좌표 L*, a* 및 b* 값을 Perkin Elmer사의 분광 광도계 Lambda 35를 사용하여 측정한 다음 ΔE*를 산출하였다. Specifically, with respect to the case irradiated with white light in the vertical (angle of incidence 0 °) for the produced absorbent filter and, when examined in the vertical direction and the angle formed 30˚, transmitted through the optical filter each light color coordinates L *, a * And b * values were measured using a spectrophotometer Lambda 35 from Perkin Elmer and then ΔE * was calculated.
또한, W1,W2 및 W3를 측정하여 W2-W1, W1-(W2-W3/2) 값을 산출하였다. 상기 수학식 2에 기재된 W2-W1 값 및 수학식 3에 기재된 W1-(W2-W3/2) 값을 측정하였다. In addition, W1, W2 and W3 were measured to calculate the values of W2-W1 and W1- (W2-W3 / 2). The W2-W1 value described in Equation 2 and the W1- (W2-W3 / 2) value described in Equation 3 were measured.
이때, 근적외선 반사층을 형성하는 TiO2과 SiO2의 교대 적층 수를 달리하여, 근적외선 반사층의 투과도가 50%가 되는 파장(W1)을 650 nm 내지 750 nm로 조절하였다. 그 결과는 하기 표 1에 나타내었다.At this time, by varying the number of alternating stacks of TiO 2 and SiO 2 forming the near infrared reflecting layer, the wavelength W1 at which the transmittance of the near infrared reflecting layer was 50% was adjusted to 650 nm to 750 nm. The results are shown in Table 1 below.
표 1
W1 (nm) 제조예 1 제조예 2
ΔE* W2-W1 W1-(W2-W3/2) ΔE* W2-W1 W1-(W2-W3/2)
650 5.6 30 12 7.4 50 -8
660 3.0 21 21 4.5 41 1
670 1.4 10 32 2.3 30 12
680 0.8 0 41 1.0 20 21
690 0.6 -10 52 0.5 10 32
700 0.7 -20 62 0.6 0 42
710 0.9 -30 71 0.9 -10 51
720 1.2 -40 82 1.2 -20 62
730 1.7 -50 91 1.6 -30 71
740 2.4 -60 102 2.4 -40 82
750 3.8 -70 112 3.6 -50 92
Table 1
W1 (nm) Preparation Example 1 Preparation Example 2
ΔE * W2-W1 W1- (W2-W3 / 2) ΔE * W2-W1 W1- (W2-W3 / 2)
650 5.6 30 12 7.4 50 -8
660 3.0 21 21 4.5 41 One
670 1.4 10 32 2.3 30 12
680 0.8 0 41 1.0 20 21
690 0.6 -10 52 0.5 10 32
700 0.7 -20 62 0.6 0 42
710 0.9 -30 71 0.9 -10 51
720 1.2 -40 82 1.2 -20 62
730 1.7 -50 91 1.6 -30 71
740 2.4 -60 102 2.4 -40 82
750 3.8 -70 112 3.6 -50 92
상기 표 1을 통해, 본 발명에 따른 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 680~720 nm일 때, 광학 필터에 수직 방향으로 입사되어 상기 광학 필터를 투과한 광과, 광학 필터에 입사각 30°로 입사되어 상기 광학 필터를 투과한 광의 색차(ΔE*)가 1.5 이하임을 알 수 있다. 또한, 제조예 1의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 670 내지 750 nm 범위인 경우에, 그리고 제조예 2의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 680 내지 750 nm 범위에서 W2-W1 값이 20 nm 이하인 것으로 나타났다. 