WO2020009220A1 - Microscopic observation apparatus, microscopic observation method, and method for manufacturing microscopic observation apparatus - Google Patents

Microscopic observation apparatus, microscopic observation method, and method for manufacturing microscopic observation apparatus Download PDF

Info

Publication number
WO2020009220A1
WO2020009220A1 PCT/JP2019/026801 JP2019026801W WO2020009220A1 WO 2020009220 A1 WO2020009220 A1 WO 2020009220A1 JP 2019026801 W JP2019026801 W JP 2019026801W WO 2020009220 A1 WO2020009220 A1 WO 2020009220A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation target
unit
light
light receiving
microscopic observation
Prior art date
Application number
PCT/JP2019/026801
Other languages
French (fr)
Japanese (ja)
Inventor
宗一郎 上野
Original Assignee
株式会社Iddk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Iddk filed Critical 株式会社Iddk
Publication of WO2020009220A1 publication Critical patent/WO2020009220A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a microscopic observation device, a microscopic observation method, and a method for manufacturing a microscopic observation device.
  • Patent Document 1 an observation method capable of easily observing the entire observation target without adjusting the optical system such as imaging and enlarging and reducing and scanning the observation target.
  • Patent Document 1 does not assume irradiating an observation target with excitation light and observing fluorescence from the observation target.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a microscopic observation apparatus and a microscopic observation method capable of performing observation using fluorescence from an observation target irradiated with excitation light. Another object of the present invention is to provide a method for manufacturing such a microscopic observation device.
  • a microscopic observation apparatus that irradiates an observation target with excitation light and observes fluorescence generated from the observation target, and a light source that irradiates the observation target with excitation light, a semiconductor substrate, A plurality of light receiving portions formed on the semiconductor substrate, a protection layer covering the semiconductor substrate and the plurality of light receiving portions, a first polarizing means formed on the protection layer and containing a metal, An oxide flattening layer covering metal particles, a resin flattening layer formed on the oxide flattening layer, and a resin flattening layer formed on the resin flattening layer, and each of the plurality of light receiving units is formed from the observation target.
  • the excitation having passed through the second polarizing means Configured such that light is cut by the first polarizing means, microscopic observation device is provided.
  • a microscopic observation apparatus for irradiating an observation target with excitation light and observing fluorescence generated from the observation target, comprising: a light source for irradiating the observation target with excitation light; Unit, a non-imaging lens system for guiding fluorescence from the observation target to each of the plurality of light receiving units, a first polarizing unit disposed between the observation target and the light receiving unit, the light source and the light source A second polarization unit disposed between the first polarization unit and the observation target, wherein the polarization characteristics of the first polarization unit and the second polarization unit are such that the excitation light that has passed through the second polarization unit is the first polarization unit.
  • a microscopic observation device configured to be cut by means is provided.
  • a mounting portion may be provided above the non-imaging lens system and a bottom surface may be the second polarizing means.
  • a method of manufacturing a microscopic observation apparatus that irradiates an observation target with excitation light to observe fluorescence generated from the observation target, and irradiates the observation target with excitation light.
  • a method for manufacturing a microscopic observation device, which is attached so as to be cut by two-polarizing means, is provided.
  • a microscopic observation method for irradiating an observation target with excitation light and observing fluorescence generated from the observation target, the method being arranged above a non-imaging lens system in the microscopic observation apparatus. Placing the observation target on the placed mounting portion, irradiating the observation target with excitation light from the light source via the first polarization unit, and converting the excitation light passing through the first polarization unit into the second polarization unit. Guiding the fluorescence from the observation target to the light receiving unit by the non-imaging lens system while cutting by utilizing the polarization characteristics of the means.
  • FIG. 1 is a sectional view showing a schematic configuration of a microscopic observation apparatus 100 according to one embodiment.
  • FIG. 3B is a system configuration diagram of a microscope observation system including the microscope observation device 100 of FIG. 3A.
  • FIG. 3 is a partially enlarged view of the light receiving unit 60.
  • FIG. 4 is a partially enlarged cross-sectional view of a light receiving unit 60 which is a modified example of FIG. 3.
  • FIG. 4 is a partially enlarged cross-sectional view of a light receiving unit 60 which is another modified example of FIG. 3.
  • FIG. 1 is an electric block diagram schematically showing a microscopic observation system using a microscopic observation device 100.
  • FIG. 1 is a diagram illustrating the concept of microscopic observation according to the present invention.
  • the microscopic observation device 100 includes a light source 1, a light receiving unit 2, and polarizing units 3 and 4.
  • the light source 1 irradiates the observation target T with the excitation light L1.
  • the observation target T is excited by the excitation light L1 and emits fluorescence L2.
  • the light receiving unit 2 receives the fluorescence L2 from the observation target T and converts it into an electric signal.
  • the observation target T can be observed by forming an image based on the electric signal.
  • the fluorescence L2 from the observation target T is often weaker than the excitation light L1 from the light source 1. Therefore, if the excitation light L1 from the light source 1 reaches the light receiving unit 2, the influence of the excitation light L1 is too strong, and accurate observation using the fluorescence L2 becomes difficult.
  • two polarizing means 3 and 4 are provided between the light source 1 and the light receiving section 2.
  • the polarization means 3 and 4 can switch the polarization action electrically or mechanically, for example. Then, by utilizing the polarization characteristics of the polarization units 3 and 4, the excitation light L1 passing through the polarization unit 3 on the light source 1 side is cut by the polarization unit 4 on the light receiving unit 2 side.
  • the polarizing means 3 on the light source 1 side transmits only linearly polarized light in a predetermined direction (vertical direction in FIG.
  • the polarizing means 3 and 4 can be configured and arranged to pass only linearly polarized light (in the horizontal direction in the figure).
  • the polarizing means 3 on the light source 1 side transmits only circularly polarized light in a predetermined direction (clockwise in FIG. 2), and the polarizing means 4 on the light receiving unit 2 side is opposite.
  • the polarization means 3 and 4 may be configured and arranged to pass only circularly polarized light in the direction (counterclockwise in the figure).
  • FIG. 3A is a cross-sectional view illustrating a schematic configuration of the microscopic observation device 100 according to one embodiment.
  • the microscopic observation device 100 includes a light source unit 50 and a light receiving unit 60.
  • the light source unit 50 integrates the light source 1 shown in FIG.
  • the light receiving unit 60 includes a semiconductor substrate 11, a plurality of photodiode layers 12, a protective layer 13, metal particles 14, an oxide planarization layer 15, a resin planarization layer 16, a plurality of microlenses 17, And a mounting portion 18.
  • the semiconductor substrate 11 is a silicon substrate or the like.
  • the photodiode layer 12 is an impurity diffusion layer formed in the semiconductor substrate 11, and forms a pn junction photodiode by injecting a p-type impurity into the n-type semiconductor substrate 11, for example.
  • a plurality of photodiode layers 12 are formed apart from each other in a matrix and constitute the light receiving section 2 in FIG. The light receiving section 2 only needs to perform photoelectric conversion on incident light, and does not necessarily need to be the photodiode layer 12.
  • the protection layer 13 is, for example, a silicon oxide film or a silicon nitride film, and covers the exposed portions of the photodiode layer 12 and the semiconductor substrate 11.
  • the metal particles 14 are smaller than the photodiode layer 12 and are formed on the protective layer 13. Although the metal particles 14 may be formed directly on the semiconductor substrate 11 or the photodiode layer 12, it is preferable to provide the protective layer 13.
  • the plurality of metal particles 14 function as the polarization unit 4 in FIG. As described with reference to FIG. 1, the polarization unit 4 is configured to cut the excitation light that has passed through the polarization unit 3.
  • the oxide planarization layer 15 is, for example, a silicon oxide film, and covers the exposed portions of the metal particles 14 and the protection layer 13.
  • the resin planarization layer 16 is formed on the oxide planarization layer 15.
  • a plurality of microlenses 17 made of resin are formed in a matrix on the resin flattening layer 16. Although the microlenses 17 may be formed directly on the oxide flattening layer 15, the microlenses 17 can be adhered to the resin flattening layer 16 by providing the resin flattening layer 16.
  • Each of the microlenses 17 is formed immediately above each of the photodiode layers 12.
  • One photodiode layer 12 and one corresponding microlens 17 form a pixel.
  • the micro lens 17 is a non-imaging lens system, and does not need to form an image on the photodiode layer 12, and guides light incident from a specific viewing angle ⁇ (described later) to the photodiode layer 12. Note that any layer other than the microlens 17 that can control the viewing angle may be applied.
  • the mounting portion 18 is a portion on which the observation target T is mounted, for example, may be formed on the microlens 17 and may be made of resin and a plate shape, or may be a liquid or solid state embedded in the microlens 17. It may be something.
  • the mounting portion 18, the resin flattening layer 16, the oxide flattening layer 15, and the protective layer 13 can transmit at least the fluorescence from the observation target T. Further, in the microscopic observation apparatus 100, it is not necessary to provide a lens system for imaging or enlargement / reduction between the light source 1 and the photodiode layer 12.
  • the microscopic observation device 100 is manufactured by attaching the light source unit 50 and the light receiving unit 60. More specifically, the light source unit 50 and the light receiving unit are arranged such that the excitation light passing through the polarizing unit 3 is cut by the polarizing unit 4 by the polarization characteristics of the polarizing unit 3 in the light source unit 50 and the polarizing unit 4 in the light receiving unit 60. And 60.
  • FIG. 3B is a system configuration diagram of a microscope observation system including the microscope observation device 100 of FIG. 3A.
  • the microscope observation system includes a light source control unit 71 that controls the light source 1, a polarization control unit 72 that electrically or mechanically switches the polarization operation of the polarization unit 3 (and / or the polarization unit 4), A light receiving unit controller 73 for controlling the unit 60 and an overall controller 70 are provided.
  • the general control device 70 controls the light source control unit 71, the polarization control unit 72, and the light receiving unit control unit 73, and is configured by, for example, a personal computer or a microcomputer.
  • microscopic observation is performed as follows. First, the observation target T is placed on the placement unit 18. Next, excitation light is emitted from the light source 1 to the observation target T via the polarizing means 3. Only the excitation light having a specific polarization state among the excitation lights from the light source 1 passes through the polarization means 3 and reaches the observation target T.
  • the observation target T emits fluorescence when excited by the excitation light. This fluorescence is guided to the corresponding photodiode layer 12 by each micro lens 17.
  • the excitation light transmitted from the light source 1 through the polarizing means 3 is cut by the polarizing means 4 composed of the metal particles 14 and hardly reaches the photodiode layer 12.
  • the light entering the photodiode layer 12 is dominated by the fluorescence from the observation target T, and the observation target T can be observed by converting the light into an electric signal.
  • the excitation is performed. Observation using fluorescence can be performed while suppressing the influence of light.
  • FIG. 4 is a partially enlarged cross-sectional view of the light receiving unit 60.
  • the microscopic observation device 100 can image the observation target T arranged within a predetermined distance L from the vertex of the microlens 17.
  • the predetermined distance L is a distance determined by the viewing angle ⁇ of the microlens 17 and the distance P between the photodiode layers 12.
  • the predetermined distance L will be described.
  • the conditions under which the observation target T can be photographed are as follows, where S is the distance of the imaging surface of the observation target T to be guided by one photodiode layer 12, and P is the interval between the photodiode layers 12. Is represented by 2 ⁇ S ⁇ P (Equation 1)
  • the microscopic observation apparatus 100 photographs the observation target T in a so-called out-of-focus state.
  • the microscopic observation apparatus 100 can image the observation target T whose distance L from the vertex of the microlens 17 is within P / (2 ⁇ tan ⁇ ). In other words, if the observation target T is mounted on the mounting portion 18 so that the distance L from the vertex of the microlens 17 is within P / (2 ⁇ tan ⁇ ), the image is out of focus without performing the imaging operation. None.
  • the microscopic observation apparatus 100 sets the distance L from the vertex of the microlens 17 to the distance L. Can photograph the observation target T arranged within 5 ⁇ m.
  • the microscopic observation device 100 sets the distance L from the vertex of the microlens 17 to 10 ⁇ m. It is possible to photograph the observation target T arranged within the range.
  • the microscopic observation device 100 sets the distance L from the vertex of the microlens 17 to 50 ⁇ m. It is possible to photograph the observation target T arranged within the range.
  • the microscopic observation apparatus 100 captures an image of the observation target T whose distance L from the vertex of the microlens 17 is within P / (2 ⁇ tan ⁇ ). Can be done. Therefore, the thickness of the mounting portion 18 when observing on the surface of the mounting portion 18 needs to be within P / (2 ⁇ tan ⁇ ). Further, when the observation target T is inside the mounting portion 18, the observation target T whose distance L from the vertex of the microlens 17 is within P / (2 ⁇ tan ⁇ ) can be photographed.
  • the metal particles 14 forming the polarizing means 4 are formed between the photodiode layer 12 forming the light receiving unit 2 and the microlens 17.
  • the position of the polarizing means 4 is not particularly limited.
  • a polarization action pattern specifically, a resin or metal pattern having a reflection / absorption action may be applied. If it is a metal pattern, a known semiconductor process can be applied. Further, a material having a polarizing property may be used without using a pattern.
  • FIG. 5 is a partially enlarged cross-sectional view of a light receiving unit 60 which is a modification of FIG.
  • the polarizing means 4 is formed on the resin flattening layer 16 so as to cover the microlenses 17. Then, the mounting portion 18 is arranged on the polarizing means 4.
  • the polarizing means 4 is disposed between the micro lens 17 and the observation target T.
  • FIG. 6 is a partially enlarged cross-sectional view of a light receiving unit 60 which is another modified example of FIG.
  • a petri dish 18 ' is disposed above the microlens 17 as a mounting portion.
  • the bottom surface of the petri dish 18 ' serves as the polarizing means 4.
  • the polarizing means 4 is arranged between the microlens 17 and the observation target T.
  • FIG. 7 is an electric block diagram schematically showing a microscopic observation system using the microscopic observation device 100.
  • the microscopic observation system includes a microscopic observation device 100, a logic circuit unit 200 serving as a signal processing circuit, and a display device 300.
  • the logic circuit unit 200 performs color correction (white balance, color matrix) and noise correction (noise reduction, flaw correction) on a voltage signal (raw @ data) obtained by photoelectric conversion by the photodiode layer 12 of the microscopic observation apparatus 100. And performs predetermined signal processing such as image quality correction (edge enhancement, gamma correction), and outputs the signal-processed voltage signal as an image signal.
  • the logic circuit unit 200 since the microscopic observation apparatus 100 does not include a lens system for imaging or scaling, the logic circuit unit 200 includes a correction circuit for correcting such lens aberration and shading. You don't have to.
  • Such a logic circuit unit 200 may be built in the light receiving unit 60 by being formed around a region where the photodiode layer 12 is formed, for example, on the semiconductor substrate 11, or may be provided on a separate substrate from the light receiving unit 60.
  • the light receiving unit 60 may be provided as a separate component.
  • the display device 300 forms and displays an image of the observation target T based on the image signal output from the logic circuit unit 200.
  • the display device 300 can display the whole observation target T arranged on the mounting portion 18 of the microscopic observation device 100 at one time in real time.
  • the two polarization means 3 and 4 are arranged between the light source 1 and the light receiving unit 2, and the excitation light from the light source 1 passing through the polarization means 3 is cut by the polarization means 4. So that it hardly reaches the light receiving section 2. Therefore, the observation using the fluorescence from the observation target T can be performed while suppressing the influence of the excitation light.
  • a normal microscopic observation device for example, an optical microscope
  • a lens system for image formation and enlargement / reduction Therefore, when the polarizing means is provided in such a microscopic observation apparatus, the fluorescence from the observation target T becomes weaker when passing through the polarizing means, and further weakens when passing through the lens system. Therefore, when observing using fluorescence, there is no need to provide a polarizing means.
  • the microscopic observation device 100 does not include a lens system for imaging or enlargement / reduction, so that the polarization unit 4 can be provided.
  • the entire observation target T can be easily observed without the need to adjust the optical system such as focus and magnification, or scan the observation target T.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

The present invention provides a microscopic observation apparatus and a microscopic observation method which enable observation using fluorescence from an object to be observed irradiated with excitation light, and a method for manufacturing such a microscopic observation apparatus. Provided is a microscopic observation apparatus for observing fluorescence generated from an object to be observed by irradiating the object to be observed with excitation light. The microscopic observation apparatus is provided with: a light source which irradiates the object to be observed with the excitation light; a plurality of light receiving parts; a non-imaging lens system which guides the fluorescence from the object to be observed to each of the plurality of light receiving parts; and a first polarizing means and a second polarizing means which are disposed between the light source and the light receiving parts, wherein the first polarizing means and the second polarizing means have polarization properties configured such that the excitation light that has passed through the first polarizing means is cut by the second polarizing means.