또한, 제조예 1의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장이 650 내지 700 nm 범위에서, 그리고 제조예 2의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 660 내지 720 nm 범위인 경우에 W1-(W2-W3/2)의 값이 0 nm 내지 65 nm로 나타났다.Through the above Table 1, the optical filter according to the present invention, when the wavelength (W1) that the transmittance of the near infrared reflecting layer is 50% is 680 ~ 720 nm, the incident light in the perpendicular direction to the optical filter and transmitted through the optical filter; The color difference ΔE * of light incident to the optical filter at an incident angle of 30 ° and transmitted through the optical filter may be 1.5 or less. In addition, the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near infrared reflecting layer is 50% in the range of 670 to 750 nm, and the optical filter of Preparation Example 2 has a wavelength at which the transmittance of the near infrared reflecting layer is 50%. It was shown that the W2-W1 value was 20 nm or less in the range of (680) to 750 nm. In addition, the optical filter of Preparation Example 1 has a wavelength of 650 to 700 nm in which the transmittance of the near infrared reflecting layer is 50%, and the optical filter of Preparation Example 2 has a wavelength (W1) of 660 in which the transmittance of the near infrared reflecting layer is 50%. The value of W1- (W2-W3 / 2) was in the range from 0 nm to 65 nm in the range from -720 nm.
실험예 2Experimental Example 2
상기 제조예 1 및 2에서 제조된 광학 필터에 대하여 W1-(W2-W3/2) 및 근적외선 영역(700~750 nm)의 파장 범위에서의 최대 투과도(%TNIR-peak)를 측정하였다.The maximum transmittance (% T NIR-peak ) in the wavelength range of W1- (W2-W3 / 2) and near infrared region (700-750 nm) was measured for the optical filters prepared in Preparation Examples 1 and 2.
이때, 근적외선 반사층을 형성하는 TiO2과 SiO2의 교대 적층 수를 달리하여, 근적외선 반사층의 투과도가 50%가 되는 파장을 650 nm 내지 750 nm로 조절하였다. 또한, 광흡수층의 두께를 7, 11 및 15 ㎛로 달리하여 측정하였으며, 그 결과는 하기 표 2 내지 4에 나타내었다.At this time, by varying the number of alternating stacks of TiO 2 and SiO 2 forming the near infrared reflecting layer, the wavelength at which the transmittance of the near infrared reflecting layer was 50% was adjusted to 650 nm to 750 nm. In addition, the thickness of the light absorption layer was measured to be different from 7, 11 and 15 μm, and the results are shown in Tables 2 to 4 below.
(2-1) 흡수층 두께를 7 ㎛로 형성(W3 = 57 nm)(2-1) Absorption layer thickness of 7 µm (W3 = 57 nm)
표 2
W1 (nm) 제조예 1 제조예 6
W1-(W2-W3/2) (%TNIR-peak) W1-(W2-W3/2) (%TNIR-peak)
650 -2 1% -22 0%
660 8 1% -12 0%
670 19 1% -1 1%
680 28 1% 8 0%
690 39 5% 19 1%
700 49 21% 29 2%
710 58 50% 38 5%
720 69 76% 49 21%
730 78 87% 58 49%
740 89 92% 69 76%
750 98 95% 78 87%
TABLE 2
W1 (nm) Preparation Example 1 Preparation Example 6
W1- (W2-W3 / 2) (% T NIR-peak ) W1- (W2-W3 / 2) (% T NIR-peak )
650 -2 One% -22 0%
660 8 One% -12 0%
670 19 One% -One One%
680 28 One% 8 0%
690 39 5% 19 One%
700 49 21% 29 2%
710 58 50% 38 5%
720 69 76% 49 21%
730 78 87% 58 49%
740 89 92% 69 76%