Description

顕微観察装置、顕微観察方法および顕微観察装置の製造方法Microscopic observation device, microscopic observation method, and method of manufacturing microscopic observation device
 本発明は、顕微観察装置、顕微観察方法および顕微観察装置の製造方法に関する。 The present invention relates to a microscopic observation device, a microscopic observation method, and a method for manufacturing a microscopic observation device.
 従来の光学顕微鏡とは異なり、結像や拡大縮小といった光学系の調整および観察対象の走査を要することなく、観察対象の全体を簡易に観察できる観察方法が提案されている(特許文献1)。 Unlike the conventional optical microscope, there has been proposed an observation method capable of easily observing the entire observation target without adjusting the optical system such as imaging and enlarging and reducing and scanning the observation target (Patent Document 1).
特開2018-42283号公報JP 2018-42283 A
 特許文献1に記載の観察方法は、観察対象に励起光を照射し、観察対象からの蛍光を観察することまでは想定していない。 観 察 The observation method described in Patent Document 1 does not assume irradiating an observation target with excitation light and observing fluorescence from the observation target.
 本発明はこのような問題点に鑑みてなされたものであり、本発明の課題は、励起光が照射された観察対象からの蛍光を利用した観察を行うことができる顕微観察装置および顕微観察方法、また、そのような顕微観察装置の製造方法を提供することである。 The present invention has been made in view of such problems, and an object of the present invention is to provide a microscopic observation apparatus and a microscopic observation method capable of performing observation using fluorescence from an observation target irradiated with excitation light. Another object of the present invention is to provide a method for manufacturing such a microscopic observation device.
 本発明の一態様によれば、観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察装置であって、前記観察対象に励起光を照射する光源と、半導体基板と、前記半導体基板に形成された複数の受光部と、前記半導体基板および前記複数の受光部を覆う保護層と、前記保護層上に形成され、金属を含む第1偏光手段と、前記保護層および前記金属粒子を覆う酸化物平坦化層と、前記酸化物平坦化層上に形成された樹脂平坦化層と、前記樹脂平坦化層上に形成され、前記複数の受光部のそれぞれに前記観察対象からの蛍光を導く複数の樹脂製マイクロレンズと、前記光源と前記観察対象との間に配置される第2偏光手段と、を備え、前記第1偏光手段および前記第2偏光手段の偏光特性は、前記第2偏光手段を通過した励起光が前記第1偏光手段でカットされるように構成される、顕微観察装置が提供される。 According to one aspect of the present invention, a microscopic observation apparatus that irradiates an observation target with excitation light and observes fluorescence generated from the observation target, and a light source that irradiates the observation target with excitation light, a semiconductor substrate, A plurality of light receiving portions formed on the semiconductor substrate, a protection layer covering the semiconductor substrate and the plurality of light receiving portions, a first polarizing means formed on the protection layer and containing a metal, An oxide flattening layer covering metal particles, a resin flattening layer formed on the oxide flattening layer, and a resin flattening layer formed on the resin flattening layer, and each of the plurality of light receiving units is formed from the observation target. A plurality of resin microlenses for guiding the fluorescence, and a second polarizing means disposed between the light source and the observation target, wherein the polarization characteristics of the first polarizing means and the second polarizing means, The excitation having passed through the second polarizing means Configured such that light is cut by the first polarizing means, microscopic observation device is provided.
 本発明の別の態様によれば、観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察装置であって、前記観察対象に励起光を照射する光源と、複数の受光部と、前記複数の受光部のそれぞれに前記観察対象からの蛍光を導く非結像レンズ系と、前記観察対象と前記受光部との間に配置される第1偏光手段と、前記光源と前記観察対象との間に配置される第2偏光手段と、を備え、前記第1偏光手段および前記第2偏光手段の偏光特性は、前記第2偏光手段を通過した前記励起光が前記第1偏光手段でカットされるように構成される、顕微観察装置が提供される。 According to another aspect of the present invention, there is provided a microscopic observation apparatus for irradiating an observation target with excitation light and observing fluorescence generated from the observation target, comprising: a light source for irradiating the observation target with excitation light; Unit, a non-imaging lens system for guiding fluorescence from the observation target to each of the plurality of light receiving units, a first polarizing unit disposed between the observation target and the light receiving unit, the light source and the light source A second polarization unit disposed between the first polarization unit and the observation target, wherein the polarization characteristics of the first polarization unit and the second polarization unit are such that the excitation light that has passed through the second polarization unit is the first polarization unit. A microscopic observation device configured to be cut by means is provided.
 前記非結像レンズ系の上方に配置され、底面が前記第2偏光手段である載置部を備えてもよい。 を A mounting portion may be provided above the non-imaging lens system and a bottom surface may be the second polarizing means.
 前記光源と前記受光部との間に、結像用および拡大縮小用のレンズ系が配置されないのが望ましい。 レ ン ズ It is desirable that no lens system for image formation and enlargement / reduction is arranged between the light source and the light receiving unit.
 また、本発明の別の態様によれば、観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察装置を製造する方法であって、前記観察対象に励起光を照射する光源、および、前記光源に取り付けられた第1偏光手段を有する光源ユニットと、複数の受光部、前記複数の受光部のそれぞれに前記観察対象からの蛍光を導く非結像レンズ系、および、前記受光部の上方に配置される第2偏光手段を有する受光ユニットと、を、前記第1偏光手段および前記第2偏光手段の偏光特性によって、前記第1偏光手段を通過した前記励起光が前記第2偏光手段でカットされるよう、取り付ける、顕微観察装置の製造方法が提供される。 According to another aspect of the present invention, there is provided a method of manufacturing a microscopic observation apparatus that irradiates an observation target with excitation light to observe fluorescence generated from the observation target, and irradiates the observation target with excitation light. A light source, and a light source unit having a first polarizing unit attached to the light source, a plurality of light receiving units, a non-imaging lens system that guides fluorescence from the observation target to each of the plurality of light receiving units, and A light-receiving unit having a second polarizing means disposed above a light-receiving section, wherein the excitation light having passed through the first polarizing means is changed to the second light by the polarization characteristics of the first polarizing means and the second polarizing means. A method for manufacturing a microscopic observation device, which is attached so as to be cut by two-polarizing means, is provided.
 また、本発明の別の態様によれば、観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察方法であって、顕微観察装置における非結像レンズ系の上方に配置された載置部に観察対象を載置することと、光源から第1偏光手段を介して励起光を前記観察対象に照射することと、前記第1偏光手段を通過した励起光を第2偏光手段の偏光特性を利用してカットしつつ、前記観察対象からの蛍光を前記非結像レンズ系によって前記受光部に導くことと、を備える顕微観察方法が提供される。 According to another aspect of the present invention, there is provided a microscopic observation method for irradiating an observation target with excitation light and observing fluorescence generated from the observation target, the method being arranged above a non-imaging lens system in the microscopic observation apparatus. Placing the observation target on the placed mounting portion, irradiating the observation target with excitation light from the light source via the first polarization unit, and converting the excitation light passing through the first polarization unit into the second polarization unit. Guiding the fluorescence from the observation target to the light receiving unit by the non-imaging lens system while cutting by utilizing the polarization characteristics of the means.
 励起光が照射された観察対象からの蛍光を利用した観察を行うことができる。 観 察 Observation using fluorescence from the observation target irradiated with the excitation light can be performed.
本発明に係る顕微観察の概念を説明する図。The figure explaining the concept of the microscopic observation concerning the present invention. 偏光手段3,4の関係を模式的に示す図。The figure which shows the relationship of the polarization means 3 and 4 typically. 偏光手段3,4の関係を模式的に示す図。The figure which shows the relationship of the polarization means 3 and 4 typically. 一実施形態に係る顕微観察装置100の概略構成を示す断面図。FIG. 1 is a sectional view showing a schematic configuration of a microscopic observation apparatus 100 according to one embodiment. 図3Aの顕微鏡観察装置100を含む顕微鏡観察システムのシステム構成図。FIG. 3B is a system configuration diagram of a microscope observation system including the microscope observation device 100 of FIG. 3A. 受光ユニット60の一部拡大図。FIG. 3 is a partially enlarged view of the light receiving unit 60. 図3の変形例である受光ユニット60の一部拡大断面図。FIG. 4 is a partially enlarged cross-sectional view of a light receiving unit 60 which is a modified example of FIG. 3. 図3の別の変形例である受光ユニット60の一部拡大断面図。FIG. 4 is a partially enlarged cross-sectional view of a light receiving unit 60 which is another modified example of FIG. 3. 顕微観察装置100を用いた顕微観察システムを模式的に示す電気ブロック図。FIG. 1 is an electric block diagram schematically showing a microscopic observation system using a microscopic observation device 100.