750 98 95% 78 87%
상기 표 2를 참조하면, 제조예 1의 광학 필터는 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 680 내지 710 nm 범위인 경우에, 그리고 제조예 2의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장이 700 내지 730 nm 범위인 경우에 W1-(W2-W3/2) 수치가 20 내지 65 범위를 만족하는 것으로 나타났다.Referring to Table 2, the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% with respect to light incident in the vertical direction is in the range of 680 to 710 nm, and of Preparation Example 2 The optical filter was found to have a W1- (W2-W3 / 2) value within the range of 20 to 65 when the wavelength at which the transmittance of the near infrared reflecting layer was 50% was in the range of 700 to 730 nm.
또한, 제조예 1의 광학 필터는 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 690 nm 이하인 경우에, 그리고 제조예 2의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 710 nm 이하인 경우에, 근적외선 영역(700~750 nm)의 파장 범위에서의 최대 투과도(%TNIR-peak)가 10% 이하인 것을 알 수 있다.Further, the optical filter of Preparation Example 1 has a wavelength W1 of 690 nm or less at which the transmittance of the near infrared reflecting layer is 50% with respect to light incident in the vertical direction, and the optical filter of Preparation Example 2 has a transmittance of the near infrared reflecting layer. When the wavelength W1 to be 50% is 710 nm or less, it can be seen that the maximum transmittance (% T NIR-peak ) in the wavelength range of the near infrared region (700 to 750 nm) is 10% or less.
(2-2) 흡수층 두께를 11 ㎛로 형성(W3 = 71 nm)(2-2) Absorption layer thickness of 11 μm (W3 = 71 nm)
표 3
W1 (nm) 제조예 1 제조예 6
W1-(W2-W3/2) %TNIR-peak W1-(W2-W3/2) %TNIR-peak
650 5 0% -15 0%
660 15 1% -5 0%
670 25 1% 5 1%
680 35 1% 15 0%
690 46 3% 26 1%
700 55 13% 35 1%
710 65 39% 45 3%
720 76 68% 56 13%
730 85 84% 65 39%
740 96 91% 76 68%
750 105 94% 85 84%
TABLE 3
W1 (nm) Preparation Example 1 Preparation Example 6
W1- (W2-W3 / 2) % T NIR-peak W1- (W2-W3 / 2) % T NIR-peak
650 5 0% -15 0%
660 15 One% -5 0%
670 25 One% 5 One%
680 35 One% 15 0%
690 46 3% 26 One%
700 55 13% 35 One%
710 65 39% 45 3%
720 76 68% 56 13%
730 85 84% 65 39%
740 96 91% 76 68%
750 105 94% 85 84%
상기 표 3을 참조하면, 제조예 1의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 650 내지 690 nm 범위인 경우에, 그리고 제조예 2의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 670 내지 710 nm 범위인 경우에 W1-(W2-W3/2) 수치가 0 내지 50 범위를 만족하는 것으로 나타났다.Referring to Table 3, the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near infrared reflecting layer is 50% in the range of 650 to 690 nm, and the optical filter of Preparation Example 2 has a transmittance of the near infrared reflecting layer. W1- (W2-W3 / 2) values were found to satisfy the range 0-50 when the wavelength W1 at 50% ranged from 670-710 nm.