 図1は、本発明に係る顕微観察の概念を説明する図である。顕微観察装置100は、光源1と、受光部2と、偏光手段3,4とを備えている。光源1は観察対象Tに対して励起光L1を照射する。観察対象Tは励起光L1によって励起され蛍光L2を発する。受光部2は観察対象Tからの蛍光L2を受け、電気信号に変換する。電気信号に基づいて画像を形成することで観察対象Tを観察できる。 FIG. 1 is a diagram illustrating the concept of microscopic observation according to the present invention. The microscopic observation device 100 includes a light source 1, a light receiving unit 2, and polarizing units 3 and 4. The light source 1 irradiates the observation target T with the excitation light L1. The observation target T is excited by the excitation light L1 and emits fluorescence L2. The light receiving unit 2 receives the fluorescence L2 from the observation target T and converts it into an electric signal. The observation target T can be observed by forming an image based on the electric signal.
 ここで、光源1からの励起光L1に比べて観察対象Tからの蛍光L2は弱いことが多い。そのため、仮に光源1からの励起光L1が受光部2に達すると、励起光L1の影響が強すぎて、蛍光L2を利用した正確な観察が困難となる。 Here, the fluorescence L2 from the observation target T is often weaker than the excitation light L1 from the light source 1. Therefore, if the excitation light L1 from the light source 1 reaches the light receiving unit 2, the influence of the excitation light L1 is too strong, and accurate observation using the fluorescence L2 becomes difficult.
 そこで、本発明では、光源1と受光部2との間に2つの偏光手段3,4を設ける。偏光手段3,4は、例えば電気的あるいは機械的に偏光作用を切り替えることができる。そして、偏光手段3,4の偏光特性を利用して、光源1側の偏光手段3を通過した励起光L1が受光部2側の偏光手段4によってカットされるようにする。 Therefore, in the present invention, two polarizing means 3 and 4 are provided between the light source 1 and the light receiving section 2. The polarization means 3 and 4 can switch the polarization action electrically or mechanically, for example. Then, by utilizing the polarization characteristics of the polarization units 3 and 4, the excitation light L1 passing through the polarization unit 3 on the light source 1 side is cut by the polarization unit 4 on the light receiving unit 2 side.
 一例として、図2Aに模式図を示すように、光源1側の偏光手段3が所定方向(同図では縦方向)の直線偏光のみを通過させ、受光部2側の偏光手段4が異なる方向(同図では横方向)の直線偏光のみを通過させるように偏光手段3,4を構成・配置することができる。 As an example, as shown in the schematic diagram of FIG. 2A, the polarizing means 3 on the light source 1 side transmits only linearly polarized light in a predetermined direction (vertical direction in FIG. The polarizing means 3 and 4 can be configured and arranged to pass only linearly polarized light (in the horizontal direction in the figure).
 別の例として、図2Bに模式図を示すように、光源1側の偏光手段3が所定方向(同図では時計回り)の円偏光のみを通過させ、受光部2側の偏光手段4が反対方向(同図では反時計回り)の円偏光のみを通過させるように偏光手段3,4を構成・配置してもよい。 As another example, as shown in a schematic diagram in FIG. 2B, the polarizing means 3 on the light source 1 side transmits only circularly polarized light in a predetermined direction (clockwise in FIG. 2), and the polarizing means 4 on the light receiving unit 2 side is opposite. The polarization means 3 and 4 may be configured and arranged to pass only circularly polarized light in the direction (counterclockwise in the figure).
 以下、顕微観察装置100の具体的な構成例を説明する。
 図3Aは、一実施形態に係る顕微観察装置100の概略構成を示す断面図である。顕微観察装置100は、光源ユニット50と、受光ユニット60とを備えている。
Hereinafter, a specific configuration example of the microscopic observation apparatus 100 will be described.
FIG. 3A is a cross-sectional view illustrating a schematic configuration of the microscopic observation device 100 according to one embodiment. The microscopic observation device 100 includes a light source unit 50 and a light receiving unit 60.
 光源ユニット50は、図1に示した光源1と、偏光手段3とを一体化したものである。 The light source unit 50 integrates the light source 1 shown in FIG.
 受光ユニット60は、半導体基板11と、複数のフォトダイオード層12と、保護層13と、金属粒子14と、酸化物平坦化層15と、樹脂平坦化層16と、複数のマイクロレンズ17と、載置部18とを有する。 The light receiving unit 60 includes a semiconductor substrate 11, a plurality of photodiode layers 12, a protective layer 13, metal particles 14, an oxide planarization layer 15, a resin planarization layer 16, a plurality of microlenses 17, And a mounting portion 18.
 半導体基板11はシリコン基板などである。フォトダイオード層12は半導体基板11に形成された不純物拡散層であり、例えばn型の半導体基板11に対してp型の不純物を注入することによってpn接合によるフォトダイオードを形成する。複数のフォトダイオード層12が互いに離間してマトリクス状に形成され、図1における受光部2を構成する。なお、受光部2は入射される光に対して光電変換を行うものであればよく、必ずしもフォトダイオード層12である必要はない。 The semiconductor substrate 11 is a silicon substrate or the like. The photodiode layer 12 is an impurity diffusion layer formed in the semiconductor substrate 11, and forms a pn junction photodiode by injecting a p-type impurity into the n-type semiconductor substrate 11, for example. A plurality of photodiode layers 12 are formed apart from each other in a matrix and constitute the light receiving section 2 in FIG. The light receiving section 2 only needs to perform photoelectric conversion on incident light, and does not necessarily need to be the photodiode layer 12.
 保護層13は、例えばシリコン酸化膜あるいはシリコン窒化膜であり、フォトダイオード層12および半導体基板11の露出した部分を覆っている。 The protection layer 13 is, for example, a silicon oxide film or a silicon nitride film, and covers the exposed portions of the photodiode layer 12 and the semiconductor substrate 11.
 金属粒子14はフォトダイオード層12より小さい粒子であり、保護層13上に形成される。半導体基板11上あるいはフォトダイオード層12上に直接金属粒子14を形成してもよいが、保護層13を設けるのが望ましい。複数の金属粒子14が図1における偏光手段4として機能する。図1を用いて説明したように、偏光手段4は偏光手段3を通過した励起光をカットするように構成される。 The metal particles 14 are smaller than the photodiode layer 12 and are formed on the protective layer 13. Although the metal particles 14 may be formed directly on the semiconductor substrate 11 or the photodiode layer 12, it is preferable to provide the protective layer 13. The plurality of metal particles 14 function as the polarization unit 4 in FIG. As described with reference to FIG. 1, the polarization unit 4 is configured to cut the excitation light that has passed through the polarization unit 3.
 酸化物平坦化層15は、例えばシリコン酸化膜であり、金属粒子14および保護層13の露出した部分を覆っている。樹脂平坦化層16は酸化物平坦化層15上に形成される。樹脂平坦化層16上に樹脂製で複数のマイクロレンズ17がマトリクス状に形成される。酸化物平坦化層15上に直接マイクロレンズ17を形成してもよいが、樹脂平坦化層16を設けることで、マイクロレンズ17を樹脂平坦化層16に密着させることができる。 The oxide planarization layer 15 is, for example, a silicon oxide film, and covers the exposed portions of the metal particles 14 and the protection layer 13. The resin planarization layer 16 is formed on the oxide planarization layer 15. A plurality of microlenses 17 made of resin are formed in a matrix on the resin flattening layer 16. Although the microlenses 17 may be formed directly on the oxide flattening layer 15, the microlenses 17 can be adhered to the resin flattening layer 16 by providing the resin flattening layer 16.
 マイクロレンズ17のそれぞれはフォトダイオード層12のそれぞれの直上に形成される。1つのフォトダイオード層12と、対応する1つのマイクロレンズ17とで画素が構成される。マイクロレンズ17は非結像レンズ系であり、フォトダイオード層12上に結像する必要はなく、特定の視野角θ(後述)から入射する光をフォトダイオード層12に導くものである。なお、マイクロレンズ17以外の視野角制御が可能な任意の層を適用してもよい。 Each of the microlenses 17 is formed immediately above each of the photodiode layers 12. One photodiode layer 12 and one corresponding microlens 17 form a pixel. The micro lens 17 is a non-imaging lens system, and does not need to form an image on the photodiode layer 12, and guides light incident from a specific viewing angle θ (described later) to the photodiode layer 12. Note that any layer other than the microlens 17 that can control the viewing angle may be applied.
 載置部18は観察対象Tが載置される部分であり、例えばマイクロレンズ17上に形成され樹脂製で板状のものであってもよいし、マイクロレンズ17に埋め込まれる液状あるいは固体状のものであってもよい。 The mounting portion 18 is a portion on which the observation target T is mounted, for example, may be formed on the microlens 17 and may be made of resin and a plate shape, or may be a liquid or solid state embedded in the microlens 17. It may be something.
 なお、載置部18、樹脂平坦化層16、酸化物平坦化層15および保護層13は、少なくとも観察対象Tからの蛍光を透過させることができる。また、顕微観察装置100には、光源1とフォトダイオード層12との間に結像用あるいは拡大縮小用のレンズ系を設ける必要はない。 The mounting portion 18, the resin flattening layer 16, the oxide flattening layer 15, and the protective layer 13 can transmit at least the fluorescence from the observation target T. Further, in the microscopic observation apparatus 100, it is not necessary to provide a lens system for imaging or enlargement / reduction between the light source 1 and the photodiode layer 12.
 光源ユニット50と受光ユニット60とを取り付けることで顕微観察装置100が製造される。より具体的には、光源ユニット50における偏光手段3および受光ユニット60における偏光手段4の偏光特性によって、偏光手段3を通過した励起光が偏光手段4でカットされるよう、光源ユニット50と受光ユニット60とを取り付ける。 顕 The microscopic observation device 100 is manufactured by attaching the light source unit 50 and the light receiving unit 60. More specifically, the light source unit 50 and the light receiving unit are arranged such that the excitation light passing through the polarizing unit 3 is cut by the polarizing unit 4 by the polarization characteristics of the polarizing unit 3 in the light source unit 50 and the polarizing unit 4 in the light receiving unit 60. And 60.
 図3Bは、図3Aの顕微鏡観察装置100を含む顕微鏡観察システムのシステム構成図である。図示のように、顕微鏡観察システムは、光源1を制御する光源制御部71と、偏光手段3(および/または偏光手段4)の偏光作用を電気的あるいは機械的に切り替える偏光制御部72と、受光ユニット60を制御する受光ユニット制御部73と、全体制御装置70とを備えている。全体制御装置70は、光源制御部71、偏光制御部72および受光ユニット制御部73を制御するものであり、例えばパーソナルコンピュータやマイクロコンピュータによって構成される。 FIG. 3B is a system configuration diagram of a microscope observation system including the microscope observation device 100 of FIG. 3A. As shown in the drawing, the microscope observation system includes a light source control unit 71 that controls the light source 1, a polarization control unit 72 that electrically or mechanically switches the polarization operation of the polarization unit 3 (and / or the polarization unit 4), A light receiving unit controller 73 for controlling the unit 60 and an overall controller 70 are provided. The general control device 70 controls the light source control unit 71, the polarization control unit 72, and the light receiving unit control unit 73, and is configured by, for example, a personal computer or a microcomputer.
 このような顕微観察装置100を用い、次のようにして顕微観察が行われる。まず、観察対象Tを載置部18上に載置する。次いで、光源1から偏光手段3を介して励起光を観察対象Tに向かって照射する。光源1からの励起光のうち特定の偏光状態のもののみが偏光手段3を通過し、観察対象Tに到達する。 顕 Using such a microscopic observation apparatus 100, microscopic observation is performed as follows. First, the observation target T is placed on the placement unit 18. Next, excitation light is emitted from the light source 1 to the observation target T via the polarizing means 3. Only the excitation light having a specific polarization state among the excitation lights from the light source 1 passes through the polarization means 3 and reaches the observation target T.
 観察対象Tは励起光によって励起されて蛍光を発する。この蛍光は各マイクロレンズ17によって、対応するフォトダイオード層12に導かれる。 The observation target T emits fluorescence when excited by the excitation light. This fluorescence is guided to the corresponding photodiode layer 12 by each micro lens 17.
 一方、光源1から偏光手段3を通過した励起光は金属粒子14から構成される偏光手段4によってカットされ、フォトダイオード層12にはほとんど到達しない。 On the other hand, the excitation light transmitted from the light source 1 through the polarizing means 3 is cut by the polarizing means 4 composed of the metal particles 14 and hardly reaches the photodiode layer 12.
 これにより、フォトダイオード層12に入る光は観察対象Tからの蛍光が支配的となり、当該光を電気信号に変換することで、観察対象Tを観察できる。このように、光源1とフォトダイオード層12との間に、偏光手段3と、金属粒子14から構成される偏光手段4と配置された状態で励起光を観察対象Tに照射することで、励起光の影響を抑えて蛍光を利用した観察が可能となる。 (4) Thereby, the light entering the photodiode layer 12 is dominated by the fluorescence from the observation target T, and the observation target T can be observed by converting the light into an electric signal. By irradiating the observation target T with the excitation light in a state where the polarizing means 3 and the polarizing means 4 including the metal particles 14 are arranged between the light source 1 and the photodiode layer 12 in this manner, the excitation is performed. Observation using fluorescence can be performed while suppressing the influence of light.
 図4は、受光ユニット60の一部拡大断面図である。顕微観察装置100は、マイクロレンズ17の頂点から所定の距離L以内に配置される観察対象Tを撮影できるものである。ここで、所定の距離Lとは、マイクロレンズ17の視野角θおよびフォトダイオード層12の間隔Pにより決定される距離である。以下に、所定の距離Lについて説明する。 FIG. 4 is a partially enlarged cross-sectional view of the light receiving unit 60. The microscopic observation device 100 can image the observation target T arranged within a predetermined distance L from the vertex of the microlens 17. Here, the predetermined distance L is a distance determined by the viewing angle θ of the microlens 17 and the distance P between the photodiode layers 12. Hereinafter, the predetermined distance L will be described.
 観察対象Tを撮影できる条件は、図4に示すように、1つのフォトダイオード層12によって導かれるべき観察対象Tの撮影面の距離をS、フォトダイオード層12の間隔をPとして、以下のように表現される。
 2×S≦P・・・(式1)
As shown in FIG. 4, the conditions under which the observation target T can be photographed are as follows, where S is the distance of the imaging surface of the observation target T to be guided by one photodiode layer 12, and P is the interval between the photodiode layers 12. Is represented by
2 × S ≦ P (Equation 1)
 撮影面の距離Sが上記式1を満足しない場合、観察対象Tからの光は、本来受光されるフォトダイオード層12において受光される他、当該フォトダイオード層12に隣接する他のフォトダイオード層12においても受光されてしまうこととなり、顕微観察装置100は観察対象Tを、いわゆるピンボケした状態で撮影してしまう。 When the distance S of the photographing surface does not satisfy the above equation 1, the light from the observation target T is received by the photodiode layer 12 which is originally received, and the other photodiode layers 12 adjacent to the photodiode layer 12 In this case, the microscopic observation apparatus 100 photographs the observation target T in a so-called out-of-focus state.
 ここで、観察対象Tの撮影面の距離Sは、マイクロレンズ17の視野角をθ、マイクロレンズ17の頂点から観察対象Tまでの距離をLとして、以下のように表現される。
 tanθ=S/L・・・(式2)
Here, the distance S between the imaging surface of the observation target T and the viewing angle of the microlens 17 is represented by θ, and the distance from the vertex of the microlens 17 to the observation target T is represented by L as follows.
tan θ = S / L (formula 2)
 以上の式1および式2より、マイクロレンズ17の頂点から観察対象Tまでの距離Lは、以下のように表現される。
 L≦P/(2×tanθ)・・・(式3)
From the above equations 1 and 2, the distance L from the vertex of the microlens 17 to the observation target T is expressed as follows.
L ≦ P / (2 × tan θ) (Equation 3)
 式3より、本実施形態に係る顕微観察装置100は、マイクロレンズ17の頂点からの距離Lが、P/(2×tanθ)以内に配置される観察対象Tを撮影できる。言い換えると、マイクロレンズ17の頂点からの距離LがP/(2×tanθ)以内となるよう観察対象Tを載置部18上に載置すれば、結像操作を行わなくても、ピンボケすることはない。 よ り From Expression 3, the microscopic observation apparatus 100 according to the present embodiment can image the observation target T whose distance L from the vertex of the microlens 17 is within P / (2 × tan θ). In other words, if the observation target T is mounted on the mounting portion 18 so that the distance L from the vertex of the microlens 17 is within P / (2 × tan θ), the image is out of focus without performing the imaging operation. Never.
 例えば、フォトダイオード層12の間隔P=1.76μm(S=0.88μm)、θ=10degである場合、L≦5μmとなるため、顕微観察装置100は、マイクロレンズ17の頂点からの距離Lが5μm以内に配置された観察対象Tを撮影することができる。 For example, when the distance P between the photodiode layers 12 is 1.76 μm (S = 0.88 μm) and θ = 10 deg, L ≦ 5 μm, so that the microscopic observation apparatus 100 sets the distance L from the vertex of the microlens 17 to the distance L. Can photograph the observation target T arranged within 5 μm.
 フォトダイオード層12の間隔P=3.52μm(S=1.76μm)、θ=10degである場合、L≦10μmとなるため、顕微観察装置100は、マイクロレンズ17の頂点からの距離Lが10μm以内に配置された観察対象Tを撮影することができる。 When the interval P between the photodiode layers 12 is 3.52 μm (S = 1.76 μm) and θ = 10 deg, L ≦ 10 μm. Therefore, the microscopic observation device 100 sets the distance L from the vertex of the microlens 17 to 10 μm. It is possible to photograph the observation target T arranged within the range.
 フォトダイオード層12の間隔P=17.64μm(S=8.82μm)、θ=10degである場合、L≦50μmとなるため、顕微観察装置100は、マイクロレンズ17の頂点からの距離Lが50μm以内に配置された観察対象Tを撮影することができる。 When the distance P between the photodiode layers 12 is 17.64 μm (S = 8.82 μm) and θ = 10 deg, L ≦ 50 μm. Therefore, the microscopic observation device 100 sets the distance L from the vertex of the microlens 17 to 50 μm. It is possible to photograph the observation target T arranged within the range.