또한, 제조예 1의 광학 필터는 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 690 nm 이하인 경우에, 그리고 제조예 2의 광학 필터는 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 710 nm 이하인 경우에, %TNIR-peak 가 10% 이하인 것을 알 수 있다.Further, the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near infrared reflecting layer is 50% is 690 nm or less, and the optical filter of Preparation Example 2 has a transmittance of the near infrared reflecting layer with respect to light incident in the vertical direction. When the wavelength W1 to be 50% is 710 nm or less, it can be seen that% T NIR-peak is 10% or less.
(2-3) 흡수층 두께를 15 ㎛로 형성(W3 = 83 nm)(2-3) Formation of Absorption Layer at 15 µm (W3 = 83 nm)
표 4
W1 (nm) 제조예 1 제조예 6
W1-(W2-W3/2) %TNIR-peak W1-(W2-W3/2) %TNIR-peak
650 12 0% -8 0%
660 21 1% 1 0%
670 32 1% 12 1%
680 41 1% 21 0%
690 52 2% 32 1%
700 62 9% 42 1%
710 71 32% 51 2%
720 82 63% 62 10%
730 91 80% 71 32%
740 102 89% 82 63%
750 112 93% 92 80%
Table 4
W1 (nm) Preparation Example 1 Preparation Example 6
W1- (W2-W3 / 2) % T NIR-peak W1- (W2-W3 / 2) % T NIR-peak
650 12 0% -8 0%
660 21 One% One 0%
670 32 One% 12 One%
680 41 One% 21 0%
690 52 2% 32 One%
700 62 9% 42 One%
710 71 32% 51 2%
720 82 63% 62 10%
730 91 80% 71 32%
740 102 89% 82 63%
750 112 93% 92 80%
상기 표 4를 참조하면, 제조예 1의 광학 필터는 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 650 내지 680 nm 범위인 경우에, 그리고 제조예 2의 광학 필터는 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 660 내지 700 nm 범위인 경우에 W1-(W2-W3/2)가 0 내지 50 범위를 만족하는 것으로 나타났다.Referring to Table 4, the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% with respect to light incident in the vertical direction is in the range of 650 to 680 nm, and of Preparation Example 2 The optical filter is such that W1- (W2-W3 / 2) satisfies the range 0-50 when the wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% for light incident in the vertical direction is in the range of 660 to 700 nm. Appeared.
또한, 제조예 1의 광학 필터는 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 700 nm 이하인 경우에, 그리고 제조예 2의 광학 필터는 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장(W1)이 720 nm 이하인 경우에, %TNIR-peak가 10% 이하인 것을 알 수 있다.Further, the optical filter of Preparation Example 1 has a wavelength W1 at which the transmittance of the near-infrared reflecting layer is 50% to light incident in the vertical direction is 700 nm or less, and the optical filter of Preparation Example 2 is incident on the vertical direction. It can be seen that% T NIR-peak is 10% or less when the wavelength W1 at which the transmittance of the near-infrared reflecting layer to light becomes 50% is 720 nm or less.