 なお、以上に説明したように、本実施形態に係る顕微観察装置100は、マイクロレンズ17の頂点からの距離Lが、P/(2×tanθ)以内に配置される観察対象Tを撮影することができるものである。したがって、載置部18の表面上で観察する場合の載置部18の厚さは、P/(2×tanθ)以内である必要がある。また、載置部18の内部に観察対象Tがある場合は、マイクロレンズ17の頂点からの距離Lが、P/(2×tanθ)以内に配置される観察対象Tを撮影できる。 As described above, the microscopic observation apparatus 100 according to the present embodiment captures an image of the observation target T whose distance L from the vertex of the microlens 17 is within P / (2 × tan θ). Can be done. Therefore, the thickness of the mounting portion 18 when observing on the surface of the mounting portion 18 needs to be within P / (2 × tan θ). Further, when the observation target T is inside the mounting portion 18, the observation target T whose distance L from the vertex of the microlens 17 is within P / (2 × tan θ) can be photographed.
 なお、以上説明した図3の受光ユニット60では、受光部2を構成するフォトダイオード層12と、マイクロレンズ17との間に、偏光手段4を構成する金属粒子14を形成する例を示したが、偏光手段4の位置に特に制限はない。例えば、金属粒子14に代えて、偏光作用パターン、具体的には反射・吸収作用のある樹脂あるいは金属パターンを適用してもよい。金属パターンであれば、公知の半導体プロセスを適用できる。また、パターンを用いなくとも偏光性を有する材料を用いてもよい。 In the light receiving unit 60 of FIG. 3 described above, an example is shown in which the metal particles 14 forming the polarizing means 4 are formed between the photodiode layer 12 forming the light receiving unit 2 and the microlens 17. The position of the polarizing means 4 is not particularly limited. For example, instead of the metal particles 14, a polarization action pattern, specifically, a resin or metal pattern having a reflection / absorption action may be applied. If it is a metal pattern, a known semiconductor process can be applied. Further, a material having a polarizing property may be used without using a pattern.
 図5は、図3の変形例である受光ユニット60の一部拡大断面図である。この受光ユニット60は、マイクロレンズ17を覆うように樹脂平坦化層16上に偏光手段4が形成される。そして、偏光手段4上に載置部18が配置される。この受光ユニット60では、マイクロレンズ17と観察対象Tとの間に偏光手段4が配置されることとなる。 FIG. 5 is a partially enlarged cross-sectional view of a light receiving unit 60 which is a modification of FIG. In this light receiving unit 60, the polarizing means 4 is formed on the resin flattening layer 16 so as to cover the microlenses 17. Then, the mounting portion 18 is arranged on the polarizing means 4. In the light receiving unit 60, the polarizing means 4 is disposed between the micro lens 17 and the observation target T.
 図6は、図3の別の変形例である受光ユニット60の一部拡大断面図である。この受光ユニット60は、シャーレ18’が載置部としてマイクロレンズ17の上方に配置される。そして、そのシャーレ18’の底面が偏光手段4となっている。この場合も、マイクロレンズ17と観察対象Tとの間に偏光手段4が配置されることとなる。 FIG. 6 is a partially enlarged cross-sectional view of a light receiving unit 60 which is another modified example of FIG. In the light receiving unit 60, a petri dish 18 'is disposed above the microlens 17 as a mounting portion. The bottom surface of the petri dish 18 'serves as the polarizing means 4. Also in this case, the polarizing means 4 is arranged between the microlens 17 and the observation target T.
 図7は、顕微観察装置100を用いた顕微観察システムを模式的に示す電気ブロック図である。顕微観察システムは、顕微観察装置100、信号処理回路であるロジック回路部200、および、表示装置300によって構成される。 FIG. 7 is an electric block diagram schematically showing a microscopic observation system using the microscopic observation device 100. The microscopic observation system includes a microscopic observation device 100, a logic circuit unit 200 serving as a signal processing circuit, and a display device 300.
 ロジック回路部200は、顕微観察装置100のフォトダイオード層12による光電変換により得られた電圧信号(raw data)に対して色補正(ホワイトバランス、カラーマトリクス)、ノイズ補正(ノイズリダクション、傷補正)、画質補正(エッジ強調、ガンマ補正)など所定の信号処理を施し、信号処理された電圧信号を画像信号として出力する。 The logic circuit unit 200 performs color correction (white balance, color matrix) and noise correction (noise reduction, flaw correction) on a voltage signal (raw @ data) obtained by photoelectric conversion by the photodiode layer 12 of the microscopic observation apparatus 100. And performs predetermined signal processing such as image quality correction (edge enhancement, gamma correction), and outputs the signal-processed voltage signal as an image signal.
 本実施形態においては、顕微観察装置100に結像用あるいは拡大縮小用のレンズ系が含まれないため、ロジック回路部200には、このようなレンズ収差の補正やシェーディング補正するための補正回路はなくてよい。 In the present embodiment, since the microscopic observation apparatus 100 does not include a lens system for imaging or scaling, the logic circuit unit 200 includes a correction circuit for correcting such lens aberration and shading. You don't have to.
 このようなロジック回路部200は、例えば半導体基板11において、フォトダイオード層12が形成された領域の周囲に形成することによって受光ユニット60に内蔵させてもよいし、受光ユニット60とは別基板に設けられた、受光ユニット60とは別部品あってもよい。 Such a logic circuit unit 200 may be built in the light receiving unit 60 by being formed around a region where the photodiode layer 12 is formed, for example, on the semiconductor substrate 11, or may be provided on a separate substrate from the light receiving unit 60. The light receiving unit 60 may be provided as a separate component.
 また、表示装置300はロジック回路部200から出力される画像信号に基づいて観察対象Tの画像を形成し、表示する。表示装置300は顕微観察装置100の載置部18に配置された観察対象Tの全体を一度にリアルタイム表示できる。 (4) The display device 300 forms and displays an image of the observation target T based on the image signal output from the logic circuit unit 200. The display device 300 can display the whole observation target T arranged on the mounting portion 18 of the microscopic observation device 100 at one time in real time.
 以上説明したように、本実施形態では、光源1と受光部2との間に2つの偏光手段3,4を配置し、偏光手段3を通過した光源1からの励起光が偏光手段4によってカットされ、受光部2にほとんど達しないようにする。そのため、励起光の影響を抑えて観察対象Tからの蛍光を利用した観察を行うことができる。 As described above, in the present embodiment, the two polarization means 3 and 4 are arranged between the light source 1 and the light receiving unit 2, and the excitation light from the light source 1 passing through the polarization means 3 is cut by the polarization means 4. So that it hardly reaches the light receiving section 2. Therefore, the observation using the fluorescence from the observation target T can be performed while suppressing the influence of the excitation light.
 なお、通常の顕微観察装置(例えば、光学顕微鏡)には、結像用や拡大縮小用のレンズ系が設けられる。そのため、このような顕微観察装置に偏光手段を設けると、観察対象Tからの蛍光は、偏光手段を通過する際に弱くなり、上記レンズ系を通過する際にさらに弱くなる。そのため、蛍光を利用した観察を行う際には、偏光手段を設けるようなことは行われない。 通常 Note that a normal microscopic observation device (for example, an optical microscope) is provided with a lens system for image formation and enlargement / reduction. Therefore, when the polarizing means is provided in such a microscopic observation apparatus, the fluorescence from the observation target T becomes weaker when passing through the polarizing means, and further weakens when passing through the lens system. Therefore, when observing using fluorescence, there is no need to provide a polarizing means.
 しかしながら、本実施形態の構成によれば、顕微観察装置100は結像用や拡大縮小用のレンズ系を備えないため、偏光手段4を設けることが可能となる。しかも、ピントや倍率調整といった光学系の調整や、観察対象Tの走査を要することなく、観察対象Tの全体を簡易に観察できる。 However, according to the configuration of the present embodiment, the microscopic observation device 100 does not include a lens system for imaging or enlargement / reduction, so that the polarization unit 4 can be provided. In addition, the entire observation target T can be easily observed without the need to adjust the optical system such as focus and magnification, or scan the observation target T.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。 The above embodiments are described for the purpose of allowing anyone having ordinary knowledge in the technical field to which the present invention pertains to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the invention is not limited to the embodiments described, but is to be accorded the widest scope consistent with the spirit as defined by the appended claims.
1 光源
2 受光部
3,4 偏光手段
11 半導体基板
12 フォトダイオード層
13 保護層
14 金属粒子
15 酸化膜平坦化層
16 樹脂平坦化層
17 マイクロレンズ
18 載置部
18’ シャーレ
50 光源ユニット
60 受光ユニット
70 全体制御装置
71 光源制御部
72 偏光制御部
73 受光ユニット制御部
100 顕微観察装置
200 ロジック回路
300 表示装置
REFERENCE SIGNS LIST 1 light source 2 light receiving sections 3 and 4 polarizing means 11 semiconductor substrate 12 photodiode layer 13 protective layer 14 metal particles 15 oxide film flattening layer 16 resin flattening layer 17 microlens 18 mounting section 18 'petri dish light source unit 60 light receiving unit 70 overall control device 71 light source control unit 72 polarization control unit 73 light receiving unit control unit 100 microscopic observation device 200 logic circuit 300 display device

Claims (6)

  1.  観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察装置であって、
     前記観察対象に励起光を照射する光源と、
     半導体基板と、
     前記半導体基板に形成された複数の受光部と、
     前記半導体基板および前記複数の受光部を覆う保護層と、
     前記保護層上に形成され、金属を含む第1偏光手段と、
     前記保護層および前記金属粒子を覆う酸化物平坦化層と、
     前記酸化物平坦化層上に形成された樹脂平坦化層と、
     前記樹脂平坦化層上に形成され、前記複数の受光部のそれぞれに前記観察対象からの蛍光を導く複数の樹脂製マイクロレンズと、
     前記光源と前記観察対象との間に配置される第2偏光手段と、を備え、
     前記第1偏光手段および前記第2偏光手段の偏光特性は、前記第2偏光手段を通過した励起光が前記第1偏光手段でカットされるように構成される、顕微観察装置。
    A microscopic observation apparatus that irradiates the observation target with excitation light and observes fluorescence generated from the observation target,
    A light source for irradiating the observation target with excitation light,
    A semiconductor substrate;
    A plurality of light receiving units formed on the semiconductor substrate,
    A protective layer covering the semiconductor substrate and the plurality of light receiving units;
    A first polarizing unit formed on the protective layer and including a metal;
    An oxide planarization layer covering the protective layer and the metal particles,
    A resin planarization layer formed on the oxide planarization layer,
    A plurality of resin microlenses formed on the resin flattening layer and guiding fluorescence from the observation target to each of the plurality of light receiving units,
    A second polarizing means disposed between the light source and the observation target,
    The microscopic observation apparatus, wherein the polarization characteristics of the first polarization unit and the second polarization unit are configured such that the excitation light passing through the second polarization unit is cut by the first polarization unit.
  2.  観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察装置であって、
     前記観察対象に励起光を照射する光源と、
     複数の受光部と、
     前記複数の受光部のそれぞれに前記観察対象からの蛍光を導く非結像レンズ系と、
     前記観察対象と前記受光部との間に配置される第1偏光手段と、
     前記光源と前記観察対象との間に配置される第2偏光手段と、を備え、
     前記第1偏光手段および前記第2偏光手段の偏光特性は、前記第2偏光手段を通過した前記励起光が前記第1偏光手段でカットされるように構成される、顕微観察装置。
    A microscopic observation apparatus that irradiates the observation target with excitation light and observes fluorescence generated from the observation target,
    A light source for irradiating the observation target with excitation light,
    A plurality of light receiving sections,
    A non-imaging lens system that guides fluorescence from the observation target to each of the plurality of light receiving units,
    A first polarizing unit disposed between the observation target and the light receiving unit;
    A second polarizing means disposed between the light source and the observation target,
    The microscopic observation apparatus, wherein the polarization characteristics of the first polarization unit and the second polarization unit are configured such that the excitation light that has passed through the second polarization unit is cut by the first polarization unit.
  3.  前記非結像レンズ系の上方に配置され、底面が前記第2偏光手段である載置部を備える、請求項2に記載の顕微観察装置。 The microscopic observation device according to claim 2, further comprising a mounting portion disposed above the non-imaging lens system and having a bottom surface serving as the second polarizing means.
  4.  前記光源と前記受光部との間に、結像用および拡大縮小用のレンズ系が配置されない、請求項1乃至3のいずれかに記載の顕微観察装置。 The microscope observation apparatus according to any one of claims 1 to 3, wherein a lens system for imaging and enlargement / reduction is not arranged between the light source and the light receiving unit.
  5.  観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察装置を製造する方法であって、
     前記観察対象に励起光を照射する光源、および、前記光源に取り付けられた第1偏光手段を有する光源ユニットと、
     複数の受光部、前記複数の受光部のそれぞれに前記観察対象からの蛍光を導く非結像レンズ系、および、前記受光部の上方に配置される第2偏光手段を有する受光ユニットと、を、
     前記第1偏光手段および前記第2偏光手段の偏光特性によって、前記第1偏光手段を通過した前記励起光が前記第2偏光手段でカットされるよう、取り付ける、顕微観察装置の製造方法。
    A method for manufacturing a microscopic observation apparatus for irradiating an observation target with excitation light and observing fluorescence generated from the observation target,
    A light source for irradiating the observation target with excitation light, and a light source unit having a first polarizing unit attached to the light source,
    A plurality of light receiving units, a non-imaging lens system that guides fluorescence from the observation target to each of the plurality of light receiving units, and a light receiving unit having a second polarizing unit disposed above the light receiving unit,
    A method for manufacturing a microscopic observation device, comprising: mounting the excitation light having passed through the first polarizing means so as to be cut by the second polarizing means by the polarization characteristics of the first polarizing means and the second polarizing means.
  6.  観察対象に励起光を照射して前記観察対象から生じる蛍光を観察する顕微観察方法であって、
     顕微観察装置における非結像レンズ系の上方に配置された載置部に観察対象を載置することと、
     光源から第1偏光手段を介して励起光を前記観察対象に照射することと、
     前記第1偏光手段を通過した励起光を第2偏光手段の偏光特性を利用してカットしつつ、前記観察対象からの蛍光を前記非結像レンズ系によって前記受光部に導くことと、を備える顕微観察方法。
    A microscopic observation method of irradiating the observation target with excitation light and observing fluorescence generated from the observation target,
    Placing the observation target on a mounting portion arranged above the non-imaging lens system in the microscopic observation device;
    Irradiating the observation target with excitation light from the light source via the first polarizing means;
    Guiding the fluorescence from the observation target to the light receiving unit by the non-imaging lens system while cutting the excitation light that has passed through the first polarizing unit using the polarization characteristics of the second polarizing unit. Microscopic observation method.
PCT/JP2019/026801 2018-07-06 2019-07-05 Microscopic observation apparatus, microscopic observation method, and method for manufacturing microscopic observation apparatus WO2020009220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129018A JP2020008682A (en) 2018-07-06 2018-07-06 Microscopic observation device, microscopic observation method and microscopic observation device manufacturing method
JP2018-129018 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020009220A1 true WO2020009220A1 (en) 2020-01-09