Claims (10)

  1. 하기 수학식 1을 만족하는 것을 특징으로 하는 광학 필터:An optical filter, which satisfies Equation 1 below:
    [수학식 1][Equation 1]
    ΔE* ≤ 1.5ΔE * ≤ 1.5
    수학식 1에서,In Equation 1,
    ΔE*는 광학 필터의 수직 방향에서 입사되어 상기 광학 필터를 투과한 광과, 상기 광학 필터의 수직 방향과 30°를 이루는 각도로 입사되어 상기 광학 필터를 투과한 광의 색차를 의미한다.ΔE * denotes a color difference between light incident in the vertical direction of the optical filter and transmitted through the optical filter and light incident at an angle of 30 ° with the vertical direction of the optical filter and transmitted through the optical filter.
  2. 제 1 항에 있어서,The method of claim 1,
    광흡수층 및 근적외선 반사층을 포함하며, 하기 수학식 2를 만족하는 광학 필터:An optical filter comprising a light absorbing layer and a near infrared reflecting layer and satisfying Equation 2 below:
    [수학식 2][Equation 2]
    W2-W1 ≤ 20 nmW2-W1 ≤ 20 nm
    수학식 2에서,In Equation 2,
    W1은 600~800 nm의 파장 범위에서, 상기 광학 필터에 수직 방향으로 입사되는 광에 대한 상기 근적외선 반사층의 투과도가 50%가 되는 파장을 의미하고,W1 means a wavelength in the wavelength range of 600 ~ 800 nm, the transmittance of the near-infrared reflecting layer to the light incident in the vertical direction to the optical filter is 50%,
    W2는 광흡수층이 흡수 극대를 갖는 파장을 의미한다.W2 means the wavelength at which the light absorption layer has an absorption maximum.
  3. 제 2 항에 있어서,The method of claim 2,
    하기 수학식 3을 만족하는 광학 필터:An optical filter satisfying Equation 3 below:
    [수학식 3][Equation 3]
    0 nm ≤ W1-(W2-W3/2) ≤ 65 nm0 nm ≤ W1- (W2-W3 / 2) ≤ 65 nm
    수학식 3에서,In Equation 3,
    W1은 600~800 nm의 파장 범위에서, 상기 광학 필터에 수직 방향으로 입사되는 광에 대한 근적외선 반사층의 투과도가 50%가 되는 파장을 의미하고,W1 means a wavelength at which the transmittance of the near-infrared reflecting layer with respect to light incident in the direction perpendicular to the optical filter is 50% in the wavelength range of 600 to 800 nm,
    W2는 광흡수층이 흡수 극대를 갖는 파장을 의미하고,W2 means the wavelength at which the light absorption layer has an absorption maximum,
    W3는 600 nm 이상의 파장 범위에서 광흡수층의 투과도가 50%가 되는 두 파장 값 차이의 절대값을 의미한다.W3 means the absolute value of the difference between two wavelength values at which the light absorption layer has a transmittance of 50% in the wavelength range of 600 nm or more.
  4. 제 1 항에 있어서,The method of claim 1,
    하기 수학식 4를 만족하는 광학 필터:An optical filter satisfying Equation 4 below:
    [수학식 4][Equation 4]
    %TNIR-peak ≤ 10%% T NIR-peak ≤ 10%
    상기 수학식 4에서,In Equation 4,
    %TNIR-peak는 700~750 nm의 파장 범위에서의 최대 투과도를 의미한다.% T NIR-peak means the maximum transmittance in the wavelength range of 700 ~ 750 nm.
  5. 제 2 항에 있어서,The method of claim 2,
    광흡수층은 바인더 수지; 및 상기 바인더 수지 내에 분산된 광흡수제를 포함하는 것을 특징으로 하는 광학 필터.The light absorption layer is a binder resin; And a light absorbing agent dispersed in the binder resin.
  6. 제 2 항에 있어서,The method of claim 2,
    광흡수층의 일면에 형성된 투명 기재를 더 포함하는 광학 필터.An optical filter further comprising a transparent substrate formed on one surface of the light absorption layer.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 투명 기재는 투명 유리 기판 또는 투명 수지제 기판을 포함하는 광학 필터.The transparent substrate is an optical filter comprising a transparent glass substrate or a transparent resin substrate.
  8. 제 2 항에 있어서,The method of claim 2,
    근적외선 반사층은 유전체 다층막으로 형성된 것을 특징으로 하는 광학 필터.The near-infrared reflective layer is an optical filter characterized by being formed of a dielectric multilayer film.
  9. 제 8 항에 있어서,The method of claim 8,
    근적외선 반사층은 유전체 다층막에 분산된 광흡수제를 더 포함하는 것을 특징으로 하는 광학 필터.The near-infrared reflecting layer further comprises a light absorbing agent dispersed in the dielectric multilayer film.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 광학 필터를 포함하는 촬상 장치. An imaging device comprising the optical filter according to claim 1.
PCT/KR2014/008074 2013-09-06 2014-08-30 Optical filter, and imaging device comprising same WO2015034211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480049126.6A CN105518494B (en) 2013-09-06 2014-08-30 Optical filter and image pickup apparatus including the same
US14/917,016 US10386555B2 (en) 2013-09-06 2014-08-30 Optical filter, and imaging device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130107119 2013-09-06
KR10-2013-0107119 2013-09-06
KR1020130140098A KR101527822B1 (en) 2013-09-06 2013-11-18 Optical filter and image pickup device comprising the same
KR10-2013-0140098 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015034211A1 true WO2015034211A1 (en) 2015-03-12