Family

ID=69060465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026801 WO2020009220A1 (en) 2018-07-06 2019-07-05 Microscopic observation apparatus, microscopic observation method, and method for manufacturing microscopic observation apparatus

Country Status (2)

Country Link
JP (1) JP2020008682A (en)
WO (1) WO2020009220A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11378444B2 (en) 2020-08-05 2022-07-05 Visera Technologies Company Limited Biosensor and bio detection system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145888A (en) * 1994-11-16 1996-06-07 Olympus Optical Co Ltd Fluorescence calorimeter
JP2002055226A (en) * 2000-08-07 2002-02-20 Nippon Sheet Glass Co Ltd Polarizing element and method for manufacturing the same
JP2005099662A (en) * 2002-12-27 2005-04-14 Olympus Corp Confocal microscope
US20110300490A1 (en) * 2009-01-24 2011-12-08 Bastien Rachet High-resolution microscopy and photolithography devices using focusing micromirrors
JP2012529025A (en) * 2009-06-02 2012-11-15 コミッサリアータ レネルジー アトミック エ オゼネルジー アルテルナティーブ Microlens imaging system and sample detection system attached device
JP2017134191A (en) * 2016-01-27 2017-08-03 一般社団法人 日本薬理評価機構 Microscope observation-purpose container and microscope observation system
JP2018042283A (en) * 2017-12-01 2018-03-15 株式会社東芝 Observation method using microscopic imaging apparatus
JP2018098343A (en) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 Imaging device, metal thin film filter, and electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190167A (en) * 1989-12-19 1991-08-20 Sharp Corp Solid-state image sensing device
US7591980B2 (en) * 2004-03-01 2009-09-22 Mesosystems Technology, Inc. Biological alarm
JP2009075281A (en) * 2007-09-20 2009-04-09 Nikon Corp Microscope objective lens
JP2009156659A (en) * 2007-12-26 2009-07-16 Olympus Corp Measuring apparatus and method
WO2014192734A1 (en) * 2013-05-30 2014-12-04 新日鐵住金株式会社 Film thickness measurement method, film thickness measurement device, and recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145888A (en) * 1994-11-16 1996-06-07 Olympus Optical Co Ltd Fluorescence calorimeter
JP2002055226A (en) * 2000-08-07 2002-02-20 Nippon Sheet Glass Co Ltd Polarizing element and method for manufacturing the same
JP2005099662A (en) * 2002-12-27 2005-04-14 Olympus Corp Confocal microscope
US20110300490A1 (en) * 2009-01-24 2011-12-08 Bastien Rachet High-resolution microscopy and photolithography devices using focusing micromirrors
JP2012529025A (en) * 2009-06-02 2012-11-15 コミッサリアータ レネルジー アトミック エ オゼネルジー アルテルナティーブ Microlens imaging system and sample detection system attached device
JP2017134191A (en) * 2016-01-27 2017-08-03 一般社団法人 日本薬理評価機構 Microscope observation-purpose container and microscope observation system
JP2018098343A (en) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 Imaging device, metal thin film filter, and electronic equipment
JP2018042283A (en) * 2017-12-01 2018-03-15 株式会社東芝 Observation method using microscopic imaging apparatus

Also Published As

Publication number Publication date
JP2020008682A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR102206218B1 (en) Backside illumination image sensor, manufacturing method thereof and image-capturing device
US11282882B2 (en) Focus detecting device and electronic device
US9100639B2 (en) Light field imaging device and image processing device
TWI531851B (en) Camera device and filter
JP5274299B2 (en) Imaging device
CN101395926A (en) Fused multi-array color image sensor
JP2013512470A (en) Optical imaging device
TW200841462A (en) Solid-state image capturing apparatus, method for manufacturing the same, and electronic information device
US9678324B2 (en) Microscope system
US20160363673A1 (en) Method of fabricating integrated digital x-ray image sensor, and integrated digital x-ray image sensor using the same
JP2015015296A (en) Solid-state imaging device and electronic equipment
US9425229B2 (en) Solid-state imaging element, imaging device, and signal processing method including a dispersing element array and microlens array
JP2014003116A (en) Image pickup device
JP6462837B2 (en) Observation method using microscope
EP3264745B1 (en) Scanning imaging system with a novel imaging sensor with gaps for electronic circuitry
WO2020009220A1 (en) Microscopic observation apparatus, microscopic observation method, and method for manufacturing microscopic observation apparatus
JP6320870B2 (en) Observation method using microscope
KR20140090548A (en) Image pickup device, method of manufacturing same, and electronic apparatus
JP5434121B2 (en) Back-illuminated image sensor and imaging apparatus
JP2009188461A (en) Imaging apparatus
JP2022133325A (en) Microscope observation device, detector, and microscope observation method
JP6692404B2 (en) Observation system
KR101205128B1 (en) Optical examination apparatus adjusting resolution per pixel using image sensor binning
JP7383876B2 (en) Imaging element and imaging device
WO2016103315A1 (en) Solid-state image pickup device, and image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831480

Country of ref document: EP

Kind code of ref document: A1