Family

ID=52628620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008074 WO2015034211A1 (en) 2013-09-06 2014-08-30 Optical filter, and imaging device comprising same

Country Status (1)

Country Link
WO (1) WO2015034211A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228500B2 (en) 2015-04-23 2019-03-12 AGC Inc. Optical filter and imaging device
US10310150B2 (en) 2015-01-14 2019-06-04 AGC Inc. Near-infrared cut filter and solid-state imaging device
US10351718B2 (en) 2015-02-18 2019-07-16 AGC Inc. Optical filter and imaging device
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device
US10386555B2 (en) 2013-09-06 2019-08-20 Lms Co., Ltd. Optical filter, and imaging device comprising same
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184892A (en) * 2005-11-30 2006-07-13 Toyobo Co Ltd Near-infrared absorption film
KR20100137229A (en) * 2009-06-22 2010-12-30 삼성전자주식회사 Hybrid ir cut filter for digital camera
JP2013050593A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Near-infrared ray cut filter and method for manufacturing near-infrared ray cut filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184892A (en) * 2005-11-30 2006-07-13 Toyobo Co Ltd Near-infrared absorption film
KR20100137229A (en) * 2009-06-22 2010-12-30 삼성전자주식회사 Hybrid ir cut filter for digital camera
JP2013050593A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Near-infrared ray cut filter and method for manufacturing near-infrared ray cut filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386555B2 (en) 2013-09-06 2019-08-20 Lms Co., Ltd. Optical filter, and imaging device comprising same
US10670785B2 (en) 2013-09-06 2020-06-02 Lms Co., Ltd. Optical filter, and imaging device comprising same
US10310150B2 (en) 2015-01-14 2019-06-04 AGC Inc. Near-infrared cut filter and solid-state imaging device
US10365417B2 (en) 2015-01-14 2019-07-30 AGC Inc. Near-infrared cut filter and imaging device
US10351718B2 (en) 2015-02-18 2019-07-16 AGC Inc. Optical filter and imaging device
US10745572B2 (en) 2015-02-18 2020-08-18 AGC Inc. Squarylium-based dye for near-infrared optical filter
US10228500B2 (en) 2015-04-23 2019-03-12 AGC Inc. Optical filter and imaging device
US10598834B2 (en) 2015-12-01 2020-03-24 AGC Inc. Near-infrared light blocking optical filter having high visible light transmission and an imaging device using the optical filter

Similar Documents

Publication Publication Date Title
WO2015122595A1 (en) Optical filter and imaging device comprising same
KR101527822B1 (en) Optical filter and image pickup device comprising the same
WO2015034211A1 (en) Optical filter, and imaging device comprising same
WO2015034217A1 (en) Optical filter, and imaging device comprising same
WO2014163405A1 (en) Near-infrared cut filter and solid-state image pickup device including same
CN104051475B (en) Solid-state imaging devices
US7521666B2 (en) Multi-cavity Fabry-Perot ambient light filter apparatus
US20190219749A1 (en) Infrared-cut filter and imaging optical system
WO2010117114A1 (en) Display apparatus
KR20160088147A (en) Cover Glass Having Near Infrared Ray Absorptive Layer For Solid-State Image Pickup Device
WO2010117113A1 (en) Display apparatus
WO2010117115A1 (en) Display apparatus
US20090159785A1 (en) Optical sensing device
US8895346B2 (en) Solid-state imaging device, manufacturing method for the same, and imaging apparatus
WO2017155266A1 (en) Display apparatus
KR102540605B1 (en) Optical Filters and Imaging Devices
WO2016148518A1 (en) Optical filter and imaging device comprising same
WO2017146413A2 (en) Optical article and optical filter comprising same
WO2019138976A1 (en) Optical filter and imaging device
WO2018190560A1 (en) Optical article and optical filter including same
WO2018124756A1 (en) Optical product for near infrared cut-off filter included in camera module, and near infrared cut-off filter for camera module, comprising same
WO2014077475A1 (en) Cmos image sensor including color microlens, and method for manufacturing same
JP6966334B2 (en) Optical filter and image pickup device
JP6259155B1 (en) Optical filter and imaging device
WO2015041411A1 (en) Image sensor chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14917016

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14842173

Country of ref document: EP

Kind code of ref document: A1